Sample records for subcooled hydrothermal boiling

  1. (Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

    SciTech Connect

    Not Available

    1989-01-01

    As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

  2. Subcooled flow boiling of fluorocarbons

    E-print Network

    Murphy, Richard Walter

    1971-01-01

    A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

  3. Heat Transfer Enhancement in Subcooled Boiling with Ultrasonic Field

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Inagaki, Fumio; Ueno, Ichiro

    Subcooled quasi-pool boiling of water is performed at liquid subcooling of 15K ˜ 30K for a flat heating surface of 10mm in diameter in the ultrasonic field. Microbubble emission boiling is generated at higher liquid subcooling than 25K without ultrasonic activation and the heat flux increases higher than the ordinary critical heat flux. At liquid subcooling of 20K in the ultrasonic field, microbubble emission boiling is generated and the heat flux increases as high as the case of high liquid subcooling. The ultrasonic wave accelerates the instability of bubble interface and is strongly effective for heat transfer enhancement with microbubble emission boiling at liquid subcooling of 20K in the experiments.

  4. Subcooled convective boiling in structured surface microchannels

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Lin, Chih-Yi

    2010-01-01

    Experiments are performed to investigate subcooled flow boiling, on side wall cavities with angles of 60°, 90° and 120° with bottom-wall asymmetrical heating, for a microchannel heat sink containing 75 parallel 100 µm × 200 µm channels. The heated surface is made of a Cu metal sheet with/without 2 µm thickness diamond film. Tests and measurements are conducted with de-ionized water, de-ionized water + 1 vol.% MCNT additive solution, FC-72 fluids over a mass velocity range of 820-1600 kg m-2 s, inlet temperatures of 15 (8.6), 25 (13.6), 44 (24.6) and 64 °C (36.6 °C) for DI water (FC-72) and heat fluxes up to 800 W cm-2. Flow morphologies, boiling incipience, two-phase heat transfer coefficients and critical heat fluxes are obtained and presented. Both cavities' structured and sputtered diamond ultrathin film surfaces in nanofluid flow boiling in a microchannel are shown to significantly enhance heat transfer through the promotion of bubble ebullitions and to reduce boiling incipience. A significant increase in critical heat flux (CHF) is also found.

  5. Heat Transfer For Subcooled Flow Boiling In Hypervapotron Configuration

    SciTech Connect

    Chena, Peipei; Wua, Wen; Jonesa, Barclay G. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign Urbana, IL, 61801 (United States); Newell, Ty A [Mechanical and Industrial Engineering, University of Illinois at Urbana Champaign Urbana, IL, 61801 (United States)

    2006-07-01

    This work reports on experimental studies that examine subcooled boiling on the enhanced heat transfer surface of hypervapotron structures. The use of simulant fluid (refrigerant R134a) instead of prototypic water allows examination of a full range of subcooled boiling, including up to critical heat flux (CHF). The experimental results are compared to Bjorge's model and Kandlikar's heat transfer correlation in the subcooled boiling region. It is found that the fully developed boiling curve has a slope of about 2.96 (q{sup {approx}} {delta}{sub sat} {sup 2}.{sup 96}), which shows good agreement with Bjorge's recognition for flat surface channels. In addition, Kandlikar's correlation is also able to predict the heat transfer coefficient for the range from net vapor generation (NVG) to the fully developed boiling region with acceptable accuracy. However, the heat transfer curve shows a significant deviation when subcooled boiling approaches CHF. (authors)

  6. Heat transfer at the phase interface of bubbles collapsing in subcooled liquids and during subcooled boiling

    Microsoft Academic Search

    F. Mayinger

    2006-01-01

    Heat transfer phenomena with bubble condensation in subcooled liquids and during subcooled boiling are discussed, which were studied by using holographic interferometry. This inertialess and non-intrusive measuring technique allows interesting insights into fluid dynamics and thermodynamics of phase change processes. The resistance for the heat transport through the phase boundaries is mainly on the liquid side and therefore the heat

  7. Model of critical heat flux in subcooled flow boiling

    E-print Network

    Fiori, Mario P.

    1968-01-01

    The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

  8. RELAP5/MOD3 subcooled boiling model assessment

    SciTech Connect

    Devkin, A.S.; Podosenov, A.S. [Russian Research Center, Moscow (Russian Federation). Nuclear Safety Inst.

    1998-05-01

    This report presents the assessment of the RELAP5/Mod3 (5m5 version) code subcooled boiling process model which is based on a variety of experiments. The accuracy of the model is confirmed for a wide range of regime parameters for the case of uniform heating along the channel. The condensation rate is rather underpredicted, which may lead to considerable errors in void fraction behavior prediction in subcooled boiling regimes for nonuniformly or unheated channels.

