Science.gov

Sample records for sub-resolution multiphase interstellar

  1. Black hole feedback in a multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  2. Stellar Feedback: A Multiphase Interstellar Medium and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Ceverino, D.

    2009-12-01

    I am presenting new results in our ongoing effort of improving the theory of galaxy formation in a ΛCDM Universe. I pay a special attention to the role of supernova explosions and stellar winds in the galaxy assembly. These processes happen at very small scales, they affect the interstellar medium (ISM) at galactic scales and regulate the formation of a whole galaxy. Previous attempts of mimicking these effects in simulations of galaxy formation use very simplified assumptions. I develop a much more realistic prescription for modeling the feedback, which minimizes any ad hoc sub-grid physics. I start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. Once these effects are resolved in cosmological simulations, galaxy formation proceeds more realistically. For example, I do not have the overcooling problem. The angular momentum problem (resulting in a too massive bulge) is also reduced substantially: the rotation curves are nearly flat. The galaxy formation also becomes more violent. At high redshift, I routinely find substantial gas outflows from star-forming galaxies. I describe several scaling relations between outflow properties and galaxy properties: maximum velocity, mass and kinetic energy versus stellar mass and SFR. The simulations reproduce this picture only if the resolution is very high: better than 70 pc.

  3. The Evolution of Dust in the Multiphase Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan

    2003-01-01

    Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.

  4. Cosmological Evolution of Dwarf Galaxies: The Influence of Star Formation and the Multiphase Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Spaans, Marco; Norman, Colin A.

    1997-07-01

    A model is developed to explain the cosmological evolution of dwarf galaxies. The population of small galaxies is found to evolve rapidly for z < 1, which provides a natural explanation for the evolution observed in the galaxy luminosity function. A tail is found in the redshift distribution of the faint blue excess that can extend to a redshift of 2. The star formation history is followed in detail for these objects. Constraints on the metallicity are identified for which stars are formed with much higher efficiency in a multiphase interstellar medium than in massive galaxies. Blue dwarf galaxies at the current epoch are identified with this starburst mode. The collapse of 1 and 2 σ perturbations of the initial density fluctuation spectrum is followed using the extended standard hierarchical clustering formalism. The collapse of these perturbations is normally associated with the formation of dwarf galaxies. These objects have shallow gravitational potential wells, and their evolution strongly depends upon the cooling time of the gas. The latter is determined by the ionization and chemical equilibrium of the gas in the presence of the intergalactic and local stellar radiation fields. The latter generally dominates and creates a feedback mechanism that regulates the evolutionary timescale. To improve upon previous models, essential new astrophysical ingredients are incorporated, such as a more detailed description of the physical processes regulating the multiphase structure of the interstellar medium in dwarf galaxies and the effects of evolution in the galaxy's metallicity on the formation of stars in molecular clouds. It is found that for a low star formation rate of 0.1 M⊙ yr-1, the cooling time of interstellar gas is longer than the local Hubble time until z ~ 1. At this epoch, a two-phase medium makes the dwarf interstellar medium less fragile against supernova explosions, and the volume filling factor of the hot phase (107 K) becomes of order unity. The

  5. Long-term evolution of decaying magnetohydrodynamic turbulence in the multiphase interstellar medium

    SciTech Connect

    Kim, Chang-Goo; Basu, Shantanu E-mail: basu@uwo.ca

    2013-12-01

    Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of E∝t {sup –1} and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (∼0.2E {sub 0}) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.

  6. A Method for Deriving Accurate Gas-Phase Abundances for the Multiphase Interstellar Galactic Halo

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Sembach, Kenneth R.; Savage, Blair D.

    2006-01-01

    We describe a new method for accurately determining total gas-phase abundances for the Galactic halo interstellar medium with minimal ionization uncertainties. For sight lines toward globular clusters containing both ultraviolet-bright stars and radio pulsars, it is possible to measure column densities of H I and several ionization states of selected metals using ultraviolet absorption line measurements and of H II using radio dispersion measurements. By measuring the ionized hydrogen column, we minimize ionization uncertainties that plague abundance measurements of Galactic halo gas. We apply this method for the first time to the sight line toward the globular cluster Messier 3 [(l,b)=(42.2d,+78.7d), d=10.2 kpc, z=10.0 kpc] using Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope ultraviolet spectroscopy of the post-asymptotic giant branch star von Zeipel 1128 and radio observations by Ransom et al. of recently discovered millisecond pulsars. The fraction of hydrogen associated with ionized gas along this sight line is 45%+/-5%, with the warm (T~104 K) and hot (T>~105 K) ionized phases present in roughly a 5:1 ratio. This is the highest measured fraction of ionized hydrogen along a high-latitude pulsar sight line. We derive total gas-phase abundances logN(S)/N(H)=-4.87+/-0.03 and logN(Fe)/N(H)=-5.27+/-0.05. Our derived sulfur abundance is in excellent agreement with recent solar system determinations of Asplund, Grevesse, & Sauval. However, it is -0.14 dex below the solar system abundance typically adopted in studies of the interstellar medium. The iron abundance is ~-0.7 dex below the solar system abundance, consistent with the significant incorporation of iron into interstellar grains. Abundance estimates derived by simply comparing S II and Fe II to H I are +0.17 and +0.11 dex higher, respectively, than the abundance estimates derived from our refined approach. Ionization corrections to the gas-phase abundances measured in the standard way are

  7. Dynamo saturation in direct simulations of the multi-phase turbulent interstellar medium

    NASA Astrophysics Data System (ADS)

    Bendre, A.; Gressel, O.; Elstner, D.

    2015-12-01

    The ordered magnetic field observed via polarised synchrotron emission in nearby disc galaxies can be explained by a mean-field dynamo operating in the diffuse interstellar medium (ISM). Additionally, vertical-flux initial conditions are potentially able to influence this dynamo via the occurrence of the magnetorotational instability (MRI). We aim to study the influence of various initial field configurations on the saturated state of the mean-field dynamo. This is motivated by the observation that different saturation behaviour was previously obtained for different supernova rates. We perform direct numerical simulations (DNS) of three-dimensional local boxes of the vertically stratified, turbulent interstellar medium, employing shearing-periodic boundary conditions horizontally. Unlike in our previous work, we also impose a vertical seed magnetic field. We run the simulations until the growth of the magnetic energy becomes negligible. We furthermore perform simulations of equivalent 1D dynamo models, with an algebraic quenching mechanism for the dynamo coefficients. We compare the saturation of the magnetic field in the DNS with the algebraic quenching of a mean-field dynamo. The final magnetic field strength found in the direct simulation is in excellent agreement with a quenched αΩ dynamo. For supernova rates representative of the Milky Way, field losses via a Galactic wind are likely responsible for saturation. We conclude that the relative strength of the turbulent and regular magnetic fields in spiral galaxies may depend on the galaxy's star formation rate. We propose that a mean field approach with algebraic quenching may serve as a simple sub-grid scale model for galaxy evolution simulations including a prescribed feedback from magnetic fields.

  8. Probing the Multiphase Interstellar Medium and Star Formation in Nearby Galaxies through Far Infrared Emission

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, Rodrigo; Bolatto, Alberto D.; Wolfire, Mark G.; Smith, John-David T.; Kennicutt, Robert; Calzetti, Daniela; Croxall, Kevin V.; Fisher, David B.; Kingfish, Beyond The Peak

    2015-01-01

    We have studied the complex interplay between physical processes that play a crucial role in galaxy formation and evolution, in particular star formation and the thermal balance in the neutral and molecular interstellar medium. This work was based on far-infrared photometry and spectroscopy of nearby galaxies using Spitzer and Herschel space observatories. In our first project, we study the dust properties of one of the the most metal poor systems known in the local Universe, I Zw 18. We measured a dust-to-gas ratio in the range 3.2-13×10-6, which suggest that low metallicity galaxies, like I Zw 18, do not follow the same linear relationship between metallicity and dust-to-gas ratio as typical local spirals. In our second project, we studied the reliability of the [CII] 158 µm emission as a star formation tracer. The [CII] line is the major coolant for the neutral atomic gas and it can be observed by ALMA in normal, star forming galaxies at z > 2. Based on resolved observations of 46 nearby galaxies from the KINGFISH sample, we conclude that [CII] emission can be used for measurements of star formation rates (SFR) on both, global and kiloparsec scales, in normal star-forming galaxies in the absence of strong active galactic nuclei. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted ∑[CII] - ∑SFR correlation is valid over almost 5 orders of magnitude in ∑SFR, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [CII] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies. We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field, most likely the main parameter

  9. Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave

    NASA Astrophysics Data System (ADS)

    Roh, Soonyoung; Inutsuka, Shu-ichiro; Inoue, Tsuyoshi

    2016-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.

  10. ON THE (NON-)ENHANCEMENT OF THE Ly{alpha} EQUIVALENT WIDTH BY A MULTIPHASE INTERSTELLAR MEDIUM

    SciTech Connect

    Laursen, Peter; Duval, Florent; Oestlin, Goeran

    2013-04-01

    It has been suggested that radiative transfer effects may explain the unusually high equivalent widths (EWs) of the Ly{alpha} line, observed occasionally from starburst galaxies, especially at high redshifts. If the dust is locked up inside high-density clouds dispersed in an empty intercloud medium, the Ly{alpha} photons could scatter off of the surfaces of the clouds, effectively having their journey confined to the dustless medium. The continuum radiation, on the other hand, does not scatter, and would thus be subject to absorption inside the clouds. This scenario is routinely invoked when Ly{alpha} EWs higher than what is expected theoretically are observed, although the ideal conditions under which the results are derived usually are not considered. Here we systematically examine the relevant physical parameters in this idealized framework, testing whether any astrophysically realistic scenarios may lead to such an effect. It is found that although clumpiness indeed facilitates the escape of Ly{alpha}, it is highly unlikely that any real interstellar media should result in a preferential escape of Ly{alpha} over continuum radiation. Other possible causes are discussed, and it is concluded that the observed high EWs are more likely to be caused by cooling radiation from cold accretion and/or anisotropic escape of the Ly{alpha} radiation.

  11. High-Resolution Imaging of the Multiphase Interstellar Thick Disk in Two Edge-On Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, K.

    2009-01-01

    We present broadband and narrow-band images, acquired from Hubble Space Telescope WFPC2 and WIYN 3.5 m telescope respectively, of two edge-on spiral galaxies, NGC 4302 and NGC 4013. These high-resolution images (BVI + H-alpha) provide a detailed view of the thick disk interstellar medium (ISM) in these galaxies. Both galaxies show prominent extraplanar dust-bearing clouds viewed in absorption against the background stellar light. Individual clouds are found to z 2 kpc in each galaxy. These clouds each contain >10^4 to >10^5 solar masses of gas. Both galaxies have extraplanar diffuse ionized gas (DIG), as seen in our H-alpha images and earlier work. In addition to the DIG, discrete H II regions are found at heights up to 1 kpc from both galaxies. We compare the morphologies of the dusty clouds with the DIG in these galaxies and discuss the relationship between these components of the thick disk ISM.

  12. TOWARD UNDERSTANDING THE ORIGIN OF TURBULENCE IN MOLECULAR CLOUDS: SMALL-SCALE STRUCTURES AS UNITS OF DYNAMICAL MULTI-PHASE INTERSTELLAR MEDIUM

    SciTech Connect

    Tachihara, Kengo; Higuchi, Aya E.; Saigo, Kazuya; Inoue, Tsuyohshi; Inutsuka, Shu-ichiro; Hackstein, Moritz; Haas, Martin; Mugrauer, Markus

    2012-08-01

    In order to investigate the origin of the interstellar turbulence, detailed observations in the CO J = 1-0 and 3-2 lines have been carried out in an interacting region of a molecular cloud with an H II region. As a result, several 1000-10,000 AU scale cloudlets with small velocity dispersion are detected, whose systemic velocities have a relatively large scatter of a few km s{sup -1}. It is suggested that the cloud is composed of small-scale dense and cold structures and their overlapping effect makes it appear to be a turbulent entity as a whole. This picture strongly supports the two-phase model of a turbulent medium driven by thermal instability proposed previously. On the surface of the present cloud, the turbulence is likely to be driven by thermal instability following ionization shock compression and UV irradiation. Those small-scale structures with line widths of {approx}0.6 km s{sup -1} have a relatively high CO line ratio of J 3-2 to 1-0, 1 {approx}< R{sub 3-2/1-0} {approx}< 2. The large velocity gradient analysis implies that the 0.6 km s{sup -1} width component cloudlets have an average density of 10{sup 3}-10{sup 4} cm{sup -3}, which is relatively high at cloud edges, but their masses are only {approx}< 0.05 M{sub Sun }.

  13. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  14. Interstellar Optics

    NASA Technical Reports Server (NTRS)

    Gwinn, C. R.; Britton, M. C.; Reynolds, J. E.; Jauncey, D. L.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Preston, R. A.

    1998-01-01

    We discuss the effects of finite source size on the diffraction pattern produced by scattering in a thin screen, particularly as applied to radio-wave scattering, by density fluctuations in the interstellar plasma.

  15. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  16. Interstellar grains

    NASA Technical Reports Server (NTRS)

    Snow, T. P.

    1986-01-01

    There are few aspects of interstellar grains that can be unambiguously defined. Very little can be said that is independent of models or presuppositions; hence issues are raised and questions categorized, rather than providing definitive answers. The questions are issues fall into three general areas; the general physical and chemical nature of the grains; the processes by which they are formed and destroyed; and future observational approaches.

  17. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  18. Interstellar Turbulence: What Radio Astronomers Can Tell Plasma Theorists

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1999-12-01

    A discussion is given of the results of radio wave propagation observations within the context of the multiphase structure of the interstellar medium. The observed phenomenon discussed is Interstellar Scintillations, or ISS. Results from similar radio studies of the solar wind help us interpret the data from the interstellar medium. Radio propagation observations can measure both the spectral form and the intensity of turbulence in the interstellar medium on spatial scales from tens of kilometers to 100 astronomical units. A number of major observational results from ISS are listed. Perhaps the primary is the evidence for a roughly power law spectrum of irregularities which extends over many decades of spatial scale. Outstanding goals for the future, as well as present paradoxes and inconsistencies are enumerated and discussed. The primary goal for work in the near term will be to improve on the presently inchoate understanding of the processes which generate the interstellar turbulence.

  19. Interstellar Alcohols

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.

    1995-01-01

    We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.

  20. Interstellar isomers

    NASA Technical Reports Server (NTRS)

    Defrees, D.; Mclean, D.; Herbst, E.

    1986-01-01

    Both observational and theoretical studies of molecular clouds are hindered by many difficulties. One way to partially circumvent the difficulties of characterizing the chemistry within these objects is to study the relative abundances of isomers which are synthesized from a common set of precursors. Unfortunately, only one such system has been confirmed, the HCN/HNC pair of isomers. While the basic outlines of its chemistry have been known for some years, there are still many aspects of the chemistry which are unclear. Another potential pair of isomers is HCO+/HOC+; HCO+ is an abundant instellar molecule and a tentative identification of HOC+ has been made in Sgr B2. This identification is being challenged, however, based on theoretical and laboratory evidence that HOC+ reacts with H2. Another potential pair of interstellar isomers is methyl cyanide (CH3CN, acetonitrile) and methyl isocyanide (CH3NC). The cyanide is well known, however the isocyanide has yet to be observed despite theoretical predictions that appreciable quantities should be present.

  1. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  2. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  3. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  4. NASA's IBEX Observes Interstellar Matter

    NASA Video Gallery

    The Interstellar Boundary Explorer (IBEX) has directly sampled multiple heavy elements from the Local Interstellar Cloud for the first time. It turns out that this interstellar material is not like...

  5. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  6. On the cosmic ray diffusion in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Toptygin, I. N.

    1985-08-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  7. Is interstellar archeology possible?

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A.

    2012-09-01

    Searching for signatures of cosmic-scale archeological artifacts such as Dyson spheres is an interesting alternative to conventional radio SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archeology or sometimes cosmic archeology. A variety of interstellar archeology signatures is discussed including non-natural planetary atmospheric constituents, stellar doping, Dyson spheres, as well as signatures of stellar, and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is reviewed in the discussion of galactic signatures. These potential interstellar archeological signatures are classified using the Kardashev scale. A modified Drake equation is introduced. With few exceptions interstellar archeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  8. Turbulent multiphase flows

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1989-01-01

    Measurements and predictions of the structure of several multiphase flows are considered. The properties of dense sprays near the exits of pressure-atomizing injectors and of noncombusting and combusting dilute dispersed flows in round-jet configurations are addressed. It is found that the properties of dense sprays exhibit structure and mixing properties similar to variable-density single-phase flows at high Reynolds numbers within the atomization regime. The degree of development and turbulence levels at the injector exit have a surprisingly large effect on the structure and mixing properties of pressure-atomized sprays, particularly when the phase densities are large. Contemporary stochastic analysis of dilute multiphase flows provides encouraging predictions of turbulent dispersion for a wide variety of jetlike flows, particle-laden jets in gases and liquids, noncondensing and condensing bubbly jets, and nonevaporating, evaporating, and combusting sprays.

  9. Programmed Multiphasic Health Testing

    NASA Technical Reports Server (NTRS)

    Hershberg, P. I.

    1970-01-01

    Multiphase health screening procedures are advocated for detection and prevention of disease at an early stage through risk factor analysis. The use of an automated medical history questionnaire together with scheduled physical examination data provides a scanning input for computer printout. This system makes it possible to process laboratory results from 1,000 to 2,000 patients for biochemical determinations on an economically feasible base.

  10. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    SciTech Connect

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-11-15

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  11. Interstellar fullerene compounds and diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Omont, Alain

    2016-05-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized

  12. Presolar/Interstellar Materials

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    This talk will review much of our current understanding of the origins, nature, and evolution of materials in circumstellar and interstellar space. I will begin by familiarizing the audience with some of the nomenclature associated the field, reviewing the lifecycle of dust in space, and pointing out where the speakers that follow will address portions of the lifecycle in greater detail. I will then address the different techniques used to study interstellar materials, paying particular attention to (i) telescopic remote sensing of the dust currently in interstellar space, (ii) laboratory studies of individual interstellar grains found in meteorites and other extraterrestrial materials, and (iii) laboratory simulation experiments. To complete the talk, I will focus on the nature of interstellar organic compounds as a particular example of how these disparate techniques can be used to improve our understanding of interstellar matter. While interstellar organics will be addressed in general, particular attention will be made to that portion of the organic inventory that may play a role in the origin and evolution of life on planetary surfaces.

  13. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, M.

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into interstellar space surrounding our star, the Sun. This region was probed in the past by remote techniques and it will be explored in situ by the Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the Sun and Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence the design of the mission, spacecraft and scientific instrumentation. We will review measurement objectives of the first mission into interstellar space and outline constrains on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of wh at a flyby mission of the distant future would encounter in approaching another star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonom . There are, however,y physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  14. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2004-01-01

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into the galactic environment surrounding our star, the sun. This region was probed in the past by remote techniques and it will be explored in situ by the NASA's planned Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the sun and the Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence design of the mission, spacecraft, and scientific instrumentation. We will review measurement objectives of the first dedicated mission into interstellar space and outline constraints on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex organic molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of what a truly-interstellar mission of the distant future would encounter in approaching a target star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonomy. There are, however, physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  15. Computational Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Hirata, So; Fan, Peng-Dong; Head-Gordon, Martin; Kamiya, Muneaki; Keçeli, Murat; Lee, Timothy J.; Shiozaki, Toru; Szczepanski, Jan; Vala, Martin; Valeev, Edward F.; Yagi, Kiyoshi

    Computational applications of electronic and vibrational many-body theories are increasingly indispensable in interpreting and, in some instances, predicting the spectra of gas-phase molecular species of importance in interstellar chemistry as well as in atmospheric and combustion chemistry. This chapter briefly reviews our methodological developments of electronic and vibrational many-body theories that are particularly useful for these gas-phase molecular problems. Their applications to anharmonic vibrational frequencies of triatomic and tetratomic interstellar molecules and to electronic absorption spectra of the radical ions of polycyclic aromatic hydrocarbons, which are ubiquitous in the interstellar medium, are also discussed.

  16. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  17. Photochemistry of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Stief, L. J.

    1971-01-01

    The photochemistry of two diatomic and eight polyatomic molecules is discussed quantitatively. For an interstellar molecule, the lifetime against photodecomposition depends upon the absorption cross section, the quantum yield or probability of dissociation following photon absorption, and the interstellar radiation field. The constant energy density of Habing is used for the unobserved regions of interstellar radiation field, and the field in obscuring clouds is estimated by combining the constant flux with the observed interstellar extinction curve covering the visible and ultraviolet regions. Lifetimes against photodecomposition in the unobscured regions and as a function of increasing optical thickness in obscuring clouds are calculated for the ten species. The results show that, except for CO, all the molecules have comparable lifetimes of less than one hundred years. Thus they can exist only in dense clouds and can never have been exposed to the unobscured radiation. The calculations further show that the lifetimes in clouds of moderate opacity are of the order of one million years.

  18. Interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Mckee, C. F.; Hollenbach, D. J.

    1980-01-01

    The structure of interstellar shocks driven by supernova remnants and by expanding H II regions around early-type stars is discussed. Jump conditions are examined, along with shock fronts, post-shock relaxation layers, collisional shocks, collisionless shocks, nonradiative shocks, radiative atomic shocks, and shock models of observed nebulae. Effects of shock waves on interstellar molecules are examined, with reference to the chemistry behind shock fronts, infrared and vibrational-rotational cooling by molecules, and observations of shocked molecules. Some current problems and applications of the study of interstellar shocks are summarized, including the initiation of star formation by radiative shock waves, interstellar masers, the stability of shocks, particle acceleration in shocks, and shocks in galactic nuclei.

  19. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  20. Interstellar Propulsion Concepts Assessment

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    2000-01-01

    NASA is investigating the feasibility of conducting extra-solar and interstellar missions over the next 10 to 50 years. An assessment of technologies supporting these near and far term objectives is required. To help meet these objectives the Principal Investigator assessed the feasibility of candidate propulsion systems for the proposed 'Interstellar Probe', a mission to send a spacecraft to the Heliopause at 250 AU and beyond.

  1. Interstellar organic chemistry.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  2. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    York, D. G.; Jura, M.

    1982-01-01

    IUE observations toward 10 stars have shown that zinc is not depleted in the interstellar medium by more than a factor of two, suggesting that its abundance may serve as a tracer of the true metallicity in the gas. A result pertinent to the history of nucleosynthesis in the solar neighborhood is that the local interstellar medium has abundances that appear to be homogeneous to within a factor of two, when integrated over paths of about 500 pc.

  3. Interstellar chemistry - Polycyanoacetylene formation

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Schloerb, F. P.; Snell, R. L.; Young, J. S.

    1981-01-01

    It is argued that interstellar polycyanoacetylenes are formed not on dust grains by catalytic buildup or by dissociation of longer molecules, but rather by gas phase ion-molecule reactions. The primary evidence for this view is the detection of deuterated cyanoacetylene in an interstellar cloud. It is also argued that the relative abundance of successive homologs of polycyanoacetylenes rules out the grain catalysis theory.

  4. Discovery of interstellar rubidium

    NASA Technical Reports Server (NTRS)

    Jura, M.; Smith, W. H.

    1981-01-01

    Interstellar rubidium is detected through observations of the resonance line of Rb I at 7800 A towards zeta Oph. The abundance ratio of rubidium to potassium is estimated to be approximately solar, and if rubidium is generally found to have an abundance similar to potassium, it is indicated that the local interstellar medium is well mixed with a wide variety of the products of nucleosynthesis.

  5. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  6. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  7. Waves in Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kamaya, H.

    1998-03-01

    Many hydrodynamical researches have been developed. Especially, analysis of the compressible flow is significantly improved by interstellar physicists. To obtain sufficient appreciation, we should not analyze only the effect of self-gravity of the system but also consider the property of inhomogeneity of the interstellar medium. I stress that another hydrodynamical approach is appreciated. That is the multi-phase-flow method. In the astrophysical context, there are few preliminary works of it. I intend to develop it in more suitable method for the interstellar physics. This dissertation is only the first step for me. But, fundamental properties of the multi-phase-flow are presented, considering the effect of compressibility, self-(and/or mutual) gravity, and friction between two phases. All of these properties are generally important to examine the origin, destruction and the global distribution of interstellar medium. My motivation is trying to delve into the global properties of the interstellar medium. The method of multi-phase-flow has great advantage for my aim, and its usefulness has been shown in this thesis.

  8. Interstellar Antifreeze: Ethylene Glycol

    NASA Astrophysics Data System (ADS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-05-01

    Interstellar ethylene glycol (HOCH2CH2OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  9. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  10. Interstellar H3+

    PubMed Central

    Oka, Takeshi

    2006-01-01

    Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171

  11. The interstellar gas experiment

    NASA Technical Reports Server (NTRS)

    Lind, D. L.; Geiss, J.; Buehler, F.; Eugster, O.

    1992-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils to collect neutral interstellar gas particles. These particles penetrate the solar system due to their motion relative to the sun. Thus, it is possible to entrap them in the collecting foils along with precipitating magnetospheric and perhaps some ambient atmospheric particles. For the entire duration of the Long Duration Exposure Facility (LDEF) mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectroscopic analysis of the noble gas component of these particles, we have detected the isotopes of He-3, He-4, Ne-20, and Ne-22. In the foil analyses carried out so far, we find a distribution of particle arrival directions which shows that a significant part of the trapped particles are indeed interstellar atoms. The analysis needed to subtract the competing fluxes of magnetospheric and atmospheric particles is still in progress.

  12. Tomographic multiphase flow measurement.

    PubMed

    Sætre, C; Johansen, G A; Tjugum, S A

    2012-07-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (Corneliussen et al., 2005). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100 ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. PMID:22341954

  13. Interstellar Deuterium Chemistry

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2003-01-01

    The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer of interstellar components has been deuterium (D) excesses. In some cases these enrichments are seen in bulk meteoritic materials, but D enrichments have also been observed in meteoritic subfractions and even within specific classes of molecular species, such as amino and carboxylic acids. These anomalies are not thought to be the result of nucleosynthetic processes, but are instead ascribed to chemical and physical processes occurring in the interstellar medium (ISM). The traditional explanation of these D excesses has been to invoke the presence of materials made in the ISM by low temperature gas phase ion-molecule reactions. Indeed, the DM ratios seen in the simple interstellar gas phase molecules in cold dense clouds amenable to measurement using radio spectral techniques are generally considerably higher than the values seen in enriched Solar System materials. However, the true linkage between the DM ratios in interstellar and meteoritic materials is obscured by several effects. First, current observations of D enrichment in the ISM have been made of only a few simple molecules, molecules that are not the main carriers of D in Solar System materials. Second, some of the interstellar D enrichment is likely to reside on labile moieties that will have exchanged to some degree with more isotopically normal material during incorporation into the warm protosolar nebula, parent body processing, delivery, recovery, and analysis. Third, ion-molecule reactions represent only one of at least four processes that can produce strong D-H fractionation in the ISM.

  14. Time-dependent interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    1985-01-01

    Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.

  15. Interstellar Panspermia Reconsidered

    NASA Astrophysics Data System (ADS)

    Zubrin, R.

    The absence of free-living microorganisms simpler than bacteria on Earth is evidence that life did not originate on Earth, but immigrated. The question then arises as to whether life was imported from a point of origin in our solar system, most likely Mars, of whether the solar system was seeded from interstellar sources. The search for fossil or extant prebacterial organisms (prebacteria) on Mars can resolve this question. However, to understand the likelihood of interstellar panspermia, we also need to consider whether the Earth itself has served as an efficient source for the spread of microorganisms. Close encounters with other stars due to random stellar motion occur with a frequency of 1/20 Myr, in fair agreement with the observed frequency of major impact events and mass extinctions. Such events are estimated to eject unsterilized material into interstellar space at a time-averaged rate of 10 tonnes per year. A number of mechanisms for the interstellar dissemination of bacteria along with this material are considered. It is shown that transmission of microbial life from one solar system to another is highly probable.

  16. Prebiologically Important Interstellar Molecules

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Huang, H.-C.; Charnley, S. B.; Tseng, W.-L.; Snyder, L. E.; Ehrenfreund, P.; Kisiel, Z.; Thorwirth, S.; Bohn, R. K.; Wilson, T. L.

    2004-06-01

    Understanding the organic chemistry of molecular clouds, particularly the formation of biologically important molecules, is fundamental to the study of the processes which lead to the origin, evolution and distribution of life in the Galaxy. Determining the level of molecular complexity attainable in the clouds, and the nature of the complex organic material available to protostellar disks and the planetary systems that form from them, requires an understanding of the possible chemical pathways and is therefore a central question in astrochemistry. We have thus searched for prebiologically important molecules in the hot molecular cloud cores: Sgr B2(N-LMH), W51 e1/e2 and Orion-KL. Among the molecules searched: Pyrimidine is the unsubstituted ring analogue for three of the DNA and RNA bases. 2H-Azirine and Aziridine are azaheterocyclic compounds. And Glycine is the simplest amino acid. Detections of these interstellar organic molecular species will thus have important implications for Astrobiology. Our preliminary results indicate a tentative detection of interstellar glycine. If confirmed, this will be the first detection of an amino acid in interstellar space and will greatly strengthen the thesis that interstellar organic molecules could have played a pivotal role in the prebiotic chemistry of the early Earth.

  17. Molecules in interstellar clouds

    NASA Astrophysics Data System (ADS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  18. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  19. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  20. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  1. DETERMINATION OF SUB-RESOLUTION STRUCTURE OF A JET BY SOLAR MAGNETOSEISMOLOGY

    SciTech Connect

    Morton, R. J.; Erdelyi, R.; Verth, G.; McLaughlin, J. A. E-mail: gary.verth@northumbria.ac.uk

    2012-01-01

    A thin dark thread is observed in a UV/EUV solar jet in the 171 A, 193 A, and 211 A, and partially in 304 A. The dark thread appears to originate in the chromosphere but its temperature does not appear to lie within the passbands of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. We therefore implement solar magnetoseismology to estimate the plasma parameters of the dark thread. A propagating kink (transverse) wave is observed to travel along the dark thread. The wave is tracked over a range of {approx}7000 km by placing multiple slits along the axis of the dark thread. The phase speed and amplitude of the wave are estimated and magnetoseismological theory is employed to determine the plasma parameters. We are able to estimate the plasma temperature, density gradient, magnetic field gradient, and sub-resolution expansion of the dark thread. The dark thread is found to be cool, T {approx}< 3 Multiplication-Sign 10{sup 4}, with both strong density and magnetic field gradients. The expansion of the flux tube along its length is {approx}300-400 km.

  2. Sub-resolution assist feature (SRAF) printing prediction using logistic regression

    NASA Astrophysics Data System (ADS)

    Tan, Chin Boon; Koh, Kar Kit; Zhang, Dongqing; Foong, Yee Mei

    2015-03-01

    In optical proximity correction (OPC), the sub-resolution assist feature (SRAF) has been used to enhance the process window of main structures. However, the printing of SRAF on wafer is undesirable as this may adversely degrade the overall process yield if it is transferred into the final pattern. A reasonably accurate prediction model is needed during OPC to ensure that the SRAF placement and size have no risk of SRAF printing. Current common practice in OPC is either using the main OPC model or model threshold adjustment (MTA) solution to predict the SRAF printing. This paper studies the feasibility of SRAF printing prediction using logistic regression (LR). Logistic regression is a probabilistic classification model that gives discrete binary outputs after receiving sufficient input variables from SRAF printing conditions. In the application of SRAF printing prediction, the binary outputs can be treated as 1 for SRAFPrinting and 0 for No-SRAF-Printing. The experimental work was performed using a 20nm line/space process layer. The results demonstrate that the accuracy of SRAF printing prediction using LR approach outperforms MTA solution. Overall error rate of as low as calibration 2% and verification 5% was achieved by LR approach compared to calibration 6% and verification 15% for MTA solution. In addition, the performance of LR approach was found to be relatively independent and consistent across different resist image planes compared to MTA solution.

  3. The Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.

    1995-01-01

    The Interstellar Medium (ISM) forms an integral part of the lifecycle of stars and the galaxy. Stars are formed by gravitational contraction of interstellar clouds. Over their life, stars return much of their mass to the ISM through winds and supernova explosions, resulting in a slow enrichment in heavy elements. Understanding the origin and evolution of the ISM is a key problem within astrophysics. The KAO has made many important contributions to studies of the interstellar medium both on the macro and on the micro scale. In this overview, I will concentrate on two breakthroughs in the last decade in which KAO observations have played a major role: (1) the importance of large Polycyclic Aromatic Hydrocarbon (PAH) molecules for the ISM (section 3) and (2) the study of Photodissociation Regions (PDRs) as an analog for the diffuse ISM at large (section 4). Appropriately, the micro and macro problem are intricately interwoven in these problems. Finally, section 5 reviews the origin of the (CII) emission observed by COBE.

  4. The Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Redfield, S.

    2006-09-01

    The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere --- the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and climate. Since the LISM shares the same volume as practically all known extrasolar planets, the prototypical debris disks systems, and nearby low-mass star-formation sites, it will be important to understand the structures of the LISM and how they may influence planetary atmospheres.

  5. Innovative interstellar explorer

    NASA Astrophysics Data System (ADS)

    McNutt, R.; Innovative Interstellar Explorer Team

    Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements. The problem is the development of a probe that can provide the required measurements and can reach a heliocentric distance of at least 200 astronomical units (AU) in 15 years or less, an average speed almost four times the 3.6 AU/yr speed of Voyager 1. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is now being studied under a NASA Vision Mission grant to enable such a mission. Speed is provided by a high-energy launch using current launch vehicle technology followed by long-term, low-thrust, continuous acceleration. The latter is provided by a kilowatt-class ion thruster running off of electricity provided by advanced Stirling radioisotope generators (SRGs) powered by Pu-238. While subject to mass and power limitations for the instruments on board, such an approach relies on known General Purpose Heat Source (GPHS) Pu-238 technology and current launch vehicles for speed, both of which require little new development and have well-known regulatory requirements for launch. In addition, this approach avoids the intrinsically large masses associated with nuclear fission reactors and incorporates launch of all nuclear material directly into an Earth-escape trajectory. We discuss the ongoing trade studies and development of this approach to an Interstellar Probe

  6. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  7. The Nature of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Huss, G. R.

    2003-01-01

    The STARDUST mission is designed to collect dust the coma of comet Wild 2 and to collect interstellar dust on a second set of collectors. We have a reasonable idea of what to expect from the comet dust collection because the research community has been studying interplanetary dust particles for many years. It is less clear what we should expect from the interstellar dust. This presentation discusses what we might expect to find on the STARDUST interstellar dust collector.

  8. Interstellar clouds and molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1977-01-01

    Data obtained from the Copernicus Orbiting Astronomical Observatory, launched in 1972 and still obtaining information, are used in a discussion of the interstellar medium. The Copernicus instruments have facilitated direct estimates for the density and temperature of individual interstellar clouds, and improved the ability to determine where along the line of sight a cloud lies with respect to background stars. The physical characteristics of hydrogen molecules are considered, with attention to the formation and destruction of interstellar hydrogen. The differences between 'thin' clouds, in which molecular hydrogen is optically thin, and 'thick' clouds are examined. Several features of the interstellar medium are described.

  9. Modelling Galaxies with a 3D Multi-Phase ISM

    NASA Astrophysics Data System (ADS)

    Harfst, Stefan; Theis, Christian; Hensler, Gerhard

    We present a modified TREE-SPH code to model galaxies in three dimensions. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH, whereas a cloudy medium is represented by a sticky particle scheme. Interaction processes (such as star formation and feedback), cooling, and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 Msolar yr-1. Condensation and evaporation rates are in balance at 0.1-1 Msolar yr-1.

