These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Berberine chloride improved synaptic plasticity in STZ induced diabetic rats.  

PubMed

Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P?diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect. PMID:23640014

Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

2013-09-01

2

Effect of arctiin on glomerular filtration barrier damage in STZ-induced diabetic nephropathy rats.  

PubMed

Diabetic nephropathy (DN) is the major life-threatening complication of diabetes. Abnormal permeability of glomerular basement membrane plays an important role in DN pathogenesis. This study was performed to assess the effect of arctiin, the lignan constituent from Arctium lappa L., on metabolic profile and aggravation of renal lesions in a rat model of streptozotocin (STZ)-induced DN. STZ-induced diabetic rats were treated with arctiin at the dosage of 60 or 40 mg/kg/day via intraperitoneal injection for 8 weeks. Blood glucose and 24-h urinary albumin content were measured, and kidney histopathological changes were monitored. RT-PCR and immunohistochemistry were used to detect the mRNA and protein levels of nephrin, podocin and heparanase (HPSE) in the kidney cortex of rats, respectively. Treatment with arctiin significantly decreased the levels of 24-h urinary albumin, prevented the sclerosis of glomeruli and effectively restored the glomerular filtration barrier damage by up-regulating the expression of nephrin and podocin and down-regulating HPSE level. Our studies suggest that arctiin might be beneficial for DN. The effects of arctiin on attenuating albuminuria and glomerulosclerosis are possibly mediated by regulating the expression of nephrin and podocin and HPSE in STZ-induced diabetic rats. PMID:23147865

Ma, Song-Tao; Liu, Dong-lian; Deng, Jing-jing; Niu, Rui; Liu, Rui-bin

2013-10-01

3

Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats  

PubMed Central

Background The available drugs for diabetes, Insulin or Oral hypoglycemic agents have one or more side effects. Search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenge according to WHO recommendations. In this aspect, the present study was undertaken to evaluate the antihyperglycemic and antihyperlipidemic effects of Piper longum root aqueous extract (PlrAqe) in streptozotocin (STZ) induced diabetic rats. Methods Diabetes was induced in male Wister albino rats by intraperitoneal administration of STZ (50 mg/kg.b.w). Fasting blood glucose (FBG) levels were measured by glucose-oxidase & peroxidase reactive strips. Serum biochemical parameters such as glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol were estimated. The activities of liver and kidney functional markers were measured. The statistical analysis of results was carried out using Student t-test and one-way analysis (ANOVA) followed by DMRT. Results During the short term study the aqueous extract at a dosage of 200 mg/kg.b.w was found to possess significant antidiabetic activity after 6 h of the treatment. The administration of aqueous extract at the same dose for 30 days in STZ induced diabetic rats resulted in a significant decrease in FBG levels with the corrections of diabetic dyslipidemia compared to untreated diabetic rats. There was a significant decrease in the activities of liver and renal functional markers in diabetic treated rats compared to untreated diabetic rats indicating the protective role of the aqueous extract against liver and kidney damage and its non-toxic property. Conclusions From the above results it is concluded that the plant extract is capable of managing hyperglycemia and complications of diabetes in STZ induced diabetic rats. Hence this plant may be considered as one of the potential sources for the isolation of new oral anti hypoglycemic agent(s). PMID:23414307

2013-01-01

4

Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats.  

PubMed

Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinoline alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover, astrocytes are proving critical for normal CNS function, and alterations in their activity and impaired oxidative stress could contribute to diabetes-related cognitive dysfunction. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) as an astrocytic marker. Therefore, we examined the effects of berberine on glial reactivity of hippocampus in streptozotocin (STZ)-induced diabetic rats, using GFAP immunohistochemistry. Lipid peroxidation, superoxide dismutase (SOD) activity, and nitrite levels were assessed as the parameters of oxidative stress. Eight weeks after diabetes induction, we observed increased numbers of GFAP(+) astrocytes immunostaining associated with increased lipid peroxidation, decreased superoxide dismutase activity, and elevated nitrite levels in the hippocampus of STZ-diabetic rats. In contrast, chronic treatment with berberine (50 and 100 mg/kg p.o. once daily) lowered hyperglycemia, reduced oxidative stress, and prevented the upregulation of GFAP in the brain of diabetic rats. In conclusion, the present study demonstrated that the treatment with berberine resulted in an obvious reduction of oxidative stress and GFAP-immunoreactive astrocytes in the hippocampus of STZ-induced diabetic rats. PMID:24113841

Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Khaksari, Mehdi; Norouzi, Pirasteh; Ahooie, Malihea; Mahboobi, Fatemeh

2014-04-01

5

Potential antiosteoporosis effect of biodegradable magnesium implanted in STZ-induced diabetic rats.  

PubMed

Pure magnesium (Mg) was implanted intramedullary into the femur of streptozotocin (STZ)-induced diabetic rats to investigate its effect on bone growth after 6 weeks degradation. The experimental results showed that the femoral BMD in diabetic rats was significantly lower than that in controls (p < 0.01) but restored notably by Mg implantation. The contents of calcium (Ca), phosphorus (P), Mg, zinc (Zn), potassium (K), strontium (Sr), and sulfur (S) in bone of diabetic group were significantly lower than those in controls but remarkably increased with implantation of Mg. The residual weight calculation showed that 29.41% of Mg was degraded in vivo. The energy dispersive X-ray spectroscopy (EDS) analysis showed that the reaction layer on the surface of the Mg implant mainly consisted of C, Ca, O, P, and Mg. Besides, serum Mg level was significantly decreased in diabetic group compared with the control group but increased by Mg treatment. Also, there were no significant differences in body weight and blood glucose, as well as blood glycosylated hemoglobin (HbAIc%), serum Ca, alanine aminitransperase (ALT), aspartate aminotransferase (AST), uric acid (UA), nonesterified fatty acid (NEFA), cholinesterase (CHE), and creatinine (CR) levels between diabetic and Mg-implanted rats. The study indicated that Mg implant had no obvious toxicity in STZ-induced diabetic rats and may act as a potential agent to treat osteoporosis. PMID:22021186

Yang, Weili; Zhang, Yu; Yang, Jianhong; Tan, Lili; Yang, Ke

2011-12-01

6

Combined inhibition of aromatase activity and dihydrotestosterone supplementation attenuates renal injury in male streptozotocin (STZ)-induced diabetic rats  

PubMed Central

Our previous studies showed that streptozotocin (STZ)-induced diabetic male rats have increased estradiol and decreased testosterone levels that correlate with renal injury (Xu Q, Wells CC, Garman GH, Asico L, Escano CS, Maric C. Hypertension 51: 1218–1224, 2008). We further showed that either supplementing dihydrotestosterone (DHT) or inhibiting estradiol biosynthesis in these diabetic rats was only partially renoprotective (Manigrasso MB, Sawyer RT, Marbury DC, Flynn ER, Maric C. Am J Physiol Renal Physiol 301: F634–F640, 2011; Xu Q, Prabhu A, Xu S, Manigrassso MB, Maric C. Am J Physiol 297: F307–F315, 2009). The aim of this study was to test the hypothesis that the combined therapy of DHT supplementation and inhibition of estradiol synthesis would afford better renoprotection than either treatment alone. The study was performed in 12-wk-old male nondiabetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic rats that received the combined therapy of 0.75 mg/day of DHT along with 0.15 mg·kg?1·day?1 of an aromatase inhibitor, anastrozole (Dta), for 12 wk. Treatment with the combined therapy resulted in attenuation of albuminuria by 84%, glomerulosclerosis by 55%, and tubulointerstitial fibrosis by 62%. In addition, the combined treatment decreased the density of renal cortical CD68-positive cells by 70% and decreased protein expression of transforming growth factor-? protein expression by 60%, collagen type IV by 65%, TNF-? by 55%, and IL-6 by 60%. We conclude that the combined treatment of DHT and blocking aromatase activity in diabetic male STZ-induced diabetic rats provides superior treatment than either treatment alone in the prevention of diabetic renal disease. PMID:22301628

Manigrasso, Michaele B.; Sawyer, R. Taylor; Hutchens, Zachary M.; Flynn, Elizabeth R.

2012-01-01

7

Anti-diabetic and antihyperlipidemic effect of allopolyherbal formulation in OGTT and STZ-induced diabetic rat model.  

PubMed

The present study was undertaken to evaluate the antidiabetic and antihyperlipidemic activities of Allopolyherbal formulation (APHF) consisting of combinations of three well known medicinal plants used in traditional medicines (Trigonella foenum graceum, Momordica charantia, Aegle marmelos) and synthetic oral hypoglycaemic drug (Glipizide-GL). The optimized combination of lyophilized hydro-alcoholic extracts of drugs was 2:2:1 using OGTT model. The optimized PHF was simultaneously administered with GL and optimized using OGTT model in diabetic rats and further studied in STZ-induced diabetic rats for 21 days. The results (serum glucose level, lipid profile, hepatic enzymes and body weight) were compared with the standard drug GL (10 mg/kg body wt). The optimized APHF (500+5 mg/kg body wt) has shown significant antihyperglycemic and antihyperlipidemic activities. The results were comparable with the standard; even better than the GL (10 mg/kg body wt) alone. The proposed hypothesis has reduced the no. of drug components from eight to three and dose almost 50% of both PHF and GL which fulfil the FDA requirements for export. Thus the developed APHF will be an ideal alternative for the existing hypoglycemic formulations in the market with an additional advantage of hypolipidemic effect and minimizing the cardiovascular risk factors associated with diabetes. PMID:24377129

Manik, Swati; Gauttam, Vinod; Kalia, A N

2013-09-01

8

Increased peripherin in sympathetic axons innervating plantar metatarsal arteries in STZ-induced type I diabetic rats  

PubMed Central

A common characteristic of axonopathy is the abnormal accumulation of cytoskeletal proteins. We recently reported that streptozotocin (STZ)-induced type 1 diabetes produced a change in the morphology of sympathetic nerve fibers supplying rat plantar metatarsal arteries (PMAs). Here we investigated whether these morphological changes are associated with axonal accumulation of the type III intermediate filament peripherin and the microtubule protein ?-tubulin III, as both are implicated in axonal remodeling. PMAs from hyperglycemic STZ-treated rats receiving a low dose of insulin (STZ-LI) were compared with those from normoglycemic STZ-treated rats receiving a high dose of insulin (STZ-HI) and vehicle-treated controls. Western blotting revealed an increase in protein expression level for peripherin in PMAs from STZ-LI rats but no change in that for ?-tubulin III. In addition, there was an increase in the number of peripherin immunoreactive nerve fibers in the perivascular nerve plexus of PMAs from STZ-LI rats. Co-labeling for peripherin and neuropeptide Y (a marker for sympathetic axons) revealed that peripherin immunoreactivity increased in sympathetic axons. None of these changes were detected in PMAs from STZ-HI rats, indicating that increased peripherin in sympathetic axons of STZ-LI rats is likely due to hyperglycemia and provides a marker of diabetes-induced nerve damage. PMID:24847201

Johansen, Niloufer J.; Frugier, Tony; Hunne, Billie; Brock, James A.

2014-01-01

9

Effect of Hordeum vulgare L. (Barley) on blood glucose levels of normal and STZ-induced diabetic rats  

PubMed Central

Barley (Hordeum vulgare L.) is the world's fourth most important cereal crop after wheat, rice and maize. It is readily available with reasonable cost, and has the highest amount of dietary fiber among the cereals which may be beneficial for metabolic syndrome. In the present study, the effect of hydroalcoholic extract of barley seeds and a protein enriched fraction on blood glucose of normal and streptozotocin (STZ)-induced diabetic rats (STZ, 55 mg/kg, i.p) were investigated. Normal and diabetic male Wistar rats were treated daily with normal saline (1 ml), barley hydroalcoholic extract (BHE) (0.1, 0.25, 0.5 g/kg), protein enriched fraction (PEF) (0.1, 0.2, 0.4 g/kg) and glibenclamide (1 and 3 mg/kg), separately and the treatment was continued for 11 days. Blood samples were taken at 0, 1, 2, 3, 9 h in the first day and the days 5 (120 h) and 11 (264 h) for measuring the blood glucose levels (BGL). Our results indicated that none of the BHE and PEF, were effective to reduce BGL in normal or diabetic rats in acute phase of treatment (1st day). Nevertheless, BHE at doses of 0.25 and 0.5 g/kg, were only effective in detracting BGL of diabetic rats after 11 days of continued daily therapy. Moreover, BHE restored body weight of diabetic rats at the end of treatment. Glibenclamide had also hypoglycemic action in normal and diabetic rats after both acute and extended treatments. These findings suggest that barley seeds hydroalcoholic extract, has a role in diabetic control in long term consumption, and this effect might be at least due to its high fiber content. More detailed studies are warranted to demonstrate its mechanism of action and identify active components.

Minaiyan, M.; Ghannadi, A.; Movahedian, A.; Hakim-Elahi, I.

2014-01-01

10

Histopathological findings of the pancreas, liver, and carbohydrate metabolizing enzymes in STZ-induced diabetic rats improved by administration of myrtenal.  

PubMed

This study aims to evaluate the efficacy of myrtenal, a natural monoterpene, for its antihyperglycemic effects and ? cell protective properties in streptozotocin (STZ)-induced diabetic rats. Oral administration of myrtenal at doses of 20, 40, and 80 mg/kg body weight to diabetic rats for 28 days resulted in a significant reduction (P < 0.05) in the levels of plasma glucose, glycosylated hemoglobin (HbA1c), and an increase in the levels of insulin and hemoglobin (Hb). Protection of body weight loss of diabetic rats by myrtenal was noted. The altered activities of the key metabolic enzymes involved in carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, and hepatic enzymes AST, ALT, and ALP levels of diabetic rats were significantly improved by the administration of myrtenal in STZ-induced diabetic rats. Moreover, myrtenal treatment improved hepatic and muscle glycogen content in diabetic rats. Histopathological studies further revealed that the reduced islet cells were restored to near-normal conditions on treatment with myrtenal in STZ-induced diabetic rats. An alteration in liver architecture was also prevented by myrtenal treatment. Our results suggest that myrtenal possess antihyperglycemic and ? cell protective effects. Hence, myrtenal could be considered as a potent phytochemical for development as a new antidiabetic agent. PMID:25292424

Rathinam, Ayyasamy; Pari, Leelavinothan; Chandramohan, Ramasamy; Sheikh, Bashir Ahmad

2014-12-01

11

Acute administration of diosgenin or dioscorea improves hyperglycemia with increases muscular steroidogenesis in STZ-induced type 1 diabetic rats.  

PubMed

Acute dehydroepiandrosterone (DHEA) administration improves hyperglycemia in rats with streptozotocin (STZ)-induced type 1 diabetes mellitus. Diosgenin, a steroid structurally similar to DHEA (dehydroepiandrosterone), is contained highly levels in dioscorea; however, it is still unclear whether this natural product improves hyperglycemia in the type 1 diabetes model rats through an increase muscular GLUT4 signaling. After 1 week of STZ injection, fasting glucose level was measured in blood taken from the tail vein every 30 min for 150 min after injection of diosgenin or dioscorea (3mg/kg). On another day, muscle was resected 150 min after diosgenin or dioscorea injections. Serum DHEA level increased significantly 120 min after diosgenin or dioscorea injections; concomitantly, blood glucose level decreased significantly. Moreover, GLUT4 translocation, as well as phosphorylation of Akt and PKC ?/?, increased significantly by diosgenin or dioscorea administration. However, these effects of diosgenin and dioscorea were blocked by a 5?-reductase inhibitor that inhibits synthesizing dehydrotestosterone (DHT) from testosterone. Additionally, significant correlations were observed between blood glucose level, GLUT4 translocation level, and muscular sex steroid hormone level 150 min after the administrations. These results suggest that the diosgenin-induced increase in the DHEA level may contribute to the improvement of hyperglycemia by activating the muscular GLUT4 signaling pathway in type 1 diabetes model rats. PMID:24607838

Sato, K; Fujita, S; Iemitsu, M

2014-09-01

12

The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats.  

PubMed

Podocyte injury plays a critical role in the development and progression of diabetic nephropathy (DN). Over expression of TRPC6 on the podocytes has been revealed to cause podocyte injury in non-diabetic states. Besides, the emerging evidence from clinic revealed that vitamin D could reduce albuminuria and improve renal function, which was associated with podocyte protection. Our study aimed to investigate whether calcitriol ameliorating podocyte impairment is associated with regulation of the expression of TRPC6 in STZ-induced rats. Sprague-Dawley rats were randomly divided into three groups: normal control, DN, and DN treated with calcitriol (DN + VD); VD rats were treated with 0.1 ?g/kg/d calcitriol by gavage. DN model rats were established by intraperitoneal injections of streptozocin. The rats were sacrificed after 18 weeks treatment. DN rats exhibited increased proteinuria accompanied by elevated TRPC6 expression. Treatment with calcitriol not only reduced proteinuria, but also normalized TRPC6 expression. Meanwhile, in DN rats, the expression of podocyte specific markers including nephrin and podocin was significantly decreased, accompanied by increased desmin, a marker of podocyte injury. Treatment with calcitriol reversed above changes. In addition, vitamin D receptor (VDR) was significantly decreased, whereas this reduction was attenuated by the calcitriol treatment. Moreover, TRPC6 was positively correlated with both 24 h urinary protein and desmin. In contrast, TRPC6 was negatively correlated with both VDR and nephrin expression in podocytes. Calcitriol can ameliorate podocyte injury, which is contributed by the inhibition of enhanced TRPC6 expression in the early stages of DN rats. PMID:25292315

Zhang, Xiaoliang; Song, Zhixia; Guo, Yinfeng; Zhou, Min

2015-01-01

13

Synergic effects of bitter melon and ?-Glucan composition on STZ-induced rat diabetes and its complications.  

PubMed

?-Glucan purified from oats (OG) and bitter melon, Momordica charantia Linn (MC), water extracts have shown favorable effects on diabetes and its complications. We investigated to find out the optimal composition showing hypoglycemic and antidiabetic complication effects in variable compositions (OG:MC = 1:1, 1:2, 1:4, 1:6, 1:8, 1:10, 2:1, 4:1, 6:1, 8:1, 10:1). Extracts were administered orally once a day for 28 days following 7 days post streptozotocin (STZ) dosing. Five rats per group (total 15 groups; Intact, STZ, OG, MC, and the variable composition groups) were selected according to the blood glucose and body weight at 6 days after STZ dosing. After 28 days of extracts dosing, the changes on the body weight, liver and kidney weight, blood glucose, blood urea nitrogen (BUN), creatinine, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), low-density lipoprotein (LDL), and total-cholesterol levels were observed. As the result of STZ-induced diabetes, decreases of body weight, increases of the liver and kidney weights, blood glucose, BUN, creatinine, AST, ALT, LDL, and total-cholesterol levels in STZ control were detected compared with intact control. However, these changes of hyperglycemia, diabetic nephropathy, hepatopathy, and hyperlipemia were dramatically decreased in the OG and MC single-dosing group, and all composition groups. In addition, there were more favorable effects in all composition groups compared with the OG and MC single-dosing groups. Among variable compositions, the OG:MC 1:2 mixed group showed the most synergic effects in this study. PMID:22297232

Kim, Joo-Wan; Cho, Hyung-Rae; Moon, Seung-Bae; Kim, Ki-Young; Ku, Saekwang

2012-01-01

14

The effect of exercise on the peripheral nerve in streptozotocin (STZ)-induced diabetic rats.  

PubMed

The exact effectiveness of supportive care activities, such as exercise, in diabetes patients has yet to be elucidated in the diabetic peripheral neuropathy (DPN) field. Therefore, this study was designed to investigate the effect of regular exercise on the peripheral nerves of streptozotocin-induced diabetic rats. The animals were divided as follows into six groups according to exercise combination and glucose control: Normal group, normal group with exercise (EXE), diabetic group (DM), DM group with EXE, DM + glucose control with insulin (INS), and DM + INS + EXE. Animals in the exercise groups were made to walk on a treadmill machine everyday for 30 min at a setting of 8 m/min without inclination. After 8 weeks, sensory parameters were evaluated, and after 16 weeks, biochemicals and peripheral nerves were quantified by immunohistochemistry and compared among experimental groups. The resulting data showed that fasting blood glucose levels and HbA1c levels were not influenced significantly by exercise in normal and DM groups. However, the current perception threshold and the von Frey stimulation test revealed higher thresholds in the DM + INS + EXE group than in the DM + INS group (P < 0.05). Significantly lower thresholds were observed in untreated DM groups (DM or DM + EXE) compared to the normal and insulin-treated DM groups (P < 0.05). Intra-epidermal nerve fiber density was reduced in a lesser degree in the DM + INS + EXE group than in the DM + INS group (9.8 ± 0.4 vs. 9.1 ± 0.5, P < 0.05). Exercise alone was not associated with a significant protective effect on the peripheral nerve in the normal or DM groups; however, a beneficial effect from exercise was observed when hyperglycemia was controlled with insulin in the DM group. These findings suggest that exercise has a potential protective effect against DPN based on the preferential effort for glucose control, although exercise alone cannot prevent peripheral nerve damage from hyperglycemia. PMID:25253638

Jin, Heung Yong; Lee, Kyung Ae; Park, Tae Sun

2014-09-25

15

Exercise Training and Grape Seed Extract Co-Administration Improves Lipid Profile, Weight Loss, Bradycardia, and Hypotension of STZ-Induced Diabetic Rats  

PubMed Central

Background: Exercise Training (ET) and Grape Seed Extract (GSE) as an antioxidant have many positive effects on controlling diabetes mellitus and its complications. Objectives: This study aimed to determine the effects of GSE alone or combined with ET on body weight, plasma lipid profile, blood pressure, and heart rate in STZ-induced diabetic rats. Methods: In this study, male Wistar rats were randomly assigned to five groups: sedentary control, sedentary diabetic, trained diabetic, GSE treated sedentary diabetic, and GSE treated trained diabetic. ET was conducted on the treadmill daily for 8 weeks. One way ANOVA followed by LSD test was used for statistical analysis. Results: Reduction of body weight, high density lipoproteins, heart rate, and systolic blood pressure and increment of total cholesterol, triglyceride, low density lipoprotein, and very low density lipoproteins were observed after STZ injection. Co-administration of GSE and ET had more positive effects on lipid profile compared to each method alone. In addition, GSE and ET modified heart rate partially, while their combination was more effective in improvement of heart rat in conscious rats. On the other hand, administration of ET or GSE alone did not affect systolic blood pressure and body weight, while their combination restored systolic blood pressure completely and improved body weight partially. Conclusions: The study findings indicated that ET combined with GSE had more beneficial effects compared to each one alone on the complications of STZ induced diabetes. This may constitute a convenient and inexpensive therapeutic approach to diabetic complications. PMID:24757634

Badavi, Mohammad; Abedi, Hassan Ali; Dianat, Mahin; Sarkaki, Ali Reza

2013-01-01

16

Improvement in nutrient handling in STZ induced diabetic rats treated with Ocimum gratissimum  

PubMed Central

Objective: Alteration in digestive and absorptive enzymatic activities has been reported in diabetes mellitus (DM), but not with Ocimum gratissimum (OG) treatment. This study was, therefore, designed to indirectly assess the effect of DM and treatment with OG on nutrient digestion and absorption, through estimation of their fecal excretion. Materials and Methods: Animals were randomly assigned into three groups of six per group for control, DM and diabetic mellitus treated (DMT). Diabetes was induced by single intraperitoneal injection of 65 mg/kg streptozotocin in the test groups. OG was administered to the DMT group at dose of 1500 mg/kg once daily for 28 days. Fecal glucose, protein and cholesterol were determined. Results: Fecal glucose was significantly (P < 0.001) lower in the DM group compared to the control and DMT groups, with the DMT groups significantly (P < 0.001) lower than the control. Fecal protein was significantly (P < 0.001) lower in the DM group than the control whereas it was significantly lower in the DMT groups than the DM. Fecal cholesterol was significantly (P < 0.001) higher in the DM than the DMT and control groups with DMT significantly (P < 0.01) higher than the control. Conclusion: This result indicates the propensity of OG to reverse impairment of nutrient digestion and absorption in DM. PMID:25664269

Okon, Uduak Akpan; Davies, Koofreh Godwin; Olubobokun, Titilope Helen

2015-01-01

17

Design, synthesis and characterization of zinc-morin, a metal flavonol complex and evaluation of its antidiabetic potential in HFD-STZ induced type 2 diabetes in rats.  

PubMed

The present study deals with the synthesis, characterization of zinc-morin complex and evaluation of its antidiabetic efficacy in High Fat Diet (HFD)-fedStreptozotocin (STZ) induced diabetic rats. Oral administration of zinc-morin complex to diabetic rats (5mg/kg body weight/day) for a period of 30days resulted in the decreased levels of blood glucose and HbA1c. Oral administrations of the zinc-morin complex for 30days significantly improved hyperglycemia, glucose intolerance, and insulin resistance. The elevated levels of lipid peroxides declined and the antioxidant competence was found to be improved in diabetic rats treated with the complex. The status of the lipid and lipoprotein profile in the serum was normalized upon treatment. Levels of TNF? decreased upon treatment with the complex. The altered levels of adipokines such as adiponectin and leptin were normalized upon treatment with the complex. In conclusion, the present study indicates that the zinc-morin complex possesses antidiabetic, antidyslipidemic and antioxidant potentials in HFD-fedSTZ induced diabetic rats. PMID:24854284

Sendrayaperumal, V; Iyyam Pillai, S; Subramanian, S

2014-08-01

18

Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.  

PubMed

A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of ?-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and ?-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p?0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p?0.05) and restoration of glycated Hb (p?0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p?0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. PMID:24140466

Singh, Jyotsna; Kakkar, Poonam

2013-12-01

19

Antidiabetic and Hypolipidemic Activities of Curculigo latifolia Fruit:Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats  

PubMed Central

Curculigo latifolia fruit is used as alternative sweetener while root is used as alternative treatment for diuretic and urinary problems. The antidiabetic and hypolipidemic activities of C. latifolia fruit:root aqueous extract in high fat diet (HFD) and 40?mg streptozotocin (STZ) induced diabetic rats through expression of genes involved in glucose and lipid metabolisms were investigated. Diabetic rats were treated with C. latifolia fruit:root extract for 4 weeks. Plasma glucose, insulin, adiponectin, lipid profiles, alanine aminotransferase (ALT), gamma glutamyltransferase (GGT), urea, and creatinine levels were measured before and after treatments. Regulations of selected genes involved in glucose and lipid metabolisms were determined. Results showed the significant (P < 0.05) increase in body weight, high density lipoprotein (HDL), insulin, and adiponectin levels and decreased glucose, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), urea, creatinine, ALT, and GGT levels in diabetic rats after 4 weeks treatment. Furthermore, C. latifolia fruit:root extract significantly increased the expression of IRS-1, IGF-1, GLUT4, PPAR?, PPAR?, AdipoR1, AdipoR2, leptin, LPL, and lipase genes in adipose and muscle tissues in diabetic rats. These results suggest that C. latifolia fruit:root extract exerts antidiabetic and hypolipidemic effects through altering regulation genes in glucose and lipid metabolisms in diabetic rats. PMID:23762147

Ishak, Nur Akmal; Ismail, Maznah; Hamid, Muhajir; Ahmad, Zalinah; Abd Ghafar, Siti Aisyah

2013-01-01

20

Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats.  

PubMed

Vanadium compounds exert various insulin-mimetic and anti-diabetic effects both in vitro and in vivo. Vanadium(III, IV, V)-chlorodipicolinate (Vdipic-Cl) compounds, including H[V(III)(dipic-Cl)2]·5H2O (V3dipic-Cl), V(IV)O(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[V(V)O2(dipic-Cl)] (V5dipic-Cl), were synthesized with the indicated oxidation states. The present study was conducted to investigate if chemical valence and anti-oxidation effects of vanadium compounds are involved in the anti-diabetic effects observed in streptozotocin (STZ)-induced diabetic rats treated with these vanadium compounds. V3dipic-Cl, V4dipic-Cl, V5dipic-Cl, inorganic vanadium salts vanadyl sulfate (VOSO4) or sodium metavanadate (NaVO3) were orally administered in drinking water (50 ?gV/ml) to STZ-induced diabetic rats for 28 days. The results showed that Vdipic-Cl treatment significantly improved hyperglycemia and glucose intolerance, as well as increased hepatic glycogen synthesis in diabetic rats. The mRNA levels of key glycolytic enzymes in liver, phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GK), and L-pyruvate kinase (L-PK) altered in diabetic animals were significantly restored towards normal values by treatment with some of the vanadium compounds. Moreover, the diabetes elevated activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in serum were significantly decreased after treatment with Vdipic-Cl complexes. Furthermore, treatment of diabetic rats with V4dipic-Cl and V5dipic-Cl compounds significantly reduced malondialdehyde (MDA) production and increased glutathione peroxidase (GSH-Px) and catalase (CAT) activities. These data suggest that vanadium compounds with the indicated chemical valence promote glycogen synthesis and recover suppressed glycolysis in the liver of diabetic rats due to their capacity to reduce oxidative stress by stimulating antioxidant enzymes. PMID:24747360

Xie, Mingxia; Chen, Deliang; Zhang, Fang; Willsky, Gail R; Crans, Debbie C; Ding, Wenjun

2014-07-01

21

Effect of atorvastatin on the angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ) induced diabetic rats.  

PubMed

Atorvastatin, a lipid lowering agent, possesses various pleiotropic vasculoprotective effects, but its role in coronary angiogenesis is still controversial. Our objective was to study the effects of atorvastatin on the angiogenic responsiveness of coronary endothelial cells (cEC) from normal and diabetic rats. Male Wistar rats were distributed among 9 groups; (i) normal rats, (ii) 30 day diabetic rats, (iii) 60 day diabetic rats, (iv) normal rats administered a low dose of atorvastatin (1 mg/kg body mass, per oral (p.o.), for 15 days); (v) 30 day diabetic rats administered a low dose of atorvastatin; (vi) 60 day diabetic rats administered a low dose of atorvastatin; (vii) normal rats administered a high dose of atorvastatin (5 mg/kg, p.o., for 15 days); (viii) 30 day diabetic rats administered a high dose of atorvastatin; (ix) 60 day diabetic rats administered a high dose of atorvastatin. Each group was further divided into 2 subgroups, (i) sham ischemia-reperfusion and (ii) rats hearts that underwent ischemia-reperfusion. Angiogenic responsiveness the and nitric oxide (NO) releasing properties of the subgroups of cECs were studied using a chorioallantoic membrane assay and the Griess method, respectively. Atorvastatin treatment significantly increased VEGF-induced angiogenic responsiveness and the NO-releasing properties of cECs from all of the subgroups, compared with their respective non-treated subgroups except for the late-phase diabetic rat hearts that underwent ischemia-reperfusion, and the high dose of atorvastatin treatment groups. These effects of atorvastatin were significantly inhibited by pretreatment of cECs with l-NAME, wortmannin, and chelerythrine. Thus, treatment with a low dose of atorvastatin improves the angiogenic responsiveness of the cECs from normal and diabetic rats, in the presence of VEGF, via activation of eNOS-NO release. PMID:24708217

Chaudagar, Kiranj K; Mehta, Anita A

2014-04-01

22

Effect of V(IV)O(dipic-Cl)(H2O)2 on Lipid Metabolism Disorders in the Liver of STZ-Induced Diabetic Rats.  

PubMed

Vanadium complexes are potent antidiabetic agents for therapeutical treatment of diabetes. In the present study, we investigated the hypolipidemic effect of V(IV)O(dipic-Cl)(H2O)2 (V4dipic-Cl) in liver of streptozotocin- (STZ-)-induced diabetic rats. We found that diabetic animals exhibited hepatic inflammatory infiltration and impaired liver function along with triglyceride (TG) accumulation in the liver. V4dipic-Cl treatment not only ameliorated liver pathological state but also reduced hepatic TG level. Moreover, the upregulation of fatty acid translocase (FAT/CD36) mRNA (4.0-fold) and protein (8.2-fold) levels in the liver of diabetic rats were significantly reversed after V4dipic-Cl treatment. However, no significant effects of V4dipic-Cl on the mRNA expression of fatty acid metabolism-related fatty acid bounding protein 1 (FABP1) and fatty acid transporter 5 (FATP5) were observed. These results suggest that the modification of lipid metabolism-related FAT/CD36 in the liver of diabetic rats is likely involved in the hypolipidemic effects of V4dipic-Cl. PMID:23691525

Liu, Fang; Xie, Mingxia; Chen, Deliang; Li, Jian; Ding, Wenjun

2013-01-01

23

Protective Effect of Rutin and Naringin on Sperm Quality in Streptozotocin (STZ) Induced Type 1 Diabetic Rats  

PubMed Central

Oxidative stress is one of the important causes of the type 1 diabetes induced changes in the sperm quality. Bioflavonoids, Rutin 10 mg/Kg and Naringin 10 mg/Kg were evaluated for their protective effects on sperm parameters, oxidative stress, and histopathology of type 1 diabetic rats. Results demonstrated the reduction in sperm count, sperm motility and vitality in diabetic rats. Mass drug administration (MDA) levels were increased and superoxide dismutase (SOD) catalase levels were decreased. Histopathological changes were evident and in accordance with the above results. In the treatment groups, both Rutin and Naringin in combination with insulin treatment in diabetic rats produced protection from diabetes and improved all the sperm parameters, decreased the MDA levels and increased the SOD and catalase levels. Protection was evident in histological examination. Our data suggests that the possible protection of testicular tissue and reproduction from oxidative stress have been induced by type 1 diabetes mellitus. PMID:24250392

Butchi Akondi, Raju; Kumar, Phani; Annapurna, Akula; Pujari, Manasa

2011-01-01

24

Hypoglycemic effect of Gynostemma pentaphyllum saponins by enhancing the Nrf2 signaling pathway in STZ-inducing diabetic rats.  

PubMed

Gynostemma pentaphyllum (GP) is a natural plant resources for diabetes therapy, however, there is little research on the mechanisms of GP. The present study was undertaken to characterize if G. pentaphyllum saponins (GPs) is the principal active compound of GP responsible for anti-diabetes, and to examine the relativity between blood glucose modulate and antioxidation. The GPs-treated streptozotocin diabetic rats had a more effective hypoglycemic status than those of diabetic control rats, which also ameliorate dyslipidemia. GPs has increased SOD and GSH-px activities, and the spleen and thymus indexes in diabetic rats. The insulin levels in the GPs-treated groups were significantly higher than diabetic control group. Our finding provides a new insight into the application of GPs for the treatment of oxidative stress related diseases. PMID:25066072

Gao, Dawei; Zhao, Min; Qi, Ximing; Liu, Yanping; Li, Nan; Liu, Zhiwei; Bian, Yanhong

2014-07-29

25

Telmisartan ameliorates germ cell toxicity in the STZ-induced diabetic rat: studies on possible molecular mechanisms.  

PubMed

Testicular damage is a common clinical problem in diabetic individuals that severely affects the quality of life. The present study investigates the possible protective mechanisms of telmisartan, an angiotensin II-receptor antagonist in the germ cell of diabetic rat. Male SD rats were used and randomized into six groups: control, telmisartan control, diabetic control and diabetic group treated with telmisartan at the doses of 3, 6 and 12mg/kg/day, per oral for 4 weeks. Diabetes was induced by injecting a single dose of streptozotocin (STZ), (55mg/kg) dissolved in ice-cold 10mM citrate buffer; pH 4.4 and administered i.p. immediately after preparation to the SD rats. At the end of the study, rats were sacrificed and the levels of nitrite, superoxide, malondialdehyde (MDA), glutathione (reduced and peroxidase) and superoxide dismutase (SOD) were measured. Germ cell toxicity was evaluated by using sperm count, sperm comet assay, histology of testes and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Further to confirm the oxidative and nitrosative damage, immunohistological quantification of 8-oxo-dG (8-oxo-7,8-dihydro-2'-deoxyguanosine) and 3-nitrotyrosine were evaluated respectively. Results showed that telmisartan significantly restored the levels of nitrite, superoxide, malondialdehyde, and glutathione and superoxide dismutase in diabetic testes. Further, telmisartan significantly increased the sperm counts, reduced apoptotic cell death, sperm DNA damage, oxidative and nitrosative damage in diabetic rat. Western blot analysis showed that telmisartan reduced the testicular inflammation and cell death by down-regulating the expression of NF-?B, IL-6, TNF-?, p-ERK1/2, iNOS, caspase-3 and increasing the PPAR-? expression. Results clearly indicate that telmisartan significantly reduced the both oxidative and nitrosative stress, inflammation and cell death in diabetic testes. The present results confirmed that telmisartan exhibited beneficial role in the germ cell of diabetic rat. PMID:23648321

Kushwaha, S; Jena, G B

2013-07-01

26

Effect of methanolic extract of Allium sativum (AS) in delaying cataract in STZ-induced diabetic rats  

Microsoft Academic Search

Glycemic-induced stress is a major culprit contributing to oxidative insult that has far-reaching effects in diabetic cataract\\u000a worldwide. In an attempt to prevent\\/delay cataract, many therapeutic agents have been identified, and among these, natural\\u000a dietary sources have gained pharmacological significance. Hence, we investigated the efficacy of the methanolic garlic extract\\u000a against diabetic cataract in Wistar rats. Methanolic garlic extract scavenged

T. Naga Raju; V. Rajani Kanth; K. Lavanya

2008-01-01

27

Determination of micronutrients and oxidative stress status in the blood of STZ-induced experimental diabetic rat models.  

PubMed

This study aims to research the effect of streptozotocin (STZ) at different doses on the serum micronutrients and oxidative stress status in diabetic rat models. Twenty male rats averaged 250 g and 3-4 months old were used as experimental models. They were put in four groups composed of five rats each. Diabetic was induced by administering STZ 55 and 65 mg/kg intraperitonally. The serum micronutrients including minerals and vitamins (Cu, Zn, Mg, Fe, vitamins D, E, and C) and oxidative stress (malondialdehyde, MDA) were determined. Cu, Zn, and Vitamin D3 levels were found to increase significantly in STZ groups (p < 0.005). Retinol levels decreased significantly in STZ groups (p < 0.005). In the groups administered 55 mg/kg STZ ferrum and vitamin C levels were found significantly lower than the other groups (p < 0.005). In the group given 65 mg/kg STZ ?-tocopherol levels were highest (p < 0.005) among other groups. There was not any difference between the groups for MDA, Cu/Zn, and Mg. For both doses, oxidative stress status was not significantly affected within 48 h of the application, however, some micronutrients were affected significantly. PMID:24817639

Ragbetli, Cennet; Dede, Semiha; Tanritanir, Pinar; Yoruk, Ibrahim Hakki; Ragbetli, Murat Cetin

2014-11-01

28

Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and ?-cell cytotoxicity.  

PubMed

New strategies, which include ?-cell protection, are required in the treatment of T2D, as current drugs demonstrate little or no capacity to directly protect the vulnerable ?-cell against diabetes-induced cytotoxicity. In this study we investigated the ameliorative effect of pre-treatment with an aqueous extract of unfermented Cyclopia maculata (honeybush) on STZ-induced diabetes and pancreatic ?-cell cytotoxicity in Wistar rats after demonstrating a protective effect in vitro in RIN-5F cells. The amelioration of STZ-induced diabetes was seen in the reduction of the area under the curve, determined by the oral glucose tolerance test, as well as fasting glucose levels in extract-treated rats. Pre-treatment with extract also improved serum triglyceride levels and the glucose-to-insulin ratio. Pre-treatment with the extract or the drug, metformin, increased the ?-cell area in islets, with a concomitant increase in ?-cell proliferation at the higher extract dose (300 mg/kg/d), but not the lower dose (30 mg/kg/d). Subsequently, the in vitro tritiated thymidine incorporation assay showed that the extract was not mitogenic in RIN-5F cells. STZ-induced elevation of plasma nitrite levels was reduced in extract-treated rats, but no changes were observed in their serum catalase, serum glutathione, liver lipid peroxidation and liver nitrotyrosine levels. Pre-treating the rats with extract ameliorated the diabetic effect of STZ in Wistar rats, with evidence of pancreatic ?-cells protection, attributed to the presence of high levels of antioxidants such as the xanthones, mangiferin and isomangiferin. PMID:24853761

Chellan, Nireshni; Joubert, Elizabeth; Strijdom, Hans; Roux, Candice; Louw, Johan; Muller, Christo J F

2014-06-01

29

The Effect of Angipars on Diabetic Neuropathy in STZ-Induced Diabetic Male Rats: A Study on Behavioral, Electrophysiological, Sciatic Histological and Ultrastructural Indices  

PubMed Central

Diabetes mellitus is the most common metabolic disease with a high prevalence rate in human society that eventually leads to the peripheral nervous system complications in a great number of patients. In the present study, the effects of Angipars on nerve conduction velocity, histological alterations, and behavioral indices were investigated. Diabetes was induced in male rats by intraperitoneal injection of streptozotocin (STZ). Six weeks after STZ injection, animals were divided into five groups control, vehicle, and 3 experimental groups. The vehicle group received 1?mL distilled water daily for two weeks and three experimental groups received, respectively, intraperitoneal injection of 5, 10, and 20?mg/kg Angipars daily for two weeks. Intraperitoneal injection of Angipars, in some extent, could significantly improve behavioral indices of the experimental groups as compared to the vehicle group. Furthermore, mean nerve conduction velocity in the vehicle group showed significant difference with that in the control and the 2nd experimental groups; therefore, Angipars could increase nerve conduction velocity in neuropathic rats. Overall, Angipars exerted positive effects on the treatment and reduction of physiologic symptoms and improvement of sciatic morphological injuries in neuropathic rats. PMID:25614895

Zangiabadi, Nasser; Mohtashami, Hossein; Hojatipour, Mahboobeh; Jafari, Mandana; Asadi-Shekaari, Majid; Shabani, Mohammad

2014-01-01

30

Effect of telmisartan on VEGF-induced and VEGF-independent angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ)-induced diabetic rats.  

PubMed

Telmisartan possesses endothelial protective effects due to angiotensin II type 1 receptor antagonist, peroxisome proliferator-activated receptor ? (PPAR?) agonist and antioxidant action. Therefore, our objective was to study effect of telmisartan on angiogenic responsiveness of coronary endothelial cells (cECs) of normal and diabetic rats. Male Wistar rats were divided into six groups, normal rats, diabetic rats 30?d. (30 days after administration of STZ), diabetic rats 60?ds. (60 days after administration of STZ), telmisartan-treated normal rats (2?mg/kg, p.o., for 15 days before isolation of hearts), telmisartan-treated diabetic rats 30?ds, and telmisartan-treated diabetic rats 60?ds. Each group was further divided into two subgroups, sham rat hearts and ischemia-reperfused rat hearts. After isolation of cEC from each subgroup, angiogenic responsiveness and nitric oxide releasing properties were studied using chorioallantoic membrane (CAM) assay and Griess method, respectively. cEC of normal rats showed significant increase in angiogenic responsiveness in presence of vascular endothelial growth factor (VEGF) but not in absence of it. This activity was attenuated by pretreatment of cEC with l-NAME, wortmannin and chelerythrine. Diabetes and ischemia reperfusion injury suppressed angiogenic responsiveness of cEC. Telmisartan treatment showed significant increase in VEGF-induced angiogenic responsiveness and nitric oxide releasing properties of cECs of all subgroups as compared to their respective non-treated subgroups. These effects of telmisartan were significantly inhibited by pretreatment of cECs with L-NAME and wortmannin but not with chelerythrine. Our data suggest that telmisartan improves VEGF-induced coronary angiogenic activity in normal and diabetic rats via stimulation of PI3K/eNOS/NO pathway. PMID:24490705

Chaudagar, Kiranj K; Mehta, Anita A

2014-01-01

31

Modulation of GLUT4 expression by oral administration of Mg(2+) to control sugar levels in STZ-induced diabetic rats.  

PubMed

It has been previously shown that oral magnesium administration decreases the levels of glucose in the plasma. However, the mechanisms are not fully understood. The aim of this study was to determine the potential role of GLUT4 on plasma glucose levels by orally administering magnesium sulfate to diabetic rats. Animals were distributed among 4 groups (n = 10 rats per group): one group served as the non-diabetic control, while the other groups had diabetes induced by streptozotocin (intraperitoneal (i.p.) injection). The diabetic rats were either given insulin by i.p. injection (2.5 U·(kg body mass)(-1)·day(-1)), or magnesium sulfate in their drinking water (10 g·L(-1)). After 8 weeks of treatment, we conducted an i.p. glucose tolerance test (IPGTT), measured blood glucose and plasma magnesium levels, and performed in-vitro and in-vivo insulin level measurements by radioimmunoassay. Gastrocnemius (leg) muscles were isolated for the measurement of GLU4 mRNA expression using real-time PCR. Administration of magnesium sulfate improved IPGTT and lowered blood glucose levels almost to the normal range. However, the insulin levels were not changed in either of the in-vitro or in-vivo studies. The expression of GLU4 mRNA increased 23% and 10% in diabetic magnesium-treated and insulin-treated groups, respectively. Our findings suggest that magnesium lowers blood glucose levels via increased GLU4 mRNA expression, independent to insulin secretion. PMID:24821133

Solaimani, Haniah; Soltani, Nepton; MaleKzadeh, Kianoosh; Sohrabipour, Shahla; Zhang, Nina; Nasri, Sema; Wang, Qinghua

2014-06-01

32

Acute and Chronic Regulation of the Renal Na+\\/H+ Exchanger NHE3 in Rats with STZ-Induced Diabetes mellitus  

Microsoft Academic Search

Background: Early stages of diabetic nephropathy are characterized by alterations of glomerular filtration, increased tubular sodium and water reabsorption, and systemic volume expansion, which may be a major cause for the development of hypertension. As a significant fraction of renal salt and water transport is mediated by the proximal tubular Na+\\/H+ exchanger NHE3, we investigated its regulation in rats with

Jelena Klisic; Vera Nief; Livia Reyes; Patrice M. Ambühl

2006-01-01

33

Effects of L-3-n-Butylphthalide on Cognitive Dysfunction and NR2B Expression in Hippocampus of Streptozotocin (STZ)-Induced Diabetic Rats.  

PubMed

Diabetes mellitus is associated with rapid cognitive decline. Currently, there is no effective treatment for cognitive dysfunction induced by diabetes. L-3-n-Butylphthalide (L-NBP) is a nerve protective drug extracted from seeds of celery, which has been proved to improve learning and memory in vascular dementia animal models by improving microcirculation, protecting mitochondria and increasing long-term potentiation (LTP). NR2B, one of the subunits of N-methyl-D-aspartate receptor, has been proved to be an important factor for the formation of LTP. The study aimed to investigate the role of NR2B in cognitive dysfunction in the rats with type 1 diabetes and define the protective effects of L-NBP on cognition. A rat model of type 1 diabetes was established by a single intraperitoneal injection of streptozotocin at 60 mg/kg. Animals were randomly allocated to four groups: normal control (NC); diabetic control (DC); diabetic + low L-NBP (DL, administered L-NBP 60 mg/kg per day for 12 weeks); and diabetic + high L-NBP (DH, administered L-NBP 120 mg/kg per day, for 12 weeks). After 12 weeks, cognitive and memory changes were investigated in the Morris water maze. The expression of NR2B was assessed by real-time polymerase chain reaction, Western blotting, and immunohistochemistry. Our results indicated that the escape latency was significantly increased and the number of crossing platform was significantly decreased in DC group compared to NC group. Also, the expression of NR2B was significantly declined in DC group. However, compared to DC group, the expression of NR2B of the L-NBP-treated groups was significantly increased and the escape latency was shortened with the DH group being the most obvious. Therefore, L-NBP can improve the cognitive function by up-regulating the expression of NR2B in STZ-diabetic rats, which may provide the direction for future diabetic encephalopathy therapy. PMID:25149651

Li, Jie; Zhang, Songyun; Zhang, Lihui; Wang, Ruiying; Wang, Mian

2015-01-01

34

Effect of the magnetized water supplementation on blood glucose, lymphocyte DNA damage, antioxidant status, and lipid profiles in STZ-induced rats  

PubMed Central

This study investigated the effects of magnetized water supplementation on blood glucose, DNA damage, antioxidant status, and lipid profiles in streptozotocin (STZ)-induced diabetic rats. There were three groups of 4-week-old male Sprague-Dawley rats used in the study: control group (normal control group without diabetes); diabetes group (STZ-induced diabetes control); and magnetized water group (magnetized water supplemented after the induction of diabetes using STZ). Before initiating the study, diabetes was confirmed by measuring fasting blood glucose (FBS > 200 dl), and the magnetized water group received magnetized water for 8 weeks instead of general water. After 8 weeks, rats were sacrificed to measure the fasting blood glucose, insulin concentration, glycated hemoglobin level, degree of DNA damage, antioxidant status, and lipid profiles. From the fourth week of magnetized water supplementation, blood glucose was decreased in the magnetized water group compared to the diabetes group, and such effect continued to the 8th week. The glycated hemoglobin content in the blood was increased in the diabetes group compared to the control group, but decreased significantly in the magnetized water group. However, decreased plasma insulin level due to induced diabetes was not increased by magnetized water supplementation. Increased blood and liver DNA damages in diabetes rats did significantly decrease after the administration of magnetized water. In addition, antioxidant enzyme activities and plasma lipid profiles were not different among the three groups. In conclusion, the supplementation of magnetized water not only decreased the blood glucose and glycated hemoglobin levels but also reduced blood and liver DNA damages in STZ-induced diabetic rats. From the above results, it is suggested that the long-term intake of the magnetized water over 8 weeks may be beneficial in both prevention and treatment of complications in diabetic patients. PMID:23423956

Lee, Hye-Jin

2013-01-01

35

A Novel Role for SIRT-1 in L-Arginine Protection against STZ Induced Myocardial Fibrosis in Rats  

PubMed Central

Background L-arginine (L-ARG) effectively protects against diabetic impediments. In addition, silent information regulator (SIRT-1) activators are emerging as a new clinical concept in treating diabetic complications. Accordingly, this study aimed at delineating a role for SIRT-1 in mediating L-ARG protection against streptozotocin (STZ) induced myocardial fibrosis. Methods Male Wistar rats were allocated into five groups; (i) normal control rats received 0.1 M sodium citrate buffer (pH 4.5); (ii) STZ at the dose of 60 mg/kg dissolved in 0.1 M sodium citrate buffer (pH 4.5); (iii) STZ + sirtinol (Stnl; specific inhibitor of SIRT-1; 2 mg/Kg, i.p.); (iv) STZ + L-ARG given in drinking water (2.25%) or (v) STZ + L-ARG + Stnl. Results L-ARG increased myocardial SIRT-1 expression as well as its protein content. The former finding was paralleled by L-ARG induced reduction in myocardial fibrotic area compared to STZ animals evidenced histopathologically. The reduction in the fibrotic area was accompanied by a decline in fibrotic markers as evident by a decrease in expression of collagen-1 along with reductions in myocardial TGF-?, fibronectin, CTGF and BNP expression together with a decrease in TGF-? and hydroxyproline contents. Moreover, L-ARG increased MMP-2 expression in addition to its protein content while decreasing expression of PAI-1. Finally, L-ARG protected against myocardial cellular death by reduction in NF?-B mRNA as well as TNF-? level in association with decline in Casp-3 and FAS expressions andCasp-3protein content in addition to reduction of FAS positive cells. However, co-administration of L-ARG and Stnl diminished the protective effect of L-ARG against STZ induced myocardial fibrosis. Conclusion Collectively, these findings associate a role for SIRT-1 in L-ARG defense against diabetic cardiac fibrosis via equilibrating the balance between profibrotic and antifibrotic mediators. PMID:25501750

Rizk, Sherine M.; El-Maraghy, Shohda A.; Nassar, Noha N.

2014-01-01

36

Immunosuppressive effect of compound K on islet transplantation in an STZ-induced diabetic mouse model.  

PubMed

Islet transplantation is a therapeutic option for type 1 diabetes, but its long-term success is limited by islet allograft survival. Many factors imperil islet survival, especially the adverse effects and toxicity due to clinical immunosuppressants. Compound (Cpd) K is a synthesized analog of highly unsaturated fatty acids from Isatis tinctoria L. (Cruciferae). Here we investigated the therapeutic effect of Cpd K in diabetic mice and found that it significantly prolonged islet allograft survival with minimal adverse effects after 10 days. Furthermore, it reduced the proportion of CD4(+) and CD8(+) T cells in spleen and lymph nodes, inhibited inflammatory cell infiltration in allografts, suppressed serum interleukin-2 and interferon-? secretion, and increased transforming growth factor-? and Foxp3 mRNA expression. Surprisingly, Cpd K and rapamycin had a synergistic effect. Cpd K suppressed proliferation of naďve T cells by inducing T-cell anergy and promoting the generation of regulatory T cells. In addition, nuclear factor-?B signaling was also blocked. Taken together, these findings indicate that Cpd K may have a potential immunosuppressant effect on islet transplantation. PMID:24834979

Ma, Peng-Fei; Jiang, Jie; Gao, Chang; Cheng, Pan-Pan; Li, Jia-Li; Huang, Xin; Lin, Ying-Ying; Li, Qing; Peng, Yuan-Zheng; Cai, Mei-Chun; Shao, Wei; Zhu, Qi; Han, Sai; Qin, Qing; Xia, Jun-Jie; Qi, Zhong-Quan

2014-10-01

37

In vivo hypoglycaemic effect and inhibitory mechanism of the branch bark extract of the mulberry on STZ-induced diabetic mice.  

PubMed

Branch bark extract (BBE) derived from the mulberry cultivar Husang 32 (Morus multicaulis L.) with aqueous alcohol solution has been investigated as an inhibitor of ?-glycosidase in vitro. Mulberry BBE was orally administered to STZ-induced diabetic mice for three weeks, and it improved the weight gain and ameliorated the swelling of liver and kidney in diabetic mice. Obviously, mulberry BBE not only can reduce the abnormally elevated levels of serum insulin and ameliorate insulin resistance induced by STZ, but also it regulates dyslipidemia in diabetic mice. To understand this therapeutic effect and the regulatory mechanisms of BBE in diabetic mice, a qRT-PCR experiment was performed, indicating that the mulberry BBE can regulate the mRNA expression of glycometabolism genes in diabetic mice, including glucose-6-phosphatase (G6Pase), glucokinase (GCK), and phosphoenolpyruvate carboxykinase (PEPCK), thereby regulating sugar metabolism and reducing the blood glucose level in diabetic mice. The mulberry BBE can increase the mRNA expression of the genes Ins1, Ins2 and pancreatic duodenal homeobox-1 (PDX-1) and may decrease the insulin resistance in diabetic mice. Those results provide an important basis for making the best use of mulberry branch resources and producing biomedical drugs with added value. PMID:25177729

Liu, Hua-Yu; Fang, Meng; Zhang, Yu-Qing

2014-01-01

38

Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice.  