  9. Improvements in Predicting Void Fraction in Subcooled Boiling

    SciTech Connect

    Ha, Kwi Seok [Korea Atomic Energy Research Institute (Korea, Republic of); Lee, Yong Bum [Korea Atomic Energy Research Institute (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2005-06-15

    A simple two-phase thermal-hydraulic tool with the drift-flux model has been used to develop a subcooled boiling model. The tool is composed of four governing equations: mixture mass, vapor mass, mixture momentum, and mixture enthalpy. Using the developed tool, various subcooled boiling models were investigated through the published experimental data. In the process of evaluation, two models were developed associated with the subcooled boiling. First, the Saha and Zuber correlation predicting the point of the net vapor generation was modified to consider the thermal and dynamic effects at the high-velocity region. Second, the pumping factor model was developed using the pi-theorem based on parameters related to the bubble generation mechanism, and it produced an additional parameter: the boiling number. The proposed models and several other models were evaluated against a series of subcooled flow boiling experiments at the pressure range of 1 to 146.8 bars. From the root-mean-square analysis for the predicted void fraction in the subcooled boiling region, the results of the proposed model presented the best predictions for the whole-pressure ranges. Also, the implementation of the developed models into RELAP5/MOD3.3 brought about improved results compared to those of the default model of the code.

  10. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  11. Effects of turbulence and secondary flows on subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Bloch, Gregor; Sattelmayer, Thomas

    2014-03-01

    Experiments are conducted on the influence of turbulence and longitudinal vortices on subcooled flow boiling in a vertical, rectangular channel. Different flow inserts are used to create turbulence and vortices in the channel. Studied boiling regimes range from the onset of nucleate boiling over the critical heat flux up to fully developed film boiling. A wide range of measuring techniques is applied: time averaged particle image velocimetry (PIV) is used in cold flows for the evaluation of the effects the inserts have on the flow, high speed PIV and photography are used to determine the effects on the fluid and vapor movement in boiling experiments. Digital Holographic Interferometry is used for the evaluation of temperature distributions in the boiling flow. Furthermore, optical microprobes are used to obtain pointwise measurements in areas inaccessible to the imaging techniques. The experiments show that the flow inserts can have considerable impact on the heat fluxes and the distribution of vapor and temperature along the channel. All used inserts lead to an increase in critical heat flux, which is more pronounced for stronger turbulence and higher flow rates and fluid subcoolings. The measuring techniques reveal both a better transport of vapor from the heater surface as well as an increase in mixing in the liquid phase with flow inserts.

  12. Mechanistic modeling of CHF in forced-convection subcooled boiling

    SciTech Connect

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels.

  13. ASSESSMENT OF THE RELAP5-3D SUBCOOLED BOILING MODELS FOR LOW-PRESSURE CONDITIONS

    Microsoft Academic Search

    Sridhar Hari; A. Hassan

    Two different low-pressure subcooled flow boiling experiments have been simulated using the thermal-hydraulic computer program RELAP5-3D. After carrying out the simulation of the cases with the original subcooled boiling model adapted in RELAP5- 3D, the Savannah River subcooled boiling model (SRL) option in the code was selected and the simulations were repeated. The results of these simulations are compared against

  14. Development of a mechanistic model for forced convection subcooled boiling

    NASA Astrophysics Data System (ADS)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the operating conditions of the AP1000 pressurized water reactor. The effects of both axial and lateral nonuniform power distributions inside reactor fuel elements are accounted for. Boiling flows are simulated for three different computational domains of increasing complexity: a quarter-subchannel bordering a single fuel pin, two subchannels surround by an array of 2 by 3 fuel pins, and in four subchannels surrounded by an array of 3 by 3 fuel pins. The predicted behavior is consistent with expectations. In the 3 by 3 array, the two-phase coolant is predicted to flow from the hot channels to the cold channels, enhancing heat exchange between subchannels. This, in turn, demonstrates that the new model is capable of capturing the turbulence- and buoyancy-induced coolant mixing across the neighboring channels.

  15. Variation of Film Boiling Modes in He II from Strongly to Weakly Subcooled States

    SciTech Connect

    Nozawa, M.; Murakami, M.; Takada, S. [Graduate School of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8573 (Japan); Kimura, N. [Cryogenics Science Center, Applied Research Laboratory, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, 305-0801 (Japan)

    2006-04-27

    Film boiling modes in both subcooled and saturated superfluid helium (He II) were experimentally investigated. The visual observation and the transient pressure and temperature measurements were performed to extract some characteristics of each boiling mode. The classification of all four film boiling modes, strongly subcooled and weakly subcooled modes in subcooled He II (He IIp) and noisy and silent film boiling modes in saturated He II (He IIs), was drawn on the boiling mode map. It was found from the heater temperature measurement that the boiling heat transfer is enhanced in the weakly subcooled mode compared with in the strongly subcooled mode. In the weakly subcooled mode, the vapor behavior is much activated by the instability in vapor-liquid interface. The boundary region between the strongly and the weakly subcooled modes becomes thick as the rise of He II temperature or the increase of the heat flux. The noisy film boiling does not occur at the pressure above 9 kPa, though it appears at the pressure above p{lambda}. It is found that in the region adjacent to the lambda line He I film boiling mode occurs even in He II.