  10. Stardust Interstellar Preliminary Examination

    NASA Astrophysics Data System (ADS)

    Westphal, A.; Stardust Interstellar Preliminary Examation Team: http://www. ssl. berkeley. edu/~westphal/ISPE/

    2011-12-01

    A. J. Westphal, C. Allen, A. Ansari, S. Bajt, R. S. Bastien, H. A. Bechtel, J. Borg, F. E. Brenker, J. Bridges, D. E. Brownlee, M. Burchell, M. Burghammer, A. L. Butterworth, A. M. Davis, P. Cloetens, C. Floss, G. Flynn, D. Frank, Z. Gainsforth, E. Grün, P. R. Heck, J. K. Hillier, P. Hoppe, G. Huss, J. Huth, B. Hvide, A. Kearsley, A. J. King, B. Lai, J. Leitner, L. Lemelle, H. Leroux, R. Lettieri, W. Marchant, L. R. Nittler, R. Ogliore, F. Postberg, M. C. Price, S. A. Sandford, J.-A. Sans Tresseras, T. Schoonjans, S. Schmitz, G. Silversmit, A. Simionovici, V. A. Solé, R. Srama, T. Stephan, V. Sterken, J. Stodolna, R. M. Stroud, S. Sutton, M. Trieloff, P. Tsou, A. Tsuchiyama, T. Tyliszczak, B. Vekemans, L. Vincze, D. Zevin, M. E. Zolensky, >29,000 Stardust@home dusters ISPE author affiliations are at http://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002, a ~0.1m2 array of aerogel tiles and alumi-num foils onboard the Stardust spacecraft was exposed to the interstellar dust (ISD) stream for an integrated time of 200 days. The exposure took place in interplanetary space, beyond the orbit of Mars, and thus was free of the ubiquitous orbital debris in low-earth orbit that precludes effective searches for interstellar dust there. Despite the long exposure of the Stardust collector, <<100 ISD particles are expected to have been captured. The particles are thought to be ~1μm or less in size, and the total ISD collection is probably <10-6 by mass of the collection of cometary dust parti-cles captured in the Stardust cometary dust collector from the coma of the Jupiter-family comet Wild 2. Thus, although the first solid sample from the local interstellar medium is clearly of high interest, the diminutive size of the particles and the low numbers of particles present daunting challenges. Nevertheless, six recent developments have made a Preliminary Examination (PE) of this sample practical: (1) rapid automated digital optical scanning microscopy for three

  11. Interstellar Dust Instrumentation

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Gruen, E.; Horanyi, M.; Drake, K.; Collette, A.; Kempf, S.; Srama, R.; Postberg, F.; Krueger, H.; Auer, S.

    2010-10-01

    Interstellar grains traversing the inner planetary system have been identified by the Ulysses dust detector. Space dust detectors on other missions confirmed this finding. Analysis of the Stardust collectors is under way to search for and analyze such exotic grains. Interstellar dust particles can be detected and analyzed in the near-Earth space environment. New instrumentation has been developed to determine the origin of dust particles and their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS, Rev. Sci. Instrum. 79, 084501, 2008) together with a high mass resolution mass analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 micron in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 (Earth, Moon and Planets, DOI: 10.1007/s11038-005-9040-z, 2005; Rev. Sci. Instrum. 78, 014501, 2007). The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential in finding collected sub-micron sized grains on the collector.

  12. Innovative interstellar explorer

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Gold, Robert E.; Krimigis, Tom; Roelof, Edmond C.; Gruntman, Mike; Gloeckler, George; Koehn, Patrick L.; Kurth, William S.; Oleson, Steven R.; Fiehler, Douglas I.; Horanyi, Mihaly; Mewaldt, Richard A.; Leary, James C.; Anderson, Brian J.

    2006-09-01

    An interstellar ``precursor'' mission has been under discussion in the scientific community for at least 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission can provide. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA ``Vision Mission'' grant. Speed is provided by a combination of a high-energy launch, using current launch vehicle technology, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by an ion thruster running off electricity provided by advanced radioisotope electric generators. A payload of ten instruments with an aggregate mass of ~35 kg and requiring ~30 W has been carefully chosen to address the compelling science questions. The nominal 20-day launch window opens on 22 October 2014 followed by a Jupiter gravity assist on 5 February 2016. The REP system accelerates the spacecraft to a ``burnout'' speed of 7.8 AU per year at 104 AU on 13 October 2032 (Voyager 1's current speed is ~3.6 AU/yr). The spacecraft will return at least 500 bits per second from at least 200 AU ~30 years after launch. Additional (backup) launch opportunities occur every 13 months to early 2018. In addition to addressing basic heliospheric science, the mission will ensure continued information on the far-heliospheric galactic cosmic ray population after the Voyagers have fallen silent and as the era of human Mars exploration begins.

  13. Interstellar and Circumstellar Fullerenes

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Cami, J.; Jones, A.; Peeters, E.; Micelotta, E.; Otsuka, M.; Sloan, G. C.; Kemper, F.; Groenewegen, M.

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70 ) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understanding how fullerenes form, evolve and respond to their physical environment will yield important insights into one of the largest reservoirs of organic material in space. In spite of all these detections, many questions remain about precisely which members of the fullerene family are present in space, how they form and evolve, and what their excitation mechanism is. We present here an overview of what we know from astronomical observations of fullerenes in these different environments, and discuss current thinking about the excitation process. We highlight the various formation mechanisms that have been proposed, discuss the physical conditions conducive to the formation and/or detection of fullerenes in carbon stars, and their possible connection to PAHs, HACs and other dust features.

  14. The Interstellar Heliopause Probe

    NASA Astrophysics Data System (ADS)

    Lyngvi, A.; Falkner, P.; Peacock, A.

    The Interstellar Heliopause Probe (IHP) is one of four Technology Reference Missions (TRM) introduced by the Planetary Exploration Studies Section of the Science Payload & Advanced Concepts Office (SCI-A) at ESA. The overall purpose of the TRMs is to focus the development of strategically important technologies of likely relevance to future science missions. This is accomplished through the study of several technologically demanding and scientifically interesting missions, which are currently not part of the ESA science programme. The TRM baseline uses small satellites (< 200kg), with highly miniaturized and highly integrated payload suites. The motivation for this is to use low resource spacecraft in a phased approach, which will reduce the risk and cost, compared to a single, high resource mission. Equipped with a Highly Integrated Payload Suite (HIPS) the IHP will answer scientific questions concerning the nature of the interstellar medium, how the interstellar medium affects our solar system and how the solar system impacts the interstellar medium. The HIPS, which is a standard element in all TRMs miniaturize through resource reduction, by using miniaturized components and sensors, and by sharing common structures and payload functionality. To achieve the scientific requirements of the mission the spacecraft is to leave the solar system as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. The requirement of all TRMs is to use a Souyz-Fregat version 2B or equivalent low cost launch vehicle. With this constraint no current propulsion system is capable of delivering the necessary mass to the final destination. Technologies are therefore needed to enable this mission. The current alternatives are using nuclear propulsion, either with radioisotope or reactor power system or solar sailing. All these alternatives are currently being investigated. Other challenges exist as well such as designing a communication link

  15. Visualizing Interstellar's Wormhole

    NASA Astrophysics Data System (ADS)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-06-01

    Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie; (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie; (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres; (iv) Implementing this map, for example, in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole; (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole; (vi) Using the student's implementation, exploring the wormhole's Einstein ring and particularly the peculiar motions of star images near the ring, and exploring what it looks like to travel through a wormhole.

  16. Interstellar Travel without 'Magic'

    NASA Astrophysics Data System (ADS)

    Woodcock, G.

    The possibility of interstellar space travel has become a popular subject. Distances of light years are an entirely new realm for human space travel. New means of propulsion are needed. Speculation about propulsion has included "magic", space warps, faster-than-light travel, known physics such as antimatter for which no practical implementation is known and also physics for which current research offers at least a hint of implementation, i.e. fusion. Performance estimates are presented for the latter and used to create vehicle concepts. Fusion propulsion will mean travel times of hundreds of years, so we adopt the "space colony" concepts of O'Neill as a ship design that could support a small civilization indefinitely; this provides the technical means. Economic reasoning is presented, arguing that development and production of "space colony" habitats for relief of Earth's population, with addition of fusion engines, will lead to vessels that can go interstellar. Scenarios are presented and a speculative estimate of a timetable is given.

  17. Interstellar Cloud Collisions

    NASA Astrophysics Data System (ADS)

    Lattanzio, J. C.; Monaghan, J. J.; Pongracic, H.; Schwarz, M. P.

    1985-07-01

    We describe the results of a three-dimensional numerical simulation of isothermal interstellar clouds in the absence of magnetic fields. A wide variety of high and low Mach number, head-on and off-centre collisions of clouds with mass ratios 1, 2.5, 5.0 and 10.1 have been studied. The results show that a necessary, but not sufficient, condition for the gravitational instability of a substantial fraction of the matter is that the initial clouds should be either marginally stable or unstable according to the usual Jeans criterion. The collisions, in general, do not result in one or more clouds. Instead we find, in most cases, that the matter disperses in an irregular way. The calculations therefore suggest that if the initial state of the interstellar medium is one of cool dense clouds in a hotter more tenuous background, collisions will rapidly mix the medium rather than produce a steady-state spectrum of cool clouds.

  18. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  19. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  20. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  1. Interstellar sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1980-01-01

    The results of a chemical model of SO, CS, and OCS chemistry in dense clouds are summarized. The results are obtained from a theoretical study of sulfur chemistry in dense interstellar clouds using a large-scale time-dependent model of gas-phase chemistry. Among the results are the following: (1) owing to activation energy, the reaction of CS with O atoms is efficient as a loss mechanism of CS during the early phases of cloud evolution or in hot and oxygen-rich sources such as the KL nebula; (2) if sulfur is not abnormally depleted in dense clouds, then the observed abundances of SO, SO2, H2S, CS, OCS, H2CS, and SiS indicate that sulfur is mostly atomic in dense clouds; and (3) OCS is stable against reactions with neutral atoms and radicals in dense clouds.

  2. Interstellar carbon in meteorites

    NASA Technical Reports Server (NTRS)

    Swart, P. K.; Grady, M. M.; Pillinger, C. T.; Lewis, R. S.; Anders, E.

    1983-01-01

    The Murchison and Allende chondrites contain up to 5 parts per million carbon that is enriched in carbon-13 by up to +1100 per mil (the ratio of carbon-12 to carbon-13 is approximately 42, compared to 88 to 93 for terrestrial carbon). This 'heavy' carbon is associated with neon-22 and with anomalous krypton and xenon showing the signature of the s-process (neutron capture on a slow time scale). It apparently represents interstellar grains ejected from late-type stars. A second anomalous xenon component ('CCFXe') is associated with a distinctive, light carbon (depleted in carbon-13 by 38 per mil), which, however, falls within the terrestrial range and hence may be of either local or exotic origin.

  3. Very Small Interstellar Spacecraft

    NASA Astrophysics Data System (ADS)

    Peck, Mason A.

    2007-02-01

    This paper considers lower limits of length scale in spacecraft: interstellar vehicles consisting of little more material than found in a typical integrated-circuit chip. Some fundamental scaling principles are introduced to show how the dynamics of the very small can be used to realize interstellar travel with minimal advancements in technology. Our recent study for the NASA Institute for Advanced Concepts provides an example: the use of the Lorentz force that acts on electrically charged spacecraft traveling through planetary and stellar magnetospheres. Schaffer and Burns, among others, have used Cassini and Voyager imagery to show that this interaction is responsible for some of the resonances in the orbital dynamics of dust in Jupiter's and Saturn's rings. The Lorentz force turns out to vary in inverse proportion to the square of this characteristic length scale, making it a more effective means of propelling tiny spacecraft than solar sailing. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. We might envision a large number of such satellites with intermittent, bursty communications set up as a one-dimensional network to relay signals across great distances using only the power likely from such small spacecraft. Conveying imagery in this fashion may require a long time because of limited power, but the prospect of imaging another star system close-up ought to be worth the wait.

  4. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Jillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  5. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  6. Detection of Interstellar Urea

    NASA Astrophysics Data System (ADS)

    Kuo, Hsin-Lun; Remijan, Anthony J.; Snyder, Lewis E.; Looney, Leslie W.; Friedel, Douglas N.; Lovas, Francis J.; McCall, Benjamin J.; Hollis, Jan M.

    2010-11-01

    Urea, a molecule discovered in human urine by H. M. Rouelle in 1773, has a significant role in prebiotic chemistry. Previous BIMA observations have suggested that interstellar urea [(NH2)2CO] is a compact hot core molecule such as other large molecules (e.g. methyl formate and acetic acid). We have conducted an extensive search for urea toward the high mass hot molecular core Sgr B2(N-LMH) using BIMA, CARMA and the IRAM 30 m. Because the spectral lines of heavy molecules like urea tend to be weak and hot cores display lines from a wide range of molecules, it is necessary to detect a number of urea lines and apply sophisticated statistical tests before having confidence in an identification. The 1 mm resolution of CARMA enables favorable coupling of the source size and synthesized beam size, which was found to be essential for the detection of weak signals. We have detected a total of 65 spectral lines (32 molecular transitions and 33 unidentified transitions), most of which are narrower than the SEST survey (Nummelin et al. 1998) due to the small synthesized beam (2.5" x 2") of CARMA. It significantly resolves out the contamination by extended emission and reveals the eight weak urea lines that were previously blended with nearby transitions. Our analysis indicates that these lines are likely to be urea since the resulting observed line frequencies are coincident with a set of overlapping connecting urea lines, and the observed line intensities are consistent with the expected line strengths of urea. In addition, we have developed a new statistical approach to examine the spatial correlation between the observed lines by applying the Student's t test to the high resolution channel maps obtained from CARMA. The t test shows consistent spatial distributions from all eight candidate lines, suggesting a common molecular origin, urea. Our t test method could have a broad impact on the next generation of arrays, such as ALMA, because the new arrays will require a method

  7. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-12-01

    In this dissertation talk, I will report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λ peak ˜ 370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. I will also present first results from ongoing work: Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. Financial support for this study was provided through NSF Grant AST0307307 to The University of Toledo.

  8. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-08-01

    In this dissertation, we report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λpeak˜370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. In the last few chapters of the dissertation we present first results from ongoing work: i) Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. ii) We also present a pure spectrum of the BL free of scattered light, resolved into seven

  9. The Interstellar Conspiracy

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Gregory L.

    2005-01-01

    If we were designing a human-carrying starship that could be launched in the not-too-distant future, it would almost certainly not use a warp drive to instantaneously bounce around the universe, as is done in Isaac Asimov's classic Foundation series or in episodes of Star Trek or Star Wars. Sadly, those starships that seem to be within technological reach could not even travel at high relativistic speeds, as does the interstellar ramjet in Poul Anderson's Tau Zero. Warp-speeds seem to be well outside the realm of currently understood physical law; proton-fusing ramjets may never be technologically feasible. Perhaps fortunately in our terrorist-plagued world, the economics of antimatter may never be attractive for large-scale starship propulsion. But interstellar travel will be possible within a few centuries, although it will certainly not be as fast as we might prefer. If humans learn how to hibernate, perhaps we will sleep our way to the stars, as do the crew in A. E. van Vogt's Far Centaurus. However, as discussed in a landmark paper in The Journal of the British Interplanetary Society, the most feasible approach to transporting a small human population to the planets (if any) of Alpha Centauri is the worldship. Such craft have often been featured in science fiction. See for example Arthur C. Clarke's Rendezvous with Rama, and Robert A. Heinlein's Orphans of the Sky. Worldships are essentially mobile versions of the O Neill free-space habitats. Constructed mostly from lunar and/or asteroidal materials, these solar-powered, multi-kilometer-dimension structures could house 10,000 to 100,000 humans in Earth-approximating environments. Artificial gravity would be provided by habitat rotation, and cosmic ray shielding would be provided by passive methods, such as habitat atmosphere and mass shielding, or magnetic fields. A late 21st century space-habitat venture might support itself economically by constructing large solar-powered satellites to beam energy back to

  10. The violent interstellar medium in Milky-Way like disk galaxies

    NASA Astrophysics Data System (ADS)

    Karoline Walch, Stefanie

    2015-08-01

    Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.

  11. Desorption from interstellar grains

    NASA Technical Reports Server (NTRS)

    Leger, A.; Jura, M.; Omont, A.

    1985-01-01

    Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.

  12. Germanium multiphase equation of state

    SciTech Connect

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  13. Report on Multiphase Flow Panel

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This paper presents viewgraphs on a multiphase flow panel. The topics include: 1) Discussion of Priorities; 2) Critical Issues Reduced Gravity Instabilities; 3) Severely Limiting Phase Separation; 4) Severely-Limiting Phase Change; 5) Enhancements; 6) Awareness Instabilities; 7) Awareness; 8) Methods of Resolution; 9) 2008 Space Flight; 10) 2003-2008 Ground-Based Microgravity Facilities; 11) 2003-2008 Other; 12) 2009-2015 Space Flight; 13) 2009-2015 Ground-Based Microgravity Facilities; 14) 2009-2015 Other; and 15) 2016.

  14. Turbulent Mixing of Multiphase Flow

    NASA Technical Reports Server (NTRS)

    Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.

    2003-01-01

    Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.

  15. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  16. Stardust interstellar preliminary examination (ISPE).

    SciTech Connect

    Westphal, A.J.; Allen, C.; Bajt, S.; Basset, R.; Flynn, G.L.; Sutton, S.

    2009-03-23

    The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the Stardust interstellar dust collection and collector using non-destructive techniques. We summarize the status of the ISPE. In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were {approx}0.1 m{sup 2} in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m{sup 2}-day during two periods before the cometary encounter. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described in Westphal et al. The ISPE consists of six interdependent projects: (1) Candidate identification through automated digital microscopy and a massively distributed, calibrated search; (2) Candidate extraction and photodocumentation; (3) Characterization of candidates through synchrotron-based Fourier-Tranform Infrared Spectroscopy (FTIR), Scanning X-Ray Fluoresence Microscopy (SXRF), and Scanning Transmission X-ray Microscopy (STXM); (4) Search for and analysis of craters in foils through FESEM scanning, Auger Spectroscopy and synchrotron-based Photoemission Electron Microscopy (PEEM); (5) Modeling of interstellar dust transport in the solar system; and (6) Laboratory simulations of hypervelocity dust impacts into the collecting media.

  17. Interstellar Electron Density Spectra

    NASA Astrophysics Data System (ADS)

    Lambert, Hendrick Clark

    This study concerns the investigation of the form of the wavenumber spectrum of the Galactic electron density fluctuations through an examination of the scattering of the radio pulses emitted by pulsars as they propagate through the diffuse ionized interstellar gas. A widely used model for the electron density spectrum is based on the simple power-law: Pne(q)∝ q-β, where β = 11/3 is usually assumed, corresponding to Kolmogorov's turbulence spectrum. The simple Kolmogorov model provides satisfactory agreement for observations along many lines of sight; however, major inconsistencies remain. The inconsistencies suggest that an increase in the ratio of the power between the high (10-8[ m]-1≤ q<=10-7[ m]-1) and low (10-13[ m]-1≤ q<=10-12[ m]-1) wavenumbers is needed. This enhancement in the ratio can in turn be achieved by either including an inner scale, corresponding to a dissipation scale for the turbulent cascade, in the Kolmogorov spectrum or by considering steeper spectra. Spectra with spectral exponents β > 4 have been in general rejected based on observations of pulsar refractive scintillations. The special case of β = 4 has been given little attention and is analyzed in detail. Physically, this 'β = 4' model corresponds to the random distribution, both in location and orientation, of discrete objects with relatively sharp boundaries across the line of sight. An outer scale is included in the model to account for the average size of such objects. We compare the predictions of the inner-scale and β = 4 models both with published observations and observations we made as part of this investigation. We conclude that the form of the wavenumber spectrum is dependent on the line of sight. We propose a composite spectrum featuring a uniform background turbulence in presence of randomly distributed discrete objects, as modeled by the β = model.

  18. Interstellar Sweat Equity

    NASA Astrophysics Data System (ADS)

    Cohen, M. H.; Becker, R. E.; O'Donnell, D. J.; Brody, A. R.

    So, you have just launched aboard the Starship, headed to an exoplanet light years from Earth. You will spend the rest of your natural life on this journey in the expectation and hope that your grandchildren will arrive safely, land, and build a new settlement. You will need to govern the community onboard the Starship. This system of governance must meet unique requirements for participation, representation, and decision-making. On a spaceship that can fly and operate by itself, what will the crewmembers do for their generations in transit? Certainly, they will train and train again to practice the skills they will need upon arrival at a new world. However, this vicarious practice neither suffices to prepare the future pioneers for their destiny at a new star nor will it provide them with the satisfaction in their own work. To hone the crewmembers' inventive and technical skills, to challenge and prepare them for pioneering, the crew would build and expand the interstellar ship in transit. This transstellar ``sweat equity'' gives a stake in the enterprise to all the people, providing meaningful and useful activity to the new generations of crewmembers. They build all the new segments of the vessel from raw materials - including atmosphere - stored on board. Construction of new pressure shell modules would be one option, but they also reconstruct or fill-in existing pressurized volumes. The crew makes new life support system components and develops new agricultural modules in anticipation of their future needs. Upon arrival at the new star or planet, the crew shall apply these robustly developed skills and self-sufficient spirit to their new home.

  19. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1990-01-01

    A new model of interstellar silicon chemistry is presented that explains the lack of SiO detections in cold clouds and contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine-structure levels of the silicon atom. As part of the explanation of the lack of SiO detections at low temperatures and densities, the model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundance of oxygen bearing molecules and the depletion of interstellar silicon.

  20. An Interstellar Sail before 2020?

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.; Johnson, L.

    In 2017, NASA plans to launch the Near Earth Asteroid (NEA) Scout, a solar-photon-sail propelled probe to rendezvous with one or more near-Earth asteroids. According to a publication describing early design parameters, the spacecraft mass is 12 kg and the square sail has an area of 83 square meters. This craft, like many other NASA science missions, will likely remain functional after the completion of its primary mission. This paper investigates options for application of this spacecraft during its extended mission as an Interstellar Trailblazer. As well as kinematics, thermal aspects and the communications challenges are discussed. Although interstellar velocities for this craft will not be high and engineering the pre-perihelion trajectory will be challenging, an extended demonstration mission of this type would certainly spur interest in the development of true interstellar sails. As of December 2014, the design of this spacecraft continues to evolve. The performance estimates presented here may be overly conservative.

  1. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  2. The neutral atomic phases of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Wolfire, M. G.; Hollenbach, D.; Mckee, C. F.; Tielens, A. G. G. M.; Bakes, E. L. O.

    1995-01-01

    We calculate the thermal equilibrium gas temperature of the diffuse interstellar medium. Our method incorporates a new photoelectric heating rate from small grains and polycyclic aromatic hydrocarbons (PAHs) that accounts for a size distribution of particles extending from 100 to 3 A radius. We also include a detailed treatment of the ionization rates and heating due to the soft X-ray background and due to cosmic rays. Phase diagrams (thermal pressure P versus hydrogen density n) are presented for gas that is illuminated by local interstellar far-ultraviolet (FUV) and X-ray radiation fields. A stable two-phase medium is produced with thermal pressure in the range P/k approximately = to 10(exp 3-4) K/cc. We demonstrate that photoelectric heating from PAHs dominates in the warm neutral phase (WNM) and cold neutral phase (CNM). If the C II (158 micrometers cooling per hydrogen nucleus in the solar neighborhood represents an average value for the Galaxy, we predict L(sub CII) approximately = to 7 x 10(exp 7) solar luminosities from the CNM in the Galaxy, comparable to that observed by the Cosmic Background Explorer (COBE). We discuss the dependence of the results on absorbing column density, gas phase abundances, dust abundances and metallicity, FUV field, and the X-ray radiation field. These results will be useful in modeling the multiphase structure of high-velocity clouds in the halo, the interstellar matter (ISM) at other galactocentric radii, and the ISM in external galaxies and galactic nuclei.

  3. Interrelationships between interstellar and interplanetary grains

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1986-01-01

    The relationship between solar system dust (SSD) and interstellar dust particles (ISMD) is being reconsidered because of the discovery of isotopic anomalies in meteorites. Meteoritic, circumstellar/meteoritic, interstellar/meteoritic, planetary, and cometary data are reviewed.

  4. Interstellar Initiative Web Page Design

    NASA Technical Reports Server (NTRS)

    Mehta, Alkesh

    1999-01-01

    This summer at NASA/MSFC, I have contributed to two projects: Interstellar Initiative Web Page Design and Lenz's Law Relative Motion Demonstration. In the Web Design Project, I worked on an Outline. The Web Design Outline was developed to provide a foundation for a Hierarchy Tree Structure. The Outline would help design a Website information base for future and near-term missions. The Website would give in-depth information on Propulsion Systems and Interstellar Travel. The Lenz's Law Relative Motion Demonstrator is discussed in this volume by Russell Lee.

  5. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737

  6. Experimental interstellar organic chemistry - Preliminary findings

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  7. On the question of interstellar travel

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.

    1985-01-01

    Arguments are presented which show that motives for interstellar travel by advanced technological civilizations based on an extrapolation of earth's history may be quite invalid. In addition, it is proposed that interstellar travel is so enormously expensive and perhaps so hazardous, that advanced civilizations do not engage in such practices because of the ease of information transfer via interstellar communication.

  8. Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.

  9. Massively Parallel Direct Simulation of Multiphase Flow

    SciTech Connect

    COOK,BENJAMIN K.; PREECE,DALE S.; WILLIAMS,J.R.

    2000-08-10

    The authors understanding of multiphase physics and the associated predictive capability for multi-phase systems are severely limited by current continuum modeling methods and experimental approaches. This research will deliver an unprecedented modeling capability to directly simulate three-dimensional multi-phase systems at the particle-scale. The model solves the fully coupled equations of motion governing the fluid phase and the individual particles comprising the solid phase using a newly discovered, highly efficient coupled numerical method based on the discrete-element method and the Lattice-Boltzmann method. A massively parallel implementation will enable the solution of large, physically realistic systems.

  10. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  11. Reactive multiphase flow simulation workshop summary

    SciTech Connect

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

  12. Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients.

    PubMed

    Gaensler, B M; Haverkorn, M; Burkhart, B; Newton-McGee, K J; Ekers, R D; Lazarian, A; McClure-Griffiths, N M; Robishaw, T; Dickey, J M; Green, A J

    2011-10-13

    The interstellar medium of the Milky Way is multiphase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1,000 kilometres (ref. 4). Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine, because observations have lacked the sensitivity and resolution to image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q, U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse, ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm, ionized medium has a relatively low sonic Mach number, M(s) ≲ 2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions. PMID:21976022

  13. Isotopic Fractionation in Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar sys tem without undergoing significant processing. In this poster, we sho w the results of several models of the nitrogen, oxygen, and carbon f ractionation in proto-stellar cores.

  14. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  15. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  16. Stardust Interstellar Preliminary Examination (ISPE)

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  17. Interstellar matter research with the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.

    1976-01-01

    The use of the Copernicus satellite in an investigation of interstellar matter makes it possible to study absorption lines in the ultraviolet range which cannot be observed on the ground because of atmospheric absorption effects. A brief description is given of the satellite and the instrument used in the reported studies of interstellar matter. The results of the studies are discussed, giving attention to interstellar molecular hydrogen, the chemical composition of the interstellar gas, the coronal gas between the stars, and the interstellar abundance ratio of deuterium to hydrogen.

  18. The Sun's dusty interstellar environment

    NASA Astrophysics Data System (ADS)

    Sterken, Veerle

    2016-07-01

    The Sun's dusty interstellar environment Interstellar dust from our immediate interstellar neighborhood travels through the solar system at speeds of ca. 26 km/s: the relative speed of the solar system with respect to the local interstellar cloud. On its way, its trajectories are altered by several forces like the solar radiation pressure force and Lorentz force. The latter is due to the charged dust particles that fly through the interplanetary magnetic field. These trajectories differ per particle type and size and lead to varying fluxes and directions of the flow inside of the solar system that depend on location but also on phase in the solar cycle. Hence, these fluxes and directions depend strongly on the configuration of the inner regions and outer regions of the heliosphere. Several missions have measured this dust in the solar system directly. The Ulysses dust detector data encompasses 16 years of intestellar dust fluxes and approximate directions, Stardust captured returned to Earth a few of these particles sucessfully, and finally the Cassini dust detector allowed for compositional information to be obtained from the impacts on the instrument. In this talk, we give an overview of the current status of interstellar dust research through the measurements made inside of the solar system, and we put them in perspective to the knowledge obtained from more classical astronomical means. In special, we focus on the interaction of the dust with the interplanetary magnetic field, and on what we learn about the dust (and the fields) by comparing the available dust data to computer simulations of dust trajectories. Finally, we synthesize the different methods of observation, their results, and give a preview on new research opportunities in the coming year(s).

  19. The interstellar C3 chain molecule in different interstellar environments

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G.; Pětlewski, A.; Musaev, F.; Moutou, C.; Lo Curto, G.; Krelowski, J.

    2002-12-01

    We present an analysis of spectra of six stars taken with high resolution (R=220 000). The stars are reddened by molecular clouds that differ by the relative strength of the 5797 and 5780 diffuse interstellar bands (DIBs). The high signal-to-noise ratio of the spectra (S/N ~ 700-1000) shows that the abundance of the linear molecule C3 with respect to EB-V varies considerably from one star to an other. There is no correlation with EB-V. The strong variations in the abundance of C3 must therefore be caused by another circumstance. We point out that this may be the case: from an analysis of the interstellar potassium lines in the same spectra we conclude large differences in the state of ionization produced by interstellar photons with energies below the ionization potential of hydrogen. The ratio of the abundances of C3 and C2 varies considerably in different directions, even when the ratio between the strengths of various DIBs remains approximately constant. Based on data collected at the ESO 3.6 m telescope operated on La Silla Observatory, Chile.

  20. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    PubMed

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory. PMID:25124433

  1. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  2. Measurement in multiphase reacting flows

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.

    1979-01-01

    A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.

  3. Absorption variability as a probe of the multiphase interstellar media surrounding active galaxies

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Tingay, Steven

    2016-08-01

    We examine a model for the variable free-free and neutral hydrogen absorption inferred towards the cores of some compact radio galaxies in which a spatially fluctuating medium drifts in front of the source. We relate the absorption-induced intensity fluctuations to the statistics of the underlying opacity fluctuations. We investigate models in which the absorbing medium consists of either discrete clouds or a power-law spectrum of opacity fluctuations. We examine the variability characteristics of a medium comprised of Gaussian-shaped clouds in which the neutral and ionized matter are co-located, and in which the clouds comprise spherical constant-density neutral cores enveloped by ionized sheaths. The cross-power spectrum indicates the spatial relationship between neutral and ionized matter, and distinguishes the two models, with power in the Gaussian model declining as a featureless power-law, but that in the ionized sheath model oscillating between positive and negative values. We show how comparison of the HI and free-free power spectra reveals information on the ionization and neutral fractions of the medium. The background source acts as a low-pass filter of the underlying opacity power spectrum, which limits temporal fluctuations to frequencies $\\omega < \\dot{\\theta}_v / \\theta_{\\rm src}$, where $\\dot{\\theta}_v$ is the angular drift speed of the matter in front of the source, and it quenches the observability of opacity structures on scales smaller than the source size $\\theta_{\\rm src}$. For drift speeds of $\\sim 10^3\\,$km s$^{-1}$ and source brightness temperatures $\\sim 10^{12}\\,$K, this limitation confines temporal opacity fluctuations to timescales of order several months to decades.

  4. Absorption variability as a probe of the multiphase interstellar media surrounding active galaxies

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Tingay, Steven

    2016-08-01

    We examine a model for the variable free-free and neutral hydrogen absorption inferred towards the cores of some compact radio galaxies in which a spatially fluctuating medium drifts in front of the source. We relate the absorption-induced intensity fluctuations to the statistics of the underlying opacity fluctuations. We investigate models in which the absorbing medium consists of either discrete clouds or a power-law spectrum of opacity fluctuations. We examine the variability characteristics of a medium comprised of Gaussian-shaped clouds in which the neutral and ionized matter are co-located, and in which the clouds comprise spherical constant-density neutral cores enveloped by ionized sheaths. The cross-power spectrum indicates the spatial relationship between neutral and ionized matter, and distinguishes the two models, with power in the Gaussian model declining as a featureless power-law, but that in the ionized sheath model oscillating between positive and negative values. We show how comparison of the H I and free-free power spectra reveals information on the ionization and neutral fractions of the medium. The background source acts as a low-pass filter of the underlying opacity power spectrum, which limits temporal fluctuations to frequencies ω ≲ dot{θ }_v/θ _src, where dot{θ }_v is the angular drift speed of the matter in front of the source, and it quenches the observability of opacity structures on scales smaller than the source size θsrc. For drift speeds of ˜103 km s-1 and source brightness temperatures ˜1012 K, this limitation confines temporal opacity fluctuations to time-scales of order several months to decades.

  5. Influence of the active nucleus on the multiphase interstellar medium in NGC 1068

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Weisheit, Jon; Cecil, Gerald; Sokolowski, James

    1993-01-01

    The luminous spiral NGC 1068 has now been imaged from x-ray to radio wavelengths at comparably high resolution (approximately less than 5 in. FWHM). The bolometric luminosity of this well-known Seyfert is shared almost equally between the active nucleus and an extended 'starburst' disk. In an ongoing study, we are investigating the relative importance of the nucleus and the disk in powering the wide range of energetic activity observed throughout the galaxy. Our detailed analysis brings together a wealth of data: ROSAT HRI observations, VLA lambda lambda 6-20 cu cm and OVRO interferometry, lambda lambda 0.4-10.8 micron imaging, and Fabry-Perot spectrophotometry.

  6. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  7. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  8. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  9. One Kilogram Interstellar Colony Mission

    NASA Astrophysics Data System (ADS)

    Mole, A.

    Small interstellar colony probes based on nanotechnology will become possible long before giant multi-generation ships become affordable. A beam generator and magnetic sail can accelerate a one kg probe to .1 c, braking via the interstellar field can decelerate it, and the field in a distant solar system can allow it to maneuver to an extrasolar planet. A heat shield is used for landing and nanobots emerge to build ever-larger robots and construct colony infrastructure. Humans can then be generated from genomes stored as data in computer memory. Technology is evolving towards these capabilities and should reach the required level in fifty years. The plan appears to be affordable, with the principal cost being the beam generator, estimated at $17 billion.

  10. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1989-01-01

    Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.

  11. Cost considerations for interstellar missions

    NASA Astrophysics Data System (ADS)

    Andrews, Dana G.

    This paper examines the technical and economic feasibility of interstellar exploration. Three candidate interstellar propulsion systems are evaluated with respect to technical viability and compared on an estimated cost basis. Two of the systems, the laser-propelled lightsail (LPL) and the particle-beam propelled magsail (PBPM), appear to be technically feasible and capable supporting one-way probes to nearby star systems within the lifetime of the principal investigators, if enough energy is available. The third propulsion system, the antimatter rocket, requires additional proof of concept demonstrations before its feasibility can be evaluated. Computer simulations of the acceleration and deceleration interactions of LPL and PBPM were completed and spacecraft configurations optimized for minimum energy usage are noted. The optimum LPL transfers about ten percent of the laser beam energy into kinetic energy of the spacecraft while the optimum PBPM transfers about thirty percent. Since particle beam generators are roughly twice as energy efficient as large lasers, the PBPM propulsion system requires roughly one-sixth the busbar electrical energy a LPL system would require to launch an identical payload. The total beam energy requirement for an interstellar probe mission is roughly 10 20 joules, which would require the complete fissioning of one thousand tons of Uranium assuming thirty-five percent powerplant efficiency. This is roughly equivalent to a recurring cost per flight of 3.0 Billion dollars in reactor grade enriched uranium using today's prices. Therefore, interstellar flight is an expensive proposition, but not unaffordable, if the nonrecurring costs of building the powerplant can be minimized.

  12. Representing culture in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological

  13. Complex Organics in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Foing, B.; Ehrenfreund, P.; Ruiterkamp, R.; Cox, N.

    There are signatures of large organic molecules in the interstellar medium, from the ultraviolet to the infrared. Some infrared emission bands, which have been ascribed to families of large aromatic compounds are not specific for individual identification (and for discriminating free floating PAH molecules from loosely bound aromatics in amorphous carbon compounds). Red fluorescence and FUV absorption have also been ascribed to these aromatic compounds. Electronic transitions in the visible are a key to identify free gas phase molecules. The origin of Diffuse Interstellar Bands (Herbig 1995), more than 300 in recent surveys (O' Tuairisg et al 2000) is still a mystery. However the measurements of sub-structures rotational contours in DIBs (Ehrenfreund Foing 1996) indicate large molecules such as chains (12-18C), rings, 50 C PAHs or fullerenes. The distribution of DIB widths permit to estimate a distribution of size of molecular carriers. The environment properties of DIB carriers also indicate ionisation potentials similar to those of cations of large carbonaceous molecules, such as large PAHs or fullerenes (Sonnentrucker et al 1997). The correlation studies of DIBS also indicate different carriers for the strong DIBs observed in the visible (Cami et al 1997). DIBS are weakened in the in the low-metallicity Magellanic clouds (Ehrenfreund et al 2002, Cox et al 2004). The detection of near IR bands at 9577 and 9632 A coinciding with laboratory transitions of C60+ (Foing, Ehrenfreund 1994, 1997, Galatzudinov et al 2000 ) suggest that significant interstellar carbon could reside in complex fullerene type compounds. These results indicate that many different large and complex organic molecules can form and survive in the very harsh interstellar environments. A follow up interdisciplinary work is required between astronomical observations, laboratory matrix and gas phase spectroscopy, theoretical work and modelling, and active experiments in space to study the formation

  14. RUBIDIUM IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Walker, Kyle M.; Federman, S. R.; Knauth, David C.; Lambert, David L. E-mail: steven.federman@utoledo.ed E-mail: dll@astro.as.utexas.ed

    2009-11-20

    We present observations of interstellar rubidium toward o Per, zeta Per, AE Aur, HD 147889, chi Oph, zeta Oph, and 20 Aql. Theory suggests that stable {sup 85}Rb and long-lived {sup 87}Rb are produced predominantly by high-mass stars, through a combination of the weak s- and r-processes. The {sup 85}Rb/{sup 87}Rb ratio was determined from measurements of the Rb I line at 7800 A and was compared to the solar system meteoritic ratio of 2.59. Within 1sigma uncertainties, all directions except HD 147889 have Rb isotope ratios consistent with the solar system value. The ratio toward HD 147889 is much lower than the meteoritic value and similar to that toward rho Oph A; both lines of sight probe the Rho Ophiuchus Molecular Cloud. The earlier result was attributed to a deficit of r-processed {sup 85}Rb. Our larger sample suggests instead that {sup 87}Rb is enhanced in these two lines of sight. When the total elemental abundance of Rb is compared to the K elemental abundance, the interstellar Rb/K ratio is significantly lower than the meteoritic ratio for all the sight lines in this study. Available interstellar samples for other s- and r- process elements are used to help interpret these results.