PubMed

Neutral (WGPN) and acidic (WGPA) polysaccharides were fractionated from ginseng polysaccharide. WGPN and WGPA decreased fasting blood glucose by different manners of administration. Intra-gastric administration of WGPA showed a marked hypoglycemic effect, which may be related to its anti-oxidative activity. The results indicated that WGPA may have anti-diabetic potential. PMID:24671219

Sun, Chengxin; Chen, Yan; Li, Xinzhi; Tai, Guihua; Fan, Yuying; Zhou, Yifa

2014-05-01

39

Renoprotective effects of olmesartan medoxomil on diabetic nephropathy in streptozotocin-induced diabetes in rats.  

PubMed

Olmesartan medoxomil (OM) is one of the newest members of the angiotensin receptor blocker (ARB) family. The renoprotective effects of the angiotensin II type 1 receptor antagonist OM was investigated in a streptozotocin (STZ)-induced diabetic rat model. In this study, we investigated whether OM was able to ameliorate diabetic nephropathy (DN). Thirty male Sprague Dawley rats were assigned to 3 groups: the non-diabetic (group A, n=10), the untreated STZ-induced DN control (group B, n=10) and the STZ-induced DN treated with OM (group C, n=10). Blood pressure (BP) and glucose, creatinine (Cr), blood urea nitrogen (BUN), superoxide dismutase (SOD), malondialdehyde (MDA) microalbumin and urinary protein concentrations were measured. In STZ diabetic rats, BP, glucose, Cr, BUN, MDA and urinary protein levels were significantly increased compared to the non-diabetic control group. OM significantly improved the biological indices in the DN rats. The renal pathological changes were also observed under a light microscope. Our results suggested that OM exerted renoprotective effects on rats with STZ-induced diabetes. PMID:24649063

Si, Xiaofei; Li, Peng; Zhang, Yan; Zhang, Yan; Lv, Wei; Qi, Dong

2014-01-01

40

Treatment with hydrogen sulfide alleviates streptozotocin-induced diabetic retinopathy in rats  

PubMed Central

Background and Purpose Retinopathy, as a common complication of diabetes, is a leading cause of reduced visual acuity and acquired blindness in the adult population. The aim of present study was to investigate the therapeutic effect of hydrogen sulfide on streptozotocin (STZ)-induced diabetic retinopathy in rats. Experimental Approach Rats were injected with a single i.p. injection of STZ (60 mg·kg?1) to induce diabetic retinopathy. Two weeks later, the rats were treated with NaHS (i.p. injection of 0.1 mL·kg?1·d?1 of 0.28 mol·L?1 NaHS, a donor of H2S) for 14 weeks. Key Results Treatment with H2S had no significant effect on blood glucose in STZ-induced diabetic rats. Treatment with exogenous H2S enhanced H2S levels in both plasma and retinas of STZ-induced diabetic rats. Treatment with H2S in STZ-treated rats improved the retinal neuronal dysfunction marked by enhanced amplitudes of b-waves and oscillatory potentials and expression of synaptophysin and brain-derived neurotrophic factor, alleviated retinal vascular abnormalities marked by reduced retinal vascular permeability and acellular capillary formation, decreased vitreous VEGF content, down-regulated expressions of HIF-1? and VEGFR2, and enhanced occludin expression, and attenuated retinal thickening and suppressed expression of extracellular matrix molecules including laminin ?1 and collagen IV?3 expression in retinas of STZ-induced diabetic rats. Treatment with H2S in retinas of STZ-induced diabetic rats abated oxidative stress, alleviated mitochondrial dysfunction, suppressed NF-?B activation and attenuated inflammation. Conclusions and Implications Treatment with H2S alleviates STZ-induced diabetic retinopathy in rats possibly through abating oxidative stress and suppressing inflammation. PMID:23488985

Si, Yan-Fang; Wang, Jun; Guan, Juan; Zhou, Li; Sheng, Yu; Zhao, Juan

2013-01-01

41

A purified extract from prickly pear cactus ( Opuntia fuliginosa) controls experimentally induced diabetes in rats  

Microsoft Academic Search

The hypoglycemic activity of a purified extract from prickly pear cactus (Opuntia fuliginosa Griffiths) was evaluated on STZ-induced diabetic rats. Blood glucose and glycated hemoglobin levels were reduced to normal values by a combined treatment of insulin and Opuntia extract. When insulin was withdrawn from the combined treatment, the prickly pear extract alone maintained normoglycemic state in the diabetic rats.

Augusto Trejo-González; Genaro Gabriel-Ortiz; Ana María Puebla-Pérez; María Dolores Huízar-Contreras; María del Rosario Munguía-Mazariegos; Silvia Mejía-Arreguín; Edmundo Calva

1996-01-01

42

Effect of Potent Ethyl Acetate Fraction of Stereospermum suaveolens Extract in Streptozotocin-Induced Diabetic Rats  

PubMed Central

To evaluate the antihyperglycemic effect of ethyl acetate fraction of ethanol extract of Stereospermum suaveolens in streptozotocin-(STZ-) induced diabetic rats by acute and subacute models. In this paper, various fractions of ethanol extract of Stereospermum suaveolens were prepared and their effects on blood glucose levels in STZ-induced diabetic rats were studied after a single oral administration (200?mg/kg). Administration of the ethyl acetate fraction at 200?mg/kg once daily for 14 days to STZ-induced diabetic rats was also carried out. The parameters such as the fasting blood glucose, hepatic glycogen content, and pancreatic antioxidant levels were monitored. In the acute study, the ethyl acetate fraction is the most potent in reducing the fasting serum glucose levels of the STZ-induced diabetic rats. The 14-day repeated oral administration of the ethyl acetate fraction significantly reduced the fasting blood glucose and pancreatic TBARS level and significantly increased the liver glycogen, pancreatic superoxide dismutase, and catalase activities as well as reduced glutathione levels. The histopathological studies during the subacute treatment have been shown to ameliorate the STZ-induced histological damage of pancreas. This paper concludes that the ethyl acetate fraction from ethanol extract of Stereospermum suaveolens possesses potent antihyperglycemic and antioxidant properties, thereby substantiating the use of plant in the indigenous system of medicine. PMID:22593683

Balasubramanian, T.; Chatterjee, Tapan Kumar; Senthilkumar, G. P.; Mani, Tamizh

2012-01-01

43

Effects of Sleeve Gastrectomy in Neonatally Streptozotocin-Induced Diabetic Rats  

Microsoft Academic Search

BackgroundSleeve gastrectomy (SG) has emerged recently as a stand-alone bariatric procedure to treat morbid obesity and enhance glucose homeostasis. The aim of the study was to evaluate its effects in neonatally streptozotocin (STZ)-induced diabetic rats (n-STZ diabetic rats).Methodology and Principal FindingsTo induce diabetes, STZ (90 mg\\/kg) was administered intraperitoneally to 2-day-old male pups. When 12 weeks old, diabetic rats were

Yan Wang; Lingling Yan; Zhendong Jin; Xin Xin

2011-01-01

44

Improvement of renal oxidative stress markers after ozone administrationin diabetic nephropathy in rats  

Microsoft Academic Search

BACKGROUND: Several complications of diabetes mellitus (DM) e.g. nephropathy (DN) have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN. AIM: The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ)-induced diabetic rats. METHODS:

Mohamed D Morsy; Waleed N Hassan; Sherif I Zalat

2010-01-01

45

Antihyperglycemic Effect of Ginkgo biloba Extract in Streptozotocin-Induced Diabetes in Rats  

PubMed Central

The Ginkgo biloba extract (GBE) has been reported to have a wide range of health benefits in traditional Chinese medicine. The aim of this study was to evaluate the antihyperglycemic effects of GBE on streptozotocin- (STZ-) induced diabetes in rats. Diabetes was induced in male Wistar rats by the administration of STZ (60?mg/kg b.w.) intraperitoneally. GBE (100, 200, and 300?mg/kg b.w.) was administered orally once a day for a period of 30 days. Body weight and blood glucose levels were determined in different experimental days. Serum lipid profile and antioxidant enzymes in hepatic and pancreatic tissue were measured at the end of the experimental period. Significant decreases in body weight and antioxidant ability and increases in blood glucose, lipid profile, and lipid peroxidation were observed in STZ-induced diabetic rats. The administration of GBE and glibenclamide daily for 30 days in STZ-induced diabetic rats reversed the above parameters significantly. GBE possesses antihyperglycemic, antioxidant, and antihyperlipidemia activities in STZ-induced chronic diabetic rats, which promisingly support the use of GBE as a food supplement or an adjunct treatment for diabetics. PMID:23509685

Cheng, Daye; Liang, Bin; Li, Yunhui

2013-01-01

46

Effect of Melatonin on Testicular Damage in Streptozotocin-Induced Diabetes Rats  

Microsoft Academic Search

Background: It is well known that diabetes mellitus is associated with impairment of testicular function. In the present study, we aimed to demonstrate the effect of melatonin on testicular damage in male rats with streptozotocin (STZ)-induced diabetes. Methods: Male Wistar rats were divided into 4 groups: (1) control group, (2) melatonin-treated nondiabetic group, (3) diabetic group and (4) melatonin-treated diabetic

E. Guneli; K. Tugyan; H. Ozturk; M. Gumustekin; S. Cilaker; N. Uysal

2008-01-01

47

Effects of modified rice bran on serum lipids and taste preference in streptozotocin-induced diabetic rats  

Microsoft Academic Search

The present study was designed to determine whether or not the administration of modified rice bran could improve streptozotocin (STZ)-induced diabetes. Taste preferences were also compared in diabetic and control rats. Male Sprague-Dawley rats were divided into control and diabetic groups. A single STZ injection, 65 mg per kg body mass i.p., induced diabetes. Rats were given free access to

Ikuo Ohara; Ritsuko Tabuchi; Kumiko Onai; M Home Econ

2000-01-01

48

Antihyperglycemic and Antihyperlipidemic Effects of Fruit Aqueous Extract of Berberis integerrima Bge. in Streptozotocin-induced Diabetic Rats  

PubMed Central

Use of medicinal plants for attenuation of hyperglycemia and restoration of lipids disorder to normal level is clinically very important. The aim of present study was to evaluate the effects of Berberis integerrima Bge. fruit aqueous extract (BIFAE) on blood glucose and lipid profile in streptozotocin (STZ) - induced diabetic rats. The STZ-induced diabetic rats were treated by fruit aqueous extract of Berberis integerrima Bge. at doses (250 and 500 mg/Kg bw) and glibenclamide (0.6 mg/Kg bw) for 42 days by gavage. Blood glucose levels and body weights of rats were measured on weeks 0, 2, 4 and 6. Total lipid levels were determined in normal and STZ-induced diabetic rats after administration of the BIFAE and glibenclamide for 42 days. STZ-induced diabetic rats showed a significant (P<0.001) increases in the levels of blood glucose, triglycerides (TG), total cholesterol (TC), low density lipoprotein LDL-cholesterol (LDL-C) while body weight and high density lipoprotein HDL-cholesterolan (HDL-C) were significantly(P<0.001) decreased compared to normal rats. Daily administration of BIFAE did not possess the hypoglycemic and hypolipidaemic activity in STZ- diabetic rats during 6-week treatment period. Results indicate the usage of BIFAE in traditional medicine for the treatment of diabetes may need more investigation.

Ashraf, Hossein; Heidari, Reza; Nejati, Vahid

2014-01-01

49

Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats.  

PubMed

We previously showed that peripheral neuropathy of the bone marrow was associated with loss of circadian rhythmicity of stem/progenitor cell release into the circulation. Bone marrow neuropathy results in dramatic changes in hematopoiesis that lead to microvascular complications, inflammation, and reduced endothelial repair. This series of events represents early pathogenesis before development of diabetic retinopathy. In this study we characterized early alterations within the bone marrow of streptozotocin (STZ)-induced diabetic rats following treatments that prevent experimental peripheral neuropathy. We asked whether bone marrow neuropathy and the associated bone marrow pathology were reversed with treatments that prevent peripheral neuropathy. Three strategies were tested: inhibition of neutral endopeptidase, inhibition of aldose reductase plus lipoic acid supplementation, and insulin therapy with antioxidants. All strategies prevented loss of nerve conduction velocity resulting from STZ-induced diabetes and corrected the STZ-induced diabetes-associated increase of immunoreactivity of neuropeptide Y, tyrosine hydroxylase, and somatostatin. The treatments also reduced concentrations of interleukin-1?, granulocyte colony-stimulating factor, and matrix metalloproteinase 2 in STZ-induced diabetic bone marrow supernatant and decreased the expression of NADPH oxidase 2, nitric oxide synthase 2, and nuclear factor-?B1 mRNA in bone marrow progenitor cells. These therapies represent novel approaches to attenuate the diabetic phenotype within the bone marrow and may constitute an important therapeutic strategy for diabetic microvascular complications. PMID:25204979

Dominguez, James M; Yorek, Mark A; Grant, Maria B

2015-02-01

50

Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA)  

PubMed Central

Background The prevalence, and associated healthcare burden, of diabetes mellitus is increasing worldwide. Mortality and morbidity are associated with diabetic complications in multiple organs and tissues, including the eye, kidney and cardiovascular system, and new therapeutics to treat these complications are required urgently. Triethylenetetramine (TETA) is one such experimental therapeutic that acts to chelate excess copper (II) in diabetic tissues and reduce oxidative stress and cellular damage. Methods Here we have performed two independent metabolomic studies of serum to assess the suitability of the streptozotocin (STZ)-induced rat model for studying diabetes and to define metabolite-related changes associated with TETA treatment. Ultraperformance liquid chromatography-mass spectrometry studies of serum from non-diabetic/untreated, non-diabetic/TETA-treated, STZ-induced diabetic/untreated and STZ-induced diabetic/TETA-treated rats were performed followed by univariate and multivariate analysis of data. Results Multiple metabolic changes related to STZ-induced diabetes, some of which have been reported previously in other animal and human studies, were observed, including changes in amino acid, fatty acid, glycerophospholipid and bile acid metabolism. Correlation analysis suggested that treatment with TETA led to a reversal of diabetes-associated changes in bile acid, fatty acid, steroid, sphingolipid and glycerophospholipid metabolism and proteolysis. Conclusions Metabolomic studies have shown that the STZ-induced rat model of diabetes is an appropriate model system to undertake research into diabetes and potential therapies as several metabolic changes observed in humans and other animal models were also observed in this study. Metabolomics has also identified several biological processes and metabolic pathways implicated in diabetic complications and reversed following treatment with the experimental therapeutic TETA. PMID:22546713

2012-01-01

51

Garcinia kola seed ameliorates renal, hepatic, and testicular oxidative damage in streptozotocin-induced diabetic rats.  

PubMed

Abstract Context: In Africa, Garcinia kola Heckel (Guttiferae) seed is commonly recommended in folklore medicine for the treatment of diabetes and its associated complications. Objective: The present study evaluated this traditional claim by mechanistic investigation into the effect of G. kola seed administration on renal, hepatic, and testicular oxidative damage in streptozotocin (STZ)-induced diabetic rats. Materials and methods: Diabetes mellitus was induced in adult male Wistar rats by an intraperitoneal injection of STZ (50?mg/kg). The diabetic rats were thereafter treated orally once per day with G. kola seed (250?mg/kg) and monitored for 14?d. Clinical observations, plasma biochemistry, hormonal profile, oxidative stress indices, sperm characteristics, and histopathological examination of the kidney, liver, and testes were evaluated to monitor treatment-related effects of G. kola seed in STZ-induced diabetic rats. Results and discussion: Garcinia kola seed administration significantly ameliorated hyperglycemia mediated damage by decreasing the blood glucose level (72.8% and 84.6% on the 7th and 14th post-treatment days, respectively), enhancement of the antioxidant system, inhibition of lipid peroxidation, and improving the architecture of the kidney, liver, and testes in STZ-induced diabetic rats. In addition, G. kola seed intervention restored the kidney and liver function biomarkers, the sperm characteristics as well as the plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, triiodothyronine (T3), and thyroxine (T4) to normal in STZ-induced diabetic rats. Conclusion: The findings from this investigation provide persuasive scientific support for the traditional use of G. kola seed in the treatment of diabetes and its associated complications. PMID:25243878

Adedara, Isaac A; Awogbindin, Ifeoluwa O; Anamelechi, Joy P; Farombi, Ebenezer O

2014-09-22

52

Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats.  

PubMed

Abnormalities in lipid profile are one of the most common complications in diabetes mellitus, which is found in about 40% of diabetics. In the present study, anti-hyperlipidemic efficacy of Eugenia jambolana seed kernel (EJs-kernel) was evaluated in streptozotocin (STZ)-induced diabetic rats and the efficacy was compared with standard hypoglycemic drug, glibenclamide. The effect of oral administration of ethanolic extract of EJs-kernel (100 mg/kg body weight) was examined on the levels of cholesterol, phospholipids, triglycerides and free fatty acids in the plasma, liver and kidney tissues of STZ (55 mg/kg body weight)-induced diabetic rats. The plasma lipoproteins and tissues fatty acid composition were also monitored. STZ-induced diabetic rats, showed significant increase in the levels of cholesterol, phospholipids, triglycerides and free fatty acids which were considerably restored to near normal in EJs-kernel or glibenclamide treated animals. The plasma lipoproteins (HDL, LDL, VLDL-cholesterol) and fatty acid composition were altered in STZ-induced diabetic rats and these levels were also reverted back to near normalcy by EJs-kernel or glibenclamide treatment. It may be concluded that, EJs-kernel possesses hypolipidemic effect, which may be due to the presence of flavonoids, saponins, glycosides and triterpenoids in the extract. The hypolipidemic effect mediated by EJs-kernel may also be anticipated to have biological significance and provide a scientific rationale for the use of EJs-kernel as an anti-diabetic plant. PMID:15964674

Ravi, Kasiappan; Rajasekaran, Subbaih; Subramanian, Sorimuthu

2005-09-01

53

Antihyperglycemic and antihyperlipidemic effects of n-hexane fraction from the hydro-methanolic extract of sepals of Salmalia malabarica in streptozotocin-induced diabetic rats.  

PubMed

Bio-efficacy of n-hexane fraction of sepal of Salmalia malabarica was evaluated covering the biochemical sensors for the management of hyperglycemic and hyperlipidemic effects. Evaluation of n-hexane fraction of Salmalia malabarica (SMH) from hydro-methanolic (2:3) extract at the dose of 0.1 gm/kg body weight twice a day were investigated in normal and streptozotocin (STZ) induced diabetic rats. Normal and STZ-induced diabetic rats were divided into five groups. The effect of the fraction on fasting blood glucose (FBG), serum insulin, hemoglobin, glycated hemoglobin, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc), phospholipids, free fatty acids, urea, uric acid, creatinine, albumin and transaminases were investigated in STZ-induced diabetic rat. A significant reduction of FBG level was observed after SMH treatment in STZ-induced diabetic rat. Treatment of diabetic rats with n-hexane fraction of this plant restored the levels of the above biochemical sensors significantly (p<0.001) in respect to the control. Histological studies of pancreas showed a qualitative diminution in the area of the islet's of Langerhans in diabetic group which was recovered by said fraction. Phytochemical screening of the fraction revealed the presence of flavonoids, terpenoids and steroids. PMID:22732718

De, Debasis; Ali, Kazi Monjur; Chatterjee, Kausik; Bera, Tushar Kanti; Ghosh, Debidas

2012-01-01

54

Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract  

Microsoft Academic Search

Background: Dandelion water extract (DWE), an herbal medication, may have an effect on the activity and mRNA expression of hepatic antioxidant enzymes and lipid profile in streptozotocin (STZ)-induced diabetic rats. Methods: Male Sprague–Dawley rats were divided into nondiabetic (control), diabetic, and diabetic-DWE-supplemented groups. Diabetes was induced by injecting streptozotocin (55 mg\\/kg BW, i.p.) in a citrate buffer. The extract was

Soo-Yeul Cho; Ji-Yeun Park; Eun-Mi Park; Myung-Sook Choi; Mi-Kyung Lee; Seon-Min Jeon; Moon Kyoo Jang; Myung-Joo Kim; Yong Bok Park

2002-01-01

55

Anti-depressant effect of hesperidin in diabetic rats.  

PubMed

This study aimed to investigate the anti-depressant effect of hesperidin (Hsp) in streptozotocin (STZ)-induced diabetic rats. Additionally, the effect of Hsp on hyperglycaemia, oxidative stress, inflammation, brain-derived neurotrophic factor (BDNF), and brain monoamines in diabetic rats was also assessed. The Wistar rats in the experimental groups were rendered hyperglycaemic with a single dose of STZ (52.5 mg·(kg body mass)(-1), by intraperitoneal injection). The normal group received the vehicle only. Hyperglycaemic rats were treated with Hsp (25.0, 50.0, or 100.0 mg·(kg body mass)(-1)·day(-1), per oral) and fluoxetine (Flu) (5.0 mg·(kg body mass)(-1)·day(-1), per oral) 48 h after the STZ injection, for 21 consecutive days. The normal and STZ control groups received the vehicle (distilled water). Behavioral and biochemical parameters were then assessed. When Hsp was administered to the STZ-treated rats, this reversed the STZ-induced increase in immobility duration in the forced swimming test (FST) and attenuated hyperglycaemia, decreased malondialdehyde (MDA), increased reduced glutathione (GSH) decreased interleukin-6 (IL-6), and increased BDNF levels in the brain. Treatment with Hsp attenuated STZ-induced neurochemical alterations, as indicated by increased levels of monoamines in the brain, namely, norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine; 5-HT). All of these effects of Hsp were similar to those observed with the established anti-depressant Flu. This study shows that Hsp exerted anti-depressant effect in diabetic rats, which may have been partly mediated by its amelioration of hyperglycaemia as well as its anti-oxidant and anti-inflammatory activities, the enhancement of neurogenesis, and changes in the levels of monoamines in the brain. PMID:25358020

El-Marasy, Salma A; Abdallah, Heba M I; El-Shenawy, Siham M; El-Khatib, Aiman S; El-Shabrawy, Osama A; Kenawy, Sanaa A

2014-11-01

56

Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats  

PubMed Central

The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

2011-01-01

57

Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats.  

PubMed

The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

Pandhare, Ramdas B; Sangameswaran, B; Mohite, Popat B; Khanage, Shantaram G

2011-01-01

58

Inhibitory Effect of r-Hirudin Variant III on Streptozotocin-Induced Diabetic Cataracts in Rats  

PubMed Central

The in vivo inhibitory effect of r-hirudin variant III (rHV3) on streptozotocin (STZ)-induced diabetic cataracts in rats was investigated. SD-rats were firstly made diabetic by a single intraperitoneal injection of 2% (W/V) STZ (65?mg/kg). Two weeks later, cataract formation was examined by slit lamp microscope, and the cataracted animals were randomly grouped. The animals in the treated groups received rHV3 drops administration to the eyes with various doses. After 4 weeks treatment, the animals were sacrificed to evaluate the biochemical changes of aldose reductase (AR), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels in the eye lens. Meanwhile, the cataract progression was monitored by slit lamp microscope. As a result, rHV3 drops treatment significantly increased the activities of SOD and GSH-Px in the lens in a dose-dependent manner, whereas AR activity and MDA level in the lens were dramatically decreased. Also, the morphological observation further confirmed the inhibition of the development of STZ-induced diabetic cataracts by the rHV3 drops treatment. Thus, our data suggest that rHV3 drops are pharmacologically effective for the protection against STZ-induced diabetic cataracts in rats. PMID:24391466

Gong, Xiaojian; Zhang, Qiuyan; Tan, Shuhua

2013-01-01

59

Anti–diabetic activity of the semi–purified fractions of Averrhoa bilimbi in high fat diet fed–streptozotocin–induced diabetic rats  

Microsoft Academic Search

The present study was designed to investigate the hypoglycemic and hypolipidemic activities of the semi–purified fractions of an ethanolic leaf extract of Averrhoa bilimbi (ABe) in high fat diet (HFD)–streptozotocin (STZ)–induced diabetic rats. Male Sprague–Dawley rats aged 10 weeks (200–250 g) were fed with a high fat diet obtained from Glen Forrest stock feeders (Western Australia) for 2 weeks prior

Benny Kwong Huat Tan; Chee Hong Tan; Peter Natesan Pushparaj

2005-01-01

60

Influence of Casearia esculenta root extract on protein metabolism and marker enzymes in streptozotocin-induced diabetic rats.  

PubMed

The present study investigated the possible protective effects of Casearia esculenta root extract on certain biochemical markers in streptozotocin (STZ)-induced diabetes in rats. STZ treatment (50 mg/kg, ip) caused a hyperglycemic state, that led to various physiological and biochemical alterations. Blood levels of glucose, urea, uric acid and creatinine, plasma levels of albumin and albumin/globulin ratio and the activities of diagnostic marker enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyltranspeptidase (gamma-GT) in plasma, liver and kidney were markedly altered in STZ diabetic rats. Oral administration of C. esculenta (200 and 300 mg/kg) for 45 days restored all these biochemical parameters to near normal levels. Thus, the present results have shown that C. esculenta root extract has the antihyperglycemic effect and consequently may alleviate liver and renal damage associated with STZ-induced diabetes in rats. PMID:15591647

Prakasam, A; Sethupathy, S; Pugalendi, K V

2004-01-01

61

Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats.  

PubMed

Citrullus colocynthis (colocynth) seeds are traditionally used as antidiabetic medication in Mediterranean countries. The present study evaluated the differential effects of diets enriched with C. colocynthis, sunflower or olive oils on the pancreatic beta-cell mass in streptozotocin (STZ)-induced diabetes in rats. STZ injection induced rapid hyperglycaemia in all animals. However, 2 months later, hyperglycaemia was significantly less pronounced in the rats fed a C. colocynthis oil-enriched diet compared with other rat groups (7.9mM versus 12mM and 16mM with colocynth versus olive and sunflower oils, respectively). Assessment of insulin sensitivity using the homoeostasis model assessment (HOMA) method also indicated less insulin resistance in the rats fed a C. colocynthis oil-enriched diet versus the other rats. Finally, 2 months after STZ injection, the pancreatic beta-cell mass was similar in both the STZ-treated rats fed the colocynth oil-enriched diet and their controls fed the same diet. In contrast, the pancreatic beta-cell mass remained lower in the STZ-induced diabetic rats fed with olive oil- and sunflower oil-enriched diets compared with the C. colocynthis group. We conclude that C. colocynthis oil supplementation may have a beneficial effect by partly preserving or restoring pancreatic beta-cell mass in the STZ-induced diabetes rat model. PMID:19264524

Sebbagh, N; Cruciani-Guglielmacci, C; Ouali, F; Berthault, M-F; Rouch, C; Sari, D Chabane; Magnan, C

2009-06-01

62

Polyphenols-rich Cyamopsis tetragonoloba (L.) Taub. beans show hypoglycemic and ?-cells protective effects in type 2 diabetic rats.  

PubMed

The aim of this study was to evaluate the antidiabetic activity of Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans in high-fat diet (HFD) fed-streptozotocin (STZ)-induced type 2 diabetic rats. Dose dependent response of oral treatment of C. tetragonoloba beans' methanol extract (CTme) (200 and 400mg/kg b wt.) was assessed by measuring fasting blood glucose, changes in body weight, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol, triglycerides, oral glucose tolerance, intraperitoneal insulin tolerance, hepatic glycogen, marker enzymes of carbohydrate metabolism in HFD fed-STZ-induced type 2 diabetic rats. Histology and immunohistochemical analysis of pancreatic islets were also performed. High-performance liquid chromatography (HPLC) analysis of CTme showed the presence of polyphenols such as gallic acid and caffeic acid in the concentrations of 2.46% (W/W) and 0.32% (W/W). CTme significantly reverted the altered biochemical parameters to near normal levels in diabetic rats. Furthermore CTme showed the protective effect on the ?-cells of pancreatic tissues in diabetic rats. These findings indicate that C. tetragonoloba beans have therapeutic potential in HFD fed-STZ-induced hyperglycemia; therefore this can be used in the management of type 2 diabetes. PMID:24525096

Gandhi, Gopalsamy Rajiv; Vanlalhruaia, Pautu; Stalin, Antony; Irudayaraj, Santiagu Stephen; Ignacimuthu, Savarimuthu; Paulraj, Michael Gabriel

2014-04-01

63

The effects of transdermal insulin treatment of streptozotocin-induced diabetic rats on kidney function and renal expression of glucose transporters.  

PubMed

The tight glycemic control required to attenuate chronic complications in type 1 diabetes mellitus requires multiple daily injections of bolus insulin which cause hyperinsulinemic edema and hypertension due to Na(+) retention. Reports indicate that pectin insulin (PI)-containing dermal patches sustain controlled insulin release into the bloodstream of streptozotocin (STZ)-induced diabetic rats. This study investigated whether PI dermal patches can improve the impaired renal function in diabetes. PI patches were prepared by dissolving pectin/insulin in deionized water and solidified with CaCl(2). Short-term (five weeks) effects of thrice daily treatments with PI patches on renal function and urinary glucose outputs were assessed in diabetic animals. Blood and kidney samples were collected after five weeks for measurements of selected biochemical parameters. Blood was also collected for insulin measurement 6?h following treatments. The low plasma insulin concentrations exhibited by STZ-induced diabetic rats were elevated by the application of insulin-containing dermal patches to levels comparable with control non-diabetic rats. Untreated STZ-induced diabetic rats exhibited elevated urinary glucose, K(+) outputs and depressed urinary Na(+) outputs throughout the 5-week period. Treatment with PI dermal patches increased urinary Na(+) output and reduced urine flow, urinary glucose and K(+) excretion rates in weeks 4 and 5. PI dermal patches increased GFR of diabetic rats with concomitant reduction of plasma creatinine concentrations. Transdermal insulin treatment also decreased the renal expressions of GLUT1 and SGLT1 of STZ-induced diabetic rats. We conclude that PI dermal patches deliver physiologically relevant amounts of insulin that can improve kidney function in diabetes. PMID:25300909

Ngubane, Phikelelani Siphosethu; Hadebe, Silindile Innocentia; Serumula, Metse Regina; Musabayane, Cephas T

2015-02-01

64

Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene  

Microsoft Academic Search

Diabetic cardiomyopathy includes fibro- sis. Kallikrein (KLK) can inhibit collagen synthesis and promote collagen breakdown. We investigated cardiac fibrosis and left ventricular (LV) function in transgenic rats (TGR) expressing the human kallikrein 1 (hKLK1) gene in streptozotocin (STZ) -induced diabetic condi- tions. Six weeks after STZ injection, LV function was determined in male Sprague-Dawley (SD) rats and TGR(hKLK1) (n10\\/group) by

CARSTEN TSCHOPE; THOMAS WALTHER; JENS KONIGER; FRANK SPILLMANN; DIRK WESTERMANN; FELICITAS ESCHER; MATTHIAS PAUSCHINGER; JOAO B. PESQUERO; MICHAEL BADER; HEINZ-PETER SCHULTHEISS; MICHEL NOUTSIAS

2004-01-01

65

Effects of Nefopam on Streptozotocin-Induced Diabetic Neuropathic Pain in Rats  

PubMed Central

Background Nefopam is a centrally acting non-opioid analgesic agent. Its analgesic properties may be related to the inhibitions of monoamine reuptake and the N-methyl-D-aspartate (NMDA) receptor. The antinociceptive effect of nefopam has been shown in animal models of acute and chronic pain and in humans. However, the effect of nefopam on diabetic neuropathic pain is unclear. Therefore, we investigated the preventive effect of nefopam on diabetic neuropathic pain induced by streptozotocin (STZ) in rats. Methods Pretreatment with nefopam (30 mg/kg) was performed intraperitoneally 30 min prior to an intraperitoneal injection of STZ (60 mg/kg). Mechanical and cold allodynia were tested before, and 1 to 4 weeks after drug administration. Thermal hyperalgesia was also investigated. In addition, the transient receptor potential ankyrin 1 (TRPA1) and TRP melastatin 8 (TRPM8) expression levels in the dorsal root ganglion (DRG) were evaluated. Results Pretreatment with nefopam significantly inhibited STZ-induced mechanical and cold allodynia, but not thermal hyperalgesia. The STZ injection increased TRPM8, but not TRPA1, expression levels in DRG neurons. Pretreatment with nefopam decreased STZ-induced TRPM8 expression levels in the DRG. Conclusions These results demonstrate that a nefopam pretreatment has strong antiallodynic effects on STZ-induced diabetic rats, which may be associated with TRPM8 located in the DRG. PMID:25317281

Nam, Jae Sik; Cheong, Yu Seon; Karm, Myong Hwan; Ahn, Ho Soo; Sim, Ji Hoon; Kim, Jin Sun; Leem, Jeong Gil

2014-01-01

66

Protective effects of Phyllanthus amarus aqueous extract against renal oxidative stress in Streptozotocin -induced diabetic rats  

PubMed Central

Aim and Objectives: In the present study, we have evaluated the antihyperglycemic, hypolipidemic and antioxidant activities of aqueous extract of Phyllanthus amarus (PAAEt) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: PAAEt was administered at 200 mg/kg body weight/day to normal treated (NT-group) and STZ-induced diabetic treated rats (DT-group) by gavage for eight weeks. During the experimental period, blood was collected from fasted rats at 10 days intervals and plasma glucose level was estimated. The plasma lipid profile was estimated at the end of experimental period. After the treatment, period kidney lipid peroxidation (LPO), protein oxidation and reduced glutathione (GSH) were estimated and antioxidant enzymes viz., glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) were also assayed. Results: The significant decrease in the body weight, hyperglycemia and hyperlipidemia observed in STZ-induced diabetic rats (D-group) were rectified with PAAEt treatment in diabetic treated group (DT-group). D-group rats showed increased renal oxidative stress with increased LPO and protein oxidation. DT-group showed a significant decrease in renal LPO, protein oxidation and a significant increase in GSH content and GR, GPx and GST activities when compared with D-group. The activities of SOD and CAT decreased significantly in D-group, but were normalized in DT-group. Normal rats treated with PAAEt (NT-rats) showed a significant decrease in lipid profile, renal LPO and protein oxidation, with significant increase in renal GSH and activities of antioxidant enzymes compared to normal rats (N-group). Conclusion: Our results demonstrated that PAAEt with its antidiabetic, hypolipidemic and antioxidant properties could be a potential herbal medicine in treating diabetes and renal problems. PMID:21844996

Karuna, R.; Bharathi, Vijaya G.; Reddy, Sreenivasa S.; Ramesh, B.; Saralakumari, D.

2011-01-01

67

Ferulic acid supplements abrogate oxidative impairments in liver and testis in the streptozotocin-diabetic rat.  

PubMed

The primary objective of this study was to assess the efficacy of ferulic acid (FA), a phenolic antioxidant, in ameliorating oxidative stress in the testis and liver of diabetic pubertal rats. Male (6 wk old) rats were rendered diabetic by an acute dose (60 mg/kg body weight, intraperitoneal) of streptozotocin (STZ) and were given oral supplementation of FA (50 mg/kg body weight/d on alternate days) for 4 weeks. The protective efficacy of FA was assessed by measuring markers of oxidative stress in the testis and liver along with the effect of stress on lipid profile in serum/testis. Terminally, the testis (cytosol and mitochondria) of STZ-administered rats exhibited a marked elevation in the status of lipid peroxidation and enhanced reactive oxygen species (ROS) production compared to the non-diabetic controls. FA treatment completely normalized the oxidative impairments in the testis. Further, STZ-induced depletion of reduced glutathione (GSH) and elevated protein carbonyl content in the testis were restored to normalcy by FA treatment. The protective effects of FA were also discernible in the testis in terms of restoration of activities of various antioxidant enzymes in the diabetic rats. Furthermore, STZ-induced oxidative impairments in the liver were also abrogated significantly by FA treatment. STZ-induced perturbations in serum and testicular lipid profiles in the diabetic rats were also significantly attenuated by FA treatment. Collectively, these results indicate that oral supplementation of FA can significantly mitigate diabetes-associated oxidative impairments in the testis as well as in the liver and suggests the efficacy of FA as a complementary therapeutic agent in the management of diabetes-associated oxidative stress-mediated complications. PMID:18795822

Thyagaraju, Badanavalu Madaiah

2008-08-01

68

The effects of dexpanthenol in streptozotocin-induced diabetic rats: histological, histochemical and immunological evidences.  

PubMed

This study was designed to investigate the effects of Dexpanthenol (Dxp) on liver and pancreas histology and cytokine levels in streptozotocine (STZ)-induced diabetic rats. Twenty-four Wistar albino male rats were divided into four groups: control, Dxp, STZ-induced diabetic (STZ) and diabetic treatment with Dexpanthenol (STZ-Dxp) groups. Experimental diabetes was induced by single dose STZ (50 mg/kg) intraperitoneally (i.p.). After administration of STZ, the STZ-Dxp group began to receive a 300 mg/kg/day i.p. dose of Dxp for 6 weeks. Liver and pancreas tissues of the control group were in normal morphology. Liver tissue of STZ group showed vacuolisation of hepatocytes in the liver parenchyma with enlargement of sinusoidal spaces and increasing amounts of connective tissue in the portal area. Pancreatic section of STZ group displayed ?-cells with of cytoplasmic mass, reduction of islet size, and atrophy. The STZ-Dxp group that received Dxp treatment exhibit partially normal hepatic parenchyma. Histochemical examinations revealed that the diabetes-induced glycogen depletion markedly improved with the Dxp treatment (p?0.001). The severity of degenerative alteration was lessened by Dxp supplementation in the STZ-Dxp group. Induction of STZ presented a significant increase both in interleukin-1? (IL-1?) (p=0.033) and monocyte chemotactic protein-1 (MCP-1) (p=0.011) levels, when compared with the control rats. DXP-treated diabetic rats' IL-1? and MCP-1 levels were similar to control value. This evidence suggests that Dxp is effective in reducing STZ-induced, diabetic-related complications and may be beneficial for the treatment of diabetic patients. PMID:24733664

Gulle, K; Ceri, N G; Akpolat, M; Arasli, M; Demirci, B

2014-10-01

69

Antihyperglycemic, antihyperlipidemic and antioxidant effects of Dihar, a polyherbal ayurvedic formulation in streptozotocin induced diabetic rats.  

PubMed

Present investigation was undertaken to evaluate antihyperglycemic, antihyperlipidemic and antioxidant activities of Dihar, a polyherbal formulation containing drugs from eight different herbs viz., Syzygium cumini, Momordica charantia, Emblica officinalis, Gymnema sylvestre, Enicostemma littorale, Azadirachta indica, Tinospora cordifolia and Curcuma longa in streptozotocin (STZ, 45 mg/kg iv single dose) induced type 1 diabetic rats. STZ produced a significant increase in serum glucose, cholesterol, triglyceride, very low density lipoprotein, low density lipoprotein, creatinine, and urea levels in diabetic rat. Treatment with Dihar (100 mg/kg) for 6 weeks produced decrease in STZ induced serum glucose and lipids levels and increased insulin levels as compared to control. Dihar produced significant decrease in serum creatinine and urea levels in diabetic rats. There was a significant decrease in reduced glutathione, superoxide dismutase, catalase levels and increase in thiobarbituiric acid reactive species levels in the liver of STZ-induced diabetic rats. Administration of Dihar to diabetic rats significantly reduced the levels of lipid paroxidation and increased the activities of antioxidant enzymes. The results suggest Dihar to be beneficial for the treatment of type 1 diabetes. PMID:19761040

Patel, Snehal S; Shah, Rajendra S; Goyal, Ramesh K

2009-07-01

70

Antiperoxidative and antioxidant effects of Casearia esculenta root extract in streptozotocin-induced diabetic rats.  

PubMed

Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats. PMID:16197726

Prakasam, A; Sethupathy, S; Pugalendi, K V

2005-01-01

71

Protective Effect of Polysaccharides from Inonotus obliquus on Streptozotocin-Induced Diabetic Symptoms and Their Potential Mechanisms in Rats  

PubMed Central

The present study aimed to evaluate the therapeutic effects of polysaccharides from Inonotus obliquus (PIO) on streptozotocin- (STZ-) induced diabetic symptoms and their potential mechanisms. The effect of PIO on body weight, blood glucose, damaged pancreatic ?-cells, oxidative stresses, proinflammatory cytokines, and glucose metabolizing enzymes in liver was studied. The results show that administration of PIO can restore abnormal oxidative indices near normal levels. The STZ-damaged pancreatic ?-cells of the rats were partly recovered gradually after the mice were administered with PIO 6 weeks later. Therefore, we may assume that PIO is effective in the protection of STZ-induced diabetic rats and PIO may be of use as antihyperglycemic agent. PMID:25093030

Diao, Bao-zhong; Jin, Wei-rong; Yu, Xue-jing

2014-01-01

72

The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy.  

PubMed

Diabetic nephropathy (DN) has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS) in streptozotocin (STZ)-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the ?2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications. PMID:24886867

Wang, Jing; Liu, Huaide; Li, Ning; Zhang, Quanbin; Zhang, Hong

2014-06-01

73

Improved glycemic control, pancreas protective and hepatoprotective effect by traditional poly-herbal formulation “Qurs Tabasheer” in streptozotocin induced diabetic rats  

PubMed Central

Background The present study was undertaken to evaluate the antihyperglycemic, antihyperlipidemic and hepatoprotective effect of a traditional unani formulation “Qurs Tabasheer” in streptozotocin (STZ) induced diabetic wistar rats. Up till now no study was undertaken to appraise the efficacy of “Qurs Tabasheer” in the diabetic rats. Qurs Tabasheer is a unani formulation restraining preparations from five various herbs namely Tukhme Khurfa (Portulaca oleracea seed), Gule Surkh (Rosa damascena flower), Gulnar (Punica granatum flower), Tabasheer (Bambusa arundinasia dried exudate on node), Tukhme Kahu (Lactuca sativa Linn seed). Methods Effect of Qurs Tabasheer was assessed in STZ (60 mg/kg, i.p single shot) induced diabetic wistar rats. STZ produced a marked increase in the serum glucose, Total Cholesterol, LDL cholesterol, VLDL Cholesterol, Triglycerides and trim down the HDL level. We have weighed up the effect of Qurs Tabasheer on hepatic activity through estimating levels of various liver enzymes viz. Hexokinase, Glucose-6-Phosphatase and Fructose-1-6-biphosphatase in STZ diabetic wistar rats. Results In STZ-induced diabetic wistar rats level of Hexokinase, and Glucose-6-Phosphatase was decreased to a significant level while the level of fructose-1-6-biphophatase was augmented. Therapy with Qurs Tabasheer for 28 days to STZ-induced diabetic rats significantly reduces the level of serum glucose, total cholesterol, triglycerides, glucose-6-phosphatase and fructose-1-6-biphosphatase, while magnitude of HDL cholesterol and hexokinase was amplified. Conclusion Antihyperglycemic, antihyperlipidemic activity of Qurs Tabasheer extract in STZ- induced wistar rats was found to be more effective than standard oral hypoglycemic drug Glimepiride. PMID:23305114

2013-01-01

74

Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats  

PubMed Central

Objective To evaluate the antihyperglycemic activity of ethyl acetate extract of Hypericum perforatum (H. perforatum) in streptozotocin (STZ)-induced diabetic rats. Methods Acute toxicity and oral glucose tolerance test were performed in normal rats. Male albino rats were rendered diabetic by STZ (40 mg/kg, intraperitoneally). H. perforatum ethyl acetate extract was orally administered to diabetic rats at 50, 100 and 200 mg/kg doses for 15 days to determine the antihyperglycemic activity. Biochemical parameters were determined at the end of the treatment. Results H. perforatum ethyl acetate extract showed dose dependant fall in fasting blood glucose (FBG). After 30 min of extract administration, FBG was reduced significantly when compared with normal rats. H. perforatum ethyl acetate extract produced significant reduction in plasma glucose level, serum total cholesterol, triglycerides, glucose-6-phosphatase levels. Tissue glycogen content, HDL-cholesterol, glucose-6-phosphate dehydrogenase were significantly increased compared with diabetic control. No death or lethal effect was observed in the toxic study. Conclusions The results demonstrate that H. perforatum ethyl acetate extract possesses potent antihyperglycemic activity in STZ induced diabetic rats. PMID:23569798

Arokiyaraj, S; Balamurugan, R; Augustian, P

2011-01-01

75

Biochemical effects of Citrullus colocynthis in normal and diabetic rats.  

PubMed

Diabetes mellitus is one of the most common endocrine diseases. In UAE many traditional plants such as the Citrullus colocynthis (Handal) are used as antidiabetic remedies. The aim of this study was to examine the effect of the aqueous extract of the seed of C. colocynthis on the biochemical parameters of normal and streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal (60 mg/kg body wt1) injection of STZ. Normal and diabetic rats were fed with the plant extract daily by oral intubation for 2 weeks. Blood sample were collected at the beginning and end of the experiment for the measurement of biochemical parameters. The plasma level of alanine aminotranferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), lactic dehydrogenase (LDH) increased significantly after the onset of diabetes. Oral administration of the plant extract reduced the plasma level of AST and LDH significantly. However, the plant extract failed to reduce the increased blood level of GGT and ALP in diabetic rats. Blood urea nitrogen (BUN) increased significantly after the onset of diabetes. No significant difference was observed in the blood creatinine, K+, Na+, Ca2+ and P levels of normal and diabetic rats. The plant extract did not have any effect on BUN level, however, it caused an increase in the level of K+, Na+ in diabetic rats. In conclusion, oral administration of the aqueous extract of the C. colocynthis can ameliorate some of the toxic effects of streptozotocin. PMID:15362497

Al-Ghaithi, Fatma; El-Ridi, Mamdouh R; Adeghate, Ernest; Amiri, Mohamed H

2004-06-01

76

Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats.  

PubMed

Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus. PMID:24834928

Yay, A; Akku?, D; Yap?slar, H; Balc?oglu, E; Sonmez, M F; Ozdamar, S

2014-11-01

77

In vivo silencing of the Ca V3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy  

Microsoft Academic Search

Earlier, we showed that streptozocin (STZ)-induced type 1 diabetes in rats leads to the development of painful peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia and mechanical allodynia accompanied by significant enhancement of T-type calcium currents (T-currents) and cellular excitability in medium-sized dorsal root ganglion (DRG) neurons. Here, we studied the in vivo and in vitro effects of gene-silencing therapy

Richard B. Messinger; Ajit K. Naik; Miljen M. Jagodic; Michael T. Nelson; Woo Yong Lee; Won Joo Choe; Peihan Orestes; Janelle R. Latham; Slobodan M. Todorovic; Vesna Jevtovic-Todorovic

2009-01-01

78

Antidiabetic effect of ?-mangostin and its protective role in sexual dysfunction of streptozotocin induced diabetic male rats.  

PubMed

Sexual dysfunction is one of the diabetic complications in males. The present study aimed to evaluate the antidiabetic effect of ?-mangostin and its protective role in sexual dysfunction of streptozotocin (STZ) induced diabetic male rats. Male Wistar rats were divided as control, diabetic control, diabetic rats administered with 25, 50?mg/kg body weight (bw) of ?-mangostin and 1?mg/kg bw of gliclazide. The ?-mangostin was administered once daily for a period of 55 days. On day 55 animals were sacrificed, serum was analyzed for testosterone levels, and sperm was collected from the epididymis and sperm parameters analyzed. Testis and epididymis were examined for antioxidant enzymes like superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) levels, lipidperoxidation products, and histopathological alterations. In diabetic rats, sperm count, motile sperms, viable sperms, and hypo-osmotic swelling tail coiled sperms were significantly decreased while sperm malformations increased when compared with normal rats. Serum testosterone levels and testicular 3? and 17 ?-hydroxysteroid dehydrogenase levels were significantly decreased in diabetic rats. Significant reduction in testicular and epididymal SOD, catalase, GPx levels, and elevation in lipid peroxidation products were observed. However, ?-mangostin treatment showed noteworthy recovery in all parameters towards the control levels. It may therefore be suggested that ?-mangostin showed a protective effect against sexual dysfunction in STZ induced diabetic rats. PMID:23886300

Nelli, Giri Babu; K, Anand Solomon; Kilari, Eswar Kumar

2013-12-01

79

Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3? dependent pathway in experimental diabetic cardiomyopathy  

Microsoft Academic Search

AIMS: Diabetic cardiomyopathy, characterized by myocardial structural and functional changes, is a specific cardiomyopathy develops in patients with diabetes mellitus. The present study was to investigate the role of kinin B2 receptor-Akt-glycogen synthase kinase (GSK)-3? signalling pathway in mediating the protective effects of tanshinone IIA (TSN) on diabetic cardiomyopathy. METHODS AND RESULTS: Streptozocin (STZ) induced diabetic rats (n = 60)

Dongdong Sun; Min Shen; Jiayi Li; Weijie Li; Yingmei Zhang; Li Zhao; Zheng Zhang; Yuan Yuan; Haichang Wang; Feng Cao

2011-01-01

80

Pharmacological Evaluation of “Sugar Remedy,” A Polyherbal Formulation, on Streptozotocin-Induced Diabetic Mellitus in Rats  

PubMed Central

In the present study, Sugar Remedy, a polyherbal formulation (manufactured by Umalaxmi Organics Pvt Ltd, Jodhpur, Rajasthan, India) was evaluated for its antihyperglycemic, antihyperlipidemic, and antioxidant effects against normal and streptozotocin (STZ)-induced diabetic rats. Type II diabetes was induced in male Wistar rats by administration of a single intraperitoneal (IP) injection of STZ at a dose of 60 mg/kg. Effects of three different doses of Sugar Remedy suspension (185, 370, and 740 mg/kg/day, orally) and Metformin (500 mg/kg/day, orally) administered for 21 days were studied on parameters such as blood glucose, lipid profile, and antioxidant levels. Results were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett's test. No significant changes were noticed in blood glucose, serum lipid levels, and kidney parameters in normal rats treated with Sugar Remedy suspension alone. The efficacy of Sugar Remedy as an antihyperglycemic, antihyperlipidemic, and antioxidant agent in STZ-induced diabetes was comparable to that of the standard, 500 mg/kg of Metformin. Present findings provide experimental evidence that Sugar Remedy has significant antihyperglycemic, antihyperlipidemic, and antioxidative effects in diabetic experimental rats. Hence, Sugar Remedy may be regarded as a promising natural and safe remedy for the prevention or delay of diabetic complications. PMID:25161924

Singhal, Sandeep; Rathore, Arvind Singh; Lohar, Vikram; Dave, Rakesh; Dave, Jeetesh

2014-01-01

81

Hypoglycemic activity of Buchholzia coriacea (Capparaceae) seeds in streptozotocin-induced diabetic rats and mice.  

PubMed

The present study evaluates the possible hypoglycemic activity and ameliorative effects of oral administration of ethanol extracts (EEBC) and butanol fraction (BFBC) of Buchholzia coriacea seeds, a plant in use traditionally for treating diabetes, hypertension, rheumatism, cold, cough and catarrh, in streptozotocin (STZ)-induced diabetic mice and rats. Fasting blood glucose (FBG) levels were evaluated before and after extracts administration. EEBC and BFBC significantly decreased (P<0.05) FBG in hyperglycemic mice and normoglycemic rats within 4 and 12 h, respectively after extract administration. The administration of EEBC, BFBC and glibenclamide (a standard antidiabetic drug) for 10 days significantly lowered (P<0.05) FBG level in STZ-induced diabetic rats by 55%, 64% and 56%, respectively. EEBC and BFBC significantly (P<0.05) decreased hepatic injury induced by STZ as evident in the decreased activity of serum alanine amino transferase and aspartate amino transferase compared to in the STZ-only treated group. Similarly, both extracts significantly decreased (P<0.05) the elevated levels of serum creatinine, urea, total cholesterol, triglyceride and thiobarbituric acid reactive species (TBARS) products in diabetic rats. Serum superoxide dismutase activity was significantly enhanced (P<0.05) by treatments with EEBC, BFBC and glibenclamide. Overall, the results suggest that B. coriacea seeds contain a potent hypoglycemic and antioxidant agent suggested to be a flavone glycoside concentrated in BFBC which may find clinical application in amelioration of diabetes-induced secondary complications. PMID:20965120

Adisa, Rahmat A; Choudhary, Mohammed I; Olorunsogo, Olufunso O

2011-11-01

82

Effects of Aqueous Extract of Berberis integerrima Root on Some Physiological Parameters in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Diabetes mellitus is a common endocrine disorder. Anti-diabetic agents from natural and synthetic sources are available for the treatment of this disease. Berberis integerrima is a medicinal shrub used in conventional therapy for a number of diseases. The aim of the present study was to investigate the effects of aqueous extract of Berberis integerrima root (AEBI) on some physiological parameters in normal and streptozotocin-induced (STZ-induced) diabetic male Wistar rats. STZ-induced diabetic rats showed significant increases in the levels of blood glucose, triglycerides (TG), total cholesterol (TC), low density lipoprotein LDL-cholesterol (LDL-C), creatinine (Cr), urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin while body weight, high density lipoprotein HDL-cholesterol (HDL-C) and total protein levels were significantly decreased compared to normal rats. Treatment of diabetic rats with different doses of aqueous extract of Berberis integerrima root (250 and 500 mg/Kg bw) resulted in a significant decrease in blood glucose, triglycerides, cholesterol, LDL-cholesterol, ALT, AST, ALP, total bilirubin, creatinine and urea while HDL-cholesterol and total protein levels were markedly increased after six weeks compared to untreated diabetic rats. The effects of the AEBI at dose of 500 mg/Kg in all parameters except blood glucose (similar) is more than to the standard drug, glibenclamide (0.6 mg/Kg, p.o.). The results of this study indicate that the tested aqueous extract of Berberis integerrima root possesses hypoglycemic, hypolipidemic and antioxidant effects in STZ-induced diabetic rats. PMID:24250618

Ashraf, Hossein; Heidari, Reza; Nejati, Vahid; Ilkhanipoor, Minoo

2013-01-01

83

Effects of Aqueous Extract of Berberis integerrima Root on Some Physiological Parameters in Streptozotocin-Induced Diabetic Rats.  