  16. The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling

    E-print Network

    Sugrue, Rosemary M

    2012-01-01

    The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

  17. Critical Heat Fluxes of Subcooled Water Flow Boiling against Inlet Subcooling in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Komori, Hirokazu; Shiotsu, Masahiro; Noda, Nobuaki

    The critical heat fluxes (CHFs) of subcooled water flow boiling for the test tube inner diameters (d=3 and 6mm) and the heated lengths (L=67, 120 and 150mm) are systematically measured for the flow velocities (u=4.0 to 13.3m/s), the inlet subcoolings (?Tsub, in=48 to 148K), the outlet subcoolings (?Tsub, out=10.5 to 95.1K), the inlet pressure (Pin=753 to 995kPa) and the outlet pressure (Pout=720 to 887kPa). The SUS304 tubes of L=67, 120 and 150mm for d=3mm and L=150mm for d=6mm are used. The values of L/d are 22, 40 and 50 for d=3mm, and 25 for d=6mm, respectively. The CHFs, qcr, sub, for a fixed ?Tsub, out become gradually lower with an increase in the L/d in the whole experimental range. The CHF correlation against outlet subcooling, which has been previously derived for L/d lower than 16, was modified to new one containing the L/d effect based on these experimental data. Furthermore, the relation between qcr, sub and L/d for a fixed ?Tsub, in was checked. The values of qcr, sub for a fixed ?Tsub, in became exponentially lower with the increase in L/d. CHF correlation against inlet subcooling has been given based on the experimental data for L/d ranging from 4.08 to 50. The correlations against outlet and inlet subcoolings can describe not only the CHFs obtained in this work for the inner diameter of 3 and 6mm at the outlet pressure of around 800kPa but also the authors' published CHFs data (1611 points) for the wide ranges of Pin=159kPa to 1MPa, d=3 to 12mm, L=33 to 150mm and u=4.0 to 13.3m/s within 15% difference for 30K??Tsub, out?140K and 40K??Tsub, in?151K.

  18. Critical Heat Fluxes of Subcooled Water Flow Boiling Against Outlet Subcooling in Short Vertical Tube

    SciTech Connect

    Koichi Hata; Toshiyuki Sato; Takeya Tanimoto; Masahiro Shiotsu [Department of Energy Science and Technology, Kyoto University, Uji 611-0011 (Japan); Nobuaki Noda [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2002-07-01

    The critical heat fluxes (CHFs) of subcooled water flow boiling are systematically measured for the flow velocities (u=4.0 to 13.3 m/s), the outlet sub-cooling ({delta}T{sub sub,out}=3 to 129 K) and the outlet pressure (P{sub out}=800 kPa). The SUS304 test tubes of 3, 6, 9 and 12 mm in inner-diameter, d, and 33, 66, 99 and 133 mm in length, L, respectively for L/d=11 are used. The CHFs first become lower and then become higher with the increase in subcooling. The CHFs for four different inner-diameters with L/d=11 measured here become higher with the decrease in the diameter. CHF correlation for the latter increasing regime was given in non-dimensional form against average outlet sub-cooling based on the experimental data. The correlation can describe not only the CHFs obtained in this work at the outlet pressure of 800 kPa but also the authors' published CHFs (1284 points) for the wide range of P{sub out}=159 kPa to 1 MPa, d=6, 9 and 12 mm, L=49, 99 and 149 mm, {delta}T{sub sub,out}=-4 to 130 K and u=4.0 to 13.3 m/s within 15 % difference for 50 K{delta}T{sub sub,out}130 K and within +30 to -10 % for 30 K<{delta}T{sub sub,out}<50 K. (authors)

  19. Thermocapillary convection during subcooled boiling in reduced gravity environments.

    PubMed

    Raj, Rishi; Kim, Jungho

    2009-04-01

    Complete understanding of the origin of thermocapillary convection during subcooled boiling remains elusive. Some recent studies have suggested that the presence of dissolved gas inside the vapor bubble leads to the formation of a localized concentration and temperature gradient along the liquid-vapor interface and thus to the onset of thermocapillary convection. These studies reported that the dissolved gas content determines the onset of thermocapillary convection and that no thermocapillary motion was observed for subcooled boiling with pure liquid. However, other experiments performed in reduced gravity suggest that the strength of the thermocapillary convection around the primary bubble in a gas-saturated fluid is much weaker than that in a degassed fluid. This paper presents a qualitative study of the effects of dissolved gas content, bubble shape and size, and heat transfer coefficient on the strength of thermocapillary convection and offers possible explanations for the existing confusion. Owing to the presence of different complex and interrelated mechanisms, we decoupled the individual mechanisms to study their overall effect on thermocapillary convection. The results indicate that variations in the heat transfer coefficient and in the shape and the size of the bubble play a major role in the development of thermocapillary motion. PMID:19426315

  20. Heat Transfer Coefficient Measurement Study of Several Film Boiling Modes in Subcooled He II

    SciTech Connect

    Takada, S.; Murakami, M.; Nozawa, M. [Graduate School of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8573 (Japan); Kimura, N. [Cryogenics Science Center, Applied Research Laboratory, High energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan)

    2006-04-27

    This study was carried out for more detailed information about film boiling heat transfer in subcooled superfluid helium (He II). A number of film boiling modes were experimentally investigated in a wide range of the pressure from the atmospheric pressure down to the saturated vapor pressure. A thin stainless steel foil heater was used to cause film boiling and as a temperature sensor to measure the heater surface temperature. The results drawn from the heat transfer coefficient measurement give a support to the previous conclusion reached by visualization and pressure measurement studies that two film boiling modes appear in subcooled He II, that is the strongly subcooled film boiling mode and the weakly subcooled film boiling mode. It is, however, found that the dependence of the heat transfer coefficient on pressure was much different from those of conventional fluids. The heat transfer coefficient weakly decrease with the pressure in the weakly subcooled film boiling, and on the other hand it is almost independent of the pressure in the strongly film boiling. The peak of heat transfer coefficient appears at about 8 kPa in the transition region between the weakly subcooled and the noisy film boiling modes.