  15. Experimental techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Powell, Robert L.

    2008-04-01

    This review discusses experimental techniques that provide an accurate spatial and temporal measurement of the fields used to describe multiphase systems for a wide range of concentrations, velocities, and chemical constituents. Five methods are discussed: magnetic resonance imaging (MRI), ultrasonic pulsed Doppler velocimetry (UPDV), electrical impedance tomography (EIT), x-ray radiography, and neutron radiography. All of the techniques are capable of measuring the distribution of solids in suspensions. The most versatile technique is MRI, which can be used for spatially resolved measurements of concentration, velocity, chemical constituents, and diffusivity. The ability to measure concentration allows for the study of sedimentation and shear-induced migration. One-dimensional and two-dimensional velocity profiles have been measured with suspensions, emulsions, and a range of other complex liquids. Chemical shift MRI can discriminate between different constituents in an emulsion where diffusivity measurements allow the particle size to be determined. UPDV is an alternative technique for velocity measurement. There are some limitations regarding the ability to map complex flow fields as a result of the attenuation of the ultrasonic wave in concentrated systems that have high viscosities or where multiple scattering effects may be present. When combined with measurements of the pressure drop, both MRI and UPDV can provide local values of viscosity in pipe flow. EIT is a low cost means of measuring concentration profiles and has been used to study shear-induced migration in pipe flow. Both x-ray and neutron radiographes are used to image structures in flowing suspensions, but both require highly specialized facilities.

  16. Multiphase modelling of mud volcanoes

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  17. Astrophysics. Volume 2 - Interstellar matter and galaxies

    NASA Astrophysics Data System (ADS)

    Bowers, Richard L.; Deeming, Terry

    The astrophysics of interstellar matter, galaxies, and cosmology is presented in an intermediate-level college textbook. Chapters are devoted to interstellar matter, interstellar dust grains, gaseous nebulae, hydrodynamics, the virial theorem, star formation, supersonic flow and shock waves, diffuse supernova remnants, the expanding universe, galaxies, dynamics of stellar systems, axially symmetric galaxies, spiral structure, and galactic evolution. Diagrams, graphs, photographs, and problems are provided.

  18. The Origin and Evolution of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Houches, Les

    2006-01-01

    In this lecture I will discuss the many different manifestation of interstellar dust, and current dust models that satisfy interstellar extinction, diffuse infrared emission, and interstellar abundances constraints. Dust is made predominantly in AGB stars and Type I1 supernovae, and I will present observational evidence for the presence of dust in these sources. I will then present chemical evolution models that follow the abundance of dust which is determined by the combined processes of formation, destruction by interstellar shock waves, and accretion in molecular clouds. The model will be applied to the evolution of PAHs and the evolution of dust in the high-redshift galaxy (z=6.42) JD11.

  19. Growth vs. Destruction of Interstellar Clouds in Hot Gas

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    The multi-phase interstellar medium (ISM) inherently bears the formation of interfaces between warm interstellar clouds and the hot, dilute gas phase that originates from supernova explosions. Physically the contact of the hot gas with a cool one at the surfaces of the clouds must lead to strong heat fluxes that tend to smear out the steep temperature discontinuity. The consequences of this heat conduction are manifold; two major effects are the following: firstly, it acts as a strong cooling agent of the hot gas, and secondly, the energy transport heats up the clouds and, depending on the physical state of the cloudy material, the cloud's surface evaporates or the cloud is able to get rid of the additional energy, cools, and accretes more surrounding gas. In order to investigate the possibilities mentioned above, we are performing 2D hydrodynamic simulations of molecular clouds in the flow of hot gas. Our models include self-gravity, heating and cooling effects and heat conduction by electrons. The thermal conductivity of a fully ionized hydrogen plasma is applied as well as a saturated heat flux in regions where the mean free path of the electrons is large compared to the temperature scaleheight. In this study the mass and size of the initial cloud and the density and temperature of the streaming ISM are varied. Comparison of the evaporation/condensation rates found for the different models with those predicted by Cowie & McKee (1977, ApJ 211, 135) shows significant differences: The numerical models reveal that condensation still occurs under circumstances where analytical results require the contrary. Consequences will be discussed.

  20. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  1. Effects of multiphase flow on corrosion inhibitor

    SciTech Connect

    Chen, Y.; Jepson, W.P.; Chen, H.J.

    1999-11-01

    This paper investigates the inhibition performance of a typical imidazoline based inhibitor under multiphase flow. Electrochemical impedance spectroscopy (EIS) measurements were carried out in a 101.6 mm I.D., 15 m long acrylic flow loop using ASTM substitute saltwater and carbon dioxide gas. This flow loop system can generate slug flow, fill pipe flow and other multiphase flow patterns. Effects of different flow conditions on inhibition performance of this typical inhibitor were examined. The system was maintained at a pressure of 0.136 MPa and a temperature of 40 C. EIS measurements for this inhibitor in a Rotating Cylinder Electrode (RCE) system were also conducted. Different equivalent circuit models were used to fit the experiment data for both the RCE and flow loop systems. The high shear stress and turbulence due to the mixing vortex and the bubble impact in multiphase flow can enhance the corrosion or reduce the inhibition performance of inhibitors.

  2. Lawrence Livermore National Laboratory capabilities in multiphase dynamics

    SciTech Connect

    McCallen, R.C.; Kang, Sang-Wook

    1996-04-09

    The computer codes at LLNL with capabilities for numerical analysis for multiphase flow; phenomenology and constitutive theory and modeling; advanced diagnostics, advanced test beds, facilities, and data bases; and multiphase flow applications are listed, with brief descriptions.

  3. Multiphase flow in wells and pipelines

    SciTech Connect

    Sharma, M.P. ); Rohatgi, U.S. )

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor.

  4. Deuterium enrichment of interstellar dusts

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  5. HERSCHEL OBSERVATIONS OF INTERSTELLAR CHLORONIUM

    SciTech Connect

    Neufeld, David A.; Indriolo, Nick; Roueff, Evelyne; Le Bourlot, Jacques; Le Petit, Franck; Snell, Ronald L.; Lis, Dariusz; Monje, Raquel; Phillips, Thomas G.; Benz, Arnold O.; Bruderer, Simon; Black, John H.; Larsson, Bengt; De Luca, Massimo; Gerin, Maryvonne; Goldsmith, Paul F.; Gupta, Harshal; Melnick, Gary J.; Menten, Karl M.; Nagy, Zsofia; and others

    2012-03-20

    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have observed para-chloronium (H{sub 2}Cl{sup +}) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight lines to the bright submillimeter continuum sources Sgr A (+50 km s{sup -1} cloud) and W31C. Both the para-H{sup 35}{sub 2}Cl{sup +} and para-H{sup 37}{sub 2}Cl{sup +} isotopologues were detected, through observations of their 1{sub 11}-0{sub 00} transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio (OPR) of 3, the observed optical depths imply that chloronium accounts for {approx}4%-12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed OPR of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of {approx}2 Multiplication-Sign 10{sup 13} cm{sup -2} and {approx}1.2 Multiplication-Sign 10{sup 13} cm{sup -2}, respectively, for chloronium in these two sources. We obtained upper limits on the para-H{sup 35}{sub 2}Cl{sup +} line strengths toward H{sub 2} Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor {approx}10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling.

  6. Probing the diffuse interstellar medium with diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib

    2015-08-01

    For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.

  7. A search for interstellar pyrimidine

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Yan, Chi-Hung; Charnley, Steven B.; Kisiel, Zbigniew; Ehrenfreund, Pascale; Huang, Hui-Chun

    2003-10-01

    We have searched three hot molecular cores for submillimetre emission from the nucleic acid building block pyrimidine. We obtain upper limits to the total pyrimidine (beam-averaged) column densities towards Sgr B2(N), Orion KL and W51 e1/e2 of 1.7 × 1014, 2.4 × 1014 and 3.4 × 1014 cm-2, respectively. The associated upper limits to the pyrimidine fractional abundances lie in the range (0.3-3) × 10-10. Implications of this result for interstellar organic chemistry, and for the prospects of detecting nitrogen heterocycles in general, are discussed briefly.

  8. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  9. A prelude to interstellar flight

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Norton, H. N.

    1980-01-01

    A 20 to 50 year interstellar precursor mission extending 400 to 1000 AU from the solar system is outlined as a means of bringing out and solving engineering problems inherent in a star mission, and of studying the heliopause, the interstellar medium, and cosmic rays outside the heliosphere. Solar or laser sailing combined with a 500 kWe nuclear-electric propulsion system using fission would achieve a heliocentric excess velocity of 100km/s for the 32,000 kg spacecraft having a Shuttle derivative as a launch vehicle, and containing a Pluto flyby or separate orbiter powered by radioiosotope thermoelectric generators. X-band transmission using 40 w of power, a 15 m diameter spacecraft antenna and a 100 m receiving antenna on earth and providing 100 b/s is proposed, but a rate of 2 to 4 kb/s via 500 to 1000 w of power using the K-band and a 300 m diameter receiving antenna located on an Orbiting Deep Space Relay Station is also considered.

  10. The cloudy state of interstellar matter

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1978-01-01

    The expression 'cloudy state' is used to describe the state of the diffuse interstellar matter, with emphasis on its denser and more opaque regions. Questions of morphology with respect to the Galaxy are examined, taking into account neutral hydrogen, molecular regions, H II regions, infrared sources and masers, coronal gas in the Galaxy, and the major components of the interstellar medium. Aspects of dynamics are also considered, giving attention to the two-phase interstellar medium, the three-phase interstellar medium, the density-wave compression of clouds, and problems related to the concept of collapsing clouds. Developments concerning chemistry are explored. Radioactive chronologies are discussed along with isotopic anomalies and aspects of interstellar chemistry.

  11. A Multiphase Model for the Intracluster Medium

    NASA Technical Reports Server (NTRS)

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  12. MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...

  13. Multi-Phase Driver Education Teaching Guide.

    ERIC Educational Resources Information Center

    Hurst-Euless-Bedford Independent School District, Hurst, TX.

    For use in planning and conducting functional multi-phase driver education programs, this teacher's guide consists of four phases of instruction: classroom activities, simulated application, in-car range practice, and in-car public practice. Contents are divided into three instructional sections, with the first combining the classroom activities…

  14. Multiphase Instabilities in Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''

    2015-11-01

    Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  15. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  16. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  17. Multiphase railgun systems - A new concept

    NASA Astrophysics Data System (ADS)

    Murthy, S. K.; Weldon, W. F.

    1993-01-01

    This paper investigates multiphase railguns powered by multiphase compulsators. The polyphase system offers several advantages over the single phase system. The multiphase compulsator relaxes the strong dependence between the current pulse width necessary for the railgun and the design parameters of the generator (number or poles, rotor diameter, and tip speed) thus allowing the compulsator to be designed for optimum power density and electromechanical energy conversion. The paper examines in particular the two, three and six phase systems. The authors also explore different methods of achieving high acceleration ratios in multiphase railgun systems. Some of the methods analyzed are ramping up the field current of the compulsator to counter the back electromotive force of the gun, utilizing a railgun with varying inductance per unit length (L'), and using an external variable inductor in series with the compulsator. The different features of each method are highlighted using simulation results. Special attention is devoted to the external series inductor method which uses a rotary flux compressor. Simulation results indicate an encouraging acceleration ratio of 0.7 for a muzzle energy of 9 MJ. A disk configuration is envisioned for the flux compressor.

  18. Cosmic ray sampling of a clumpy interstellar medium

    SciTech Connect

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S. III; Yoast-Hull, Tova M.

    2013-12-10

    How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.

  19. Multiphase reliability analysis of complex systems

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad S.; Tu, Fang; Pattipati, Krishna R.

    2003-08-01

    Modern industrial systems assume different configurations to accomplish multiple objectives during different phases of operation, and the component parameters may also vary from one phase to the next. Consequently, reliability evaluation of complex multi-phased systems is a vital and challenging issue. Maximization of mission reliability of a multi-phase system via optimal asset selection is another key demand; incorporation of optimization issues adds to the complexities of reliability evaluation processes. Introduction of components having self-diagnostics and self-recovery capabilities, along with increased complexity and phase-dependent configuration variations in network architectures, requires new approaches for reliability evaluation. This paper considers the problem of evaluating the reliability of a complex multi-phased system with self-recovery/fault-protection options. The reliability analysis is based on a colored digraph (i.e., multi-functional) model that subsumes fault trees and digraphs as special cases. These models enable system designers to decide on system architecture modifications and to determine the optimum levels of redundancy. A sum of disjoint products (SDP) approach is employed to compute system reliability. We also formulated the problem of optimal asset selection in a multi-phase system as one of maximizing the probability of mission success under random load profiles on components. Different methods (e.g., ordinal optimization, robust design, and nonparametric statistical testing) are explored to solve the problem. The resulting analytical expressions and the software tool are demonstrated on a generic programmable software-controlled switchgear, a data bus controller system and a multi-phase mission involving helicopters.

  20. Polarimetry of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The talk will review what is known about the composition of ices and organics in the dense and diffuse interstellar media (ISM). Mixed molecular ices make up a significant fraction of the solid materials in dense molecular clouds and it is now known that thermal and radiation processing of these ices results in the production of more complex organic species, some of which may survive transport into forming stellar systems and the diffuse ISM. Molecular species identified in interstellar ices include H2O, CH3OH, CO, CH4, CO2, and somewhat surprisingly, H2. Theoretical and laboratory studies of the processing of interstellar analog ices containing these species indicate that species like HCO, H2CO, CH3, and NH3 are readily made and should also be present. The irradiation of mixed molecular ices containing these species, when followed by warming, leads to the production of a large variety of more complex species, including ethanol (CH3CH2OH), formamide (HC(=O)NH2), acetamide (CH3C(=O)NH2), nitriles or isonitriles (R-CN or R-NC hexamethylenetetramine (HMT; C6H12N4), a number of polymeric species related to polyoxymethylene [POM,(-CH2O-)n], and ketones {R-C(=O)-R'}. Spectral studies of dust in the diffuse ISM indicate the presence of fairly complex organics, some of which may be related to the organics produced in dense molecular clouds. Spectral comparisons indicate that the diffuse ISM organics may be quite similar to meteoritic kerogens, i.e. they may consist largely of aromatic moieties interlinked by short aliphatic bridges. Interestingly, recent evidence indicates that the galactic distribution of this material closely matches that of silicates, but does not correlate directly with visual extinction. This implies that a large fraction of the visual extinction is caused by a material other than these organics and silicates and that this other material has a significantly different distribution within the galaxy.

  1. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  2. From interstellar dust to comets

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1989-01-01

    The bulk and microstructure of comet nuclei are derived from the morphological structure and chemical composition of submicron sized interstellar dust grains which have undergone cold aggregation in the pre-solar nebula. The evolutionary picture of dust which is emerging is a cyclic one in which the particles, before being destroyed or going into solar system bodies, find themselves during their 5 billion year lifetime alternately in diffuse clouds and in molecular clouds. A small silicate core captured within a molecular cloud accretes various ices and gradually builds up an inner mantle of organic refractory material which has been produced by photoprocessing of the volatile ices. Clumps of grains form, and then clumps of clumps, and so on, until finally we reach the size of the comet nucleus.

  3. Identification of interstellar methanol lines

    NASA Astrophysics Data System (ADS)

    Sutton, E. C.; Herbst, Eric

    1988-10-01

    The extended internal axis method Hamiltonian of Herbst et al. has been employed to study the rotational spectrum of methanol out to high values of the rotational quantum number J. For 12CH3OH the available laboratory data, consisting of 783 lines out to J = 22, have been fitted with a Hamiltonian containing 32 free parameters. For 13CH3OH a Hamiltonian with 23 free parameters is sufficient for fitting 455 lines, also out to J = 22. Frequency predictions based on these fits have permitted the identification of a number of previously unidentified interstellar lines from OMC-1. The majority of these are b-type R-branch transitions of 12CH3OH.

  4. Organic Model of Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Inagaki, T.; Kawabe, T.; Wada, K.

    1987-04-01

    Extinction efficiency of grains is calculated from the Mie formula on the premise that the grains are of organic composition. The optical constants adopted for the calculations are those of E. coli, polystyrene and bovine albumin. The grain radius a is assumed to obey a distribution of the form N(a) ∝ a-α and the value of α is chosen so as to make the calculated extinction curve match the observed interstellar extinction curve. Although the calculated curve gives a reasonably good fit to the observed extinction curve for wavelengths less than 2100 Å, at longer wavelength regions, agreement is poor. It is concluded that another component is required for the organic model to be viable.

  5. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  6. Discovery of Interstellar Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Zmuidzinas, Jonas; Schilke, Peter; Phillips, Thomas G.

    1997-01-01

    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2-1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of about 3 x 10 (exp -10) relative to H, If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for about 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus, the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (about 5 sigma) for an emission feature at the expected position of the 4(sub 32)-4(sub 23) 121.7219 micron line of water. The emission-line equivalent width of 0.5 mm for the water feature is consistent with the water abundance of 5 x 10(exp -6) relative to H, that has been inferred previously from observations of the hot core of Sgr B2.

  7. Discovery of Interstellar Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Zmuidzinas, Jonas; Schilke, Peter; Phillips, Thomas G.

    1997-01-01

    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2-1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of approximately 3 x 10(exp -10) relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for approximately 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus, the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (approximately 5 sigma) for an emission feature at the expected position of the 4(sub 32)-4(sub 23) 121.7219 micron line of water. The emission-line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5 x 10(exp -6) relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.

  8. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  9. Chemical abundances in cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Kaifu, Norio; Ohishi, Masatoshi

    1991-01-01

    Current tabulations are presented of the entire range of known interstellar molecules, giving attention to that subset which has been identified in the cold, dark interstellar clouds out of which the sun has been suggested to have formed. The molecular abundances of two such clouds, Taurus Molecular Cloud 1 and Lynd's 134N, exhibit prepossessing chemical differences despite considerable physical similarities. This discrepancy may be accounted for by the two clouds' differing evolutionary stages. Two novel classes of interstellar molecules are noted: sulfur-terminated carbon chains and silicon-terminated ones.

  10. Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX).

    PubMed

    McComas, D J; Allegrini, F; Bochsler, P; Bzowski, M; Christian, E R; Crew, G B; DeMajistre, R; Fahr, H; Fichtner, H; Frisch, P C; Funsten, H O; Fuselier, S A; Gloeckler, G; Gruntman, M; Heerikhuisen, J; Izmodenov, V; Janzen, P; Knappenberger, P; Krimigis, S; Kucharek, H; Lee, M; Livadiotis, G; Livi, S; MacDowall, R J; Mitchell, D; Möbius, E; Moore, T; Pogorelov, N V; Reisenfeld, D; Roelof, E; Saul, L; Schwadron, N A; Valek, P W; Vanderspek, R; Wurz, P; Zank, G P

    2009-11-13

    The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere. PMID:19833923

  11. Modelling the Hydrodynamics and Transport in Multiphase Microreactors

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs

    2015-11-01

    Multiphase flow is prevalent in a variety of industrial applications, but the extent of these processes is often limited by the innate mass transfer resistance across phase boundaries. Microscale multiphase systems, owing to their reduced characteristic length scales, increase specific interfacial areas and unique hydrodynamic patterns, can significantly enhance the rate of mass transfer, thereby improving the efficiency of multiphase processes. However, many uncertainties still remain in the prediction of multiphase hydrodynamics and scalar transport on the microscale, primarily due to the complex nature of the multiphase flow. In this work, to elucidate the mechanism of mass transfer enhancement in microscale multiphase flows, a computational fluid dynamic (CFD) model using the volume-of-fluid (VOF) method is developed, and the method is validated with experiments. By introducing a scalar transport equation with sink/source terms using the one-fluid formulation, we enable the simultaneous capturing of multi-phase hydrodynamics, mass transfer and reactions. In tandem with the numerical simulations, we also perform mass transfer analysis of multiphase flows based on the penetration theory and a two-stage theory, which further examines the mechanism of mixing enhancement in multiphase flow, and reveals a two-fold increase in mass transfer coefficients in the microreactors compared to conventional multiphase contactors.

  12. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  13. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  14. A Gallium multiphase equation of state

    SciTech Connect

    Crockett, Scott D; Greeff, Carl

    2009-01-01

    A new SESAME multiphase Gallium equation of state (EOS) has been developed. The equation of state includes three of the solid phases (Ga I, Ga II, Ga III) and a fluid phase (liquid/gas). The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniol data. We also explore the possibility of re-freezing via dynamic means such as isentropic and shock compression.

  15. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  16. Astrochemistry: Fullerene solves an interstellar puzzle

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Foing, Bernard

    2015-07-01

    Laboratory measurements confirm that a 'buckyball' ion is responsible for two near-infrared absorption features found in spectra of the interstellar medium, casting light on a century-old astrochemical mystery. See Letter p.322

  17. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  18. Deuterium Abundance in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Ferlet, R.; Gry, C.; Vidal-Madjar, A.

    1984-01-01

    The present situation of deuterium abundance evaluation in interstellar space is discussed, and it is shown that it should be or = .00001 by studying in more detail lambda the Sco line of sight and by observing two NaI interstellar components toward that star, it can be shown that the D/H evaluation made toward lambda Sco is in fact related to the local interstellar medium (less than 10 pc from the Sun). Because this evaluation is also or = .00001 it is in striking contrast with the one made toward alpha Aur (D/H or = .000018 confirming the fact that the deuterium abundance in the local interstellar medium varies by at least a factor of two over few parsecs.

  19. Interstellar and interplanetary solids in the laboratory

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Alata, I.; Engrand, C.; Brunetto, R.; Duprat, J.; Pinot, T.; Quirico, E.; Remusat, L.; Bardin, N.; Briani, G.; Mostefaoui, S.; Morinaud, G.; Crane, B.; Szwec, N.; Delauche, L.; Jamme, F.; Sandt, C.; Dumas, P.

    2015-01-01

    The composition of the interstellar matter is driven by environmental parameters (e.g. elemental abundance, density, reactant nature, radiations, temperature, time scales) and results also from external interstellar medium physico-chemical conditions. Astrochemists must rely on remote observations to monitor and analyze the com­position of interstellar solids. These observations give essentially access to the molecular functionality of the solids, rarely elemental composition constraints and isotopic fractionation only in the gas phase. Astrochemists bring additional information from the study of analogues produced in the laboratory, placed in simulated space environments. Planetologists and cosmochemists can have access and spectroscopically examine collected extra-terrestrial material directly in the laboratory. Observations of the diffuse interstellar medium (DISM) and molecular clouds (MC) set constraints on the composition of organic solids and large molecules, that! can then be compared with collected extraterrestrial materials analyses, to shed light on their possible links.

  20. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  1. Comets, interstellar clouds and star clusters

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1976-01-01

    The association of comets with star formation in clusters is elaborated. This hypothesis is also used to explain origin and evaluation of the Oort cloud, the composition of comets, and relationships between cometary and interstellar molecules.

  2. Interstellar material in the solar system

    NASA Technical Reports Server (NTRS)

    Wood, J. A.

    1986-01-01

    All the substance of the Earth and other terrestrial planets once existed in the form of interstellar grains and gas. A major aspect of solar system formation (and undoubtedly of star formation generally) is the complex series of processes that converted infalling interstellar grains into planets. A cryptic record of these processes is preserved in certain samples of planetary materials, such as chondritic meteorites, that were preserved in a relatively unchanged form since the beginning. It is to be expected that some of these primitive materials might contain or even consist of preserved presolar interstellar grains. The identification and study of such grains, the ancestors of our planetary system, is a matter of intense interest. Types of primitive material accessible or potentially accessible, and component of or relationship to presolar interstellar grains are discussed.

  3. Multiphase booster ups production from subsea well

    SciTech Connect

    1995-05-01

    The Rogn South subsea well has the world`s first commercial subsea multiphase boosting system. The well produces to A/S Norske Shell`s Draugen field, in the Norwegian Sea. The Smubs (Shell multiphase underwater booster station) provides additional energy to transport a mixture of gas and liquids over long distances. This reduces the back pressure on the reservoir to potentially enhance both production and recovery. In-house Shell International Petroleum Maatschappij B.V. (SIPM) has studied estimated facility costs and performance for a multiphase boosting system for a typical small (50 million bbl) field between 20--50 km from a host facility in water depths between 150--1,000 m. The studies showed that technical costs per barrel of oil produced could be cut by up to 30% compared to conventional technology. The Smubs main features are: A single retrievable cartridge that houses all active components susceptible to wear; No orientation requirements for the pump cartridge unit; No orientation requirements for the pump cartridge unit; Hydraulically set and tested seals; and Vertical installation and retrieval with a single tool, and a remotely operated vehicle (ROV) only for a monitoring.

  4. Observations of interstellar Ne at 1 AU

    NASA Astrophysics Data System (ADS)

    Drews, Christian; Berger, Lars; Wimmer-Schweingruber, Robert F.; Galvin, Antoinette B.; Klecker, Berndt; Möbius, Eberhard

    2010-05-01

    Interstellar pickup ions are produced by ionization of interstellar neutral atoms which can penetrate the heliosphere unimpeded through the heliopause. The relative motion of the interstellar medium in respect to the heliosphere causes them to drift towards the sun with v=26km/s where they are gradually ionized by solar radiation and charge exchange with solar protons. Once ionized, the new born ions are "picked up" by the solar wind magnetic field and carried outwards. Accordingly interstellar neutrals of high First Ionization Potentials (FIP) or rather low ionization probability, e.g. helium and neon, are not significantly depleted in the vicinity of the sun and can be observed by spacecraft like STEREO A and B. Signatures of other pickup ions, e.g. carbon, nitrogen, and oxygen must be due to an inner source because corresponding interstellar neutrals are ionized much further away from the sun. Processes which could lead to an inner source of pickup ions are not fully understood but are possibly connected to re-ionization of neutralized solar wind ions that are trapped in small dust particles orbiting the sun. Associated with the different source regions of interstellar and inner-source PUIs is the formation of the so-called focusing cone. Due to solar gravitation interstellar atoms are focused behind the sun in respect to the direction from which they arrived. This focusing effect can be (and has been) observed for He+ in form of an enhanced pickup He+ flux once a year for an earth-bound spacecraft and every 346 and 388 days for STEREO A and B respectively. On the contrary focusing of inner-source pickup ions is not observed nor expected due to their lower FIP. STEREO PLASTIC's big geometric factor and the current unusual prolonged solar minimum allows for the first time investigation of these rare pickup ions with unprecedented quality. Within the framework of our analysis we were able to identify signatures of inner-source carbon, nitrogen, and oxygen as well

  5. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  6. The Diffuse Interstellar Bands: Contributed papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor)

    1994-01-01

    Drawing a coherent picture of the observational characteristics of the Diffuse Interstellar Bands (DIB's) and the physical and chemical properties of its proposed carriers was the focus of this NASA sponsored conference. Information relating to absoption spectra, diffuse radiation carriers, carbon compounds, stellar composition, and interstellar extinction involving T-Tauri stars, Reflection Nebulae, Red Giants, and accretion discs are discussed from those papers presented at the conference, which are included in this analytic.

  7. Cosmic ray studies with an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.

    1990-01-01

    Among the NASA mission concepts that have been suggested for the 21st century is an Interstellar Probe that might be accelerated to a velocity of about 10 to 20 AU/yr, allowing it to leave the heliosphere, ultimately reaching a radial distance of about 500 to 1000 AU in about 50 years. Previous studies of such a mission, and its potential significance for cosmic ray studies, both within the heliosphere, and beyond, in interstellar space are discussed.

  8. The interstellar gas experiment: Analysis in progress

    NASA Technical Reports Server (NTRS)

    Buehler, F.; Lind, D. L.; Geiss, J.; Eugster, O.

    1992-01-01

    The interstellar gas experiment (IGE) exposed thin metallic foils in order to collect neutral interstellar particles which penetrate the solar system due to their motion relative to the sun. These atoms were entrapped in the collecting foils along with precipitating magnetospheric ions and with ambient atmospheric atoms. For the entire duration of the LDEF mission, seven of the foils collected particles arriving from seven different directions as seen from the spacecraft. In the mass spectrometric analysis of the trapped noble gas component, we detected the He-3, He-4, Ne-20, and Ne-22 isotopes. In order to infer the isotopic ratios in the interstellar medium from the measured concentrations found in the foil piece, several lines of investigation had to be initiated. The flux of incident noble gas atoms from the ambient atmosphere was estimated by detailed calculations. The contributions proved to be negligible, supporting the experimental evidence. Foil and machine backgrounds for the four isotopes which were measured had to be assessed individually. While this was easy for He-4, spurious foil background of He-3 had to be monitored carefully by analyzing unflown foil pieces. Trapped Ne concentrations are not far above the background. During the flight, a stuck electrical relay precluded the foil-trays from sequencing as designed. Therefore, we could not use the seasonal variation of the direction of the incoming interstellar atoms to make the distinction between interstellar and magnetospheric components of the trapped particles. Instead, we had to try the method of stepwise heating to extract the interstellar component at lower temperatures than we use to extract the magnetospheric component (the interstellars hit the foil with lower energies than most of the magnetospherics). New limiting values for the isotopic composition of the interstellar medium, unavailable yet from any other method of measurement, are emerging from this analysis.

  9. O VI IN THE LOCAL INTERSTELLAR MEDIUM

    SciTech Connect

    Barstow, M. A.; Boyce, D. D.; Barstow, J. K.; Forbes, A. E.; Preval, S.; Welsh, B. Y.; Lallement, R.

    2010-11-10

    We report the results of a search for O VI absorption in the spectra of 80 hot DA white dwarfs observed by the FUSE satellite. We have carried out a detailed analysis of the radial velocities of interstellar and (where present) stellar absorption lines for the entire sample of stars. In approximately 35% of cases (where photospheric material is detected), the velocity differences between the interstellar and photospheric components were beneath the resolution of the FUSE spectrographs. Therefore, in 65% of these stars the interstellar and photospheric contributions could be separated and the nature of the O VI component unambiguously determined. Furthermore, in other examples, where the spectra were of a high signal-to-noise, no photospheric material was found and any O VI detected was assumed to be interstellar. Building on the earlier work of Oegerle et al. and Savage and Lehner, we have increased the number of detections of interstellar O VI and, for the first time, compared their locations with both the soft X-ray background emission and new detailed maps of the distribution of neutral gas within the local interstellar medium. We find no strong evidence to support a spatial correlation between O VI and SXRB emission. In all but a few cases, the interstellar O VI was located at or beyond the boundaries of the local cavity. Hence, any T {approx} 300,000 K gas responsible for the O VI absorption may reside at the interface between the cavity and surrounding medium or in that medium itself. Consequently, it appears that there is much less O VI-bearing gas than previously stated within the inner rarefied regions of the local interstellar cavity.

  10. A new interstellar molecule - Tricarbon monoxide

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Irvine, W. M.; Friberg, P.; Brown, R. D.; Godfrey, P. D.

    1984-01-01

    The C3O molecule, whose pure rotational spectrum has only recently been studied in the laboratory, has been detected in the cold, dark interstellar Taurus Molecular Cloud 1. Since C3O is the first interstelar carbon chain molecule to contain oxygen, its existence places an important new constraint on chemical schemes for cold interstellar clouds. The abundance of C3O can be understood in terms of purely gas-phase ion-molecule chemistry.

  11. Reaction dynamics and the interstellar environment

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1973-01-01

    Following a brief outline of the 'normal' equilibrium reaction rate laws, the theme of thermal disequilibrium in interstellar space and the related topic of detailed rate constants are more extensively discussed. Comment is made concerning the two principal techniques that are currently being used to explore the dynamical details of an increasing range of chemical reactions in the laboratory, since it is considered that these techniques suggest ways in which the understanding of the chemistry of interstellar space may be extended.

  12. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  13. A Heliosphere Buffeted by Interstellar Turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Giacalone, J.

    2014-12-01

    Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480

  14. Topics in the physics of interstellar clouds

    SciTech Connect

    Roberge, W.G.

    1981-01-01

    Physical and chemical processes in interstellar clouds are discussed in six papers. In Collision-Induced Dissociation of H/sub 2/ and CO Molecules, the destruction of molecular hydrogen and carbon monoxide in shock-heated clouds is examined. Below a certain density n., radiative stabilization greatly reduces the dissociation rates with substantial consequences for the thermal and chemical evolution of the shocked gas. In The Penetration of Diffuse Ultraviolet Radiation into Interstellar Clouds, it is shown that the solution of the radiative transfer equation for coherent, nonconservative, anisotropic scattering of photons of dust grains can be expressed analytically, with arbitrary accuracy, by means of the spherical harmonics method. In Photoionization and Photodissociation in Diffuse Interstellar Clouds, this method is used to explore the dependence of photodestruction rates inside diffuse, plane parallel clouds to assumptions about the grain scattering properties. In The Calculation of Steady State Models of Diffuse Interstellar Clouds, a model of the xi Ophiuchi cloud is calculated including an accurate treatment of line and continuum radiative transfer. The abundances of certain molecules, including H/sub 2/ and OH, are sensitive to the radiative transfer calculation and models of diffuse clouds calculated with approximate treatments of radiative transfer may require substantial revision. In Cooling by C/sup +/ Ions in Interstellar Clouds, processes that determine the production and propagation of cooling radiation are examined and their effects on cooling rates in interstellar clouds are discussed.

  15. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  16. Interstellar grain chemistry and organic molecules

    NASA Astrophysics Data System (ADS)

    Allamandola, L. J.; Sandford, S. A.

    1990-04-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  17. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Cohen, M.; Tielens, Alexander G. G. M.; Allamandola, Louis J.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  18. The hydrogen coverage of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Barker, J. R.; Cohen, M.

    1987-01-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments.

  19. Characterization of Interstellar Organic Molecules

    SciTech Connect

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-11-06

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  20. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  1. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D

  2. Local turbulence simulations for the multiphase ISM

    NASA Astrophysics Data System (ADS)

    Kissmann, R.; Kleimann, J.; Fichtner, H.; Grauer, R.

    2008-12-01

    In this paper, we show results of numerical simulations for the turbulence in the interstellar medium (ISM). These results were obtained using a Riemann solver-free numerical scheme for high-Mach number hyperbolic equations. Here, we especially concentrate on the physical properties of the ISM. That is, we do not present turbulence simulations trimmed to be applicable to the ISM. The simulations are rather based on physical estimates for the relevant parameters of the interstellar gas. Applying our code to simulate the turbulent plasma motion within a typical interstellar molecular cloud, we investigate the influence of different equations of state (isothermal and adiabatic) on the statistical properties of the resulting turbulent structures. We find slightly different density power spectra and dispersion maps, while both cases yield qualitatively similar dissipative structures, and exhibit a departure from the classical Kolmogorov case towards a scaling described by the She-Leveque model. Solving the full energy equation with realistic heating/cooling terms appropriate for the diffuse interstellar gas (DIG), we are able to reproduce a realistic two-phase distribution of cold and warm plasma. When extracting maps of polarized intensity from our simulation data, we find encouraging similarity to actual observations. Finally, we compare the actual magnetic field strength of our simulations to its value inferred from the rotation measure. We find these to be systematically different by a factor of about 1.15, thus highlighting the often-underestimated influence of varying line-of-sight particle densities on the magnetic field strength derived from observed rotation measures.

  3. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  4. Molecular Spectroscopy in Astrophysics: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.