PubMed

Diabetes mellitus is a common endocrine disorder. Anti-diabetic agents from natural and synthetic sources are available for the treatment of this disease. Berberis integerrima is a medicinal shrub used in conventional therapy for a number of diseases. The aim of the present study was to investigate the effects of aqueous extract of Berberis integerrima root (AEBI) on some physiological parameters in normal and streptozotocin-induced (STZ-induced) diabetic male Wistar rats. STZ-induced diabetic rats showed significant increases in the levels of blood glucose, triglycerides (TG), total cholesterol (TC), low density lipoprotein LDL-cholesterol (LDL-C), creatinine (Cr), urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin while body weight, high density lipoprotein HDL-cholesterol (HDL-C) and total protein levels were significantly decreased compared to normal rats. Treatment of diabetic rats with different doses of aqueous extract of Berberis integerrima root (250 and 500 mg/Kg bw) resulted in a significant decrease in blood glucose, triglycerides, cholesterol, LDL-cholesterol, ALT, AST, ALP, total bilirubin, creatinine and urea while HDL-cholesterol and total protein levels were markedly increased after six weeks compared to untreated diabetic rats. The effects of the AEBI at dose of 500 mg/Kg in all parameters except blood glucose (similar) is more than to the standard drug, glibenclamide (0.6 mg/Kg, p.o.). The results of this study indicate that the tested aqueous extract of Berberis integerrima root possesses hypoglycemic, hypolipidemic and antioxidant effects in STZ-induced diabetic rats. PMID:24250618

Ashraf, Hossein; Heidari, Reza; Nejati, Vahid; Ilkhanipoor, Minoo

2013-01-01

84

Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats  

PubMed Central

Background Hericium erinaceus, as a commonly used medicine or food, has attracted much attention due to its health effects when used as a home remedy for some diseases. The aim of this work was to investigate the hypoglycemic and hypolipidemic effects of aqueous extract of Hericium erinaceus (AEHE) in streptozotocin (STZ)-induced diabetic rats. Methods Diabetes was induced in Wistar rats by the administration of STZ (55 mg/kg BW.) intraperitoneally. AEHE (100 and 200 mg/kg BW.) was administered for a period of 28 days. The effects of AEHE on glucose, insulin, and lipid files in blood, and oxidative stress parameters in the liver were evaluated. The body weights of rats were recorded at day 0, 14 and 28th days. Results The administration of AEHE for 28 days in STZ diabetic rats resulted in a significant decrease in serum glucose level and a significant rise in serum insulin level. AEHE treatment attenuated lipid disorders. In addition, AEHE administration increased the activities of CAT, SOD, and GSH-Px, and GSH level, and reduced MDA level in the liver tissue significantly. Conclusion Our results suggest that AEHE possesses hypoglycemic, hypolipidemic, and antioxidant properties in STZ-induced diabetes rats. PMID:24090482

2013-01-01

85

Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers.  

PubMed

The present investigation was aimed to study the antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of the root of Sphaeranthus indicus Linn. in streptozotocin- (STZ-) induced type 1 diabetic rats. Administration of ethanolic extract of Sphaeranthus indicus root (EESIR) 100 and 200?mg/kg to the STZ-induced diabetic rats showed significant (P < .01) reduction in blood glucose and increase in body weight compared to diabetic control rats. Both the doses of EESIR-treated diabetic rats showed significant (P < .01) alteration in elevated lipid profile levels than diabetic control rats. The EESIR treatment in diabetic rats produced significant increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and decrease in thiobarbituric acid reactive substances (TBARS) levels than diabetic control rats. Administration of EESIR 200?mg/kg produced significant (P < .01) higher antioxidant activity than EESIR 100?mg/kg. The high performance liquid chromatography (HPLC) analysis of EESIR revealed the presence of biomarkers gallic acid and quercetin. In conclusion, EESIR possess antidiabetic, antihyperlipidemic, and in vivo antioxidant activity in type 1 diabetic rats. Its antioxidant and lipid lowering effect will help to prevent diabetic complications, and these actions are possibly due to presence of above biomarkers. PMID:20953435

Ramachandran, S; Asokkumar, K; Uma Maheswari, M; Ravi, T K; Sivashanmugam, A T; Saravanan, S; Rajasekaran, A; Dharman, J

2011-01-01

86

Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers  

PubMed Central

The present investigation was aimed to study the antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of the root of Sphaeranthus indicus Linn. in streptozotocin- (STZ-) induced type 1 diabetic rats. Administration of ethanolic extract of Sphaeranthus indicus root (EESIR) 100 and 200?mg/kg to the STZ-induced diabetic rats showed significant (P < .01) reduction in blood glucose and increase in body weight compared to diabetic control rats. Both the doses of EESIR-treated diabetic rats showed significant (P < .01) alteration in elevated lipid profile levels than diabetic control rats. The EESIR treatment in diabetic rats produced significant increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and decrease in thiobarbituric acid reactive substances (TBARS) levels than diabetic control rats. Administration of EESIR 200?mg/kg produced significant (P < .01) higher antioxidant activity than EESIR 100?mg/kg. The high performance liquid chromatography (HPLC) analysis of EESIR revealed the presence of biomarkers gallic acid and quercetin. In conclusion, EESIR possess antidiabetic, antihyperlipidemic, and in vivo antioxidant activity in type 1 diabetic rats. Its antioxidant and lipid lowering effect will help to prevent diabetic complications, and these actions are possibly due to presence of above biomarkers. PMID:20953435

Ramachandran, S.; Asokkumar, K.; Uma Maheswari, M.; Ravi, T. K.; Sivashanmugam, A. T.; Saravanan, S.; Rajasekaran, A.; Dharman, J.

2011-01-01

87

Leptin deficiency is involved in the cognitive impairment of streptozocin-induced diabetic rats undergoing cardiopulmonary bypass  

PubMed Central

Several lines of evidence have demonstrated that leptin is probably involved in the cognitive impairment which induced by a single injection of streptozocin (STZ). However, there is little literature reporting the relationship between cognitive impairment and cardiopulmonary bypass (CPB). This study aimed to investigate the role of leptin in the cognitive impairment of STZ-induced diabetic rats undergoing CPB. Wistar rats received 2 h of CPB exposure 1 month after a single intraperitoneal injection of 60 mg/kg of STZ or the vehicle. Behavioral results of rats in Morris water maze were recorded. After that, rat hippocampi were harvested for measuring leptin, tumor necrosis factor-? (TNF-?) and interleukin-1? (IL-1?). Besides, we observed intracerebroventricular injection of leptin on the cognitive impairment of diabetic-rats undergoing CPB and measured behavioral performance and hippocampal TNF-? and IL-1? levels. Rats undergoing CPB significantly aggravates STZ-induced an increase of the latency to the platform and a decrease of the proportion of time spent in the target quadrant of rats in Morris water maze test. Additionally, the expression of leptin significantly decreased, while TNF-? and IL-1? levels significantly increased. Moreover, intracerebroventricular injection of leptin has a therapeutic effect for cognitive impairment of diabetic rats undergoing CPB. Leptin deficiency in hippocampus is probably involved in the cognitive impairment of streptozocin-induced diabetic rats undergoing cardiopulmonary bypass. PMID:25356111

Yang, Chun; Zhu, Bin; Hua, Fei

2014-01-01

88

Inhibition of peripheral NPY Y1 and Y2 receptors ameliorates the aberrant baroreceptor reflex sensitivity in streptozotocin induced diabetic rats.  

PubMed

Neuropeptide Y (NPY), a sympathetic neurotransmitter, is highly associated with baroreflex dysfunction and multiple cardiac diseases such as diabetic myocardiopathy. In the present study, we aimed to explore the role of peripheral NPY Y1 receptor (Y1R) and Y2 receptor (Y2R), which are dominantly present in peripheral cardiovascular control, in baroreflex sensitivity (BRS) of streptozotocin (STZ)-induced diabetic rats. Peripheral Y1R and Y2R were antagonized by specific antagonists (BIBP 3226 and BIIE 0246, respectively) from subcutaneously implanted ALZET mini-osmotic pump in STZ-induced diabetic rats for 4 weeks. Then baseline systolic blood pressure, heart rate, cardiac function, BRS, plasma NPY and lipid levels were evaluated. We found that STZ led to increased plasma NPY and lipid level. And the STZ-increased lipid levels were reduced by BIBP 3226 and BIIE 0246. BIBP 3226 ameliorated the aberrant BRS, but had little effect on the impaired cardiac function of the STZ rats. BIIE 0246 alleviated sodium nitroprusside (SNP)-induced but not phenylephrine (PE)-induced aberrant barore?ex control of heart rate in the STZ rats. In addition, BIIE 0246 alleviated the bradycardia, but further impaired cardiac contractility in the STZ rats. These results suggest that peripheral Y1R and Y2R play different roles in STZ-induced impairment of BRS. PMID:23963068

Niu, Hui-Fang; Xu, Ling; Yan, Yan; Xie, Fang; Yang, Bao-Feng; Ai, Jing

2013-08-25

89

Hemodynamic alterations in chronically conscious unrestrained diabetic rats  

SciTech Connect

Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings were normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.

Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.; Salazar, F.J.; Ubeda, M.; Quesada, T.

1987-05-01

90

Oral Lactobacillus reuteri GMN-32 treatment reduces blood glucose concentrations and promotes cardiac function in rats with streptozotocin-induced diabetes mellitus.  

PubMed

Impaired regulation of blood glucose levels in diabetes mellitus (DM) patients and the associated elevation of blood glucose levels are known to increase the risk of diabetic cardiomyopathy (DC). In the present study, a probiotic bacterium, Lactobacillus reuteri GMN-32, was evaluated for its potential to reduce blood glucose levels and to provide protection against DC risks in streptozotocin (STZ)-induced DM rats. The blood glucose levels of the STZ-induced DM rats when treated with L. reuteri GMN-32 decreased from 4480 to 3620 mg/l (with 10? colony-forming units (cfu)/d) and 3040 mg/l (with 10? cfu/d). Probiotic treatment also reduced the changes in the heart caused by the effects of DM. Furthermore, the Fas/Fas-associated protein with death domain pathway-induced caspase 8-mediated apoptosis that was observed in the cardiomyocytes of the STZ-induced DM rats was also found to be controlled in the probiotic-treated rats. The results highlight that L. reuteri GMN-32 treatment reduces blood glucose levels, inhibits caspase 8-mediated apoptosis and promotes cardiac function in DM rats as observed from their ejection fraction and fractional shortening values. In conclusion, the administration of L. reuteri GMN-32 probiotics can regulate blood glucose levels, protect cardiomyocytes and prevent DC in DM rats. PMID:24001238

Lin, Chih-Hsueh; Lin, Cheng-Chieh; Shibu, Marthandam Asokan; Liu, Chiu-Shong; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Hsieh, Cheng-Hong; Chen, Yi-Hsing; Huang, Chih-Yang

2014-02-01

91

Hypoglycemic and ?-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats.  

PubMed

The aim of this study was to examine the antidiabetic potential of Aegle marmelos (L.) Corr. (Rutaceae) bark in a diabetic rat model. Dose dependent effects of methanol extract of Aegle marmelos bark (AM) (200 and 400 mg/kg) on blood glucose, plasma insulin, glycated haemoglobin (HbA1c), total protein, hepatic glycogen, marker enzymes of hepatic function and carbohydrate metabolism were evaluated in (streptozotocin) STZ-induced diabetic rats by oral administration for 30 days. Structural integrity of pancreatic islets was assessed by routine histology while, their functional status was assessed by immunolocalization for insulin. High-performance liquid chromatography (HPLC) study established that AM contained antihyperglycemic constituents, aegelin (1.27% w/w) and lupeol (0.29% w/w). AM at 200 and 400 mg/kg showed significant reduction in blood glucose level by 19.14% and 47.32%, respectively in diabetic rats. AM treatment significantly increased insulin level, and produced similar effects on other biochemical parameters. Histological studies showed the regenerative effect of AM on the ?-cells of diabetic rats. Immunohistochemical observations in the extract treated diabetic rats showed increased insulin-immunoreactive ?-cells. These findings suggest that A. marmelos bark extract has the therapeutic potential in STZ-induced hyperglycemia; hence it can be used in the treatment of diabetes mellitus. PMID:22310238

Gandhi, Gopalsamy Rajiv; Ignacimuthu, Savarimuthu; Paulraj, Michael Gabriel

2012-05-01

92

Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats.  

PubMed

Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage. PMID:20559501

Erejuwa, Omotayo Owomofoyon; Sulaiman, Siti Amrah; Wahab, Mohd Suhaimi Abdul; Salam, Sirajudeen Kuttulebbai Nainamohammed; Salleh, Md Salzihan Md; Gurtu, Sunil

2010-01-01

93

Antioxidant Protective Effect of Glibenclamide and Metformin in Combination with Honey in Pancreas of Streptozotocin-Induced Diabetic Rats  

PubMed Central

Hyperglycemia exerts toxic effects on the pancreatic ?-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage. PMID:20559501

Erejuwa, Omotayo Owomofoyon; Sulaiman, Siti Amrah; Wahab, Mohd Suhaimi Abdul; Salam, Sirajudeen Kuttulebbai Nainamohammed; Salleh, Md Salzihan Md; Gurtu, Sunil

2010-01-01

94

Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats.  

PubMed

We investigated the effects of herb extracts, Rhus verniciflua, Agrimonia pilosa, Sophora japonica, and Paeonia suffruticosa, on the lowering of blood glucose levels and thiobarbituric acid reactive substances (TBARS) in streptozotocin (STZ)-induced diabetic rats. After 4 weeks, oral administration of Rhus verniciflua extract (50 mg/kg) exhibited a significant decrease in blood glucose levels in diabetic rats (P<0.05). Blood TBARS concentrations, the products of glucose oxidation in blood, were also lowered by Rhus verniciflua extract supplementation. In addition, Sophora japonica and Paeonia suffruticosa extracts significantly reduced TBARS levels versus diabetic controls. Serum concentrations of liver-function marker enzymes, GOT and GPT, were also restored by Rhus verniciflua (50 mg/kg) supplementation in diabetic rats. PMID:17031059

Jung, Chang Hwa; Zhou, Song; Ding, Guo Xun; Kim, Ji Hye; Hong, Myung Hee; Shin, Yong-Cheol; Kim, Gyung Jun; Ko, Seong-Gyu

2006-10-01

95

Astrocytic and microglial response in experimentally induced diabetic rat brain.  

PubMed

Diabetes Mellitus is associated with increased risk of cognitive and behavioural disorders with hitherto undeciphered role of glia. Glia as majority population in brain serve several vital functions, thus require pertinent revelation to further explicate the mechanisms affecting the brain function following diabetes. In this study we have evaluated glial changes in terms of phenotypic switching, proliferation and expression of activation cell surface markers and associated cellular degeneration in hippocampus following STZ-induced diabetes and caused cognitive impairments. Experimental diabetes was induced in Wistar rats by a single dose of STZ (45 mg/kg body weight; intraperitoneally) and changes were studied in 2nd, 4th and 6th week post diabetes confirmation using Barnes maze and T-maze test, immunohistochemistry and image analysis. An increase in GFAP expression sequentially from 2nd to 6th weeks of diabetes was analogous with the phenotypic changes and increased astrocyte number. Elevated level of S100? with defined stellate morphology further confirmed the astrocytosis following diabetes. Enhanced level of Iba-1 and MHC-II revealed the corroborated microglial activation and proliferation following diabetes, which was unresolved till date. Increased caspase-3 activity induced profound cell death upto 6th weeks post diabetes confirmation. Such caspase 3 mediated cellular damage with a concomitant activation of the astrocytes and microglia suggests that diabetes linked cell death activates the astrocytes and microglia in hippocampus which further underpin the progression and severity of brain disorders resulting in cognitive and behavioural impairments. PMID:24833555

Nagayach, Aarti; Patro, Nisha; Patro, Ishan

2014-09-01

96

Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats.  

PubMed

Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200?mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-?; interleukin, IL-6; and interleukin, IL-1?) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition. PMID:25161691

Giribabu, Nelli; Srinivasarao, Nelli; Swapna Rekha, Somesula; Muniandy, Sekaran; Salleh, Naguib

2014-01-01

97

Centella asiatica Attenuates Diabetes Induced Hippocampal Changes in Experimental Diabetic Rats  

PubMed Central

Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200?mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na+/K+-, Ca2+- and Mg2+-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-?; interleukin, IL-6; and interleukin, IL-1?) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition. PMID:25161691

Srinivasarao, Nelli; Swapna Rekha, Somesula; Muniandy, Sekaran

2014-01-01

98

Impaired inhibitory G-protein function contributes to increased calcium currents in rats with diabetic neuropathy.  

PubMed

There is a growing body of evidence that sensory neuropathy in diabetes is associated with abnormal calcium signaling in dorsal root ganglion (DRG) neurons. Enhanced influx of calcium via multiple high-threshold calcium currents is present in sensory neurons of several models of diabetes mellitus, including the spontaneously diabetic BioBred/Worchester (BB/W) rat and the chemical streptozotocin (STZ)-induced rat. We believe that abnormal calcium signaling in diabetes has pathologic significance as elevation of calcium influx and cytosolic calcium release has been implicated in other neurodegenerative conditions characterized by neuronal dysfunction and death. Using electrophysiologic and pharmacologic techniques, the present study provides evidence that significant impairment of G-protein-coupled modulation of calcium channel function may underlie the enhanced calcium entry in diabetes. N- and P-type voltage-activated, high-threshold calcium channels in DRGs are coupled to mu opiate receptors via inhibitory G(o)-type G proteins. The responsiveness of this receptor coupled model was tested in dorsal root ganglion (DRG) neurons from spontaneously-diabetic BB/W rats, and streptozotocin-induced (STZ) diabetic rats. Intracellular dialysis with GTPgammaS decreased calcium current amplitude in diabetic BB/W DRG neurons compared with those of age-matched, nondiabetic controls, suggesting that inhibitory G-protein activity was diminished in diabetes, resulting in larger calcium currents. Facilitation of calcium current density (I(DCa)) by large-amplitude depolarizing prepulses (proposed to transiently inactivate G proteins), was significantly less effective in neurons from BB/W and STZ-induced diabetic DRGs. Facilitation was enhanced by intracellular dialysis with GTPgammaS, decreased by pertussis toxin, and abolished by GDPbetaS within 5 min. Direct measurement of GTPase activity using opiate-mediated GTPgamma[(35)S] binding, confirmed that G-protein activity was significantly diminished in STZ-induced diabetic neurons compared with age-matched nondiabetic controls. Diabetes did not alter the level of expression of mu opiate receptors and G-protein alpha subunits. These studies indicate that impaired regulation of calcium channels by G proteins is an important mechanism contributing to enhanced calcium influx in diabetes. PMID:11495948

Hall, K E; Liu, J; Sima, A A; Wiley, J W

2001-08-01

99

Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats  

PubMed Central

Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

2012-01-01

100

Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats.  

PubMed

Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-?) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-? expression and inhibited the nuclear transcription factor-kappa B (NF-?B) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-?), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1?) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-? pathway. PMID:24848621

Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

2014-08-15

101

Antioxidant and toxicological evaluation of Cassia sopherain streptozotocin-induced diabetic Wistar rats  

PubMed Central

Background: Multiple-organ failure is the main cause of death in diabetes mellitus (DM). Hyperglycemia-induced oxidative stress is responsible for major diabetic complications, including multiple-organ failure. Medicinal plants possessing antioxidant activity may reduce oxidative stress and improve the functions of various organs affected by hyperglycemia. Objectives: This study was designed to evaluate the antioxidant effect of Aqueous Extract of Cassia sophera (AECS) in streptozotocin (STZ)-induced diabetic Wistar rats. Materials and Methods: AECS (200 mg/kg body weight (bw)) and the standard antidiabetic drug glibenclamide (10 mg/kgbw) were administered orally by gavaging for 28 days. Results: Oral administration of AECS inhibited STZ-induced increase in lipid peroxidation (LPO), aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), bilirubin, creatinine and urea in liver of diabetic rats. Significant increase in activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and a reduced level of glutathione (GSH), were observed in the liver, kidney, pancreas and testis on AECS treatment. Conclusion: The results demonstrate that AECS is not only useful in controlling blood glucose, but also has antioxidant potential to protect the liver, kidney, pancreas and testis against damage caused by hyperglycemia-induced oxidative stress. PMID:24174814

Singh, Rambir; Bhardwaj, Priyanka; Sharma, Poonam

2013-01-01

102

Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.  

PubMed

Abstract Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1?g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1?, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1?: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats. PMID:25314273

Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

2015-01-01

103

MiR-29b protects dorsal root ganglia neurons from diabetic rat.  

PubMed

Accumulated evidences implicated that microRNAs may be involved in diabetic neuropathy. Here, we investigated miR-29's roles in primary isolated dorsal root ganglion (DRG) neurons from STZ-induced diabetic rats. First, miR-29b was found down-regulated after STZ-injection. Inhibitions were increased with time course. Down-regulation of miR-29b was associated with higher apoptosis rate and more serious axonal swelling. Meanwhile, axonogeneration genes were inhibited, whereas neurodegenerative genes were stimulated. Restoration of miR-29b by mimic experiment could reverse the above neuropathy. Furthermore, western blot analysis disclosed that miR-29b could abolish Smad3 activation. In conclusion, the present study identifies that miR-29b could protect DRG from diabetic rats. This protective effects suggested potential therapeutic application of miR-29b in diabetic neuropathy. PMID:24819309

Zhang, Xiaona; Gong, Xu; Han, Shuhai; Zhang, Yang

2014-11-01

104

Hypolipidaemic activity of Helicteres isora L. bark extracts in streptozotocin induced diabetic rats.  

PubMed

In this study, the hypolipidaemic effect of an aqueous extract of the bark of Helicteres isora was investigated in streptozotocin (STZ)-induced diabetic rats. Administration of the bark extract of Helicteres isora (100 and 200 mg/kgb.w.) for 21 days resulted in significant reduction in serum and tissue cholesterol, phospholipids, free fatty acids and triglycerides in STZ diabetic rats. In addition to that, significant (p<0.05) decrease in high-density lipoprotein (HDL) whereas significant increase (p<0.05) low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) were observed in STZ diabetic rats, which were normalized after 21 days of bark extract treatment. The bark extract at a dose of 200 mg/kgb.w. showed much significant hypolipidaemic effect than at the dose of 100 mg/kgb.w. PMID:18191354

Kumar, G; Murugesan, A G

2008-02-28

105

Decreased Level of Albumin in Peripheral Blood Mononuclear Cells of Streptozotocin-Induced Diabetic Rats  

PubMed Central

ABSTRACT We investigated the phenotypic level of albumin in peripheral blood mononuclear cells (PBMC) of streptozotocin (STZ)-induced diabetic rats. A specific reduction of albumin was identified by 2-dimensional electrophoresis and mass spectrometry. Decreased albumin content was also confirmed by immunoblotting and quantitative real-time PCR. Since albumin is a major and predominant antioxidant in plasma, the PBMC albumin may also contribute to their antioxidant activity. By measuring the amount of H2O2, lipid peroxidation and the redox form of glutathione, it was found that the production of the oxidative stress was elevated in STZ-diabetic rats compared to that of normal control. We suggest, therefore, that decreased albumin content may lead to the decreased antioxidant activity in the PBMC of type 1 diabetic rats. PMID:24758836

PARK, Ki Tae; YUN, Chul-Ho; BAE, Chun-Sik; AHN, Taeho

2014-01-01

106

Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats.  

PubMed

The role of oxygen radicals are known for the pathogenesis of kidney damage. The aim of the present study was to investigate the antioxidative effects of melatonin, quercetin, and resveratrol on streptozotocin (STZ)-induced diabetic nephropathy in rats. A total of 35 male Wistar rats were divided into 5 groups as follows: control, diabetes mellitus (DM), DM + melatonin, DM + quercetin, and DM + resveratrol. All the injections started on the same day of single-dose STZ injection and continued for 30 days. At the end of this period, kidneys were removed and processed for routine histological procedures. Biochemical parameters and morphological changes were examined. In DM group, blood glucose levels were significantly increased, whereas body weights were decreased compared with the control group. Significant increases in blood urea nitrogen and tissue malondialdehyde (MDA) levels and decreases in superoxide dismutase and catalase activities were detected in DM group. Administration of melatonin, quercetin, and resveratrol significantly reduced these values. Melatonin was more efficient in reducing MDA levels than other antioxidants (p < 0.05). STZ-induced histopathological alterations including epithelial desquamation, swelling, intracytoplasmic vacuolization, brush border loss and peritubular infiltration. Additionally, basement membrane thickening and sclerotic changes were observed in glomerulus. Transforming growth factor-?1 positive cells were also increased. Melatonin, quercetin, and resveratrol significantly reduced these histopathological changes. Our results indicate that melatonin, quercetin, and resveratrol might be helpful in reducing diabetes-induced renal damage. PMID:24812155

Elbe, H; Vardi, N; Esrefoglu, M; Ates, B; Yologlu, S; Taskapan, C

2015-01-01

107

Ameliorative Potentials of Ginger (Z. officinale Roscoe) on Relative Organ Weights in Streptozotocin induced Diabetic Rats  

PubMed Central

The ameliorating potentials of ginger incorporated feed (10%) on the relative organ weights of Streptozotocin (STZ) induced diabetic rats was investigated. The experiment lasted for three weeks. Results show that administration of 10% ginger feed to the diabetic rats of group 3, resulted in a 29.81% decrease in their resulting hyperglycemia with a corresponding amelioration of elevated urinary protein, sugars, specific gravity as well as renal growth. In addition, administration of the ginger incorporated feeds to the diabetic rats of group 3, resulted in 9.88% increase in body weight with a corresponding 60.24% increase in growth compared with the non-diabetic rats administered standard rat pellets that had 6.21% increase in weight with a corresponding 60.14% increase in growth unlike the diabetic control rats that recorded 28.62% decrease in body weight with a corresponding 239.9% decrease in growth rates. Analysis of the chemical composition of the flour of the ginger incorporated feed indicated that it contained moderate amounts of moisture, crude fibre, alkaloids, saponins, tannins, Fe and Zn but considerable amounts of proteins, lipids, carbohydrates, ash, flavonoids, calcium, magnesium, potassium, phosphorous and energy value. There was no significant difference (P>0.05) in the liver and relative liver weights of the diabetic control rats and the diabetic -ginger treated rats. In addition, there were no significant differences in the kidney weights of the non-diabetic, diabetic control and diabetic treated rats (P>0.05) while there were significant differences in the relative kidney weights of the non-diabetic rats and the diabetic rats treated with ginger feeds (P<0.05). Results show that the use of ginger in the dietary management of diabetes mellitus could be a breakthrough in the search for novel plants that could prevent the development of diabetic glomerular hypertrophy. PMID:23847458

Eleazu, C. O.; Iroaganachi, M.; Okafor, P. N.; Ijeh, I. I.; Eleazu, K. C.

2013-01-01

108

The effects of vanadium (V) absorbed by Coprinus comatus on bone in streptozotocin-induced diabetic rats.  

PubMed

The purpose of this study was to evaluate the effects of vanadium absorbed by Coprinus comatus (VACC) treatment on bone in streptozotocin (STZ)-induced diabetic rats. Forty-five Wistar female rats used were divided into three groups: (1) normal rats (control), (2) diabetic rats, and (3) diabetic rats treated with VACC. Normal and diabetic rats were given physiological saline, and VACC-treated rats were administered VACC intragastrically at doses of 0.18 mg vanadium/kg body weight once daily. Treatments were performed over a 12-week period. At sacrifice, one tibia and one femur were removed, subjected to micro computed tomography (micro-CT) for determination of trabecular bone structure, and then processed for histomorphometry to assess bone turnover. Another femoral was used for mechanical testing. In addition, bone samples were collected to evaluate the content of mineral substances in bones. Treatment with VACC increased trabecular bone volume fraction in diabetic rats. Vanadium-treated animals had significant increases in ultimate load, trabecular thickness, and osteoblast surface. However, vanadium treatment did not seem to affect bone stiffness, bone energy absorption, trabecular separation, and osteoclast number. P levels in the femurs of diabetic rats treated with VACC were significantly higher than those of diabetic animals. Ca levels in diabetic and diabetic rats treated with vanadium showed no obvious changes. In conclusion, our results provide an important proof of concept that VACC may represent a powerful approach to treating or reversing diabetic osteopathy in humans. PMID:20734239

Pei, Yi; Fu, Qin

2011-09-01

109

GABA tea prevents cardiac fibrosis by attenuating TNF-alpha and Fas/FasL-mediated apoptosis in streptozotocin-induced diabetic rats.  

PubMed

GABA tea is a tea product that contains a high level of gamma-aminobutyric acid (GABA). This study investigated the effects of GABA tea on the heart in a diabetic rat model. Male Wistar rats were injected with 55mg/kg streptozotocin (STZ) to induce diabetes for 2weeks and then orally given dosages of 4.55 and 45.5mg/kg/day GABA tea extract for 6weeks. The results revealed that fasting blood glucose levels returned to normal levels in GABA tea-treated diabetic rats, but not in the untreated diabetic rats. Additionally, GABA tea effectively inhibited cardiac fibrosis induced by STZ. Further experiments showed that the STZ-induced protein levels of tumor necrosis factor-alpha (TNF-alpha), Fas, activated caspase-8 and caspase-3 were significantly inhibited by the GABA tea treatment. Therefore, our data suggest that the inhibiting effect of GABA tea on STZ-induced cardiac fibrosis in diabetic rats may be mediated by reducing blood glucose and further attenuating TNF-alpha expression and/or Fas/Fas ligand (FasL)-mediated apoptosis. These findings will provide implications for the potential anti-diabetic properties of GABA tea. PMID:24374093

Cherng, Shur-Hueih; Huang, Chih-Yang; Kuo, Wei-Wen; Lai, Shue-Er; Tseng, Chien-Yu; Lin, Yueh-Min; Tsai, Fuu-Jen; Wang, Hsueh-Fang

2014-03-01

110

Temporal dystrophic remodeling within the intrinsic cardiac nervous system of the streptozotocin-induced diabetic rat model  

PubMed Central

Introduction The pathogenesis of heart failure (HF) in diabetic individuals, called “diabetic cardiomyopathy”, is only partially understood. Alterations in the cardiac autonomic nervous system due to oxidative stress have been implicated. The intrinsic cardiac nervous system (ICNS) is an important regulatory pathway of cardiac autonomic function, however, little is known about the alterations that occur in the ICNS in diabetes. We sought to characterize morphologic changes and the role of oxidative stress within the ICNS of diabetic hearts. Cultured ICNS neuronal cells from the hearts of 3- and 6-month old type 1 diabetic streptozotocin (STZ)-induced diabetic Sprague-Dawley rats and age-matched controls were examined. Confocal microscopy analysis for protein gene product 9.5 (PGP 9.5) and amino acid adducts of (E)-4-hydroxy-2-nonenal (4-HNE) using immunofluorescence was undertaken. Cell morphology was then analyzed in a blinded fashion for features of neuronal dystrophy and the presence of 4-HNE adducts. Results At 3-months, diabetic ICNS neuronal cells exhibited 30% more neurite swellings per area (p?=?0.01), and had a higher proportion with dystrophic appearance (88.1% vs. 50.5%; p?=?<0.0001), as compared to control neurons. At 6-months, diabetic ICNS neurons exhibited more features of dystrophy as compared to controls (74.3% vs. 62.2%; p?=?0.0448), with 50% more neurite branching (p?=?0.0015) and 50% less neurite outgrowth (p?=?<0.001). Analysis of 4-HNE adducts in ICNS neurons of 6-month diabetic rats demonstrated twice the amount of reactive oxygen species (ROS) as compared to controls (p?=?<0.001). Conclusion Neuronal dystrophy occurs in the ICNS neurons of STZ-induced diabetic rats, and accumulates temporally within the disease process. In addition, findings implicate an increase in ROS within the neuronal processes of ICNS neurons of diabetic rats suggesting an association between oxidative stress and the development of dystrophy in cardiac autonomic neurons. PMID:24894521

2014-01-01

111

Does bosentan protect diabetic brain alterations in rats? The role of endothelin-1 in the diabetic brain.  

PubMed

Diabetes mellitus (DM) is a major problem all over the world, affecting more people in recent years. Individuals with diabetes are more prone to disease than non-diabetics, especially vascular complications. The aim of this study was to examine the roles of the endothelin (ET)-1 in brain damage formed in a streptozocin (STZ)-induced diabetes model, and the effect of bosentan, which is the non-specific ET1 receptor blocker in the prevention of the diabetes-induced brain damage. To examine the effects of bosentan (50 mg/kg and 100 mg/kg) in this study, the rats were given the drug for 3 months. The rats were divided into four groups: the sham group (n = 10), the diabetic control group (n = 10), the group of diabetic rats given bosentan 50 mg/kg (n = 10) and the group of diabetic rats given bosentan 100 mg/kg (n = 10). Diabetes was induced in the rats by STZ (60 mg/kg i.p.). On day 91, all rats were killed. Brain tissues of the rats were measured by molecular, biochemical and histopathological methods. Antioxidant levels in the therapy groups were observed as quite near to the values in the healthy group. In this study, while the brain eNOS levels in the diabetic groups decreased, the ET1 and iNOS levels were found to be increased. However, in the diabetes group, hippocampus and cerebellum, pericellular oedema and a number of neuronal cytoretraction were increased in neuropiles, whereas these results were decreased in the therapy group. Based on all of these results, ET1 will not be ignored in diabetes-induced cerebral complications. PMID:25200216

Demir, Recep; Cadirci, Elif; Akpinar, Erol; Cayir, Yasemin; Atmaca, Hasan Tarik; Un, Harun; Kunak, Celalettin Semih; Yayla, Muhammed; Bayraktutan, Zafer; Demir, Ilknur

2015-03-01

112

Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats  

Microsoft Academic Search

Ocimum sanctum (OS) has been mentioned in Indian system of traditional medicine to be of value in the treatment of diabetes mellitus. We have previously shown that OS shows a dose-dependent hypoglycemic effect and prevented rise in plasma glucose in normal rats. It also showed significant antihyperglycemic effect in STZ-induced diabetes. The present study was undertaken to assess the effect

V Vats; S. P Yadav; J. K Grover

2004-01-01

113

Antiatherosclerotic Potential of Active Principle Isolated from Eugenia jambolana in Streptozotocin-Induced Diabetic Rats.  

PubMed

The aim of the present study was to investigate the antiatherosclerotic effect of active principle (FIIc) isolated from aqueous fruit pulp extract of Eugenia jambolana. Crude aqueous extract of E. jambolana was subjected to purification using chromatographic techniques which yielded purified active compound (FIIc). Purity of FIIc was tested by HPLC. Phytochemical investigation of FIIc by NMR, IR, and UV spectra showed that the purified compound is ?-hydroxy succinamic acid. The streptozotocin- (STZ-) induced diabetic rats were fed atherosclerotic (Ath) diet containing 1.5?mL olive oil containing 8?mg (3, 20,000 IU) vitamin D(2) and 40?mg cholesterol for 5 consecutive days. The STZ-induced diabetic rats receiving Ath diet were orally administered FIIc at doses of 10, 15, and 20?mg/kg, and results were compared with reference drug, that is, glibenclamide (600??g/mg) and healthy control. 30-day treatment with FIIc resulted in significant (P < .001) improvement in blood glucose, serum lipid profile, apolipoproteins (Apo A(1) and apoB(100)), and endothelial dysfunction parameters. Histomorphological studies also confirmed biochemical findings. Our results showed that FIIc has protective effect on hyperglycemia-induced atherosclerosis. PMID:21584267

Tanwar, Reenu Singh; Sharma, Suman Bala; Singh, Usha Rani; Prabhu, Krishna Madhava

2011-01-01

114

Neuroprotective effect of RYGB in Zucker fatty diabetic rats  

PubMed Central

The aim of this study is to explore the therapeutic potential of RYGB, a common used bariatric surgery, on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic rats. In animal model experiments, rats were made diabetic by STZ administration, and after 12 weeks of diabetes, two groups were studied: RYGB and sham surgery control (PF). Change in oral glucose tolerance, insulin sensitivity, and the plasma concentrations of insulin, glucagon, glucagon-like peptide-1 (GLP-1) were measured. Peripheral nerve function was determined by the current perception threshold. Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated. The results indicated that glucose tolerance and insulin sensitivity were significantly improved in the RYGB group. Fasting total GLP-1 were increased in the RYGB group. The increase seen in current perception threshold vales in RYGB group was reduced. The decreased IENFDs in sole skins of RYGB group were ameliorated by RYGB. In conclusion, the findings indicate that RYGB ameliorates the severity of DPN, which may be associated with increased GLP-1 and improved insulin sensitivity/action. PMID:25419361

Han, Xin-Sheng; Huang, Yong; Jing, Hong-Jian; Zhang, Ai-Wu; Jiang, Tao; Xu, Yu-Ming

2014-01-01

115

Antihyperlipidemic Effect of Peucedanum Pastinacifolium Extract in Streptozotocin-Induced Diabetic Rats  

PubMed Central

INTRODUCTION: Dyslipidemia is one of the most common complications of diabetes mellitus, significantly contributing to cardiovascular morbidity and mortality in diabetic patients. Peucedanum pastinacifolium Boiss. & Hausskn. is commonly used as an antihyperlipidemic vegetable in Iranian folk medicine. MATERIAL AND METHODS: In this study, we examined a hydroalcoholic extract of the aerial parts of Peucedanum pastinacifolium to determine its lipid-lowering activity in normal and streptozotocin (STZ)-induced diabetic rats. Experimental diabetes mellitus was induced by a single intraperitoneal administration of streptozotocin. Normal and streptozotocin-induced diabetic rats were separated into four groups. The groups were fed with 0, 125, 250 or 500 mg/kg body weight of Peucedanum Pastinacifolium hydroalcoholic Extract (PPE) in aqueous solution for 30 days. RESULTS: The results show that there were significant (P < 0.05) increases in total serum cholesterol, triglyceride and low-density lipoprotein cholesterol (LDL-C) and a decrease in high-density lipoprotein cholesterol (HDL-C) in streptozotocin-induced diabetic rats. Treatment of diabetic rats with PPE over a period of a month returned these levels close to control levels. CONCLUSION: These results suggest that PPE has hypolipidemic effects in streptozotocin-induced diabetic rats. PMID:20613940

Movahedian, Ahmad; Zolfaghari, Behzad; Sajjadi, S. Ebrahim; Moknatjou, Reza

2010-01-01

116

Cerebrolysin Ameloriates Cognitive Deficits in Type III Diabetic Rats  

PubMed Central

Cerebrolysin (CBL), a mixture of several active peptide fragments and neurotrophic factors including brain-derived neurotrophic factor (BDNF), is currently used in the management of cognitive alterations in patients with dementia. Since Cognitive decline as well as increased dementia are strongly associated with diabetes and previous studies addressed the protective effect of BDNF in metabolic syndrome and type 2 diabetes; hence this work aimed to evaluate the potential neuroprotective effect of CBL in modulating the complications of hyperglycaemia experimentally induced by streptozotocin (STZ) on the rat brain hippocampus. To this end, male adult Sprague Dawley rats were divided into (i) vehicle- (ii) CBL- and (iii) STZ diabetic-control as well as (iv) STZ+CBL groups. Diabetes was confirmed by hyperglycemia and elevated glycated haemoglobin (HbA1c%), which were associated by weight loss, elevated tumor necrosis factor (TNF)-? and decreased insulin growth factor (IGF)-1? in the serum. Uncontrolled hyperglycemia caused learning and memory impairments that corroborated degenerative changes, neuronal loss and expression of caspase (Casp)-3 in the hippocampal area of STZ-diabetic rats. Behavioral deficits were associated by decreased hippocampal glutamate (GLU), glycine, serotonin (5-HT) and dopamine. Moreover, diabetic rats showed an increase in hippocampal nitric oxide and thiobarbituric acid reactive substances versus decreased non-protein sulfhydryls. Though CBL did not affect STZ-induced hyperglycemia, it partly improved body weight as well as HbA1c%. Such effects were associated by enhancement in both learning and memory as well as apparent normal cellularity in CA1and CA3 areas and reduced Casp-3 expression. CBL improved serum TNF-? and IGF-1?, GLU and 5-HT as well as hampering oxidative biomarkers. In conclusion, CBL possesses neuroprotection against diabetes-associated cerebral neurodegeneration and cognitive decline via anti-inflammatory, antioxidant and antiapototic effects. PMID:23840309

Georgy, Gehan S.; Nassar, Noha N.; Mansour, Hanaa A.; Abdallah, Dalaal M.

2013-01-01

117

L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats.  

PubMed

The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o.), II: diabetic control (distilled water, 10 ml/kg, p.o.), III: L-glutamine (500 mg/kg, p.o.) and IV: L-glutamine (1000 mg/kg, p.o.). All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity. PMID:24651718

Badole, Sachin L; Jangam, Ganesh B; Chaudhari, Swapnil M; Ghule, Arvindkumar E; Zanwar, Anand A

2014-01-01

118

Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats.  

PubMed

Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats. PMID:21808536

Anand Swarup, Kolla R L; Sattar, Munavvar A; Abdullah, Nor A; Abdulla, Mohammed H; Salman, Ibrahim M; Rathore, Hassaan A; Johns, Edward J

2010-01-01

119

Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats  

PubMed Central

Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats. PMID:21808536

Anand Swarup, Kolla R. L.; Sattar, Munavvar A.; Abdullah, Nor A.; Abdulla, Mohammed H.; Salman, Ibrahim M.; Rathore, Hassaan A.; Johns, Edward J.

2010-01-01

120

Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats.  

PubMed

Oxymatrine, a quinolizidine alkaloid, has been widely used for the treatment of hepatitis. In this study, we investigated the hypoglycemic and hypolipidemic effects and new pharmacological activities of oxymatrine, in a high-fat diet and streptozotocin (STZ)-induced diabetic rats. The results demonstrated that oxymatrine could significantly decrease fasting blood glucose, glycosylated hemoglobin (GHb), food and water intake, non-esterified fatty acid (NEFA), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol levels (LDL-c), and increase serum insulin, liver and muscle glycogen, high density lipoprotein cholesterol (HDL-c), glucagon-like peptide-1 (GLP-1) and muscle glucose transporter-4 (GLUT-4) content in diabetic rats. The results of the histological examinations of the pancreas and liver show that oxymatrine protected the islet architecture and prevented disordered structure of the liver. This study displays that oxymatrine can alleviate hyperglycemia and hyperlipemia in a high-fat diet and STZ-induced diabetic rats might by improving insulin secretion and sensitivity. PMID:24680614

Guo, Changrun; Zhang, Chunfeng; Li, Lu; Wang, Zhenzhong; Xiao, Wei; Yang, Zhonglin

2014-05-15

121

Ileal apical Na+-dependent bile acid transporter ASBT is upregulated in rats with diabetes mellitus induced by low doses of streptozotocin.  

PubMed

Increased intestinal bile acid absorption and expansion of the bile acid pool has been implicated in the hypercholesterolemia associated with diabetes mellitus. However, the molecular basis of the increase in bile acid absorption in diabetes mellitus is not fully understood. The ileal apical Na(+)-dependent bile acid transporter (ASBT) is primarily responsible for active reabsorption of the majority of bile acids. Current studies were designed to investigate the modulation of ASBT function and expression in streptozotocin (STZ)-induced diabetes mellitus in rats and to examine the effect of insulin on rat ASBT promoter by insulin. Diabetes mellitus was induced in Sprague-Dawley rats by intraperitoneal injection of low doses of STZ (20 mg/kg body wt) on five consecutive days. Human insulin (10 U/day) was given to a group of diabetic rats for 3 days before euthanasia. RNA and protein were extracted from mucosa isolated from the small intestine and ASBT expression was assessed by real-time quantitative RT-PCR and Western blotting. Our data showed that ASBT mRNA and protein expression were significantly elevated in diabetic rats. Insulin treatment of diabetic rats reversed the increase in ASBT protein expression to control levels. Consistently, ileal Na(+)-dependent [(3)H]taurocholic uptake in isolated intestinal epithelial cells was significantly increased in diabetic rats. In vitro studies utilizing intestinal epithelial Caco-2 cells demonstrated that ASBT expression and promoter activity were significantly decreased by insulin. These studies demonstrated that insulin directly influences ASBT expression and promoter activity and that ASBT function and expression are increased in rats with STZ-induced diabetes mellitus. The increase in ASBT expression may contribute to disturbances in cholesterol homeostasis associated with diabetes mellitus. PMID:20651004

Annaba, Fadi; Ma, Ke; Kumar, Pradeep; Dudeja, Amish K; Kineman, Rhonda D; Shneider, Benjamin L; Saksena, Seema; Gill, Ravinder K; Alrefai, Waddah A

2010-10-01

122

Dietary ?-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability.  

PubMed

Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids (PUFA), have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. Sprague-Dawley rats were used in the present study to investigate the effect of fish oil supplementation on spatial learning and memory of streptozotocin (STZ)-induced diabetic rats with the Morris Water Maze. The excitability of CA1 pyramidal neurons and the related ionic currents was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the sodium currents and increased the potassium currents, and further led to the reduction of excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. Fish oil dietary supplementation decreased the transient currents and Kv4.2 expression in the hippocampus and partially improved learning performance of diabetic rats. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Dietary fish oil may modulate the membrane excitability and is a possible strategy for preventing the impairments of diabetes on hippocampal function. PMID:22516014

Yang, R-H; Wang, F; Hou, X-H; Cao, Z-P; Wang, B; Xu, X-N; Hu, S-J

2012-06-14

123

?-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats.  

PubMed

The study was designed to evaluate the antihyperglycemic effects of ?-caryophyllene (BCP), a natural sesquiterpene from spices on streptozotocin (STZ) induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (40 mg/kg b.w.) in adult male Wistar rats. Diabetic rats exhibited an increase in glucose and HbA1c with a significant fall in insulin and hemoglobin levels. Aberrations in carbohydrate metabolic enzymes were noticed in liver, kidney and skeletal muscle of diabetic rats. A fall in liver and skeletal muscle glycogen with alterations in glycogen synthase and phosphorylase activities was also observed. Oral administration of BCP in dose dependent manner and glibenclamide (600 ?g/kg b.w.), a standard oral hypoglycemic drug to diabetic rats for 45 days significantly decreased glucose with increased plasma insulin levels and ameliorated the altered activities of carbohydrate metabolic enzymes to near normal. The insulinotropic effect of BCP was supported by immunohistochemical studies. BCP at a dose of 200mg/kg b.w. exerted significant antidiabetic effects than other two doses (100 and 400mg/kg b.w.). We conclude that administration of BCP has beneficial effects in glucose homeostasis in diabetic rats. PMID:25457874

Basha, Rafeek Hidhayath; Sankaranarayanan, Chandrasekaran

2014-10-01

124

The antidiabetic effects of an herbal formula composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin-induced diabetic rats  

PubMed Central

A folk prescription consisting of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng has been used in the treatment of diabetes mellitus. The aim of the present investigation was to evaluate the antidiabetic effects of the herb formula extract (HFE) composed of Alnus hirsuta, Rosa davurica, Acanthopanax senticosus and Panax schinseng in the streptozotocin (STZ)-induced diabetic rats. The HFE was mixed in the food supply of the healthy and STZ-induced diabetic male Sprague-Dawley rats, and its effects on the body weight, water and food intake, hyperglycemia, hypolipidemic and islet structure were studied. The treatment of the rats with STZ for 6 weeks resulted in marasmus, polydipsia, polyphagia, hyperglycemia and hypoinsulinemia. In addition, the diabetic rats showed an apparent decrease in the insulin immunoreactivity and the number of ?-cells in the pancreas. The addition of the HFE to the rats' food supply significantly lowered the serum glucose and the serum triglycerides level and preserved the normal histological appearance of the pancreatic islets. These results indicate that the HEF have a strong antidiabetic potential along with the significant hypoglycemic and hypolipidemic effects, which may be applicable in the pharmaceutical industry. PMID:23610602

Hu, Weicheng; Yeo, Jin-Hee; Jiang, Yunyao; Heo, Seong-Il

2013-01-01

125

Berberine ameliorates renal injury by regulating G proteins-AC- cAMP signaling in diabetic rats with nephropathy.  

PubMed

Diabetic nephropathy (DN) is a progressive kidney disease that is caused by injury to glomerulus and glomerular mesangial cells (MCs) proliferation play a critical role in the pathogenesis of DN. The current studies were undertaken to investigate the protective effects and the possible molecular mechanism of berberine on streptozotocin (STZ)-induced DN rats. Male Wistar rats were randomly assigned to normal control and DN groups of comparable age. Three DN groups received 50, 100 and 200 mg/kg of berberine for 8 weeks via daily intragastrically, respectively. The G proteins-adenylyl cyclase (AC)-cAMP signaling pathway and glomerular MCs proliferation were examined in STZ-induced diabetic rat kidney. Enhanced MCs proliferation and remarkable renal injury were concomitant with activation of G?i and inhibition of G?s and cAMP in DN model group. Berberine treatment for 8 weeks abolished the above changes by upregulating the expression of G?s protein and downregulating the expression of G?i protein, increasing cAMP level, and inhibiting MCs proliferation compared with model group. Taken together, for the first time, these results demonstrated that berberine can relieve renal injury in DN rats through mediating G proteins-AC-cAMP signaling pathway and inhibiting the abnormal proliferation of MCs by increasing cAMP level, suggesting that berberine could be a potential therapeutic agent for the treatment of DN. PMID:23266672

Tang, Li Qin; Wang, Feng Ling; Zhu, Ling Na; Lv, Fei; Liu, Sheng; Zhang, Shan Tang

2013-06-01

126

Effects of Syzygium aromaticum-Derived Triterpenes on Postprandial Blood Glucose in Streptozotocin-Induced Diabetic Rats Following Carbohydrate Challenge  

PubMed Central

Purpose Recent reports suggest that the hypoglycaemic effects of the triterpenes involve inhibition of glucose transport in the small intestine. Therefore, the effects of Syzygium spp-derived triterpenes oleanolic acid (OA) and maslinic acid (MA) were evaluated on carbohydrate hydrolyzing enzymes in STZ-induced diabetic rats and consequences on postprandial hyperglycaemia after carbohydrate loading. Methods We determined using Western blot analysis the expressions of ?-amylase and ?-glucosidase and glucose transporters SGLT1 and GLUT2 in the small intestine intestines isolated from diabetic rats treated with OA/MA for 5 weeks. In vitro assays were used to assess the inhibitory activities of OA and MA against ?-amylase, ?-glucosidase and sucrase. Results OA and MA ameliorated postprandial hyperglycemia in carbohydrate loaded diabetic rats as indicated by the significantly small glucose area under the curve (AUC) in treated diabetic animals compared with that in untreated diabetic rats. Western blotting showed that OA and MA treatment not only down-regulated the increase of SGLT1 and GLUT2 expressions in the small intestine of STZ-induced diabetic rats, but also inhibited small intestine ?-amylase, sucrase and ?-glucosidase activity. IC50 values of OA against ?-amylase (3.60 ± 0.18 mmol/L), ?-glucosidase (12.40 ± 0.11 mmol/L) and sucrase (11.50 ± 0.13 mmol/L) did not significantly differ from those of OA and acarbose. Conclusions The results of suggest that OA and MA may be used as potential supplements for treating postprandial hyperglycemia. Novelty of the Work The present observations indicate that besides improving glucose homeostasis in diabetes, OA and MA suppress postprandial hyperglycaemia mediated in part via inhibition of carbohydrate hydrolysis and reduction of glucose transporters in the gastrointestinal tract. Inhibition of ?-glucosidase and ?-amylase can significantly decrease the postprandial hyperglycaemia after a mixed carbohydrate diet and therefore can be an important strategy in the management of postprandial blood glucose levels in NIDDM patients. PMID:24278452

Khathi, Andile; Serumula, Metse R.; Myburg, Rene B.; Van Heerden, Fanie R.; Musabayane, Cephas T.

2013-01-01

127

Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats  

PubMed Central

During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics. PMID:25210695

Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

2014-01-01

128

A stereological study of effects of aqueous extract of Tamarindus indica seeds on pancreatic islets in streptozotocin-induced diabetic rats.  

PubMed

Tamarindus indica Linn was used as a traditional medicine for the management of diabetes mellitus in human and experimental animals. This study investigated effects of aqueous extract of Tamarindus indica seeds (AETIS) against STZ-induced damages in pancreatic islands by means of stereological methods. sixty matured normoglycemic male Wistar rats, weighing 200-250 gr, were selected and randomly divided into 6 groups (n=10). Control, STZ-induced diabetic; by intraperitoneal injection of 55 mg/Kg streptozotocin, Treated control group (TC); received AETIS at a dose of 200mg/kg/day, and AETIS treated diabetic groups (TD1-3); received respectively AETIS at the dose of 50, 100,and 200 mg/kg/day by gavage from one week after induction of diabetes by STZ. After 8 weeks of experiment, stereological estimation of volume density and total volume of islets and beta cells, volume weighted mean islets volume, mass of beta cells, islets, and pancreas and total number of islets were done. Volume density and total volume of islets, volume weighted mean islets volume, volume density islets/pancreas, volume density beta cells/islet, mass of islets and pancreas of treated diabetic groups (TD1-3) were significantly higher than untreated diabetic group (P<0.001), and in TD3 group these values were comparable to controls. Although total volume and mass of beta cells in TD1-3 were significantly higher than D group but they were significantly lower than control group (P>0.05). Total number of islets, pancreas wet weight and volume did not show any significant changes between control and experimental groups (P>0.05). Results suggested that AETIS partially restores pancreatic beta cells and repairs STZ-induced damages in rats. PMID:20884458

Hamidreza, Hamidreza; Heidari, Zahra; Shahraki, Mohammadreza; Moudi, Bita

2010-10-01

129

Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats.  