  1. Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures

    Microsoft Academic Search

    M. Jamialahmadi; H. Müller-Steinhagen; H. Abdollahi; A. Shariati

    2008-01-01

    To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling

  2. Thermal interaction effect on nucleation site distribution in subcooled boiling

    SciTech Connect

    Ling Zou; Barclay Joned

    2012-05-01

    An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.

  3. Combined pressure and subcooling effects on pool boiling from a PPGA chip package

    Microsoft Academic Search

    A. A. Watwe; A. Bar-Cohen; A. McNeil

    1996-01-01

    This study presents a detailed experimental investigation of the combined effects of pressure and subcooling on nucleate pool boiling and critical heat flux (CHF) for degassed fluorocarbon FC-72 boiling on a plastic-pin-grid-array (PPGA) chip package. In these experiments, pressure was varied between 101.3 and 303.9 kPa, and the subcooling ranged from 0 to 65°C. As expected, lower wall superheats resulted

  4. Variation of Subcooled Film Boiling State in He II with the Pressure

    NASA Astrophysics Data System (ADS)

    Nozawa, M.; Kimura, N.; Murakami, M.; Yamamoto, I.

    2004-06-01

    The characteristic feature of subcooled film boiling in He II was experimentally studied. The visual observation and the transient pressure and temperature measurements were performed to investigate the variation of the subcooled film boiling state with the pressure. In the highly subcooled state, the boiling state was relatively stable and little dynamic behavior of the vapor layer was observed. The pressure and temperature oscillations were hardly detected. As the pressure is reduced and consequently the degree of subcooling decreases, the thickness of vapor layer becomes thick and the dynamic behavior gradually becomes violent. The pressure and temperature oscillations appear with a very high frequency around several kHz. As the pressure further decreases to near the lambda pressure, the boiling state changes to much more violent boiling state with a frequency of several hundred Hz. A vapor bubble repeats formation and crush periodically, which apparently resembles noisy film boiling in saturated He II. The boundary between the stable and the unstable boilings seems to be in the pressure higher than the lambda pressure.

  5. Subcooled and saturated water flow boiling pressure drop in small diameter helical coils at low pressure

    SciTech Connect

    Cioncolini, Andrea; Santini, Lorenzo; Ricotti, Marco E. [Department of Nuclear Engineering, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy)

    2008-05-15

    Experimental pressure drop results on boiling water flow through three helical coils of tube inner diameter of 4.03 mm and 4.98 mm and coil diameter to tube diameter ratio of 26.1, 64.1 and 93.3 are presented. Both subcooled and saturated flow boiling are investigated, covering operating pressures from 120 to 660 kPa, mass fluxes from 290 to 690 kg m{sup -2} s{sup -1} and heat fluxes from 50 to 440 kW m{sup -2}. Existing correlations for subcooled flow pressure drop are found not capable to fit the present subcooled database, while the measurements in saturated flow conditions are successfully reproduced by existing correlations for both straight and coiled pipe two-phase flow. The experimental database is included in tabular form. (author)

  6. Simulation of subcooled boiling at low pressure conditions with RELAP5-3D computer program

    E-print Network

    Reza, S.M. Mohsin

    2002-01-01

    Simulation of subcooled boiling was carried out using RELAP5 thermal hydraulic computer programs. Both one-dimensional and three-dimensional analyses were carried out with one-dimensional RELAP5/MOD3.2 and three-dimensional RELAP5-3D code...

  7. Heat transfer under conditions of film boiling in turbulent flow of subcooled liquid

    Microsoft Academic Search

    V. V. Yagov; A. V. Dedov

    2009-01-01

    Results are given of analysis of experimental data on heat transfer in film boiling in a swirl turbulent flow under conditions\\u000a of high subcooling. An equation is derived that both describes well our experimental data and agrees with the results of other\\u000a experimental investigations.

  8. Influence of Heating Rate on Subcooled Flow Boiling Critical Heat Flux in a Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3m/s), the inlet subcoolings (?Tsub, in=130 to 161K), the inlet pressure (Pin=812 to 1315kPa), the dissolved oxygen concentration (O2=5.88 and 7.34ppm) and the increasing heat input (Q0exp(t/?), ?=38.1ms to 8.3s) are systematically measured by the experimental water loop installed the pressurizer. The SUS304 tube of test tube inner diameter (d=6mm), heated length (L=60mm), L/d=10 and wall thickness (?=0.5mm) with the rough finished inner surface (Surface roughness, Ra=3.18µm) is used in this work. The CHF data for high heating rate were compared with the quasi steady state ones previously obtained and the values calculated by the steady state CHF correlations against outlet and inlet subcoolings. Transient CHF correlation against inlet subcooling has been given based on the experimental data for wide exponentially increasing heat input (Q0exp(t/?), ?=38.1ms to 8.3s). The influence of heating rate on CHF was investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux for high heating rate was discussed.

  9. Static flow instability in subcooled flow boiling in parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-04-01

    A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime.