  5. Organic chemistry and biology of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  6. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  7. Supernova-driven interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Joung, M. K. Ryan

    To study how supernova feedback structures the turbulent interstellar medium, we construct 3D models of vertically stratified gas stirred by discrete supernova explosions, including vertical gravitational field and parametrized heating and cooling. The models reproduce many observed characteristics of the Galaxy such as global circulation of gas (i.e., galactic fountain) and the existence of cold dense clouds in the galactic disk. Global quantities of the model such as warm and hot gas filling factors in the midplane, mass fraction of thermally unstable gas, and the averaged vertical density profile are compared directly with existing observations, and shown to be broadly consistent. We find that energy injection occurs over a broad range of scales. There is no single effective driving scale, unlike the usual assumption for idealized models of incompressible turbulence. However, >90% of the total kinetic energy is contained in wavelengths shortward of 200 pc. The shape of the kinetic energy spectrum differs substantially from that of the velocity power spectrum, which implies that the velocity structure varies with the gas density. Velocity structure functions demonstrate that the phenomenological theory proposed by Boldyrev is applicable to the medium. We show that it can be misleading to predict physical properties such as the stellar initial mass junction based on numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. Supernova-driven turbulence inhibits star formation globally rather than triggering it. Feedback from massive stars is perhaps the least understood aspect of the current scenario of large-scale structure formation. Many recent observations on both galactic and cosmological scales require

  8. Discovery of Interstellar Heavy Water

    NASA Astrophysics Data System (ADS)

    Butner, H. M.; Charnley, S. B.; Ceccarelli, C.; Rodgers, S. D.; Pardo, J. R.; Parise, B.; Cernicharo, J.; Davis, G. R.

    2007-04-01

    We report the discovery of doubly deuterated water (D2O, heavy water) in the interstellar medium. Using the James Clerk Maxwell Telescope and the Caltech Submillimeter Observatory 10 m telescope, we detected the 110-101 transition of para-D2O at 316.7998 GHz in both absorption and emission toward the protostellar binary system IRAS 16293-2422. Assuming that the D2O exists primarily in the warm regions where water ices have been evaporated (i.e., in a ``hot corino'' environment), we determine a total column density of N(D2O) of 1.0×1013 cm-2 and a fractional abundance of D2O/H2=1.7×10-10. The derived column density ratios for IRAS 16293-2422 are D2O/HDO=1.7×10-3 and D2O/H2O=5×10-5 for the hot corino gas. Steady state models of water ice formation, either in the gas phase or on grains, predict D2O/HDO ratios that are about 4 times larger than that derived from our observations. For water formation on grain surfaces to be a viable explanation, a larger H2O abundance than that measured in IRAS 16293-2422 is required. Alternatively, the observed D2O/HDO ratio could be indicative of gas-phase water chemistry prior to a chemical steady state being attained, such as would have occurred during the formation of this source. Future observations with the Herschel Space Observatory satellite will be important for settling this issue.

  9. Excitation of interstellar hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Neufild, David A.; Green, Sheldon

    1994-01-01

    We have computed new rate coefficients for the collisional excitation of HCl by He, in the close-coupled formalism and using an interaction potential determined recently by Willey, Choong, & DeLucia. Results have been obtained for temperatures between 10 K and 300 K. With the use of the infinite order sudden approximation, we have derived approximate expressions of general applicability which may be used to estimate how the rate constant for a transition (J to J prime) is apportioned among the various hyperfine states F prime of the final state J prime. Using these new rate coefficients, we have obtained predictions for the HCl rotational line strengths expected from a dense clump of interstellar gas, as a function of the HCl fractional abundance. Over a wide range of HCl abundances, we have found that the line luminosities are proportional to abundance(exp 2/3), a general result which can be explained using a simple analytical approximation. Our model for the excitation of HCl within a dense molecular cloud core indicates that the J = 1 goes to 0 line strengths measured by Blake, Keene, & Phillips toward the Orion Molecular Cloud (OMC-1) imply a fractional abundance n(HCl)/n(H2) approximately 2 x 10(exp -9), a value which amounts to only approximately 0.3% of the cosmic abundance of chlorine nuclei. Given a fractional abundance of 2 x 10(exp -9), the contribution of HCl emission to the total radiative cooling of a dense clump is small. For Orion, we predict a flux approximately 10(exp -19) W/sq cm for the HCl J = 3 goes to 2 line near 159.8 micrometers, suggesting that the strength of this line could be measured using the Infrared Space Observatory.

  10. Modelling galaxies with a 3d multi-phase ISM

    NASA Astrophysics Data System (ADS)

    Harfst, S.; Theis, Ch.; Hensler, G.

    2006-04-01

    We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We include star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions, and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag, and energy dissipation. The last is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback that include a consistent calculation of the star-formation efficiency (SFE) based on ISM properties, as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is strongly variable locally depending on the local SF and stellar feedback. We start only with two distinct phases, but a three-phase ISM is formed soon and consists of cold molecular clouds, a warm gas disk, and a hot gaseous halo. Hot gas is also found in bubbles in the disk accompanied by type II supernovae explosions. The volume-filling factor of the hot gas in the disk is 35%. The mass spectrum of the clouds follows a power-law with an index of α ≈ -2. The star-formation rate (SFR) is 1.6 M⊙ yr-1 on average, decreasing slowly with time due to gas consumption. In order to maintain a constant SFR, gas replenishment, e.g. by infall, of the order 1 M⊙ yr-1 is required. Our model is in fair agreement with Kennicutt's (1998, ApJ, 498, 541) SF law including the cut-off at 10 M⊙ pc-2. Models with a constant SFE, i.e. no feedback on the SF, fail to reproduce Kennicutt's law. We performed a parameter study varying the particle resolution, feedback energy, cloud radius, SF time scale, and metallicity. In most these cases the evolution

  11. The Organic Component of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne

    2003-01-01

    The distribution, chemical structure, and formation of organic matter in the interstellar medium are important to our understanding of the overall evolution of dust. The exchange of dust between the dense and diffuse interstellar medium, and the effects of processing on dust within dense clouds will affect the inventory of material available for incorporation into newly forming star and planetary systems. Observational ground-based studies have confirmed the widespread distribution of the 3.4 pm absorption band attributed to aliphatic hydrocarbons in the diffuse interstellar medium of our own galaxy, and in the dusty spectra of a few nearby galaxies, while space based observations from IS0 probed the signatures of corresponding mid-infrared features. Laboratory experiments which utilize both thermal processes and energetic processing by high energy photons and cosmic rays, produce candidate materials which offer close matches to the observed diffuse interstellar medium and extragalactic hydrocarbon absorption features. Through an analysis of the 4000 to 1000 cm (2.5 to 10 micrometers) region of the spectrum of diffuse interstellar medium (DISM) dust compared with the spectra of thirteen chemical entities produced in the laboratory which serve as analogs to the interstellar material, significant constraints have been placed on the applicability of proposed candidate materials to explain the interstellar features. The results indicate that the organic refractory material in the diffuse interstellar medium is predominantly hydrocarbon in nature, possessing little nitrogen or oxygen, with the carbon distributed between the aromatic and aliphatic forms. Long alkane chains H3C-(CH2),- with n much greater than 4 or 5 are not major constituents of this material. Comparisons to laboratory analogs indicate the DISM organic material resembles plasma processed pure hydrocarbon residues much more so than energetically processed ice residues. This result is consistent with a

  12. Nonisothermal multiphase subsurface transport on parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-10-01

    We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

  13. The Marker Conservation Law in Multiphase Systems

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek; Wędrychowicz, Stanisław; Skibiński, Wojciech

    2016-02-01

    The knowledge of the fundamental understanding such as composition-structure-mechanical property relationships caused by Kirkendall effect is in progress and is used to optimize mechanical properties of materials. In this paper the multiphase systems with low non-stoichiometry are discussed. It is shown that in such systems the drift velocity can be approximated as constant in each phase and determined by Wagner's integral diffusivity. In this paper the binary in Ni-Ti alloy is discussed; however, the method can be applied to multicomponent systems. The results of the calculations are compared with experimental data.

  14. The Interstellar Medium Surrounding the Sun

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla C.; Redfield, Seth; Slavin, Jonathan D.

    2011-09-01

    The Solar System is embedded in a flow of low-density, warm, and partially ionized interstellar material that has been sampled directly by in situ measurements of interstellar neutral gas and dust in the heliosphere. Absorption line data reveal that this interstellar gas is part of a larger cluster of local interstellar clouds, which is spatially and kinematically divided into additional small-scale structures indicating ongoing interactions. An origin for the clouds that is related to star formation in the Scorpius-Centaurus OB association is suggested by the dynamic characteristics of the flow. Variable depletions observed within the local interstellar medium (ISM) suggest an inhomogeneous Galactic environment, with shocks that destroy grains in some regions. Although photoionization models of the circumheliospheric ISM do an excellent job of reproducing the observed properties of the surrounding ISM, the unknown characteristics of the very low-density hot plasma filling the Local Bubble introduces uncertainty about the source of ionization and nature of cloud boundaries. Recent observations of small cold clouds provide new insight into the processes affecting the local ISM. A fuller understanding of the local ISM can provide insights into the past and future Galactic environment of the Sun, and deeper knowledge of the astrospheres of nearby stars.

  15. Prospective of Photon Propulsion for Interstellar Flight

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.

  16. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars). PMID:25467771

  17. A Laboratory Route to Interstellar Ice

    NASA Astrophysics Data System (ADS)

    van Broekhuizen, Fleur Antoinette

    2005-06-01

    The formation of snow and ice has always intrigued humans and challenged them to study these phenomena. Every snowflake has its own unique history of formation, but no two are alike. Like snow-crystals, interstellar ices consist predominantly of water (H2O), but also contain significant fractions of other molecules such as carbon monoxide (CO), carbon dioxide (CO2), and methanol (CH3OH), and traces of dinitrogen (N2) and ammonia (NH3). The presence, or absence, of a molecule in the ice strongly depends on the environmental conditions. Vice versa, these molecules have an influence on their environment as well. Hence, the chemical composition and the structure of interstellar ices are thought to contain valuable information about the past and the future of interstellar regions, and it is for this reason that interstellar ices are simulated and studied under laboratory conditions. The present thesis contains a study of laboratory analogs of interstellar ices and presents a newly developed apparatus that provides a novel laboratory route to investigate the properties of these ices in more detail than has previously been possible.

  18. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  19. Innovative Interstellar Explorer (I2E)

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Gold, R. E.; Krimigis, T.; Roelof, E. C.; Gruntman, M.; Gloeckler, G.; Koehn, P. L.; Kurth, W. S.; Oleson, S. R.; Fiehler, D. I.; Horanyi, M.; Mewaldt, R. A.; Leary, J. C.; Anderson, B. J.

    2005-12-01

    An interstellar "precursor" mission has been under discussion in the scientific community for almost 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium and the nature of the very local interstellar medium (VLISM) itself can only be answered with the in situ measurements from a probe penetrating into interstellar space. The problem is the development of a probe that can provide the required measurements and can reach a heliocentric distance of at least 200 astronomical units (AU) in a "reasonable" time. High-performance radioisotope power systems (RPSs) are enabling for our approach: The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA "Vision Mission" grant. Speed is provided by a combination of a high-energy launch, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by a kilowatt-class ion thruster running off electricity provided by an RPS. Such an approach relies upon known technology for most subsystems and upon current launch vehicles for speed. A payload of nine instruments with an aggregate mass of about 35 kg and requiring 30 W has been carefully chosen to address the compelling science questions. We describe the mission and system that can reach 200 AU in a 30-year flight time.

  20. Communicating Concepts about Altruism in Interstellar Messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2002-01-01

    This project identifies key principles of altruism that can be translated into interstellar messages for communication with extraterrestrial intelligence. The message contents will focus specifically on the evolution of altruism, drawing on recent insights in evolutionary biology, with particular emphasis on sociobiological accounts of kin selection and reciprocal altruism. This focus on altruism for message contents has several advantages. First, the subject can be translated into interstellar messages both via an existing formal interstellar language and via pictorial messages. For example, aspects of reciprocal altruism can be described through mathematical modeling, such as game theoretic approaches, which in turn can be described readily in the interstellar language Lincos. Second, concentrating on altruism as a message content may facilitate communications with extraterrestrial intelligence. Some scientists have argued that humans may be expected to communicate something about their moral status and development in an exchange with extraterrestrials. One of the most salient ways that terrestrial and extraterrestrial civilizations might be expected to evaluate one another is in terms of ethical motivations. Indeed, current search strategies assume some measure of altruism on the part of transmitting civilizations; with no guarantee of a response, the other civilization would be providing information to us with no direct payoff. Thus, concepts about altruism provide an appropriate content for interstellar messages, because the concepts themselves might be understood by extraterrestrial civilizations.

  1. Positron annihilation in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  2. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  3. PAH in the laboratory and interstellar space

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium.

  4. Long-Term Perspectives on Interstellar Flight

    NASA Astrophysics Data System (ADS)

    Michaud, M. A. G.

    Realizing interstellar travel by machines or living beings will require not only scientific and technological progress, but also a shared secular belief among a determined minority that this enterprise is important for the human future. Their efforts may have to extend beyond individual human lifetimes. Historical perspectives, on both the past and the future, are proposed. Interstellar probes could be a more thorough way of searching for alien forms of life and intelligence in nearby systems, particularly if there were intelligent beings there who did not employ technologies our astronomical observing devices can detect from here. Perspectives on the ethical, policy, and design issues of such close encounters with alien life and intelligence are presented. Ways of accelerating the coming of interstellar probes are suggested.

  5. Oscillatory multiphase flow strategy for chemistry and biology.

    PubMed

    Abolhasani, Milad; Jensen, Klavs F

    2016-07-19

    Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities. PMID:27397146

  6. Lagrangian particle model for multiphase flows

    SciTech Connect

    Tartakovsky, Alexandre M.; Ferris, Kim F.; Meakin, Paul

    2009-10-01

    A Lagrangian particle model for multiphase multicomponent fluid flow, based on smoothed particle hydrodynamics (SPH), was developed and used to simulate the flow of an emulsion consisting of bubbles of a non-wetting liquid surrounded by a wetting liquid. In SPH simulations, fluids are represented by sets of particles that are used as discretization points to solve the Navier-Stokes fluid dynamics equations. In the multiphase multicomponent SPH model, a modified van der Waals equation of state is used to close the system of flow equations. The combination of the momentum conservation equation with the van der Waals equation of state results in a particle equation of motion in which the total force acting on each particle consists of many-body repulsive and viscous forces, two-body (particle-particle) attractive forces, and body forces such as gravitational forces. Similarly to molecular dynamics, for a given fluid component the combination of repulsive and attractive forces causes a phase separation. The surface tension at liquid-liquid interfaces is imposed through component dependent attractive forces. The wetting behavior of the fluids is controlled by phase dependent attractive interactions between the fluid particles and stationary particles that represent the solid phase. The dynamics of fluids away from interface is governed by purely hydrodynamic forces. Comparison with analytical solutions for static conditions and relatively simple flows demonstrates the accuracy of the SPH model.

  7. Multiphase complete exchange: A theoretical analysis

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Complete Exchange requires each of N processors to send a unique message to each of the remaining N-1 processors. For a circuit switched hypercube with N = 2(sub d) processors, the Direct and Standard algorithms for Complete Exchange are optimal for very large and very small message sizes, respectively. For intermediate sizes, a hybrid Multiphase algorithm is better. This carries out Direct exchanges on a set of subcubes whose dimensions are a partition of the integer d. The best such algorithm for a given message size m could hitherto only be found by enumerating all partitions of d. The Multiphase algorithm is analyzed assuming a high performance communication network. It is proved that only algorithms corresponding to equipartitions of d (partitions in which the maximum and minimum elements differ by at most 1) can possibly be optimal. The run times of these algorithms plotted against m form a hull of optimality. It is proved that, although there is an exponential number of partitions, (1) the number of faces on this hull is Theta(square root of d), (2) the hull can be found in theta(square root of d) time, and (3) once it has been found, the optimal algorithm for any given m can be found in Theta(log d) time. These results provide a very fast technique for minimizing communication overhead in many important applications, such as matrix transpose, Fast Fourier transform, and ADI.

  8. Multiphasic Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  9. Multiphase equation of state for iron

    SciTech Connect

    Kerley, G I

    1993-02-01

    The PANDA code is used to build a multiphase equation of state (EOS) table for iron. Separate EOS tables were first constructed for each of the individual phases. The phase diagram and multiphase EOS were then determined from the Helmholtz free energies. The model includes four solid phases ([alpha],[gamma], [delta], and [var epsilon]) and a fluid phase (including the liquid, vapor, and supercritical regions). The model gives good agreement with experimental thermophysical data, static compression data, phase boundaries, and shock-wave measurements. Contributions from thermal electronic excitation, computed from a quantum-statistical-mechanical model, were found to be very important. This EOS covers a wide range of densities (0--1000 g/cm[sup 3]) and temperatures (0--1.2[times]10[sup 7] K). It is also applicable to RHA steel. The new EOS is used in hydrocode simulations of plate impact experiments, a nylon ball impact on steel, and the shaped charge perforation of an RHA plate. The new EOS table can be accessed through the SNL-SESAME library as material number 2150.

  10. On an Interstellar Origin for N-15 Fractionation in Meteorites

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Rodgers, S. D.

    2001-01-01

    We have shown that interstellar chemistry could produce much larger N-15/N-14 fractionation in specific interstellar molecules than previously thought. Additional information is contained in the original extended abstract.

  11. Interstellar Travel. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning travel between the stars. Topics include cost considerations, hyperspace navigation, exploration, and propulsion systems for vehicles to be used in interstellar travel. Human factor issues and social aspects of interstellar travel are also discussed.

  12. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  13. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  14. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  15. Radio searches for additional interstellar molecules

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Suenram, R. D.; Lovas, F. J.; Snyder, L. E.

    1983-01-01

    Observations in the 2-mm wavelength range are reported which yield new interstellar molecular transitions of NH2CHO, SO2, H2CCO, U150820.5, and U150850.0 toward Sgr B2, and SO2, CH2CHCN, HCOOCH3, and U153513.0 toward Orion A. The first interstellar searches for HOCl, CH3CH2CCH, and CH3SiH3 were conducted, but these species were not detected. During these observations limits were also obtained on 2-mm wave transitions of N2O and NaOH toward several galactic sources of molecular emission.

  16. Chemical abundances in cold, dark interstellar clouds.

    PubMed

    Irvine, W M; Ohishi, M; Kaifu, N

    1991-05-01

    The Sun may well have formed in the type of interstellar cloud currently referred to as a cold, dark cloud. We present current tabulations of the totality of known interstellar molecules and of the subset which have been identified in cold clouds. Molecular abundances are given for two such clouds which show interesting chemical differences in spite of strong physical similarities, Taurus Molecular Cloud 1 (TMC-1) and Lynd's 134N (L134N, also referred to as L183). These regions may be at different evolutionary stages. PMID:11542208

  17. Indirect observation of unobservable interstellar molecules

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Green, S.; Thaddeus, P.; Klemperer, W.

    1977-01-01

    It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described.

  18. The Light Cage Limit to Interstellar Expansion

    NASA Astrophysics Data System (ADS)

    McInnes, C. R.

    It has long been argued that an advanced space-faring civilisation must be gradualists who evolve and migrate within the limits imposed by resources and whose culture avoids conflict and exploitation. However, it is argued here that a relatively young civilisation which develops a set of technologies which enable it to engage in economic interstellar travel is unlikely to constrain its activities in this way and will experience rapid economic expansion and growth. In such a scenario the speed of light imposes a fundamental limit to the distance over which the civilisation can expand, providing a possible mechanism whereby interstellar expansion is self-limiting and possibly self-terminating.

  19. Newly detected molecules in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Ziurys, L. M.; Avery, L. W.; Matthews, H. E.; Friberg, P.

    1988-01-01

    The last year or so has seen the identification of several new interstellar molecules, including C2S, C3S, C5H, C6H, and (probably) HC2CHO in the cold, dark cloud TMC-1, and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion 'plateau' source. Further interesting results include the observations of (C-13))3H2 and C3HD, and the first detection of HCOOH (formic acid) in a (C-13)3H2 cold cloud.

  20. The size distribution of interstellar grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.

    1987-01-01

    Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.

  1. Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1979-01-01

    Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.

  2. Multiphase flows with digital and traditional microfluidics

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.

    Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how

  3. Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks

    NASA Astrophysics Data System (ADS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Simionovici, Alexandre S.; Solé, Vicente A.; Srama, Ralf; Stephan, Thomas; Sterken, Veerle J.; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Korff, Joshua Von; Wordsworth, Naomi; Zevin, Daniel

    2014-09-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and β-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  4. Stardust Interstellar Preliminary Examination II: Curating the Interstellar Dust Collector, Picokeystones, and Sources of Impact Tracks

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Westphal, Andrew J.; Zolensky, Michael E.; Gainsforth, Zack; Butterworth, Anna L.; Bastien, Ronald K.; Allen, Carlton; Anderson, David; Bechtel, Hans A.; Sandford, Scott A.

    2013-01-01

    We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date.

  5. Complex Chemistry on Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna L.; Kelley, Matthew J.; Blake, Geoffrey A.

    Early interstellar chemical models considered complex molecule formation on grains [Allen & Robinson (1977)], but current models assume that simple molecules form on grains and subsequent gas phase ion-molecule reactions produce the more complex species [Ruffle & Herbst (2001), Charnley (2001)]. It has been shown, however, that gas phase ion-molecule reactions are insufficient for the production of such complex organic species as ethanol (CH3CH2OH) and methyl formate (CH3OCHO) [Horn et al. (2004)]. Organics such as acetaldehyde (CH3CHO), ethanol, methyl formate, acetic acid (CH3COOH), and glycolaldehyde (CH2OHCHO) have also been detected in high abundance in regions of grain mantle disruption or evaporation, indicating that these species are formed on grain surfaces [see Chengalur & Kanekar (2003), Bottinelli et al. (2004), Hollis et al. (2001)]. The mechanisms for complex molecule production on grains are clearly much more important, and much more complex, than has been recognized. Recent observational studies of these types of species have offered insight into the mechanisms for their possible grain surface synthesis. The relative hot core abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde (52:2:1, respectively [Hollis et al. (2001)]) indicate that if they form on grains it is not from kinetically-controlled single-atom addition reactions. Likewise, the 3C aldose sugar, glyceraldehyde (CH2OHCHOHCHO), was not detected in Sgr B2(N-LMH) [Hollis et al. (2004)] while the 3C ketose sugar, dihydroxyacetone (CO(CH2OH)2) was detected in this source [Widicus Weaver & Blake (2005)]. Chemical pathways favoring the more stable carbonates over acids and aldehydes are required to explain these results. Interestingly, all of these species can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH3OH and their radical precursors. A model has been developed to investigate this type of chemical network, and

  6. A search for interstellar nitrous oxide

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Snyder, L. E.

    1981-01-01

    An extensive search for interstellar nitrous oxide (N2O) has been made at two different frequencies, 75.4 and 100.5 GHz, in a number of molecular sources. No N2O signal was detected; however, a number of other spectral lines including two new transitions of methyl formate and several new unidentified lines were measured.

  7. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  8. A Fission-Powered Interstellar Precursor Mission

    SciTech Connect

    Lenard, R.X.; Lipinski, R.J.; West, J.L.; Wright, S.A.

    1998-10-28

    An 'interstellar precursor mission' lays the groundwork for eventual interstellar exploration by studying the interstellar medium and by stretching technologies that have potential application for eventual interstellar exploration. The numerous scientific goals for such a mission include generating a 3-D stellar map of our galaxy, studying Kuiper-belt and Oort cloud objects, and observing distant objects using the sun's gravitational lens as the primary of an enormous telescope. System equations are developed for a space tug which propels a 2500-kg scientific payload to 550 astronomical units in about 20 years. The tug to transport this payload uses electric propulsion with an Isp of 15,000 seconds and a fission reactor with a closed Brayton cycle to genemte the electricity. The optimal configuration may be to thrust for only about 6 years and then coast for the remaining 14 pars. This spacecraft does not require any physics breakthroughs or major advances in technology. The fission power syslem can be engineered and built by drawing upon known technologies developed for relatgd systems over the past 40 years. The tug system would eventually reach 1000 a.u in 33 years, and would have adequate power to relay large amounts of data throughout its journey.

  9. Diffuse Interstellar Bands: Past and Present

    NASA Astrophysics Data System (ADS)

    Snow, T. P.

    2014-02-01

    The diffuse interstellar bands (DIBs) have come to the fore as an important mystery. This paper presents the history of DIB discovery and research; their importance; a summary of their properties; constraints on proposed identifications; a survey of DIB papers (including graduate student's theses); and a web site that lists DIBs paper from 1922 to 2011 (to be extended to the present).

  10. THE AGE OF THE LOCAL INTERSTELLAR BUBBLE

    SciTech Connect

    Abt, Helmut A.

    2011-05-15

    The Local Interstellar Bubble is an irregular region from 50 to 150 pc from the Sun in which the interstellar gas density is 10{sup -2}-10{sup -3} of that outside the bubble and the interstellar temperature is 10{sup 6} K. Evidently most of the gas was swept out by one or more supernovae. I explored the stellar contents and ages of the region from visual double stars, spectroscopic doubles, single stars, open clusters, emission regions, X-ray stars, planetary nebulae, and pulsars. The bubble has three sub-regions. The region toward the galactic center has stars as early as O9.5 V and with ages of 2-4 M yr. It also has a pulsar (PSRJ1856-3754) with a spin-down age of 3.76 Myr. That pulsar is likely to be the remnant of the supernova that drove away most of the gas. The central lobe has stars as early as B7 V and therefore an age of about 160 Myr or less. The Pleiades lobe has stars as early as B3 and therefore an age of about 50 Myr. There are no obvious pulsars that resulted from the supernovae that cleared out those areas. As found previously by Welsh and Lallement, the bubble has five B stars along its perimeter that show high-temperature ions of O VI and C II along their lines of sight, confirming its high interstellar temperature.

  11. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  12. Interstellar polarization in an irregularly fluctuating medium

    NASA Technical Reports Server (NTRS)

    Nee, S. F.; Jokipii, J. R.

    1979-01-01

    The interstellar polarization of starlight for an irregularly fluctuating medium is analyzed statistically. A general formulation is presented for the case in which the propagation distance s is larger than the coherence scale of the fluctuations. One specific result for randomly changing field direction is that the linear polarization saturates at a value which can be much less than unity, in agreement with observations.

  13. Revisiting Ulysses Observations of Interstellar Helium

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Witte, Manfred

    2015-03-01

    We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ~0.°3 and the speed by no more than ~0.3 km s-1. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V ISM = 26.08 ± 0.21 km s-1, λ = 75.54 ± 0.°19, β = -5.44 ± 0.°24, and T = 7260 ± 270 K where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n He = 0.0196 ± 0.0033 cm-3 in the interstellar medium.

  14. A fission-powered interstellar precursor mission

    SciTech Connect

    Lipinski, Ronald J.; Lenard, Roger X.; Wright, Steven A. West, John L.

    1999-01-01

    An {open_quotes}interstellar precursor mission{close_quotes} lays the groundwork for eventual interstellar exploration by studying the interstellar medium and by stretching technologies that have potential application for eventual interstellar exploration. The numerous scientific goals for such a mission include generating a 3-D stellar map of our galaxy, studying Kuiper-belt and Oort cloud objects, and observing distant objects using the sun{close_quote}s gravitational lens as the primary of an enormous telescope. System equations are developed for a space tug which propels a 2500-kg scientific payload to 550 astronomical units in about 20 years. The tug to transport this payload uses electric propulsion with an lsp of 15,000 seconds and a fission reactor with a closed Brayton cycle to generate the electricity. The optimal configuration may be to thrust for only about 6 years and then coast for the remaining 14 years. This spacecraft does not require any physics breakthroughs or major advances in technology. The fission power system can be engineered and built by drawing upon known technologies developed for related systems over the past 40 years. The tug system would eventually reach 1000 a.u in 33 years, and would have adequate power to relay large amounts of data throughout its journey. {copyright} {ital 1999 American Institute of Physics.}

  15. Legal challenges in realizing interstellar initiatives

    NASA Astrophysics Data System (ADS)

    Hodge, Suzanne M.; Osmond, Elizabeth B.; Urrutia, Manuel C.

    Legal aspects of interstellar exploration and travel are examined. The concept of a space management and legal infrastructure is discussed. Attention is given to space law applicable to social customs, birth, citizenship, ownership, the right to protect one's property and life through insurance, commercial endeavors, colonial government, law and order, space debris, hazardous wastes, and burial and inheritance.

  16. Interstellar Carbon Chains: Is Thermodynamics the Key?

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    In an effort to further our interest in understanding basic chemistry of interstellar molecules, we carry out here an extensive investigation of the stabilities of interstellar carbon chains; C_n, H_2C_n, HC_nN and C_nX (X=N, O, Si, S, H, P, H^-, N^-). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances therefore demand a serious attention. High level ab initio quantum chemical simulations are employed to accurately estimate enthalpy of formation, chemical reactivity indices; global hardness and softness; and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd number carbon chains. The reason for the high abundance of odd numbered carbon chains can easily be seen from the fact that they are more stable than the corresponding even number carbon chains. This further confirms the dominance of thermodynamics in interstellar formation processes as described in the Energy, Stability and Abundance (ESA) relationship. The next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation processes of these carbon chains is shown to be largely dominated by thermodynamics.

  17. Elemental nitrogen partitioning in dense interstellar clouds

    PubMed Central

    Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M.

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms, each involving two radical-radical reactions, are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N2 formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N2 formation are inefficient, we argue that N2 does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH3 should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules. PMID:22689957

  18. Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates

    NASA Astrophysics Data System (ADS)

    Bechtel, Hans A.; Flynn, George J.; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Frank, David R.; Gainsforth, Zack; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Simionovici, Alexandre S.; Solé, Vicente A.; Srama, Ralf; Stadermann, Frank J.; Stephan, Thomas; Sterken, Veerle J.; Stodolna, Julien; Stroud, Rhonda M.; Sutton, Steven; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; von Korff, Joshua; Westphal, Andrew J.; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    Under the auspices of the Stardust Interstellar Preliminary Examination, picokeystones extracted from the Stardust Interstellar Dust Collector were examined with synchrotron Fourier transform infrared (FTIR) microscopy to establish whether they contained extraterrestrial organic material. The picokeystones were found to be contaminated with varying concentrations and speciation of organics in the native aerogel, which hindered the search for organics in the interstellar dust candidates. Furthermore, examination of the picokeystones prior to and post X-ray microprobe analyses yielded evidence of beam damage in the form of organic deposition or modification, particularly with hard X-ray synchrotron X-ray fluorescence. From these results, it is clear that considerable care must be taken to interpret any organics that might be in interstellar dust particles. For the interstellar candidates examined thus far, however, there is no clear evidence of extraterrestrial organics associated with the track and/or terminal particles. However, we detected organic matter associated with the terminal particle in Track 37, likely a secondary impact from the Al-deck of the sample return capsule, demonstrating the ability of synchrotron FTIR to detect organic matter in small particles within picokeystones from the Stardust interstellar dust collector.

  19. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  20. Software determines multiphase flow without meters

    SciTech Connect

    Saether, G.

    1998-12-01

    A software package devised by Loke Inc., a member of Norway`s CorrOcean Group, is routinely calculating multiphase flows from North Sea wells by monitoring only static measurements-pressures, temperatures and other available measurement quantities. A collection of three modeling programs, the software can also control the production mix and set choke values from individual wells for optimum reservoir production. Calculated flows have proven so accurate that operators now have no need for conventional flow meters or dedicated test lines. In a tuning step taken during initial well testing, Loke establishes parameters for the mathematical models in the software. Thereafter, static measurements of pressure and temperature in the producing well or manifold are converted by the software to flow. These predictions are then used to command choke valves to regulate flow. A representation of the measurement and control scheme is shown.

  1. Identifying layers in random multiphase structures

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    X-Ray microscopic methods, benefiting from the large penetration depth of X-rays in many materials, enable 3D investigation of a wide variety of samples. This allows for a wide variety of physical, chemical, and biological structures to be seen and explored, in some cases even in real time. Such measurements have lead to insights into paleontology, vulcanology, genetics, and material science. The ability to see and visualize complex systems can provide otherwise unobtainable information on structure, interactions, mechanical behavior, and evolution. The field has, however, led to a massive amount of new, heterogenous, difficult to process data. We present a general, model-free approach for characterizing multiphase 3D systems and show how the method can be applied to experimental X-ray microscopy data to better understand and quantify layer structure in two typical systems: investigation of layered fibers and clay samples.

  2. Shock Scattering in a Multiphase Flow Model

    SciTech Connect

    Klem, D

    2003-04-08

    Multiphase flow models have been proposed for use in situations which have combined Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities. Such an approach work poorly for the case of a heavy to light shock incidence on a developed interface. The physical original of this difficulty is traced to an inadequate model of the interfacial pressure term as it appears in the momentum and turbulence kinetic energy equations. Constraints on the form of a better model from a variety of sources are considered. In this context it is observed that a new constraint on closures arises. This occurs because of the discontinuity within the shock responsible for the RMI. The proposed model (Shock Scattering) is shown to give useful results.

  3. Multiphase monitoring by annihilation radiation coincidence mode

    NASA Astrophysics Data System (ADS)

    Vidal, A.; Viesti, G.; Osorio, C.; Pino, F.; Horvath, A.; Barros, H.; Caldogno, M.; Greaves, E. D.; Sajo-Bohus, L.

    2012-02-01

    A multiphase monitoring system employing nuclear techniques is reported, which is aimed to provide a rapid - decision tool in oilfield applications. Liquid phase time variation is monitored employing two large volume BaF2 detectors. The radioisotope source of 22Na is a positron emitter, therefore two antiparallel gammas are produced per decay, and phase flow in pipes is related to the count rate of gamma pulses in coincidence providing information on transient liquid phase during transport. Oil, gas, water fraction measurements were performed at a specialized test station assembled in our laboratory to model a wide range of field operating conditions. The time dependence of the mixed substances is monitored with the two most relevant hydrodynamic parameters, the density (type of the fluid) and the flow rate, in a LabView® environment. Performance of the monitoring system; its limitations and the possibility for further improvements are also provided.

  4. Computer simulation of diffusion in multiphase systems

    NASA Astrophysics Data System (ADS)

    Engström, Anders; Höglund, Lars; Ågren, John

    1994-06-01

    A general model to treat multicomponent diffusion in multiphase dispersions is presented. The model is based on multicomponent diffusion data and basic thermodynamic data and contains no adjustable parameters. No restriction is placed on the number of components or phases that take part in the calculations, as long as the necessary thermodynamic and kinetic data are available. The new model is implemented into the DICTRA software, which makes use of THERMO-CALC to handle the thermodynamics. The model is applied to carburization of Ni alloys and heat treatment of welded joints between dissimilar materials. In both cases, the diffusion is accompanied by carbide formation or dissolution. A good agreement between experiments and calculations is found, despite the fact that no adjustable parameters are needed.

  5. Effects of mechanical interaction between the interstellar medium and comets

    SciTech Connect

    Stern, S.A.

    1986-11-01

    The present treatment of the mechanical interaction of Oort Cloud comets with the interstellar medium gives attention to the importance of the accretion of interstellar material onto comets, as well as to the erosion of cometary surfaces by impacting interstellar grains and the consequences of these interactions. Scaling analyses indicate that collisions with interstellar grains can furnish a potent evolutionary mechanism in the modification of cometary surfaces; this factor may also contribute a substantial number of low mass particulated to the interstellar medium. 48 references.

  6. Triangulation of the Interstellar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Richardson, J. D.; Burlaga, L. F.; McComas, D. J.; Moebius, E.

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B-V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B-V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7-2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B-V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7-2.7 keV) and the B-V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  7. Triangulation of the Interstellar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Richardson, J. D.; Burlaga, L. F.; McComas, D. J.; Moebius, E.

    2015-11-01

    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  8. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  9. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.

  10. A model for multiphase flows through poroelastic media

    SciTech Connect

    Ahmadi, Goodarz; Mazaheri, Ali Reza; Smith, D.H

    2003-01-01

    A continuum model for multiphase fluid mixture flows through poroelastic media is presented. The basic conservation laws developed via a volume averaging technique are considered. Effects of phasic equilibrated forces are included in the model. Based on the thermodynamics of the multiphase mixture flows, appropriate constitutive equations are formulated. The entropy inequality is exploited, and the method of Lagrangian multiplier is used along with the phasic conservation laws to derive the constitutive equations for the phasic stress tensors, equilibrated stress vectors, and the interactions terms. The special cases of wave propagation in poroelastic media saturated with multiphase fluids, and multiphase flows through porous media, are studied. It is shown that the present theory leads to the extended Darcy’s law and contains, as a special case, Biot’s theory of saturated poroelastic media.

  11. Interstellar Probe: The Next Step To Flight

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph; Zurbuchen, Thomas H.