PubMed

The aim of the present study is to investigate the antidiabetic properties of oligosaccharides of Ophiopogonis japonicus (OOJ) in experimental type 2 diabetic rats. OOJ was administered orally in doses of 225 and 450 mg/kg body weight to high-fat diet and low-dose streptozotocin (STZ)-induced type 2 diabetic rats for 3 weeks. The results showed that OOJ treatment could increase body weight, decrease organ related weights of liver and kidney, reduce fasting blood glucose level, and improve oral glucose tolerance in diabetic rats. Moreover, increased glycogen content in liver and skeletal muscle, reduced urinary protein excretion, higher hepatic GCK enzyme activity, lower hepatic PEPCK enzyme activity, enhanced GLP-1 level, decreased glucagon level and alleviated histopathological changes of pancreas occurred in OOJ-treated diabetic rats by comparison with untreated diabetic rats. This study demonstrates, for the first time to our knowledge, that OOJ exerts remarkable antidiabetic effect in experimental type 2 diabetes mellitus, thus justifying its traditional usage. PMID:22800731

Li, Pei-Bo; Lin, Wan-Ling; Wang, Yong-Gang; Peng, Wei; Cai, Xue-Ying; Su, Wei-Wei

2012-12-01

130

Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.  

PubMed

Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes. PMID:24078031

Srinivasan, Subramani; Sathish, Gajendren; Jayanthi, Mahadevan; Muthukumaran, Jayachandran; Muruganathan, Udaiyar; Ramachandran, Vinayagam

2014-01-01

131

Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment  

PubMed Central

OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

2010-01-01

132

Antihyperglycaemic and antioxidant effect of hyponidd, an ayurvedic herbomineral formulation in streptozotocin-induced diabetic rats.  

PubMed

Hyponidd is a herbomineral formulation composed of the extracts of ten medicinal plants ( Momordica charantia, Melia azadirachta, Pterocarpus marsupium, Tinospora cordifolia , Gymnema sylvestre, Enicostemma littorale, Emblica officinalis, Eugenia jambolana, Cassia auriculata and Curcuma longa). We have investigated hyponidd for its possible antihyperglycaemic and antioxidant effect in diabetic rats. Rats were rendered diabetic by streptozotocin (STZ) (45 mg kg(-1) body weight). Oral administration of hyponidd (100 mg kg(-1) and 200 mg kg(-1)) for 45 days resulted in significant lowered levels of blood glucose and significant increased levels of hepatic glycogen and total haemoglobin. An oral glucose tolerance test was also performed in experimental diabetic rats in which there was a significant improvement in blood glucose tolerance in the rats treated with hyponidd. Hyponidd administration also decreased levels of glycosylated haemoglobin, plasma thiobarbituric acid reactive substances, hydroperoxides, ceruloplasmin and alpha-tocopherol in diabetic rats. Plasma reduced glutathione and vitamin C were significantly elevated by oral administration of hyponidd. The effect of hyponidd at a dose of 200 mg kg(-1) was more effective than glibenclamide (600 microg kg(-1)) in restoring the values to near normal. The results showed that hyponidd exhibits antihyperglycaemic and antioxidant activity in STZ-induced diabetic rats. PMID:15525451

Babu, P Subash; Stanely Mainzen Prince, P

2004-11-01

133

Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-?B-mediated inflammatory pathways.  

PubMed

Previous research has demonstrated that diabetes induces learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. The present study investigated the effects of fish oil supplementation on the lipid peroxidation, inflammation and neuron apoptosis in the hippocampus of streptozotocin (STZ)-induced diabetes rats. The effects of diabetes and fish oil treatment on the spatial learning and memory were also evaluated using the Morris Water Maze. STZ-induced diabetes impaired spatial learning and memory of rats, which was associated with the inflammation, oxidative stress and apoptosis of hippocampal neurons. Fish oil administration ameliorated cognitive deficit, reduced oxidative stress and tumor necrosis factor ? (TNF-?), protected the hippocampal neurons by increasing Protein Kinase B (AKT) phosphorylation and decreasing caspase-9 expression. These results suggested that the principle mechanisms involved in the antidiabetic and neuroprotective effect of fish oil were its antioxidant, anti-inflammatory and anti-apoptosis potential, supporting a potential role for fish oil as an adjuvant therapy for the prevention and treatment of diabetic complications. PMID:24252320

Jia, D; Heng, L-J; Yang, R-H; Gao, G-D

2014-01-31

134

Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas.  

PubMed

The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress. PMID:17513143

Machha, Ajay; Achike, Francis I; Mustafa, Ali Mohd; Mustafa, Mohd Rais

2007-06-01

135

Achillea Millefolium L. Hydro- Alcoholic Extract Protects Pancreatic Cells by Down Regulating IL- 1? and iNOS Gene Expression in Diabetic Rats  

PubMed Central

Interleukin-1? (IL-1?) has a role in ?- cell destruction in autoimmune diabetes by stimulating the expression of inducible nitric oxide synthase (iNOS) that generates the free radical nitric oxide. We aimed to investigate the effect of Achillea millefolium L, as a traditional hypoglycemic agent, on IL-1? and iNOS gene expression of pancreatic tissue in the STZ- induced diabetic rats. Forty adult male Wistar rats were randomly divided into four groups: 1. diabetic control; 2. diabetic rats treated with Achillea millefolium L. extract; 3. normal rats received only extract and 4. negative control (n= 10 each). Diabetes was induced by single i.p. injection of 45 mg/ kg streptozotocin (STZ). Rats in groups 2 and 3 were treated with i.p. injection of Achillea millefolium L. extract (100 mg/ kg/ day) for 14 days. Body weight, serum glucose and insulin levels were assayed at baseline and on days 3, 7, 10 and 14 of the experiment. Finally, the quantity of pancreatic IL-1? and iNOS mRNA was determined by real- time PCR. The mRNA expression level of IL-1? and iNOS genes, was significantly (p<0.001) increased in diabetic rats of group 1. Treatment with Achillea millefolium L. caused a significant (p<0.01) reduction in both IL-1? and iNOS genes expression. Moreover, rats in group 2 had higher insulin level associated with lower glucose level and higher body weight compared to control diabetic group. It seems that beneficial effect of Achillea millefolium L. on STZ- induced diabetes is at least partly due to amelioration of IL-1? and iNOS gene over expression which can have a ?-cell protective effect. PMID:25635252

Zolghadri, Yalda; Fazeli, Mehdi; Kooshki, Marzieh; Shomali, Tahoora; Karimaghayee, Negar; Dehghani, Maryam

2014-01-01

136

Berberine Ameliorates Cold and Mechanical Allodynia in a Rat Model of Diabetic Neuropathy  

PubMed Central

Abstract This study evaluated the antiallodynic properties of berberine on cold and mechanical allodynia after streptozotocin (STZ)-induced diabetes using a rat model. Diabetic neuropathy was induced in rats by intraperitoneal injection of STZ. To measure cold and mechanical allodynia, a 4°C plate and von Frey filament were used, respectively. Cold and mechanical allodynia induced by diabetes were significantly decreased by single and repeated intraperitoneal treatment of amitriptyline at 10?mg/kg, and berberine at 10 and 20?mg/kg. The hepatic malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase activities were significantly increased in diabetic rats as compared with those in intact rats; however, in amitriptyline- and berberine-treated rats, they were significantly decreased as compared to the STZ control. The overall effects of berberine 20?mg/kg on cold and mechanical allodynia were quite similar to those of amitriptyline 10?mg/kg, and berberine exhibited similar antioxidant effects as the same dosage of amitriptyline. In conclusion, berberine (10 and 20?mg/kg) was observed to have antiallodynic effects against diabetes, which are presumed to be associated with antioxidative effects. It can be considered that the anti-inflammatory or antidepressant capacity of berberine could contribute to the antiallonynic effects shown in this study. PMID:23734996

Kim, Si Oh

2013-01-01

137

Berberine ameliorates cold and mechanical allodynia in a rat model of diabetic neuropathy.  

PubMed

This study evaluated the antiallodynic properties of berberine on cold and mechanical allodynia after streptozotocin (STZ)-induced diabetes using a rat model. Diabetic neuropathy was induced in rats by intraperitoneal injection of STZ. To measure cold and mechanical allodynia, a 4°C plate and von Frey filament were used, respectively. Cold and mechanical allodynia induced by diabetes were significantly decreased by single and repeated intraperitoneal treatment of amitriptyline at 10?mg/kg, and berberine at 10 and 20?mg/kg. The hepatic malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase activities were significantly increased in diabetic rats as compared with those in intact rats; however, in amitriptyline- and berberine-treated rats, they were significantly decreased as compared to the STZ control. The overall effects of berberine 20?mg/kg on cold and mechanical allodynia were quite similar to those of amitriptyline 10?mg/kg, and berberine exhibited similar antioxidant effects as the same dosage of amitriptyline. In conclusion, berberine (10 and 20?mg/kg) was observed to have antiallodynic effects against diabetes, which are presumed to be associated with antioxidative effects. It can be considered that the anti-inflammatory or antidepressant capacity of berberine could contribute to the antiallonynic effects shown in this study. PMID:23734996

Kim, Si Oh; Kim, Hyun Jee

2013-06-01

138

Berberine alleviates ischemic arrhythmias via recovering depressed I(to) and I(Ca) currents in diabetic rats.  

PubMed

The present study was designed to elucidate the potential mechanism underlying that berberine suppressed ischemic arrhythmias in a rat model of diabetes mellitus (DM). Streptozotocin (STZ)-induced diabetic rats were subjected to ischemia by the occlusion of left anterior descending (LAD) coronary artery. Berberine was orally administered for 7 days before ischemic injury in diabetic rats. Whole-cell patch-clamp was performed to measure the transient outward K? current (I(to)) and L-type Ca˛? current (I(Ca)). Results showed that oral administration of berberine (100 mg/kg) attenuated ischemia-induced arrhythmias in diabetic rats. Berberine significantly shortened the prolonged QTc interval from 214 ± 6ms to 189 ± 5ms in ischemic diabetic rats, and also restored the diminished I(to) and I(Ca) current densities in the same animal model rats. In conclusion, the ability of berberine to protect diabetic rats against cardiac arrhythmias makes it possible to be a prospective therapeutic agent in clinical management of cardiac disease secondary to diabetes. PMID:22188769

Wang, Li-Hong; Li, Xue-Lian; Li, Qiang; Fu, Ying; Yu, Hai-Jing; Sun, Yu-Qian; Zhang, Li; Shan, Hong-Li

2012-02-15

139

Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats.  

PubMed

Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P?diabetes-related morphological deterioration of hepatocytes, DNA damage (P?diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury. PMID:24604251

Grigorov, Ilijana; Bogojevi?, Desanka; Jovanovi?, Sofija; Petrovi?, Anja; Ivanovi?-Mati?, Svetlana; Zolotarevski, Lidija; Poznanovi?, Goran; Martinovi?, Vesna

2014-06-01

140

Mechanism of testicular protection of carvedilol in streptozotocin-induced diabetic rats  

PubMed Central

Aims: Male sub-fertility and infertility are major complications of diabetes mellitus. The non-selective ?-blocker carvedilol has been reported to have favorable effects on some of the diabetic complications based on its antioxidant and anti-apoptotic effects. This study aims to evaluate the possible testicular protective effect of carvedilol in streptozotocin (STZ)-induced diabetic rat model and its possible mechanisms. Materials and Methods: Diabetes was induced by a single i.p. dose of 65 mg/kg of STZ. In parallel groups of diabetic rats, carvedilol in low and high doses (1 and 10 mg/kg/day orally) were administered for 4 weeks. Oxidative stress markers as reduced glutathione (GSH) and the product of lipid peroxidation; malondialdehyde (MDA) were evaluated in testicular homogenate. The level of expression of the apoptotic marker; caspase 3, was assessed using western blot, followed by densitometric analysis. Results: Induction of diabetes caused distortion of histological normal testicular structure, with decrease (P < 0.05) in GSH and increase (P < 0.05) in MDA, as well as induction of caspase 3 expression. Carvedilol in low or high doses reverted diabetes-induced histological damage, restored antioxidant activity and ameliorated caspase 3 expression. Conclusion: Carvedilol confers testicular protection against diabetes-induced damage through antioxidant and anti-apoptotic mechanisms. PMID:24741186

Ramzy, Maggie M.; El-Sheikh, Azza A. K.; Kamel, Maha Y.; Abdelwahab, Soha A.; Morsy, Mohamed A.

2014-01-01

141

A chemically modified tetracycline inhibits streptozotocin-induced diabetic depression of skin collagen synthesis and steady-state type I procollagen mRNA  

Microsoft Academic Search

Wasting of connective tissues including skin, bone, and cartilage have been closely associated with elevated matrix metalloproteinase (MMP) activity and depressed collagen content in the streptozotocin (STZ)-induced diabetic rat, while tetracyclines have been reported to normalize total body weight, skin hydroxyproline and collagen content in this model, in part through inhibition of MMPs. In the present study, we report the

Ronald G Craig; Zhao Yu; L Xu; R Barr; Nangavaram Ramamurthy; Jocelyn Boland; Michael Schneir; Lorne M Golub

1998-01-01

142

Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats  

PubMed Central

Objectives: The present investigation was aimed to study the antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus peel and seed powder (AEPP and AESP) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: Acute toxicity of AEPP and AESP was studied in rats at 2000 mg/kg dose and diabetes was induced in rats by administration of STZ (60 mg/kg, i.p.). After 14 days of blood glucose stabilization, diabetic rats received AEPP, AESP, and glibenclamide up to 28 days. The blood samples were collected on day 28 to estimate the hemoglobin (Hb), glycosylated hemoglobin (HbA1c), serum glutamate-pyruvate transferase (SGPT), total protein (TP), and lipid profile levels. Results: In acute toxicity study, AESP and AESP did not show any toxicity or death up to a dose of 2000 mg/kg. Therefore, to assess the antidiabetic action, one by fifth and one by tenth dose of both powders were selected. Administration of AEPP and AESP at 100 and 200 mg/kg dose in diabetic rats showed significant (P < 0.001) reduction in blood glucose level and increase in body weight than diabetic control rats. A significant (P < 0.001) increased level of Hb, TP, and decreased level of HbA1c, SGPT were observed after the treatment of both doses of AEPP and AESP. Also, elevated lipid profile levels returned to near normal in diabetic rats after the administration of AEPP and AESP, 100 and 200 mg/kg dose, compared to diabetic control rats. Conclusion: The present study results, first time, support the antidiabetic and antihyperlipidemic potential of A. esculentus peel and seed powder in diabetic rats. PMID:21966160

Sabitha, V.; Ramachandran, S.; Naveen, K. R.; Panneerselvam, K.

2011-01-01

143

Puerarin attenuated early diabetic kidney injury through down-regulation of matrix metalloproteinase 9 in streptozotocin-induced diabetic rats.  

PubMed

Radix puerariae, a traditional Chinese herbal medication, has been used successfully to treat patients with early stage of diabetic nephropathy. However, the underlined mechanism of this renal protective effect has not been determined. In the current study, we investigated the effects and the mechanism of puerarin in Streptozotocin (STZ)-induced diabetic rats. We treated STZ-rats with either puerarin or losartan, an angiotensin II receptor blocker, as compared to those treated with vehicle. We found that both puerarin and losartan attenuated kidney hypertrophy, mesangial expansion, proteinuria, and podocyte foot process effacement in STZ rats. In addition, both puerarin and losartan increased expression of podocyte slit diaphragm proteins such as nephrin and podocin. Interestingly, we found that puerarin treatment induced a more pronounced suppression of oxidative stress production and S-nitrosylation of proteins in the diabetic kidneys as compared to losartan treatment. Furthermore, we found that matrix metalloproteinase-9 (MMP-9), which is known to be activated by oxidative stress and S-nitrosylation of proteins, was also suppressed more extensively by puerarin than losartan. In conclusion, these data provide for the first time the potential mechanism to support the use of puerarin in the treatment of early diabetic nephropathy. PMID:24454919

Zhong, Yifei; Zhang, Xianwen; Cai, Xianfan; Wang, Ke; Chen, Yiping; Deng, Yueyi

2014-01-01

144

Effect of Helicteres isora bark extract on blood glucose and hepatic enzymes in experimental diabetes.  

PubMed

The effect of oral administration of an aqueous extract of the bark of Helicteres isora was investigated on blood glucose and plasma antioxidant status in streptozotocin (STZ) induced diabetic rats. The study was also undertaken to evaluate the role of hepatic enzymes in experimental diabetes. Oral administration of a bark extract of Helicteres isora (100, 200 mg/kg) in STZ diabetic rats caused a significant increase in body weight, hepatic hexokinase activity and significant decrease in hepatic glucose-6-phosphatase, serum acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Based on these findings, we suggest that Helicteres isora possesses hypoglycemic and hepatoprotective activity and is able to ameliorate biochemical damage in STZ induced diabetic rats. PMID:16649554

Kumar, G; Murugesan, A G; Rajasekara Pandian, M

2006-04-01

145

Magnetic resonance imaging (MRI) and pathophysiology of the rat kidney in streptozotocin-induced diabetes  

SciTech Connect

Proton magnetic resonance imaging was performed on rats before induction of diabetes with streptozotocin (STZ) and at 2 and 12 days postinduction. Images revealed an increase in maximal longitudinal and axial dimensions of the kidneys at 2 days and a further increase at 12 days. Similarly, an increase in the size of the remaining kidney was seen in a rat which underwent uninephrectomy as a positive control. Two major differences were observed between the kidney undergoing compensatory hypertrophy and those developing diabetic nephropathy: (i) Expansion of the renal vasculature was seen only in images of the diabetic rat; (ii) A loss in conspicuity of the normal corticomedullary junction was seen in the T2-weighted images of the diabetic rat but not in the uninephrectomized rat. Histologic examination revealed that the medulla increased to a size greater than the cortex during diabetic nephropathy whereas the medullary volume was less than that of the cortex during compensatory hypertrophy. In vitro T1 relaxation times in cortex, outer medulla and inner medulla of kidneys from control rats were measured and compared with the same respective regions in diabetic rats. When these values were correlated with tissue water content, a linear increase in relaxation rate versus percent water content from cortex to inner medulla was found in the control kidneys, but this correlation was absent in diabetic nephropathy. These studies demonstrate that MRI is an effective noninvasive tool for studying the course of renal hypertrophy and hydration changes in the development of renal disease in STZ-induced diabetes in the rat.

Lohr, J.; Mazurchuk, R.J.; Acara, M.A.; Nickerson, P.A.; Fiel, R.J. (State Univ. of New York, Buffalo (USA))

1991-01-01

146

Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats.  

PubMed

Crocin is the only water soluble carotenoid in nature, and it has a known powerful antioxidant activity. The aim of this work was to investigate the hypoglycemic and hypolipidemic effects of crocin in streptozotocin (STZ)-induced type 2 diabetic rats. Neonatal male Wistar rats (2-5?days old) were randomly divided into five groups. Three groups were intraperitoneally injected with STZ (90?mg/kg body weight). Among them, two groups were treated with intraperitoneal injection of crocin (50 or 100?mg/kg), and the third group was treated with vehicle only. Two control groups were also considered, and one of them was treated with crocin. After 5?months, their blood and urine samples were collected, and the animals were sacrified. The results indicate a significant lower body weight (P?diabetic rats compared with the normal group. An administration of both doses of crocin significantly decreased the levels of serum glucose, advanced glycation end products, triglyceride, total cholesterol, and low-density lipoprotein and increased the high-density lipoprotein in the diabetic rats. The treatments were also effective in decreasing HbA1c and microalbuminuria, as well as homeostatic model assessment for insulin resistance as a measure of insulin resistance in the diabetic rats. PMID:22948795

Shirali, Saeed; Zahra Bathaie, S; Nakhjavani, Manouchehr

2013-07-01

147

Bixin and Norbixin Have Opposite Effects on Glycemia, Lipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats  

PubMed Central

The present study investigated the effects of oral administration of annatto carotenoids (bixin (BIX) and norbixin (NBIX)) on glucose levels, lipid profiles, and oxidative stress parameters in streptozotocin (STZ)-induced diabetic rats. Animals were treated for 30 days in the following groups: nondiabetic control, diabetic vehicle, diabetic 10?mg/kg BIX, diabetic 100?mg/kg BIX, diabetic 10?mg/kg NBIX, diabetic 100?mg/kg NBIX, diabetic metformin, and diabetic insulin. Blood glucose, LDL cholesterol, and triglyceride levels were reduced in the diabetic rats treated with BIX. BIX treatment prevented protein oxidation and nitric oxide production and restored superoxide dismutase activity. NBIX treatment did not change most parameters assessed, and at the highest dose, it increased LDL cholesterol and triglycerides levels and showed prooxidant action (increased protein oxidation and nitric oxide levels). These findings suggested that BIX could have an antihyperglycemic effect, improve lipid profiles, and protect against damage induced by oxidative stress in the diabetic state. Because NBIX is a water-soluble analog of BIX, we propose that lipophilicity is crucial for the protective effect of annatto carotenoids against streptozotocin-induced diabetes. PMID:24624139

Zanchi, Mariane Magalhăes; Bochi, Guilherme Vargas; Somacal, Sabrina

2014-01-01

148

Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats.  

PubMed

Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas. PMID:20398890

Erejuwa, O O; Sulaiman, S A; Wahab, M S; Sirajudeen, K N S; Salleh, M S Md; Gurtu, S

2010-09-01

149

Kinin, a mediator of diabetes-induced glomerular hyperfiltration.  

PubMed

Renal kallikrein is increased in diabetic patients and streptozotocin (STZ)-induced diabetic rats with hyperfiltration. Chronic inhibition of renal kallikrein reduces glomerular filtration rate (GFR) and renal plasma flow (RPF) in hyperfiltering STZ-induced diabetic rats. To investigate whether these actions of kallikrein and its inhibition are kinin-mediated, we used a B2-kinin receptor antagonist (BKA). In STZ-induced diabetic rats with hyperfiltration, renal kallikrein excretion rate was significantly increased (P < or = 0.01), and kinin excretion rate was increased 57%, as compared with control rats. Left kidney GFR and RPF were measured before and during a 40-min infusion of BKA (0.5 micrograms.kg-1.min-1) or vehicle. Infusion of the kinin receptor antagonist reduced the GFR and RPF significantly. GFR was reduced by 18%, from an average baseline value of 2.07 +/- 0.11 to 1.70 +/- 0.06 ml/min, P < or = 0.001 (means +/- SE). RPF was reduced by 25%, from 6.74 +/- 0.38 to 5.06 +/- 0.17 ml/min, P < or = 0.001. Total renal vascular resistance was significantly increased during BKA infusion, P < or = 0.001. Vehicle infusion for the same period had no significant effect on GFR, RPF, or renal vascular resistance. These findings further support the hypothesis that increased renal production of kinins contributes to the renal vasodilation of diabetes. PMID:7859934

Jaffa, A A; Rust, P F; Mayfield, R K

1995-02-01

150

Evaluation of Antidiabetic Activity of Hydroalcoholic Extract of Cestrum nocturnum Leaves in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Objective. To investigate antidiabetic activity of hydroalcoholic extract of Cestrum nocturnum leaves in Wistar rats. Method. Cestrum nocturnum leaves extract in hydroalcoholic solution were prepared by Soxhletation method and stored in refrigerator at 4°C for two days before use. Wistar rats were made diabetic by a single dose of streptozotocin (150?mg/kg i.p.). Hydroalcoholic leaves extract of Cestrum nocturnum was screened for antidiabetic activity and given to the STZ-induced diabetic rats at a concentration of 200?mg/kg and 400?mg/kg of body weight in different groups of 6 diabetic rats each orally once a day for 15 days. Metformin is also given to another group to support the result at a dose of 10?mg/kg of body weight orally once a day for 15 days. Blood glucose levels and body weights of rats were measured on 0, 5, 7, and 15th days. Results. Oral administration of the extracts for 15 days caused a significant (P < 0.01) reduction in blood glucose levels in diabetic rats. The body weight of diabetic animals was also improved after daily administration of extracts. The extract also improved other altered biochemical parameters associated with diabetes. Also the changes in food intake, water intake, and weight of internal organs were also restored to normal by the prolonged effect of extract treatment. PMID:24151502

Kamboj, Anil; Kumar, Sunil; Kumar, Vipin

2013-01-01

151

Protective Nature of Mangiferin on Oxidative Stress and Antioxidant Status in Tissues of Streptozotocin-Induced Diabetic Rats  

PubMed Central

Oxidative stress plays an important role in the progression of diabetes complications. The aim of the present study was to investigate the beneficial effect of oral administration of mangiferin in streptozotocin (STZ)-induced diabetic rats by measuring the oxidative indicators in liver and kidney as well as the ameliorative properties. Administration of mangiferin to diabetic rats significantly decreased blood glucose and increased plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and level of reduced glutathione (GSH) were significantly (P < 0.05) decreased while increases in the levels of lipidperoxidation (LPO) markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with mangiferin (40?mg/kg?b.wt/day) for a period of 30 days showed significant ameliorative effects on all the biochemical and oxidative parameters studied. Diabetic rats treated with mangiferin restored almost normal architecture of liver and kidney tissues, which was confirmed by histopathological examination. These results indicated that mangiferin has potential ameliorative effects in addition to its antidiabetic effect in experimentally induced diabetic rats. PMID:24167738

Sellamuthu, Periyar Selvam; Arulselvan, Palanisamy; Kamalraj, Subban; Fakurazi, Sharida; Kandasamy, Murugesan

2013-01-01

152

Effects of dietary fish oil on learning function and apoptosis of hippocampal pyramidal neurons in streptozotocin-diabetic rats.  

PubMed

Previous research has demonstrated that diabetes induces learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. The present study investigated the effects of fish oil supplementation on the neuron apoptosis in the hippocampus of streptozotocin (STZ)-induced diabetes rats. The effects of diabetes and fish oil treatment on the spatial learning and memory were also evaluated using the Morris Water Maze. Diabetes impaired spatial learning and memory of rats. Diabetes increased the expression of Bax and caspase-3, which led the apoptosis of the CA1 pyramidal neurons, and further contributed to the deficits in learning and memory processing. Fish oil dietary supplementation in diabetic rats conducts neuron-protective function through an anti-apoptotic pathway and significantly improves the ability of learning and memory. These results partially explain the mechanism of the effect of diabetes and fish oil treatment on learning and memory, supporting a potential role for fish oil as an adjuvant therapy for the prevention and treatment of diabetic complications. PMID:22542021

Zhao, Chang-Hai; Liu, Han-Qiang; Cao, Rui; Ji, Ai-Ling; Zhang, Lei; Wang, Feng; Yang, Rui-Hua

2012-05-31

153

Streptozotocin Diabetes Attenuates the Effects of Nondepolarizing Neuromuscular Relaxants on Rat Muscles  

PubMed Central

The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs. PMID:25598659

Huang, Lina; Chen, Dan

2014-01-01

154

Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats.  

PubMed

Reactive oxygen species mediated oxidative stress play an important role on the injury of tissue damage and increased attention has been focused on the role of free radicals in diabetes mellitus (DM). In the present study firstly superoxide dismutase (SOD) enzyme was chemically modified with two different polymer and physicochemical properties of these conjugates clearly analyzed. Then, the stability of carboxymethylcellulose-SOD (CMC-SOD) and poly methyl vinyl ether-co-maleic anhydride-SOD (PMVE/MA-SOD) conjugates was investigated against temperature and externally added H2O2. Moreover, we investigated the effect of chemically modified SOD enzyme on lipid peroxidation and antioxidant status in streptozotocin (STZ)-induced diabetic rats. PMVE/MA-SOD conjugate treatment significantly reduced MDA level compared with the control groups, native and CMC-SOD conjugate treated groups in brain, kidney and liver tissue. GSH and SOD enzyme activity in diabetic groups was significantly increased by treatment of CMC-SOD and PMVE/MA-SOD conjugates. The protective effects on degenerative changes in diabetic rats were also further confirmed by histopathological examination. This study provides the preventative activity of SOD-polymer conjugates against complication of oxidative stress in experimentally induced diabetic rats. These results suggest that chemically modified SOD is effective on the oxidative stress-associated disease and offer a therapeutic advantage in clinical use. PMID:25124383

Mansuro?lu, Banu; Derman, Serap; Yaba, Aylin; K?z?lbey, Kadriye

2015-01-01

155

The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats.  

PubMed

The antidiabetic activity of two low doses of Moringa seed powder (50 and 100?mg/kg body weight, in the diet) on streptozotocin (STZ) induced diabetes male rats was investigated. Forty rats were divided into four groups. The diabetic positive control (STZ treated) group showed increased lipid peroxide, increased IL-6, and decreased antioxidant enzyme in the serum and kidney tissue homogenate compared with that of the negative control group. Immunoglobulins (IgA, IgG), fasting blood sugar, and glycosylated hemoglobin (HbA1c) were also increased as a result of diabetes in G2 rats. Moreover albumin was decreased, and liver enzymes and ?-amylase were not affected. In addition, the renal functions and potassium and sodium levels in G2 were increased as a sign of diabetic nephropathy. Urine analysis showed also glucosuria and increased potassium, sodium, creatinine, uric acid, and albumin levels. Kidney and pancreas tissues showed also pathological alteration compared to the negative control group. Treating the diabetic rats with 50 or 100?mg Moringa seeds powder/kg body weight in G3 and G4, respectively, ameliorated the levels of all these parameters approaching the negative control values and restored the normal histology of both kidney and pancreas compared with that of the diabetic positive control group. PMID:25629046

Al-Malki, Abdulrahman L; El Rabey, Haddad A

2015-01-01

156

The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats  

PubMed Central

The antidiabetic activity of two low doses of Moringa seed powder (50 and 100?mg/kg body weight, in the diet) on streptozotocin (STZ) induced diabetes male rats was investigated. Forty rats were divided into four groups. The diabetic positive control (STZ treated) group showed increased lipid peroxide, increased IL-6, and decreased antioxidant enzyme in the serum and kidney tissue homogenate compared with that of the negative control group. Immunoglobulins (IgA, IgG), fasting blood sugar, and glycosylated hemoglobin (HbA1c) were also increased as a result of diabetes in G2 rats. Moreover albumin was decreased, and liver enzymes and ?-amylase were not affected. In addition, the renal functions and potassium and sodium levels in G2 were increased as a sign of diabetic nephropathy. Urine analysis showed also glucosuria and increased potassium, sodium, creatinine, uric acid, and albumin levels. Kidney and pancreas tissues showed also pathological alteration compared to the negative control group. Treating the diabetic rats with 50 or 100?mg Moringa seeds powder/kg body weight in G3 and G4, respectively, ameliorated the levels of all these parameters approaching the negative control values and restored the normal histology of both kidney and pancreas compared with that of the diabetic positive control group.

Al-Malki, Abdulrahman L.; El Rabey, Haddad A.

2015-01-01

157

The effects of the water-extraction of Astragali Radix and Lycopi herba on the Pathway of TGF-smads-UPP in a rat model of Diabetic Nephropathy  

PubMed Central

Background: Astragali Radix and Lycopi Herba were widely used in clinical practice for treating the diabetic nephropathy (DN), but their therapeutic mechanisms were not clear. Objective: To observe the effects of the water-extraction of Astragali Radix and Lycopi Herba on the signaling pathway of TGF-Smads-UPP in streptozotocin (STZ)-induced DN. Materials and Methods: Sprague-Dawley (SD) rats were randomly divided into the normal control (NC) group and the model group. The NC group was fed with a standard diet and the other five diabetic groups received a high-fat diet. After 4 weeks, five diabetic groups were treated with STZ (30mg/kg i.p.). The NC group rats were treated with citrate buffer. Tail random blood glucose (RBG) was measured 72h later using a strip-operated blood glucose sensor and monitored every 2 weeks until drug intervention. Rats with RBG levels less than 16.7mmol/L were excluded from the diabetic groups. At the end of 4 weeks after STZ injection, 24h microalbuminuria was collected and detected. The microalbuminuria was measured by radioimmunoassay (RIA). The blood glucose was tested using a blood glucose meter. The kidney was dissected from each SD rat. Proteins and mRNA of TGF-?1, Smads and Smurf were tested by western-blot and real-time PCR analysis, and 26S proteasome activity was measured by an ELISA kit. Results: The water-extraction of Astragali Radix and Lycopi Herba significantly lowered fasting glucose and urine albumin in diabetic rats through inhibition of TGF-?1 mRNA and protein expression in the STZ-induced diabetic rats, and regulation of the Smad3, Smad7, Smurf1, Smurf2 mRNA and protein expression, as well as elevated 26S proteasome activity to play control effect in DN. Conclusion: 0.9 g/ml water-extraction of Astragali Radix and Lycopi Herba group has significant therapeutic effects on the STZ-induced diabetic rats, and this regulation depends on TGF-Smads-UPP signaling pathway. PMID:25422551

Fu, Xiao; Song, Bing; Tian, Guo-wei; Li, Jing-Lin

2014-01-01

158

Effects of Endurance Training on Lipid Metabolism and Glycosylated Hemoglobin Levels in Streptozotocin-induced Type 2 Diabetic Rats on a High-fat Diet  

PubMed Central

[Purpose] Exercise has been recognized as a simple and economical therapeutic modality that effectively benefits patients with diabetes, for instance, increasing insulin sensitivity in type 2 diabetes. However, thus far, no studies have examined the effect of endurance training exercises on type 2 diabetes. Therefore, this study examined the effect of endurance training exercise regimens on body weight, glucose and insulin levels, lipid profiles, and HbA1c levels in STZ-induced type 2 diabetic rats on a high-fat diet. HbA1c was considered an indicator of glucose control during endurance training. [Methods] A total of 36 rats were included in this study. Diabetes was induced by administering STZ to 2 groups of 12 rats each, and, the remaining 12 rats were classified as the normal group. Biochemical parameters were measured 28 days later, and included: serum total cholesterol, triglyceride, high-density lipoprotein, glycosylated hemoglobin, glucose, and insulin levels. [Results] A significant decrease in serum TC and TG levels, and an increase in HDL cholesterol level were observed in the endurance training group. Moreover, blood glucose and HbA1c levels after 28 days of exercising were significantly lower in the endurance training group than in the control group (p<0.05). [Conclusion] These results indicate that endurance training affects body weight and, lipid profiles, as well as fasting blood glucose, HbA1c, and insulin levels, in STZ-induced type 2 diabetic rats on a high- fat diet. We suggest that endurance training exercises may exhibit therapeutic, preventative, and protective effects against diabetes mellitus through improving lipid metabolism, glycemic control, and HbA1c levels. PMID:24259900

Heo, Myoung; Kim, Eunjung

2013-01-01

159

Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes.  

PubMed

It is well-documented that melatonin influences insulin secretion. The effects are mediated by specific, high-affinity, pertussis-toxin-sensitive, G protein-coupled membrane receptors (MT(1) as well MT(2)), which are present in both the pancreatic tissue and islets of rats and humans, as well as in rat insulinoma cells (INS1). Via the Gi-protein-adenylatecyclase-3',5'-cyclic adenosine monophosphate (cAMP) and, possibly, the guanylatecyclase-cGMP pathways, melatonin decreases insulin secretion, whereas, by activating the Gq-protein-phospholipase C-IP(3) pathway, it has the opposite effect. For further analysis of the interactions between melatonin and insulin, diabetic rats were investigated with respect to melatonin synthesis in the pineal gland and plasma insulin levels. In this context, recent investigations have proven that type 2 diabetic rats and humans display decreased melatonin levels, whereas type 1 diabetic IDDM rats or those with diabetes induced by streptozotocin (STZ) of the present study show increased plasma melatonin levels and elevated AA-NAT-mRNA. Furthermore, the mRNA of pineal insulin receptors and beta1-adrenoceptors, including the clock genes Per1 and Bmal1 and the clock-controlled output gene Dbp, increases in both young and middle-aged STZ rats. The results therefore indicate that the decreased insulin levels in STZ-induced type 1 diabetes are associated with higher melatonin plasma levels. In good agreement with earlier investigations, it was shown that the elevated insulin levels observed in type 2 diabetes, are associated with decreased melatonin levels. The results thus prove that a melatonin-insulin antagonism exists. Astonishingly, notwithstanding the drastic metabolic disturbances in STZ-diabetic rats, the diurnal rhythms of the parameters investigated are maintained. PMID:18624957

Peschke, Elmar; Wolgast, Sabine; Bazwinsky, Ivonne; Pönicke, Klaus; Muhlbauer, Eckhard

2008-11-01

160

Anti-diabetic effects of ethanol extract of Bryonia laciniosa seeds and its saponins rich fraction in neonatally streptozotocin-induced diabetic rats  

PubMed Central

Context: Bryonia laciniosa Linn. (Cucurbitaceae) seed is used in traditional medicine for a number of ailments including metabolic disorders. Aim: This study evaluated the anti-diabetic action of the ethanol extract of B. laciniosa seeds and saponin fraction of it through its effect on hyperglycemia, dyslipidaemia and oxidative stress in neonatally streptozotocin (n-STZ)-induced diabetic rats (n-STZ diabetic rats). Materials and Methods: Ethanol extract (250 and 500 mg/kg; p.o.), saponin fraction (100 and 200 mg/kg; p.o.) and standard drug glibenclamide (3 mg/kg; p.o.) were administered to diabetic rats when the rats were 6 weeks old and continued for 10 consecutive weeks. Effects of ethanol extract and saponin fraction on various biochemical parameters were studied in diabetic rats. Results: The treatment with ethanol extract and saponin fraction for 10 weeks decrease in the levels of glucose, triglycerides, cholesterol, high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, serum urea, serum creatinine and diminished activities of aspartate transaminase, and alanine transaminase. The anti-hyperglycemic nature of B. laciniosa is probably brought about by the extra- the pancreatic mechanism as evidenced from unchanged levels of plasma insulin. B. laciniosa modulated effect of diabetes on the liver malondialdehyde, reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity. Administration of ethanol extract and saponin fraction to diabetic rats showed a significant reversal of disturbed antioxidant status. Significant increase in SOD, CAT, and levels of GSH was observed in treated n-STZ diabetic rats. Conclusion: The present study reveals the efficacy of B. laciniosa seed extract and its saponin fraction in the amelioration of n-STZ diabetic rats.

Patel, Sandip B.; Santani, Devdas; Patel, Veena; Shah, Mamta

2015-01-01

161

Insulin treatment normalizes retinal neuroinflammation but not markers of synapse loss in diabetic rats.  

PubMed

Diabetic retinopathy is one of the leading causes of blindness in developed countries, and a majority of patients with type I and type II diabetes will develop some degree of vision loss despite blood glucose control regimens. The effects of different insulin therapy regimens on early metabolic, inflammatory and neuronal retinal disease processes such as retinal neuroinflammation and synapse loss have not been extensively investigated. This study compared 3 months non-diabetic and streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Diabetic rats received either no insulin treatment, systemic insulin treatment beginning after 1 week uncontrolled diabetes (early intervention, 11 weeks on insulin), or after 1.5 months uncontrolled diabetes (late intervention, 6 weeks on insulin). Changes in both whole animal metabolic and retinal inflammatory markers were prevented by early initiation of insulin treatment. These metabolic and inflammatory changes were also normalized by the later insulin intervention. Insulin treatment begun 1 week after diabetes induction ameliorated loss of retinal synapse markers. Synapse markers and presumably synapse numbers were equivalent in uncontrolled diabetes and when insulin treatment began at 1.5 months of diabetes. These findings are in agreement with previous demonstrations that retinal synapses are lost within 1 month of uncontrolled diabetes and suggest that synapses are not regained with glycemic control and restoration of insulin signaling. However, increased expression of metabolic and inflammatory markers associated with diabetes was reversed in both groups of insulin treatment. This study also emphasizes the need for insulin treatment groups in diabetic retinopathy studies to provide a more faithful modeling of the human condition. PMID:24931083

Masser, Dustin R; VanGuilder Starkey, Heather D; Bixler, Georgina V; Dunton, Wendy; Bronson, Sarah K; Freeman, Willard M

2014-08-01

162

Streptozotocin induced diabetic retinopathy in rat and the expression of vascular endothelial growth factor and its receptor  

PubMed Central

AIM To establish the rat model of streptozotocin (STZ)-induced diabetic retinopathy (DR), which is the most common cause of visual loss and blindness in patients with diabetes, and observe the gene expression of vascular endothelial growth factor (VEGF) and its receptors during the development of DR. METHODS A rat model of diabetes was established by intraperitoneal injection of STZ. The diabetic rats were housed for 2, 3 and 4 months after the development of diabetes. Retinal histopathological observation was performed. The retinal vessels were observed by immunofluorescence staining by CD31. The mRNA expression of VEGF, VEGF receptor 1 and 2 (VEGFR1/2) in rat retina was detected by reverse transcription-polymerase chain reaction (RT-PCR) analysis. RESULTS Retinal histopathological observation showed the morphological changes of inner nuclear layer (INL) and outer nuclear layer (ONL) at any time-point, and also demonstrated the increased new vessels at both 3, 4 months after the development of diabetes. The CD31 staining results showed that the number of vessels was increased in the retinas of diabetic rats at both 3 and 4 months after the development of diabetes. As compared to the normal rats, the mRNA expression of VEGF was increased in retinas of diabetic rats at 3 months after the development of diabetes, while VEGFR1 and VEGFR2 mRNA expression was increased at 2, 3 and 4 months after the development of diabetes. CONCLUSION Taken together, our results demonstrated that DR was occurred at 3 months after the development of diabetes, and the mRNA expression of VEGF, VEGFR1 and VEGFR2 were increased in the process of DR. The present study further evidenced the involvement of VEGF and its receptors in the process of DR. PMID:24195027

Gong, Chen-Yuan; Lu, Bin; Hu, Qian-Wen; Ji, Li-Li

2013-01-01

163

Rhinacanthus nasutus Improves the Levels of Liver Carbohydrate, Protein, Glycogen, and Liver Markers in Streptozotocin-Induced Diabetic Rats  

PubMed Central

The present study was designed to investigate the total carbohydrate, total protein, and glycogen levels in the liver and to measure functional liver markers such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in streptozotocin-(STZ-) induced diabetic rats after treatment with methanolic extract of Rhinacanthus nasutus (R. nasutus). The methanolic extract of R. nasutus was orally administered at 200?mg/kg/day while glibenclamide was administered at 50?mg/kg/day. All animals were treated for 30 days before being sacrificed. The amounts of carbohydrate, glycogen, proteins, and liver markers (AST and ALT) were measured in the liver tissue of the experimental animals. The levels of carbohydrate, glycogen, and proteins were significantly reduced in the diabetic rats but were augmented considerably after 30 days of R. nasutus treatment. The elevated AST and ALT levels in diabetic rats showed a significant decline after treatment with R. nasutus for 30 days. These results show that the administration of R. nasutus ameliorates the altered levels of carbohydrate, glycogen, proteins, and AST and ALT observed in diabetic rats and indicate that R. nasutus restores overall metabolism and liver function in experimental diabetic rats. In conclusion, the outcomes of the present study support the traditional belief that R. nasutus could ameliorate the diabetic state. PMID:24204387

Visweswara Rao, Pasupuleti; Madhavi, K.; Dhananjaya Naidu, M.; Gan, Siew Hua

2013-01-01

164

Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats.  

PubMed

Oxidative stress is one of the main contributors in the pathogenesis of diabetic retinopathy. The aim of this study is to investigate the effects of SS31 which is a mitochondria-targeted antioxidant peptide on the retinas of streptozotocin (STZ)-induced diabetic rats. Two weeks after induction of diabetes, SS31 (3 mg/kg) or the same volume of normal saline (N.S) was injected subcutaneously into the back of diabetic rats every day. Four months later, the integrity of inner blood retinal barrier (iBRB) was measured by Evans blue perfusion. The expression and distribution of claudin-5, occludin, acrolein, 8-OHdG and nitrotyrosine in the rat retinas were detected by immunofluorescent staining. Retinal ultrastructures were observed by transmission electron microscopy. The protein level of VEGFR2, Trx-2, Bcl-2, Bax, caspase-3, p53, and NF-?B in the rat retinas were assayed by western blot. Four months after subcutaneous injection, the diabetic rats treated with SS31 had better structures of retinal ganglion cells, thinner capillary basement membrane, less iBRB leakage, more uniform staining of claudin-5 and occludin in the retinal vessels, lower levels of acrolein, 8-OHdG, nitrotyrosine, Bax, caspase-3, p53, and NF-?B, and higher levels of Trx-2 and Bcl-2 in the retinas than those treated with N.S. In conclusion, SS31 could protect the retinal structures and inhibit the breakdown of iBRB by reducing oxidative damage, increasing Trx-2 and Bcl-2 expression, and decreasing p53, NF-?B, Bax, caspase-3, and VEGFR2 expression in the retinas of diabetic rats. SS31 could be a potential new treatment for diabetic retinopathy and other oxidative stress-related diseases. PMID:23745582

Huang, J; Li, X; Li, M; Li, J; Xiao, W; Ma, W; Chen, X; Liang, X; Tang, S; Luo, Y

2013-07-01

165

The Relationship Between Inflammation and Impaired Wound Healing in a Diabetic Rat Burn Model.  

PubMed

Inflammation, initiated by polymorphonuclear neutrophil (PMNs) infiltration, is the first step in wound healing. The aim of this study is to investigate the function of neutrophils in a diabetes-impaired wound healing model and to explore the underlying mechanisms leading to neutrophil dysfunction. Superficial second-degree burns were created in the streptozotocin (STZ)-induced diabetic rat model, and the changes in the levels of advanced glycation end products (AGE), receptor of AGE (RAGE), inflammatory cytokines and oxidative markers, as well as cell apoptosis were determined. The effects of AGE on isolated PMNs were also determined in vitro. We found that deposition of AGE in diabetic rat skin activated the neutrophils before injury. However, the dense inflammatory band failed to form in the diabetic rats after injury. Compared with the controls, enhanced expression of RAGE and accelerated cell apoptosis were observed in the burned skin of diabetic rats. The altered expression pattern of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-8) and oxidative markers (glutathione peroxidase, myeloperoxidase, hydrogen peroxide, and malondialdehyde) between burned skin of diabetic and control rats revealed delayed neutrophil chemotaxis and respiratory burst. Furthermore, the results in vitro showed that exposure to AGE inhibited the viability of PMNs, promoted RAGE production and cell apoptosis, and prevented the migration of PMNs, consistent with the findings in vivo. Besides, AGE-treated neutrophils showed increased secretion of inflammatory cytokines and increased oxidative stress. Combined, our results suggest that an interaction between AGE and its receptors inhibits neutrophil viability and function in the diabetic rat burn model. PMID:25407384

Tian, Ming; Qing, Chun; Niu, Yiwen; Dong, Jiaoyun; Cao, Xiaozan; Song, Fei; Ji, Xiaoyun; Lu, Shuliang

2014-11-18

166

Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Objective(s): Crocin influences many biological functions including memory and learning. The present study was aimed to investigate the effects of crocin on learning and memory impairments in streptozotocine-induced diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (IP) injection of streptozotocin (STZ, 45 mg/kg). Transfer latency (TL) paradigm in elevated plus-maze (EPM) was used as an index of learning and memory. Plasma levels of total antioxidant capacity (TAC) and malondialdehyde (MDA), blood levels of glucose, and serum concentrations of insulin were measured. The number of hippocampal neurons was also counted. Results: STZ increased acquisition transfer latency (TL1) and retention transfer latency (TL2), and MDA, decreased transfer latency shortening (TLs) and TCA, produced hyperglycemia and hypoinsulinemia, and reduced the number of neurons in the hippocampus. Learning and memory impairments and blood TCA, MDA, glucose, and insulin changes induced by streptozotocin were improved with long-term IP injection of crocin at doses of 15 and 30 mg/kg. Crocin prevented hippocampal neurons number loss in diabetic rats. Conclusion: The results indicate that oxidative stress, hyperglycemia, hypoinsulinemia, and reduction of hippocampal neurons may be involved in learning and memory impairments in STZ-induced diabetic rats. Antioxidant, antihyperglycemic, antihypoinsulinemic, and neuroprotective activities of crocin might be involved in improving learning and memory impairments. PMID:23638297

Tamaddonfard, Esmaeal; Farshid, Amir Abbas; Asri-Rezaee, Siamak; Javadi, Shahram; Khosravi, Voria; Rahman, Bentolhoda; Mirfakhraee, Zahra

2013-01-01

167

Heme oxygenase-1 prevents superoxide anion-associated endothelial cell sloughing in diabetic rats.  

PubMed

Heme oxygenase-1 (HO-1) represents a key defense mechanism against oxidative injury. Hyperglycemia has been linked to increased oxidative stress, leading to endothelial dysfunction, delayed cell replication, and enhanced apoptosis. The effect of streptozotocin (STZ)-induced diabetes on HO activity, HO-1 promoter activity, superoxide anion (O*-2, and the number of circulating endothelial cells was measured. The expression of HO-1/HO-2 protein was unchanged, but HO activity was decreased in aortas of diabetic rats compared with control (p < 0.05). High glucose decreased HO-1 promoter activity (p < 0.05). Hyperglycemia increased O*-2 and this increase was augmented with HO-1 inhibition and diminished with HO-1 upregulation (p < 0.05). Circulating endothelial cells were significantly higher in diabetic rats and were decreased or increased with administration of the HO-1 inducer (CoPP) or inhibitor (SnMP), respectively (p<0.05). In conclusion, HO-1 upregulation in diabetic rats brings about an increase in serum bilirubin, a reduction in O*-2 production, and a decrease in endothelial cell sloughing. PMID:14766238

Quan, Shou; Kaminski, Pawel M; Yang, Liming; Morita, Toshisuke; Inaba, Muneo; Ikehara, Susumu; Goodman, Alvin I; Wolin, Michael S; Abraham, Nader G

2004-03-01

168

Secoisolariciresinol diglucoside in high-fat diet and streptozotocin-induced diabetic nephropathy in rats: a possible renoprotective effect.  

PubMed

Due to substantial morbidity and high complication rate of diabetes mellitus, which is considered as the third killer in the world, a search for the effective blockade of the progression of diabetic nephropathy (DN) remains a therapeutic challenge. Alternative antidiabetic drugs from natural plants are highly demanded nowadays. The aim of this study was to investigate the renoprotective effect of secoisolariciresinol diglucoside (SDG) on DN induced in rats. Diabetes was induced in male Sprague-Dawley rats by a high-fat diet (HFD) and an intraperitoneal 35 mg/kg streptozotocin (STZ) injection. Rats were divided into four groups: normal control rats, diabetic control rats, diabetic rats treated with SDG at 10 mg/kg/day for 4 weeks, and diabetic rats treated with SDG at 20 mg/kg/day for 4 weeks. At the end of the treatment, blood and renal tissue samples were collected for biochemical examination. The results revealed that SDG treatment significantly increased insulin level and decreased blood glucose, fructosamine, creatinine, and blood urea nitrogen levels in diabetic rats. Also, SDG significantly increased renal reduced glutathione, superoxide dismutase and decreased malondialdehyde and nitric oxide levels. In addition, SDG downregulated the renal nuclear factor kappa-B (NF-?B), tumor necrosis factor (TNF)-?, and inducible nitric oxide synthase (iNOS) and upregulated renal survivin and B-cell lymphoma-2 (Bcl-2) expressions when compared with untreated diabetic control rats. This study demonstrated, for the first time, the renoprotective effects of SDG in HFD/STZ-induced DN in rats through correction of hyperglycemia; attenuation of oxidative/nitrosative stress markers; downregulation of renal expressions of inflammatory markers NF-?B, TNF-?, and iNOS; along with upregulation of renal expressions of antiapoptotic markers survivin and Bcl-2. PMID:25316298

Sherif, Iman O

2014-12-01

169

Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model  

PubMed Central

Background Diabetes mellitus is a heterogeneous metabolic disorders characterized by abnormally high levels of blood glucose The main objective of the present work is to study the effect of Alpinia calcarata on glucose uptake in streptozotocin (STZ) induced diabetic rats. Methods The diabetes was induced by single dose of STZ (45 mg/kg) in citrate buffer, while the normal control group was given the vehicle (citrate buffer) only. After induction of diabetes, the diabetic animals were treated with ethanolic extract of Alpinia calcarata (200 mg/kg) and glibenclamide (2 mg/kg) for 30 days. Blood glucose estimation was performed every week of the study. At the end of study period, animals were sacrificed for biochemical studies. Results Streptozotocin induced diabetic rats shows the altered levels of various biochemical profiles. Those levels were brought back to near normal upon treatment with ethanolic extract of Alpinia calcarata and standard drug glibanclamide. No significant changes were observed on treatment with plant extract alone group indicated that there are no toxic substances present in Alpinia calcarata. The antidiabetic activity of plant extract was also further confirmed by histopathological studies. The ethanolic extract of Alpinia calcarata shows significant inhibition of alpha glucosidase activity and also enhancing the glucose uptake in rat hemidiaphragm. Conclusions In conclusion, the ethanolic extract of Alpinia calcarata ameliorates the condition associated with diabetes. PMID:24502532

2014-01-01

170

GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats  

PubMed Central

Aim of the study This study was made to investigate the antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala, (Buch.-Ham.) Nees & Eberm (Tejpat) oil (CTO) in streptozotocin (STZ) induced diabetes in rats along with evaluation of chemical constituents. Materials and methods The GC-MS (Gas chromatography–mass spectrometry) analysis of the oil showed 31 constituents of which cinnamaldehyde was found the major component (44.898%). CTO and cinnamaldehyde was orally administered to diabetic rats to study its effect in both acute and chronic antihyperglycemic models. The body weight, oral glucose tolerance test and biochemical parameters viz. glucose level, insulin level, liver glycogen content, glycosylated hemoglobin, total plasma cholesterol, triglyceride and antioxidant parameters were estimated for all treated groups and compared against diabetic control group. Results CTO (100?mg/kg and 200?mg/kg), cinnamaldehyde (20?mg/kg) and glibenclamide (0.6?mg/kg) in respective groups of diabetic animals administered for 28?days reduced the blood glucose level in streptozotocin induced diabetic rats. There was significant increase in body weight, liver glycogen content, plasma insulin level and decrease in the blood glucose, glycosylated hemoglobin and total plasma cholesterol in test groups as compared to control group. The results of CTO and cinnamaldehyde were found comparable with standard drug glibenclamide. In vitro antioxidant studies on CTO using various models showed significant antioxidant activity. In vivo antioxidant studies on STZ induced diabetic rats revealed decreased malondialdehyde (MDA) and increased reduced glutathione (GSH). Conclusion Thus the investigation results that CTO has significant antidiabetic, antioxidant and hypolipidemic activity. PMID:22882757

2012-01-01

171

Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat.  