  10. Influence of Test Tube Material on Subcooled Flow Boiling Critical Heat Flux in Short Vertical Tube

    Microsoft Academic Search

    Koichi Hata; Masahiro Shiotsu; Nobuaki Noda

    2007-01-01

    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3 m\\/s), the inlet subcoolings (DeltaTsub,in=48.6 to 154.7 K), the inlet pressure (Pin=735.2 to 969.0 kPa) and the increasing heat input (Q0 exp(t\\/tau), tau=10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tube of

  11. A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer

    E-print Network

    Kim, Jungho

    A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer Martin Hill, College Park, MD 20742, USA Abstract Pool boiling heat transfer measurements from different. Boiling on three heaters of different size (0.65, 2.62, 7.29 mm2 ) was studied. Control circuitry was used

  12. Numerical and experimental investigation of subcooled film boiling on a horizontal plate

    NASA Astrophysics Data System (ADS)

    Banerjee, Debjyoti

    Analytical study of 3-D Taylor instability in cylindrical polar coordinates were performed. The predictions for wavenumber, based on this analysis, were found to be in good agreement with experimental data for subcooled film boiling. Numerical simulations of non-linear Taylor instability were performed to determine: the effect of heater thermo-physical properties on saturated film boiling, and the effect of subcooling on film boiling using static and dynamic models. The computations were restricted to 2-D incompressible and laminar flow which were described in axisymmetric coordinates. The finite volume method was used to simultaneously solve the equations governing conservation of mass, momentum and energy in the vapor and liquid phase. The governing equations were discretized by employing coordinate transformation, numerical grid generation and contravariant velocity vectors. Second order projection method for decoupling velocity from pressure was used to solve the governing equations. Results show that the heater material properties have a significant effect on the heater local temperature distribution resulting in the formation of "cold spot". The intensity of the cold spots are of the order of 10°C. The time period for vapor bubble "pinch-off" obtained from the calculations agree with experimental results and are found to be dependent on the heater material properties. The static model employed to study effects of subcooling in film boiling show that the degree of subcooling is a more important factor than the height of the vapor bulge. The dynamic model was used to obtain the flow patterns and isotherm distribution in the liquid and vapor phase. The wall heat transfer was predicted to increase with increase in subcooling while the contribution to vapor generation was found to decrease. Experimental validation of numerical predictions were performed by high speed photography, 2-D Particle Tracking Velocimetry (PTV) in the liquid phase and thermal measurements for subcooled film boiling under pool boiling conditions on a horizontal a copper plate. Experimental results for interfacial hydrodynamics were in agreement with the numerical results to within 10--15%. The steady state experimental results for heat transfer measurements were underpredicted by the a numerical model by about 25%. 2-D PTV measurements were in good agreement with numerical predictions.

  13. Experimental investigation of micro-scale temperature transients in sub-cooled flow boiling on a horizontal heater

    E-print Network

    Banerjee, Debjyoti

    and liquid subcooling (e.g. at boiling inception and at critical heat flux). These enhancements are primar during the experiments under steady state conditions. The transient temperature data from the FFT array

  14. Experimental investigation of subcooled flow boiling using synchronized high speed video, infrared thermography, and particle image velocimetry

    E-print Network

    Phillips, Bren Andrew

    2014-01-01

    Subcooled flow boiling of water was experimentally investigated using high-speed video (HSV), infrared (IR) thermography, and particle image velocimetry (PIV) to generate a unique database of synchronized data. HSV allowed ...

  15. Subcooled flow film boiling across a horizontal cylinder. Part II. Comparison to experimental data

    SciTech Connect

    Chou, X.S.; Sankaran, S.; Witte, L.C. (Univ. of Houston, TX (United States))

    1995-02-01

    In this paper, the results of a rigorous heat transfer analysis of subcooled flow film boiling over a heated cylinder are compared to experimental data. The analysis includes both the influence of the front part of the heater and the wake region behind the heater. Experiments using Freon-113 were conducted at subcooling levels up to 58[degree]C and at velocities up to 3.81 m/s. The configuration was upflowing Freon-113 in crossflow over a 0.635-cm electric heater. A comparison of these data as well as other available experimental data to the analysis of Chou and Witte showed good agreement as long as the subcooling level of the liquid was substantial - that is, for liquid Jakob numbers above about 0.04. This represents a considerable improvement over other models that have been developed to predict subcooled flow boiling heat transfer. A method using a temperature correction to a constant-property heat transfer solution that corresponds to the full variable-property solution is also presented, and applied to water and Freon-113. 11 refs., 5 figs., 2 tabs.

  16. Review of experimental and analytical studies on low pressure subcooled flow boiling

    SciTech Connect

    Warrier, G.R.; Dhir, V.K.

    1999-07-01

    This paper presents a review of available analytical models and experimental data on subcooled flow boiling at low pressures. This flow situation is of interest in passive reactor designs that rely on gravity driven cooling systems to remove the decay heat. The two-fluid formulation, as used in the flow boiling codes (e.g., RELAP5), is dependent on correlations to estimate wall vapor generation rate, vapor condensation in the subcooled liquid, and interfacial friction (or vapor relative velocity). At low pressures, due to the large density difference, any small error in the estimation of these quantities can lead to large errors in the void fraction or could cause large oscillations in the numerically computed void fractions. A study was initiated to address these and other modeling problems encountered when applying existing models to low-pressure, subcooled flow boiling situations. As the first step in this study, a thorough search of the open literature was undertaken to locate experimental and analytical studies related to these flow situations. This paper is intended to highlight the state-of-the-art in experimental and numerical modeling of low-pressure, subcooled flow boiling. This review is limited to studies in the following range of operating conditions: (1) p (bar) - 1 to 5, (2) G (kg/m{sup 2}s) - 100 to 1,000, and (3) {Delta}T{sub sub} ({degree}C) - 0 to 50. Most of the available models depend on empirical correlations, the accuracy of which are unknown when applied to low pressure situations. Moreover, the scarcity of detailed experimental data has hampered attempts to develop an accurate mechanistic model.