    2016-07-01

    In the years following the discovery of the solar wind, the term "heliosphere" was coined and defined as "the region of interplanetary space where the solar wind is flowing supersonically." In June 1971, with the development of the Pioneer probes to Jupiter and beyond well underway, a session of the American Astronautical Society meeting considered scientific exploration reaching beyond the solar system and into the interstellar medium. Despite many discussions, studies, and meetings since, the most recent held under the auspices of the Keck Institute for Space Studies (8-11 September 2014 and 13-15 January 2015), such missions have been relegated to the '"future" due to the large distances and solar system escape speeds contemplated for their execution. In the meantime, the Voyager Interstellar Mission (VIM), consisting of the twin Voyager spacecraft almost 40 years since their respective launches, are making inroads into this region beyond the termination shock of the solar wind, a new region of the solid bodies of the solar system has been opened by the New Horizons flyby of the Pluto system, and the Cassini Ion and Neutral CAmera (INCA) and Interstellar Boundary Explorer (IBEX) have remotely sensed neutral atoms that have provided significant clues to the global structure of the interaction of the solar wind and interstellar medium. It is now time for a dedicated mission to the regime beyond the solar system to explore our galactic environment. A first, near-term implementation can be carried out with the near-current flight system technology. What is also clear is that the high speeds required will limit the spacecraft to a relatively small mass of no more than ~500 kg, regardless of the propulsion details. The recent success of the New Horizons mission at the Pluto system illustrates that with modern technologies, such spacecraft sizes can still accommodate the means to produce paradigm-shifting science, providing for a compelling scientific mission. The

  12. New observations of interstellar organic molecules

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Friberg, P.; Matthews, H. E.; Minh, Y. C.; Ziurys, L. M.

    1990-01-01

    Discussed here are new observations of 3-carbon-containing interstellar molecules which play an important role in the chemistry of dense molecular clouds: protonated carbon dioxide, formic acid, and propynal. In 1984 a new oxide of carbon, C3O, was discovered in the interstellar medium (Matthews et al. 1984; Brown et al. 1985). Theoretical models suggest that C3O is produced by dissociative electron recombination with the ion H3C3O+. Although no laboratory data for the branching ratios of such a recombination exist, it seemed to us likely that additional products would include H2C3O. This molecule has more than one isomeric form, but one stable species is propynal (HC2CHO), which had been suggested as a possible interstellar molecule by Winnewisser (1973). In observations at the National Radio Astronomy Observatory 43 m telescope in Green Bank earlier this year, researchers detected a line in the cold cloud TMC-1 which they assign to the 2(0,2)-1(0,1) transition of propynal. The observed line agrees with the laboratory frequency to well within the experimental uncertainty a few parts in 10 to the 7th power. Researchers sought and failed to detect the corresponding 2(1,1)-1(1,0) line, which is understandable given the presence of both a and b components of the electric dipole moment in propynal. The b type transitions will drain population from energy levels with K(sub p) does not equal 0 into the K(sub p) equal 0 stack. If the researchers' assignment is correct, this is the first interstellar detection of propynal. Assuming typical rotational temperatures for TMC-1 and that the line is optically thin, the column density determined is about 5 times 10 to the 12th power cm to the -2nd power, or about three times that for C3O. Formic acid (HCOOH) was the first organic acid to be observed in the interstellar medium, in the Galactic center source Sgr B2. The only other interstellar detection has been recently made in the giant molecular cloud in Orion. As part of the

  13. The local interstellar medium. VII - The local interstellar wind and interstellar material in front of the nearby star Alpha Ophiuchi

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; York, D. G.; Fowler, J. R.

    1987-01-01

    IUE observations of Mg I 2852.127 A are used to search for warm interstellar gas in the direction of Alpha Oph. The data on Mg I are first presented, and Mg I as a diagnostic of warm gas is discussed. A cool H I feature found in the direction of Alpha Oph, and which is evidently the origin of most of the observed optical and ultraviolet lines, is discussed, and the cloud geometry is examined.

  14. Low energy gamma ray attenuation in multiphase water

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe

    1990-01-01

    A gauging system is proposed to enable monitoring of slush density, solid-liquid interface, and slush level as well as its flow rate. It is based on the principle that the electromagnetic radiation mass attenuation coefficient of a multiphase chemical compound is constant for all relative phase concentrations. Results showing the essential constancy of mass attenuation coefficients for single-phase water vapor, liquid water, ice, and multiphase mixtures of water/ice are described.

  15. Energy Dissipation in Multi-phase Infalling Clouds in Galaxy Halos

    SciTech Connect

    Murray, S D; Lin, D C

    2004-06-15

    During the epoch of large galaxy formation, thermal instability leads to the formation of a population of cool fragments which are embedded within a background of tenuous hot gas. The hot gas attains a quasi hydrostatic equilibrium. Although the cool clouds are pressure confined by the hot gas, they fall into the galactic potential, subject to drag from the hot gas. The release of gravitational energy due to the infall of the cool clouds is first converted into their kinetic energy which is subsequently dissipated as heat. The cool clouds therefore represent a potentially significant energy source for the background hot gas, depending upon the ratio of thermal energy deposited within the clouds versus the hot gas. In this paper, we show that most of dissipated energy is deposited in to the tenuous hot halo gas, which provides a source of internal energy to replenish its loss in the hot gas through Bremsstrahlung cooling and conduction into the cool clouds. Through this process, the multi-phase structure of the interstellar medium is maintained.

  16. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  17. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  18. Ionized interstellar froth in irregular galaxies

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; Gallagher, John S., III

    1990-01-01

    The warm interstellar medium of galaxies is a complicated place. It is often full of holes, neutral and ionized loops and shells, and diffuse ionized gas. Deep H alpha images of Magellanic-type irregular galaxies also reveal complex spatial structures consisting of loops and filaments in the interstellar gas outside of the boundaries of traditional HII regions. Researchers refer to these ionized structures as froth. Such structures could mark paths over which newly produced heavy elements are dispersed in irregular galaxies, and they could be the signatures of a feedback process related to star formation. In order to investigate the physical nature of the froth, researchers obtained narrow-band images and high and low dispersion spectra from Kitt Peak National Observatory (KPNO) and deep blue-passband plates from the Canada-France-Hawaii Observatory (CFHO).

  19. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  20. Polycyclic aromatic hydrocarbons in interstellar chemistry

    SciTech Connect

    Lepp, S.; Dalgarno, A.

    1988-01-01

    Interstellar chemistry modifications resulting form the presence of large molecules such as polycyclic aromatic hydrocarbons (PAHs) are investigated. For abundances of PAH relative to hydrogen of greater than 10 to the -8th, free electrons attach to PAH molecules to yield PAH(-) ions, and qualitative interstellar chemistry changes are shown to result as atomic and molecular ions undergo nondestructive mutual neutralization reactions with these negative ions. An increase in the steady state abundances of carbon-bearing molecules is also noted. For a PAH abundance ratio relative to hydrogen of 10 to the -7th, the equilibrium densities of C3H2 and neutral atomic C are found to be enhanced by two orders of magnitude. 18 references.

  1. Human factors issues for interstellar spacecraft

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  2. Icarus Institute for Interstellar Sciences (IIS)

    NASA Astrophysics Data System (ADS)

    Cress, B.

    2012-09-01

    In this paper, a vision for a proposed interstellar research center, to be developed in the United States, will be presented. The major focus will be on an innovative approach to the planning and achieving a new sustainable world class facility devoted to the technologies and various science missions of multi-disciplined teams reaching for the stars. The project will provide the personnel, feature sets, facilities and equipment needed to initiate and support an aggressive program of advanced interstellar vehicle and propulsion design and implementation. Also shared will be personal insights and economic considerations gained during prior planning for a private research institute in Nevada, home to more than 300 international scientists. The views expressed in this discussion paper are the personal views of the author and not necessarily representing the entire Icarus team.

  3. Isotope Fractionation in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2011-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  4. The diffuse interstellar bands - a brief review

    NASA Astrophysics Data System (ADS)

    Geballe, T. R.

    2016-07-01

    The diffuse interstellar bands, or DIBs, are a large set of absorption features, mostly at optical and near infrared wavelengths, that are found in the spectra of reddened stars and other objects. They arise in interstellar gas and are observed toward numerous objects in our galaxy as well as in other galaxies. Although long thought to be associated with carbon-bearing molecules, none of them had been conclusively identified until last year, when several nearinfrared DIBs were matched to the laboratory spectrum of singly ionized buckminsterfullerene (C60 +). This development appears to have begun to solve what is perhaps the greatest unsolved mystery in astronomical spectroscopy. Also recently, new DIBs have been discovered at infrared wavelengths and are the longest wavelength DIBs ever found. I present the general characteristics of the DIBs and their history, emphasizing recent developments.

  5. Interstellar molecules - Formation in solar nebulae

    NASA Technical Reports Server (NTRS)

    Anders, E.

    1973-01-01

    Herbig's (1970) hypothesis that solar nebulae might be the principal source of interstellar grains and molecules is investigated. The investigation includes the determination of physical and chemical conditions in the early solar system. The production of organic compounds in the solar nebula is studied, and the compounds in meteorites are compared with those obtained in Miller-Urey and Fischer-Tropsch-type (FTT) reactions, taking into consideration aliphatic hydrocarbons, aromatic hydrocarbons, purines, pyrimidines, amino acids, porphyrins, and aspects of carbon-isotope fractionation. It is found that FTT reactions account reasonably well for all well-established features of organic matter in meteorites investigated. The distribution of compounds produced by FTT reactions is compared with the distribution of interstellar molecules. Biological implications of the results are considered.

  6. Interstellar C3 toward HD 210121

    NASA Astrophysics Data System (ADS)

    Roueff, E.; Felenbok, P.; Black, J. H.; Gry, C.

    2002-03-01

    We report the detection of the 405 nm band of interstellar C3 in absorption toward HD 210121. The abundance of triatomic carbon is approximately 1/17 of that of diatomic carbon in the same diffuse molecular cloud. Rotational levels of C3 up to J=14 are seen in this cloud. The rotational excitation of C3 in the interstellar medium may reflect a competition between inelastic collisions, formation and destruction of the molecule, and radiative pumping in the far-infrared. The abundance of C3 is compared with chemical models. Attention is called to molecular properties that need to be better determined. Based on observations collected at the European Southern Observatory, Paranal, Chile [ESO VLT-UT2 No 65.I-0526(A)].

  7. O VI absorption in interstellar cloud surfaces

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Jenkins, E. B.; Songaila, A.; York, D. G.

    1979-01-01

    The velocity profiles of O VI absorption lines of 24 stars, observed in early Copernicus surveys, have been compared with the line profiles of Si III (1206.51 A) and N II (1083.99 A). The velocity structures of the O VI lines appear to be correlated with those of the material in the lower ionization stages. It is argued that the O VI absorption arises in the coronal gas of the conductive interface between hot gas, responsible for extended, soft X-ray emission, and cooler interstellar clouds. The velocity broadening of both sets of lines is attributed to motions of the cloud surfaces induced by pressure fluctuations in the interstellar medium.

  8. Complex Molecules in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott

    1996-01-01

    A brief review of the current state of knowledge concerning the composition of complex molecules in the interstellar medium (ISM) is given. The materials in interstellar dense molecular clouds is also discussed. As well as the formation of stars and planetary systems. A concentration on solids are addressed, because they contain a major fraction of the heavier elements in these clouds and because these materials are the most likely to survive incorporation into new planetary systems and participate in the subsequent formation and evolution of life. However, dense clouds are not well-defined, long-lived entities but are dynamic objects that are formed from materials in the diffuse ISM and destroyed on time scales of 10(exp 6)-10(exp 8) years. As a result, materials in space are probably constantly being mixed between the dense ISM and the more diffuse intercloud ISM, and some discussion of the materials found in the diffuse ISM is also merited.

  9. A search for interstellar H3O+.

    PubMed

    Wootten, A; Boulanger, F; Bogey, M; Combes, F; Encrenaz, P J; Gerin, M; Ziurys, L

    1986-01-01

    The P (2,1) line of H3O+, the hydroxonium ion, a key species in ion-molecule chemistry, has been sought in the interstellar medium and in Halley's Comet. In OMC1 and SgrB2, a line was detected which may possibly be attributed to H3O+. Verification of this identification must be accomplished through observation of the P(3,2) line at 364 GHz, or detection of isotopic variants. If we were to assume that the detected line arises from H3O+, we can deduce a fractional abundance X(H3O+) in OMC1 and SgrB2 of approximately 10(-9) and a production rate in Comet Halley of Q(H3O+) 10(28)s-1. These results would place H3O+ among the more abundant molecular ions in the interstellar gas in agreement with theoretical predictions. PMID:11542067

  10. Local Interstellar Magnetic Field Determined from the Interstellar Boundary Explorer Ribbon

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; Funsten, H. O.; Livadiotis, G.; McComas, D. J.; Pogorelov, N. V.

    2016-02-01

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquely coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.

  11. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  12. Collisional excitation of interstellar methyl cyanide

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1986-01-01

    Theoretical calculations are used to determine the collisional excitation rates of methyl cyanide under interstellar molecular cloud conditions. The required Q(L,M) as a function of kinetic temperature were determined by averaging fixed energy IOS (infinite order sudden) results over appropriate Boltzmann distributions of collision energies. At a kinetic temperature of 40 K, rates within a K ladder were found to be accurate to generally better than about 30 percent.

  13. TAU as Tao. [interstellar spacecraft performance

    NASA Technical Reports Server (NTRS)

    Lyman, P. T.; Reid, M. S.

    1989-01-01

    This paper discusses the feasibility of building and launching a truly deep-space spacecraft mission that will penetrate near interstellar space to a depth of one thousand astronomical units (TAU) within a flight time of 50 years. Particular attention is given to the mission profile and to its communications system, power system, and propulsion system. Results of experimental studies indicate that, with advanced technology, reasonable trip times can be achieved and adequate science information can be brought to earth.

  14. Diffuse Interstellar Bands: Families and Correlations

    NASA Astrophysics Data System (ADS)

    Krełowski, J.

    2014-02-01

    The term ``families of diffuse bands'' (DIBs) appeared in 1986/87 when my collaborators: Gordon A.H. Walker, Bengt E. Westerlund and I found that the strength ratio of the major DIBs 5780 and 5797 is heavily variable. We proved that at the same E(B-V) the DIB intensities may vary by as much as a factor of three or more. A similar result was published by Karl Josafatsson and Ted Snow soon after. A decade later, we proved (with Chris Sneden) that certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so called σ and ζ type interstellar clouds. The former are characterized by very weak molecular features (but broad DIBs - very strong) while the latter by rather strong bands of simple radicals and weak broad DIBs. Currently we face a bunch of questions: are the DIB intensities related to those of certain molecular species, e.g. C2 as suggested by Lew Hobbs' and Ted Snow's group? Do the DIB profiles, found to be complex by Peter Sarre, depend on e.g. the rotational temperatures of simple, linear carbon species? Do the DIB profiles depend on the irradiation of interstellar clouds by nearby stars? The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. We thus face three players in the interstellar translucent clouds: dust particles, simple radicals and the DIB carriers. Apparently, their mutual relations depend on local physical parameters of intervening clouds; these relations are not clear yet.

  15. Catalog of Interstellar HI Shells Discovered in the SETHI Database

    NASA Astrophysics Data System (ADS)

    Sallmen, Shauna; Korpela, E. J.; Lo, C.; Tennyson, E.; Bellehumeur, B.; Douglas, K. A.

    2013-01-01

    The interstellar medium (ISM) plays a key role in the development and evolution of galaxies, including our own. The effects of supernovae and stellar winds from generations of stars produce a turbulent, multiphase medium filled with complex interacting structures. As hot gas expands outward, it sweeps up cold neutral material into a shell. Over time, the shells expand and cool, mixing with the ambient material. Shells and other features are therefore evidence of how energy and matter released by stars are redistributed, eventually resulting in the formation of new generations of stars. Several models have contributed to our broad understanding of the physical state and evolution of gas phases in our Galaxy, but a complete, detailed picture remains elusive. In general, random supernovae result in a turbulent ISM with hot, low-density gas surrounding warm & cool clouds. However, the extent to which supernovae disrupt the ambient medium is controversial, the energy inputs of shells are poorly understood, and the role of magnetic fields is unclear. Clearly, HI (neutral hydrogen) shells are central to our understanding of the ISM, so we need to study as many as possible, at all stages of evolution. Our census of Galactic HI shells ISM is incomplete because: (1) Many searches for shells use expansion as key criterion for shell identification, biasing against older, more evolved shells. (2) Shells with broken outlines are missed in most computer-based searches. The human eye is better at searching for such large, irregular features. (3) Most searches carried out in high-resolution data are restricted to the Galactic plane. We have visually examined the SETHI (Search for Extraterrestrial HI) database, searching for shell-like structures. This 21-cm radio survey has an angular resolution of 0.03° and a velocity resolution of 1.5 km/s. We present basic information (location, radial velocity, angular size, shape) for over 70 previously unidentified HI shells. We also discuss

  16. Stellar sources of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Thielemann, F.-K.; Argast, D.; Brachwitz, F.; Martinez-Pinedo, G.; Oechslin, R.; Rauscher, T.; Hix, W. R.; Liebendörfer, M.; Mezzacappa, A.; Höflich, P.; Iwamoto, K.; Nomoto, K.; Schatz, H.; Wiescher, M. C.; Kratz, K.-L.; Pfeiffer, B.; Rosswog, S.

    With the exception of the Big Bang, responsible for 1,2 H, 3,4 He, and 7 Li, stars act as sources for the composition of the interstellar medium. Cosmic rays are related to the latter and very probably due to acceleration of the mixed interstellar medium by shock waves from supernova remnants. Thus, the understanding of the abundance evolution in the interstellar medium and especially the enrichment of heavy elements, as a function of space and time, is essential. It reflects the history of star formation and the lifetimes of the diverse contributing stellar objects. Therefore, the understanding of the endpoints of stellar evolution is essential as well. These are mainly planetary nebulae and type II/Ib/Ic supernovae as evolutionary endpoints of single stars, but also events in binary systems can contribute, like e.g. supernovae of type Ia, novae and possibly X-ray bursts and neutron star or neutron star - black hole mergers. Despite many efforts, a full and self-consistent understanding of supernovae (the main contributors to nucleosynthesis in galaxies) is not existing, yet. Their fingerprints, however, seen either in spectra, lightcurves, radioactivities/decay gamma-rays or in galactic evolution, can help to constrain the composition of their ejecta and related model uncertainties.

  17. Design for minimum energy in interstellar communication

    NASA Astrophysics Data System (ADS)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  18. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  19. A survey of interstellar molecular hydrogen. I

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Drake, J. F.; Budich, W.; Bohlin, R. C.

    1977-01-01

    Data from the Copernicus satellite's ultraviolet telescope were used to survey column densities of atomic and molecular hydrogen from a large sample of early-type stars; these data have bearing on an eventual understanding of diffuse and dense interstellar clouds. Column densities are derived by fitting damping profiles to the observed spectra, most of which exhibit strong damping lines in the lower rotational levels surveyed. Plots of dust column density, fractional abundance of molecular hydrogen, and the logarithm of fractional abundance versus total gas column density are given for many of the stars; stars with abnormally large or small hydrogen column densities, as well as some distant stars at high galactic latitudes, are considered. Equilibrium and nonequilibrium theories accounting for the abundance of interstellar hydrogen are compared, and support is found in the data for an account which balances hydrogen formation on interstellar grains with destruction through photodissociation. Overall averages for atomic and molecular hydrogen levels in the galactic plane are also calculated.

  20. Thermal phases of interstellar and quasar gas

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Mccray, R.; Shull, J. M.; Woods, D. T.; Kallman, T.

    1985-01-01

    Interstellar gas may be in a variety of thermal phases, depending on how it is heated and ionized; here a unified picture of the equation of state of interstellar and quasar gas is presented for a variety of such mechanisms over a broad range of temperatures, densities, and column densities of absorbing matter. It is found that for select ranges of gas pressure, photoionizing flux, and heating, three thermally stable phases are allowed: coronal gas (T above 100,000 K); warm gas (T about 10,000 K); and cold gas (T less than 100 K). With attenuation of ultraviolet and X-ray radiation, the cold phase may undergo a transition to molecules. In quasar broad-line clouds, this transition occurs at column density N(H) = about 10 to the 23rd/sq cm and could result in warm molecular cores and observable emission from H2 and OH. The underlying atomic physics behind each of these phase transitions and their relevance to interstellar matter and quasars are discussed.

  1. Properties of interstellar dust in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, Kristin

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer.

  2. Theoretical studies in interstellar cloud chemistry

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Prasad, S. S.

    1993-01-01

    This final report represents the completion of the three tasks under the purchase order no. SCPDE5620,1,2F. Chemical composition of gravitationally contracting, but otherwise quiescent, interstellar clouds and of interstellar clouds traversed by high velocity shocks, were modeled in a comprehensive manner that represents a significant progress in modeling these objects. The evolutionary chemical modeling, done under this NASA contract, represents a notable advance over the 'classical' fixed condition equilibrium models because the evolutionary models consider not only the chemical processes but also the dynamical processes by which the dark interstellar clouds may have assumed their present state. The shock calculations, being reported here, are important because they extend the limited chemical composition derivable from dynamical calculations for the total density and temperature structures behind the shock front. In order to be tractable, the dynamical calculations must severely simplify the chemistry. The present shock calculations take the shock profiles from the dynamical calculations and derive chemical composition in a comprehensive manner. The results of the present modeling study are still to be analyzed with reference to astronomical observational data and other contemporary model predictions. As far as humanly possible, this analysis will be continued with CRE's (Creative Research Enterprises's) IR&D resources, until a sponsor is found.

  3. Closing Remarks: A Charter for Interstellar Studies

    NASA Astrophysics Data System (ADS)

    Gilster, Paul A.

    2007-02-01

    Multidisciplinary by necessity, interstellar studies attack a seemingly intractable problem from numerous angles, many of which were on display at the Princeton conference. The past year has seen work that firms up our knowledge of the nearest interstellar target, the triple star system Alpha Centauri. Learning that the Centauri A and B stars may well support terrestrial style worlds, we push ahead into an era of breakthrough investigations in exoplanet detection and imaging. The treatment of the Centauri developments illustrates the changes that online capabilities bring to research, offering new venues and providing for vigorous debate via preprint archives, weblogs and self-archiving by researchers. These tools also hone our skills at presenting the public case for interstellar research to a lay audience often indifferent to both space-related activities and the possibility of long-term planning. We must continue to press the case for vigorous exploration and use these new online capabilities to re-energize an all too jaded public.

  4. Low Frequency Interstellar Scattering and Pulsar Observations

    NASA Technical Reports Server (NTRS)

    Cordes, James M.

    1992-01-01

    Radio astronomy at frequencies from 2 to 30 MHz challenges time tested methods for extracting usable information from observations. One fundamental reason for this is that propagation effects due to the magnetoionic ionosphere, interplanetary medium, and interstellar matter (ISM) increase strongly with wavelength. The problems associated with interstellar scattering off of small scale irregularities in the electron density are addressed. What is known about interstellar scattering is summarized on the basis of high frequency observations, including scintillation and temporal broadening of pulsars and angular broadening of various galactic and extragalactic radio sources. Then those high frequency phenomena are addressed that are important or detectable at low frequencies. The radio sky becomes much simpler at low frequencies, most pulsars will not be seen as time varying sources, intensity variations will be quenched or will occur on time scales much longer than a human lifetime, and many sources will be angularly broadened and/or absorbed into the noise. Angular broadening measurements will help delineate the galactic distribution and power spectrum of small scale electron density irregularities.

  5. Formation of water in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; Jing, Dapeng; He, Jiao

    2012-07-01

    The formation of water in the interstellar medium is an important topic of research nowadays because water plays key roles in the cooling of collapsing clouds and, while condensed in ices that cover dust grains, in the formation and storage of molecules of biogenic interest. Furthermore, how water interacts with grains is of importance in understanding the delivery of water to planetary bodies. Water formation occurs largely on dust grains. In the last couple of years, a few laboratories have explored the network of reactions that lead to the formation of water on grain analogs. There are three main branches of this network^1: hydrogenation of O_2, hydrogenation of O_3, and O+H reactions. In our laboratory we studied the formation of water on amorphous silicate films by the interaction of hydrogen and oxygen atoms^2. We will also present measurements of the diffusion of oxygen atoms on amorphous silicate surfaces. Financial support from the NSF Astronomy and Astrophysics Division (grant No. 0908108) is gratefully acknowledged. We like to thank Dr. Brucato and his team (Astrophysical Observatory of Arcetri, Italy) for providing the samples. Tielens, A. G. G. M., & Hagen, W. 1982 ``Model calculations of the molecular composition of interstellar grain mantles'' Astron.& Astrophys., 114, 245. Jing, D., He, J., Brucato, J., De Sio, A., Tozzetti, L. & Vidali, G. 2011 ``On water formation in the interstellar medium: laboratory study of the O+D reaction on surfaces'' Astrophys.J., 741, L9.

  6. H3+ in the diffuse interstellar medium.

    PubMed

    Liszt, Harvey S

    2006-11-15

    Three forms of solely hydrogen-bearing molecules--H2, HD and H3+--are observed in diffuse or optically transparent interstellar clouds. Although no comprehensive theory exists for the diffuse interstellar medium or its chemistry, the abundances of these species can generally be accommodated locally within the existing static equilibrium frameworks for heating/cooling, H2-formation on large grains, etc. with one modification demanded equally by observations of HD and H3+, i.e. a pervasive low-level source of H and H2 ionization ca 10 times faster than the usual cosmic ray ionization rate zetaH = 10(-17) s(-1) per free H-atom. We discuss this situation with reference to observation and time-dependent modelling of H2 and H3+ formation. While not wishing to appear ungrateful for the success of what are very simplistic notions of the interstellar medium, we point out several reasons not to feel smug. The equilibrium conditions which foster high H2 and H3+ abundances are very slow to appear and these same simple ideas of static equilibrium cannot explain any, but a few, of the simplest of the trace species, which are ubiquitously embedded in H2-bearing diffuse gases. PMID:17015375

  7. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  8. Anisotropic distributions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2016-03-01

    With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.

  9. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  10. Multiphase chemical analysis of terpene oxidation products

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Williams, J.; Röckmann, T.; Winterhalter, R.; Holzinger, R.

    2009-04-01

    A new technique was developed for multiphase monitoring of organic species in the gasphase and on aerosols with a Proton Transfer Reaction Mass Spectrometer (PTRMS) as the detector. An advantage of the soft ionization technique of the PTRMS, is that it is possible to see the ozonolysis products with little fragmentation. When fragmentation does occur, it is limited to the loss of water from a hydroxyl or carboxyl group, thus facilitating identification. This new system gives detailed information on the chemical composition of organic aerosols, and allows the chemical evolution of condensed organics to be monitored. With this new system it is possible to identify specific chemical compounds in both gas and aerosol phases, instead of the "total organics" which have been reported previously. A series of reactions of ozone with terpenes, beta-caryophyllene and isoprene were preformed in a smog chamber. The secondary organic aerosol and VOCs in the gas phase were measured. Due to the high aerosol concentrations in the smog chamber experiments, air samples could be collected at high time resolution, and it is possible to observe the aging of the aerosol and the gas phase.

  11. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  12. The structure of the time-dependent interstellar shocks and grain destruction in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Mckee, Christopher F.; Hollenbach, David J.; Seab, Gregory C.; Tielens, A. G. G. M.

    1987-01-01

    A new theoretical analysis of the structure of interstellar shocks and the grain dynamics of these shocks is presented. The basic hydrodynamic equations for J-shocks in interstellar gas are given in which shock-driving pressure is allowed to be weakly time-dependent and the grains are treated as a separate two-dimensional fluid. Specific equations for the grain dynamics in the cooling postshock gas are derived. An analytic theory for the propagation of a shock driven into an interstellar cloud by the blast wave of a supernova remnant which sweeps over the cloud is developed. An improved calculation of the grain charge in postshock gas is described, giving a simple analytic approximation for the results. The consequences of including these processes in the numerical code of Seab and Shull (1983) are addressed, including the effect of realistic magnetic fields in low-density gas.

  13. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm.

    PubMed

    Kos, Janez; Zwitter, Tomaž; Wyse, Rosemary; Bienaymé, Olivier; Binney, James; Bland-Hawthorn, Joss; Freeman, Kenneth; Gibson, Brad K; Gilmore, Gerry; Grebel, Eva K; Helmi, Amina; Kordopatis, Georges; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren A; Seabroke, George; Sharma, Sanjib; Siebert, Arnaud; Siviero, Alessandro; Steinmetz, Matthias; Watson, Fred G; Williams, Mary E K

    2014-08-15

    The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research. PMID:25124434

  14. Helium atoms in interstellar and interplanetary media, part 3: Temperature and velocity of interstellar wind

    NASA Astrophysics Data System (ADS)

    Kurt, V. G.; Mironova, Y. N.; Berto, Z. L.; Dalode, F.

    1984-10-01

    The distribution of intensities over the celestial sphere in the neutral helium line ar lambda=584 A which is obtained from background radiation observations on the Prognoz-6 satellite with a 4 channel photometer was used to find the temperature and magnitude of the velocity vector of the interstellar wind. The direction of motin of the interstellar medium relative to the sun was determined from the same observations. Interaction of neutral helium in the interstellar medium with the gravitational field of the sun and resonant scattering on intereplanetary helium are calculated. The temperature and velocity of the model which best agree with the results were determined separately for each of six measurement sessions onboard the satellite. The average temperature was 11,600 K, velocity 25.3 km/s. It is found that the mean density of helium in space near the sun is be 0.018 cm -3.

  15. Interstellar bubbles. II - Structure and evolution. [stellar wind interaction with interstellar gas

    NASA Technical Reports Server (NTRS)

    Weaver, R.; Mccray, R.; Castor, J.; Moore, R.; Shapiro, P.

    1977-01-01

    The detailed structure of the interaction of a strong stellar wind with the interstellar medium is presented. First, an adiabatic similarity solution is given which is applicable at early times. Second, a similarity solution is derived which includes the effects of thermal conduction between the hot (about 1 million K) interior and the cold shell of swept-up interstellar matter. This solution is then modified to include the effects of radiative energy losses. The evolution of an interstellar bubble is calculated, including the radiative losses. The quantitative results for the outer-shell radius and velocity and the column density of highly ionized species such as O VI are within a factor 2 of the approximate results of Castor, McCray, and Weaver (1975). The effect of stellar motion on the structure of a bubble, the hydrodynamic stability of the outer shell, and the observable properties of the hot region and the outer shell are discussed.

  16. The Ingenious Theory of Interstellar Trade

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Arun; Ganapathy, Rohan M.

    This paper extends interplanetary trade theory to an interstellar setting. It is chiefly concerned with the following question: How should interest charges on goods in transit be computed when the goods travel at speeds close to the actual speed of light? This is a problem because the time taken in transit will appear less to an observer travelling with the goods than to a stationary observer. An innovative and ingenious solution is derived from the economic theory, and two useless but TRUE theorems are proved. The interstellar trade would happen in such a way that two time frames must be considered namely that of the stationary observer whose time runs faster compared to the time frame of the observer in transit The interest in a given trade is purely based on the time taken for the debtor to pay the amount, once the goods have been delivered by the seller. But, in case of interstellar trade, the interest to be calculated in between two time frames would lead to the question of which time frame to be considered and moreover, the time taken for the goods to reach the destination is signicantly prolonged compared to the interplanetary trade, which means, even the slightest variations in the interest rate would be magnied. Apart from this, various new factors arise while calculating the interest. The factors include the time value of money, and the risk of variation in demand for goods, the risk of interspace accidents causing loss of the goods and the rate of perish-ability in case of organic goods. The first two factors considered, for which the time frame of the stationary observer is considered and the factors such as the risk of accidents and the rate of perish-ability of the goods are considered based on the time frame of the observer in transit's point of view. The reasons for such considerations and various assumptions on these concepts are dealt in this paper. The theorems that are formulated in this paper would provide the interstellar traders a basic

  17. New Large Interstellar Molecules Detected with the GBT

    NASA Technical Reports Server (NTRS)

    Hollis, Jan M.

    2005-01-01

    At present, more than 135 different molecules have been identified in interstellar clouds. The newest instrument in the interstellar molecule search arsenal is the recently commissioned Green Bank Telescope (GBT). In 2004, the large aldehydes propenal (CH2CHCHO) and propanal (CH3CH2CHO) were the first new interstellar molecules discovered with the GBT. At the same time, the GBT was used to observe interstellar glycolaldehyde (CH2OHCHO), which is the simplest possible aldehyde sugar; interstellar ethylene glycol (HOCH2CH2OH), which is the sugar alcohol of glycolaldehyde; and interstellar methylcyanodiacetylene (CH3C5N). These new GBT observations suggest that successive atomic addition reactions are common in the formation of larger related species. The observations will be presented and discussed.

  18. Interstellar dust on the eve of Herschel and Planck

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, M.-A.

    2008-11-01

    In this contribution I review some of the key scientific questions that animate the interstellar dust community a few months before the launch of Herschel and Planck. Great progress have been made in the past 25 years on the subject of interstellar dust using infrared observations from space. With the advent of sub-millimeter and millimeter observations with Herschel and Planck, new scientific challenges are coming and exciting discoveries are to be expected. In particular Herschel and Planck will bring key information 1) on the growth process of dust grains, the first step toward the formation of planetesimals, 2) on the structure of the interstellar medium and its link with interstellar turbulence, 3) on the physical conditions of the Galactic halo clouds which are thought to have some cold dust, 4) on the properties of the interstellar magnetic field and 5) on the interstellar PAHs using their spinning dust emission in the millimeter.

  19. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  20. A dynamical model of supernova feedback: gas outflows from the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Lacey, Cedric G.; Baugh, Carlton M.

    2013-12-01

    We present a dynamical model of supernova feedback which follows the evolution of pressurized bubbles driven by supernovae in a multiphase interstellar medium (ISM). The bubbles are followed until the point of break-out into the halo, starting from an initial adiabatic phase to a radiative phase. We show that a key property which sets the fate of bubbles in the ISM is the gas surface density, through the work done by the expansion of bubbles and its role in setting the gas scaleheight. The multiphase description of the ISM is essential, and neglecting it leads to order-of-magnitude differences in the predicted outflow rates. We compare our predicted mass loading and outflow velocities to observations of local and high-redshift galaxies and find good agreement over a wide range of stellar masses and velocities. With the aim of analysing the dependence of the mass loading of the outflow, β (i.e. the ratio between the outflow and star formation rates), on galaxy properties, we embed our model in the galaxy formation simulation, GALFORM, set in the Λ cold dark matter framework. We find that a dependence of β solely on the circular velocity, as is widely assumed in the literature, is actually a poor description of the outflow rate, as large variations with redshift and galaxy properties are obtained. Moreover, we find that below a circular velocity of ≈80 km s-1, the mass loading saturates. A more fundamental relation is that between β and the gas scaleheight of the disc, hg, and the gas fraction, fgas, as β ∝ h^{1.1}_g f^{0.4}_gas, or the gas surface density, Σg, and the gas fraction, as β ∝ Σ ^{-0.6}_g f^{0.8}_gas. We find that using the new mass loading model leads to a shallower faint-end slope in the predicted optical and near-IR galaxy luminosity functions.

  1. Unusual relative strengths of the diffuse interstellar bands in some interstellar dust clouds

    NASA Technical Reports Server (NTRS)

    Krelowski, J.; Walker, G. A. H.

    1986-01-01

    Some of the diffuse interstellar features (DIBs) in the spectra of certain stars at high galactic latitudes (1 is greater than 15 degrees) are unusually weak or absent while others have the strength expected for their color excess. In some cases the stars are probably reddened by single interstellar clouds. There appear to be three families of DIBs. The effects of these families are examined. The existance of the three families implies that at least three agents cause the DIBs and that the proportions of the agents or the physical conditions giving rise to the DIBs can vary from cloud to cloud.

  2. Processing Mechanisms for Interstellar Ices: Connections to the Solar System

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    The organic component of the interstellar medium, which has revealed itself through the ubiquitous 3.4 micrometers hydrocarbon absorption feature, is widespread throughout the disk of our galaxy and has been attributed to dust grains residing in the diffuse interstellar medium. The absorption band positions near 3.4 micrometers are characteristic of C-H stretching vibrations in the -CH3 and -CH2- groups of saturated aliphatic hydrocarbons associated with perturbing chemical groups. The production of complex molecules is thought to occur within dense molecular clouds when ice-mantled grains are processed by various energetic mechanisms. Studies of the processing of interstellar ices and the subsequent production of organic residues have relevance to studies of ices in the solar system, because primitive, icy solar system bodies such as those in the Kuiper belt are likely reservoirs of organic material, either preserved from the interstellar medium or produced in situ. Connections between the interstellar medium and the early solar nebula have long been a source of interest. A comparison of the interstellar organics and the Murchison meteorite illustrates the importance of probing the interstellar connection to the solar system, because although the carbonaceous meteorites are undoubtedly highly processed, they do retain specific interstellar signatures (such as diamonds, SiC grains, graphite and enriched D/H). The organic component, while not proven interstellar, has a remarkable similarity to the interstellar organics observed in over a dozen sightlines through our galaxy. This paper compares spectra from laboratory organics produced through the processing of interstellar ice analog materials with the high resolution infrared observations of the interstellar medium in order to investigate the mechanisms (such as ion bombardment, plasma processing, and UV photolysis) that may be producing the organics in the ISM.