PubMed

Single injection of streptozotocin (STZ) resulted diabetes mellitus which was reflected here by the levels of fasting blood glucose and serum insulin. Moreover, this experimental diabetes also resulted testicular dysfunctions evaluated by count, viability and motility of sperm as well as by the activities of key enzymes for androgen synthesis. Diabetes induced testicular oxidative stress has been indicated here by the monitoring of testicular peroxidase and catalase activities as well as by quantification of TBARS and CD of testis. Testicular glucose was increased and leydig cell nuclear area was decreased in STZ induced diabetes. Treatment of herbal formulated drug named as MTEC consist of aqueous-methanol extract of Musa paradisiaca, Tamarindus indica, Eugenia jambolana and Coccinia indica to streptozotocin induced diabetic rat at the ratio of 2:2:1:1 at the dose of 60 mg/d for two times a day for 14 d resulted a significant protection in fasting blood glucose and serum insulin levels (p<0.05) along with correction of testicular above parameters towards the control level (p<0.05). This herbal formulated drug has no general toxic effects on the body weight, as well as on the activities of serum glutamate and pyruvate transaminases in serum. The results support the validity of this herbal drug for the management of testicular disorders noted in diabetic state. PMID:17202665

Mallick, Chhanda; Mandal, Suvra; Barik, Bikashranjan; Bhattacharya, Atanu; Ghosh, Debidas

2007-01-01

172

Berberine regulates the expression of E-prostanoid receptors in diabetic rats with nephropathy.  

PubMed

Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetic patients. Effective therapies to prevent the development of this disease and to improve advanced kidney injury are required. Berberine (BBR) has preventive effects on diabetes and its complications. This study is to investigate the effects of BBR on the expression of E-prostanoid receptors (EPs) in rats with high-fat diet and streptozotocin (STZ)-induced DN and underlying molecular mechanisms of BBR on DN rats. DN model was induced in male Sprague-Dawley rats with high-fat diet and low dose of STZ injection. BBR (50, 100, 200 mg/kg/d) were orally administered to rats after STZ injection and conducted for 8 weeks. The levels of interleukin-6 (IL-6) and prostaglandin E2 (PGE2) in renal cortex were measured by enzyme-linked immunosorbent assay. Expression of EPs receptors (EP1-EP4) were determined by western blotting. Remarkable renal damage, hyperglycemia and hyperlipidemia were observed in DN rats. BBR could restore renal functional parameters, suppress alterations in histological and ultrastructural changes in the kidney tissues, improve glucose and lipid metabolism disorders, and increase cAMP levels compared with those of DN model group (Wang et al. in Mol Biol Rep 40:2405-2418, 2013). The level of IL-6 and PGE2 were significantly increased in DN model group compared with normal group, BBR could apparently reduced the level of IL-6 and PGE2. Furthermore, the expression of EP1 and EP3 were both increased and EP4 was lessened in the DN model group compared with normal group, BBR could down-regulate total protein expression of EP1 and EP3 of renal cortex in DN rats and up-regulate the expression of EP4, and there is no significant difference on the expression of EP2 among all groups. These studies demonstrate, for the first time, that BBR exerts renoprotection in high-fat diet and STZ-induced DN rats by modulating the proteins expression of EPs in EP-G protein-cAMP signaling pathway. PMID:24488262

Tang, Li Qin; Liu, Sheng; Zhang, Shan Tang; Zhu, Ling Na; Wang, Feng Ling

2014-05-01

173

Dual Blockade of Renin Angiotensin System in Reducing the Early Changes of Diabetic Retinopathy and Nephropathy in a Diabetic Rat Model  

PubMed Central

Background: Diabetes mellitus is a real pandemic of the modern world and the incidence of the disease is increasing at a tremendous rate with a number of complications involving major systems of the human body. The renin angiotensin system (RAS) is considered to be involved in most of the pathological processes that result in diabetic nephropathy and retinopathy. Aim: The study was designed to evaluate and compare effects of ramipril (angiotensin-converting enzyme inhibitor-ACEI) and telmisartan (angiotensin II receptor blocker - ARBs) combinations on the progression of retinopathy and nephropathy in the streptozotocin (STZ) induced diabetic model. Materials and Methods: Diabetic state in rats was induced by chemical method using STZ 55 mg/kg intraperitoneally. Diabetic renal tubulopathy and interstitial inflammatory changes were done. Diabetic retinopathy manifested in the form of vacuolar changes in the inner plexiform and the ganglionic layers of the retina was observed. Results: Treatments with ACEI and ARBs reduced the incidence of the occurrence of cataract. The effect of combinational drugs of ACEI (ramipril) and AT1 receptor blocker (Telmisartan) was evaluated. The drugs used in combinations showed improvement in the histopathological and biochemical changes of the diabetic animals, both for the retina and kidney. Conclusion: The efficacy of the drugs suggests a pivotal role of the local RAS system in the pathogenesis of tubulopathy in the kidney and neuronal damage in the retina of the diabetic animals. PMID:25599050

Thangaraju, Pugazhenthan; Chakrabarti, Amitava; Banerjee, Dibyajyoti; Hota, Debasish; Tamilselvan; Bhatia, Alka; Gupta, Amod

2014-01-01

174

Attenuation of Biochemical Parameters in Streptozotocin-induced Diabetic Rats by Oral Administration of Extracts and Fractions of Cephalotaxus sinensis  

PubMed Central

Cephalotaxus sinensis (C. sinensis) large size, evergreen tree common in China and utilized for numerous effective pharmacological applications in Chinese traditional medicine. The hepato-renal effects of C. sinensis were evaluated in vivo using Streptozotocin (STZ)-induced diabetic rats as an tentative model. Animals were orally treated with 80% EtOH extract (aq.EE), H2O extract (WtE) and ethylacetate (EaF)/butanol fractions (BtF) of C. sinensis (200 mg/kg, b.w.) for 28 days whereas control received vehicle merely. The degree of fortification was measured by using biochemical parameters like serum transaminases (ALT and AST), alkaline phosphatase (ALP), creatinine, urea and urine sugar. Meanwhile, the histopathological studies were conducted out to support the above parameters. Administration of C. sinensis aq.EE/BtF (p<0.05) and EaF (p<0.01) patently prevented STZ-induced elevation levels of serum ALT, AST, ALP, creatinine, urea, urine sugar and increase body weight respectively, which were comparable with the standard drug tolbutamide, while WtE did not show any significant effect (p>0.05). Phytochemical studies revealed the presence of saponins, terpenes, sterols and flavonoids in C. sinensis which could be responsible for the possible hepato-renal protective action. The results sustain the fact that the extract/fractions of C. sinensis have an immense potential to be developed further into a phytomedicine. PMID:18231626

Saeed, Muhammad K.; Deng, Yulin; Dai, Rongji

2008-01-01

175

Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat  

PubMed Central

Background Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-?B (NF-?B) activation in anti-inflammatory pathways. We hypothesized that ruscogenin protects against diabetic nephropathy (DN) by inhibiting NF-?B-mediated inflammatory pathway. To test this hypothesis, the present study was to examine the effects of ruscogenin in rats with streptozotocin (STZ)-induced DN. Methods Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with 0.3, 1.0 or 3.0 mg/kg ruscogenin for 8 weeks. The normal rats were chosen as nondiabetic control group. The rats were sacrificed 10 weeks after induction of diabetes. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. Results Ruscogenin administration did not lower the levels of plasma glucose and glycosylated hemoglobin in STZ-diabetic rats. Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight, that were reversed by ruscogenin. Ruscogenin treatment was found to markedly improve histological architecture in the diabetic kidney. Renal NF-?B activity, as wells as protein expression and infiltration of macrophages were increased in diabetic kidneys, accompanied by an increase in protein content of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in kidney tissues. All of the above abnormalities were reversed by ruscogenin treatment, which also decreased the expression of transforming growth factor-?1 and fibronectin in the diabetic kidneys. Conclusions Our data demonstrated that ruscogenin suppressed the inflammation and ameliorated the structural and functional abnormalities of the diabetic kidney in rats might be associated with inhibition of NF-?B mediated inflammatory genes expression. PMID:24666993

2014-01-01

176

Effect of subcutaneous pancreatic tissue transplants on streptozotocin-induced diabetes in rats. II. Endocrine and metabolic functions.  

PubMed

The present study examines the effect of subcutaneous pancreatic tissue grafts (SPTG) on endocrine and metabolic functions in streptozotocin (STZ)-induced diabetic rats using radioimmunoassay and biochemical techniques. SPTG survived even after 15 weeks of transplantation and significantly improved the weight of STZ-diabetic rats over a 15-week period. Although blood glucose-, cholesterol-, and glycosylated-haemoglobin (GHb) levels were not significantly lower in STZ-diabetic rats treated with SPTG, the values of these biochemical parameters were lower than those in untreated diabetic rats. Plasma and pancreatic immunoreactive C-peptide (IRCP) levels did not improve after SPTG (IRCP expressed as mean +/- standard deviation were 0.22 +/- 0.07, 0.072 +/- 0.02 and 0.08 +/- 0.03 pg ml-1 in the plasma non-diabetic diabetic and treated rats respectively, while IRCP levels in the pancreas of the non-diabetic, diabetic and treated rats were 433.8 +/- 0.1, 22.9 +/- 0.01 and 10.4 +/- 0.01 pg mg tissue-1 respectively). SPTG, however, improved plasma immunoreactive insulin (IRI) levels in both plasma and pancreas. IRI values in plasma were 54.7 +/- 13.6, 18.0 +/- 5.0 and 22.1 +/- 4.3 microUI ml-1 in non-diabetic, diabetic and treated rats respectively and were 277.3 +/- 37.1, 14.7 +/- 1.8 and 30.3 +/- 15.9 microIU micrograms tissue-1 in the pancreas of non-diabetic, diabetic and treated rats respectively. There was improvement in immunoreactive glucagon (IRG) levels after SPTG. IRG values in the plasma of non-diabetic, diabetic and treated rats were 147.0 +/- 10.7, 408.0 +/- 76.5 and 247.7 +/- 3 pg ml-1 respectively whereas, IRG measured in the pancreas was 1642.25 +/- 424.23, 1899.0 +/- 290.4 and 1714.1 +/- 301.98 pg micrograms tissue-1 in non-diabetic, diabetic and treated rats, respectively. The pancreas:plasma ratio of pancreatic hormones was deranged in untreated diabetes but improved after SPTG. In conclusion, SPTG significantly improved the weight gain, pancreatic insulin content, plasma IRG and pancreas: plasma ratio of IRCP, IRI and IRG. It also reduced blood glucose-, cholesterol-, and glycosylated-hemoglobin levels in STZ-diabetic rats. PMID:10368988

Adeghate, E

1999-02-01

177

Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death.  

PubMed

In the present study, we sought to explore whether curcumin plays any beneficial role against STZ induced testicular abnormalities in diabetic rats, and if so, what possible mechanism it utilizes to provide protection. Exposure to STZ (50mg/kg body weight, i.p., once) reduced testis-to-body weight ratio, enhanced blood glucose level and intracellular ROS, altered testicular markers, diminished serum testosterone and impaired cellular redox balance. Administration of curcumin at a dose of 100mg/kg body weight for 8weeks effectively normalized all the alterations. Curcumin also showed inhibitory effect on the elevation of pro-inflammatory cytokines and translocation of NF?B into the nucleus and promoted the activation of the transcription factor Nrf-2 to provide protection against oxidants. To protect cells from STZ-induced stress-mediated damage, curcumin acted on the key mediators of the apoptotic cell death such as JNK and p38. In addition, this active molecule upregulated Bcl-2 expression, blocked the expression of pro-apoptotic proteins (Bax, Bad and Bid), decreased intracellular Ca(2+) level, inhibited active caspase cascade and attenuated PARP cleavage. These results suggest that curcumin provides protection against cellular stress-mediated mitochondrial and endoplasmic reticulum-dependent apoptotic death of the testicular cells under diabetic condition and suggests the possibility of using this molecule as a potential therapeutic in the treatment of stress-mediated diabetic testicular dysfunction. PMID:25446996

Rashid, Kahkashan; Sil, Parames C

2015-01-01

178

Protective role of glibenclamide against nicotinamide-streptozotocin induced nuclear damage in diabetic Wistar rats  

PubMed Central

Objective: To evaluate the protective effect of glibenclamide against the experimental diabetes-induced nuclear damage in Wistar rats. Materials and Methods: The anti-mutagenic effect of glibenclamide (0.5, 5 and 50 mg/kg, p.o daily for 4 weeks) was evaluated against the nicotinamide (NA)-streptozotocin (STZ) induced type-2 diabetes mellitus using bone marrow micronucleus and sperm abnormalities tests. The antioxidant status was tested by estimating the serum levels of lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Results: The results indicated that glibenclamide at 50 mg/kg decreased the frequency of micronuclei in erythrocytes (P < 0.05) and sperm shape abnormality (P < 0.01) besides enhancing the antioxidant status (P < 0.05) in the diabetic rats. However, glibenclamide treatment did not enhance the polychromatic and normochromatic erythrocytes (P/N) ratio and sperm count in the diabetic condition. Conclusion: The observations indicate that the glibenclamide has anti-mutagenic potential which could be related to the antioxidant effect and might also possess anti-proliferative property. PMID:21808586

Rabbani, Syed Imam; Devi, Kshama; Khanam, Salma

2010-01-01

179

Evaluation of Antihyperglycemic Activity of Citrus limetta Fruit Peel in Streptozotocin-Induced Diabetic Rats  

PubMed Central

The present paper aims to evaluate antihyperglycemic activity of methanol extract of Citrus limetta fruit peel (MECL) in streptozotocin-induced (STZ; 65?mg/kg b.w.) diabetic rats. Three days after STZ induction, diabetic rats received MECL orally at 200 and 400?mg kg?1 body weight daily for 15 days. Glibenclamide (0.5?mg kg?1 p. o.) was used as reference drug. Blood glucose levels were measured on 0th, 4th, 8th, and 15th days of study. Serum biochemical parameters namely, SGOT, SGPT and ALP were estimated. The TBARS and GSH levels of pancreas, kidney, and liver were determined. MECL significantly (P < 0.001) and dose dependently normalized blood glucose levels and serum biochemical parameters, decreased lipid peroxidation, and recovered GSH as compared to those of STZ control. The present paper infers that in STZ-induced diabetic Wistar rats, C. limetta fruit peel demonstrated a potential antihyperglycemic effect which may be attributed to its antioxidant property. PMID:22363893

KunduSen, Sriparna; Haldar, Pallab K.; Gupta, Malaya; Mazumder, Upal K.; Saha, Prerona; Bala, Asis; Bhattacharya, Sanjib; Kar, Biswakanth

2011-01-01

180

Protective Effects of Green Tea Extract against Hepatic Tissue Injury in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Although diabetic hepatopathy is potentially less common, it may be appropriate for addition to the list of target organ conditions related to diabetes. This study was designed to evaluate the hepatoprotective properties of green tea extract (GTE) in STZ-induced diabetes in rats. Wistar rats were made diabetic through single injection of STZ (75?mg/kg i.p.). The rats were randomly divided into four groups of 10 animals each: Group 1, healthy control; Group 2, nondiabetics treated with GTE administered orally (1.5%, w/v); Group 3, diabetics; Group 4, diabetics treated with GTE (1.5%, w/v) for 8 weeks. Serum biomarkers were assessed to determine hepatic injury. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were measured to assess free radical activity in the liver tissue. Hepatic antioxidant activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were also determined. The biochemical findings were matched with histopathological verifications. Liver MDA content and serum levels of ALT, AST, ALP, and bilirubin in Group 3 significantly increased compared to Group 1 (P < 0.05) and significantly decreased in Group 4 compared to Group 3 (P < 0.05). Serum albumin level and GSH, SOD, CAT, and GSH-Px contents of the liver in Group 3 were significantly decreased compared to Group 1 (P < 0.05) and were significantly increased in Group 4 compared to Group 3 (P < 0.05). Histopathologically, the changes were in the same direction with biochemical findings. This study proved the hepatoprotective activity of GTE in experimentally induced diabetic rats. PMID:22956978

Abolfathi, Ali Akbar; Mohajeri, Daryoush; Rezaie, Ali; Nazeri, Mehrdad

2012-01-01

181

Protective Effects of Green Tea Extract against Hepatic Tissue Injury in Streptozotocin-Induced Diabetic Rats.  

PubMed

Although diabetic hepatopathy is potentially less common, it may be appropriate for addition to the list of target organ conditions related to diabetes. This study was designed to evaluate the hepatoprotective properties of green tea extract (GTE) in STZ-induced diabetes in rats. Wistar rats were made diabetic through single injection of STZ (75?mg/kg i.p.). The rats were randomly divided into four groups of 10 animals each: Group 1, healthy control; Group 2, nondiabetics treated with GTE administered orally (1.5%, w/v); Group 3, diabetics; Group 4, diabetics treated with GTE (1.5%, w/v) for 8 weeks. Serum biomarkers were assessed to determine hepatic injury. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were measured to assess free radical activity in the liver tissue. Hepatic antioxidant activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were also determined. The biochemical findings were matched with histopathological verifications. Liver MDA content and serum levels of ALT, AST, ALP, and bilirubin in Group 3 significantly increased compared to Group 1 (P < 0.05) and significantly decreased in Group 4 compared to Group 3 (P < 0.05). Serum albumin level and GSH, SOD, CAT, and GSH-Px contents of the liver in Group 3 were significantly decreased compared to Group 1 (P < 0.05) and were significantly increased in Group 4 compared to Group 3 (P < 0.05). Histopathologically, the changes were in the same direction with biochemical findings. This study proved the hepatoprotective activity of GTE in experimentally induced diabetic rats. PMID:22956978

Abolfathi, Ali Akbar; Mohajeri, Daryoush; Rezaie, Ali; Nazeri, Mehrdad

2012-01-01

182

Effects of free fatty acids and dichloroacetate on isolated working diabetic rat heart.  

PubMed

It is well established that cardiac dysfunction independent of atherosclerosis develops in both humans and animals with diabetes mellitus. The etiology is complex, involving many different processes, one of which may be increased fatty acid utilization and/or a concomitant decrease in glucose utilization by the diabetic heart. We compared control and 6-wk streptozotocin (STZ)-induced diabetic isolated working rat hearts and were able to demonstrate cardiac dysfunction in the diabetic as assessed by depressed heart rate (HR), heart rate peak systolic pressure product (HR.PSP), left ventricular developed pressure (LVDP), and rate of pressure rise (+dP/dt). Paralleling depressed cardiac function in the diabetic were hyperglycemia, hyperlipidemia, and decreased body weight gain compared with age-matched controls. The addition of free fatty acids, in the form of 1.2 mM palmitate, to the isolated working heart perfusate had no effect on either control or diabetic heart function, with the exception of a depressive effect on +dP/dt of diabetic hearts. But diabetic hearts perfused with palmitate-containing perfusate plus the glucose oxidation stimulator dichloroacetate (DCA) showed a marked improvement in function. HR and HR.PSP in spontaneously beating hearts, as well as LVDP and +dP/dt in paced hearts were all restored to control heart values in diabetic hearts perfused in the presence of DCA. Creatine phosphate and ATP levels were similar under all perfusion conditions, thus eliminating energy stores as the limiting factor in heart function. Results indicate that DCA will acutely reverse diabetic cardiac function depression. Therefore glucose oxidation depression in the diabetic heart may be a significant factor contributing to cardiac dysfunction. PMID:1928388

Nicholl, T A; Lopaschuk, G D; McNeill, J H

1991-10-01

183

The effects of triple vs. dual and monotherapy with rosiglitazone, glimepiride, and atorvastatin on lipid profile and glycemic control in type 2 diabetes mellitus rats.  

PubMed

The present study was undertaken to investigate the effects of triple oral therapy and different combination of rosiglitazone, atorvastatin, and glimepiride on streptozotocin (STZ)-induced diabetic rats. The various biochemical parameters studied included glycosylated hemoglobin (A1c), fasting plasma sugar levels, triglycerides, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and very low-density lipoprotein (VLDL) cholesterol in diabetic and normal rats. The present study demonstrates that atorvastatin could increase the effect of rosiglitazone and glimepiride and lipid-lowering effect of combination of rosiglitazone and glimepiride (GLIM). According to our finding, similar results for rosiglitazone plus atorvastatin were obtained in terms of correcting lipid parameters, whereas the suppressive action of triple oral therapy of rosiglitazone and glimepiride, and atorvastatin on blood glucose, total cholesterol, LDL, VLDL, HDL cholesterol, and triglyceride was more beneficial than that of dual therapy of different combinations and monotherapy. PMID:21692847

Ahmed, Danish; Sharma, Manju; Pillai, K K

2012-10-01

184

Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: attenuation of behavioral impairments and biochemical perturbations.  

PubMed

Involvement of oxidative stress, inflammatory response, and mitochondrial dysfunction in the development of diabetic neuropathy (DN) is well appreciated. The present study examines the potential of geraniol (GE), a well-known phytoconstituent commonly found in lemon, spices, rose oil, etc., to attenuate DN-associated oxidative/nitrosative stress by employing a streptozotocin (STZ) diabetic rat model. STZ-induced diabetic rats provided with oral supplements of GE (100 mg/kg bw/day, 8 weeks) exhibited significant improvement in tail-flick latency (sensory function) and the narrow beam test (motor function). Terminally, elevated levels of oxidative markers (reactive oxygen species, malondialdehyde, hydroperoxides) in cytosol of the sciatic nerve (SN) and in selected regions of the brain of diabetic rats were markedly reduced by GE supplements. Furthermore, GE significantly diminished the levels of protein carbonyls (a measure of protein oxidation) and nitrites in diabetic rats. In addition, in mitochondria, GE supplements restored the activities of enzymes, such as complexes I-III, succinate dehydrogenase, and citrate synthase, in brain regions of diabetic rats, with a concomitant reduction in the levels of oxidative markers. GE significantly lowered the enhanced cytosolic calcium levels and acetylcholinesterase activity in the SN and the brain regions of diabetic rats. Depleted dopamine levels evident in the SN and the cortex/striatum among diabetic rats were restored by GE. From our data, we hypothesize that GE may be a promising therapeutic candidate in the management of DN in humans. Further understanding of the molecular mechanisms of its neuromodulatory effects is essential in order to exploit its therapeutic efficacy. PMID:24752916

Prasad, Sathya N; Muralidhara

2014-09-01

185

Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Blood Glucose, Body Weight and Feed Intake of Streptozotocin-induced Diabetic Rats  

PubMed Central

Objective: To determine the effect of unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) on blood glucose (BG), feed intake (FI) and weight of streptozotocin (STZ) induced diabetic rats. Methods: Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) and Group 2 (diabetic) received standard rat feed; Group 3 received unripe plantain incorporated feed (810 /kg body weight) and Group 4 received unripe plantain+ginger incorporated feed (710:100 g/kg body weight). The weights and FI of the rats were measured daily throughout the experimentation. Results: Groups 3 and 4 rats had 159.52% and 71.83% decreases in BG but 24.91% and 35.32% decreases in weights compared with groups 1 and 2 rats that had 2.09% and 22.94% increases in BG with 13.42% increase and 45.36% decrease in weights respectively. The FI of the experimental rats did not differ significantly from each other (P>0.05) at the end of experimentation. The standard rat feed contained higher amounts of Ca but lower amounts of Mg and Fe compared with the unripe plantain and unripe plantain+ginger incorporated feeds. Conclusion: Combination of unripe plantain and ginger at the dose used in the management of diabetes was not very effective compared with unripe plantain alone. PMID:25674161

M, Iroaganachi; C.O, Eleazu; P.N, Okafor; N, Nwaohu

2015-01-01

186

Effects of lichen extracts on haematological parameters of rats with experimental insulin-dependent diabetes mellitus.  

PubMed

The prevalence of diabetes mellitus in the world is steadily increasing. Oxidative stress contributes to the development of diabetic complications, including diabetic haematological changes. Lichens are used as food supplements and are also used as possible natural antioxidant, antimicrobial and anticancer agents. We hypothesized that antioxidant activity of lichens may decrease hyperglycaemia-induced oxidative stress and prevent the development of diabetic complications, including abnormality in haematological condition. Therefore, the effects of Cetraria islandica water extract (CIWE) and Pseudevernia furfuracea water extract (PFWE) on the haematological parameters of rats with type 1 DM were investigated for the first time in the present study. Control Sprague-Dawley or streptozotocin (STZ)-induced diabetic rats were either untreated or treated with water lichen extracts (5-500 mg/kg body weight (bw)/day) for 2 weeks, starting at 72 h after STZ injection. On day 14, animals were anaesthetized and haematological and metabolic parameters were determined between control and experimental groups. In addition, the total oxidative stress (TOS), a specific indicator of oxidative stress, and the total antioxidant capacity (TAC) were measured by biochemical studies. In diabetic rats, CIWE of 250-500 mg/kg bw dose showed more prominent results when compared with doses of PFWE for TAC. The results obtained in the present study suggested that the antioxidant activities of lichens might be the possible reason behind the observed antihaematological status. However, the protective effect of lichen extracts were inadequate on diabetes-induced microcytic hypochromic anaemia. In addition, the extracts have no effect on metabolic complications. Our experimental data showed that high doses of CIWE and PFWE alone have no detrimental effect on blood cells and TOS status of plasma. Hence, they are safe and suitable for different administration routes. PMID:23114377

Colak, Suat; Geyiko?lu, Fatime; Aslan, Ali; Deniz, Gül?ah Y?ld?z

2014-11-01

187

Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats  

Microsoft Academic Search

Hyperglycemia is the most important factor in the progression of renal fibrosis in diabetic kidney. Prevention and treatment of renal fibrosis may improve diabetic nephropathy. To explore whether probiotic Lactobacillus reuteri GMNL-263 treatment was linked to altered hyperglycemia-mediated renal fibrosis in diabetic kidney, the mechanisms of L. reuteri GMNL-263 treatment responsible for the inhibition of renal fibrosis in streptozotocin (STZ)-induced

Ying-Chen Lu; Li-Te Yin; Wen-Teng Chang; Jau-Shyang Huang

2010-01-01

188

Protective effect of Psidium guajava leaf extract on altered carbohydrate metabolism in streptozotocin-induced diabetic rats.  

PubMed

Psidium guajava is an important plant of high medicinal value and has been used in traditional systems of medicine against various ailments. The antidiabetic effect of the ethanolic extract of Psidium guajava leaves and also its protective effect on altered glucose metabolism was evaluated in streptozotocin (stz)-induced diabetic rat model. Diabetes was induced in rats by means of intraperitoneal injection of 50-mg/kg body weight (b.wt.) of stz. Diabetes-induced rats were randomly divided into two groups. One group of rats was treated with Psidium guajava leaf extract at a dosage of 300-mg/kg b.wt. and the other group of rats was treated with the standard drug glyclazide at a dosage of 5-mg/kg b.wt. for 30 days. The blood glucose levels, plasma insulin, Hb, HbA1c were measured. The effect on the drug on altered glucose metabolizing enzymes were also studied. Treatment with Psidium guajava extract showed a significant reduction in blood glucose and HbA1c levels and a significant increase in plasma insulin levels. The drug also significantly restored the activities of carbohydrate metabolizing enzymes. This suggests that the potential antidiabetic effect of the ethanolic extract of the Psidium guajava leaves may be due to the presence of flavonoids and other phenolic components present in the drug. PMID:24237189

Khan, Haseena Banu Hedayathullah; Shanmugavalli, R; Rajendran, Deepa; Bai, Mookambikai Ramya; Sorimuthu, Subramanian

2013-12-01

189

Transdermal Delivery of Insulin by Amidated Pectin Hydrogel Matrix Patch in Streptozotocin-Induced Diabetic Rats: Effects on Some Selected Metabolic Parameters  

PubMed Central

Purpose Studies in our laboratory are concerned with developing optional insulin delivery routes based on amidated pectin hydrogel matrix gel. We therefore investigated whether the application of pectin insulin (PI)-containing dermal patches of different insulin concentrations sustain controlled release of insulin into the bloodstream of streptozotocin (STZ)-induced diabetic rats with concomitant alleviation of diabetic symptoms in target tissues, most importantly, muscle and liver. Methods Oral glucose test (OGT) responses to PI dermal matrix patches (2.47, 3.99, 9.57, 16.80 µg/kg) prepared by dissolving pectin/insulin in deionised water and solidified with CaCl2 were monitored in diabetic rats given a glucose load after an 18-h fast. Short-term (5 weeks) metabolic effects were assessed in animals treated thrice daily with PI patches 8 hours apart. Animals treated with drug-free pectin and insulin (175 µg/kg, sc) acted as untreated and treated positive controls, respectively. Blood, muscle and liver samples were collected for measurements of selected biochemical parameters. Results After 5 weeks, untreated diabetic rats exhibited hyperglycaemia and depleted hepatic and muscle glycogen concentrations. Compared to untreated STZ-induced diabetic animals, OGT responses of diabetic rats transdermally applied PI patches exhibited lower blood glucose levels whilst short-term treatments restored hepatic and muscle glycogen concentrations. Plasma insulin concentrations of untreated diabetic rats were low compared with control non-diabetic rats. All PI treatments elevated plasma insulin concentrations of diabetic rats although the levels induced by high doses (9.57 and 16.80 µg/kg) were greater than those caused by low doses (2.47 and 3.99 µg/kg) but comparable to those in sc insulin treated animals. Conclusions The data suggest that the PI hydrogel matrix patch can deliver physiologically relevant amounts of pharmacologically active insulin. Novelty of the Work A new method to administer insulin into the bloodstream via a skin patch which could have potential future applications in diabetes management is reported. PMID:24987850

Hadebe, Silindile I.; Ngubane, Phikelelani S.; Serumula, Metse R.; Musabayane, Cephas T.

2014-01-01

190

Enhanced dermal and retinal vascular permeability in streptozotocin-induced type 1 diabetes in Wistar rats: blockade with a selective bradykinin B1 receptor antagonist.  

PubMed

The vascular complications associated with type 1 diabetes are to some extent related to the dysfunction of the endothelium leading to an increased vascular permeability and plasma extravasation in the surrounding tissues. The various micro- and macro-vascular complications of diabetes develop over time, leading to nephropathy, retinopathy and neuropathy and cardiomyopathy. In the present study, the effect of a novel selective bradykinin B1 receptor (BKB1-R) antagonist, R-954, was investigated on the changes of vascular permeability in the skin and retina of streptozotocin (STZ)-induced type 1 diabetic rats. Plasma extravasation increased in the skin and retina of STZ-diabetic rats after 1 week and persisted over 4 weeks following STZ injection. Acute treatment with R-954 (2 mg/kg, bolus s.c.) highly reduced the elevated vascular permeability in both 1- and 4-week STZ-diabetic rats. These results showed that the inducible BKB1-R subtype modulates the vascular permeability of the skin and retina of type 1 diabetic rats and suggests that BKB1-R antagonists could have a beneficial role in diabetic neuropathy and retinopathy. PMID:15544863

Lawson, Sibi R; Gabra, Bichoy H; Guérin, Brigitte; Neugebauer, Witold; Nantel, François; Battistini, Bruno; Sirois, Pierre

2005-01-15

191

In vitro toxicity and antidiabetic activity of a newly developed polyherbal formulation (MAC-ST/001) in streptozotocin-induced diabetic Wistar rats.  

PubMed

The present study was designed to investigate the hypoglycemic effect of an aqueous extract of MAC-ST/001 (a new polyherbal formulation) which was given once daily to rats at different doses. The animals were divided into diabetic and nondiabetic control groups. The duration of each experiment lasted from 1 week to 1 month, and the results were compared with that of the standard hypoglycemic drug glibenclamide (10 mg/kg), which was given once daily. In this study, biochemical and histopathological parameters were studied in streptozotacin (STZ) (single intraperitoneal injection of 55 mg/kg)-induced diabetic rats. The diabetic rats showed a significant (p?diabetes. Cytotoxicity of MAC-ST/001 formulation was also studied on C2C12, 3T3-L1, and HepG2 cells through MTT assay. Histological examination of the liver and pancreas of normal control, diabetic control, and drug-treated rats revealed significant results. Finally, it was concluded that administration of this MAC-ST/001 extract reversed most blood and tissue changes caused by STZ-induced diabetes in rats. PMID:23053765

Yadav, Deepak; Chaudhary, Anis Ahmad; Garg, Veena; Anwar, Mohammad Faiyaz; Rahman, Md Mahfooz-ur; Jamil, Sayed Sakir; Khan, Haider Ali; Asif, Mohd

2013-06-01

192

Comparison of effects of vanadium absorbed by Coprinus comatus with those of inorganic vanadium on bone in streptozotocin-diabetic rats.  

PubMed

The purpose of this study was to compare the effect of vanadium absorbed by Coprinus comatus (VACC) with inorganic vanadium (vanadium nitrate, IV) in preventing diabetes-related osteopenia in streptozotocin-diabetic rats. Sixty Wistar female rats used were divided into four groups: (1) normal rats (control), (2) diabetic rats, (3) diabetic rats treated with VACC, and (4) diabetic rats treated with vanadium nitrate. A standardized type 1-like diabetes model was induced by injection of streptozotocin. After the rats were treated orally with VACC and IV respectively, plasma glucose, body weights, micro-CT, biomechanical testing, and histomorphometry were examined. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Treatments were performed over a 12-week period. Both VACC and IV have a positive effect on plasma glucose and body weights of STZ-induced diabetic rats. However, treatment with IV only caused a 39.6 % decrease in glucose levels and a 14.6 % increase in body weights, whereas VACC decreased plasma glucose and increased body weights by up to 52.2 and 24.5 %, respectively. At the same time, VACC significantly improved trabecular microstructure and mechanical strength, while IV did not exhibit desirable such effects. Also, bone Ca and bone P were not significantly increased by IV. These results indicated that both VACC and IV have hypoglycemic activity on diabetic rats, while IV did not improve bone properties. In conclusion, this study suggests that VACC improves diabetes-related bone dysfunction, primarily by improving the diabetic states. PMID:22549703

Wang, Guangbin; He, Ming; Yi, Pei; Wang, Jiashi; Li, Bin; Li, Jianjun; Fu, Yonghui; Bai, Lunhao; Fu, Qin

2012-12-01

193

Acetyl l-carnitine corrects the altered peripheral nerve function of experimental diabetes  

Microsoft Academic Search

Acetyl-l-carnitine (ALC) has been shown to facilitate the repair of transected sciatic nerves. The effect of ALC (50 mg\\/kg\\/d) on the diminished nerve conduction velocity (NCV) of rats with streptozotocin (STZ)-induced hyperglycemia of 3 weeks' duration was evaluated. The aldose reductase inhibitor, sorbinil, which is reported to normalize the impaired NCV associated with experimental diabetes, was used as a positive

S. Lowitt; J. I. Malone; A. F. Salem; J. Korthals; S. Benford

1995-01-01

194

Time-course changes in left ventricular myocardial deformation in STZ-induced rabbits on velocity vector imaging  

PubMed Central

Objectives To clarify the time-course changes in left ventricular myocardial deformation using velocity vector imaging and to provide insights into our understanding of the cardiac pathophysiology in diabetes mellitus. Methods Thirty New Zealand white rabbits were randomly divided into either the control group (n?=?10) or the diabetes mellitus (DM) group (induced with STZ, n?=?20). For the myocardial deformation studies, echocardiography and syngo-vector velocity imaging (VVI) were performed at baseline and after 2, 4, 8, and 12 weeks in all of the rabbits. The left ventricular (LV) global longitudinal and circumferential strain and strain rate were measured. For histomorphological study of the heart structure, 2 of the STZ-induced rabbits were killed at 2, 4, 8, and 12 weeks. Routine hematoxylin and eosin staining was performed. Results At 2 weeks, the global longitudinal strain (GLS), systolic strain rate (GLSRs), and diastolic strain rate (GLSRd) were significantly lower in the DM group compared with the control group (-18.16% versus -24.00%, -1.86 s-1 versus -2.49 s-1, 1.93 s-1 versus 2.42 s-1, respectively, P?diabetes, the histoanatomical alterations intensified gradually beginning at 2 weeks. Conclusions The progressive impairments in LV myocardial deformation and structure occurred early in diabetic rabbits with normal LV ejection fraction (EF), FS, and E/A. VVI could be used to evaluate subtle cardiac dysfunction in the early phase of DM. PMID:24885095

2014-01-01

195

Effect of the administration of Solanum nigrum fruit on blood glucose, lipid profiles, and sensitivity of the vascular mesenteric bed to phenylephrine in streptozotocin-induced diabetic rats  

PubMed Central

Background Solanum nigrum fruit is traditionally used in Asia to manage, control, and treat diabetes but there is no scientific evidence of the efficacy of Solanum nigrum fruit in treatment of diabetes. We designed this study to investigate the effect of the administration of oral doses of aqueous extract from Solanum nigrum fruit on plasma glucose, lipid profiles, and the sensitivity of the vascular mesenteric bed to Phenylephrine in diabetic and non-diabetic rats. Material/Methods Animals were divided into 5 groups (n=10): 2 groups served as non-diabetic controls (NDC), and the other groups had diabetes induced with a single injection of streptozotocin (STZ). Solanum nigrum-treated chronic diabetic (CD-SNE) and Solanum nigrum-treated controls (ND-SNE) received 1g/l of Solanum nigrum added to drinking water for 8 weeks. The mesenteric vascular beds were prepared using the McGregor method. Results Administration of Solanum nigrum caused Ca/Mg ratio, plasma glucose, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), total cholesterol, and triglyceride concentrations to return to normal levels, and was shown to decrease alteration in vascular reactivity to vasoconstrictor agents. Conclusions Our results support the hypothesis that Solanum nigrum could play a role in the management of diabetes and the prevention of vascular complications in STZ-induced diabetic rats. PMID:23660828

Sohrabipour, Shahla; Kharazmi, Fatemah; Soltani, Nepton; Kamalinejad, Mohammad

2013-01-01

196

Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease  

PubMed Central

AIM: To explore the therapeutic role of globular adiponectin (gAd) in high-fat diet/streptozotocin (STZ)-induced type 2 diabetic rats with nonalcoholic fatty liver disease (NAFLD). METHODS: Seven rats were fed a basic diet (normal control group; NC) during the experiment. Experimental rats (14 rats) were given a high-fat diet for 4 wk and were then injected with STZ to induce type 2 diabetes mellitus (T2DM) and NAFLD. Half of the T2DM/NAFLD rats were randomly injected intraperitoneally with gAd for 7 d (gAd-treated group), while the other 7 rats (T2DM/NAFLD group) received 0.9% saline. Plasma biochemical parameters and insulin concentrations were measured. Liver histopathology was examined by hematoxylin-eosin staining. Insulin receptor expression in the liver was analyzed by immunohistochemical staining, Western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. RESULTS: Compared to the control group, the T2DM/NAFLD group had increased levels of glucolipid and decreased levels of insulin. Plasma glucose and lipid levels were decreased in the gAd-treated group, while serum insulin levels increased. The expression of insulin receptor in the T2DM/NAFLD group increased compared with the NC group, and gAd downregulated insulin receptor expression in the livers of T2DM/NAFLD rats. Steatosis of the liver was alleviated in the gAd-treated group compared to the T2DM/NAFLD group (NAS 1.39 ± 0.51 vs 1.92 ± 0.51, P < 0.05). CONCLUSION: Globular adiponectin exerts beneficial effects in T2DM rats with NAFLD by promoting insulin secretion, mediating glucolipid metabolism, regulating insulin receptor expression and alleviating hepatic steatosis. PMID:25356056

Ma, Hong; Cui, Fan; Dong, Jing-Jing; You, Guo-Ping; Yang, Xiang-Jiu; Lu, Hua-Dong; Huang, Yan-Ling

2014-01-01

197

Effect of Pleurotus tuber-regium Polysaccharides Supplementation on the Progression of Diabetes Complications in Obese-Diabetic Rats.  

PubMed

In this study, the effect of mushroom extracellular polysaccharides on fatty acid composition and liver peroxisome proliferator-activated receptor-alpha (PPAR-?) expression in obese-diabetic rats was investigated, and distinguished the association among anti-obesity, hypoglycemic and hypolipidemic properties. Extracellular polysaccharides from three different strains of Pleurotus tuber-regium were extracted and labeled as HP (high-percentage), MP (medium-percentage) and LP (low-percentage). Obese- diabetes (OD) was induced by chronic high-fat diet plus streptozotocin (STZ) injections. Simultaneously to the diet, polysaccharides were orally administered to OD groups (20 mg/kg body weight/8-week), and categorized into OD+HP, OD+MP and OD+LP groups (n = 10/group), respectively. High-fat diet plus STZ-induced hyperglycemia was prominently attenuated by polysaccharides. Increased fatty acid com- ponent n-6/n-3 ratio in liver and plasma of obese-diabetic rats was attenuated, while, reduced MUFA/ PUFA and MUFA/SFA ratios were restored (P < 0.01) with polysaccharides treatment. Furthermore, ele- vated serum total cholesterol, triglycerides and low-density lipoprotein (LDL) concentrations were controlled, and parallel restoration of decreased high-density lipoprotein (HDL) levels were found with polysaccharides supplementation. This hypolipidemic property might be associated with up-regulated liver PPAR-? mRNA expression and protein levels (P < 0.01). These findings concluded that stable fatty acid components and activated PPAR-? by polysaccharides may contribute to its hypoglycemic and hypolipidemic properties. Therefore, P. tuber-regium could be considered as nutritional supplement to treat diabetic complications. PMID:25246061

Huang, Hui-Yu; Korivi, Mallikarjuna; Yang, Hui-Ting; Huang, Chi-Chang; Chaing, Ying-Ying; Tsai, Ying-Chieh

2014-08-31

198

Therapeutic potential of some plant extracts used in Turkish traditional medicine on streptozocin-induced type 1 diabetes mellitus in rats.  

PubMed

Diabetes mellitus (DM) is known to impair many physiological functions. Some reports claim that medicinal plants can reduce these alterations caused by DM. The aim of this study was to investigate the therapeutic potential of aqueous-methanol extracts of Urtica dioica, Thymus vulgaris (TV), Myrtus communis (MC), Scolymus hispanicus (SH) and Cinnamomun zeylanicum (CZ) on streptozotocin (STZ)-induced type 1 DM in rats. Diabetes was induced via a single i.p. injection of STZ (65 mg/kg body weight). After 1 week to allow for development of diabetes, each plant extract was administered to diabetic rats separately at a dose of 100 mg/kg body weight daily for 28 days. The results showed that only SH extract significantly (P < 0.05) amended fasting blood glucose level. The lipid profile was ameliorated especially by supplementations of TV, MC and CZ extracts. Almost all plant extract treatments markedly (P < 0.05) increased reduced glutathione content and decreased lipid peroxidation levels of erythrocyte, plasma, retina and lens tissues. They also significantly (P < 0.05) amended erythrocyte catalase activity, levels of marker serum enzymes (except amylase), urea and blood urea nitrogen when compared to diabetic rats treated with nothing. Furthermore, none of the plant extracts counteracted body weight loss of diabetic rats. Our data revealed that the aforementioned plant extracts have remarkable potential to counteract DM-caused alterations, probably through their antioxidant and free radical-defusing effects. PMID:23052826

Ozkol, Halil; Tuluce, Yasin; Dilsiz, Nihat; Koyuncu, Ismail

2013-01-01

199

Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat.  

PubMed

Diabetic therapeutic and antioxidative effects of an ethereal fraction of the ethanolic extract of the seed of Syzygium cumini was studied in streptozotocin (STZ)-induced diabetic rats. Diabetes resulted in a significant elevation in the fasting blood glucose level and in the activity of hepatic glucose-6-phosphatase. There was diminution in the levels of glycogen in the liver and skeletal muscle along with diminution in the activities of hepatic glucose-6-phosphate dehydrogenase, catalase and peroxidase in diabetic rats when compared with controls. Hepatic levels of thiobarbituric acid reactive substance (TBARS) and conjugated dienes (CD) were elevated in respect to control. Oral coadministration of the above fraction to diabetic rats resulted in significant protection in all these parameters. Histological studies of the pancreas showed a qualitative diminution in the area and volume of the islet's of Langerhans, but coadministration of the specific fraction resulted in a significant recovery of the islet's of Langerhans. Chromatography study revealed that the used fraction was ferulic acid (FA). Treatment with FA in normoglycemic rats did not show any significant change in the levels of the selected biosensors. The possible hypothesis for the therapeutic effect of FA against diabetes may be due to its pancreatic beta-cell regenerative effect and/or due to its antioxidant properties. PMID:18560627

Mandal, S; Barik, B; Mallick, C; De, D; Ghosh, D

2008-03-01

200

Angiotensin-converting enzyme inhibition and angiotensin AT1 receptor blockade downregulate angiotensin-converting enzyme expression and attenuate renal injury in streptozotocin-induced diabetic rats.  

PubMed

Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-?1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. PMID:23733546

Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A

2013-07-01

201

Renoprotective effects of berberine and its possible molecular mechanisms in combination of high-fat diet and low-dose streptozotocin-induced diabetic rats.  

PubMed

Berberine (BBR), an effective compound of Chinese traditional herbal medicine, has preventive effects on diabetes and its complications. In this study, we investigated the therapeutic effects and underlying molecular mechanisms of BBR in rats with high-fat diet and streptozotocin (STZ)-induced diabetic nephropathy model. BBR (50, 100, 200 mg/kg/d) were orally administered to male Sprague-Dawley rats after STZ injection and conducted for 8 weeks. Renal damage was evaluated by kidney weight to body weight ratio (KW/BW), urine microalbumin (UMAlb), urine protein for 24 h (UP24 h), urine creatinine (UCr), and histological examination. Type IV collagen and transforming growth factor-beta1 (TGF-?1) were detected by immunohistochemistry and ultrastructure of glomeruli was observed. Fasting blood glucose (FBG),serum creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c) in serum and G protein-coupled receptor kinases (GRKs), cAMP in kidney were measured. Remarkable renal damage, hyperglycemia and hyperlipidemia were observed in DN rats. BBR could restore renal functional parameters, suppress alterations in histological and ultrastructural changes in the kidney tissues, improve glucose and lipid metabolism disorders, and increase cAMP levels compared with those of DN model group. Furthermore, BBR down-regulated total protein expression of GRK2, GRK3 and up-regulated expression of GRK6 of renal cortex in DN rats, but had a slight effects on GRK4 and GRK5. These studies demonstrate, for the first time, that BBR exerts renoprotection in high-fat diet and STZ-induced DN rats by modulating the proteins expression of GRKs in G protein- AC-cAMP signaling pathway. PMID:23196710

Wang, Feng Ling; Tang, Li Qin; Yang, Feng; Zhu, Ling Na; Cai, Ming; Wei, Wei

2013-03-01

202

Bradykinin B? antagonism inhibits oxidative stress and restores Na+K+ ATPase activity in diabetic rat peripheral nervous system.  

PubMed

Diabetic peripheral neuropathy is one the most common complications of diabetes mellitus and frequently results in clinically significant morbidities such as pain, foot ulcers and amputations. The diabetic condition progresses from early functional changes to late, poorly reversible structural changes. The chronic hyperglycemia measured alongside diabetes development is associated with significant damage and failure of various organs. In the present study diabetes was induced in male Wistar rats by a single dose of streptozotocin (STZ) and the association between the BKB1-R and the oxidative stress and Na+-K+ ATPase activity in nervous tissues was analysed. The results showed that the resulting hyperglycemia induced a reduction of the neuronal electrical function integrity and increased oxidative stress in the sciatic nerve homogenates of 30 days diabetic rats. Malondialdehyde (MDA) used as a marker of oxidative stress was elevated whereas Biological Antioxidant Potential (BAP), glutathion (GSH) levels and superoxide dismutase (SOD) activity were decreased. Treatment of the rats 3 days before the end of the 4 week period with the BKB1 antagonist R-954 restored the neuronal activity and significantly attenuated the oxidative stress as shown by the level of the various markers returning close to levels found in control rats. Our results suggest that the BKB1-R subtype is overexpressed in sciatic nerve during the STZ-induced diabetes development as evidenced by inhibitory effects of the BKB1-R antagonist R-954. The beneficial role of BKB1-R antagonist R-954 for the treatment of diabetic neuropathy is also suggested. PMID:23528517

Catanzaro, Orlando; Capponi, Jorgelina Aria; Michieli, Jose; Labal, Emilio; Di Martino, Irene; Sirois, Pierre

2013-06-01

203

The Effect of Chromium Picolinate Supplementation on the Pancreas and Macroangiopathy in Type II Diabetes Mellitus Rats  

PubMed Central

Purpose. The aim was to explore the effect of the chromium picolinate (CrPic) administration on the pancreas and macroangiopathy of type II diabetes mellitus rats. Methods. The type II diabetes mellitus (T2DM) rat model was induced by low-dose streptozotocin (STZ). The rats were randomly divided into 5 groups (ten rats in each group). After supplementing CrPic for 15 weeks, the histopathological examination was performed by hematoxylin-eosin (HE) staining. Serum insulin and NO level were determined by radioimmunoassay and colorimetry, respectively. Serum glycosylated hemoglobin (HbA1C), adiponectin (APN), advanced glycation end products (AGES), and apelin were measured by ELISA. Real-time reverse transcription polymerase chain reaction (RT-PCR) was applied for detecting the mRNA expression of APN and apelin. Results. After CrPic treatment, compared with the T2DM control group (group 2), pancreas sections stained with HE showed the completed pancreatic cells structure and no inflammatory infiltration in groups 4 and 5. In addition, the levels of serum NO and insulin were significantly increased and the serum levels of HbA1C, AGES, APN, and apelin were significantly decreased in groups 4 and 5 compared with group 2. The mRNA expression of APN and apelin in groups 4 and 5 was also recovered to the normal level. Conclusion. CrPic can recover the function of ?-cells and alleviate macroangiopathy in STZ-induced T2DM rats. PMID:25054160

Huang, Shan; Peng, Wenfang; Jiang, Xiaohong; Shao, Kan; Xia, Lili; Tang, Yubin; Qiu, Jiayin

2014-01-01

204

Investigation of in vivo antioxidant property of Abelmoschus esculentus (L) moench. fruit seed and peel powders in streptozotocin-induced diabetic rats  

PubMed Central

Background: Abelmoschus esculentus (L.) Moench. fruit is a commonly consumed vegetable in many countries due to its rich medicinal value. However, till date, in vivo antioxidant property of A. esculentus has not been scientifically documented in animal models. Objective: The present investigation was aimed to evaluate the in vivo antioxidant property of A. esculentus (L.) Moench. peel and seed powder (AEPP and AESP) in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: In rats, acute toxicity assessment of AEPP and AESP at 2 g/kg did not show any toxicity. Diabetes was induced by STZ (60 mg/kg, i.p.) injection and diabetic rats received AEPP (100 and 200 mg/kg) as well as AESP (100 and 200 mg/ kg) orally up to 28 days. At the end of the 28 day, diabetic rats were killed and liver, kidney and pancreas were collected to determine superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and lipid peroxidation level. Results: In diabetic rats, significant (P < 0.001) reduction of liver, kidney and pancreas SOD, CAT, GPx, GSH levels and increase in thiobarbituric acid reactive substances (TBARS) were observed as compared to normal control rats. Administration of both doses of AEPP and AESP significantly (P < 0.001 and P < 0.01) increased liver, kidney and pancreas SOD, CAT, GPx, GSH levels and decreased TBARS (P < 0.001) levels in diabetic rats compared to diabetic control rats. Conclusion: Our findings confirmed that A. esculentus peel and seed powder has significant in vivo antioxidant property in diabetic rats. PMID:23326089

Sabitha, Vijayakumar; Ramachandran, Subramaniam; Naveen, Koikaramparambil Robert; Panneerselvam, Kaliyamoorthy

2012-01-01

205

Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNF? Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKC?, PKC? and PKC?), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-?B) and TGF-?1 pathways were involved in this pathophysiology. Besides, TNF? was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death. PMID:25233093

Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

2014-01-01

206

Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes.  

PubMed

Heterogeneous myocardial sympathetic denervation complicating diabetes has been invoked as a factor contributing to sudden unexplained cardiac death. In subjects with diabetic autonomic neuropathy (DAN), distal left ventricular (LV) denervation contrasts with preservation of islands of proximal innervation, which exhibit impaired vascular responsiveness. The aims of this study were to determine whether this heterogeneous pattern of myocardial sympathetic denervation occurs in a rat model of diabetes and to explore a potential association with regional fluctuations in myocardial nerve growth factor (NGF) protein. Myocardial sympathetic denervation was characterized scintigraphically using the sympathetic neurotransmitter analog C-11 hydroxyephedrine ([11C]HED) and compared with regional changes in myocardial NGF protein abundance and norepinephrine content after 6 and 9 months in nondiabetic (ND) and streptozotocin-induced diabetic (STZ-D) rats. In ND rats, no difference in [11C]HED retention or norepinephrine content was detected in the proximal versus distal myocardium. After 6 months, compared with ND rats, myocardial [11C]HED retention had declined in the proximal segments of STZ-D rats by only 9% (NS) compared with a 33% decrease in the distal myocardium (P < 0.05). Myocardial norepinephrine content was similar in both ND and STZ-D rats. At 6 months, LV myocardial NGF protein content in STZ-D rats decreased by 52% in the proximal myocardial segments (P < 0.01 vs. ND rats) and by 82% distally (P < 0.01 vs. ND rats, P < 0.05 vs. proximal segments). By 9 months, [11C]HED retention had declined in both the proximal and distal myocardial segments of the STZ-D rats by 42% (P < 0.01 vs. ND rats), and LV norepinephrine content and NGF protein were decreased in parallel. Therefore, 6 months of STZ-induced diabetes results in heterogeneous cardiac sympathetic denervation in the rat, with maximal denervation occurring distally, and is associated with a proximal-to-distal gradient of LV NGF protein depletion. It is tempting to speculate that regional fluctuations of NGF protein in the diabetic myocardium contribute to heterogeneous cardiac sympathetic denervation complicating diabetes. PMID:10078563

Schmid, H; Forman, L A; Cao, X; Sherman, P S; Stevens, M J

1999-03-01

207

Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats.  