  17. EFFECTS OF DISSOLVED NITROGEN ON SUBCOOLED NUCLEATE BOILING IN SANTOWAX

    Microsoft Academic Search

    1961-01-01

    Ten heat transfer tests were made using Santowax R coolant samples, ; eight being continued to the burnout point. Tests were made at pressures of 90 ; and 150 psia and bulk coolant temperatures ranging between 500 and 650 deg F. ; Tests were made with both vertical and horizontal heaters. Results showed that: ; the onset of nucleate boiling

  18. Analysis and Measurement of Bubble Dynamics and Associated Flow Field in Subcooled Nucleate Boiling Flows

    SciTech Connect

    Barclay G. Jones

    2008-10-01

    In recent years, subooled nucleate boiling (SNB) has attrcted expanding research interest owing to the emergence of axial offset anomaly (AOA) or crud-induced power shigt (CIPS) in many operating US PWRs, which is an unexpected deviation in the core axial power distribution from the predicted power curves. Research indicates that the formation of the crud, which directly leads to AOA phenomena, results from the presence of the subcooled nucleate boiling, and is especially realted to bubble motion occurring in the core region.

  19. An experimental investigation of critical heat flux performance of hypervapotron in subcooled boiling

    NASA Astrophysics Data System (ADS)

    Chen, Peipei

    The successful use of subcooled flow boiling for high heat flux components requires that the critical heat flux (CHF), i.e., a fast reduction in the boiling heat transfer, must be avoided. Among the many techniques available to enhance CHF, particular attention has been focused on the hypervapotron concept. In this study, the CHF characteristics of the hypervapotron were experimentally investigated using a simulant fluid, R134a, which has been found to be an effective modeling fluid to simulate CHF in water-cooled environments. An experimental and modeling study of the subcooled boiling heat transfer on plain surface and hypervapotron has been conduced. A test facility was designed and constructed to perform required boiling heat transfer experiments. A high speed visualization system was utilized to give details of bubble formation and departure and of nucleation site density. Surface measurements of various specimens were performed to investigate the relationship between nucleation sites and surface microstructure. Full characterization of the hypervapotron effect as a function of fluid thermal hydraulic conditions was accomplished. A non-dimensional CHF correlation for smooth rectangular channels and the hypervapotron channel was developed and compared with experimental data in this work. In addition, a hot-spot model was developed to give predictions of critical heat flux on both plain and hypervapotron surfaces. It was developed on observations of bubble formation, departure and coalescence, and on the confirmation of nucleation structure on the heating surface. Finally, a numerical code was successfully developed to give CHF predictions for hypervapotron configurations. The simulation indicates that the better performance of CHF in hypervapotron configurations is a result of high conductivity material with augmented heating surfaces in subcooled boiling environment. Different fin dimensions were also tested numerically to compare the experimental results, and suggestions are provided with respect to the combination of performance and economy.

  20. Modeling the onset of flow instability for subcooled boiling in downflow

    SciTech Connect

    Qureshi, Z. (Westinghouse Savannah River Co., Aiken, SC (USA)); Barry, J.J.; Crowley, C.J. (Creare, Inc., Hanover, NH (USA))

    1990-01-01

    A postulated loss-of-coolant accident (LOCA) scenario for the Savannah River Plant (SRP) production reactors involves a double-ended break of a reactor primary coolant pipe. The flow of coolant (D{sub 2}O) in the reactor may decrease in such an event. As the flow into the reactor decreases, boiling may occur, followed by dryout and failure of the fuel due to overheating. A typical SRP fuel assembly consists of multiple concentric tubes containing the fuel and target materials. Coolant passes through the annular passages in the assembly in downflow. Under normal operating conditions, the flow rate is maintained high enough to suppress or minimize subcooled boiling, i.e. the flow remains essentially single phase throughout. At high coolant flow rates, the flow is single phase or partially developed subcooled boiling, and the pressure drop decreases with decreasing flow rate. Here friction dominates the pressure gradient, and the flow is stable. Below a certain flow rate, however, pressure drop may increase with decreasing flow rate. This occurs when significant voids are produced by boiling, resulting in a large acceleration component to the pressure drop. The negative slope of the curve leads to an instability because the pressure drop cannot adjust to compensate -- the flow is driven to a lower value. Overheating of the channel may result. 15 refs., 14 figs.