  3. The orientation of the local interstellar magnetic field.

    PubMed

    Opher, M; Stone, E C; Gombosi, T I

    2007-05-11

    The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane. PMID:17495167

  4. Workshop on Scientific Issues in Multiphase Flow

    SciTech Connect

    Hanratty, Thomas J.

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  5. Multiphase studies in continental and marine atmospheres

    NASA Astrophysics Data System (ADS)

    Acker, K.; Wieprecht, W.; Möller, D.

    2010-07-01

    The largest uncertainty in future climate predictions is caused by aerosols and clouds and their interaction with radiation (IPCC, 2007). Aerosol particles have multiple impacts on atmospheric properties: response to climate by optical properties, providing cloud condensation nuclei, being a heterogeneous surface for multiphase chemical reactions e.g. as a source for reactive chlorine. Therefore the chlorine partitioning in marine and continental atmospheres was studied during intensive field campaigns at two European Supersites for Atmospheric Aerosol Research: Melpitz (51°32N, 12°54 E; 87 m a.s.l., near Leipzig (D), Spindler et al., 2004) and Mace Head (53°19 N, 9°54 W; ~10 m a.s.l., near Galway (IR); O`Connor et al., 2008). Hydrochloric acid (HCl), nitric acid (HNO3) and other gaseous species as well after diffusion based separation particulate matter components (e.g., Na, Cl, nitrate, sulphate and others) were determined simultaneously by a denuder-steam chamber-IC-system with a time resolution of 30 min; limit of quantification: 10 ng m-3 (air flow 10 l min-1; Acker et al., 2005). Numerous other atmospheric components (in gas and particulate phase) as well meteorological parameters were determined. Assuming Na to be only of sea-salt origin, the (mass) Na/Cl ratio found in sea water (Rsea = 0.56) is used for calculation of the degree in chlorine loss in particulate matter: Clloss=1-Rsea/Rsample. In Mace Head to a significant extent (~ 20%), sea salt already is depleted in Cl in air masses originate exclusive from the clean marine sector, mainly caused by HCl formation during heterogeneous sulphate formation. In continental influenced air masses a higher degree in Clloss (~ 46%) was found due to additional acid replacement by nitric acid. In air masses arriving Melpitz a very high loss in chlorine has been observed in the aerosol (~ 83%), not showing a significant dependency from the air mass sector and transport percentage above continent. The high

  6. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  7. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  8. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Cody, G.; Ferrior, T.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Hoppe, P.; Hudson, B.; Kearsley, A.; Lai, B.

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  9. Solar lens mission concept for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Turyshev, Slava; Shao, Michael; Zhang, Qicheng

    2015-09-01

    The long standing approach to space travel has been to incorporate massive on-board electronics, probes and propellants to achieve space exploration. This approach has led to many great achievements in science, but will never help to explore the interstellar medium. Fortunately, a paradigm shift is upon us in how a spacecraft is constructed and propelled. This paper describes a mission concept to get to our Sun's Gravity Lens at 550AU in less than 10 years. It will be done by using DE-STAR, a scalable solar-powered phased-array laser in Earth Orbit, as a directed energy photon drive of low-mass wafersats. [1] [2] [3] [4] [5] With recent technologies a complete mission can be placed on a wafer including, power from an embedded radio nuclear thermal generator (RTG), PV, laser communications, imaging, photon thrusters for attitude control and other sensors. As one example, a futuristic 200 MW laser array consisting of 1 - 10 kw meter scale sub elements with a 100m baseline can propel a 10 gram wafer scale spacecraft with a 3m laser sail to 60AU/Year. Directed energy propulsion of low-mass spacecraft gives us an opportunity to capture images of Alpha Centauri and its planets, detailed imaging of the cosmic microwave background, set up interstellar communications by using gravity lenses around nearby stars to boost signals from interstellar probes, and much more. This system offers a very large range of missions allowing hundreds of wafer scale payload launches per day to reach this cosmological data reservoir. Directed Energy Propulsion is the only current technology that can provide a near-term path to utilize our Sun's Gravity Lens.

  10. A New Interstellar Cyclic Molecule, Ethylene Oxide

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-12-01

    Ethylene oxide (c-C2H4O) is only the fourth known ring molecule identified in the interstellar medium, detected in the Galactic Center cloud SgrB2(N) by Dickens et al. (1997). It is the higher energy isomer of both the more familiar interstellar species acetaldehyde (CH3CHO) and the as yet undetected molecule vinyl alcohol (CH2CHOH). Dickens et al. (1997) reported a c-C2H4O molecular column density about an order of magnitude less than that reported for CH3CHO in SgrB2(N). This is a factor of 200 larger than the predictions of the new standard gas phase chemistry model of Lee, Bettens, and Herbst (1996), suggesting that the formation of c-C2H4O may be related to molecular formation on interstellar grains. We present observations of the c-C2H4O to CH3CHO abundance ratio in 5 additional molecular clouds. The data were taken in October 1997 with the Swedish-European Submillimeter Telescope in Chile. The confirmation of ethylene oxide in molecular clouds provides an appealing scenario for the first link in the chain of reactions leading to the origin of life, since it has been suggested as a possible pathway to the formation of the related cyclic molecule oxiranecarbonitrile (c-C3H3NO; cf., Dickens et al. 1996), a precursor to the synthesis of sugar phosphates which comprise the backbone of our molecular genetic structure. References: Dickens, J.E., Irvine, W.M., Ohishi, M., Ikeda, M., Ishikawa, S., Nummelin, A., and Hjalmarson, A. 1997, Astrophys. J., 489 (in press). Dickens, J.E. et al. 1996, Orig. Life Evol. Biosphere, 26, 97. Lee, H.-H., Bettens, R.P.A., and Herbst, E. 1996, Astron. Astrophys. Supp., 119, 111.

  11. The Interstellar Gas Experiment: Analysis in progress

    NASA Technical Reports Server (NTRS)

    Buehler, F.; Lind, D. L.; Geiss, J.; Eugster, O.

    1993-01-01

    The Interstellar Gas Experiment (IGE) exposed thin metallic foils aboard the LDEF spacecraft in low Earth orbit in order to collect neutral interstellar particles which penetrate the solar system due to their motion relative to the sun. By mechanical penetration these atoms were imbedded in the collecting foils along with precipitating magnetospheric ions and, possibly, with ambient atmospheric atoms. During the entire LDEF mission, seven of these foils collected particles arriving from seven different directions as seen from the spacecraft. After the foils were returned to Earth, a mass spectrometric analysis of the noble gas component of the trapped particles was begun. The isotopes of He-3, He-4, Ne-20, and Ne-22 were detected. We have given a first account of the experiment. In order to infer the isotopic ratios in the interstellar medium from the concentrations found in the foils, several lines of investigation had to be initiated. The flux of ambient atmospheric noble gas atoms moving toward the foils due to the orbital motion of LDEF was estimated by detailed calculations. Any of these particles which evaded the baffles in the IGE collector could be entrapped in the foils as a background flux. However, the calculations have shown that this flux is negligible, which was the intent of the experiment hardware design. This conclusion is supported by the measurements. However, both the concentration of trapped helium and its impact energy indicate that the flux of magnetospheric ions which was captured was larger than had been expected. In fact, it appears that the magnetospheric particles constitute the largest fraction of the particles in the foils. Since little is known about this particle flux, their presence in the IGE foils appears fortunate. The analysis of these particles provides information about their isotropic composition and average flux.

  12. A new model of composite interstellar grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.; Dubkova, D. N.

    The approach to model composite interstellar dust grains using the exact solution to the light scattering problem for multi-layered spheras suggested by Voshchinnikov & Mathis (1999) is further developed. Heterogeneous scatterers are represented by particles with very large numof shells each including a homogeneous layer per material considered (here amorphous carbon, astronomical silicate and vacuum). It is demonstrated that the scattering characteristics (cross-sections, albedo, asymmetry factor, etc.) well converge with the increase of the number of shells (layers) and each of the characteristics has the same limit independent of the layer order in the shells. The limit obviously corresponds to composite particles consisting of several well mixed materials. However, our results indicate that layered particles with even a few shells (layers) have the characteristics close enough to these limits. The applicability of the effective medium theory (EMT) mostly utilized earlier to approximate inhomogeneous interstellar grains is examined on the base of the model. It is shown that the used EMT rules generally have the accuracy of several percents in the whole range of particle sizes provided the porosity does not exceed about 50%. For larger porosity, the rules give wrong results. Using the model we reanalyze basics of interpretation of various manifestations of cosmic dust --- interstellar extinction, scattered radiation, infrared radiation, radiation pressure, etc. It is found that an increase of porosity typically leads to the increase of cross-sections, albedo and the sweeping efficiency of small grains as well as to the decrease of dust temperature and the strength of infrared bands (the EMT fails to produce these effects). We also conclude that pure iron even in negligible amount (<˜1 % by the volume fractis unlikely to form a layer on or inside a grain because of peculiar absorption of radiation by such particles. As an example of the potential of the model, it

  13. Interstellar communication: The case for spread spectrum

    NASA Astrophysics Data System (ADS)

    Messerschmitt, David G.

    2012-12-01

    Spread spectrum, widely employed in modern digital wireless terrestrial radio systems, chooses a signal with a noise-like character and much higher bandwidth than necessary. This paper advocates spread spectrum modulation for interstellar communication, motivated by robust immunity to radio-frequency interference (RFI) of technological origin in the vicinity of the receiver while preserving full detection sensitivity in the presence of natural sources of noise. Receiver design for noise immunity alone provides no basis for choosing a signal with any specific character, therefore failing to reduce ambiguity. By adding RFI to noise immunity as a design objective, the conjunction of choice of signal (by the transmitter) together with optimum detection for noise immunity (in the receiver) leads through simple probabilistic argument to the conclusion that the signal should possess the statistical properties of a burst of white noise, and also have a large time-bandwidth product. Thus spread spectrum also provides an implicit coordination between transmitter and receiver by reducing the ambiguity as to the signal character. This strategy requires the receiver to guess the specific noise-like signal, and it is contended that this is feasible if an appropriate pseudorandom signal is generated algorithmically. For example, conceptually simple algorithms like the binary expansion of common irrational numbers like π are shown to be suitable. Due to its deliberately wider bandwidth, spread spectrum is more susceptible to dispersion and distortion in propagation through the interstellar medium, desirably reducing ambiguity in parameters like bandwidth and carrier frequency. This suggests a promising new direction in interstellar communication using spread spectrum modulation techniques.

  14. Les Johnson Views Interstellar Sail Material

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at Marshall Space Flight Center's (MSFC) Interstellar Propulsion Research department are proposing different solutions to combustion propellants for future space travel. One alternative being tested is the solar sail. The idea is, once deployed, the sail will allow solar winds to propel a spacecraft away from Earth and towards its destination. This would allow a spacecraft to travel indefinitely without the need to refuel during its ong journey. Thin reflective sails could be propelled through space by sunlight, microwave beams, or laser beams, just as the wind pushes sailboats on Earth. The sail will be the largest spacecraft ever built, sparning 440 yards, twice the diameter of the Louisiana Super Dome. Construction materials are being tested in a simulated space environment, where they are exposed to harsh conditions to test their performance and durability in extremely hot and cold temperatures. A leading candidate for the construction material is a carbon fiber material whose density is less than 1/10 ounce per square yard, the equivalent of flattening one raisin to the point that it covers a square yard. In space, the material would unfurl like a fan when it is deployed from an expendable rocket. This photo shows Les Johnson, manager of MSFC's Interstellar Propulsion Research Center holding the rigid, lightweight carbon fiber. An artist's concept of the sail is on the right. Mankind's first venture outside of our solar system is proposed for launch in a 2010 timeframe. An interstellar probe, powered by the fastest spacecraft ever flown, will zoom toward the stars at 58 miles per second. It will cover the distance from New York to Los Angeles in less than a minute and will travel over 23 billion miles beyond the edge of the solar system.

  15. Stellar ultraviolet colors and interstellar extinction

    NASA Technical Reports Server (NTRS)

    Peytremann, E.; Davis, R. J.

    1972-01-01

    A sample of celescope results is studied. Most of the sample stars belong to the Orion and Vela regions. Stars with visual excess E(B-V) less than 0.05 are selected in order to derive relationships of intrinsic color index versus spectral type. The resulting intrinsic color-color relations are compared with existing blanketed and unblanketed model calculations. Finally, the preceding intrinsic relations are utilized to derive some results on interstellar extinction. Owing to the rather large scatter in the celescope data, the Vela stars give the more significant results because their visible excess E(B-V) is, in general, larger than that for the Orion stars.

  16. Optical properties of irregular interstellar grains

    NASA Technical Reports Server (NTRS)

    Perrin, J. M.; Lamy, P. L.

    1989-01-01

    In order to study the interaction of light with interstellar grains, the authors represent an irregular particle by a network of interacting dipoles whose polarizability is determined in a first approach by the Clausius-Mossoti relationship. Typically, 10,000 dipoles are considered. In the case of spherical particles, the results from Mie theory are fully recovered. The main interest of this method is to study with good accuracy the implications of surface roughness and/or inhomogeneities on optical properties in the infrared spectral range, particularly of the silicate emission features.

  17. Composition, structure, and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.

    1987-01-01

    Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.

  18. Diffuse cloud chemistry. [in interstellar matter

    NASA Technical Reports Server (NTRS)

    Van Dishoeck, Ewine F.; Black, John H.

    1988-01-01

    The current status of models of diffuse interstellar clouds is reviewed. A detailed comparison of recent gas-phase steady-state models shows that both the physical conditions and the molecular abundances in diffuse clouds are still not fully understood. Alternative mechanisms are discussed and observational tests which may discriminate between the various models are suggested. Recent developments regarding the velocity structure of diffuse clouds are mentioned. Similarities and differences between the chemistries in diffuse clouds and those in translucent and high latitude clouds are pointed out.

  19. The 2014 KIDA Network for Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Loison, J.-C.; Herbst, E.; Pavone, B.; Bergeat, A.; Béroff, K.; Chabot, M.; Faure, A.; Galli, D.; Geppert, W. D.; Gerlich, D.; Gratier, P.; Harada, N.; Hickson, K. M.; Honvault, P.; Klippenstein, S. J.; Le Picard, S. D.; Nyman, G.; Ruaud, M.; Schlemmer, S.; Sims, I. R.; Talbi, D.; Tennyson, J.; Wester, R.

    2015-04-01

    Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.

  20. Panel discussion - Phases of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    1987-01-01

    This article summarizes the panel discussion on 'Phases of the Interstellar Medium'. While the 3-phase model has had many successes, several recent observations disagree with its predictions. The major unresolved issue is whether the model can be 'fixed' by tinkering with cloud geometries and supernova rates and by including a galactic fountain. The Milky Way supernova rate may have been overestimated, many supernovae may be less than 10 to the 51st ergs, and modelers have probably neglected important physics in mass transport, cloud formation and halo input.

  1. Engineering planetary lasers for interstellar communication

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Mumma, Michael J.; Donaldson, Bruce K.

    1992-01-01

    Spacefaring skills evolved in the twenty-first century will enable missions of unprecedented complexity. One such elaborate project might be to develop tools for efficient interstellar data transfer. Informational links to other star systems would facilitate eventual human expansion beyond our solar system, as well as intercourse with potential extraterrestrial intelligence. This paper reports the major findings of a 600-page, 3-year, NASA-funded study examining in quantitative detail the requirements, some seemingly feasible methods, and implications of achieving reliable extrasolar communications.

  2. Non-equilibrium processes in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Strelnitskiy, V. S.

    1979-01-01

    The types of nonequilibrium emission and absorption by interstellar molecules are summarized. The observed brightness emission temperatures of compact OH and H2O sources are discussed using the concept of maser amplification. A single thermodynamic approach was used in which masers and anti-masers are considered as heat engines for the theoretical interpretation of the cosmic maser and anti-maser phenomena. The requirements for different models of pumping are formulated and a classification is suggested for the mechanisms of pumping, according to the source and discharge of energy.

  3. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional

  4. Diffuse Interstellar Bands: The Way Forward

    NASA Astrophysics Data System (ADS)

    Tielens, A. G. G. M.

    2014-02-01

    Rather than a summary of the conference, I present here an overview of the status of the field and our progress over the last two decades from the points of view of astronomy, molecular physics, spectroscopy, and astrochemistry. While at first sight, progress may seem slow, actually, we have made an important stride forward. We have recognized now that the problem is very complex and identifying the carriers of the Diffuse Interstellar Bands will require a concerted effort of astronomers, molecular physicists, spectroscopists, and astrochemists. While this is a daunting prospect, we have identified the tools that we need to make this happen.

  5. Charting the Interstellar Magnetic Field behind the Interstellar Boundary Explorer (IBEX) Ribbon

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Berdyugin, A.; Piirola, V.; Wiktorowicz, S.; Magalhaes, A. M.; Seriacopi, D.; Andersson, B. G.; Funsten, H. O.; McComas, D. J.; Schwadron, N.; Slavin, J. D.; Hanson, A.; Fu, C. W.

    2015-12-01

    The relation between the interstellar magnetic field (ISMF) controlling the configuration of the "ribbon" of energetic neutral atoms discovered by IBEX, and the ISMF in deep space, can be probed with polarized starlight. Starlight is polarized in a dichroic interstellar medium formed by interstellar dust grains that are aligned with respect to the ISMF. Our ongoing survey of polarized starlight traces the ISMF within 40 parsecs. The local ISMF direction was evaluated using the weighted means of the linear polarization vectors. The dominant nearby magnetic field direction is within 7.6 (+14.9,-7.6) degrees of the ISMF direction that is traced by the IBEX ribbon. A low level of random magnetic turbulence is obtained from the polarization data that best trace the IBEX ribbon field direction, 9 (+/-1) deg, which explains the continuity of the IBEX ISMF out into space where it can be traced by starlight polarization. The ISMF direction is perpendicular to the velocity of the cloud around the heliosphere, and it orders the kinematics of the other local interstellar clouds. These results are obtained only after a well-defined subset of the polarization data is omitted from the sample. A separate analysis shows that these polarization vectors are oriented toward the upwind direction of the interstellar gas flowing into the heliosphere. This group of polarization data traces an elongated filamentary-type feature that is perpendicular to the hydrogen deflection plane. We suggest a heliosheath origin for the grains that create this polarized feature. One characteristic shown by the polarization and IBEX field directions is that the ribbon ISMF extends to the boundaries of the BICEP2 region where the polarized CMB background has been studied. Inside of the BICEP2 region other nearby magnetic components are also present. The sightline toward the star Capella suggests that the polarization mechanism is very efficient in this nearby cloud.

  6. Phase-field modeling of multi-phase solidification

    NASA Astrophysics Data System (ADS)

    Nestler, Britta; Wheeler, Adam A.

    2002-08-01

    A phase-field model for a general class of multi-phase metallic alloys is now proposed which describes both multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  7. Investigation on the gas pockets in a rotodynamic multiphase pump

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, Y. J.; Cai, S. J.; Zhu, H. W.; Zhang, Y. X.

    2016-05-01

    The appearance of gas pockets has an obvious impact on the performance of the rotodynamic multiphase pump. In order to study the formation of gas pockets in the pump and its effects on pump's performance, the unsteady numerical simulation and the visualization experiments were done to investigate gas pockets in a three-stage rotodynamic multiphase pump developed by authors. Meanwhile, the mixture of water and air was selected as the medium. According to the distributions of pressure, gas volume fraction and velocity vector in three compression cells in unsteady flow process, the process of the formation of gas pockets in the pump were analysed generally. The visualization experiments were used to verify the validity of the numerical simulation. The results will be benefit for the hydraulic design of the compression cell of rotodynamic multiphase pump.

  8. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    SciTech Connect

    Dunn, Timothy Alan

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  9. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a proposed three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was terminated after the first year due to changes in funding priorities. The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments in the first year included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient method for handling particle size distribution in multiphase flow simulation codes and finally the incorporation of precipitation growth and agglomeration kinetics in LANL`s CFDLIB multiphase flow code library.

  10. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  11. Determination of Interstellar O Parameters Using the First Two Years of Data From the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Möbius, E.; McComas, D. J.; Bochsler, P.; Bzowski, M.; Fuselier, S. A.; Livadiotis, G.; Frisch, P.; Müller, H.-R.; Heirtzler, D.; Kucharek, H.; Lee, M. A.

    2016-09-01

    The direct measurements of interstellar matter by the Interstellar Boundary Explorer (IBEX) mission have opened a new and important chapter in our study of the interactions that control the boundaries of our heliosphere. Here we derive for the quantitative information about interstellar O flow parameters from IBEX low-energy neutral atom data for the first time. Specifically, we derive a relatively narrow four-dimensional parameter tube along which interstellar O flow parameters must lie. Along the parameter tube, we find a large uncertainty in interstellar O flow longitude, 76.°0 ± 3.°4 from χ 2 analysis and 76.°5 ± 6.°2 from a maximum likelihood fit, which is statistically consistent with the flow longitude derived for interstellar He, 75.°6 ± 1.°4. The best-fit O and He temperatures are almost identical at a reference flow longitude of 76°, which provides a strong indication that the local interstellar plasma near the Sun is relatively unaffected by turbulent heating. However, key differences include an oxygen parameter tube for the interstellar speed (relation between speed and longitude) that has higher speeds than those in the corresponding parameter tube for He, and an upstream flow latitude for oxygen that is southward of the upstream flow latitude for helium. Both of these differences are likely the result of enhanced filtration of interstellar oxygen due to its charge-exchange ionization rate, which is higher than that for helium. Furthermore, we derive an interstellar O density near the termination shock of {5.8}-0.8+0.9× {10}-5 cm‑3 that, within uncertainties, is consistent with previous estimates. Thus, we use IBEX data to probe the interstellar properties of oxygen.

  12. The Submillimeter-wave Rotational Spectra of Interstellar Molecules

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.; Butler, R. A. H.; Winnewisser, M.; Winnewisser, G.; Fuchs, U.; Groner, P.; Sastry, K. V. L. N.

    2002-01-01

    We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.

  13. A Type Stars as Probes of the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Ferrero, R. F.; Ferlet, R.; Vidal-Madjar, A.

    1984-01-01

    With the aim to sample the Local Interstellar Medium (LISM), it was proposed to use A stars as targets. The Mg II UV lines seem to be the best interstellar absorption candidates. Several hundreths of A stars can be reached within 100 pc. First preliminary results (20 lines of sight) are presented, based on previous Copernicus and actual IUE observations.

  14. Catalog of open clusters and associated interstellar matter

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1988-01-01

    The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988.

  15. Photoabsorption and phototdissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Sutom, Masako

    1988-01-01

    The photoabsorption and photodissociation cross sections of interstellar molecules and radicals were measured in the 90 to 200 nm region using synchrotron radiation, F sub 2 laser, excimer lasers, and discharge lamps as light sources. These data are currently needed for determining the formation and destruction rates of molecules and radicals by the interstellar radiation field.

  16. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  17. Editorial: Interstellar Boundary Explorer (IBEX): Direct Sampling of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2012-02-01

    This special supplement issue of the Astrophysical Journal comprises six coordinated papers that provide the first detailed analyses of the direct sampling of interstellar neutral atoms by the Interstellar Boundary Explorer (IBEX). Interstellar atoms are the detritus of older stars—their stellar winds, novae, and supernovae—spread across the galaxy, which fill the vast interstellar space between the stars. The very local interstellar medium around the Sun is filled with both ionized and neutral atoms with approximately equal numbers, and occasional ionization, charge exchange, and recombination makes them a single interacting material over large distances. IBEX (McComas et al. 2009a) is a NASA Small Explorer mission with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium; this objective has primarily been achieved by taking the first global energetic neutral atom (ENA) images, which provide detailed ENA fluxes and energy spectra over all look directions in space. IBEX was launched 2008 October 19 and subsequently maneuvered into a high-altitude, highly elliptical (~15,000 × 300,000 km), roughly week-long orbit. The payload comprises two very high sensitivity, single-pixel ENA cameras: IBEX-Hi (Funsten et al. 2009a), which measures ENAs from ~300 eV to 6 keV, and IBEX-Lo (Fuselier et al. 2009a), which measures ENAs from ~10 eV to 2 keV. The initial IBEX ENA results were published together in a special issue of Science magazine (McComas et al. 2009b; Funsten et al. 2009b; Fuselier et al. 2009b; Schwadron et al. 2009). Since then there have been numerous additional studies of the IBEX ENA observations of the heliosphere, as well as ENAs from the Moon and Earth's magnetosphere (see recent review by McComas et al. 2011 and references therein). Prior to IBEX, the only interstellar neutral atoms to be directly sampled were He, observed by the Ulysses spacecraft a decade ago (Witte et al. 1996

  18. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  19. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  20. PROSPECTS FOR THE DETECTION OF INTERSTELLAR CYANOVINYLIDENE

    SciTech Connect

    Kolos, Robert; Gronowski, Marcin; Dobrowolski, Jan Cz.

    2009-08-10

    Prospects for the presence and detection of interstellar cyanovinylidene, CC(H)CN, a Y-shaped isomer of cyanoacetylene, are discussed. It is proposed that CC(H)CN can arise in interstellar clouds as one of the HC{sub 3}NH{sup +} + e {sup -} dissociative recombination products, by rearrangements of the neutral chain radical HC{sub 3}NH into branched species HCCC(H)N, CC(H)C(H)N, and/or HCC(H)CN, and by the subsequent elimination of a hydrogen atom. It is deduced that the abundance of cyanovinylidene in molecular clouds should be confined between the abundances of its chain isomers HNCCC and HCNCC. Quantum chemical predictions regarding cyanovinylidene geometry, ground-state rotational constants, centrifugal distortion constants, spin-orbit coupling, IR absorption spectroscopy, and electric dipole moment are given. The spectroscopically observed molecules formyl cyanide, NC{sub 2}(H)O, and propynal, HC{sub 3}(H)O, with structures qualitatively resembling cyanovinylidene, served to prove the adequacy of the calculational procedures employed.

  1. Chemistry and Evolution of Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.

    2003-01-01

    In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.

  2. On Ion Clusters in the Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Donn, Bertram

    1960-01-01

    In a recent paper V.I. Krassovsky (1958) predicts the occurrence of clusters of large numbers of atoms and molecules around ions in the interstellar gas. He then proposes a number of physicochemical processes that would be considerably enhanced by the high particle density in such clusters. In particular, he suggests that absorption by negative ions formed in the clusters would account for the interstellar extinction without any necessity for the presence of grains. Because of the important consequences that ion clusters could have, it is necessary to examine their occurrence more fully. This note re-examines the formation of ion clusters in space and shows that even ion-molecule pairs are essentially non-existent. Ion clusters have been considered by Bloom and Margenau (1952) from the same point of view as that used by Krassovsky, whose basic reference (Joffe and Semenov 1933) unfortunately is not available. A different approach has been used by Eyring, Hirschfelder, and Taylor (1936) following the methods of chemical equilibrium. Both the references cited here enable one to conclude that clustering is negligible. Therefore, the treatment of Eyring et al. is more appropriate than the method of Bloom and Margenau, which depends on the statistical equilibrium of an atmosphere in a force field.

  3. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  4. On the nature of interstellar organic chemistry

    NASA Astrophysics Data System (ADS)

    Charnley, Steven B.

    1997-01-01

    A theory for the origin of all organic molecules observed in regions of massive and low-mass star formation, as well as in dark molecular clouds is described. On dust grains, single atom addition reactions and stability of the intermediate radicals, mechanisms similar to those believed to form the organic component of the Murchison meteorite, lead to a very limited number of mantle compositions depending upon the degree of hydrogenation. The key step in the theory is the formation of the formyl radical by H atom addition (by quantum tunnelling) to CO. Subsequent H atom additions lead to formaldehyde and methanol, as previously suggested; C, N, and O atoms can also undergo additions to HCO. For increasing hydrogenation, the mantle types include one in which there is little contribution from formyl-initiated chemistry; one in which an acetylenic chain develops through C atom additions; and others where the acetylenic chain is increasingly hydrogenated to form aldehydes and alcohols. Following evaporation of grain mantles, such as occurs in protostellar hot cores, these molecules can form new organics, for example, by alkyl cation transfer from alcohols. In dark clouds, different mantles lead to different gas phase organics. This scenario accounts naturally for the formation of many interstellar organics for which none presently exists, predicts observable correlations between specific interstellar molecules, indicates the presence of many new organic molecules and why several others are not observed.

  5. UV observations of local interstellar medium.

    NASA Astrophysics Data System (ADS)

    Kurt, V.; Mironova, E.; Fadeev, E.

    2008-12-01

    The methods of the interstellar matter study are described. The brief information of space missions aimed at observations in the unreachable for ground based telescopes UV spectral range (IUE, As- tron, HST and GALEX.) is presented. The history of discovery of H and He atoms entering the Solar System from the local interstellar medium (LISM) is given in brief. The results of observations performed by the group from Stern- berg Astronomical Institute (SAI MSU) and Space Research Institute (IKI RAS) performed with the help of the missions Prognoz-5, Prognoz-6 and the stations Zond-1, Venera and Mars and aimed at estimation of all basic LISM parameters (the velocity of the Sun in relation to LISM, directions of movement, densities of H and He atoms, LISM temperature) are presented. We also describe the present-day investigations of LISM performed with SOHO and ULYSSES mis- sions including the direct registration of He atoms entering the Solar System. The problem of interaction between the incoming flow of the ISM atoms ("in- terstellar wind") and the area of two shocks at the heliopause border (100-200 AU) is discussed. The LISM parameters obtained using the available data are presented in two tables.

  6. Formation of Benzene in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  7. Interstellar Clouds Near the Sun, III

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla C.

    We propose to continue a study of interstellar sight-lines with low total column densities in order to determine the nature (temperature, density, fractional ionization) of the low density gas near the Sun and within the interior of the local superbubble. IUE data, combined with previous Copernicus observations, can be used to delimit the filling factor of nearby low density warm gas, and by default restrict the filling factor of 10^6 K plasma. In the proposed program, observations of MgI and ZnII(and in one region CIV) are combined with cloud maps and ground-based NaI observations (from a separate program) to restrict gas temperature, spatial and electron densities. The Welty et al. (1986) technique for removing fixed pattern noise through observations of a template star (used to flat-field the target stars on a pixel-by-pixel basis) is used to enable 3sigma absorption line detections at the 6-9 mA level, depending on the number of exposures involved. The ultimate goal of both the IUE and ground-based program is to map out the local interstellar medium. Apart from the intrinsic interest of this problem, it will help define regions where ultraviolet sources can be observed with FUSE/Lyman at lambda<912 A.

  8. Formation of benzene in the interstellar medium

    PubMed Central

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.

    2011-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430

  9. Graphene Solar Photon Sails and Interstellar Arks

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    2014-06-01

    A review of conceptual interstellar generation ships is followed by a presentation of optical and thermal properties of graphene and a discussion of kinematics/thermal-aspects of the solar-acceleration phase of a starship propelled by a graphene hollowbody solar-photon sail. The spacecraft departs from an initially parabolic solar orbit and the sail is oriented normal to the Sun during solar-acceleration. Perihelion is constrained to 0.1 AU because humans can tolerate ~3g for several hours without lasting effects. The 5 × 106 kg payload mass and 9.16 × 106 kg sail mass are applied as cosmic-ray shielding for the ship's 20-50 person population during the ~1,400-year cruise phase. Artificial gravity, the Coriolis Effect, closed-environment agriculture, illumination, on-board energy requirements, thermal dissipation, and hygiene/recreation are considered in a discussion of habitat design. Many concepts for mid-course trajectory correction are discussed including a new one that expels mass collected by a Cassenti toroidal ion scoop in a direction normal to the ship's trajectory. Although acceleration is affected by the unfurled sail, other options are discussed, as is the problem of protection from interstellar-dust erosion. As well as presenting the total mass budget, the conclusion reviews published variations and modifications on the generation-ship theme.

  10. The Interstellar Production of Biologically Important Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason; Allamandola, Louis J.

    2000-01-01

    One of the primary tasks of the Astrochemistry Laboratory at Ames Research Center is to use laboratory simulations to study the chemical processes that occur in dense interstellar clouds. Since new stars are formed in these clouds, their materials may be responsible for the delivery of organics to new habitable planets and may play important roles in the origin of life. These clouds are extremely cold (less than 50 kelvin), and most of the volatiles in these clouds are condensed onto dust grains as thin ice mantles. These ices are exposed to cosmic rays and ultraviolet (UV) photons that break chemical bonds and result in the production of complex molecules when the ices are warmed (as they would be when incorporated into a star-forming region). Using cryovacuum systems and UV lamps, this study simulates the conditions of these clouds and studies the resulting chemistry. Some of the areas of progress made in 1999 are described below. It shows some of the types of molecules that may be formed in the interstellar medium. Laboratory simulations have already confirmed that many of these compounds are made under these conditions.

  11. Carbon Chains in the Diffuse Interstellar Gas

    NASA Astrophysics Data System (ADS)

    Thaddeus, P.

    1999-05-01

    Linear carbon chain molecules are the dominant fraction of the 125 molecules which have now been identified in interstellar clouds or circumstellar shells, and the only molecules which have been conclusively identified as carriers of optical diffuse interstellar bands are carbon chains (as discussed by Maier at this meeting). In our laboratory over the past two years we have succeeded in detecting 46 carbon chains by applying Fourier transform microwave spectroscopy to supersonic molecular beams of reactive species produced in a gas discharge. The radio spectrum of all - including hyperfine structure when present - has been measured to the point that the laboratory astrophysics is complete: very precise rest frequencies are in hand for astronomical searches, and six of the chains have in fact already been detected with large radio telescopes. Because the longer chains tend to have their strongest lines at low frequencies, the resurfaced Arecibo telescope and the Green Bank Telescope under construction promise to be especially effective search instruments. Carbon chains are by far the best candidates for the several hundred diffuse bands which have been identified since 1922, and since the chain densities achieved in the laboratory are fairly high by the standards of laser spectroscopy, the classical problem of the diffuse bands may be on the point of general solution.

  12. Precursors to Interstellar Shocks of Solar Origin

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Kurth, W. S.; Stone, E. C.; Cummings, A. C.; Krimigis, S. M.; Decker, R. B.; Ness, N. F.; Burlaga, L. F.

    2015-12-01

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the "foreshock" that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  13. Precursors To Interstellar Shocks of Solar Origin

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Kurth, W. S.; Stone, E. C.; Cummings, A. C.; Krimigis, S. M.; Decker, R. B.; Ness, N. F.; Burlaga, L. F.

    2015-08-01

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  14. Streaming of interstellar grains in the solar system

    NASA Technical Reports Server (NTRS)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  15. The violent interstellar medium of the Magellanic Cloud System

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2009-03-01

    The interstellar gas of the Magellanic System is subject to the harassment of tidal interactions on galaxy-wide scales and stellar energy feedback on sub-galactic scales. H i surveys of the Magellanic System have produced spectacular images of the tidally displaced interstellar gas in the Magellanic Bridge and Streams. Multi-wavelength observations of the interstellar gas in the Magellanic Clouds have revealed gas components in physical conditions ranging from cold molecular cloud to hot ionized coronal gas. While stellar energy feedback is responsible for heating and dispersing interstellar gas, it can also compress ambient cloud to form stars. I will use Chandra, XMM-Newton, FUSE, HST, Spitzer, ATCA, and other ground-based observations to illustrate the interplay among massive stars, interstellar medium, and star formation.

  16. Charting the Interstellar Magnetic Field causing the Interstellar Boundary Explorer (IBEX) Ribbon of Energetic Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; Berdyugin, A.; Piirola, V.; Magalhaes, A. M.; Seriacopi, D. B.; Wiktorowicz, S. J.; Andersson, B.-G.; Funsten, H. O.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Hanson, A. J.; Fu, C.-W.