PubMed

Liver plays a vital role in blood glucose homeostasis. Recent studies have provided considerable evidence that hepatic glucose production (HGP) plays an important role in the development of fasting hyperglycemia in diabetes. From this perspective, diminution of HGP has certainly been considered for the treatment of diabetes. In the present study, we have analyzed the modulatory effects of fisetin, a flavonoid of strawberries, on the expression of key enzymes of carbohydrate metabolism in STZ induced experimental diabetic rats. The physiological criterions such as food and fluid intake were regularly monitored. The levels of blood glucose, plasma insulin, hemoglobin and glycosylated hemoglobin were analyzed. The mRNA and protein expression levels of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were determined by immunoblot as well as PCR analysis. Diabetic group of rats showed significant increase in food and water intake when compared with control group of rats. Upon oral administration of fisetin as well as gliclazide to diabetic group of rats, the levels were found to be decreased. Oral administration of fisetin (10 mg/kg body weight) to diabetic rats for 30 days established a significant decline in blood glucose and glycosylated hemoglobin levels and a significant increase in plasma insulin level. The mRNA and protein expression levels of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), were decreased in liver tissues upon treatment with fisetin. The results of the present study suggest that fisetin improves glucose homeostasis by direct inhibition of gluconeogenesis in liver. PMID:25064342

Prasath, Gopalan Sriram; Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai

2014-10-01

208

Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes.  

PubMed

Hyperglycemia has been linked to increased oxidative stress, a resultant endothelial cell dysfunction, and, ultimately, apoptosis. Heme oxygenases (HO-1/HO-2) and the products of their activity, biliverdin/bilirubin and carbon monoxide (CO), play a physiological role in the vascular system. The effects of heme-mediated HO-1 induction, CO, and biliverdin on urinary 8-epi-isoprostane PGF(2alpha) and endothelial cell sloughing were examined in an animal model of streptozotocin (STZ)-induced diabetes. Hyperglycemia itself did not affect HO-1 and HO-2 protein levels, but caused a net decrease in HO activity. Weekly heme administration induced HO-1 protein, as demonstrated by immunohistochemistry and Western blot analyses. Administration of biliverdin or the CO donor, CORM-3, decreased urinary 8-epi-isoprostane PGF(2alpha), P < 0.5 compared to diabetes. Hyperglycemia increased endothelial cell sloughing; 8.2 +/- 0.8 cells/ml blood in control rats vs. 48 +/- 4.8 cells/ml blood in diabetic rats (P < 0.05). Heme administration significantly increased endothelial cell sloughing in diabetic rats (98 +/- 8.1 cells/ml blood, P < 0.0007) whereas biliverdin modestly decreased endothelial cell sloughing (26 +/- 3.5 cells/ml blood, P < 0.003). Administration of CORM-3 to diabetic rats resulted in a significant decrease in endothelial cell sloughing to 21.3 +/- 2.3 (P < 0.001). Administration of SnMP to CORM-3 diabetic rats only partially reversed the protective effects of CORM-3 on endothelial cell sloughing from 21.3 +/- 2.3 to 29 +/- 2.1 cells/ml, thus confirming a direct protective of CO, in addition to the ability of CORM-3 to induce HO-1 protein. These results demonstrate that exogenously administered CO or bilirubin can prevent endothelial cell sloughing in diabetic rats, likely via a decrease in oxidative stress, and thus represents a novel approach to prophylactic vascular protection in diabetes. PMID:16785033

Rodella, Luigi; Lamon, Brian D; Rezzani, Rita; Sangras, Bhavani; Goodman, Alvin I; Falck, John R; Abraham, Nader G

2006-06-15

209

Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats.  

PubMed

Persistent hyperglycemia is associated with chronic oxidative stress which contributes to the development and progression of diabetes-associated complications. The sensitivity of pancreatic ?-cells to oxidative stress has been attributed to their low content of antioxidants compared with other tissues. Bioactive compounds with potent antidiabetic properties have been shown to ameliorate hyperglycemia mediated oxidative stress. Recently, we have reported that oral administration of fisetin (10 mg/Kg b.w.), a bioflavonoid found to be present in strawberries, persimmon, to STZ-induced experimental diabetic rats significantly improved normoglycemia. The present study was aimed to evaluate the antioxidant potential of fisetin in both in vitro and in vivo. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg body weight). Fisetin was administered orally for 30 days. At the end of the study, all animals were killed. Blood samples were collected for the biochemical estimations. The antioxidant status was evaluated. Histological examinations were performed on pancreatic tissues. Fisetin treatment showed a significant decline in the levels of blood glucose, glycosylated hemoglobin (HbA1c), NF-kB p65 unit (in pancreas) and IL-1? (plasma), serum nitric oxide (NO) with an elevation in plasma insulin. The treatment also improved the antioxidant status in pancreas as well as plasma of diabetic rats indicating the antioxidant potential of fisetin. In addition, the results of DPPH and ABTS assays substantiate the free radical scavenging activity of fisetin. Histological studies of the pancreas also evidenced the tissue protective nature of fisetin. It is concluded that, fisetin possesses antioxidant and anti-inflammatory property and may be considered as an adjunct for the treatment of diabetes. PMID:23277230

Prasath, Gopalan Sriram; Sundaram, Chinnakrishnan Shanmuga; Subramanian, Sorimuthu Pillai

2013-10-01

210

Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats  

PubMed Central

Background Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. Albizzia Lebbeck Benth. stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of Albizzia Lebbeck Benth. in streptozotocin induced diabetic rats. Methods The powdered stem bark of Albizzia Lebbeck Benth.. was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of Albizzia Lebbeck Benth. (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated heamoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats. Results Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a momentous decrease in fasting blood glucose, glycated heamoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p?STZ induced diabetic rats. Histopathological studies suggest the diminution in the pancreatic, liver and cardiac muscle damage. Conclusion Our research exertion clearly indicates the considerable antihyperglycemic, antihyperlipidemic, antioxidant & pancreas/renal/hepatic/cardiac protective action of ALEx. PMID:25026962

2014-01-01

211

S-allylcysteine Improves Streptozotocin-Induced Alterations of Blood Glucose, Liver Cytochrome P450 2E1, Plasma Antioxidant System, and Adipocytes Hormones in Diabetic Rats  

PubMed Central

Background: S-allylcysteine, a garlic derivative, could have a protective effect against pathogenesis of diabetes mellitus. Objectives: Sustained free radical generation and oxidative damage to system leads to the final conclusion phase of diabetes and also it coexists with a constant diminution in the antioxidant status.The present study aims to evaluate the therapeutic effects of S-allylcysteine (SAC) against adipocytes hormones and antioxidant defense systems of plasma and erythrocytes of treptozotocin (STZ) induced diabetes in rats. Materials and Methods: Diabetic rats were administered SAC (150 mg/kg b.w) orally for 45 days. At 46th day, the rats were anesthetized, and blood and liver sample were collected for analyzing glucose, plasma insulin, CYP2E1 activity, Thiobarbituric acid reactive substances (TBARS), hydroperoxide, enzymatic and nonenzymatic antioxidants, reduced glutathione (GSH), ceruloplasmin, plasma leptin, and adiponectin. Results; The levels of glucose, CYP2E1 activity, Thiobarbituric acid reactive substances (TBARS), hydroperoxide, and ceruloplasmin were increased significantly; whereas, the levels of plasma insulin, reduced glutathione, enzymatic and nonenzymatic antioxidants, leptin and adiponectin were decreased in experimental diabetic rats. Administration of SAC to diabetic rats led to a decrease in the levels of glucose, CYP2E1 activity, TBARS, and ceruloplasmin. In addition, the levels of plasma insulin, enzymatic and nonenzymatic antioxidants leptin and adiponectin were increased in SAC treated diabetic rats. Gliclazide, a standard drug for diabetes, was used for the comparative purpose. Conclusions: The results of the present investigation suggest that SAC could be used as a food supplement in the treatment of diabetes characterized by provoked antioxidant status, altered blood glucose, and hormones level. PMID:24719626

Saravanan, Ganapathy; Ponmurugan, Ponnusamy

2013-01-01

212

Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein  

PubMed Central

Background Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. Results The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of ?-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-?, IL-1? and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. Conclusions WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats. PMID:23883360

2013-01-01

213

Therapeutic effects of 15 Hz pulsed electromagnetic field on diabetic peripheral neuropathy in streptozotocin-treated rats.  

PubMed

Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague-Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN. PMID:23637830

Lei, Tao; Jing, Da; Xie, Kangning; Jiang, Maogang; Li, Feijiang; Cai, Jing; Wu, Xiaoming; Tang, Chi; Xu, Qiaoling; Liu, Juan; Guo, Wei; Shen, Guanghao; Luo, Erping

2013-01-01

214

Comparison of the effects of fresh leaf and peel extracts of walnut (Juglans regia L.) on blood glucose and ?-cells of streptozotocin-induced diabetic rats  

PubMed Central

There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intra peritoneally. Thirty male Wistar rats divided into five groups, to evaluate the hypoglycemic and pancreas ?-cells regenerative effects of oral methanolic extracts of leaf and fruit peel of walnut. Rats were made diabetic by intravenous (IV) injection of 50 mg kg-1 streptozotocin (STZ). Negative control group did not get STZ and any treatment. Positive control, leaf extract, peel extract and insulin groups were treated orally by extract solvent, 200 mg kg-1 leaf extract, 200 mg kg-1 peel extract and 5 IU kg-1 of subcutaneous neutral protamine Hagedorn (NPH) insulin, respectively. Four weeks later, blood was collected for biochemical analysis and pancreases were removed for ?-cells counts in histological sections. Diabetes leads to increase of fast blood sugar (FBS) and HbA1c, and decrease of ?-cell number and insulin. FBS decreased only in leaf extract group. HbA1c decreased in leaf extract and insulin groups. The ?-cells number increased in leaf and peel extract groups. Insulin increased moderately in all treatment groups. We showed the proliferative properties of leaves and peel of Juglans regia L. methanolic extract in STZ- induced diabetic rats, which was accompanied by hypoglycemic effect of leaf extract.

Javidanpour, Somaye; Fatemi Tabtabaei, Seyed Reza; Siahpoosh, Amir; Morovati, Hasan; Shahriari, Ali

2012-01-01

215

Upregulation of PPAR? by Aegle marmelos ameliorates insulin resistance and ?-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats.  

PubMed

The global epidemic of type 2 diabetes demands the rapid evaluation of new and accessible interventions. This study investigated whether Aegle marmelos fruit aqueous extract (AMF; 250, 500 and 1000?mg/kg) improves insulin resistance, dyslipidemia and ?-cell dysfunction in high fat diet fed-streptozotocin (HFD-STZ)-induced diabetic rats by modulating peroxisome proliferator-activated receptor-? (PPAR?) expression. The serum levels of glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of ?-cell function (HOMA-B), lipid profile, TNF-? and IL-6 were evaluated. Further, the TBARS level and SOD activity in pancreatic tissue and PPAR? protein expression in liver were assessed. In addition, histopathological and ultrastructural studies were performed to validate the effect of AMF on ?-cells. The HFD-STZ treated rats showed a significant increase in the serum levels of glucose, insulin, HOMA-IR, TNF-?, IL-6, dyslipidemia with a concomitant decrease in HOMA-B and PPAR? expression. Treatment with AMF for 21?days in diabetic rats positively modulated the altered parameters in a dose-dependent manner. Furthermore, AMF prevented inflammatory changes and ?-cell damage along with a reduction in mitochondrial and endoplasmic reticulum swelling. These findings suggest that the protective effect of AMF in type 2 diabetic rats is due to the preservation of ?-cell function and insulin-sensitivity through increased PPAR? expression. PMID:21351301

Sharma, Ashok Kumar; Bharti, Saurabh; Goyal, Sameer; Arora, Sachin; Nepal, Saroj; Kishore, Kamal; Joshi, Sujata; Kumari, Santosh; Arya, Dharamvir Singh

2011-10-01

216

Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats.  

PubMed

Type 1 and 2 diabetes are associated with dysfunction in multiple hormone systems, as well as increased sympathetic nerve activity, which may contribute to the development of diabetic complications. In other pathologies, such as myocardial infarction, increased sympathetic drive is associated with neuroinflammation and microglial activation in the hypothalamic paraventricular nucleus (PVN), a brain region that regulates sympathetic drive and multiple endocrine responses. In the present study, we used immunohistochemistry to study microglial and neuronal activation in the PVN and related brain regions in streptozotocin (STZ)-induced diabetic rats. As expected, STZ treatment was associated with elevated blood glucose within 1 week. STZ injections also caused neuronal activation in the PVN and superoptic nucleus (SON) but not in the nucleus tractus solitarius (NTS), which was evident by 6 weeks. STZ-treated rats showed increased plasma osmolarity, which would be expected to activate PVN and SON neurones. There was no apparent increase in histochemical markers of microglial activation, including phospho-p38, phospho-extracellular signal regulated kinase, P2X4 receptor or interleukin 1-? even at 10 weeks after STZ-treatment. However, we did see a significant increase in the percentage of microglia with an activated morphology in the PVN, SON and NTS, although not in surrounding hypothalamic, brainstem or cortical regions. These morphological changes included a significant reduction in microglial process length and were evident by 8 weeks but not 6 weeks. The delayed onset of microglial changes compared to neuronal activation in the PVN and SON suggests the over-excitation of neurones as a mechanism of microglial activation. This delayed microglial activation may, in turn, contribute to the endocrine dysregulation and the elevated sympathetic nerve activity reported in STZ-treated rats. PMID:24762326

Rana, I; Badoer, E; Alahmadi, E; Leo, C H; Woodman, O L; Stebbing, M J

2014-07-01

217

Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats.  

PubMed

The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-?, IL1-? and IFN-?), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. PMID:25541178

Rashid, Kahkashan; Sil, Parames C

2015-02-01

218

Inhibitory effect of nifedipine on tumor necrosis factor alpha-induced neovascularization in cultured choroidal explants of streptozotocin-diabetic rat.  

PubMed

We have previously reported that the Nepsilon (carboxymethyl)lysine (CML) adduct, a major structure of an advanced glycation end product, facilitates proliferation of CD34+ endothelial progenitor cells budded from cultured choroidal explants and produces immature vessel-like structures in fibrin gel. The CML adduct is accumulated and facilitates immature neovascularization in cultured choroidal explants of streptozotocin (STZ)-induced diabetic rat. The CML-enhanced neovascularization activity is associated with the actions of tumor necrosis factor (TNF) alpha, vascular endothelial growth factor and platelet-derived growth factor released from the choroidal explant (Kobayashi et al., Biol. Pharm. Bull., 27, 1382-1387 (2004); 27, 1565-1571 (2004)). The present study was investigated an inhibitory effect of a dihydropyridine calcium antagonist nifedipine on TNF alpha-induced choroidal neovascularization in the STZ-diabetic rat. TNF alpha (1-100 ng/ml) increased neovascularization of cultured choroidal explants in the age-matched normal rat but did not increase it in the diabetic rat. Anti-TNF alpha antibody (1 : 1000) decreased the neovascularization in the diabetic rat but not in the normal rat. Nifedipine (1 microM) inhibited TNF alpha-induced neovascularization of the normal choroidal explant in a non-competitive manner. Nifedipine (1 microM) also inhibited the diabetic state-induced neovascularization and its inhibitory action was reversed by TNF alpha (1-10 ng/ml). In conclusion, STZ-diabetic state facilitated choroidal neovascularization through the release of TNF alpha. Nifedipine inhibited the action of TNF alpha probably by blocking voltage-dependent Ca2+ channels in the endothelial progenitor cells of the diabetic choroid. PMID:15684477

Kobayashi, Shinjiro; Fukuta, Mizuki; Suzuki, Miho; Tsuneki, Hiroshi; Kimura, Ikuko

2005-02-01

219

Increase of angiotensin-converting enzyme activity and peripheral sympathetic dysfunction could contribute to hypertension development in streptozotocin-induced diabetic rats.  

PubMed

Diabetes augments the risk of hypertension. Although several factors have been implicated in the development of such hypertensive state, we designed this study to investigate blood pressure development, the activity of angiotensin-converting enzyme (ACE) in blood as well as sympathetic neurotransmission in the vas deferens of diabetic rats. We used streptozotocin (STZ)-induced diabetic rats (60 mg/kg) in order to evaluate the systolic blood pressure (SBP), ACE activity and peripheral sympathetic neurotransmission. We observed the following changes of parameters: increase of SBP, decrease of heart rate, augmentation of plasma ACE activity, enhancement of phasic and tonic vas deferens contractions elicited by electrical stimulation at 5 Hz, increase of maximal response to noradrenaline (NA) and decrease of adenosine triphosphate (ATP)-elicited contraction of vasa deferentia. The results reveal that in the development of hypertension in diabetic rats, augmentation of circulating ACE activity precedes the sympathetic dysfunction. Additionally, it seems that the purinergic and noradrenergic neurotransmission is compromised. PMID:23975725

Musial, Diego C; da Silva Júnior, Edilson D; da Silva, Regiane M; Miranda-Ferreira, Regiane; Lima-Landman, M Teresa R; Jurkiewicz, Aron; García, Antonio G; Jurkiewicz, Neide H

2013-11-01

220

The dendrites of granule cell layer neurons are the primary injury sites in the "Brain Diabetes" rat.  

PubMed

We previously demonstrated that rats that receive dorsal third ventricle (3V) streptozotocin (STZ) injections (STZ-3V-rats) exhibit cognitive decline as measured by the Morris Water Maze (MWM) and can be used as an animal model of Alzheimer's disease (AD). Immunohistochemical studies of the hippocampal formations of these animals have revealed significant changes in cerebral insulin signalling pathways, as well as marked increases of amyloid beta (Ab) deposition. Here, we performed Sholl analyses of granule cell layer dendrites and measured dendrite spine densities to assess the effect of STZ on hippocampal morphology. In STZ-3V rats as the results, more branching, complex dendrite arborisation, and increased soma size of the granule cells were observed, while spine densities were decreased in all three spine types. An intraventricular injection of a long-acting insulin analogue improved STZ-induced behavioural and immunohistochemical changes. Nevertheless, dendrite spine densities remained diminished, presumably due to overall null changes since new spine formation due to insulin stimulation has been compensated by loss of old spines. It is concluded that cognitive decline in the "Brain Diabetes" rats is primarily due to impaired intracerebral insulin signalling and the ultimate results were injured excitatory inputs through the perforant pathway. PMID:25476563

Shingo, Akiko Sheala; Mervis, Ronald F; Kanabayashi, Tomomichi; Kito, Shozo; Murase, Toshio

2015-03-01

221

Ameliorating effect of mother tincture of Syzygium jambolanum on carbohydrate and lipid metabolic disorders in streptozotocin-induced diabetic rat: Homeopathic remedy  

PubMed Central

Background: Syzygium jambolanum (S jambolanum) is widely used in homeopathy for treating patients with diabetes mellitus. In the present study, an attempt has been made to investigate the remedial effect of homeopathic drug S jambolanum on carbohydrate and lipid metabolic disorders on streptozotocin induced diabetic rat. Materials and Methods: Diabetes induction in Wistar strain rat was performed as per standard method using streptozotocin at the dose of 4 mg/100 gm body weight. Activities of carbohydrate metabolic enzymes in hepatic tissue, and glycogen content in hepatic and muscular tissues were assessed biochemically following the standard protocols. Serum lipid profile level and activities of GOT and GPT in serum were measured as per standard method using specific kits. Results: The homeopathic drug, mother tincture of S jambolanum significantly decreased fasting blood glucose levels and improved carbohydrate metabolic key enzyme activities in hepatic tissue i.e., hexokinase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase in diabetic rats. Alongside, serum lipid profile biomarkers i.e., triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc) and high density lipoprotein cholesterol (HDLc) levels were significantly ameliorated in homeopathic drug supplemented diabetic animals in compared with the untreated diabetic animal. Side by side, the S jambolanum has the capacity to attenuate diabetes induced hepatic injury in model animal, which has been assessed here by the recovery of GOT and GPT activities in serum of drug treated diabetic animal. Conclusion: The result of the present study indicated that the homeopathic drug S jambolanum (mother tincture) has a protective effect on diabetic induced carbohydrate and lipid metabolic disorders in STZ-induced diabetic animal. PMID:23633838

Maiti, Soumyajit; Ali, Kazi M.; Jana, Kishalay; Chatterjee, Kausik; De, Debasis; Ghosh, Debidas

2013-01-01

222

Diabetic Complications in Obese Type 2 Diabetic Rat Models  

PubMed Central

We overviewed the pathophysiological features of diabetes and its complications in obese type 2 diabetic rat models: Otsuka Long-Evans Tokushima fatty (OLETF) rat, Wistar fatty rat, Zucker diabetic fatty (ZDF) rat and Spontaneously diabetic Torii (SDT) fatty rat. Pancreatic changes with progression of diabetes were classified into early changes, such as islet hypertrophy and degranulation of ? cells, and degenerative changes, such as islet atrophy and fibrosis of islet with infiltration of inflammatory cells. Renal lesions in tubuli and glomeruli were observed, and nodular lesions in glomeruli were notable changes in OLETF and SDT fatty rats. Among retinal changes, folding and thickening were interesting findings in SDT fatty rats. A decrease of motor nerve conduction velocity with progression of diabetes was presented in obese diabetic rats. Other diabetic complications, osteoporosis and sexual dysfunction, were also observed. Observation of bone metabolic abnormalities, including decrease of osteogenesis and bone mineral density, and sexual dysfunction, including hypotestosteronemia and erectile dysfunction, in obese type 2 diabetic rats have been reported. PMID:24770637

Katsuda, Yoshiaki; Ohta, Takeshi; Miyajima, Katsuhiro; Kemmochi, Yusuke; Sasase, Tomohiko; Tong, Bin; Shinohara, Masami; Yamada, Takahisa

2014-01-01

223

The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.  

PubMed

This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4)  M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 ?M). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. PMID:25382267

Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

2014-11-01

224

Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: distinct vasculopathic profile of major key organs.  

PubMed

Diffuse vasculopathy is a common feature of the morbidity and increased mortality associated with insulino-dependent type 1 diabetes. Increased vascular permeability leading to plasma extravasation occurs in surrounding tissues following endothelial dysfunction. Such micro- and macro-vascular complications develop over time and lead to oedema, hypertension, cardiomyopathy, renal failure (nephropathy) and other complications (neuropathy, retinopathy). In the present investigation, we studied the effect of a selective bradykinin B(1) receptor antagonist, R-954, on the enhanced vascular permeability in streptozotocin (STZ)-induced diabetic Wistar rats compared with age-matched controls. Plasma extravasation was determined using Evans blue dye in selected target tissues (left and right heart atria, ventricles, lung, abdominal and thoracic aortas, liver, spleen, renal cortex and medulla), at 1 and 4 weeks following STZ administration. The vascular permeability was significantly increased in the aortas, cortex, medulla, and spleen in 1-week STZ rats and remained elevated at 4 weeks of diabetes. Both atria showed an increased vascular permeability only after 4-week STZ-administration. R-954 (2 mg/kg, bolus, s.c.), given 2 h prior to Evans blue dye, to 1- and 4-week diabetic rats significantly inhibited (by 48-100%) plasma leakage in most tested tissues affected by diabetes with no effect in healthy rats. These results showed that the inducible bradykinin B(1) receptor subtype participates in the modulation of the vascular permeability in diabetic rats and suggest that selective bradykinin B(1) receptor antagonism could have a beneficial role in reducing diabetic vascular complications. PMID:15878326

Lawson, Sibi R; Gabra, Bichoy H; Nantel, François; Battistini, Bruno; Sirois, Pierre

2005-05-01

225

Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.  

PubMed

Diabetes mellitus causes derangement of carbohydrate, protein and lipid metabolism which eventually leads to a number of secondary complications. Terminalia bellerica is widely used in Indian medicine to treat various diseases including diabetes. The present study was carried out to isolate and identify the putative antidiabetic compound from the fruit rind of T. bellerica and assess its chemico-biological interaction in experimental diabetic rat models. Bioassay guided fractionation was followed to isolate the active compound, structure was elucidated using (1)H and (13)C NMR, IR, UV and mass spectrometry and the compound was identified as gallic acid (GA). GA isolated from T. bellerica and synthetic GA was administered to streptozotocin (STZ)-induced diabetic male Wistar rats at different doses for 28 days. Plasma glucose level was significantly (p<0.05) reduced in a dose-dependent manner when compared to the control.Histopathological examination of the pancreatic sections showed regeneration of ?-cells of islets of GA-treated rats when compared to untreated diabetic rats. In addition, oral administration of GA (20mg/kg bw) significantly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, creatinine and at the same time markedly increased plasma insulin, C-peptide and glucose tolerance level. Also GA restored the total protein, albumin and body weight of diabetic rats to near normal. Thus our findings indicate that gallic acid present in fruit rind of T. bellerica is the active principle responsible for the regeneration of ?-cells and normalizing all the biochemical parameters related to the patho-biochemistry of diabetes mellitus and hence it could be used as a potent antidiabetic agent. PMID:21078310

Latha, R Cecily Rosemary; Daisy, P

2011-01-15

226

Effect of Hydroalcoholic and Buthanolic Extract of Cucumis sativus Seeds on Blood Glucose Level of Normal and Streptozotocin-Induced Diabetic Rats  

PubMed Central

Objective(s) Seed of Cucumis sativus Linn. is one of the herbal remedies has been traditionally used for diabetes mellitus treatment. We studied the effect of hydroalcoholic and buthanolic extract obtained from C. sativus seeds in a model of streptozotocin (STZ)-induced diabetic (type I) rats. Materials and Methods Normal and diabetic male Wistar rats (STZ, 60 mg/kg, intraperitoneal) were treated daily with vehicle (5 ml/kg), hydroalcoholic (0.2, 0.4, 0.8 g/kg) and buthanolic extract (0.2, 0.4, 0.8 g/kg) and glibenclamide (1 & 3 mg/kg) separately and treatment was continued for 9 days. Blood samples were taken at 0, 1, 2, 3, 4, 8 hr of the first day and the day 9 (216 hr) of treatments for measuring the blood glucose levels. Results Our findings indicated that C. sativus seeds extracts were not effective on reducing blood glucose levels (BGL) in normal and diabetic rats for initial phase of treatments. However, both hydroalcoholic (22.5-33.8 %) and buthanolic (26.6- 45.0 %) extracts were effective on diminishing BGL and controling the loss of body weight in diabetic rats compared to controls after 9 days of continued daily therapy. Glibenclamide on the other hand, had hypoglycemic action in normal (27.8-31.0 %) and diabetic rats (36.0-50.0 %) after acute and prolonged treatments. Conclusion It is concluded that C. sativus seeds extracts (hydroalcoholic and buthanolic) had a role in diabetes control probably through a mechanism similar to euglycemic agents. Further studies are warranted to clarify the mechanisms and the exact role of this herbal medicine in control of metabolic disorders. PMID:23493930

Minaiyan, Mohsen; Zolfaghari, Behzad; Kamal, Amin

2011-01-01

227

Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats: attenuation of diabetic nephropathy in rats.  

PubMed

Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. To prevent the development of this disease and to improve advanced kidney injury, effective therapies directed toward the key molecular target are required. In this paper, the efficacy of fenugreek to restore the kidney function of diabetic rats via its antioxidant and anti-inflammatory activities has been studied. Novel data showing the efficacy of fenugreek to attenuate progression of diabetic nephropathy and production of interleukin-6 (IL-6) in rats compared with a diabetic untreated group were obtained. Rats were classified into five groups; control, diabetic untreated, and three diabetic groups treated with fenugreek, rosiglitazone, and metformin. Treatment with fenugreek has been continued for 12 weeks. Fenugreek was found to significantly reduce the high levels of glucose, urea, creatinine, sodium, potassium, and IL-6 in serum compared with the diabetic untreated group. In addition, levels of malondialdehyde and IL-6 in the kidney homogenate were significantly reduced as a result of the fenugreek treatment compared with the diabetic untreated group. Moreover, concentration of GSH and the activity of both superoxide dismutase and catalase were considerably increased in the diabetic treated groups compared with the diabetic untreated group. Furthermore, glomerular mesangial expansion was reduced in the treated animal groups. These findings suggest a therapeutic potential of fenugreek against diabetic nephropathy, explain its antioxidative/anti-inflammatory properties and provide a direction for future research. PMID:22237966

Sayed, Ahmed Amir Radwan; Khalifa, Mahmoud; Abd el-Latif, Fathy Fahim

2012-06-01

228

Functional and Molecular Characterization of Hyposensitive Underactive Bladder Tissue and Urine in Streptozotocin-Induced Diabetic Rat  

PubMed Central

Background The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats. Methodology/Principal Findings Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12. Conclusions/Significance DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder. PMID:25050870

Chuang, Yao-Chi; Lee, Wei-Chia; Yoshimura, Naoki; Huang, Chao-Cheng; Rajaganapathy, Bharathi; Chancellor, Michael B.

2014-01-01

229

Influence of Helicteres isora administration for diabetes mellitus: Its effect on erythrocyte membrane and antioxidant status.  

PubMed

In this study the effect of Helicteres isora L. on erythrocyte membrane bound enzymes and antioxidants activity in plasma and erythrocytes of streptozotocin (STZ) induced diabetic model was investigated. The aqueous bark extract of H. isora was administered orally for 30 days to control and STZ induced diabetic rats. The effect of bark extract on glucose, insulin, haemoglobin, glycosylated haemoglobin, TBARS, hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx), glutathione-S-transferase (GST), vitamins C and E, reduced glutathione (GSH) and membrane bound enzymes were studied. The levels of glucose, glycosylated haemoglobin, TBARS, hydroperoxide, and vitamin E were increased significantly whereas the level of insulin, haemoglobin, as well as antioxidants, membrane bound total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase were decreased significantly in STZ diabetic rats. Administration of bark extract to diabetic rats showed a decrease in the levels of glucose, glycosylated haemoglobin, lipid peroxidation markers and vitamin E. In addition the levels of insulin, haemoglobin, enzymatic antioxidants, vitamin C, and GSH and the activities of membrane bound enzymes also were increased in H. isora treated diabetic rats. The present study indicates that the H. isora possesses a significant favourable effect on erythrocyte membrane bound enzymes and antioxidants defense system in addition to its antidiabetic effect. PMID:19406193

Kumar, G; Banu, Sharmila; Murugesan, A G

2009-08-01

230

Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats.  

PubMed

Free radicals have been implicated in the pathogenesis of diabetes mellitus leading to various complications including atherosclerosis. Propolis was reported to have oxygen radical scavenging activity. The present study was designed to investigate the possible antidiabetic, hypolipidemic and antioxidant effects of ethanolic extract of propolis (EEP). Type capital I, Ukrainian diabetes was induced in rats by injection of streptozotocin (STZ) in a dose of 60 mg/kg bwt, i.p. for 3 consecutive days. After 5 weeks of STZ injection, there were an apparent reduction in the animal body weight amounting to 21% and significant increases in serum glucose (184%), triglycerides (63%), total cholesterol (43%) and low density lipoprotein-cholesterol (LDL-C) (148%) with a concomitant decrease in serum high density lipoprotein-cholesterol (HDL-C) (51%) as compared to the control normal group. In addition, there was significant elevation in pancreatic lipid peroxides measured as malondialdehyde (MDA) and serum nitric oxide (NO) amounting to 185% and 224%, respectively with marked reduction in serum reduced glutathione (GSH) and catalase (CAT) (66% and 31%, respectively) and pancreatic superoxide dismutase (SOD) (54%) in STZ-treated rats. On the other hand, oral daily treatment of animals with EEP in a dose of 200 mg/kg bwt for a period of 5 weeks ameliorated STZ-induced alterations in the animal body weight as well as in serum glucose, lipids, lipoproteins, NO, GSH & CAT and pancreatic MDA & SOD. In conclusion, propolis extract offers promising antidiabetic and hypolipidemic effects that may be mainly attributed to its potent antioxidant potential. Further studies will be needed in future in order to determine which one(or more) of its active constituents has the main antidiabetic and hypolipidemic effects. PMID:19339227

El-Sayed, El-Sayed M; Abo-Salem, Osama M; Aly, Hamdy A; Mansour, Ahmed M

2009-04-01

231

Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes  

PubMed Central

Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ-) induced diabetes mellitus and its complication in central nervous system (CNS). Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP) ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65?mg/kg body weight). Three days after STZ injection, HP was given (50?mg/kg b.wt. orally) once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model. PMID:25050332

Varshney, Laxmi; Khan, Mohammad Haaris Ajmal; Salman, Mohd.; Naseem, Mehar; Wajid, Saima

2014-01-01

232

Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons.  

PubMed

Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients' quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I(NaT)) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I(NaT) and a decrease of potassium currents, especially slowly inactivating potassium currents (I(AS)); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I(NaT) and total potassium current as well as I(AS) currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN. PMID:22761855

Sun, Wei; Miao, Bei; Wang, Xiu-Chao; Duan, Jian-Hong; Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

2012-01-01

233

Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons  

PubMed Central

Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (INaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of INaT and a decrease of potassium currents, especially slowly inactivating potassium currents (IAS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of INaT and total potassium current as well as IAS currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN. PMID:22761855

Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

2012-01-01

234

Time dependent changes in the intestinal Ca(2+) absorption in rats with type I diabetes mellitus are associated with alterations in the intestinal redox state.  

PubMed

The aim was to determine the intestinal Ca(2+) absorption in type I diabetic rats after different times of STZ induction, as well as the gene and protein expression of molecules involved in both the transcellular and paracellular Ca(2+) pathways. The redox state and the antioxidant enzymes of the enterocytes were also evaluated in duodenum from either diabetic or insulin-treated diabetic rats as compared to control rats. Male Wistar rats (150-200g) were divided into two groups: 1) controls and 2) STZ-induced diabetic rats (60mg/kg b.w.). A group of diabetic rats received insulin for five days. The insulin was adjusted daily to maintain a normal blood glucose level. Five 5 d after STZ injection, there was a reduction in the intestinal Ca(2+) absorption, which was maintained for 30 d and disappeared at 60 d. Similar changes occurred in the GSH and (?)O2(-) levels. The protein expression of molecules involved in the transcellular pathway increased at 5 and 30 d returning to control values at 60 d. Their mRNA levels declined considerably at 60 d. The gene and protein expression of claudin 2 was upregulated at 30 d. Catalase activity increased at 5 and 30 d normalizing at 60 d. To conclude, type I D.m. inhibits the intestinal Ca(2+) absorption, which is transient leading to a time dependent adaptation and returning the absorptive process to normal values. The inhibition is accompanied by oxidative stress. When insulin is administered, the duodenal redox state returns to control values and the intestinal Ca(2+) absorption normalizes. PMID:25459228

Rivoira, María; Rodríguez, Valeria; López, María Peralta; Tolosa de Talamoni, Nori

2015-03-01

235

Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats.  

PubMed

In the management of type 2 diabetes mellitus, Dapagliflozin (DAPA) is a newly introduced selective sodium-glucose co-transporter 2 inhibitor which promotes renal glucose excretion. Little is known about the effects of DAPA on the electromechanical function of the heart. This study investigated the effects of DAPA on ventricular myocyte shortening and intracellular Ca(2+) transport in streptozotocin (STZ)-induced diabetic rats. Shortening, Ca(2+) transients, myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+), and intracellular Ca(2+) current were measured in isolated rats ventricular myocytes by video edge detection, fluorescence photometry, and whole-cell patch-clamp techniques. Diabetes was characterized in STZ-treated rats by a fourfold increase in blood glucose (440 ± 25 mg/dl, n = 21) compared to Controls (98 ± 2 mg/dl, n = 19). DAPA reduced the amplitude of shortening in Control (76.68 ± 2.28 %, n = 37) and STZ (76.58 ± 1.89 %, n = 42) ventricular myocytes, and reduced the amplitude of the Ca(2+) transients in Control and STZ ventricular myocytes with greater effects in STZ (71.45 ± 5.35 %, n = 16) myocytes compared to Controls (92.01 ± 2.72 %, n = 17). Myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+) were not significantly altered by DAPA in either STZ or Control myocytes. L-type Ca(2+) current was reduced in STZ myocytes compared to Controls and was further reduced by DAPA. In conclusion, alterations in the mechanism(s) of Ca(2+) transport may partly underlie the negative inotropic effects of DAPA in ventricular myocytes from STZ-treated and Control rats. PMID:25351341

Hamouda, N N; Sydorenko, V; Qureshi, M A; Alkaabi, J M; Oz, M; Howarth, F C

2015-02-01

236

Type 2 diabetes-induced cardiovascular complications: comparative evaluation of spironolactone, atenolol, metoprolol, ramipril and perindopril.  

PubMed

The present study was carried out to study the effect of spironolactone, atenolol, metoprolol, ramipril and perindopril on cardiovascular complications in neonatal model of diabetes in rats, induced by administering 90?mg/kg streptozotocin (STZ), i.p. in 2-day-old rats. Our data suggest that spironolactone, metoprolol and perindopril prevent not only the STZ-induced metabolic abnormalities but also cardiovascular complications as evident from the reduction in cholesterol, triglyceride and decrease in cardiac hypertrophy which are the initial symptoms of congestive heart failure. Metoprolol and perindopril appears to be beneficial agents as compared to atenolol and ramipril. PMID:24047125

Patel, Bhoomika M; Bhadada, Shraddha V

2014-01-01

237

Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats.  

PubMed

The present study was designed to investigate the hypoglycemic and hypolipidemic activities of the semi-purified fractions of an ethanolic leaf extract of Averrhoa bilimbi (ABe) in high fat diet (HFD)-streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats aged 10 weeks (200-250 g) were fed with a high fat diet obtained from Glen Forrest stock feeders (Western Australia) for 2 weeks prior to intraperitoneal injection with streptozotocin (STZ, 50 mg/kg). The leaves of A.bilimbi were exhaustively extracted with 80% ethanol, concentrated at 40 degrees C using a rotavapor and partitioned successively with butanol, ethylacetate and hexane to get aqueous (AF), butanol (BuF), ethylacetate (EF), and hexane fractions (HF). The fractions were freeze-dried to obtain powders of each. To investigate the effect of long term administration of the hypoglycemic fractions, diabetic animals were treated with vehicle (distilled water), AF (125 mg/kg), or BuF (125 mg/kg), twice a day for 14 days. The long term administration of AF and BuF at a dose of 125 mg/kg significantly (P < 0.05) lowered blood glucose and triglyceride concentrations when compared to the vehicle. The hepatic glycogen content was significantly higher (P < 0.05) in AF-treated rats when compared to diabetic control, however no change was found in the BuF-treated rats. Moreover, AF as well as BuF did not cause any significant change in the total cholesterol and HDL-cholesterol. There was also no difference in liver thiobarbituric acid reactive substances (TBARS) and cytochrome P450 values between AF, BuF and vehicle-treated control rats. In conclusion, the results indicate that AF is more potent than BuF in the amelioration of hyperglycemia and hyperlipidemia in HFD fed-STZ diabetic rats. Hence, AF is a potential source for the isolation of active principle(s) for oral anti-diabetic therapy. PMID:15808883

Tan, Benny Kwong Huat; Tan, Chee Hong; Pushparaj, Peter Natesan

2005-04-29

238

Roles of the co-culture of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells with rat pancreatic cells in the treatment of rats with diabetes mellitus  

PubMed Central

The aim of the present study was to investigate the roles of the co-culture of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hUC-MSCs) with rat pancreatic cells in the treatment of rats with diabetes mellitus. hUC-MSCs were isolated and passaged, followed by Transwell co-culture with rat pancreatic cells. The induced islet-like cell clusters were transplanted into the renal capsule in rats with streptozotocin (STZ)-induced diabetes mellitus. The effects of co-culture on blood glucose levels in rats were observed. The isolated hUC-MSCs expressed the specific surface markers, including cluster of differentiation 44 (CD44) (91.4%), CD29 (91.3%) and CD105 (99.2%). Following co-culture with hUC-MSCs for 7 and 10 days, the rat pancreatic cells were strongly stained by pancreatic and duodenal homeobox-1 and human insulin. The insulin and C-peptide concentrations were increased significantly compared to the pure culture group. One week following the transplantation of induced islet-like cells into the renal capsule, the blood glucose level of rats in the STZ experimental group was significantly lower than that of the STZ control group. There were notable 5-bromo-2?-deoxyuridine-positive nuclei and insulin-positive cytoplasm in the renal capsule following cell transplantation. Therefore, co-culture of hUC-MSCs with rat pancreatic cells can lower the blood glucose levels in rats with diabetes mellitus. PMID:25289028

WANG, GUANGYU; LI, YONG; WANG, YU; DONG, YU; WANG, FU-SHENG; DING, YI; KANG, YUDONG; XU, XUYING

2014-01-01

239

Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress.  

PubMed

Neuropathy is the most common complication of diabetes and it is still considered to be relatively refractory to most of the analgesics. The aim of the present study was to explore the antinociceptive effect of a controlled cannabis extract (eCBD) in attenuating diabetic neuropathic pain. Repeated treatment with cannabis extract significantly relieved mechanical allodynia and restored the physiological thermal pain perception in streptozotocin (STZ)-induced diabetic rats without affecting hyperglycemia. In addition, the results showed that eCBD increased the reduced glutathione (GSH) content in the liver leading to a restoration of the defence mechanism and significantly decreased the liver lipid peroxidation suggesting that eCBD provides protection against oxidative damage in STZ-induced diabetes that also strongly contributes to the development of neuropathy. Finally, the nerve growth factor content in the sciatic nerve of diabetic rats was restored to normal following the repeated treatment with eCBD, suggesting that the extract was able to prevent the nerve damage caused by the reduced support of this neurotrophin. These findings highlighted the beneficial effects of cannabis extract treatment in attenuating diabetic neuropathic pain, possibly through a strong antioxidant activity and a specific action upon nerve growth factor. PMID:19441010

Comelli, Francesca; Bettoni, Isabella; Colleoni, Mariapia; Giagnoni, Gabriella; Costa, Barbara

2009-12-01

240

Nitrergic relaxations and phenylephrine contractions are not compromised in isolated urethra in a rat model of diabetes.  

PubMed

In vivo experiments in a diabetic rat model revealed compromised nitrergic urethral relaxations and increased sensitivity to adrenergic agonists. This study evaluated contractile and relaxation properties of urethral smooth muscle after streptozotocin (STZ)-induced diabetes, in vitro, with the aim of determining whether in vivo deficiencies are related to smooth muscle dysfunction. Urethral tissue was collected from adult female Sprague-Dawley rats naive, STZ-treated, vehicle-treated and sucrose-fed at 9-12 week post treatment. Strips from proximal, mid, and distal urethra were placed in tissue baths and stimulated using electric field stimulation (EFS) and pharmacological agents. nNOS staining was evaluated using immunohistochemistry. Phenylephrine (PE, 10?M) contracted all urethral strips with the highest amplitude in mid urethra, in all treatment groups. Likewise, EFS-induced relaxation amplitudes were larger and were observed more frequently in mid urethra. Relaxations were inhibited by the NOS inhibitor, L-NAME (1-100?M). Sodium nitroprusside (0.01-1?M), an NO donor, reversed PE-induced contractions. No statistical differences were observed between treatment groups with respect to any parameters. Qualitative immunohistochemistry showed no differences in the urethral nNOS innervation patterns across the treatment groups. In summary, nitrergic relaxations and adrenergic-induced contractions in the isolated diabetic rat urethra display similar properties to controls, suggesting no dysfunction on the nitrergic or alpha1 adrenergic receptor function in the smooth muscle. This further implies that compromised urethral relaxation and increased adrenergic agonist sensitivity observed in vivo in this model may be due to the disruption of neural signaling between the urethra and the spinal cord, or within the CNS. PMID:24656892

Al-Noah, Z; McKenna, D; Langdale, C; Thor, K B; Marson, L; Burgard, E; Kullmann, F Aura

2014-07-01

241

Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats.  

PubMed

The present study was performed to investigate the effect of astaxanthin in combination with other antioxidants against oxidative damage in streptozotocin (STZ)-induced diabetic Osteogenic Disorder Shionogi (ODS) rats. Diabetic-ODS rats were divided into five groups: control, astaxanthin, ascorbic acid, alpha-tocopherol, and tocotrienol. Each of the four experimental groups was administered a diet containing astaxanthin (0.1 g/kg), in combination with ascorbic acid (3.0 g/kg), alpha-tocopherol (0.1 g/kg), or tocotrienol (0.1 g/kg) for 20 wk. The effects of astaxanthin with other antioxidants on lipid peroxidation, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion, serum creatinine (Cr) level, creatinine clearance (Ccr), and urinary protein content were assessed. The serum lipid peroxide levels and chemiluminescent (CL) intensity in the liver of the alpha-tocopherol and tocotrienol groups were significantly reduced in comparison to that of the control group. In the alpha-tocopherol group, urinary 8-OHdG excretion, serum Cr level, Ccr, urinary albumin excretion, and urinary protein concentration were significantly decreased as compared with those in the control group. Additionally, the CL intensity in the kidney of the alpha-tocopherol group was significantly lower, but that of the ascorbic acid group was significantly higher than that in the control group. These results indicate that dietary astaxanthin in combination with alpha-tocopherol has an inhibitory effect on oxidative stress. On the other hand, our study suggests that excessive ascorbic acid intake increases lipid peroxidation in diabetic rats. PMID:18797156

Nakano, Masako; Onodera, Aya; Saito, Emi; Tanabe, Miyako; Yajima, Kazue; Takahashi, Jiro; Nguyen, Van Chuyen

2008-08-01

242

Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition  

PubMed Central

Non-invasive magnetic resonance imaging (MRI) was used to characterize changes in left and right ventricular cardiac cycles following induction of experimental, streptozotocin (STZ)-induced, diabetes in male Wistar rats at different ages. The effects of the angiotensin-converting enzyme (ACE) inhibitor captopril upon such chronic physiological changes were then evaluated, also for the first time. Diabetes was induced at the age of 7 weeks in two experimental groups, of which one group was subsequently maintained on captopril (2 g l?1)-containing drinking water, and at 10 and 13 weeks in two further groups. The fifth group provided age-matched controls. All groups (each n = 4 animals) were scanned consistently at 16 weeks, in parallel with timings used in earlier studies that employed this experimental model. Cine magnetic resonance (MR) image acquisition provided transverse sections through both ventricles at twelve time points covering systole and most of diastole. These yielded reconstructions of cardiac anatomy used to derive critical functional indices and their dependence upon time following the triggering electrocardiographic R waves. The left and right ventricular end-diastolic (EDV), end-systolic (ESV) and stroke volumes (SV), and ejection fractions (EF) calculated from each, control and experimental, group showed matching values. This confirmed a necessary condition requiring balanced right and left ventricular outputs and further suggested that STZ-induced diabetes produced physiological changes in both ventricles. Absolute left and right ventricular SVs were significantly altered in all diabetic animals; EDVs and EFs significantly altered in animals diabetic from 7 and 10 but not 13 weeks. When normalized to body weight, left and right ventricular SVs had significantly altered in animals diabetic from 7 and 10 weeks but not 13 weeks. Normalized left ventricular EDVs were also significantly altered in animals diabetic from 7 and 10 weeks. However, normalized right ventricular EDVs were significantly altered only in animals made diabetic from 7 weeks. Diabetic hearts showed major kinetic changes in left and right ventricular contraction (ejection) and relaxation (filling). Both the initial rates of volume change (dV/dt) in both ventricles and the plots of dV/dt values through the cardiac cycle demonstrated more gradual developments of tension during systole and relaxation during diastole. Estimates of the derived left ventricular performance parameters of cardiac output, cardiac power output and stroke work in control animals were comparable with human values when normalized to both body (or cardiac) weight and heart rate. All deteriorated with diabetes. Comparisons of experimental groups diabetic from 7 weeks demonstrated that captopril treatment relieved the alterations in critical volumes, dependence of SV upon EDV, kinetics of systolic contraction and diastolic relaxation and in the derived indicators of ventricular performance. This study represents the first demonstration using non-invasive MRI of early, chronic changes in diastolic filling and systolic ejection in both the left and the right ventricles and of their amelioration by ACE inhibition following STZ-induction of diabetes in intact experimental animals. PMID:11790819

Al-Shafei, Ahmad I M; Wise, R G; Gresham, G A; Carpenter, T A; Hall, L D; Huang, Christopher L-H

2002-01-01

243

Upregulation of podocyte-secreted angiopoietin-like-4 in diabetic nephropathy.  

PubMed

Podocyte injury plays a key role in the development of diabetic nephropathy (DN). Understanding the changes in podocyte structure and function in diabetes mellitus may lead to novel diagnostic tools and treatment strategies for DN. Albuminuria, histological alterations, and podocyte injury were detected at different time points in streptozotocin (STZ)-induced diabetic rats. Increased urinary albumin-to-creatinine ratios (ACR) and podocyte injury were significantly observed 4 weeks post-STZ injection. We determined the glomerular expression and distribution of angiopoietin-like 4 (Angptl4) by immunofluorescence and real-time PCR. Glomerular Angptl4 expression was mostly colocalized with synaptopodin, a podocyte marker, with substantial additional overlap with the glomerular basement membrane (GBM). This finding indicated that Angptl4 might be primarily secreted by podocytes and moved toward the GBM. Moreover, we observed by Western blot analysis and ELISA that the urinary Angptl4 level was gradually upregulated in both STZ-induced rats and diabetic patients with microalbuminuria and macroalbuminuria. We further found that the increased glomerular Angptl4 expression was closely related to the urinary ACR level and podocyte injury. In addition, the urinary Angptl4 expression was closely associated with albuminuria in the rats and patients with DN. This study is the first to show that podocyte-secreted Angptl4 is upregulated in DN and can be detected in urine. Angptl4 might function as a podocyte injury marker and could be a potential and novel diagnostic and therapeutic biomarker for DN. PMID:25424436

Ma, Jing; Chen, Xiao; Li, Jian-Si; Peng, Lei; Wei, Shi-Yao; Zhao, Shi-Lei; Li, Tong; Zhu, Dan; He, Yi-Xin; Wei, Qiu-Ju; Li, Bing

2014-11-26

244

Combined Renin Inhibition/(Pro)Renin Receptor Blockade in Diabetic Retinopathy- A Study in Transgenic (mREN2)27 Rats  

PubMed Central

Dysfunction of renin-angiotensin system (RAS) contributes to the pathogenesis of diabetic retinopathy (DR). Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (pro)renin receptor ((P)RR). Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (P)RR blocker handle-region peptide (HRP) on diabetic retinopathy in streptozotocin (STZ)-induced diabetic transgenic (mRen2)27 rats (a model with high plasma prorenin levels) as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen2)27 rats were randomly divided into the following groups: (1) non-diabetic; (2) diabetic treated with vehicle; (3) diabetic treated with aliskiren (10 mg/kg per day); and (4) diabetic treated with aliskiren+HRP (1 mg/kg per day). Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen2)27 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen2)27 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1? and TNF-?, and this was completely blocked by aliskiren or HRP, their combination, (P)RR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (P)RR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of the ocular effects of prorenin in vitro, argue against the combined application of (P)RR blockade and renin inhibition in diabetic retinopathy. PMID:24968134

Batenburg, Wendy W.; Verma, Amrisha; Wang, Yunyang; Zhu, Ping; van den Heuvel, Mieke; van Veghel, Richard; Danser, A. H. Jan; Li, Qiuhong

2014-01-01

245

Combined renin inhibition/(pro)renin receptor blockade in diabetic retinopathy--a study in transgenic (mREN2)27 rats.  

PubMed

Dysfunction of renin-angiotensin system (RAS) contributes to the pathogenesis of diabetic retinopathy (DR). Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (pro)renin receptor ((P)RR). Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (P)RR blocker handle-region peptide (HRP) on diabetic retinopathy in streptozotocin (STZ)-induced diabetic transgenic (mRen2)27 rats (a model with high plasma prorenin levels) as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen2)27 rats were randomly divided into the following groups: (1) non-diabetic; (2) diabetic treated with vehicle; (3) diabetic treated with aliskiren (10 mg/kg per day); and (4) diabetic treated with aliskiren+HRP (1 mg/kg per day). Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen2)27 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen2)27 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1? and TNF-?, and this was completely blocked by aliskiren or HRP, their combination, (P)RR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (P)RR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of the ocular effects of prorenin in vitro, argue against the combined application of (P)RR blockade and renin inhibition in diabetic retinopathy. PMID:24968134

Batenburg, Wendy W; Verma, Amrisha; Wang, Yunyang; Zhu, Ping; van den Heuvel, Mieke; van Veghel, Richard; Danser, A H Jan; Li, Qiuhong

2014-01-01

246

Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats.  

PubMed

The present study was conducted to examine the antidiabetic effects of two dietary dosages (0.5% and 2.0%) of freeze-dried Korean traditional Baechu (Chinese cabbage) kimchi in a high-fat (HF) diet-fed, streptozotocin (STZ)-induced type 2 diabetes (T2D) rat model. Five-week-old male Sprague-Dawley rats were fed HF diet for 2 weeks and then randomly divided into four groups of eight animals: normal control (NC), diabetic control (DBC), kimchi low (KML) (0.5%), and kimchi high (KMH) (2.0%) groups. Diabetes was induced by an intraperitoneal injection of STZ (40 mg/kg of body weight) in all groups except the NC group. After 4 weeks of feeding of experimental diets, serum insulin concentrations and Homeostatic Model Assessment pancreatic beta-cell function were increased and blood glycated hemoglobin was decreased in the kimchi-fed groups compared to the DBC group, while a significant (P < .05) difference was observed only in the KMH group for serum insulin concentration. Lower fasting blood glucose and better glucose tolerance were observed in the KMH group compared to the DBC and KML groups; however, differences were not significant. Food intake, body weight gain, Homeostatic Model Assessment insulin resistance index, and serum lipid profiles were not significantly influenced by kimchi-containing diets. Data of this study suggest that dietary Baechu kimchi has some antidiabetic effects even when fed with a HF-containing diet. Better results are possible if it is consumed with normal or low-fat rather than HF-containing diet. PMID:19459728

Islam, Md Shahidul; Choi, Haymie

2009-04-01

247

Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: Regulation of endoplasmic reticulum stress-oxidative activation  

SciTech Connect

Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Recent reports have shown that chemical molecular chaperone 4-phenylbutyric acid (4-PBA) can suppress oxidative stress by attenuating endoplasmic reticulum (ER) stress. We therefore hypothesized that 4-PBA could provide renoprotection through the suppression of oxidative stress in DN rats. Male Sprague-Dawley (SD) rats were randomly divided into three groups: a normal control (NC) group, a streptozotocin (STZ)-induced DN model group, and a DN plus 4-PBA (1 g/kg) treatment group. At the end of 4, 8, and 12 weeks, hydroxyproline content, NADPH oxidase activity and the expression of phosphorylation of inositol-requiring enzyme-1{alpha} (p-IRE1{alpha}), p47phox, nitrotyrosine (NT) and NF-E2-related factor 2 (Nrf2) in the kidneys of all rats were determined; malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in serum and urine were also detected; renal nuclear factor {kappa}B (NF-{kappa}B) activity in all of the rats was examined at the end of 12 weeks. Compared with the NC group, the DN rats showed a significant increase in hydroxyproline content, NADPH oxidase activity, NF-{kappa}B activity, the expression of p-IRE1{alpha}, p47phox, NT and Nrf2 in renal tissue; markedly, MDA levels were higher and SOD activity was lower in serum and urine of DN rats than in NC rats for the indicated time. These alterations were inhibited by the administration of 4-PBA. These findings first demonstrated that treatment with 4-PBA significantly inhibits the process and development of diabetic nephropathy in rats through the regulation of ER stress-oxidative activation.