  1. Subcooled flow film boiling across a horizontal cylinder. Part I. Analytical model

    SciTech Connect

    Chou, X.S.; Witte, L.C. (Univ. of Houston, TX (United States))

    1995-02-01

    An analytical model of stable subcooled flow film boiling on the front of a horizontal cylinder and a model for the wake region downstream of the flow separation points were developed. The flow and temperature fields upstream of the separation points were represented by a 'local-similarity' solution obtained through a rigorous mathematical transformation. The transformed governing equations were solved numerically using a finite-difference scheme. Numerical solutions for the vapor layer thickness, the velocity, and the temperature fields were obtained for both the liquid and vapor layers. The results showed that the liquid boundary layer was thicker than the vapor film. Increases in the liquid subcooling and in the free-stream velocity decreased the vapor layer thickness. The influence of convection in the vapor layer is small yielding a near-linear temperature distribution. A two-dimensional vapor wake model was developed based on mass and energy balances. Numerical solutions, including the vapor layer thickness and the temperature field of the front part and the wake part, were matched at the separation points. The results showed that increases in the liquid subcooling decreased the vapor layer thickness. Heat transfer in the wake region can amount up to 20 percent of the heat transfer in the forward region and should not be neglected especially at high subcooling. 19 refs., 8 figs.

  2. A theoretical prediction of critical heat flux in subcooled pool boiling during power transients

    SciTech Connect

    Pasamehmetoglu, K.O.; Nelson, R.A.; Gunnerson, F.S.

    1988-01-01

    Understanding and predicting critical heat flux (CHF) behavior during steady-state and transient conditions are of fundamenatal interest in the design, operation, safety of boiling and two-phase flow devices. This paper discusses the results of a comprehensive theoretical study made specifically to model transient CHF behavior in subcooled pool boiling. This study is based upon a simplified steady-state CHF model in terms of the vapor mass growth period. The results obtained from this theory indicate favorable agreement with the experimental data from cylindrical heaters with small radii. The statistical nature of the vapor mass behavior in transient boiling also is considered and upper and lower limits for the current theory are established. Various factors that affect the discrepancy between the data and the theory are discussed.

  3. Influence of Test Tube Material on Subcooled Flow Boiling Critical Heat Flux in Short Vertical Tube

    SciTech Connect

    Koichi Hata [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan); Masahiro Shiotsu [Dept. of Energy Science and Technology, Kyoto University, Kyoto University, Kyoto 606-8501 (Japan); Nobuaki Noda [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, GIFU, 509-5292 (Japan)

    2006-07-01

    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u = 4.0 to 13.3 m/s), the inlet subcooling ({delta}T{sub sub,in} = 48.6 to 154.7 K), the inlet pressure (P{sub in} = 735.2 to 969.0 kPa) and the increasing heat input (Q{sub 0} exp(t/t), t = 10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tubes of inner diameters (d = 6 mm), heated lengths (L = 66 mm) and L/d = 11 with the inner surface of rough finished (Surface roughness, R{sub a} = 3.18 {mu}m), the Cupro Nickel (Cu-Ni 30%) test tubes of d = 6 mm, L = 60 mm and L/d = 10 with R{sub a} = 0.18 {mu}m and the Platinum (Pt) test tubes of d = 3 and 6 mm, L = 66.5 and 69.6 mm, and L/d 22.2 and 11.6 respectively with R{sub a} = 0.45 {mu}m are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcooling. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed. (authors)

  4. Influence of Test Tube Material on Subcooled Flow Boiling Critical Heat Flux in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3 m/s), the inlet subcoolings (?Tsub,in=48.6 to 154.7 K), the inlet pressure (Pin=735.2 to 969.0 kPa) and the increasing heat input (Q0 exp(t/?), ?=10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tube of inner diameter (d=6 mm), heated length (L=66 mm) and L/d=11 with the inner surface of rough finished (Surface roughness, Ra=3.18 ?m), the Cupro Nickel (Cu-Ni 30%) test tube of d=6 mm, L=60 mm and L/d=10 with Ra=0.18 ?m and the Platinum (Pt) test tubes of d=3 and 6 mm, L=66.5 and 69.6 mm, and L/d=22.2 and 11.6 respectively with Ra=0.45 ?m are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcoolings. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed.

  5. Static-flow-instability in subcooled flow boiling in wide rectangular parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-12-31

    The Advanced Neutron Source (ANS) is a state-of-the-art research reactor facility that will be built at the Oak Ridge National Laboratory (ORNL) and is designed to become the world`s most advanced thermal neutron flux source for scientific experiments. Therefore, the core of the ANS reactor (ANSR) must be designed to accommodate very high power densities using very high coolant mass fluxes and subcooling levels, The nominal average and peak heat fluxes in the ANSR are approximately 6 and 12 MW/M{sup 2}, respectively, with a nominal total thermal power of 303 MW. Highly subcooled heavy-water coolant (1.7 MPa and 85{degrees}C at the core exit) flows vertically upward at a very high mass flux of almost 27 Mg/M{sup 2}-s. The cooling channels in each fuel assembly are all parallel and share common inlet and outlet plenums, effectively imposing a common pressure drop across all the channels. This core configuration is subject to flow excursion (FE) and/or flow instability that may occur once boiling is initiated in any one of the channels. The FE phenomenon constitutes a different thermal limit than a true critical heat flux (CHF) or departure from nucleate boiling (DNB). In such a system, initiation of boiling in one of the channels (i.e., the hot channel) can result in flow redistribution to the other cooler channels. This report details testing to document this phenomenon.