    2015-12-01

    The interstellar magnetic field (ISMF) near the heliosphere is a fundamental component of the solar galactic environment that can only be studied using polarized starlight. The results of an ongoing survey of the linear polarizations of local stars are analyzed with the goal of linking the ISMF that shapes the heliosphere to the nearby field in interstellar space. We present new results on the direction of the magnetic field within 40 pc obtained from analyzing polarization data using a merit function that determines the field direction that provides the best fit to the polarization data. Multiple magnetic components are identified, including a dominant interstellar field, {B}{POL}, that is aligned with the direction ℓ, b = 36.°2, 49.°0 (±16.°0). Stars tracing {B}{POL} have the same mean distance as stars that do not trace {B}{POL}, but show weaker average polarizations consistent with a smaller column density of polarizing material. {B}{POL} is aligned with the ISMF traced by the IBEX Ribbon to within {7.6}-7.6+14.9 degrees. The variations in the polarization position angle directions derived from the data that best match {B}{POL} indicate a low level of magnetic turbulence, ˜9° ± 1°. The direction of {B}{POL} is obtained after excluding polarization data tracing a separate magnetic structure that appears to be associated with interstellar dust deflected around the heliosphere. The velocities of local interstellar clouds relative to the Local Standard of Rest (LSR) increase with the angles between the LSR velocities and {B}{POL}, indicating that the kinematics of local interstellar material is ordered by the ISMF. The Loop I superbubble that extends close to the Sun contains dust that reddens starlight and whose distance is determined by the color excess E(B - V) of starlight. Polarizations caused by grains aligned with respect to {B}{POL} are consistent with the location of the Sun in the rim of the Loop I superbubble. An angle of {76

  17. IDENTIFICATION OF A FUNDAMENTAL TRANSITION IN A TURBULENTLY SUPPORTED INTERSTELLAR MEDIUM

    SciTech Connect

    Scannapieco, Evan; Gray, William J.; Pan, Liubin

    2012-02-10

    The interstellar medium (ISM) in star-forming galaxies is a multiphase gas in which turbulent support is at least as important as thermal pressure. Sustaining this configuration requires continuous radiative cooling, such that the overall average cooling rate matches the decay rate of turbulent energy into the medium. Here we carry out a set of numerical simulations of a stratified, turbulently stirred, radiatively cooled medium, which uncover a fundamental transition at a critical one-dimensional turbulent velocity of Almost-Equal-To 35 km s{sup -1}. At turbulent velocities below Almost-Equal-To 35 km s{sup -1}, corresponding to temperatures below 10{sup 5.5} K, the medium is stable, as the time for gas to cool is roughly constant as a function of temperature. On the other hand, at turbulent velocities above the critical value, the gas is shocked into an unstable regime in which the cooling time increases strongly with temperature, meaning that a substantial fraction of the ISM is unable to cool on a turbulent dissipation timescale. This naturally leads to runaway heating and ejection of gas from any stratified medium with a 1D turbulent velocity above Almost-Equal-To 35 km s{sup -1}, a result that has implications for galaxy evolution at all redshifts.

  18. KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE

    EPA Science Inventory

    The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...

  19. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  20. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  1. A single element multiphase compulsator powered railgun systems

    SciTech Connect

    Murthy, S.K.; Weldon, W.F. . Center for Electromechanics)

    1994-01-01

    This paper investigates multiphase railguns (electromagnetic launchers) powered by multiphase compensated pulsed alternators (compulsators). The polyphase system offers several advantages over the single phase system. The multiphase compulsator relaxes the strong dependence between the current pulse width necessary for the railgun and the design parameters of the generator (number of poles, rotor diameter and tip speed) thus allowing the compulsator to be designed for optimum power density and electromechanical energy conversion. The paper examines in particular the two phase system. The authors explore different methods of achieving high acceleration ratios (average to peak) in multiphase railgun systems. Some of the methods analyzed are ramping up the field current of the compulsator to counter the increasing impedance of the gun, using a railgun with varying inductance per unit length (L[prime]), and using an external variable inductor in series with the compulsator. Special attention is devoted to the external series inductor method which uses a rotary flux compressor (rfc). Several concepts to integrate the rfc and the compulsator into a single element device are discussed. Comparison between the state of the art single phase compulsator powered 9 MJ railgun system, currently under fabrication at CEM-UT and a two phase compulsator driven four rail railgun system is also presented.

  2. Automated Design of Multiphase Space Missions Using Hybrid Optimal Control

    ERIC Educational Resources Information Center

    Chilan, Christian Miguel

    2009-01-01

    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving…

  3. Multiphase complete exchange on Paragon, SP2 and CS-2

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1995-01-01

    The overhead of interprocessor communication is a major factor in limiting the performance of parallel computer systems. The complete exchange is the severest communication pattern in that it requires each processor to send a distinct message to every other processor. This pattern is at the heart of many important parallel applications. On hypercubes, multiphase complete exchange has been developed and shown to provide optimal performance over varying message sizes. Most commercial multicomputer systems do not have a hypercube interconnect. However, they use special purpose hardware and dedicated communication processors to achieve very high performance communication and can be made to emulate the hypercube quite well. Multiphase complete exchange has been implemented on three contemporary parallel architectures: the Intel Paragon, IBM SP2 and Meiko CS-2. The essential features of these machines are described and their basic interprocessor communication overheads are discussed. The performance of multiphase complete exchange is evaluated on each machine. It is shown that the theoretical ideas developed for hypercubes are also applicable in practice to these machines and that multiphase complete exchange can lead to major savings in execution time over traditional solutions.

  4. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect

    Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C

    2013-07-01

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  5. Challenges in Modeling Astrophysical Phenomena Involving Radiative, Reactive, and Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Leung, C. M.

    1994-05-01

    Computer modeling is an indispensable research tool in advancing our understanding of astrophysical phenomena. With the rapid increase in both quality and quantity of astronomical data from ground-based and space-based facilities, a major challenge facing computational astrophysicists is to construct models with increasing degree of realism (in terms of physical and chemical processes, as well as source geometry) to interpret these data. The continuing advance in computer hardware and the associated increase in computing power allow the inclusion of more realistic microphysics and physico- chemical processes in the models. While many astrophysical phenomena are dominated by the collective effects of gas dynamics, there are many situations in which radiation transport, heterogeneous chemical kinetics, and gas dynamics all play an important role, making the modeling of radiative and reactive flow problems difficult. In particular, the modeling of astrophysical phenomena involving radiative, reactive, and multiphase flows not only increases the number of simultaneous processes occurring but also expands the range of both time and space scales in the problem. Counterintuitive behavior arises from the interactions of the various local, diffusive, convective, and oscillatory phenomena in the flow. Some examples are chemical and dynamical evolution of interstellar clouds involving both gas-phase and grain-surface chemistry, dust formation in radiation-driven stellar winds, and grain alignment in magnetohydrodynamic shocks. In this talk I will first review the basic concepts and computational techniques in modeling astrophysical systems involving radiation hydrodynamics, chemical kinetics, and heterogeneous components. I will describe a few selected results to demonstrate some recent progress made and identify the technical challenges that we still need to overcome.

  6. AN ANALYTICAL MODEL OF INTERSTELLAR GAS IN THE HELIOSPHERE TAILORED TO INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    SciTech Connect

    Lee, Martin A.; Kucharek, Harald; Moebius, Eberhard; Wu Xian; Bzowski, Maciej; McComas, David

    2012-02-01

    The stationary distribution of interstellar neutral gas in the heliosphere subject to solar gravity, solar radiation pressure, photoionization, and charge exchange is investigated analytically assuming ionization rates and radiation pressure that are proportional to R{sup -2}, where R is the heliocentric radius. The collisionless hyperbolic trajectories of the individual atoms including ionization losses are combined with Liouville's Theorem to construct the heliospheric phase-space distribution function of an interstellar gas species in the solar reference frame under the assumption that the distribution is a drifting Maxwellian at large distances from the Sun. The distribution is transformed to the Earth (essentially Interstellar Boundary Explorer (IBEX)) frame as a function of solar longitude. The expression is then tailored to the latitudinal scan of IBEX as a function of longitude using the fact that IBEX detects each atom close to perihelion in its hyperbolic orbit. The distribution is further adapted to IBEX by integrating the differential intensity over the entrance aperture solid angle of the IBEX-Lo collimator, and over energy to predict the IBEX count rate of helium. The major features of the predicted count rate are described, including a peak in longitude, a peak in latitude at each longitude, and the widths of the major peak in both latitude and longitude. Analytical formulae for these features are derived for comparison with IBEX observations in order to determine the temperature and bulk velocity of the gas in interstellar space. Based in part on these formulae, the results for helium are presented in the companion paper by Moebius et al.

  7. Helium atoms in interstellar and interplanetary media. III - Temperature and velocity of the interstellar wind

    NASA Astrophysics Data System (ADS)

    Kurt, V. G.; Mironova, E. N.; Bertaux, J.-L.; Dalode, F.

    1984-03-01

    The temperature and velocity of the interstellar wind were determined by observations of background radiation in the He I 584-A line performed in interplanetary space by Prognoz-6. Values of 13,500 + or - 2000 K and 25 + or - 2 km/s were obtained. The density of neutral helium atoms beyond the heliosphere ranges from 0.008 to 0.028/cu cm.

  8. COMPARISONS OF THE INTERSTELLAR MAGNETIC FIELD DIRECTIONS OBTAINED FROM THE IBEX RIBBON AND INTERSTELLAR POLARIZATIONS

    SciTech Connect

    Frisch, Priscilla C.; Andersson, B-G; Berdyugin, Andrei; Piirola, Vilppu; Funsten, Herbert O.; Magalhaes, Antonio M.; McComas, David J.; Schwadron, Nathan A.; Slavin, Jonathan D.; Wiktorowicz, Sloane J. E-mail: bgandersson@sofia.usra.ed E-mail: piirola@utu.f E-mail: mario@astro.iag.usp.b E-mail: nschwadron@guero.sr.unh.ed E-mail: sloane@berkeley.ed

    2010-12-01

    Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a 'Ribbon' of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within {approx}40 pc. Using interstellar polarization observations toward {approx}30 nearby stars within {approx}90{sup 0} of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of {lambda}, {beta} {approx} 263{sup 0}, 37{sup 0} (or galactic coordinates of l, b {approx} 38{sup 0}, 23{sup 0}), with uncertainties of {+-}35{sup 0} based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33{sup 0} from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.

  9. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?

    NASA Technical Reports Server (NTRS)

    Salama, F.

    1998-01-01

    The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.

  10. New Interstellar Dust Models Consistent with Interstellar Extinction, Emission and Abundances Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, V.; Dwek, E.; Arendt, R. G.; Oegerle, William (Technical Monitor)

    2001-01-01

    We present new interstellar dust models that are consistent with both, the FUV to near-IR extinction and infrared (IR) emission measurements from the diffuse interstellar medium. The models are characterized by different dust compositions and abundances. The problem we solve consists of determining the size distribution of the various dust components of the model. This problem is a typical ill-posed inversion problem which we solve using the regularization approach. We reproduce the Li Draine (2001, ApJ, 554, 778) results, however their model requires an excessive amount of interstellar silicon (48 ppM of hydrogen compared to the 36 ppM available for an ISM of solar composition) to be locked up in dust. We found that dust models consisting of PAHs, amorphous silicate, graphite, and composite grains made up from silicates, organic refractory, and water ice, provide an improved fit to the extinction and IR emission measurements, while still requiring a subsolar amount of silicon to be in the dust. This research was supported by NASA Astrophysical Theory Program NRA 99-OSS-01.

  11. Interstellar carbon monoxide toward zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Lambert, David L.; Sheffer, Yaron; Gilliland, Ronald L.; Federman, S. R.

    1994-01-01

    Interstellar CO A-X bands in the spectrum of zeta Oph were recorded at high Sound-to-Noise (S/N) with grating G160M of the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Isotopic fractionation of CO is severe: CO-12/CO-13 = 167, C(16)O/C(18)O approximately equal to 1550 and C(16)O/C(17)O is greater than 5900 are found where C-12/C-13 = 70, O-16/O-18 = 500, and O-16.O-17 = 2600 are observed or expected. Standard models of the zeta Oph cloud predict CO-12/CO-13 is less than or approximately 70. The higher observed ratio suggests that photodissociation of CO, not the isotopic charge exchange reaction ((13)C(+) + CO reversible reaction (12)C(+) + (13)(CO), is the dominant influence on the CO-12/CO-13 ratio.

  12. The kinetic chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  13. Silicon Depletion in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Haris, U.; Parvathi, V. S.; Gudennavar, S. B.; Bubbly, S. G.; Murthy, J.; Sofia, U. J.

    2016-06-01

    We report interstellar silicon (Si) depletion and dust-phase column densities of Si along 131 Galactic sight lines using archival observations. The data were corrected for differences in the assumed oscillator strength. This is a much larger sample than previous studies but confirms the majority of results, which state that the depletion of Si is correlated with the average density of hydrogen along the line of sight (< n({{H}})> ) as well as the fraction of hydrogen in molecular form (f(H2)). We also find that the linear part of the extinction curve is independent of Si depletion. Si depletion is correlated with the bump strength (c3/RV) and the FUV curvature (c4/RV) suggesting that silicon plays a significant role in both the 2175 Å bump and the FUV rise.

  14. Interstellar clouds containing optically thin H2

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1975-01-01

    The theory of Black and Delgarno that the relative populations of the excited rotational levels of H2 can be understood in terms of cascading following absorption in the Lyman and Werner bands is employed to infer the gas densities and radiation fields within diffuse interstellar clouds containing H2 that is optically thin in those bands. The procedure is described for computing the populations of the different rotation levels, the relative distribution among the different rotation levels of newly formed H2 is determined on the basis of five simplified models, and the rate of H2 formation is estimated. The results are applied to delta Ori, two components of iota Ori, the second components of rho Leo and zeta Ori, tau Sco, gamma Vel, and zeta Pup. The inferred parameters are summarized for each cloud.

  15. Spin-related magnetism of interstellar grains

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; De, B. R.

    1978-01-01

    The magnetic dipole moments and internal magnetic fields due to the spin of electrically charged elongated nonmagnetic interstellar grains in kinetic equilibrium with their surroundings are computed for the grain-size range from 0.01 to 1.0 micron. It is shown that the induced magnetic moments and internal magnetic fields of charged spinning nonmagnetic grains of arbitrary composition and prolate spheroidal shape can be appreciable, possibly even exceeding 0.01 emu/cu cm for 0.01-micron grains. The results indicate that virtually all grains smaller than 0.1 micron in mean diameter, and all elongated grains smaller than about 1 micron in length, are immersed in local magnetic fields due to spin that are much larger than the ambient galactic field. Some implications of this effect are discussed in relation to the polarization of starlight by aligned dust grains and the primordial remanent magnetization found in primitive carbonaceous chondrites.

  16. A radio search for interstellar phosphorus compounds

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Snyder, L. E.; Lovas, F. J.; Ulich, B. L.

    1980-01-01

    The J = 1-0 and 3-2 transitions of phosphorus nitride, PN, with resolvable hyperfine components at 46.99 GHz and blended components at 140.97 GHz, and transitions of phosphine, PH3, at 47.39 and 46.94 GHz, arising from a small induced dipole moment, have been searched for but not found in interstellar molecular clouds. The J = 3/2-1/2, F - 3/2-3/2 transition of nitric oxide, NO, and the J(K-K+) = 16(4, 12) -15(5, 11) transition of sulfur dioxide, SO2, have been detected in Orion and Sagittarius B2. An unidentified emission line, U140921.8 MHz, has been observed in IRC + 10216.

  17. Graphene, the Ultimate Interstellar Solar Sail Material?

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    Graphene (a carbon molecular monolayer) is a wonder material of great interest to materials researchers. Its molecular-layer thickness, finite fractional absorption, high melting point, and impermeability to gases coupled with the fact that doped materials, additives and multiple layers increase both fractional absorption and reflectivity indicates that it may be a superior material for application in solar-photon sailing. This paper first reviews relevant graphene physical and optical properties and then investigates the kinematics of interstellar solar sails constructed using this material. Two sail configurations are considered: thin-film probes and hollow-bodies sails. It is shown that graphene sail performance may be superior to that of beryllium sails. Less intense perihelion passes and accelerations may allow transit times to Alpha Centauri approximating a millennium. Future research should consider the interaction of graphene sails with the space environment and large-scale fabrication techniques.

  18. Ritual, meaningfulness, and interstellar message construction

    NASA Astrophysics Data System (ADS)

    Traphagan, John W.

    2010-10-01

    In this paper, I am interested in exploring the potential of ritual performance as a means of communication with ETI. I argue that the study of ritual and ritualized behavior, understood as a technique for representation of meaning and meaningfulness about the world, has potential to inform how scientists think about the construction and interpretation of interstellar messages. I do not suggest that ritual activities themselves provide more than limited potential for communication with ETI. However, the structural elements of ritual and the manner in which meaning is conveyed through the formality and repetition of ritual is at least to some extent decipherable cross-culturally and provides one way to think about how to express important aspects of humans and their cultures to ETI and to represent, if not specific meanings themselves, the fact that a message is meaningful.

  19. The mass spectrum of interstellar clouds

    NASA Technical Reports Server (NTRS)

    Dickey, John M.; Garwood, Robert W.

    1989-01-01

    The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal.

  20. The carbon monoxide abundance in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1976-01-01

    The steady-state abundance of carbon monoxide in interstellar clouds is calculated as a function of optical depth, density, and temperature. The molecular reactions which lead to CO can be initiated by the following ion-molecule reactions: H(+) + O yields O(+) + H, C(+) + H2 yields CH2(+) + a photon, and H3(+) + C and O. As the ultraviolet radiation field is attenuated, C(+) is transformed primarily into CO and C I. There are characteristic column densities for the transition to CO corresponding to the optical depths for attenuating this field at different wavelengths. For thick, low-temperature clouds the attenuation of the fields which ionize carbon, sulfur, and heavy metals is important for CO production initiated by H3(+). Complete conversion to CO does not necessarily occur, and considerable neutral carbon may be expected even in optically thick clouds. Comparison of integrated column densities of CO with extinction are in reasonable agreement with observations.

  1. A speckle hologram of the interstellar plasma

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Flanagan, C.; Nicolson, G.; Preston, R. A.; Jones, D. L.

    1992-01-01

    Observations of a speckle hologram of scattering material along the line of sight to the Vela pulsar indicate that this material is concentrated in the Vela supernova remnant, deep within the Gum Nebula. The speckle hologram is observed through the amplitude and phase variations of the interferometric cross-power spectrum with time and frequency. These variations describe the density fluctuations of the interstellar plasma, in a holographic fashion. The decorrelation due to the phase variations of the speckles yields the angular size of the scattering disk; comparison with the bandwidth of their amplitude variations yields a characteristic distance from earth to the scattering material of 0.81 +/- 0.03 of the distance from earth to the pulsar. This result is consistent with theories of irregularities associated with particle acceleration in shocks in supernova remnants.

  2. On the Virial Theorem for Interstellar Medium

    SciTech Connect

    Ryutov, D

    2007-09-24

    An attempt has been made to derive a version of the virial integral that would describe average properties of the interstellar medium (ISM). It is suggested to eliminate the (large) contribution of stellar matter by introducing 'exclusion zones' surrounding stars. Such an approach leads to the appearance of several types of additional surface integrals in the general expression. Their contribution depends on the rate of energy and matter exchange between the stars and ISM. If this exchange is weak, one can obtain a desired virial integral for ISM. However, the presence of intermittent large-scale energetic events significantly constrains the applicability of the virial theorem. If valid, the derived virial integral is dominated by cold molecular/atomic clouds, with only minor contribution of the global magnetic field and low-density warm part.

  3. Refractive scintillation in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Rickett, B. J.; Codona, J. L.; Frehlich, R. G.

    1987-04-01

    The slow variation in the apparent intensity of pulsars on time scales of days to months was recently shown to be due to a large-scale component of interstellar scintillation (Rickett, Coles, and Bourgois). These variations are greater than one would expect if the turbulence spectrum were a simple Kolmogorov power law. It is shown that this large-scale component can be greatly enhanced when the turbulence spectrum has a limiting "inner scale" of the order of 109m. The authors present a solution for the covariance of refractive scintillation of an extended source in an extended medium. The results show that refractive scintillations are also responsible for slow variations in "low-frequency variables".

  4. Formaldehyde in envelopes of interstellar dark clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Allen, M.

    1991-01-01

    Observed formaldehyde column densities of 1 x 10 to the 12th - 3 x 10 to the 13th/sq cm in cloud envelopes along lines of sight with A(V) = 1-4 mag can not be explained with the current understanding of interstellar gas phase chemistry. However, these column densities can be reproduced by a simple time-dependent model in which H2CO is supplied to the gas phase by the erosion of icy grain mantles. The release of H2CO from the grain mantles must occur on time scales comparable to the time scales for mixing from the cloud interior to the cloud envelope. Thus, in low-density regions of clouds, it appears that formaldehyde is the second molecule whose gas phase source is primarily ejection from grains. This simple model suggests understanding gas phase steady state in clouds on macroscopic, rather than microscopic, spatial scales.

  5. Perspective on the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Snowden, S. L.

    1986-01-01

    Theoretical local-interstellar-medium (LISM) models designed to explain the observed soft-X-ray background (SXRB) are reviewed. Consideration is given to the LISM in the immediate solar vicinity (the Local Fluff, extending 3-10 pc), the local bubble (a large irregularly shaped cavity filled with very-low-density gas at 10 to the 6th K and surrounded by denser material), the three-dimensional structure of the SXRB emitting region, the thermal nature of the SXRB, and the implications of process time scales for LISM theories. A number of possible mechanisms are discussed in the context of a model in which the LISM hot gas is a remnant from the creation of the local bubble about 20 Myr ago and/or the product of supernova reheating as recently as 150 kyr ago.

  6. The Centauri project: Manned interstellar travel

    NASA Technical Reports Server (NTRS)

    Ciesla, Thomas M.

    1990-01-01

    The development of antimatter engines for spacecraft propulsion will allow man to expand to the nearest stellar neighbors such as the Alpha Centuri system. Compared to chemically powered rockets like the Apollo mission class which would take 50,000 years to reach the Centauri system, antimatter propulsion would reduce one way trip time to 30 years or less. The challenges encountered by manned interstellar travel are formidable. The spacecraft must be a combination of sublight speed transportation system and a traveling microplanet serving an expanding population. As the population expands from the initial 100 people to approximately 300, the terraformed asteroid, enclosed by a man-made shell will allow for expansion over its surface in the fashion of a small terrestrial town. All aspects of human life - birth; death; physical, emotional, and educational needs; and government and law must be met by the structure, systems, and institutions on-board.

  7. Limited diversity of the interstellar extinction law

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.

    2012-01-01

    We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with U BV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds. Data from ANS and 2MASS Tables A4-A6 are available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/60

  8. Sun Focus Comes First, Interstellar Comes Second

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    of focal spheres) between 550 and 17,000 AU, thus located much beyond the well known Kuiper Belt of small bodies, remnants from the Solar System's formation, located between 30 to 55 AU.There is an even more important question, tough, that we face in this paper: how to INSURE any future interstellar radio links between the solar system and future interstellar probes. We show by calculations that only exploiting the gravitational lens of the Sun as a huge antenna we will be able to achieve such an interstellar link. In other words, we calculate the Bit Error Rate (BER) across interstellar distances both with and without using the gravitational lens effect of the Sun. The conclusion is that only when we will exploit the Sun as a gravitational lens we will be able to communicate with our own probes (or with nearby Aliens) across the distances of even the nearest stars to us in the Galaxy, and that at a reasonable Bit Error Rate.

  9. Impact of sorption phenomena on multiphase conveying processes

    NASA Astrophysics Data System (ADS)

    Hatesuer, Florian; Groth, Tillmann; Reichwage, Mark; Mewes, Dieter; Luke, Andrea

    2011-08-01

    Twin-screw multiphase pumps are employed increasingly to convey multiphase mixtures of crude oil, accompanying fluids, associated gas and solid particles. They are positive displacement pumps and suitable for handling products containing liquid accompanied by large amounts of gas. Experimental investigations on the conveying characteristic, namely measuring the delivered volume flow as a function of the pressure difference, provide results for selected mixtures. By means of the on hand work, the influence of sorption phenomena occurring due to pressure variations alongside the conveying process on the conveying characteristics of twin-screw pumps delivering mixtures of oil and gases is measured. The employed gases are air and carbon dioxide, which differ strongly in solubility in oil. All experiments are conducted in a closed loop test facility, where oil and gas volume flows are mixed before the inlet and separated after the outlet of the multiphase pump. In order to simulate the influence of the suction side pressure drop in the reservoir on the conveying characteristic, packed beds are employed as oil-filed model. Sorption processes inside of the oil-field model and within the multiphase pump affect the conveying behaviour significantly. The two-phase flow in the inlet and outlet pipe is visualised by means of a capacitance tomography system. Results show that the oil fraction of the total delivered volume flow is decreased due to desorption at the pump inlet. The gas fraction at the pump outlet is further decreased due to absorption. Experimental results are compared to calculated solubilities of the on-hand gases in oil and to the theoretically derived gas volume flow fraction expected at the multiphase pump.

  10. Searching for cost-optimized interstellar beacons.

    PubMed

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-06-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses. PMID:20624057

  11. Realistic Detectability of Close Interstellar Comets

    NASA Astrophysics Data System (ADS)

    Cook, Nathaniel V.; Ragozzine, Darin; Granvik, Mikael; Stephens, Denise C.

    2016-07-01

    During the planet formation process, billions of comets are created and ejected into interstellar space. The detection and characterization of such interstellar comets (ICs) (also known as extra-solar planetesimals or extra-solar comets) would give us in situ information about the efficiency and properties of planet formation throughout the galaxy. However, no ICs have ever been detected, despite the fact that their hyperbolic orbits would make them readily identifiable as unrelated to the solar system. Moro-Martín et al. have made a detailed and reasonable estimate of the properties of the IC population. We extend their estimates of detectability with a numerical model that allows us to consider “close” ICs, e.g., those that come within the orbit of Jupiter. We include several constraints on a “detectable” object that allow for realistic estimates of the frequency of detections expected from the Large Synoptic Survey Telescope (LSST) and other surveys. The influence of several of the assumed model parameters on the frequency of detections is explored in detail. Based on the expectation from Moro-Martín et al., we expect that LSST will detect 0.001–10 ICs during its nominal 10 year lifetime, with most of the uncertainty from the unknown number density of small (nuclei of ∼0.1–1 km) ICs. Both asteroid and comet cases are considered, where the latter includes various empirical prescriptions of brightening. Using simulated LSST-like astrometric data, we study the problem of orbit determination for these bodies, finding that LSST could identify their orbits as hyperbolic and determine an ephemeris sufficiently accurate for follow-up in about 4–7 days. We give the hyperbolic orbital parameters of the most detectable ICs. Taking the results into consideration, we give recommendations to future searches for ICs.

  12. Searching for Cost-Optimized Interstellar Beacons

    NASA Astrophysics Data System (ADS)

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-06-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arriarrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  13. Realistic Detectability of Close Interstellar Comets

    NASA Astrophysics Data System (ADS)

    Cook, Nathaniel V.; Ragozzine, Darin; Granvik, Mikael; Stephens, Denise C.

    2016-07-01

    During the planet formation process, billions of comets are created and ejected into interstellar space. The detection and characterization of such interstellar comets (ICs) (also known as extra-solar planetesimals or extra-solar comets) would give us in situ information about the efficiency and properties of planet formation throughout the galaxy. However, no ICs have ever been detected, despite the fact that their hyperbolic orbits would make them readily identifiable as unrelated to the solar system. Moro-Martín et al. have made a detailed and reasonable estimate of the properties of the IC population. We extend their estimates of detectability with a numerical model that allows us to consider “close” ICs, e.g., those that come within the orbit of Jupiter. We include several constraints on a “detectable” object that allow for realistic estimates of the frequency of detections expected from the Large Synoptic Survey Telescope (LSST) and other surveys. The influence of several of the assumed model parameters on the frequency of detections is explored in detail. Based on the expectation from Moro-Martín et al., we expect that LSST will detect 0.001–10 ICs during its nominal 10 year lifetime, with most of the uncertainty from the unknown number density of small (nuclei of ˜0.1–1 km) ICs. Both asteroid and comet cases are considered, where the latter includes various empirical prescriptions of brightening. Using simulated LSST-like astrometric data, we study the problem of orbit determination for these bodies, finding that LSST could identify their orbits as hyperbolic and determine an ephemeris sufficiently accurate for follow-up in about 4–7 days. We give the hyperbolic orbital parameters of the most detectable ICs. Taking the results into consideration, we give recommendations to future searches for ICs.

  14. Frequency of hyperbolic and interstellar meteoroids

    NASA Astrophysics Data System (ADS)

    Hajduková, Maria; Kornoš, Leonard; Tóth, Juraj

    2014-01-01

    Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10-2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.

  15. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  16. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  17. Diffuse Interstellar Bands in NGC 1448

    NASA Astrophysics Data System (ADS)

    Sollerman, J.; Cox, N.; Mattila, S.; Ehrenfreund, P.; Kaper, L.; Leibundgut, B.; Lundqvist, P.

    2005-01-01

    We present spectroscopic VLT/UVES observations of two emerging supernovae, the Type Ia SN 2001el and the Type II SN 2003hn, in the spiral galaxy NGC 1448. Our high resolution and high signal-to-noise spectra display atomic lines of Ca II, Na I, Ti II and K I in the host galaxy. In the line of sight towards SN 2001el, we also detect over a dozen diffuse interstellar bands (DIBs) within NGC 1448. These DIBs have strengths comparable to low reddening galactic lines of sight, albeit with some variations. In particular, a good match is found with the line of sight towards the σ type diffuse cloud (HD 144217). The DIBs towards SN 2003hn are significantly weaker, and this line of sight has also lower sodium column density. The DIB central velocities show that the DIBs towards SN 2001el are closely related to the strongest interstellar Ca II and Na I components, indicating that the DIBs are preferentially produced in the same cloud. The ratio of the λ 5797 and λ 5780 DIB strengths (r ˜ 0.14) suggests a rather strong UV field in the DIB environment towards SN 2001el. We also note that the extinction estimates obtained from the sodium lines using multiple line fitting agree with reddening estimates based on the colors of the Type Ia SN 2001el. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programmes 67.D-0227 and 71.D-0033). Table \\ref{tb:ISfit} and Figs. \\ref{fig:IS_MW} and \\ref{fig:6284} are only available in electronic form at http://www.edpsciences.org

  18. Searching for Cost-Optimized Interstellar Beacons

    NASA Technical Reports Server (NTRS)

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-01-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication, this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  19. Polycyclic Aromatic Hydrocarbons in Interstellar Medium Dust

    NASA Astrophysics Data System (ADS)

    Malsberger, Rosalie; Chiar, J. E.; Tielens, A. G. G. M.; Sloan, G. C.

    2009-01-01

    We obtained spectra from the Spitzer Space Telescope Infrared Spectrometer (IRS) of lines of sight that probe large columns of diffuse interstellar medium (ISM) dust (PID 3616, J. Chiar). An absorption feature at 6.2 μm, that we attribute to polycyclic aromatic hydrocarbons (PAHs) in the cold ISM, is detected in nine of our spectra. PAHs are normally observed in emission near an exciting source, rather than in the cold ISM dust, however, Schutte et al. (1998, A&A, 337, 261) found the 6.2 μm absorption feature in spectra of WC-type Wolf-Rayet stars that probed moderate columns of diffuse ISM dust. However, it was later shown by Chiar et al. (2001, ApJ, 550, 207) that the feature could be attributed to circumstellar dust around these objects. A low limit was set on lack of detection in the diffuse ISM. Our new Spitzer spectra provide the first indisputable detections of the 6.2 μm PAH absorption feature toward stars that are not associated with circumstellar dust. Based on our nine detections and twenty detection limits, a positive correlation is suggested between the optical depth of the 6.2 μm absorption feature and visual extinction. If verified (with higher signal-to-noise data), this relationship would imply that PAHs are widespread components of cold ISM dust, similar to the well-known aliphatic hydrocarbons that peak at 3.4 μm. Assuming an elemental carbon abundance of C/H=3.7 x 10-4, we estimate that 30 to 40% of the interstellar carbon can be tied up in PAH dust. Future high signal-to-noise observations with SOFIA and/or the James Webb Space Telescope will be crucial to verify the nature and distribution of PAHs in cold ISM dust. This material is based upon work supported by the National Science Foundation under Grant No. 0552751.

  20. From Interstellar PAHs and Ices to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  1. Some Open Questions in the Physics of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Draine, Bruce T.

    2014-06-01

    Our efforts to understand interstellar dust proceed by trying to develop models that are consistent with the laws of physics as well as with the many observational constraints provided by astronomical observations, the meteoritic record, and observations of interstellar dust grains entering the solar system today.I will review some open questions in physics and surface chemistry that are important for current modeling of dust.Nature has provided us with hundreds of spectroscopic clues -- the diffuse interstellar bands -- and it is an embarrasment that we haven't yet been able to decipher them.Interstellar grains contain iron, which could be in ferromagnetic or ferrimagnetic materials. If so, does magnetic dissipation contribute significantly to emission from dust at microwave and submm frequencies? This can be addressed in the laboratory.We do know that interstellar grains are not spherical, but we don't know whether they are compact, or whether they are have extended "fluffy" structures. To find out, we will have to compare observed optical properties of interstellar dust with theoretical models. How can we calculate the optical properties of fluffy grains at wavelengths ranging from X-rays to far-infrared? Theoretical methods will be described.It seems very likely that interstellar grains are often destroyed in the ISM; if so, then the observed abundance of grains requires that new grain material be formed in interstellar space. How can grain materials "grow" in the ISM? In particular, is it possible to grow amorphous silicates in cold interstellar clouds? What about carbonaceous material, in particular the nanoparticles that are thought to be responsible for the strong "PAH" emission bands? The possibilities and limitations of laboratory studies will be discussed.

  2. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred f r o m the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  3. X-ray Haloes and Scattering by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2003-01-01

    The presence of dust in the general interstellar medium is inferred from the general extinction of starlight, the diffuse infrared emission, and the elemental abundance constraints. X-ray haloes around X-ray sources, produced by small angle scattering from intervening interstellar dust particles provide a new probe into the nature of interstellar dust. In this talk I will review the physics of X-ray scattering by dust particles, and present an analysis of dust properties around select X-ray sources.

  4. Preliminary results on interstellar reddening as deduced from filter photometry

    NASA Technical Reports Server (NTRS)

    Laget, M.

    1972-01-01

    Filter photometry has been used to derive the interstellar reddening law from stars through the study of a single spectral type, B0. The deficiency in the far ultraviolet flux of a supergiant relative to a main sequence star is compared with the difference in the flux distribution due to a change of one spectral class. Individual interstellar reddening curves show the general feature reported by Stecher (1969) and by Bless and Savage (1970). There is a large amount of scatter in the far ultraviolet which may be partially due to a real difference in interstellar extinction and partially due to observational inaccuracy.

  5. Photoabsorption and photodissociation of molecules important in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1986-01-01

    In the period from May 15, 1985 to May 14, 1986, the photoabsorption and photodissociation cross sections of the interstellar radical of SO and the interstellar molecules of HCl, H2CO, and CH3CN were measured and the results were reported in scientific papers. In the meantime, a windowless apparatus is used to measure the photoabsorption and photodissociation cross sections of CO in the 90-105 nm region. The optical data obtained in this research program are needed for the determination of the formation and destruction rates of molecules and radicals in the interstellar medium. Accomplishments in this research period are summarized below.

  6. SEARCHING FOR NAPHTHALENE CATION ABSORPTION IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Searles, Justin M.; Destree, Joshua D.; Snow, Theodore P.; Salama, Farid; York, Donald G.; Dahlstrom, Julie E-mail: destree@colorado.edu E-mail: Farid.Salama@nasa.gov E-mail: jdahlstrom1@carthage.edu

    2011-05-01

    Interstellar naphthalene cations (C{sub 10}H{sup +}{sub 8}) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C{sub 10}H{sup +}{sub 8} is not a DIB carrier in typical reddened sight lines.

  7. Collisional excitation of molecules in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    State transitions which permit the identification of the molecular species in dense interstellar clouds are reviewed, along with the techniques used to calculate the transition energies, the database on known molecular transitions and the accuracy of the values. The transition energies cannot be measured directly and therefore must be modeled analytically. Scattering theory is used to determine the intermolecular forces on the basis of quantum mechanics. The nuclear motions can also be modeled with classical mechanics. Sample rate constants are provided for molecular systems known to inhabit dense interstellar clouds. The values serve as a database for interpreting microwave and RF astrophysical data on the transitions undergone by interstellar molecules.

  8. Diatoms on earth, comets, Europa and in interstellar space

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Hoover, M. J.; Hoyle, F.; Wickramasinghe, N. C.; Al-Mufti, S.

    1986-01-01

    There exists a close correspondence between the measured infrared properties of diatoms and the infrared spectrum of interstellar dust as observed in the Trapezium nebula and toward the galactic center source GC-IRS 7. Diatoms and bacteria also exhibit an absorbance peak near 2200 A, which is found to agree with the observed ultraviolet absorbance properties of interstellar grains. The observational data are reviewed, and the known properties of diatoms and bacteria are considered. It is suggested that these characteristics are consistent with the concept of a cosmic microbiological system in which these or similar microorganisms might exist on comets, Europa and in interstellar space.