Luo Zhifeng [Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Feng Bing, E-mail: fxb12@yahoo.com.c [Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Mu Jiao; Qi Wei; Zeng Wei; Guo Yanhong; Pang Qi; Ye Zilin; Liu Li; Yuan Fahuan [Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

2010-07-15

248

Hypoglycaemic effect of Helicteres isora bark extract in rats.  

PubMed

The hypoglycaemic effect of the aqueous extract of the bark of Helicteres isora L. (Sterculiaceae) was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the bark of Helicteres isora L. (100 and 200 mg/kg/p.o.) significantly (P<0.001) reduced the blood glucose levels from 64.5-48.5 and 67-47 mg% 2h after oral administration of bark extract and also significantly lowered the blood glucose in STZ diabetic rats from 68-105 and 66-85.5 mg% 21 days after daily oral administration of the extract (P<0.001). The results suggested that the aqueous extract of bark of Helicteres isora L. possesses a potential hypoglycaemic effect in diabetic rats. PMID:16839725

Kumar, G; Banu, G Sharmila; Murugesan, A G; Pandian, M Rajasekara

2006-09-19

249

Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats.  

PubMed

Oxidative stress has been shown to play an important role in the pathogenesis of diabetes-induced cardiac dysfunction. Protocatechuic acid (PCA) is a phenolic compound, a main metabolite of anthocyanin, which has been reported to display various pharmacological properties. We proposed the hypothesis that PCA exerts cardioprotection in type 1 diabetic (T1DM) rats. T1DM was induced in male Sprague-Dawley rats by a single i.p. injection of 50?mg/kg streptozotocin (STZ) and groups of these animals received the following treatments for 12 weeks: i) oral administration of vehicle, ii) oral administration of PCA at a dose of 50 ?mg/kg per day, iii) oral administration of PCA at a dose of 100?mg/kg per day, iv) s.c. injection of insulin at a dose of 4?U/kg per day, and v) a combination of PCA, 100?mg/kg per day and insulin, 4?U/kg per day. Metabolic parameters, results from echocardiography, and heart rate variability were monitored every 4 weeks, and the HbA1c, cardiac malondialdehyde (MDA), cardiac mitochondrial function, and cardiac BAX/BCL2 expression were evaluated at the end of treatment. PCA, insulin, and combined drug treatments significantly improved metabolic parameters and cardiac function as shown by increased percentage fractional shortening and percentage left ventricular ejection fraction and decreased low-frequency:high-frequency ratio in T1DM rats. Moreover, all treatments significantly decreased plasma HbA1c and cardiac MDA levels, improved cardiac mitochondrial function, and increased BCL2 expression. Our results demonstrated for the first time, to our knowledge, the efficacy of PCA in improving cardiac function and cardiac autonomic balance, preventing cardiac mitochondrial dysfunction, and increasing anti-apoptotic protein in STZ-induced T1DM rats. Thus, PCA possesses a potential cardioprotective effect and could restore cardiac function when combined with insulin treatment. These findings indicated that supplementation with PCA might be helpful for the prevention and alleviation of cardiovascular complications in T1DM. PMID:25074852

Semaming, Yoswaris; Kumfu, Sirinart; Pannangpetch, Patchareewan; Chattipakorn, Siriporn C; Chattipakorn, Nipon

2014-10-01

250

Protective action of Citrullus colocynthis seed extracts against the deleterious effect of streptozotocin on both in vitro glucose-stimulated insulin release from rat pancreatic islets and in vivo glucose homeostasis.  

PubMed

Citrullus colocynthis extracts improve glucose homeostasis in alloxan- or streptozotocin (STZ)-induced diabetic rats. Little is known, however, regarding the protective effect of these extracts against the ?-cytotoxic action of STZ. In the present study, an H2O-methanol extract was found to suppress the inhibition of glucose-stimulated insulin secretion by STZ in rat-isolated pancreatic islets. Similarly, when an aqueous extract from Citrullus colocynthis seeds was injected daily for 21 days prior to STZ administration, the perturbation of glucose homeostasis otherwise generated by the ?-cytotoxic agent was minimized in rats. PMID:24648906

Benariba, Nabila; Bellakdhar, Wafaa; Djaziri, Rabeh; Hupkens, Emeline; Louchami, Karim; Malaisse, Willy J

2013-01-01

251

Chlorophytum borivilianum Root Extract Maintains near Normal Blood Glucose, Insulin and Lipid Profile Levels and Prevents Oxidative Stress in the Pancreas of Streptozotocin-Induced Adult Male Diabetic Rats  

PubMed Central

The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes. Methods: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated. Results: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-? cell functioning index, number of Islets/pancreas, number of ?-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats. Conclusions: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes. PMID:25249786

Giribabu, Nelli; Kumar, Kilari Eswar; Rekha, Somesula Swapna; Muniandy, Sekaran; Salleh, Naguib

2014-01-01

252

Vitamin A Homeostasis in the Diabetic Rat  

PubMed Central

Summary The concentrations of vitamin A (retinol) and retinyl ester in the plasma and liver of normal and diabetic rats were measured by HPLC (high-performance liquid chromatography). Diabetic rats had severe hyperglycemia, induced by a single streptozotocin injection 5 weeks prior to sampling. In the normal rats, plasma retinyl palmitate was very low, and the level was increased 10-fold by diabetes. Detailed time-course studies showed that rats became hyperglycemic within 48 h of streptozotocin injection, yet the plasma retinyl palmitate level was not elevated until some three weeks later. Severe diabetes did not significantly influence plasma retinol: however. free retinol in the liver was elevated within 10 days of initiation of the disease and continued to increase for the duration of the study. These results show that streptozotocin-induced diabetes significantly alters the concentrations of hepatic retinol and plasma retinyl ester. The biochemical mechanism(s) of this altered vitamin A homeostasis in diabetes and its possible relationship to tissue pathogenesis are not known at present.

Tsin, Andrew T.C.; Griffin, Brenda W.; Mata, Nathan L.; Yu, Hing-Sing; Williams, Gary W.; Cridfr, Julie Y.; Chandler, Michael L.

2015-01-01

253

Controlled Release of Thymosin Beta 4 Using a Collagen-Chitosan Sponge Scaffold Augments Cutaneous Wound Healing and Increases Angiogenesis in Diabetic Rats with Hindlimb Ischemia.  

PubMed

It is important to establish an efficient vascularization for the long-term acceptance of bioengineered skin equivalents treating the cutaneous wounds of diabetic rats with hindlimb ischemia. This study investigates the possible use of a collagen-chitosan sponge scaffold encapsulated with thymosin beta 4 (CCSS-eT?4), an angiogenic factor, to accelerate cutaneous wound healing in streptozotocin (STZ)-induced diabetic rats with hindlimb ischemia. CCSSs-eT?4 was fabricated using a freeze-drying method. The scaffolds were analyzed by scanning electron microscopy, swelling and degradation assays, mechanical properties, and scaffolds of 50:50 collagen-chitosan were selected and applied. The controlled release of T?4 from the scaffolds elicited localized and prolonged effects over 12 days, as shown by an enzyme-linked immunosorbent assay (ELISA). In vivo, CCSSs-eT?4 improved diabetic cutaneous wound healing, with faster wound reepithelialization, better dermal reorganization, and higher wound vascularization. Furthermore, CCSSs-eT?4 downregulated inflammatory genes and upregulated angiogenic genes in the wound tissue. Significant increases in CD31-positive endothelial cells and new vessel density were also observed. In vitro, T?4 increased the migratory and proliferative activity of high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs). Meanwhile, we found that T?4 could promote HG-treated HUVECs migration and improve angiogenesis by activation of the VEGF/AKT pathway. Overall, these findings demonstrated the promising potential of CCSSs-eT?4 to promote more effective wound healing and suggest its possible application for diabetic cutaneous wound treatment. PMID:25204972

Ti, Dongdong; Hao, Haojie; Xia, Lei; Tong, Chuan; Liu, Jiejie; Dong, Liang; Xu, Shenjun; Zhao, Yali; Liu, Huiling; Fu, Xiaobing; Han, Weidong

2014-10-14

254

Effect of fibrin-binding synthetic oligopeptide on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats.  

PubMed

The aim of this study was to investigate whether topical application of fibrin-binding oligopeptides derived from FN promotes wound healing in streptozotocin (STZ)-induced diabetic rats. Oligopeptides including fibrin-binding sequences (FF3: CFDKYTGNTYRV, FF5 : CTSRNRCNDQ) of FN repeats were synthesized. Each peptide was loaded in 15 x 15 mm fibrous alginate dressings, and the release kinetics of the peptides was evaluated using trinitrobenzene sulfonic acid for 336 hours. Two full-thickness cutaneous wounds were prepared on the dorsal skin of each 75 diabetes induced rats. Each wound was divided into FF3-loaded alginate dressing group, FF5-loaded alginate dressing group, alginate dressing group and negative control group. Animals were sacrificed at day 0,3,7 and 14. The wound closure rate, inflammation degree, expression of TGF-?1 and hydroxyproline contents were evaluated. Both FF3 and FF5 peptides were released rapidly within the first 24 hours. FF3-loaded dressing treated wounds closed significantly faster than other wounds at day 3. And at day 14, FF3- & FF5- loaded dressing treated wounds demonstrated less inflammatory cells infiltration than alginate dressing treated and negative group wounds. TGF-?1 positive cells were more abundant in FF3-, FF5-treated alginate dressing treated wound at day 3 and 14. At last, the hyrdroxyproline contents in the FF3, FF5 group were higher at day 7 and day 14. Topical application of fibrin-binding domain synthetic oligopeptides from FN resulted in acceleration of full-thickness cutaneous wound healing in diabetic rats. PMID:23151183

Chung, Jae-Eun; Kim, Yun-Jeong; Park, Yoon-Jeong; Koo, Ki-Tae; Seol, Yang-Jo; Lee, Yong-Moo; Rhyu, In-Chul; Ku, Young

2013-01-01

255

Spatio-Temporal Expression and Functional Involvement of Transient Receptor Potential Vanilloid 1 in Diabetic Mechanical Allodynia in Rats  

PubMed Central

Diabetic neuropathic pain (DNP) is one of the most common clinical manifestations of diabetes mellitus (DM), which is characterized by prominent mechanical allodynia (DMA). However, the molecular mechanism underlying it has not fully been elucidated. In this study, we examined the spatio-temporal expression of a major nociceptive channel protein transient receptor potential vanilloid 1 (TRPV1) and analyzed its functional involvement by intrathecal (i.t.) application of TRPV1 antagonists in streptozocin (STZ)-induced DMA rat models. Western blot and immunofluorescent staining results showed that TRPV1 protein level was significantly increased in the soma of the dorsal root ganglion (DRG) neurons on 14 days after STZ treatment (DMA 14 d), whereas those in spinal cord and skin (mainly from the central and peripheral processes of DRG neurons) had already been enhanced on DMA 7 d to peak on DMA 14 d. qRT-PCR experiments confirmed that TRPV1 mRNA level was significantly up-regulated in the DRG on DMA 7 d, indicating a preceding translation of TRPV1 protein in the soma but preferential distribution of this protein to the processes under the DMA conditions. Cell counting assay based on double immunostaining suggested that increased TRPV1-immunoreactive neurons were likely to be small-sized and CGRP-ergic. Finally, single or multiple intrathecal applications of non-specific or specific TRPV1 antagonists, ruthenium red and capsazepine, at varying doses, effectively alleviated DMA, although the effect of the former was more prominent and long-lasting. These results collectively indicate that TRPV1 expression dynamically changes during the development of DMA and this protein may play important roles in mechanical nociception in DRG neurons, presumably through facilitating the release of CGRP. PMID:25020137

Wu, Huang-Hui; Qi, Jian; Shi, Juan; Li, Yun-Qing

2014-01-01

256

Ozone partially prevents diabetic neuropathy in rats.  

PubMed

Neuropathy is one of the most common complications of diabetes mellitus. Although the beneficial effects of good blood glucose control on diabetic neuropathy are known, this control cannot completely prevent the occurrence and progression of diabetic neuropathy. The aim of this study was to investigate whether ozone prevents diabetic neuropathy. 36 adult female Sprague-Dawley rats were randomly divided into 6 groups (n=6): control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). Diabetes was induced by a single injection of streptozotocin (60?mg/kg, intraperitoneal [i.p.]), after which insulin was administered (3 IU, i.p.) to the DI and DOI groups for 28 days, and 1.1?mg/kg (50?µg/ml) ozone was given to the O, DO, and DOI groups for 15 days. 4 weeks after the induction of diabetes, the nerve conduction velocity (NCV), amplitude of the compound action potential (CAP), total oxidant status (TOS), and total antioxidant status (TAS) were measured, and the oxidative stress index (OSI) was calculated. The NCV, amplitude of CAP, and TAS of the DI and DOI groups were higher than those of the D group; the amplitudes of CAP and TAS of the DO group were higher than those of the D group; and the TOS and OSI of the DO, DI, and DOI groups were lower than those of the D group. These findings indicate that ozone partially prevents diabetic neuropathy in rats. It appears that the preventive effects of ozone are mediated through oxidant/antioxidant mechanisms. PMID:25502578

Erken, H A; Genç, O; Erken, G; Ayada, C; Gündo?du, G; Do?an, H

2015-02-01

257

Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease  

PubMed Central

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300?mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor ? (TNF?), interleukin- (IL-) 6, and IL-1? in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, I?B, and I?B kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNF?, interferon-? (IFN-?), IL-6, IL-1?, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

2015-01-01

258

Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation  

PubMed Central

Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1? and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol. PMID:22701621

Zhang, Qing-Yu; Wang, Fu-Meng; Kong, Ling-Dong

2012-01-01

259

Promotion of immune and glycaemic functions in streptozotocin-induced diabetic rats treated with un-denatured camel milk whey proteins  

PubMed Central

T cell mediated autoimmune diabetes is characterized by immune cell infiltration of pancreatic islets and destruction of insulin-producing ?-cells. This study was designed to assess the effect of whey proteins (WP) on the responsiveness of lymphocytes in rats after four months of Streptozotocin (STZ)-induced Type 1 diabetes (T1D). A diabetic group was supplemented with WP daily for five weeks at a dose of 100 mg/kg. Ribonucleic acid (RNA) was extracted from stimulated lymphocytes in order to analyse gene expressions using real time PCR and RT-PCR. PCR results were confirmed with ELISA. The proliferation capacity of lymphocytes and their homing to the spleen were studied. Antigen-activated lymphocytes showed that diabetes impaired the mRNA expression of the protein kinase B (Akt1), Cdc42, and the co-stimulatory molecule, CD28, which are important for cell survival, actin polymerization and T cell activation, respectively. Accordingly, proliferation of lymphocytes was found to be suppressed in diabetic rats, both in vivo and in vitro. WP was found to restore Akt1, Cdc42 and CD28 mRNA expression during diabetes to normal levels. WP, therefore, served to activate the proliferation of B lymphocytes in diabetic rats both in vivo and in vitro. Although WP was found to up-regulate mRNA expression of both interleukin (IL)-2 and interferon gamma (IFN-?), it suppressed the proliferation activity of almost all T cell subsets. This was confirmed by WP normalizing the structure and function of ß cells. Meanwhile, WP was found to down regulate the mRNA expression of Tumor necrosis factor-alpha (TNF-?) and its programmed cell death-receptor (Fas). Taken together, the results of this study provide evidence for the potential impact of WP in the treatment of immune impairment in T1D, suggesting that it serves to reverse autoimmunity by suppressing autoreactive T cells and down regulating TNF-? and Fas, resulting in improved pancreatic ß cell structure and function. PMID:25009576

2014-01-01

260

A new rat model of diabetic macrovascular complication  

Microsoft Academic Search

Objectives: Age-related medial calcification (elastocalcinosis) of large arteries is accelerated in diabetes and appears mainly in distal arteries. The aim was to devise a rat model of elastocalcinosis in association with diabetes to examine the hypothesis that diabetes accelerates vascular calcification experimentally. Methods: Male Wistar rats received a high fat diet during 2 months followed by a low dose of

Céline Bouvet; Wouter Peeters; Simon Moreau

2007-01-01

261

Melatonin and taurine reduce early glomerulopathy in diabetic rats  

Microsoft Academic Search

Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-?1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg\\/kg. Two days after streptozotocin, diabetic rats were assigned to

Hunjoo Ha; Mi-Ra Yu; Kyung Hwan Kim

1999-01-01

262

Rat Models of Type 1 Diabetes: Genetics, Environment, and Autoimmunity  

Microsoft Academic Search

For many years, the vast amount of data gathered from analysis of nonobese diabetic (NOD) and congenic NOD mice has eclipsed interest in the rat for the study of type 1 diabetes. The study of rat models has continued, however, and recently there has been a reanimation of interest for several reasons. First, genetic analysis of the rat has accel-

John P. Mordes; Rita Bortell; Elizabeth P. Blankenhorn; Aldo A. Rossini; Dale L. Greiner

263

Saffron (Crocus sativus L.) powder as an ingredient of rye bread: an anti-diabetic evaluation.  

PubMed

In this study, a most consumer-acceptable rye bread (RB) containing saffron (S) powder (RB+S) was designed to verify its anti-diabetic properties, and to compare these effects with those of RB and S separately, matched to a similar dose of bioactive components, used in the high-fat (HF) diet in streptozotocin (STZ)-induced Wistar rats. After baking, beneficial antioxidant and sensory properties for RB enriched with 0.12% S were achieved. Twenty-four severely diabetic rats (fasting blood glucose (FBG) ?350 mg/dL) were randomized to incorporate either 0.08% of pure S, or RB enriched with 0.12% S (the diet provided 0.08% of S), or RB alone into their diet for 5 weeks. As controls, nontreated, HF-feeding STZ-induced rats (positive control-HF/STZ) and rats receiving normal laboratory diet (negative control-C) were used. A significant FBG-lowering effect was observed (47%, 53%, and 54% reduction vs. HF/STZ; P<.05) after S, RB, and RB+S treatment. Improvements in the rats' glycemia were achieved by ?-cell regeneration and increases in insulin secretion. Only in the S and RB+S group of rats, a significant (P<.05) increase in relative pancreas (vs. HF/STZ) was noted. A significant (P<.05) reduction in the concentration of thiobarbituric acid-reactive substances (TBARS) was achieved, whereas the ferric-reducing ability of plasma (FRAP) was not changed after S, RB and RB+S treatment (vs. HF/STZ). Triglyceride (TG) concentrations after S, RB, and RB+S treatment were significantly decreased (P<.05) versus HF/STZ. Both S and RB can be used in diabetic therapy, but no additional metabolic effect was achieved after consumption of RB+S. PMID:23909906

Bajerska, Joanna; Mildner-Szkudlarz, Sylwia; Podgórski, Tomasz; Oszmatek-Pruszy?ska, Ewa

2013-09-01

264

Carvedilol protected diabetic rat hearts via reducing oxidative stress  

PubMed Central

Oxidative stress plays a dominant role in the pathogenesis of diabetes mellitus. Bcl-2 gene has close connection with antioxidant stress destruction in many diseases including diabetes. Carvedilol, an adrenoceptor blocker, also has antioxidant properties. To study the effect of carvedilol on the antioxidant status in diabetic hearts, we investigated carvedilol-administrated healthy and streptozotocin-induced diabetic rats. After small and large dosage carvedilol-administered for 5 weeks, hemodynamic parameters, the levels of malondialdehyde, activities of antioxidant enzymes and expression of Bcl-2 mRNA in the cardiac tissues were measured. The diabetic rats not only had cardiac disfunction, weaker activities of antioxidant enzymes, but also showed lower expression of Bcl-2. Carvedilol treatment increased activities of antioxidant enzymes and expression of Bcl-2 in healthy rats as well as diabetic rats. These results indicated that carvedilol partly improves cardiac function via its antioxidant properties in diabetic rats. PMID:16909474

Huang, He; Shan, Jiang; Pan, Xiao-hong; Wang, Hui-ping; Qian, Ling-bo

2006-01-01

265

Benazepril affects integrin-linked kinase and smooth muscle ?-actin expression in diabetic rat glomerulus and cultured mesangial cells  

PubMed Central

Background Diabetic nephropathy (DN) is the leading cause of chronic kidney disease and is associated with excessive cardiovascular morbidity and mortality. The angiotensin converting enzyme inhibitor (ACEI) benazepril has been shown to slow the progression of chronic renal disease and have beneficial effects in patients with a combination of chronic renal disease and cardiovascular disease. Transforming growth factor-?1 (TGF-?1) plays a central role in the pathogenesis and progression of DN. Integrin-linked kinase (ILK) can modulate TGF-?1-induced glomerular mesangial cell (GMC) injury, which is a prominent characteristic of renal pathology in kidney diseases. As an integrin cytoplasmic-binding protein, ILK regulates fibronectin (FN) matrix deposition and the actin cytoskeleton. Smooth muscle ?-actin (?-SMA) is involved in progressive renal dysfunction in both human and experimental renal disease. Methods To explore the mechanisms of benazepril’s reno-protective effects, we examined the expression of TGF-?1, ILK, and ?-SMA in GMC exposed to high glucose (HG) and in the kidneys of streptozotocin (STZ)-induced diabetic rats using real-time quantitative RT-PCR and western blot analysis. To elucidate the mechanism(s) of the effect of benazepril on GMC cellular processes, we assessed the effect of benazepril on Angiotensin II (Ang II) signalling pathways using western blot analysis. Results The expression of TGF-?1, ILK, and ?-SMA increased significantly in the diabetic group compared with the control group. Benazepril treatment inhibited the expression of these genes in DN but failed to rescue the same levels in the control group. Similar results were found in GMC treated with HG or benazepril. Ang II increased ERK and Akt phosphorylation in the HG group, and benazepril could not completely block these responses, suggesting that other molecules might be involved in the progression of DN. Our findings suggest that benazepril decreases ILK and ?-SMA expression, at least in part, by affecting the interactions between Ang II and TGF-?1. Conclusions The findings described here support the hypothesis that the HG milieu of diabetes increases TGF-?1 secretion, which increases the synthesis of ILK and ?-SMA that are involved in the progression of DN. This might be an important mechanism of the benazepril renal-protective function in the pathogenesis of DN. PMID:25142208

2014-01-01

266

Protective effect of aqueous extract of seed of Psoralea corylifolia (Somraji) and seed of Trigonella foenum-graecum L. (Methi) in streptozotocin-induced diabetic rat: A comparative evaluation  

PubMed Central

Background: Psoralea corylifolia (Somraji) and Trigonella foenum-graecum L. (Methi), important medicinal plants widely used in India as folk medicine. Local people of West Bengal traditionally used the seeds of these plants to cure diabetes. Objective: Present study was designed to investigate the antidiabetic efficacy of aqueous extract of seeds of these plants in separate or in composite manner in streptozotocin (STZ)-induced diabetic rat. Materials and Methods: Diabetes was induced by intramuscular injection of STZ at the dose of 40 mg/ml of citrate buffer/kg body weight. Fasting blood glucose (FBG), glyclated hemoglobin (HbA1C) and activities of hexokinase, glucose-6-phosphate dehydrogenase and glucose-6-phosphatase of liver in experimental animals were assessed. Hyperlipidemic state developed in the experimental diabetic rat was assessed by measuring the levels of total cholesterol, triglyceride, and lipoproteins in serum. Results: There was significant increased in the levels of FBG, HbA1C and lipid profiles along with diminution (P < 0.001) in the activities of hepatic hexokinase, glucose-6-phosphate dehydrogenase and elevation in glucose-6-phosphatase in diabetic control animals in respect to the untreated control. Significant recovery (P < 0.05) in the activities of above mentioned enzymes along with the correction in the levels of FBG, HbA1C and serum lipid profiles were noted towards the control level after the treatment of composite extract (i.e. 100 mg of Somraji: 100 mg of Methi, total 200 mg/kg body weight) than the individual extract (i.e. 200 mg of Somraji or 200 mg of Methi, per kg body weight) treatment. Conclusion: Results suggest that composite extract of above plant parts has more potent antidiabetic efficacy than the individual extract. PMID:24174822

Bera, Tushar Kanti; Ali, Kazi Monjur; Jana, Kishalay; Ghosh, Abhinandan; Ghosh, Debidas

2013-01-01

267

Adoptive Transfer of Autoimmune Diabetes and Thyroiditis to Athymic Rats  

Microsoft Academic Search

We describe the induction of autoimmune diabetes, insulitis, and thyroiditis in athymic rats following injections of major histocompatibility complex compatible spleen cells. Lymphocytes with these capabilities were found in normal rats of the YOS, WAG, PVG, and diabetes-resistant BB strains, and in diabetes-prone BB rats. Adoptive transfer was facilitated by prior in vivo depletion of RT6.1^+ regulatory T cells and

Una McKeever; John P. Mordes; Dale L. Greiner; Michael C. Appel; Jan Rozing; Eugene S. Handler; Aldo A. Rossini

1990-01-01

268

Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy  

E-print Network

Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy Hongting of streptozotocin (STZ)-induced diabetic nephropathy. RESEARCH DESIGN AND METHODS--Diabetes was induced in Nrf2). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were mea

Wong, Pak Kin

269

Melatonin improves spatial navigation memory in male diabetic rats  

PubMed Central

The aim of the present study was to evaluate the effect of melatonin as an antioxidant on spatial navigation memory in male diabetic rats. Thirty-two male white Wistar rats weighing 200 ± 20 g were divided into four groups, randomly: control, melatonin, diabetic and melatonin-treated diabetic. Experimental diabetes was induced by intraperitoneal injection of 50 mg kg-1 streptozotocin. Melatonin was injected (10 mg kg-1 day-1, ip) for 2 weeks after 21 days of diabetes induction. At the end of administration period, the spatial navigation memory of rats was evaluated by cross-arm maze. In this study lipid peroxidation levels, glutathione-peroxidase and catalase activities were measured in hippocampus. Diabetes caused to significant decrease in alternation percent in the cross-arm maze, as a spatial memory index, compared to the control group (p < 0.05), whereas administration of melatonin prevented the spatial memory deficit in diabetic rats. Also melatonin injection significantly increased the spatial memory in intact animals compared to the control group (p < 0.05). Assessment of hippocampus homogenates indicated an increase in lipid peroxidation levels and a decrease in GSH-Px and CAT activities in the diabetic group compared to the control animals, while melatonin administration ameliorated these indices in diabetic rats. In conclusion, diabetes induction leads to debilitation of spatial navigation memory in rats, and the melatonin treatment improves the memory presumably through the reduction of oxidative stress in hippocampus of diabetic rats.

Babaei-Balderlou, Farrin; Zare, Samad

2012-01-01

270

Chronopharmacokinetics of Puerarin in Diabetic Rats  

PubMed Central

Puerarin injection has been widely used for clinic treatment of diabetes recently. To assess the relationship between the administration time of puerarin and the blood concentration of puerarin as well as its pharmacokinetic parameters, the diabetic rat model was used in current study. The rats were randomly divided into morning and evening groups according to the administration time. After the puerarin injection, blood glucose was tested in order to know whether the efficiency of puerarin was influenced by its concentration and pharmacokinetic parameters. Our results show that the average concentration of puerarin in the evening group is significantly higher than that in the morning group. The numbers of t1/2?, t1/2?, CL and AUC(0-?) are significantly different between the morning and evening groups. The blood glucose level in the evening group was lower than that in the morning group. The speed of its onset is higher and the blood glucose level declines much more significantly in the evening group. These findings suggest that the concentration and pharmacokinetic parameters of puerarin affect its efficiency in diabetic rats. Therefore, it might be better to give puerarin in evening than in the morning for the mellitus treatment. PMID:24082353

Zhang, C. T.; Shi, D.; Zheng, Y.; Zheng, C. Y.; Li, Q. H.

2013-01-01

271

Activation of spinal GABAB receptors normalizes N-methyl-D-aspartate receptor in diabetic neuropathy.  

PubMed

N-methyl-D-aspartate receptor (NMDAR) activity is increased, while GABAB receptor is downregulated in the spinal cord dorsal horn in diabetic neuropathy. In this study, we determined the interaction of NMDARs and GABAB receptors in streptozotocin (STZ)-induced diabetic neuropathy. The paw withdrawal threshold (PWT) was significantly lower in STZ-treated rats than in vehicle-treated rats. Intrathecal injection of baclofen, a GABAB receptor agonist, significantly increased the PWT in STZ-treated rats, an effect that was abolished by pre-administration of the GABAB receptor specific antagonist CGP55845. Spinal NR2B, an NMDA receptor subunit, protein and mRNA expression levels were significantly higher in STZ-treated rats than in vehicle-treated rats. Intrathecal baclofen significantly reduced the NR2B protein and mRNA expression levels in STZ-treated rats. Intrathecal administration of CGP55845 eliminated baclofen-induced reduction of NR2B protein and mRNA levels in STZ-treated rats. In addition, the phosphorylated cAMP response element-binding (CREB) protein level was significantly higher in the spinal cord dorsal horn in STZ-treated rats compared with vehicle-treated rats. Intrathecal injection of baclofen significantly decreased phosphorylated CREB protein level in STZ-treated rats; an effect was blocked by CGP55845. These data suggest that activation of GABAB receptors in the spinal cord dorsal horn normalizes NMDAR expression level in diabetic neuropathic pain. PMID:24787504

Bai, Hui-Ping; Liu, Peng; Wu, Yu-Ming; Guo, Wen-Ya; Guo, Yue-Xian; Wang, Xiu-Li

2014-06-15

272

Amelioration of experimental diabetic neuropathy and gastropathy in rats following oral administration of plant (Eugenia jambolana, Mucuna pruriens and Tinospora cordifolia) extracts.  

PubMed

Extract of M. charantia (200 mg/kg), E. jambolana (200 mg/kg), M. pruriens (200 mg/kg) and T. cordifolia (400 mg/kg) was administered for 50 days in STZ induced diabetic mice, the plasma glucose concentration was reduced by 24.4, 20.84, 7.45 and 9.07% respectively. Tail flick latency (TFL) and gastric transit percentage were significantly higher in diabetic controls versus normal controls. M. charantia and E. jambolana modified it favorably while M. pruriens and T. cordifolia did not exert any favorable change. PMID:12635695

Grover, J K; Rathi, S S; Vats, V

2002-03-01

273

Adipocyte dysfunction in rats with streptozotocin-nicotinamide-induced diabetes.  

PubMed

Administration of streptozotocin (STZ) and nicotinamide (NA) to adult rats allows for the induction of mild diabetes. However, this experimental model has not been fully characterized. This study was undertaken to determine the metabolic and secretory activity of adipose tissue in rats with STZ-NA-induced diabetes. Experiments were performed using epididymal adipocytes isolated from control and mildly diabetic rats. Lipogenesis, glucose transport as well as glucose and alanine oxidation, lipolysis, anti-lipolysis, cAMP levels and adipokine secretion were compared in cells isolated from the control and diabetic rats. Lipogenesis, glucose transport and oxidation were diminished in the adipocytes of diabetic rats compared with the fat cells of control animals. However, alanine oxidation appeared to be similar in the cells of non-diabetic and diabetic animals. Lipolytic response to low epinephrine concentrations was slightly increased in the adipocytes of diabetic rats; however, at higher concentrations of the hormone, lipolysis was similar in both groups of cells. The epinephrine-induced rise in cAMP levels was higher in the adipocytes of STZ-NA-induced diabetic rats, even in the presence of insulin. Lipolysis stimulated by dibutyryl-cAMP did not significantly differ, whereas anti-lipolytic effects of insulin were mildly decreased in the cells of diabetic rats. Secretion of adiponectin and leptin was substantially diminished in the adipocytes of diabetic rats compared with the cells of control animals. Our studies demonstrated that the balance between lipogenesis and lipolysis in the adipose tissue of rats with mild diabetes induced by STZ and NA is slightly shifted towards reduced lipid accumulation. Simultaneously, adiponectin and leptin secretion is significantly impaired. PMID:24628786

Szkudelska, Katarzyna; Nogowski, Leszek; Szkudelski, Tomasz

2014-04-01

274

Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy.  

PubMed

Diabetes affects cardiac structure and function, and it has been suggested that diabetes leads to cardiomyopathy. Arachidonate 12/15-lipoxygenase (LOX) has been suggested to play an important role in atherogenesis and heart failure. However, the role of 12/15-LOX in diabetic cardiomyopathy has not been examined. In this study, we investigated the effects of cardiac 12/15-LOX on diabetic cardiomyopathy. We created streptozotocin (STZ)-induced diabetic mice and compared them with Alox15-deficient mice. Expression of 12/15-LOX and inflammatory cytokines such as tumor necrosis factor (TNF)-? and nuclear factor (NF)-?B were upregulated in STZ-induced diabetic hearts. Disruption of 12/15-LOX significantly improved STZ-induced cardiac dysfunction and fibrosis. Moreover, deletion of 12/15-LOX inhibited the increases of TNF-? and NF-?B as well as the production of STZ-induced reactive oxygen species in the heart. Administration of N-acetylcysteine in diabetic mice prevented STZ-induced cardiac fibrosis. Neonatal cultured cardiomyocytes exposed to high glucose conditions induced the expression of 12/15-LOX as well as TNF-?, NF-?B, and collagen markers. These increases were inhibited by treatment of the 12/15-LOX inhibitor. Our results suggest that cardiac 12/15-LOX-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy and that inhibition of 12/15-LOX could be a novel treatment for this condition. PMID:25187369

Suzuki, Hirofumi; Kayama, Yosuke; Sakamoto, Masaya; Iuchi, Hiroyuki; Shimizu, Ippei; Yoshino, Takuya; Katoh, Daisuke; Nagoshi, Tomohisa; Tojo, Katsuyoshi; Minamino, Tohru; Yoshimura, Michihiro; Utsunomiya, Kazunori

2015-02-01

275

Expression of visfatin in alloxan-induced diabetic rat testis.  

PubMed

Diabetes mellitus is a potential epidemic all over the world and causes dysfunction of reproductive activity. Visfatin, one of the adipokines, is present in various tissues including the testis. Our hypothesis was the level of testicular visfatin is affected in diabetic condition. The aim of the present study was to investigate the expression and localization of visfatin in the diabetic rat testis. No similar studies have been performed in diabetic rat testis with reference to visfatin. Overnight fasted adult male Wistar rats were made diabetic by the administration of alloxan (150 mg/kg i.p., in 0.9% saline). Blood glucose levels were tested on five days after alloxan treatment, rats with high blood glucose levels (>250 mg/dL) were considered as diabetic. Immunolocalization and Western blotting analysis of visfatin were performed. Correlation of visfatin expression was made in relation to body weight, testis weight, glucose concentration and serum testosterone level. Expression of visfatin was observed in Leydig cells, spermatocytes and sperm in control as well as in the diabetic group. Mild immunostaining of visfatin was observed in affected seminiferous tubules of alloxan-induced diabetic rat testis. Western blot analysis showed decreased expression of testicular visfatin in diabetic rats. The expression of visfatin showed a positive correlation with serum testosterone levels, body and testis weight, while a negative correlation was observed with blood glucose levels. This study showed involvement of visfatin in diabetic associated impairment of testicular activity. PMID:25450901

Gurusubramanian, Guruswami; Roy, Vikas Kumar

2014-10-01

276

Ferulic acid in the treatment of post-diabetes testicular damage: relevance to the down regulation of apoptosis correlates with antioxidant status via modulation of TGF-?1, IL-1? and Akt signalling.  

PubMed

The aim of this study was to investigate the protective effect of ferulic acid at different doses (50 mg kg(-1) alternative day and 50 mg kg(-1) daily) on the streptozotocin (STZ)-induced post-diabetes rat testicular damage. Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg). Rats treated with ferulic acid were given once a day orally for 10 weeks, starting 3 days after STZ injection. Testis tissue and blood samples were collected for investigating biochemical analysis, antioxidant status, sperm parameters, and histopathological, immunohistochemical and apoptotic studies. Treatment with ferulic acid to diabetic rats significantly improved the body weight, testis weight, serum insulin level, serum testosterone level and sperm parameters (viability, motility and count). Histopathological study also revealed that ferulic acid-treated diabetic rats showed an improved histological appearance. Our data indicated that significant reduction in the activity of apoptosis by using terminal deoxyuridine triphosphate nick end-labelling and reduced expression of transforming growth factor-?1 and interleukin-1? in the testis tissue of ferulic acid-treated diabetic rats. Conversely, it was also revealed that ferulic acid-treated diabetic rats markedly enhanced the serine/threonine protein kinase protein expression in the testis tissue. Our result suggests that ferulic acid inhibits testicular damage in diabetic rats by declining oxidative stress. PMID:23661600

Roy, Souvik; Metya, Satyajit Kumar; Rahaman, Noorjaman; Sannigrahi, Santanu; Ahmed, Faiqa

2014-01-01

277

Alleviating effects of morin against experimentally-induced diabetic osteopenia  

PubMed Central

Background Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of aging diseases particularly bone metabolic disorders. Morin (3,5,7,20,40-pentahydroxyflavone), a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. The present study was designed to investigate the putative beneficial effect of morin on diabetic osteopenia in rats. Methods Streptozotocin (STZ)-induced diabetic model was used by considering 300 mg/dl fasting glucose level as diabetic. Morin (15 and 30 mg/kg) was treated for five consecutive weeks to diabetic rats. Serum levels of glucose, insulin, deoxypyridinoline cross links (DPD), osteocalcin (OC), bone specific alkaline phosphatase (BALP), telopeptides of collagen type I (CTX), interleukin 1 beta (IL-1?), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-?), thiobarbituric acid reactive substance (TBARS) and reduced glutathione (GSH) were estimated. Femoral bones were taken for micro CT scan to measure trabecular bone mineral density (BMD) and other morphometric parameters. Results Significant bone loss was documented as the level of bone turnover parameters including DPD, OC, BALP and CTX were increased in serum of diabetic rats. Morin treatment significantly attenuated these elevated levels. Bone micro-CT scan of diabetic rats showed a significant impairment in trabecular bone microarchitecture, density and other morphometric parameters. These impairments were significantly ameliorated by morin administration. Serum levels of glucose, TBARS, IL-1?, IL-6 and TNF-? were significantly elevated, while the level of insulin and GSH was decreased in diabetic rats. These serum changes in diabetic rats were bring back to normal values after 5 weeks morin treatment. Conclusion These findings revealed the protective effect of morin against diabetic induced osteopenia. We believed that this effect is through its both the anti-inflammatory and antioxidant properties. PMID:23384060

2013-01-01

278

Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility.  

PubMed

1. Diabetes is one of the most frequent complications of gestation, affecting approximately 7% of pregnancies. However, little is known about its effects on electrically and pharmacologically stimulated myometrial contractility. The aim of the present study was to investigate the consequences of streptozotocin (STZ)-induced diabetes on: (i) electrical field stimulation (EFS)-evoked contraction of isolated uterine rings as a function of gestational age; and (ii) the uterotonic and tocolytic actions of ?- and ?-adrenoceptor stimulation, respectively. The effects of oxytocin in late pregnancy were also investigated. 2. During pregnancy, EFS-evoked contractions of isolated uterine rings from intact rats declined, whereas isolated uterine rings from diabetic rats exhibited continuously low sensitivity to EFS. 3. In non-pregnant rats, diabetes resulted in increased noradrenaline-mediated contractility and a decreased relaxation response to terbutaline. At the mRNA level, diabetes enhanced the expression of ?1B-adrenoceptors in non-pregnant rats from 14.65 to 18.39 ?g/mL (P < 0.05), whereas the expression of ?1D-adrenoceptors decreased (from 42.87 to 35.67 ?g/mL; P < 0.05). During pregnancy, the responses to these sympathomimetics did not differ between diabetic and intact rats. 4. In late pregnancy (on Days 15 and 21), oxytocin caused greater maximum contractility of uterine rings from diabetic rats without affecting the EC(50). In addition, on Day 15 of pregnancy, the expression of oxytocin receptors in the myometrium of diabetic rats was higher than that in intact rats. 5. The results of the present study indicate that experimental diabetes facilitates gestation-induced denervation and increases myometrial sensitivity to oxytocin in late pregnancy. If similar mechanisms operate in humans, this could contribute to a tendency to premature uterine contractions in diabetes-complicated pregnancies. PMID:19298542

Spiegl, Gábor; Zupkó, István; Minorics, Renáta; Csík, Gábor; Csonka, Dénes; Falkay, George

2009-09-01

279

Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes.  

PubMed

Diabetic nephropathy is the most serious complication in diabetes mellitus. It is known that oxidative stress and inflammation play a central role in the development of diabetic nephropathy. In this study, we investigated that ferulic acid (FA) known as anti-oxidative agent could effect on diabetic nephropathy by anti-oxidative and anti-inflammatory mechanism. We examined the effects of FA in obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic control Long-Evans Tokushima Otsuka (LETO) rats. We treated FA to experimental rats from 26 to 45 weeks of age. We evaluated ACR, MDA and MCP-1 in 24 h urine and examined renal histopathology and morphologic change in extracted kidneys from rats. Also, we evaluated the ROS production and MCP-1 levels in cultured podocyte after FA treatment. In the FA-treated OLETF rats, blood glucose was significantly decreased and serum adiponectin levels were increased. Urinary ACR was significantly reduced in FA-treated OLETF rats compared with diabetic OLETF rats. In renal histopathology, FA-treated OLETF rats showed decreased glomerular basement membrane thickness, glomerular volume, and mesangial matrix expansion. FA treatment decreased oxidative stress markers and MCP-1 levels in 24 h urine of rats and supernatants of cultured podocyte. In conclusion, it was suggested that FA have protective and therapeutic effects on diabetic nephropathy by reducing oxidative stress and inflammation. PMID:21975281

Choi, Ran; Kim, Bo Hwan; Naowaboot, Jarinyaporn; Lee, Mi Young; Hyun, Mi Ri; Cho, Eun Ju; Lee, Eun Soo; Lee, Eun Young; Yang, Young Chul; Chung, Choon Hee

2011-12-31

280

Protective effects of ferulic acid on hyperlipidemic diabetic rats.  

PubMed

Diabetes, when uncontrolled, causes dyslipidemia often followed by atherogenic abnormalities. The present study was focused to determine whether ferulic acid (FA), a flavonoid, has any role to play in diabetes-induced dyslipidemia. Diabetes in rats was induced with streptozotocin. The levels of blood glucose and plasma triglycerides (TG), free fatty acids (FFA), cholesterol and phospholipids were elevated during diabetes. Treatment with FA significantly reduced the elevated plasma lipid and blood glucose levels; a more pronounced effect was found with low-dose ferulic acid than with high dose. Thus, our study demonstrates that ferulic acid lowers the lipid levels in diabetic rats and hence prevents further complications. PMID:14605967

Sri Balasubashini, M; Rukkumani, R; Menon, V P

2003-09-01

281

Effect of Kaiyu Qingwei Jianji on the morphometry and residual strain distribution of small intestine in experimental diabetic rats  

PubMed Central

AIM: To investigate the effect of a Chinese medicine, Kaiyu Qingwei Jianji (KYQWJJ) used for diabetic treatment, on the morphometry and residual strain distribution of the small intestine in streptozotocin (STZ) -induced diabetic rats. Correlation analysis was also performed between the opening angle and residual strain with the blood glucose level. METHODS: Forty-two male Wistar rats weighing 220-240 g were included in this study. Thirty-two STZ-induced diabetic rats were subdivided into four groups (n = 8 in each group), i.e. diabetic control group (DM); high dose of KYQWJJ (T1, 36g/kg per day); low dose of KYQWJJ (T2, 17 g/kg per day) and Gliclazide (T3, 50 mg/kg per day). Another ten rats were used as non-diabetic control (CON). The medicines were poured directly into stomach lumen by gastric lavage twice daily. The rats of CON and DM groups were only poured the physiological saline. Blood glucose and plasma insulin levels were measured. Experimental period was 35 d. At the end of experiment, three 5-cm long segments were harvested from the duodenum, jejunum and ileum. Three rings of 1-2 mm in length for no-load and zero-stress state tests were cut from the middle of different segments. The morphometric data, such as the circumferential length, the wall thickness and the opening angle were measured from the digitized images of intestinal segments in the no-load state and zero-stress state. The residual strain was computed from the morphometry data. Furthermore, the linear regression analysis was performed between blood glucose level with morphometric and biomechanical data in the different intestinal segments. RESULTS: The blood glucose level of DM group was consistent 4-fold to 5-fold higher than those in CON group during the experiment (16.89 ± 1.11 vs 3.44 ± 0.15 mmol/L, P < 0.001). The blood glucose level in the T1 (16.89 ± 1.11 vs 11.08 ± 2.67 mmol/L, P < 0.01) and T3 groups (16.89 ± 1.11 vs 13.54 ± 1.73 mmol/L, P < 0.05), but not in T2 group (P > 0.05) was significantly lower than those in DM group. The plasma insulin levels of DM, T1, T2 and T3 groups were significantly lower than those in CON group (10.98 ± 1.02, 12.52 ± 1.42,13.54 ± 1.56,10.96 ± 0.96 vs 17.84 ± 2.34 pmol/L respectively, P < 0.05), but no significantly difference among the groups with exception of CON group. The wet weight/cm and total wall thickness of duodenum, jejunum and ileum in DM group were significantly higher than those in CON group (wet weight (g/cm): duodenum 0.209 ± 0.012 vs 0.166 ± 0.010, jejunum 0.149 ± 0.008 vs 0.121 ± 0.004, ileum 0.134 ± 0.013 vs 0.112 ± 0.007; Wall thickness (mm): duodenum 0.849 ± 0.027 vs 0.710 ± 0.026, jejunum 0.7259 ± 0.034 vs 0.627 ± 0.025, ileum 0.532 ± 0.023 vs 0.470 ± 0.010, all P < 0.05), T1 and T3 treatment could partly restore change of wall thickness, but T2 could not. The opening angle and absolute value of inner and outer residual stain were significantly smaller in duodenal segment (188 ± 11 degrees, -0.31 ± 0.02 and 0.35 ± 0.03 vs 259 ± 15 degrees, -0.40 ± 0.02 and 0.43 ± 0.05) and larger in jejunal (215 ± 20 degrees, -0.30 ± 0.03 and 0.36 ± 0.06 vs 172 ± 19 degrees, -0.25 ± 0.02 and 0.27 ± 0.02) and ileal segments (183 ± 20 degrees, -0.28 ± 0.01 and 0.34 ± 0.05 vs 153 ± 14 degrees, -0.23 ± 0.03 and 0.29 ± 0.04) in DM group than in CON group (P < 0.01). T1 and T3 treatment could partly restore this biomechanical alteration, but strong effect was found in T1 treatment (duodenum 243 ± 14 degrees, -0.36 ± 0.02 and 0.42 ± 0.06, jejunum 180 ± 15 degrees, -0.26 ± 0.03 and 0.30 ± 0.06 and ileum 163 ± 17 degrees, -0.23 ± 0.03 and 0.30 ± 0.05, compared with DM, P < 0.05). The linear association was found between the glucose level with most morphometric and biomechanical data. CONCLUSION: KYQWJJ (high dose) treatment could partly rest

Sha, Hong; Zhao, Jing-Bo; Zhang, Zhi-Yuan; Zhou, Shui-Ping; Tong, Xiao-Lin; Zhuang, Feng-Yuan; Gregersen, Hans

2006-01-01

282

Influence of Helicteres isora administration for diabetes mellitus: the effect on changes in tissue fatty acid composition.  

PubMed

The aim of the present study was to evaluate the effect of aqueous bark extract of Helicteres isora (HI) (Sterculiaceae) on the blood glucose, plasma insulin and fatty acid composition of the total lipids in the liver, kidney and brain of control and streptozotocin (STZ) diabetic rats. The analysis of fatty acids showed that there was a significant increase in the concentrations of palmitic acid (16:1), stearic acid (18:0) and oleic acid (18:1) in the liver, kidney and brain, whereas the concentrations of linolenic acid (18:3) and arachidonic acid (20:4) were significantly decreased in STZ diabetic rats. Oral administration of the aqueous bark extract of HI (100, 200mg/kg body weight) for 30 days to diabetic rats decreased the concentrations of fatty acids, viz., palmitic, stearic, and oleic acid, whereas linolenic and arachidonic acid were elevated. These results suggest that HI exhibits antidiabetic and antihyperlipidemic effects in STZ induced diabetic rats. It also prevents the fatty acid changes produced during diabetes. The antidiabetic and antihyperlipidemic effects of HI are more potent than those of tolbutamide, as standard drug. The results of the present study indicate that HI showed an antihyperlipidemic effect in addition to its antidiabetic effect in type 2 diabetic rats. PMID:19410628

Kumar, G; Banu, Sharmila; Murugesan, A G

2009-08-01

283

Metallothionein metabolism in the streptozotocin-diabetic rat  

SciTech Connect

Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of /sup 35/S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively.

Chen, M.L.; Failla, M.L.

1986-03-05

284

Characterization of Diabetic Neuropathy in the Zucker Diabetic Sprague-Dawley Rat: A New Animal Model for Type 2 Diabetes  

PubMed Central

Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco) was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy. PMID:25371906

Davidson, Eric P.; Coppey, Lawrence J.; Holmes, Amey; Lupachyk, Sergey; Dake, Brian L.; Oltman, Christine L.; Peterson, Richard G.; Yorek, Mark A.

2014-01-01

285

Decrease of hyperglycemia by syringaldehyde in diabetic rats.  

PubMed

Syringaldehyde is one of the active principles from the stems of Hibiscus taiwanensis (Malvaceae) that has been mentioned to lower hyperglycemia. However, the potential mechanisms for this action of syringaldehyde remain obscure. In the present study, we used streptozotocin to induce diabetic rats (STZ-diabetic rats) as type 1-like diabetic rats and fed fructose-rich chow to rats as type 2-like diabetic rats. Then, we performed the postprandial glucose test and applied the hyperinsulinemic euglycemic clamp to investigate the actions of syringaldehyde. Also, the changes of gene expressions of enzyme relating to glucose homeostasis in muscle and liver were characterized. Syringaldehyde significantly decreased the postprandial plasma glucose in rats, while the plasma insulin was not modified by syringaldehyde. The glucose infusion rate (GIR) in fructose chow-fed rats using hyperinsulinemic euglycemic clamp was markedly improved by syringaldehyde. Additionally, repeated administration of syringaldehyde for 3 days in STZ-diabetic rats resulted in a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Our results suggest that syringaldehyde may increase glucose utilization to lower hyperglycemia in diabetic rats. PMID:23918689

Kuo, S C; Chung, H H; Huang, C H; Cheng, J T

2014-01-01

286

Effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on streptozotocin-induced diabetic nephropathy.  

PubMed

The aim of this study was designed to investigate the possible beneficial effects of the angiotensin-converting enzyme (ACE) inhibitor, Quinapril (Q) and, the angiotensin (ang) II T(1) (AT1) receptor blocker, irbesartan (Irb), in streptozotocin (STZ)-induced diabetes in rats. The rats were randomly allotted into one of five experimental groups: A (control), B (diabetic untreated), C (diabetic treated with Q), D (diabetic treated with Irb), and E (diabetic treated with Q&Irb), each group containing 10 animals. Groups B-E received STZ. Diabetes was induced in four groups by a single intraperitoneal (i.p) injection of STZ (50 mg/kg, freshly dissolved in 5 mmol/L citrate buffer, pH 4.5). Two days after STZ treatment, development of diabetes in four experimental groups was confirmed by measuring blood glucose levels in a tail vein blood samples. Rats with blood glucose levels of 250 mg/dL or higher were considered to be diabetic. The rats in Q-, Irb-, and Q&Irb-treated groups were given Q (in a dose of 3 mg/kg body weight), Irb (5 mg/kg body weight), and Q&Irb (in a dose of 1.5 mg/kg + 2.5 mg/kg body weight) once a day orally by using intra-gastric intubation for 12 weeks starting two days after STZ injection. Treatment of Q and especially Irb reduced the glomerular size and thickening of capsular, glomerular, and tubular basement membranes; and increased amounts of mesangial matrix and tubular dilatation and renal function as compared with diabetics untreated. Notably, the better effects were obtained when Q and Irb given together. We conclude that Q, Irb, and especially Q+Irb therapy causes renal morphologic and functional improvement after STZ-induced diabetes in rats. We believe that further preclinical research into the utility of Q and Irb treatment, alone or its combination, may indicate its usefulness as a potential treatment in diabetic nephropathy (DNp). PMID:19016156

Sen, Saniye; Saniye, Sen; Kanter, Mehmet; Mehmet, Kanter; Ustundag, Sedat; Sedat, Ustundag; Aktas, Cevat; Cevat, Aktas; Dogutan, Haluk; Yalcin, Omer; Omer, Yalcin

2008-01-01

287

Enalapril attenuates oxidative stress in diabetic rats.  

PubMed

Oxidative stress is involved in both the pathogenesis and complications of diabetes. ACE inhibitors can slow the progression of cardiac and renal impairments related to diabetes. The effect of enalapril treatment on oxidative stress and tissue injury was studied in hearts, kidneys, and livers from streptozotocin-induced diabetic rats. Twenty-four rats were divided into the following groups: streptozotocin (65 mg/kg, single intraperitoneal dose), streptozotocin+enalapril (20 mg enalapril/L drinking water), and control (intraperitoneal saline). Seven months after streptozotocin injection, organs were studied by light microscopy and collagen III immunolabeling. Tissue lesions and collagen labeling were graded by a semiquantitative score (0 to 4). Total glutathione content, glutathione redox status (reduced/oxidized glutathione), antioxidant enzyme activities, protein-associated sulfhydryls, thiobarbituric acid-reactive substances, and fluorescent chromolipids were determined in tissue homogenates. Glycemia was higher in both the streptozotocin and streptozotocin+enalapril groups relative to the control group. In the streptozotocin group, creatinine clearance and body weight were lower, and systolic blood pressure and urinary albumin excretion were higher than in the streptozotocin+enalapril and control groups. Heart, kidney, and liver lesion/labeling scores were significantly higher in the streptozotocin group compared with the streptozotocin+enalapril and control groups. Kidney and liver total glutathione was lower in the streptozotocin group relative to the control group (P<0.05). Enalapril treatment significantly attenuated the reduction of total glutathione. In the heart, kidney, and liver, both glutathione and proteins were relatively more oxidized in the streptozotocin group relative to the control group (P<0.05). Protein and glutathione oxidation were attenuated in the streptozotocin+enalapril group in the 3 tissues studied (P<0.05). Enalapril treatment attenuated the oxidation of lipids in the heart and kidney (P<0.05). Tissue fibrosis scores were inversely correlated with (1) both total glutathione and reduced/oxidized glutathione in heart, kidney, and liver and (2) glutathione reductase activity in the kidney. These results suggest that in streptozotocin-induced diabetic rats, the protective action of enalapril might be mediated, at least in part, by its effect on tissue oxidant/antioxidant status. PMID:11711510

de Cavanagh, E M; Inserra, F; Toblli, J; Stella, I; Fraga, C G; Ferder, L

2001-11-01

288

Ursolic Acid Provides Kidney Protection in Diabetic Rats?  

PubMed Central

Background Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and the leading cause of end-stage renal failure. However, the treatment of DN is still a problem in the world. Inflammatory process plays a critical role in the development of DN. Therefore, anti-inflammatory treatment of DN is worth exploring now and in the future. Objective The study aimed to evaluate the impact of ursolic acid (UA) on renal function in streptozotocin-induced diabetes. Methods Rats with streptozotocin-induced diabetes were treated with UA for 16 weeks. After 16 weeks, urine albumin excretion, serum creatinine, and blood urea nitrogen were measured. In addition, renal oxidative stress level, nuclear factor kappa-B (NF-?B) activity, P-selectin expression, and kidney histopathologic changes were evaluated. Results Sixteen weeks following streptozotocin injection, the rats produced significant alteration in renal function and increased oxidative stress, NF-?B activity, and P-selectin expression in the kidneys. Interestingly, UA significantly prevented biochemical and histopathologic changes in the kidneys associated with diabetes. Compared with untreated diabetic rats, UA treatment lowered urine albumin excretion, renal oxidative stress level, NF-?B activity, and P-selectin expression. Moreover, UA treatment also improved renal histopathologic changes in rats with diabetes. Conclusions UA treatment exhibited a protective effect on kidneys in diabetic rats, implying that UA could be a potential treatment for diabetic nephropathy. PMID:24465045

Ling, Chen; Jinping, Lu; Xia, Li; Renyong, Yang

2013-01-01

289

Toxicity of diazinon and its metabolites increases in diabetic rats.  

PubMed

The effect of diazinon (DZN) on the activities of cholinesterase (ChE) in plasma and acetylcholinesterase (AChE) in erythrocyte and brain was investigated in normal and streptozotocin-induced diabetic rats. Hepatic drug-metabolizing enzyme activity was also estimated by measuring the systemic clearance of antipyrine, and the expression of hepatic cytochrome P450 (CYP) 3A2 and CYP1A2, which is closely related to the metabolism from DZN to DZN-oxon, a strong inhibitor of both ChE and AChE. No significant differences in the activities of ChE in plasma and AChE in erythrocyte were observed between normal and diabetic rats. Treatment with DZN significantly decreased these activities in diabetic rats more than in normal rats 6h after injection (6.5 mg/kg). Treatment with DZN significantly decreased the activity of AChE in brain of diabetic rats than normal rats 3h after injection (65 mg/kg), although no significant difference in the activity was found between normal and diabetic rats. The urinary recovery of diethylphosphate (DEP), a metabolite of DZN-oxon, was significantly increased in diabetic rats, but that of diethylthiophosphate (DETP), a metabolite of DZN, was unchanged. Significant increases in the systemic clearance of antipyrine and protein levels of hepatic CYP1A2, not CYP3A2, were observed in diabetic rats. These results suggest the possibility that a metabolite of DZN, DZN-oxon, causes higher toxicity in diabetic rats due to the enhancement of hepatic CYP1A2-mediated metabolism of DZN. PMID:17442507

Ueyama, Jun; Wang, Dong; Kondo, Takaaki; Saito, Isao; Takagi, Kenji; Takagi, Kenzo; Kamijima, Michihiro; Nakajima, Tamie; Miyamoto, Ken-Ichi; Wakusawa, Shinya; Hasegawa, Takaaki

2007-05-15

290

An Inhibition of Urinary Albumin Excretion by Protease Inhibitor in Streptozotocin-Diabetic Rats  

Microsoft Academic Search

To evaluate the protecting effect of camostat mesylate, NN-dimethylcarba-moylmethyl-p-(p-guanidinobenzoyloxy)phenylacetate methanesulfonate, one of the synthetic trypsin inhibitors, on diabetic nephropathy, urinary albumin excretion was measured in streptozotocin-induced (50 mg\\/kg, i.p.) diabetic rats treated with oral camostat mesylate for 12 weeks. The rats were divided into three groups: (1) nondiabetic control rats; (2) diabetic rats, and (3) diabetic rats received rat chow

Tadasu Ikeda; Tazue Hoshino

1996-01-01

291

Ovarian dysfunction in streptozotocin-induced diabetic rats.  

PubMed

The effect of streptozotocin diabetes on some ovarian functions in adult rats was examined. Diabetic diestrus animals showed reduced ovary weight and lower circulating levels of progesterone. Scatchard plots of binding data derived from ovarian particulate fractions of normal and streptozotocin diabetic rats revealed the presence of one class of binding sites with high affinity for 125I-hCG. The apparent association constant of the hCG receptors of diabetic ovaries was comparable to that of normal gonads. However, a marked decrease (42%) in the number of hCG binding sites was found in diabetic animals. With isolated luteal cells similar results were obtained, and the administration of insulin to streptozotocin diabetic rats restored to normality the number of hCG binding sites. The maximal response of progesterone production by luteal cells from control ovaries was obtained with 10(-10) M hCG. A 100-fold higher concentration of hCG was required for the maximum stimulation of cAMP synthesis. The cAMP response of cells from diabetic rats was significantly higher than that of control cells. However, luteal cells from diabetic rats showed some loss of sensitivity in the synthesis of progesterone during incubation with hCG. Most of the alterations seen in diabetic female rats could be restored with insulin therapy, indicating that insulin plays an important role in the regulation and maintenance of normal reproductive functions. It is suggested that the diminution of the LH receptor population causes the disruption of normal luteal cell function. This fact could be responsible for some of the reproductive alterations in the diabetic female rat. PMID:6314340

Tesone, M; Ladenheim, R G; Oliveira-Filho, R M; Chiauzzi, V A; Foglia, V G; Charreau, E H

1983-10-01

292

The Spontaneously Diabetic Torii Rat: An Animal Model of Nonobese Type 2 Diabetes with Severe Diabetic Complications  

PubMed Central

The Spontaneously Diabetic Torii (SDT) rat is an inbred strain of Sprague-Dawley rat and recently is established as a nonobese model of type 2 diabetes (T2D). Male SDT rats show high plasma glucose levels (over 700?mg/dL) by 20 weeks. Male SDT rats show pancreatic islet histopathology, including hemorrhage in pancreatic islets and inflammatory cell infiltration with fibroblasts. Prior to the onset of diabetes, glucose intolerance with hypoinsulinemia is also observed. As a result of chronic severe hyperglycemia, the SDT rats develop profound complications. In eyes, retinopathy, cataract, and neovascular glaucoma are observed. Proliferative retinopathy, especially, resulting from retinal neovascular vessels is a unique characteristic of this model. In kidney, mesangial proliferation and nodular lesion are observed. Both peripheral neuropathy such as decreased nerve conduction velocity and thermal hypoalgesia and autonomic neuropathy such as diabetic diarrhea and voiding dysfunction have been reported. Osteoporosis is another complication characterized in SDT rat. Decreased bone density and low-turnover bone lesions are observed. Taking advantage of these features, SDT rat has been used for evaluating antidiabetic drugs and drugs/gene therapy for diabetic complications. In conclusion, the SDT rat is potentially a useful T2D model for studies on pathogenesis and treatment of diabetic complications in humans. PMID:23691526

Ohta, Takeshi; Masuyama, Taku; Yokoi, Norihide; Kakehashi, Akihiro; Shinohara, Masami

2013-01-01

293

Transplantation of Pancreatic Islets From Hypothalamic Obese Rats Corrects Hyperglycemia of Diabetic Rats  

Microsoft Academic Search

Pancreatic islets isolated from adult obese rats, obtained by neonatal treatment with monosodium L-glutamate (MSG), oversecrete insulin stimulated by glucose concentration. Whereas adult MSG obese rats are hyperinsulinemic, their pancreatic islets still secrete insulin after high glucose demand. This is crucial so that the animals do not become hyperglycemic. Islets from MSG obese rats were implanted in diabetic donor rats

P. C. de Freitas Mathias; S. Grassiolli; D. N. Rocha; D. X. Scomparin; C. Gravena

2007-01-01

294

Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity.  

PubMed

There is a growing appreciation that microbiota composition can significantly affect host health and play a role in disease onset and progression. This study assessed the impact of streptozotocin (STZ)-induced type-1-diabetes (T1D) on intestinal microbiota composition and diversity in Sprague-Dawley rats, compared with healthy controls over time. T1D was induced by injection of a single dose (60 mg STZ kg(-1)) of STZ, administered via the intraperitoneal cavity. Total DNA was isolated from faecal pellets at weeks 0 (pre-STZ injection), 1, 2 and 4 and from caecal content at week 5 from both healthy and T1D groups. High-throughput 16S rRNA sequencing was employed to investigate intestinal microbiota composition. The data revealed that although intestinal microbiota composition between the groups was similar at week 0, a dramatic impact of T1D development on the microbiota was apparent post-STZ injection and for up to 5 weeks. Most notably, T1D onset was associated with a shift in the Bacteroidetes?:?Firmicutes ratio (P<0.05), while at the genus level, increased proportions of lactic acid producing bacteria such as Lactobacillus and Bifidobacterium were associated with the later stages of T1D progression (P<0.05). Coincidently, T1D increased caecal lactate levels (P<0.05). Microbial diversity was also reduced following T1D (P<0.05). Principle co-ordinate analyses demonstrated temporal clustering in T1D and control groups with distinct separation between groups. The results provide a comprehensive account of how T1D is associated with an altered intestinal microbiota composition and reduced microbial diversity over time. PMID:25370749

Patterson, Elaine; Marques, Tatiana M; O'Sullivan, Orla; Fitzgerald, Patrick; Fitzgerald, Gerald F; Cotter, Paul D; Dinan, Timothy G; Cryan, John F; Stanton, Catherine; Ross, R Paul

2015-01-01

295

Low-dose poly(ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy.  

PubMed

Poly(ADP-ribose) polymerase (PARP) inhibition has recently been identified as a novel approach to treatment of experimental peripheral diabetic neuropathy (PDN). However, long-term inhibition of PARP, an enzyme involved in DNA repair, can potentially result in premature aging, loss of genome stability, and other side effects. This study evaluated potential synergistic interactions between low doses of the potent and specific PARP inhibitor 1,5-isoquinolinediol (ISO) and one of two vasodilators, the ACE inhibitor lisinopril (LIS) and the beta2-adrenoceptor agonist salbutamol (SAL) in the model of early PDN. Control and streptozotocin (STZ)-induced diabetic rats were treated with either ISO plus LIS or ISO plus SAL for 2 weeks after an initial 2 weeks without treatment. ISO (intraperitoneally) and LIS and SAL (both in the drinking water) were used in subtherapeutic doses, resulting in a minor correction of diabetes-associated sciatic motor and hind-limb digital sensory nerve conduction deficits when administered as monotherapies. Both combination treatments corrected endoneurial blood flow and vascular conductance deficits in STZ-induced diabetic rats. ISO plus SAL corrected all other changes of PDN, i.e., motor nerve conduction velocity (MNCV) and sensory nerve conduction velocity (SNCV) deficits as well as thermal and mechanical hyperalgesia. With ISO plus LIS, no significant correction of MNCV was observed, and the effect on thermal hyperalgesia was quite modest. SNCV and mechanical hyperalgesia were corrected. In vitro studies in human endothelial and Schwann cells showed early accumulation of poly(ADP-ribosyl)ated proteins (Western blot analysis) in response to high glucose, thus suggesting the importance of PARP activation in human PDN. In conclusion, low-dose PARP inhibitor-containing combination therapies may constitute a new approach for treatment of PDN. PMID:15855340

Li, Fei; Drel, Viktor R; Szabó, Csaba; Stevens, Martin J; Obrosova, Irina G

2005-05-01

296

Early Renal Histological Changes in Alloxan-Induced Diabetic Rats  

PubMed Central

Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by single injection of Alloxan. After 8 weeks, paraffin embedded blocks of kidneys were prepared for evaluating the histological changes due to diabetes. Histological study showed the deposit of eosinophilic materials in the intermediate substantial of medulla and thickening of renal arterial wall in the kidney of 70% of diabetic rats. The average weight of kidneys increased when compared to non diabetic animals. Furthermore, the amount of blood flow in arteries of all diabetic kidneys has been enhanced. The present study demonstrates some early renal histological changes in diabetes mellitus which were earlier compared to those reported previously. Diabetic nephropathy is a progressive disease and renal care design can help better prognosis achievement. PMID:24551816

Pourghasem, Mohsen; Nasiri, Ebrahim; Shafi, Hamid

2014-01-01

297

Insulin treatment prevents diabetes mellitus but not thyroiditis in RT6-depleted diabetes resistant BB\\/Wor rats  

Microsoft Academic Search

Summary  Prophylactic insulin administration is known to prevent hyperglycaemia in diabetes prone BB rats and non-obese diabetic mice. This study investigated the effect of insulin treatment on the development of overt diabetes, clinically inapparent anti-islet autoreactivity, and thyroiditis in RT6-depleted diabetes resistant BB rats. Fewer than 1% of these animals develop spontaneous diabetes, but if depleted of RT6+ T cells >50%

P. A. Gottlieb; E. S. Handler; M. C. Appel; D. L. Greiner; J. P. Mordes; A. A. Rossini

1991-01-01

298

Changes in the daily rhythm of lipid metabolism in the diabetic retina.  

PubMed

Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) ? exhibited rhythmic oscillation in retina and liver; PPAR? had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPAR? and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy. PMID:24736612

Wang, Qi; Tikhonenko, Maria; Bozack, Svetlana N; Lydic, Todd A; Yan, Lily; Panchy, Nicholas L; McSorley, Kelly M; Faber, Matthew S; Yan, Yuanqing; Boulton, Michael E; Grant, Maria B; Busik, Julia V

2014-01-01

299

Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice  

Microsoft Academic Search

Prunella vulgaris L. (Labiatae) has been reported to have a wide range of health benefits in oriental medicine. This study for the first time is to examine the antihyperglycemic effects of P. vulgaris in streptozotocin (STZ) - induced diabetic ICR mice (STZ diabetic mice). The effects of P. vulgaris L. aqueous-ethanol extract (PVE) on blood glucose, exogenous insulin sensitivity and

Jie Zheng; Jiguo He; Baoping Ji; Ye Li; Xiaofeng Zhang

2007-01-01

300

The effect of dietary Cu and diabetes on indices of Cu nutriture in the rat  

SciTech Connect

The uptake-retention of 67Cu is affected by dietary Cu and diabetes. Consequently, the functional activities of select enzymes and tissue Cu status were assessed. STZ-diabetic and control rats were fed Cu suppl. or def. diets. Rats were gavaged with 28 {mu}Ci 67Cu, and killed 8, 16, 24, 32, 64, or 128 h later. Diabetic rats were hyperphagic, hyperglycemic and hypoinsulinemic; with no effect of diet. Plasma ceruloplasmin activity (Cp) was lower in Cu def. rats; diabetic rats tended to have higher Cp than controls. Cu def. rats had low Cu levels in liver, kidney and plasma. Cu suppl. diabetic rats had higher liver and kidney Cu compared to Cu def. diabetic rats. Gel chromatography of liver showed that with time, there was a transfer of 67Cu from low to higher MW ligands. In nondiabetic rats, more 67Cu was associated with the higher MW ligands. The converse was observed for diabetic rats. There was no effect of diabetes on liver 67Cu localization. Diabetic rats had higher metallothionein (MT) concentrations in liver and kidney compared to controls Cu deficiency lowered MT values in both diabetic and control rats. CuZn SOD Cu activity was lowered with Cu def. and diabetes, while Mn SOD activity was similar among groups. Plasma lipid peroxide levels were lower in diabetic rats than controls. The results show that Cu metabolism is affected in diabetes, and the changes are functionally significant.

Rucker, R.B.; Uriu-Hare, J.Y.; Tinker, D.; Keen, C.L. (Univ. of California, Davis (United States))

1991-03-11

301

Increased Intraretinal PO2 in Short-Term Diabetic Rats.  

PubMed

In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelectrodes in control and diabetic Long-Evans rats at 4 and 12 weeks after induction of diabetes. Diabetes did not affect oxygen consumption in the photoreceptors in either dark or light adaptation. Oxygenation of the inner retina was not affected after 4 weeks of diabetes, although vascular endothelial growth factor levels increased. At 12 weeks, average inner retinal PO2, normalized to choriocapillaris PO2, was higher in diabetic rats than in age-matched controls, which was opposite to what was expected. Thus retinal hypoxia is not a condition of early diabetes in rat retina. Increased inner retinal PO2 may occur because oxygen consumption decreases in the inner retina. PMID:25028524

Lau, Jennifer C M; Linsenmeier, Robert A

2014-12-01

302

Cardioprotective effect of sodium ferulate in diabetic rats.  

PubMed

Reactive oxygen species (ROS) play important roles in the occurrence and development in diabetic cardiomyopathy (DC). Ferulic acid is one of the ubiquitous compounds in diet. Sodium ferulate (SF) is its sodium salt. SF has potent free radical scavenging activity and can effectively scavenge ROS. The study investigated the effect of SF on cardioprotection in diabetic rats. The diabetic rats induced by streptozotocin (STZ) were treated with SF (110mg/kg) by gavage per day for 12 weeks. Results showed that the levels of nitric oxide (NO) and superoxide dismutase (SOD) activity in plasma and myocardium in SF-treated group were significantly higher than those in diabetic control group. The levels of malondialdehyde (MDA) in plasma and myocardium in SF-treated group were significantly lower than those in diabetic control group. Expression of connective tissue growth factor (CTGF) in myocardium in SF-treated group was apparently lower than that in diabetic control group. Compared with normal control group, electron micrographs of myocardium in diabetic control group showed apparently abnormality, while that was significantly ameliorated in SF-treated group. The study demonstrated that SF has a cardioprotective effect via increasing SOD activity and NO levels in plasma and myocardium, inhibiting oxidative stress in plasma and myocardium, and inhibiting the expression of CTGF in myocardium in diabetes rats. PMID:22701336

Xu, Xiaohong; Xiao, Haijuan; Zhao, Jiangpei; Zhao, Tongfeng

2012-01-01

303

Anti-diabetic properties of the African mistletoe in streptozotocin-induced diabetic rats.  

PubMed

The African mistletoe, Loranthus bengwensis L. (Loranthaceae), has been widely used in Nigerian folk medicine to treat diabetes mellitus. The aqueous extract or infusion (1.32 g/kg per day) of the leaves of this plant parasitic on lemon, Citrus limon (L.) Brum f. (Rutaceae), guava, Psidium guajava L. (Myrtaceae) and jatropha, Jatropha curcas L. (Euphorbiaceae), respectively, were supplied ad libitum to separate groups of both non-diabetic and streptozotocin-induced diabetic rats, as their only source of fluid for a period of 28 days. The infusions of mistletoe parasite on both lemon and guava trees significantly decreased serum glucose levels in non-diabetic (P < 0.05) and diabetic (P < 0.001) rats, whereas that prepared from mistletoe parasitic on jatropha did not. The data indicate that African mistletoe possesses significant anti-diabetic activity in streptozotocin-induced diabetic rats; its anti-diabetic activity appears to be highly dependent on the host plant species. PMID:7967645

Obatomi, D K; Bikomo, E O; Temple, V J

1994-06-01

304

Type 2 diabetic rats are sensitive to thioacetamide hepatotoxicity  

SciTech Connect

Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl{sub 4} was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of {sup 14}C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [{sup 3}H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin.

Sawant, Sharmilee P. [Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Sugar Hall 306, Monroe, LA 71209-0470 (United States); Dnyanmote, Ankur V. [Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Sugar Hall 306, Monroe, LA 71209-0470 (United States); Warbritton, Alan [Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Latendresse, John R. [Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Mehendale, Harihara M. [Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Sugar Hall 306, Monroe, LA 71209-0470 (United States)]. E-mail: mehendale@ulm.edu

2006-03-15

305

Carvacrol attenuates diabetes-associated cognitive deficits in rats.  

PubMed

Carvacrol (CAR), a naturally occurring phenolic monoterpene, has been demonstrated to possess various biological actions. The present study was designed to investigate the neuroprotective effect of CAR on diabetes-associated cognitive deficit (DACD) in a rat model of diabetes and exploring its potential molecular mechanism. Diabetic rats were treated with CAR by the doses of 25, 50, and 100 mg/kg for 7 weeks. Morris water maze was used for behavioral evaluation of memory. Cytoplasmic and nuclear fractions of cerebral cortex and hippocampus were prepared for the quantification of oxidative stress (MDA, SOD, and GSH), NF-?B p65 unit, TNF-?, IL-1?, and caspase-3. After 7 weeks of streptozotocin injection, the rats produced remarkable increase in escape latency, coupled with increased oxidative stress (increased MDA level and decreased SOD as well as reduced GSH), NF-?B p65 unit, TNF-?, IL-1?, and caspase-3 in different regions of diabetic rat brain. Interestingly, coadministration of CAR significantly and dose-dependently prevented behavioral, biochemical, and molecular changes associated with diabetes. In summary, our findings provide the first evidence that CAR can remarkably attenuate DACD and suggest the involvement of oxidative stress, inflammation, and apoptotic cascades in the development of cognitive impairment caused by diabetes. The pharmacological effect of CAR suggests that it may be used as a promising agent for the treatment of conventional antihyperglycemic regiments as well as DACD. PMID:23877802

Deng, Wenjing; Lu, Hong; Teng, Junfang

2013-11-01

306

Ghrelin reverses experimental diabetic neuropathy in mice  

SciTech Connect

Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

Kyoraku, Itaru; Shiomi, Kazutaka [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)] [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565 (Japan)] [Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565 (Japan); Nakazato, Masamitsu, E-mail: nakazato@med.miyazaki-u.ac.jp [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)] [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)

2009-11-20

307

Chlorogenic Acid Decreases Retinal Vascular Hyperpermeability in Diabetic Rat Model  

PubMed Central

To evaluate the effect of chlorogenic acid (CGA), a polyphenol abundant in coffee, on retinal vascular leakage in the rat model of diabetic retinopathy, Sprague-Dawley rats were divided into four groups: controls, streptozotocin-induced diabetic rats, and diabetic rats treated with 10 and 20 mg/kg chlorogenic acid intraperitoneally daily for 14 days, respectively. Blood-retinal barrier (BRB) breakdown was evaluated using FITC-dextran. Vascular endothelial growth factor (VEGF) distribution and expression level was evaluated with immunohistochemistry and Western blot analysis. Expression of tight junction proteins, occludin and claudin-5, and zonula occludens protein, ZO-1 was also evaluated with immunohistochemistry and Western blot analysis. BRB breakdown and increased vascular leakage was found in diabetic rats, with increased VEGF expression and down-regulation of occludin, claudin-5, and ZO-1. CGA treatment effectively preserved the expression of occludin, and decreased VEGF levels, leading to less BRB breakdown and less vascular leakage. CGA may have a preventive role in BRB breakdown in diabetic retinopathy by preserving tight junction protein levels and low VEGF levels. PMID:23579598

Shin, Joo Young; Sohn, Joonhong

2013-01-01

308

Effect of Mild Hypoinsulinemia on Renal Hypertrophy: Growth Hormone/Insulin-Like Growth Factor I System in Mild Streptozotocin Diabetes  

PubMed Central

The metabolic aberrations associated with diabetes mellitus profoundly alter the growth hormone/insulin-like growth factor I (GH/IGF-I) system. In severe experimental diabetes, serum IGF-I level is reduced, reflecting altered hepatic expression. On the other hand, increased levels of kidney IGF-I have been implicated in the development of diabetic kidney disease. This study aimed to examine the effect of mild experimental diabetes with hypoinsulinemia on both the systemic and renal GH/IGF-I systems in a low-dose streptozotocin (STZ)-induced diabetic rat. Diabetic animals with mild hypoinsulinemia developed renal hyperfiltration within 3 days of diabetes, whereas the renal size increased significantly only between 30 and 48 days of diabetes. Plasma GHlevels were unchanged during the entire course of the study, but a decrease in serum IGF-I, IGF-binding protein 3 (IGFBP-3), and IGF-binding protein 4 (IGFBP-4) occurred after 10, 30, and 48 days. Kidney IGF-I and IGF-binding protein 1 (IGFBP-1) mRNA expression increased after 10 and 30 days of diabetes. A significant increase in kidney IGFBP-1/2, IGFBP-3, and IGFBP-4 proteins was seen after 48 days of diabetes.Apositive correlations was found between renal growth and insulin/glucose ratio (r = .57), kidney IGF-I (r = .57), IGFBP-1 mRNA(r = .43), IGFBP-1/2 (r = .41), and IGFBP-4 levels (r = .40). These results demonstrate hyperfiltration within 3 days of diabetes and a similar response in the IGF-I system in mildly and severely hypoinsulinemic rats; however, renomegaly develops slower in mildly diabetic rats at least partly due to delayed changes in the renal IGF and IGF BPs. PMID:12546279

Khamaisi, Mogher; Flyvbjerg, Allan; Haramati, Ziv; Raz, Gadi; Wexler, Isaiah D.; Raz, Itamar

2002-01-01

309

The effect of streptozotocin-induced diabetes on the EDHF-type relaxation and cardiac function in rats  

PubMed Central

The endothelium-derived hyperpolarizing factor (EDHF) response is a critical for the functioning of small blood vessels. We investigated the effect of streptozotocin-induced diabetes on the EDHF response and its possible role in the regulation of cardiac function. The vasorelaxant response to ACh- or NS309- (direct opener endothelial small- (SKCa)- and intermediate-conductance (IKCa) calcium-activated potassium channels; main components of EDHF response) were measured in pressurized mesenteric arteries (diameter 300–350 ?m). The response to 1 ?M ACh was reduced in diabetes (84.8 ± 2.8% control vs 22.5 ± 5.8% diabetics; n ? 8; P < 0.001). NS309 (1 ?M) relaxations were also decreased in diabetic arteries (78.5 ± 8.7% control vs 32.1 ± 5.8% diabetics; n ? 5; P < 0.001). SKCa and IKCa-mediated EDHF relaxations in response ACh or NS309 were also significantly reduced by diabetes. Ruthenium red, RuR, a blocker of TRP channels, strongly depress the response to ACh and NS309 in control and diabetic arteries. RuR decreased SKCa and IKCa-mediated EDHF vasodilatation in response to NS309 but not to ACh. An elevation in systolic blood pressure was observed in diabetic animals. ECG recording of control hearts showed shortening of PR interval. RuR reduced PR interval and R wave amplitude in diabetic hearts. In conclusion, the reduced EDHF-type relaxations in STZ-induced diabetes is due impairment of KCa channels function. TRP channels possibly contribute to EDHF vasodilatation via direct opening of endothelial KCa. It is possible that EDHF and TRP channels contribute to the regulation of cardiac function and therefore can be considered as therapeutic targets to improve cardiovascular complications of diabetes.

Absi, Mais; Oso, Hani; Khattab, Marwan

2012-01-01

310

Effect of curcumin on diabetic rat model of cerebral ischemia.  

PubMed

To investigate the effect of curcumin on cerebral ischemia in diabetic rats the effects and features. intravenous injection alloxan diabetes model, to give alloxan first seven days the tail measured blood glucose value, the election successful model rats were fed with large, medium and small doses of curcumin suspension, Shenqijiangtang suspension and the same volume of saline, administered once daily. The first 10 days after administration 2h (fasting 12h) rat tail vein blood glucose values measured in the first 20 days after administration of 2h (fasting 12h), do cerebral ischemia surgery; rapid carotid artery blood after 30min rats were decapitated, blood serum, blood glucose and glycated serum protein levels; take part of the brain homogenates plus nine times the amount of normal saline, made 10 percent of brain homogenates. Another part of the brain tissue, in the light microscope observation of pathological tissue. Compared with model group, large, medium and small doses of curcumin can significantly lower blood sugar and glycated serum protein levels, significantly reduced brain homogenates lactic acid content and lactate dehydrogenase activity; large, medium-dose curcumin can significantly increase brain homogenates Na(+)-K(+)-ATP activity, dose curcumin can significantly improve brain homogenates Ca(+)-Mg(+)- ATP activity. Curcumin can reduce blood sugar in diabetic rat model of cerebral ischemia and improve brain energy metabolism, improve their brain tissue resistance to ischemia and hypoxia, cerebral ischemia in diabetic rats have a good drop the role of sugar and protect brain tissue. PMID:25631517

Miao, Mingsan; Cheng, Bolin; Li, Min

2015-01-01

311

Protein turnover in adipose tissue from fasted or diabetic rats  

NASA Technical Reports Server (NTRS)

Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

1986-01-01

312

Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model  

PubMed Central

The overexpression of vascular endothelial growth factor (VEGF) is known to be involved in the pathogenesis of diabetic nephropathy. In this study, the protective effects of taurine on diabetic nephropathy along with its underlying mechanism were investigated. Experimental animals were divided into three groups: LETO rats as normal group (n = 10), OLETF rats as diabetic control group (n = 10), and OLETF rats treated with taurine group (n = 10). We treated taurine (200?mg/kg/day) for 20 weeks and treated high glucose (HG, 30?mM) with or without taurine (30?mM) in mouse cultured podocyte. After taurine treatment, blood glucose level was decreased and insulin secretion was increased. Taurine significantly reduced albuminuria and ACR. Also it decreased glomerular volume, GBM thickness and increased open slit pore density through decreased VEGF and increased nephrin mRNA expressions in renal cortex. The antioxidant effects of taurine were confirmed by the reduction of urine MDA in taurine treated diabetic group. Also reactive oxygen species (ROS) levels were decreased in HG condition with taurine treated podocytes compared to without taurine. These results indicate that taurine lowers glucose level via increased insulin secretion and ameliorates the progression of diabetic nephropathy through antifibrotic and antioxidant effects in type 2 diabetes rat model. PMID:24707287

Lee, Eun Soo; Hyun, Miri; Kim, Hong Min; Choi, Yoon Jung; Lee, Eun Young; Yadav, Dhananjay; Chung, Choon Hee

2014-01-01

313

Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart  

Microsoft Academic Search

.  Mitochondrial dysfunction and protein kinase C (PKC) activation are consistently found in diabetic cardiomyopathy but their\\u000a relationship remains unclear. This study identified mitochondrial aconitase as a downstream target of PKC activation using\\u000a immunoblotting and mass spectrometry, and then characterized phosphorylation-induced changes in its activity in hearts from\\u000a type 1 diabetic rats. PKC?2 co-immunoprecipitated with phosphorylated aconitase from mitochondria isolated from

G. Lin; R. W. Brownsey; K. M. MacLeod

2009-01-01

314

Beneficial Antioxidative and Antiperoxidative Effect of Cinnamaldehyde Protect Streptozotocin-Induced Pancreatic ?-Cells Damage in Wistar Rats  

PubMed Central

The present study was aimed to evaluate the antioxidant defense system of cinnamaldehyde in normal, diabetic rats and its possible protection of pancreatic ?-cells against its gradual loss under diabetic conditions. In vitro free radical scavenging effect of cinnamaldehyde was determined using DPPH (1,1-diphenyl-2-dipicrylhydrazyl), superoxide radical, and nitric oxide radical. Streptozotocin (STZ) diabetic rats were orally administered with cinnamaldehyde at concentrations of 5, 10 and 20 mg/kg body weight for 45 days. At the end of the experiment, the levels of plasma lipid peroxides and antioxidants such as vitamin C, vitamin E, ceruloplasmin, catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase were determined. A significant increase in the levels of plasma glucose, vitamin E, ceruloplasmin, and lipid peroxides and significant decrease in the levels of plasma insulin and reduced glutathione were observed in the diabetic rats. Also the activities of pancreatic antioxidant enzymes were altered in the STZ-induced diabetic rats. The altered enzyme activities were reverted to near-normal levels after treatment with cinnamaldehyde and glibenclamide. Histopathological studies also revealed a protective effect of cinnamaldehyde on pancreatic ?-cells. Cinnamaldehyde enhances the antioxidant defense against reactive oxygen species produced under hyperglycemic conditions and thus protects pancreatic ?-cells against their loss and exhibits antidiabetic properties. PMID:24596621

Subash-Babu, P.; Alshatwi, Ali A.; Ignacimuthu, S.

2014-01-01

315

Hypoglycaemic effect of galactooligosaccharides in alloxan-induced diabetic rats.  

PubMed

This study was conducted to assess the effect of prebiotic galactooligosaccharides (GOS) on alloxan-induced diabetes in male Sprague-Dawley (SD) rats. Diabetes was induced by administration of alloxan (100 mg/kg) and rats were divided in 4 groups: normal control group (NCG), prebiotic control group (PCG), diabetic control group (DCG) and diabetic prebiotic group (DPG). While PCG and DPG were fed with GOS supplemented (10% w/w) diet, NCG and DCG were administered with basal diet. Rats were sacrificed after 42 d for collection of blood and liver. Faecal samples were collected at the interval of 7 d throughout the study for measurement of lactobacilli and coliform count. Feeding of GOS decreased or delayed the severity of diabetes by amelioration of diabetes associated markers including fasting blood glucose, haemoglobin, glycosylated haemoglobin triglycerides, total cholesterol, low density lipoproteins, creatinine and urea. GOS was also found to improve the levels of antioxidative enzymes (superoxide dismutase, catalase and glutathione peroxidase) in liver and blood. Improvement in lactobacilli count along with a concomitant decrease in coliform count was observed in GOS fed groups. PMID:25382051

Sangwan, Vikas; Tomar, Sudhir K; Ali, Babar; Singh, Ram R B; Singh, Ashish K

2015-02-01

316

Inner Retinal Oxygen Delivery and Metabolism in Streptozotocin Diabetic Rats  

PubMed Central

Purpose. The purpose of the study is to report global measurements of inner retinal oxygen delivery (DO2_IR) and oxygen metabolism (MO2_IR) in streptozotocin (STZ) diabetic rats. Methods. Phosphorescence lifetime and blood flow imaging were performed in rats 4 (STZ/4wk; n = 10) and 6 (STZ/6wk; n = 10) weeks following injection of STZ to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). DO2_IR and MO2_IR were calculated from measurements of F and O2A and of F and the arteriovenous oxygen content difference, respectively. Data in STZ rats were compared to those in healthy control rats (n = 10). Results. Measurements of O2A and O2V were not significantly different among STZ/4wk, STZ/6wk, and control rats (P ? 0.28). Likewise, F was similar among all groups of rats (P = 0.81). DO2_IR measurements were 941 ± 231, 956 ± 232, and 973 ± 243 nL O2/min in control, STZ/4wk, and STZ/6wk rats, respectively (P = 0.95). MO2_IR measurements were 516 ± 175, 444 ± 103, and 496 ± 84 nL O2/min in control, STZ/4wk, and STZ/6wk rats, respectively (P = 0.37). Conclusions. Global inner retinal oxygen delivery and metabolism were not significantly impaired in STZ rats in early diabetes. PMID:24550355

Wanek, Justin; Teng, Pang-yu; Blair, Norman P.; Shahidi, Mahnaz

2014-01-01

317

In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-?-D-xylopyranosyl isolated from Swertia corymbosa.  

PubMed

1, 2, 8-trihydroxy-6-methoxy xanthone (1) and 1, 2- dihydroxy-6-methoxyxanthone-8-O-?-d-xylopyranosyl (2) are the main constituents of petroleum ether and ethyl acetate extracts from Swertia corymbosa (Gentinaceae), a medicinal plant used in Indian traditional system for the treatment of diabetes. The present study was designed to examine the antihypoglycemic, antihyperlipidemic and antioxidant effect of compounds 1 and 2 in streptozotocin (STZ) induced diabetic rats. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of STZ (60 mg/kg b.w.). The isolated compounds 1 and 2 at a dose of 50 mg/kg b.w., produced the maximum fall of 83% in the blood glucose level in the diabetic rats after 3h of the treatment. The administration of 1 and 2 (50 mg/kgb.w.) daily for 28 days in STZ induced diabetic rats, resulted in a significant decrease in blood glucose, glycosylated hemoglobin, SGOT, SGPT, ALP serum urea and creatinine with significant rise in plasma insulin level. Test compounds 1 and 2 showed antihyperlipidemic activities as evidenced by significant decrease in serum TC, TG, LDL-C, VLDL-C levels coupled together with elevation of HDL-C level in diabetic treated rats when compared to diabetic untreated rats, indicate the protective role against liver and kidney damage. The results of histopathology also showed 1 and 2 protected tissues (pancreas, liver and kidney) against peroxidation damage and maintained tissue integrity. Further, the molecular interaction study of the ligands 1, 2 and glibenclamide with various diabetes mellitus related protein targets like glucokinase (PDB ID: 1V4S), fructose-1, 6-bisphosphatase 1 (PDB ID: 2JJK) 11-?-hydroxysteroid dehydrogenase (PDB ID: 2BEL) and modeled protein sulfonylurea receptor 1 (SUR1) showed that ligand 1 and 2 possess binding affinity with all protein targets except for 2BEL target protein for which ligand 1 has no interaction. The ligand pose with 2BEL and SUR1 protein target of ligand 2 gave the best binding conformation. Hence 1 and 2 can be considered for developing into a potent antidiabetic drug. PMID:25172785

Mahendran, G; Manoj, M; Murugesh, E; Sathish Kumar, R; Shanmughavel, P; Rajendra Prasad, K J; Narmatha Bai, V

2014-09-25

318

Morphological changes of gingiva in streptozotocin diabetic rats.  

PubMed

Gingivitis and periodontitis are chronic bacterial diseases of the underlying and surrounding tooth tissues. Diabetes mellitus is responsible for tooth deprivation both by decay and periodontal disease. The streptozotocin-induced diabetes results in a diabetic status in experimental animals similar to that observed in diabetes patients. The aim of the study was to investigate the relationship between the gingival lesions and the microangiopathy changes in streptozotocin-induced diabetes mellitus. Forty male Wistar rats were divided into two groups (control and experimental). Diabetes mellitus was induced by 45 mg/kg IV streptozotocin. The histological investigation of the marginal gingival and the relevant gingival papilla showed inflammation of the lamina propria and the squamous epithelium as well as marked thickness of the arteriole in the diabetic group, but no changes were observed in the control group. The results suggested a probable application of a routine gingival histological investigation in diabetic patients in order to control the progress of disease complications. It may be concluded that histological gingival investigation can be used as a routine assay for the control of the diabetic disease and prevention of its complications. PMID:20339569

Tesseromatis, C; Kotsiou, A; Parara, H; Vairaktaris, E; Tsamouri, M

2009-01-01

319

Morphological Changes of Gingiva in Streptozotocin Diabetic Rats  

PubMed Central

Gingivitis and periodontitis are chronic bacterial diseases of the underlying and surrounding tooth tissues. Diabetes mellitus is responsible for tooth deprivation both by decay and periodontal disease. The streptozotocin-induced diabetes results in a diabetic status in experimental animals similar to that observed in diabetes patients. The aim of the study was to investigate the relationship between the gingival lesions and the microangiopathy changes in streptozotocin-induced diabetes mellitus. Forty male Wistar rats were divided into two groups (control and experimental). Diabetes mellitus was induced by 45?mg/kg IV streptozotocin. The histological investigation of the marginal gingival and the relevant gingival papilla showed inflammation of the lamina propria and the squamous epithelium as well as marked thickness of the arteriole in the diabetic group, but no changes were observed in the control group. The results suggested a probable application of a routine gingival histological investigation in diabetic patients in order to control the progress of disease complications. It may be concluded that histological gingival investigation can be used as a routine assay for the control of the diabetic disease and prevention of its complications. PMID:20339569

Tesseromatis, C.; Kotsiou, A.; Parara, H.; Vairaktaris, E.; Tsamouri, M.

2009-01-01

320

MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy  

PubMed Central

Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which can result in cardiac hypertrophy and subsequent heart failure, associated with pyroptosis, the pro-inflammatory programmed cell death. MicroRNAs (miRNAs), small endogenous non-coding RNAs, have been shown to be involved in diabetic cardiomyopathy. However, whether miRNAs regulate pyroptosis in diabetic cardiomyopathy remains unknown. Our study revealed that mir-30d expression was substantially increased in streptozotocin (STZ)-induced diabetic rats and in high-glucose-treated cardiomyocytes as well. Upregulation of mir-30d promoted cardiomyocyte pyroptosis in diabetic cardiomyopathy; conversely, knockdown of mir-30d attenuated it. In an effort to understand the signaling mechanisms underlying the pro-pyroptotic property of mir-30d, we found that forced expression of mir-30d upregulated caspase-1 and pro-inflammatory cytokines IL-1? and IL-18. Moreover, mir-30d directly repressed foxo3a expression and its downstream protein, apoptosis repressor with caspase recruitment domain (ARC). Furthermore, silencing ARC by siRNA mimicked the action of mir-30d: upregulating caspase-1 and inducing pyroptosis. These findings promoted us to propose a new signaling pathway leading to cardiomyocyte pyroptosis under hyperglycemic conditions: mir-30d??foxo3a?? ARC??caspase-1??IL-1?, IL-18??pyroptosis?. Therefore, mir-30d may be a promising therapeutic target for the management of diabetic cardiomyopathy. PMID:25341033

Li, X; Du, N; Zhang, Q; Li, J; Chen, X; Liu, X; Hu, Y; Qin, W; Shen, N; Xu, C; Fang, Z; Wei, Y; Wang, R; Du, Z; Zhang, Y; Lu, Y

2014-01-01

321

Microarray analysis of thioacetamide-treated type 1 diabetic rats  

SciTech Connect

It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.

Devi, Sachin S. [Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, 700 University Ave, Sugar Hall 306, Monroe, LA 71209-0470 (United States); Mehendale, Harihara M. [Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, 700 University Ave, Sugar Hall 306, Monroe, LA 71209-0470 (United States)]. E-mail: mehendale@ulm.edu

2006-04-01

322

Protective effect of puerarin on diabetic retinopathy in rats  

Microsoft Academic Search

Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. The purpose of this study is\\u000a to investigate the protective effect of puerarin on diabetic retinopathy (DR) and its mechanisms in rats. Seventy-two male\\u000a Wistar rats were selected and divided at random into three main groups: control group, streptozotocin (STZ) group and puerarin + STZ\\u000a group. Retinal histopathological observation

Yan Teng; Hao Cui; Mingming Yang; Han Song; Qingsheng Zhang; Ying Su; Jianqiu Zheng

2009-01-01

323

The reno-protective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodents.  

PubMed

To assess the effect of aqueous extract of Carum carvi seeds in experimentally induced diabetic nephropathy (DN) in rodents, we studied 48 adult male Wistar rats divided into 4 groups: normal controls (group A), diabetes positive control (group B), and experimental (groups C and D). They received Carum carvi extract as a renoprotective agent. Rats having fasting blood glucose levels over 280 mg/dL were included in this study. Group C rats received STZ (60 mg/kg) and aqueous extract of Carum carvi at 30 mg/kg of body weights. On the other hand group D rats received STZ (60 mg/kg) and aqueous extract of Carum carvi at 60 mg/kg of body weight. Blood samples were collected on the 60 th day, and kidneys were also extracted for examination. The diabetic group rats showed a variable increase in the serum levels of glucose, urea, creatinine, total urinary protein and microalbuminuric levels. Body weight decreased and urine volume increased in the diabetic groups. 30 mg/kg body weight of Carum carvi dose decreased the levels of these parameters in rats. On the other hand, 60 mg/kg body weight of Carum carvi dose significantly decreased the levels of the biochemical parameters. The morphological examination of group C rats showed no changes whereas the rats in group D showed moderate changes. Carum carvi constituents, especially flavonoids and carvone have strong anti-oxidant activity, which provides reno-protection against diabetes and its complications. In conclusion, high dose of Carum carvi aqueous seeds extract (60 mg/kg) showed reno-protection against STZ induced dia-betic nephropathy in rats. PMID:21060174

Sadiq, Soban; Nagi, Abdul Hannan; Shahzad, Muhammad; Zia, Azam

2010-11-01

324

Carvedilol Ameliorates Early Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats  

PubMed Central

Diabetic nephropathy results in end-stage renal disease. On the other hand, carvedilol has been reported to have various pharmacological properties. The aim of this study therefore is to evaluate the possible protective effect of carvedilol on streptozotocin-induced early diabetic nephropathy and various mechanisms underlie this effect in rats. Single i.p. injection of streptozotocin (65?mg/kg) was administered to induce early diabetic nephropathy in Wistar rats. Oral administration of carvedilol at a dose level of 1 and 10?mg/kg daily for 4 weeks resulted in nephroprotective effect as evident by significant decrease in serum creatinine level, urinary albumin/creatinine ratio, and kidney index as well as renal levels of malondialdehyde, nitric oxide, tumor necrosis factor-?, and cyclooxygenase-2 with a concurrent increase in creatinine clearance and renal reduced glutathione level compared to diabetic untreated rats. The protective effect of carvedilol was confirmed by renal histopathological examination. The electron microscopic examination indicated that carvedilol could effectively ameliorate glomerular basement membrane thickening and podocyte injury. In conclusion, carvedilol protects rats against streptozotocin-induced early diabetic nephropathy possibly, in part, through its antioxidant as well as anti-inflammatory activities, and ameliorating podocyte injury. PMID:24991534

Morsy, Mohamed A.; Ibrahim, Salwa A.; Amin, Entesar F.; Kamel, Maha Y.; Abdelwahab, Soha A.; Hassan, Magdy K.

2014-01-01

325

The contribution of hyperglycaemia and hypoinsulinaemia to the insulin resistance of streptozotocin-diabetic rats  

Microsoft Academic Search

Summary  The relative contribution of hyperglycaemia and hypoinsulinaemia was evaluated in rats made diabetic by streptozotocin administration. Four groups of rats were studied: untreated normal rats; streptozotocin-diabetic; streptozotocin-diabetic treated with phlorizin (0.4 mg\\/kg body weight per day); streptozotocin-diabetic mildly treated with insulin (0.7 IU\\/day). In all groups, insulin action (responsiveness) was assessed with the euglycaemic (5.3 mmol\\/l) hyperinsulinaemic (524 mU\\/l) clamp

G. Lisato; I. Cusin; A. Tiengo; S. Del Prato; B. Jeanrenaud

1992-01-01

326

Kidney involvement in a nongenetic rat model of type 2 diabetes  

Microsoft Academic Search

Kidney involvement in a nongenetic rat model of type 2 diabetes.BackgroundRats fed a high fat diet and given a low dose of streptozotocin (STZ) (35 mg\\/kg) develop type 2 diabetes with insulin resistance, hyperinsulinemia, moderate hyperglycemia, hyperlipidemia, and salt-sensitive hypertension. We postulated that rats with noninsulinopenic (type 2) diabetes develop lesions of diabetic nephropathy significantly more prominent than those seen

Ratna S. Danda; Nusrath M. Habiba; HERNAN RINCON-CHOLES; BASANT K BHANDARI; JEFFREY L BARNES; HANNA E ABBOUD; PABLO E PERGOLA

2005-01-01

327

Transforming Growth Factor-? and Insulin-like Growth Factor-I in Relation to Diabetes-Induced Impairment of Wound Healing  

Microsoft Academic Search

Impaired wound healing is a well-documented phenomenon in diabetes mellitus, yet little is known of the fundamental cause of this pathology. This study examined the effects of streptozotocin (STZ)-induced diabetes on the healing process using three wound models: (i) a linear skin incision (tensile strength), (ii) subcutaneously implanted polyvinyl alcohol sponge PVAs (collagen deposition), and (iii) stainless steel mesh chamber

Milad S. Bitar; Ziad N. Labbad

1996-01-01

328

Rat Models for Bariatric Surgery and Surgery for Type 2 Diabetes Mellitus  

Microsoft Academic Search

Type 2 diabetes mellitus being one of the most prevalent diseases in the world has led to a variety of research using animal\\u000a models. This review focuses on various rat models to study the effect that surgical procedures have on type 2 diabetes mellitus\\u000a and obesity. Rat models can be classified as Obese Diabetic, Non-Obese Diabetic, Obese Non-Diabetic, and Non-Obese

Sheetal Bharat Mistry; Juan J. Omana; Subhash Kini

2009-01-01

329

Combating Combination of Hypertension and Diabetes in Different Rat Models  

PubMed Central

Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH) rats. The use of various drugs, such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs), various angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs), to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.

Rosenthal, Talma; Younis, Firas; Alter, Ariela

2010-01-01

330

Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury  

SciTech Connect

Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

Zhong Qing; Terlecky, Stanley R. [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States); Lash, Lawrence H., E-mail: l.h.lash@wayne.ed [Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201 (United States)

2009-11-15

331

Hyper-response to exogenous insulin in diabetic rats after islet allotransplantation, without reversion of diabetes  

Microsoft Academic Search

DIFFERENT publications about islet transplantation in rats, monkeys or humans1,2,3 do not address the presence of hypoglycemia. Otherwise, our previous experiences have shown an increased response to exogenous insulin after islet allotransplantation (IAT) in rats; this appears in the first week and minimizes or disappears after 1 month.4,5The reversion of diabetes is not always achieved by islet allotransplantation, so we

A. Jara-Albarran; M. L. Soto Montenegro; A. Arranz Martin; S. Alvarez Gomez; B. Martinez Valenzuela; M. C. Martin Scapa

1997-01-01

332

Temporal course of streptozotocin-induced diabetic polyneuropathy in rats.  

PubMed

The temporal course of diabetic polyneuropathy in a rat model plays a critical role in studies on diabetic polyneuropathy treatment. In this study, the temporal course of neuropathic symptoms was investigated in diabetic rats induced by streptozotocin and evaluated by nerve conduction velocity and behavioral assays, including the von Frey test for mechanical allodynia and the hot plate test for hyperalgesia. The results revealed that both mechanical allodynia and heat hyperalgesia started on the 2nd week, while nerve conduction velocity significantly decreased from the 1st week. In addition, the severity of allodynia did not change after the 3rd week. Hyperalgesia and nerve conduction velocity progressively aggravated even to the 8th week. Transmission electron microscopy showed that loss of unmyelinated axons, loosening of the myelin structure, and thickening of the perineurium layer were visible from the 4th week and worsened on the 8th week. Differences in the temporal course of neuropathic symptoms are discussed. PMID:24924783

Lee, Yee-Fun; Lin, Chou-Ching K; Chen, Gin-Shin

2014-11-01

333

Carnosine treatment in combination with ACE inhibition in diabetic rats.  

PubMed

In humans, we reported an association of a certain allele of carnosinase gene with reduced carnosinase activity and absence of nephropathy in diabetic patients. CN1 degrades histidine dipeptides such as carnosine and anserine. Further, we and others showed that treatment with carnosine improves renal function and wound healing in diabetic mice and rats. We now investigated the effects of carnosine treatment alone and in combination with ACE inhibition, a clinically established nephroprotective drug in diabetic nephropathy. Male Sprague-Dawley rats were injected i.v. with streptozotocin (STZ) to induce diabetes. After 4weeks, rats were unilaterally nephrectomized and randomized for 24weeks of treatment with carnosine, lisinopril or both. Renal CN1 protein concentrations were increased under diabetic conditions which correlated with decreased anserine levels. Carnosine treatment normalized CN1 abundance and reduced glucosuria, blood concentrations of glycosylated hemoglobin (HbA1c), carboxyl-methyl lysine (CML), N-acetylglucosamine (GlcNac; all p<0.05 vs. non-treated STZ rats), reduced cataract formation (p<0.05) and urinary albumin excretion (p<0.05), preserved podocyte number (p<0.05) and normalized the increased renal tissue CN1 protein concentration. Treatment with lisinopril had no effect on HbA1C, glucosuria, cataract formation and CN1 concentration, but reduced albumin excretion rate more effectively than carnosine treatment (p<0.05). Treatment with both carnosine and lisinopril combined the effects of single treatment, albeit without additive effect on podocyte number or albuminuria. Increased CN1 amount resulted in decreased anserine levels in the kidney. Both carnosine and lisinopril exert distinct beneficial effects in a standard model of diabetic nephropathy. Both drugs administered together combine the respective effects of single treatment, albeit without exerting additive nephroprotection. PMID:25234296

Peters, V; Riedl, E; Braunagel, M; Höger, S; Hauske, S; Pfister, F; Zschocke, J; Lanthaler, B; Benck, U; Hammes, H-P; Krämer, B K; Schmitt, C P; Yard, B A; Köppel, H

2014-11-01

334

Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes.  

PubMed

Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity. PMID:16595661

Di Noia, Maria Antonietta; Van Driesche, Sarah; Palmieri, Ferdinando; Yang, Li-Ming; Quan, Shuo; Goodman, Alvin I; Abraham, Nader G

2006-06-01

335

Genetic Control of Differential Acetylation in Diabetic Rats  

PubMed Central

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression. PMID:24743600

Kaisaki, Pamela J.; Otto, Georg W.; McGouran, Joanna F.; Toubal, Amine; Argoud, Karčne; Waller-Evans, Helen; Finlay, Clare; Caldérari, Sophie; Bihoreau, Marie-Thérčse; Kessler, Benedikt M.; Gauguie