  9. Solar transients in the outer heliosphere and interstellar medium

    NASA Astrophysics Data System (ADS)

    Richardson, John

    2016-07-01

    The Voyager spacecraft have observed the evolution of solar transients throughout the heliosphere and now into the interstellar medium. The original idea that the heliospheric radio emission was cause by large solar events now seems confirmed. Plasma and radio waves in the interstellar medium are associated with shocks observed in the magnetic field data and changes in the cosmic ray intensities and anisotropies. Voyager 2 has observed MIRs in the heliosheath which may drive these events at V1. We show the Voyager data from the heliosheath and interstellar medium and try to relate observed transients to events observed at the sun and in the inner heliosphere.

  10. The turbulent interstellar medium and pressure-bounded molecular clouds

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1988-01-01

    The existence of turbulence throughout the interstellar medium suggests that an appropriate value for the average pressure may be P/K larger than about 10,000. Negative-index polytropic models of interstellar clouds in equilibrium with an external medium at these pressures are predicted to have sizes, line widths, masses, and size-line width and size-density relations in good agreement with those observed and inferred for dark clouds. Thus these observed features of interstellar clouds do not require that they be completely self-gravitating or 'virialized' in the commonly used sense.

  11. AN UPPER BOUND TO THE SPACE DENSITY OF INTERSTELLAR COMETS

    SciTech Connect

    Jura, M.

    2011-05-15

    Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temperatures, then these DBs have faced minimal impact by interstellar comets during their 50 Myr cooling age; interstellar iceballs with radii between 10 m and 2 km contain less than 1% of all interstellar oxygen. This analysis suggests that most stars do not produce comets at the rate predicted by 'optimistic' scenarios for the formation of the Oort Cloud.

  12. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  13. Applications of the Electrodynamic Tether to Interstellar Travel

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Johnson, Les

    2005-01-01

    After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.

  14. Modelling interstellar organics: relevance for the identification of unidentified interstellar features

    NASA Astrophysics Data System (ADS)

    Malloci, Giuliano

    2003-02-01

    This thesis is part of the research activity of the Astrochemistry Group of the Cagliari Astronomical Observatory and the Physics Department at the University of Cagliari. The subjects of this work are two specific astrophysical problems concerning the Interstellar Medium (ISM) analysis: 1) the identification of Diffuse Interstellar Bands (DIBs) - Unidentified Infrared Bands (UIBs); 2) the identification of the Extended Red Emission (ERE). A new theoretical approach to the spectroscopic identification of these specific Unidentified Interstellar Features is presented.Concerning the DIBs-UIBs, this work is an extension of a computational Monte-Carlo model developed in the past few years by our group (Mulas G. A&A 1998,338,243) with the aim to integrate quantum-chemical ab initio tecnhiques in it and thus produce a self-contained molecular simulator. Concerning ERE, a general recipe is developed in order to extrapolate the expected photoluminescence of small particles starting from available laboratory results obtained on bulk samples. All the numerical results were obtained for interstellar carbonaceous compounds, hence the title ``Modelling interstellar organics'' given to the thesis. In particular, a specific molecule belonging to the class of polycyclic aromatic hydrocarbons (PAHs) is chosen as a test case to discuss the PAHs-DIBs-UIBs proposal, while the optical properties of laboratory samples of hydrogenated amorphous carbon (HAC) are used to obtain numerical results to be compared with luminescence phenomena such as ERE originating from some solid component of the ISM. The introductive chapter is intended to introduce the unfamiliar reader to the specific topic under study, and a short overview of the scientific scenario involved is given. Then, Part I and II discuss separately the two models above and represent the body of the work; each chapter follows a standard article format: introduction, theoretical method, numerical results, discussion and

  15. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.

  16. In situ observations of interstellar plasma with Voyager 1.

    PubMed

    Gurnett, D A; Kurth, W S; Burlaga, L F; Ness, N F

    2013-09-27

    Launched over 35 years ago, Voyagers 1 and 2 are on an epic journey outward from the Sun to reach the boundary between the solar plasma and the much cooler interstellar medium. The boundary, called the heliopause, is expected to be marked by a large increase in plasma density, from about 0.002 per cubic centimeter (cm(-3)) in the outer heliosphere, to about 0.1 cm(-3) in the interstellar medium. On 9 April 2013, the Voyager 1 plasma wave instrument began detecting locally generated electron plasma oscillations at a frequency of about 2.6 kilohertz. This oscillation frequency corresponds to an electron density of about 0.08 cm(-3), very close to the value expected in the interstellar medium. These and other observations provide strong evidence that Voyager 1 has crossed the heliopause into the nearby interstellar plasma. PMID:24030496

  17. The interstellar absorption-line spectrum of Mu Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, J.; Boehm-Vitense, E.

    1982-01-01

    UV interstellar lines have been measured on high-resolution, long- and short-wavelength IUE spectra of the B8 V star Mu Oph. Column densities for the observed atoms and ions have been determined as well as turbulent velocities. The interstellar spectrum of Mu Oph is similar to the ones for Rho Oph and Zeta Oph. The ionization equilibria of several elements give consistent limits for the electron density. The C I line arising from different fine-structure levels are studied to yield estimates on the physical conditions in the cloud. Relative depletion of elements in the cloud seen in the interstellar spectrum of Mu Oph follows the same pattern as seen in the interstellar spectra of Zeta Oph and six other stars in the Rho Oph cloud complex.

  18. Computer simulation of cultural drift - Limitations on interstellar colonisation

    NASA Astrophysics Data System (ADS)

    Bainbridge, W. S.

    1984-09-01

    A socio-cultural model of interstellar colonization is developed on the basis of a coherent theory of social behavior, and a microcomputer simulation is used to demonstrate the possibility of the existence of numerous limited civilizations. The model incorporates the concept of cultural drift, i.e., a random cultural change likely in areas that are not of great practical value to members of the society. Some of the conclusions drawn from the model are: interstellar civilizations are highly irregular in shape; uncolonized habitable worlds exist near the home worlds of large interstellar civilizations; and the expansion of interstellar civilizations proceeds more slowly than expected by models which do not incorporate the concept of cultural drift.

  19. Interstellar dust: interfacing laboratory, theoretical and observational studies

    NASA Astrophysics Data System (ADS)

    Jones, Anthony Peter

    2015-08-01

    In this talk I will consider how our understanding of interstellar dust can only be advanced through a combination of laboratory, theoretical and observational studies, which provide the critical framework for advancing our understanding. I will summarise what we currently know, or think we know, about the physical and compositional properties of dust and their evolution in interstellar media. Along the way I will question the utility of astronomical dust analogues and show, based on data from the laboratory, theoretical studies and from astronomical observations, that some of our prior interpretations need to be subjected to a critical re-evaluation. I will present interstellar dust modelling from a new vantage point and review ideas on the interpretation of observations within the framework of this model and its predictions for dust evolution within and between interstellar media. Finally, I will summarise some of the current outstanding issues and what we would like to learn in the future.

  20. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  1. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  2. The interaction of the solar wind with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Axford, W. I.

    1972-01-01

    The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.

  3. Correlation between molecular lines and diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Szczerba, Richard; Krelowski, J.; Walker, G. A. H.; Kennelly, E. T.; Sneden, C.; Volk, Kevin; Hill, G.

    1994-01-01

    Observations are presented of the Diffuse Interstellar Bands (DIB's) at 4726, 4763, and 4789 A and at 5780 and 5797 A together with the ultraviolet lines of CH and CN molecules for stars with different shapes of UV extinction curve. The new results concerning the relationship between different characteristics of the interstellar clouds; molecular lines, blue and yellow DIB's, and UV extinction curves are discussed.

  4. Refractive Interstellar Scintillation for Flux Density Variations of Two Pulsars

    NASA Astrophysics Data System (ADS)

    Zhou, Ai-Zhi; Wu, Xin-Ji; Esamdin, A.

    2003-08-01

    The flux density structure functions of PSRs B0525+21 and B2111+46 are calculated with the refractive interstellar scintillation (RISS) theory. The theoretical curves are in good agreement with observations [Astrophys. J. 539 (2000) 300] (hereafter S2000). The spectra of the electron density fluctuations both are of Kolmogorov spectra. We suggest that the flux density variations observed for these two pulsars are attributed to refractive interstellar scintillation, not to intrinsic variability.

  5. Stellar and interstellar K lines - Gamma Pegasi and iota Herculis.

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.

    1973-01-01

    High-resolution scans show that the relatively strong (about 90 mA) K lines of Ca II in the early B stars gamma-Peg and iota-Her are almost entirely stellar in origin, although the latter case includes a small interstellar contribution. Such stellar lines can be of great importance in augmenting the interstellar absorption, up through the earliest of the B stars.

  6. Interstellar molecules. [detection from Copernicus satellite UV absorption data

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.

  7. Local interstellar medium and gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Lebrun, F.; Paul, J.

    1985-01-01

    The recent improvement of the calibration of the galaxy counts used as an interstellar absorption tracer modifies significantly the picture of the local interstellar medium (ISM). Consequently, previous analyses of the gamma ray emission from the local ISM involving galaxy counts have to be revised. The implications regarding the cosmic ray (CR) density in the local ISM are considered and in particular within Loop I, a nearby supernova remnant (SNR).

  8. Centrosymmetric molecules as possible carriers of diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, M.; Schmidt, M. R.; Galazutdinov, G. A.; Musaev, F. A.; Betelesky, Y.; Krełowski, J.

    2010-11-01

    In this paper, we present new data with interstellar C2 (Phillips bands A 1 Πu-X1 Σ+g), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excitation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 Å) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 Å) for which this effect does not exist. Based on observations made with ESO telescopes at the Paranal Observatory under programme IDs 266.D-5655(A), 67.C-0281(A), 71.C-0513(C), 67.D-0439(A) and 082.C-0566(A) and at La Silla under programme IDs 078.C-0403(A), 076.C-0164(A) and 073.C-0337(A). Also based on observations made with the 1.8-m telescope in South Korea and the 2-m telescope at the International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia. E-mail: kazmierczak@astri.uni.torun.pl (MK); schmidt@ncac.torun.pl (MRS); runizag@gmail.com (GAG); ybialets@eso.org (YB); jacek@astri.uni.torun.pl (JK)

  9. On the detection of rubidium in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Sneden, C.; Schempp, W. V.; Smith, W. H.

    1985-01-01

    A search for absorption from neutral rubidium at 7800 A was conducted. No evidence for absorption to a 3 sigma limit of less than 1.5 mA was seen in the diffuse interstellar gas toward the stars omicron Persei, zeta Persei, and zeta Ophiuchi. Present results do not confirm the detection by Jura and Smith (1981) toward zeta Oph. A possible reason for the discrepancy is presented. In light of the present measurements, the abundance of interstellar rubidium in reconsidered.

  10. Infrared spectra of interstellar deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  11. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  12. Potential formation of three pyrimidine bases in interstellar regions

    NASA Astrophysics Data System (ADS)

    Majumdar, Liton; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.

    2015-12-01

    Work on the chemical evolution of pre-biotic molecules remains incomplete since the major obstacle is the lack of adequate knowledge of rate coefficients of various reactions which take place in interstellar conditions. In this work, we study the possibility of forming three pyrimidine bases, namely, cytosine, uracil and thymine in interstellar regions. Our study reveals that the synthesis of uracil from cytosine and water is quite impossible under interstellar circumstances. For the synthesis of thymine, reaction between uracil and :CH2 is investigated. Since no other relevant pathways for the formation of uracil and thymine were available in the literature, we consider a large gas-grain chemical network to study the chemical evolution of cytosine in gas and ice phases. Our modeling result shows that cytosine would be produced in cold, dense interstellar conditions. However, presence of cytosine is yet to be established. We propose that a new molecule, namely, C4N3OH5 could be observable in the interstellar region. C4N3OH5 is a precursor (Z isomer of cytosine) of cytosine and far more abundant than cytosine. We hope that observation of this precursor molecule would enable us to estimate the abundance of cytosine in interstellar regions. We also carry out quantum chemical calculations to find out the vibrational as well as rotational transitions of this precursor molecule along with three pyrimidine bases.

  13. Small-scale structure in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less.

  14. Starry messages: Searching for signatures of interstellar archaeology

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  15. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  16. Starry Messages - Searching for Signatures of Interstellar Archaeology

    NASA Astrophysics Data System (ADS)

    Carrigan, R. A., Jr.

    Searching for signatures of cosmic-scale archaeological artefacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the originating civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology . The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  17. The interstellar conundrum: a survey of concepts and proposed solutions.

    PubMed

    Gilster, Paul A

    2005-12-01

    Once considered intractable, the problem of interstellar flight is slowly yielding to analysis. Although manned missions to the stars are exceedingly improbable in this century, the possibility of interstellar robotic probes should not be ruled out. Recent laboratory work and theoretical analysis suggest several near-term technologies that could, given the development of an adequate space-based infrastructure, provide the needed propulsion. Laser-driven lightsails offer the key advantage of leaving the fuel behind, with the laser beam focused by a large Fresnel lens in the outer Solar System. Perhaps more efficient is the use of a particle beam to boost a spacecraft by interacting with its magnetic sail, the latter a system already under intense scrutiny. Variations on "pellet" propulsion using macroscopic objects continue to surface, their mass converted to energy as they arrive at the departing starship. Interstellar flight will be both difficult and expensive, although it can no longer be considered an impossibility. This paper examines the above concepts and relates them to older ideas, such as the Bussard ramjet, that are currently out of favor. The vibrancy of interstellar flight studies is its syncretism-it was through analysis of the drag problem in fusion ramjet designs that a practical means of decelerating an interstellar probe by deployment of a magnetic sail emerged. The intermingling of such ideas offers the hope of robust hybrid concepts that may make interstellar flight a reality. PMID:16510426

  18. Shock wave experiments to examine the multiphase properties of cerium

    SciTech Connect

    Jensen, Brian James

    2009-01-01

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake method to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.

  19. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  20. Multiphase flow parameter estimation based on laser scattering

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  1. Fitting of a multiphase equation of state with swarm intelligence

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Christie, M. A.

    2015-10-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. This paper describes how combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation, yields multiphase equations of state which give good agreement with experiment over a wide range of pressure-temperature space. Aluminium and tin are used as test cases in the proof of principle described in this paper.

  2. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  3. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  4. On the reduction of elastic constants for multiphase composites

    SciTech Connect

    Markenscoff, X.; Jasiuk, I.

    1995-12-31

    The reduction in the number of elastic parameters in a multiphase multiply connected composite with body forces is examined on the basis of the invariance of stress under a change in elastic compliances. The conditions obtained are the generalization of the Michell conditions for domains containing inclusions of a different material. Several cases and examples are presented. The conditions allowing for linear (in space) transformation of the elastic compliances are also examined.

  5. Toward an improved understanding of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Muccino, Julia C.; Gray, William G.; Ferrand, Lin A.

    1998-08-01

    Physical description of multiphase flow in porous media ideally should be based on conservation principles. In practice, however, Darcy's law is employed as the foundation of multiphase flow studies. Darcy's law is an empirical surrogate for momentum conservation based on data obtained from experimental study of one-dimensional single-phase flow. In its original form [Darcy, 1856], Darcy's law contained a single, constant coefficient that depended on the properties of the medium. Since 1856, Darcy's relation has been heuristically and progressively altered by allowing this coefficient to be a spatially dependent, nonlinear function of fluid and solid phase properties, particularly of the quantities of these phases within the flow system. The shortcoming of this approach is that the governing flow equation is obtained by enhancing a simple empirical coefficient with complex functional dependencies rather than by simplifying general conservation principles. As a result, some of the important physical phenomena are not properly accounted for. Also, some assumptions intrinsic to the equations are overlooked, making accurate simulation more of an art than an entirely scientific exercise. A more general and more theoretically appealing approach to the derivation of conservation principles for multiphase flow has been evolving over the last 30 years. This approach employs a mathematical procedure for deriving conservation principles at the length scale of interest, followed by imposition of thermodynamic constraints to restrict the generality of these expressions. The product of this approach is a set of balance equations that provides a framework in which the assumptions inherent in a hypothesized model of multiphase flow are clearly stated. Requirements for more comprehensive and physically complete models can then be specified.

  6. Multiphase Modeling of Water Injection on Flame Deflector

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Bachchan, Nili; Peroomian, Oshin; Akdag, Vedat

    2013-01-01

    This paper describes the use of an Eulerian Dispersed Phase (EDP) model to simulate the water injected from the flame deflector and its interaction with supersonic rocket exhaust from a proposed Space Launch System (SLS) vehicle. The Eulerian formulation, as part of the multi-phase framework, is described. The simulations show that water cooling is only effective over the region under the liquid engines. Likewise, the water injection provides only minor effects over the surface area under the solid engines.

  7. Multi-Phase Modeling of Rainbird Water Injection

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  8. In-situ formation of multiphase deposited thermal barrier coatings

    DOEpatents

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  9. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  10. Multiphase pumping: indoor performance test and oilfield application

    NASA Astrophysics Data System (ADS)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2009-12-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  11. Multiphase pumping: indoor performance test and oilfield application

    NASA Astrophysics Data System (ADS)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  12. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  13. Modeling the multiphase flow in a dense medium cyclone

    SciTech Connect

    Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A.

    2009-04-15

    A mathematical model is proposed to describe the multiphase flow in a dense-medium cyclone (DMC). In this model, the volume of fluid multiphase model is first used to determine the shape and position of the air core, and then the mixture multiphase model is employed to describe the flow of the dense medium (comprising finely ground magnetite in water) and the air core, where the turbulence is described by the Reynolds stress model. The results of fluid flow are finally used in the simulation of coal particle flow described by the stochastic Lagrangian particle tracking model. The validity of the proposed approach is verified by the reasonably good agreement between the measured and predicted results under different conditions. The flow features in a DMC are then examined in terms of factors such as flow field, pressure drop, particle trajectories, and separation efficiency. The results are used to explain the key characteristics of flow in DMCs, such as the origin of a short-circuit flow, the flow pattern, and the motion of coal particles. Moreover, the so-called surging phenomenon is examined in relation to the instability of fluid flow. The model offers a convenient method to investigate the effects of variables related to geometrical and operational conditions on the performance of DMCs.

  14. Multiphase fluid simulation tools for winning remediation solutions

    SciTech Connect

    Deschaine, L.M.

    1997-07-01

    Releases of petroleum product such as gasoline and diesel fuels from normal operating practices to aquifers are common. The costs to remediate these releases can run in the billions of dollars. Solutions to remediate these releases usually consist of some form of multiphase (air, water, oil) fluid movement, whether it be a multiphase high vacuum extraction system, bioslurping, groundwater pump and treat system, an air sparging system, a soil vapor extraction system, a free product recovery system, bioremediation or the like. The software being tested in Test Drive, Multiphase Organic Vacuum Enhanced Recovery Simulator (MOVER) is a computer simulation tool that will give the practitioner the ability to design high vacuum enhanced multiple phase recovery systems and bioslurping systems, which are often the low cost effective remediation approach. It will also allow for the comparison of various proposed remediation approaches and technologies so the best solution can be chosen for a site. This is a key competitive advantage to translate conceptual ideas into winning bids.

  15. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  16. Processing, microstructure, and properties of multiphase Mo silicide alloys

    SciTech Connect

    Liu, C.T.; Schneibel, J.H.; Heatherly, L.

    1999-07-01

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases were prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at.%) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  17. State-of-the-art methods for multiphase flow pipelines

    SciTech Connect

    Crowley, C.J.; Barry, J.J.; Rothe, P.H.

    1989-08-01

    This report is the culmination of work on Design Methods for Multiphase Flow in Gas Pipelines'' sponsored by the Pipeline Research Committee of the American Gas Association on projects PR 172--609 and PR 172--904. Results from a series of projects to obtain pipeline data in the field, collect operating pipeline data, perform key laboratory experiments at prototypical conditions (large pipe size and high gas density), and to develop and recommend design methods over the past several years have been synthesized to create this report. Technical supervision of these projects has been provided by the Two-Phase Flow Supervisory Committee. This report concisely documents the state of the art in two-phase flow methods, in a manner suitable for use by analysts who want to develop computerized methods to perform the multiphase calculations. This document updates a previous report prepared approximately four years ago (Crowley and Rothe, 1986). Detailed background discussion of the development and selection of the multiphase models is presented in Volume 3 of that reference.

  18. A Virtual Reality Technique for Multi-phase Flows

    NASA Astrophysics Data System (ADS)

    Loth, Eric; Sherman, William; Auman, Aric; Navarro, Christopher

    2004-04-01

    A virtual reality (VR) technique has been developed to allow user immersion (stereo-graphic rendering, user tracking and object interactivity) in generic unsteady three-dimensional multi-phase flow data sets. This article describes the structure and logic used to design and construct a VR technique that employs a multi-phase flow-field computed a priori as an input (i.e. simulations are conducted beforehand with a researcher's multi-phase CFD code). The input field for this flow visualization is divided into two parts: the Eulerian three-dimensional grid nodes and velocities for the continuous fluid properties (specified using conventional TECLOT data format) and the Lagrangian time-history trajectory files for the dispersed fluid. While tracking the dispersed phase trajectories as animated spheres of adjustable size and number, the continuous-phase flow can be simultaneously rendered with velocity vectors, iso-contour surfaces and planar flood-contour maps of different variables. The geometric and notional view of the combined visualization of both phases is interactively controlled throughout a user session. The resulting technique is demonstrated with a 3-D unsteady data set of Lagrangian particles dispersing in a Eulerian description of a turbulent boundary layer, stemming from a direct numerical simulation of the Navier-Stokes equations.

  19. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    PubMed

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples. PMID:26353373

  20. Numerical modeling of a compressible multiphase flow through a nozzle

    NASA Astrophysics Data System (ADS)

    Niedzielska, Urszula; Rabinovitch, Jason; Blanquart, Guillaume

    2012-11-01

    New thermodynamic cycles developed for more efficient low temperature resource utilization can increase the net power production from geothermal resources and sensible waste heat recovery by 20-40%, compared to the traditional organic Rankine cycle. These improved systems consist of a pump, a liquid heat exchanger, a two-phase turbine, and a condenser. The two-phase turbine is used to extract energy from a high speed multiphase fluid and consists of a nozzle and an axial impulse rotor. In order to model and optimize the fluid flow through this part of the system an analysis of two-phase flow through a specially designed convergent-divergent nozzle has to be conducted. To characterize the flow behavior, a quasi-one-dimensional steady-state model of the multiphase fluid flow through a nozzle has been constructed. A numerical code capturing dense compressible multiphase flow under subsonic and supersonic conditions and the coupling between both liquid and gas phases has been developed. The output of the code delivers data vital for the performance optimization of the two-phase nozzle.

  1. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.

  2. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    SciTech Connect

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  3. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2015-10-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  4. Position Displacement of Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G.; Krełowski, J.; Beletsky, Y.; Valyavin, G.

    2015-04-01

    We reconsider the already published phenomenon of the blue shift of diffuse interstellar bands, observed in spectra of HD34078 (AE Aur) and members of the Sco OB1 association, in particular HD152233. We have analyzed 29 diffuse bands. Some of them, already proven as blue-shifted in our earlier study, are now confirmed using another instrument: the 6.5 m Clay telescope equipped with the MIKE spectrograph. The high signal-to-noise ratio (over 600) of our spectra allowed us to reveal even small small-scale displacements of positions (both blue and redshifts) of diffuse bands along the considered lines of sight. In some cases, the magnitude of deviation exceeds 10 km s-1. Also, we prove that profiles of many diffuse bands in spectra of HD34078 suffer significant broadening. The origin of the observed phenomena is discussed. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory (Chile).

  5. Interstellar chemical differentiation across grain sizes

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Li, Aigen

    2016-07-01

    In this work, we investigate the effects of ion accretion and size-dependent dust temperatures on the abundances of both gas-phase and grain-surface species. While past work has assumed a constant areal density for icy species, we show that this assumption is invalid and the chemical differentiation over grain sizes is significant. We use a gas-grain chemical code to demonstrate this numerically for two typical interstellar conditions: a dark cloud (DC) and a cold neutral medium (CNM). It is shown that, although the grain-size distribution variation (but with the total grain surface area unchanged) has little effect on the gas-phase abundances, it can alter the abundances of some surface species by up to ∼2-4 orders of magnitude. The areal densities of ice species are larger on smaller grains in the DC model as a consequence of ion accretion. However, the surface areal density evolution tracks are more complex in the CNM model due to the combined effects of ion accretion and dust temperature variation. The surface areal density differences between the smallest ( ∼ 0.01 μm) and the biggest ( ∼ 0.2 μm) grains can reach ∼1 and ∼5 orders of magnitude in the DC and CNM models, respectively.

  6. Identification of More Interstellar C60+ Bands

    NASA Astrophysics Data System (ADS)

    Walker, G. A. H.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K.

    2015-10-01

    Based on gas-phase laboratory spectra at 6 K, Campbell et al. confirmed that the diffuse interstellar bands (DIBs) at 9632.7 and 9577.5 Å are due to absorption by the fullerene ion {{{C}}}60+. They also reported the detection of two other, weaker bands at 9428.5 and 9365.9 Å. These lie in spectral regions heavily contaminated by telluric water vapor lines. We acquired CFHT ESPaDOnS spectra of HD 183143 close to the zenith and chopped with a nearby standard to correct for the telluric line absorption which enabled us to detect a DIB at 9365.9 Å of relative width and strength comparable to the laboratory absorption. There is a DIB of similar strength and FWHM at 9362.5 Å. A stellar emission feature at 9429 Å prevented detection of the 9428.5 Å band. However, a CFHT archival spectrum of HD 169454, where emission is absent at 9429 Å, clearly shows the 9428.5 Å DIB with the expected strength and width. These results further confirm {{{C}}}60+ as a DIB carrier. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  7. Constraining the Properties of Cold Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Spraggs, Mary Elizabeth; Gibson, Steven J.

    2016-01-01

    Since the interstellar medium (ISM) plays an integral role in star formation and galactic structure, it is important to understand the evolution of clouds over time, including the processes of cooling and condensation that lead to the formation of new stars. This work aims to constrain and better understand the physical properties of the cold ISM by utilizing large surveys of neutral atomic hydrogen (HI) 21cm spectral line emission and absorption, carbon monoxide (CO) 2.6mm line emission, and multi-band infrared dust thermal continuum emission. We identify areas where the gas may be cooling and forming molecules using HI self-absorption (HISA), in which cold foreground HI absorbs radiation from warmer background HI emission.We are developing an algorithm that uses total gas column densities inferred from Planck and other FIR/sub-mm data in parallel with CO and HISA spectral line data to determine the gas temperature, density, molecular abundance, and other properties as functions of position. We can then map these properties to study their variation throughout an individual cloud as well as any dependencies on location or environment within the Galaxy.Funding for this work was provided by the National Science Foundation, the NASA Kentucky Space Grant Consortium, the WKU Ogden College of Science and Engineering, and the Carol Martin Gatton Academy for Mathematics and Science in Kentucky.

  8. Laboratory Needs for Interstellar Ice Studies

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.

    2012-05-01

    A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.

  9. The interstellar heliopause probe technology reference study

    NASA Astrophysics Data System (ADS)

    Lyngvi, A.; Falkner, P.; Peacock, A.

    The interstellar heliopause probe (IHP) is one of ESA's technology reference studies (TRS). The TRS aim to focus the development of strategically important technologies of relevance to future science missions by studying technologically demanding and scientifically interesting missions that are currently not part of the science mission programme. Equipped with a highly integrated payload suite (HIPS), the IHP will perform in situ exploration of the heliopause and the heliospheric interface. The HIPS, which is a standard element in all TRSs, miniaturize payloads through resource reduction by using miniaturized components and sensors, and by sharing common structures and payload functionality. To achieve the scientific requirements of the mission, the spacecraft is to leave the heliosphere as close to the heliosphere nose as possible and reach a distance of 200 AU from the Sun within 25 years. This is possible by using a trajectory with two solar flybys and a solar sail with characteristic acceleration of 1.1 mm/s 2, which corresponds to a 245 × 245 m 2 solar sail and a sail thickness of 1-2 μm. The trajectory facilitates a modest sail design that could potentially be developed in a reasonable timeframe. In this paper, an update to the results of studies being performed on this mission will be given and the current mission baseline and spacecraft design will be described. Furthermore, alternative solar sail systems and enabling technologies will be discussed.

  10. Interstellar carbon I lines in zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Morton, D. C.

    1974-01-01

    With two f-values of C I lines obtained from the spectra of zeta Pup and gamma(2) Vel, it is shown that the interstellar C I spectrum in zeta Oph obeys an optical-depth relation similar to that for Na I, and the relative strengths of 19 multiplets are determined from this relation. The dominant processes which excite neutral carbon are used to calculate populations of the fine-structure levels as functions of the density of H nuclei and the temperature, and evidence is found that the C I lines are formed in the dense cloud in front of zeta Oph at a heliocentric velocity of -14.4 km/s. It is noted that the observed column-density ratios of the neutral carbon fine-structure levels lead to a total H nuclei density of about 220 to 660 per cu cm, while the electron density and observed C(+) abundance indicate a value of 10,000 per cu cm, with a 0.05 pc thick gas layer.

  11. Three-Dimensional Messages for Interstellar Communication

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  12. Interstellar rendezvous missions employing fission propulsion systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ``Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability. .

  13. Fluorescent excitation of interstellar H2

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1987-01-01

    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature, and the intensity of the UV radiation field. It is shown that the absolute H2 IR line intensities depend primarily on the density of the cloud and the strength of the incident UV radiation, and to a much lesser exent on the temperature of the gas, the total thickness of the cloud, and the optical properties of the grains. A variety of recent observational results are discussed with reference to theoretical models. It is shown that the rich H2 emission spectrum of the reflection nebula NGC 2023 can be reproduced by a model with density of about 10,000/cu cm, temperature of about 80 K, and UV flux approximately 300 times that of the Galactic background starlight.

  14. Design concepts for the interstellar ramjet

    NASA Astrophysics Data System (ADS)

    Cassenti, B. N.

    1993-04-01

    In 1960, Robert Bussard first proposed using the hydrogen in interstellar space as a propellant for driving vehicles to the stars. The vehicle could collect the hydrogen using magnetic fields and fuse it to produce helium. An intake consisting of a radial series of toroidal solenoids, using widely spaced conductors, is proposed for producing magnetic fields to collect the hydrogen. The solenoids are supported by rotation. The structure should support continuous accelerations of more than 0.05 g. Several methods by which energy can be added to the hydrogen ions are discussed. One would be to beam energy directly to the vehicle using lasers orbiting the sun. Free electron lasers would offer some freedom in choosing wavelengths to correct for the Doppler shift at the spacecraft. If the free electron laser operated with a wavelength of about 10 Angstroms then no focusing would be required over distances of 10 light years. At the spacecraft a series of concentric grazing incidence reflectors would reduce the beam diameter to the size of the compressed plasma. The laser energy could be added to the propellent by running a free electron laser in reverse.

  15. Electron Irradiation of Interstellar Ice Analogues

    NASA Astrophysics Data System (ADS)

    Nair, B. G.; Mason, N. J.

    2011-05-01

    Molecular synthesis in the Universe primarily occurs in the icy mantles on dust grains in dense interstellar dust clouds. The interaction of photons, electrons and cosmic rays with these ice mantles triggers complex chemical synthesis leading to the formation of complex molecules. Such molecular reactions can only be understood by systematic laboratory studies. In our experiments astrophysical environments are recreated in the laboratory using an ultra high vacuum chamber (UHV) capable of reaching pressures of the order of 10 -10 mBar containing a liquid helium cryostat capable of attaining a temperature of 20 K. Ice films are deposited on a ZnSe substrate (cooled by cryostat) by background deposition and irradiated with electrons of 1KeV energy. Chemical changes induced by electron irradiation were monitored by an infrared spectrometer. By varying the temperature, we also investigate the temperature dependence on the kinetics of the reactions. In this poster we will present the first results of electron irradiation of simple organic molecules like formamide (HCONH2) and allyl alcohol (CH2CHCH2OH).

  16. The Violent Interstellar Medium of IC 2574

    NASA Astrophysics Data System (ADS)

    Walter, F.; Brinks, E.; Duric, N.; Kerp, J.; Klein, U.

    1998-12-01

    We present a multi-wavelength study of the Violent Interstellar Medium of the nearby dwarf galaxy IC 2574, a member of the M81 group of galaxies. In particular, we concentrate on the most prominent supergiant shell in IC 2574 which was detected in neutral hydrogen (H I) observations obtained with the Very Large Array (VLA). This shell is thought to be produced by the combined effects of stellar winds and supernova explosions. Massive star forming regions, as traced by Hα emission, are situated predominantly on the rim of this H I shell. This supports the view that the accumulated H I on the rim has reached densities which are high enough for secondary star formation to commence. Soft X-ray emission from within the H I hole is detected by a pointed ROSAT PSPC observation. The emission is extended and has the same size and orientation as the H I shell. These spatial properties together with a first-order spectral analysis suggest that the emission is generated by an X-ray emitting plasma located within the H I shell. However, a contribution from X-ray binaries cannot be completely ruled out at this point.

  17. Deuterium enrichment of the interstellar grain mantle

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Sahu, Dipen; Majumdar, Liton; Chakrabarti, Sandip K.

    2016-01-01

    We carry out Monte Carlo simulation to study deuterium enrichments of interstellar grain mantles under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH3, CH2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 104 cm-3), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜106 cm-3), water and methanol productions are suppressed but surface coverages of CO, CO2, O2 and O3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water. Effects of various types of energy barriers are also studied. Moreover, we allow grain mantles to interact with various charged particles (such as H+, Fe+, S+ and C+) to study the stopping power and projected range of these charged particles on various target ices.

  18. Exploring Interstellar Chemistry with Broadband Reaction Screening

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel Paul

    Chirped pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful technique for molecular detection and characterization. One of the strengths of this technique is the ability to analyze complex mixtures quickly and unambiguously. This capability is exploited utilizing a method called broadband reaction screening. Discussed in this thesis, chemical reactions in an electric discharge are monitored with broadband rotational spectroscopy, and the products are studied in the context of astrochemistry. Because of advancements in high-speed digital signal processing with increased data throughput, astrochemistry, as a field, is currently experiencing an emerging synergy between broadband laboratory spectra and broadband radio astronomical survey spectra. The availability of high quality radio astronomy survey spectra is expected to dramatically increase in the coming years, which in turn should provide the impetus for moving beyond the traditional "targeted search" model and instead focus on "reaction product screening". Since the two techniques characterize molecules in the same fashion, by their rotational spectra, directly comparing both types of broadband spectra may lead to a better understanding of the complex chemistry that occurs in the interstellar medium. Also discussed in this thesis is the development of two new CP-FTMW spectrometers operating in frequency ranges that are compatible with molecules of astronomical interest.

  19. Dynamic Spectral Mapping of Interstellar Plasma Lenses

    NASA Astrophysics Data System (ADS)

    Tuntsov, Artem V.; Walker, Mark A.; Koopmans, Leon V. E.; Bannister, Keith W.; Stevens, Jamie; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley E.

    2016-02-01

    Compact radio sources sometimes exhibit intervals of large, rapid changes in their flux density, due to lensing by interstellar plasma crossing the line of sight. A novel survey program has made it possible to discover these “Extreme Scattering Events” (ESEs) in real time, resulting in a high-quality dynamic spectrum of an ESE observed in PKS 1939-315. Here we present a method for determining the column-density profile of a plasma lens, given only the dynamic radio spectrum of the lensed source, under the assumption that the lens is either axisymmetric or totally anisotropic. Our technique relies on the known, strong frequency dependence of the plasma refractive index in order to determine how points in the dynamic spectrum map to positions on the lens. We apply our method to high-frequency (4.2-10.8 GHz) data from the Australia Telescope Compact Array of the PKS 1939-315 ESE. The derived electron column-density profiles are very similar for the two geometries we consider, and both yield a good visual match to the data. However, the fit residuals are substantially above the noise level, and deficiencies are evident when we compare the predictions of our model to lower-frequency (1.6-3.1 GHz) data on the same ESE, thus motivating future development of more sophisticated inversion techniques.

  20. Porphyrins in the interstellar medium (in grains)

    NASA Technical Reports Server (NTRS)

    Johnson, Fred M.

    1994-01-01

    Spectral sensitivity of the chromophores to their immediate chemical environment establishes some of the chemical constituents of the grains in which they reside. These are: (1) Paraffins, such as, octane, nonane, decane, and others...(needed for Shpolskii matrices and producing quasilines); and (2) Pyridine. The presence of pyridine is required not only to produce the spectral DIB matching, but also to produce the 36 cm(sup -1) crystal field splitting of the S(sub 1) electronic state. The presence of pyridine in the grains can be confirmed spectroscopically. Pyridine produces a transmission window at 2175 A, matching exactly the well known UV hump. On grain reflection, some of the incoming UV radiation is absorbed into the grain's outer layers. Spikes in the lab and in the astronomical data are due to vibronic transitions in pyridine. The lab spectroscopy reported here clearly establishes the presence of MgTBP, H2TPB, and pyridine in the interstellar grains. The high fluorescence efficiency of MgTBP (being optically pumped in the visible) apparently accounts for all the observed UIR emissions.