  6. A new mechanistic model of critical heat flux in forced-convection subcooled boiling

    SciTech Connect

    Alajbegovic, A.; Kurul, N.; Podowski, M.Z.; Drew, D.A.; Lahey, R.T. Jr. [Rensselaer Polytechnic Inst., Troy, NY (United States). Center for Multiphase Research

    1997-10-01

    Because of its practical importance and various industrial applications, the process of subcooled flow boiling has attracted a lot of attention in the research community in the past. However, the existing models are primarily phenomenological and are based on correlating experimental data rather than on a first-principle analysis of the governing physical phenomena. Even though the mechanisms leading to critical heat flux (CHF) are very complex, the recent progress in the understanding of local phenomena of multiphase flow and heat transfer, combined with the development of mathematical models and advanced Computational Fluid Dynamics (CFD) methods, makes analytical predictions of CHF quite feasible. Various mechanisms leading to CHF in subcooled boiling have been investigated. A new model for the predictions of the onset of CHF has been developed. This new model has been coupled with the overall boiling channel model, numerically implemented in the CFX 4 computer code, tested and validated against the experimental data of Hino and Ueda. The predicted critical heat flux for various channel operating conditions shows good agreement with the measurements using the aforementioned closure laws for the various local phenomena governing nucleation and bubble departure from the wall. The observed differences are consistent with typical uncertainties associated with CHF data.

  7. Physical modeling and numerical simulation of subcooled boiling in one- and three-dimensional representation of bundle geometry

    SciTech Connect

    Bottoni, M.; Lyczkowski, R.; Ahuja, S.

    1995-07-01

    Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models.

  8. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  9. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

  10. Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows

    SciTech Connect

    Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R. [Idaho National Laboratory, MS-3870, PO Box 1625, Idaho Falls, ID, 83415 (United States); Williams, B. J. [Los Alamos National Laboratory, MS-F600, PO Box 1663, Los Alamos, NM, 87545 (United States)

    2013-07-01

    Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

  11. Prediction of the onset of significant void in transient subcooled flow boiling

    SciTech Connect

    Lee, S.C.; Bankoff, S.G.

    1993-06-01

    A new model to predict the onset of significant void (OSV) in transient subcooled flow boiling has been developed. The model is based upon the influence on vapor bubble departure of the single-phase temperature profile. The steady-state result of the present model was compared to the experimental data of Whittle and Forgan and Dougherty, et al., showing an excellent agreement. The model was then employed in a transient analysis of OSV for vertical downwards turbulent flow to predict whether OSV takes place. The condition for OSV to occur in transient flow situations was also predicted by this model. Two modes for pressure gradient change inside the channel are considered in the present study: step change and ramp change. The calculations were made for various combinations of the flow operating condition and the mode of pressure drop change.

  12. Numerical simulation of subcooled boiling water at low pressure incorporating homogeneous MUSIG model

    NASA Astrophysics Data System (ADS)

    Chen, E. F.; Li, Y. Z.; Cheng, X. H.; Wang, Lei

    2010-03-01

    Applying a three-dimensional two-fluid model coupled with homogeneous MUSIG approach, numerical simulations of subcooled water at low pressure were performed on the computational fluid dynamics code CFX-10 with user defined FORTRAN program. A modified bubble departure diameter correlation based on the Unal semi-mechanism model was developed. The water boiling flow experiments at low pressure in vertical concentric annulus from reference were used to validate the models. Good quantitative agreement with the experimental data is obtained, including the local distribution of bubble diameter, void fraction, axial liquid and vapor velocity. The results indicate that local bubble diameter first increases and then decreases due to the effect of bubble breakup and coalescence, and has the maximum bubble diameter along the radial direction. Moreover, the peak void fraction phenomenon in the vicinity of the heated wall is predicted at low pressure, which is developed due to the surface tension between vapor bubbles and heated wall.

  13. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details which will be included in the first year of work. Section IV summarizes past and anticipated international interactions with investigators from other countries. Finally, Section V gives summaries of two conceptual experiments which are planned for the second and third years.

  14. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Heat Transfer Lab.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  15. Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions

    SciTech Connect

    V.K. Dhir

    2003-04-28

    At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling and flow velocity parametrically. Concentration variation of boron near the liquid-vapor interface was detected successfully with a newly developed miniature concentration sensor. The measured concentration variations at different radial locations from the center of cavity have the same trend as given by the numerical simulations. The deposition of boron was found near the nucleation site on the heater surface, which validates the numerical simulation. Subcooled flow boiling experiments at three pressures were performed on a nine-rod bundle with water and with boron dissolved in the water. The test runs were conducted with a wide range of mass fluxes (186 to 2800 kg/m2s) and heat fluxes (1.0 to 30.0 W/ cm2). Not only the variables required to develop mechanistic models for subcooled flow boiling were measured, but also the crud formation during boiling and its effect on the heat transfer process were investigated. (B204)

  16. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C. [Dept. of Energy Systems Engineering, Seoul National Univ., 599 Gwanak-Ro, Gwanak-Gu, Seoul, 151-744 (Korea, Republic of)

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  17. A study of subcooled pool boiling of water: contact area of boiling bubbles with a heating surface during a heating process.

    PubMed

    Suzuki, Koichi; Takahashi, Saika; Ohta, Haruhiko

    2004-11-01

    The contact area of bubbles with a transparent heating surface was optically measured during subcooled pool boiling of water on the ground. In the experiments, boiling bubbles were attached to the heating surface with a bubble holder and nearly reproduced the bubble behavior observed in low gravity. DC power was applied to the ITO heater and increased until the heater surface burned out. In quick heating, that is about 20 second until burnout and equal to the heating time during the low gravity period, the contact area was smaller than that for long time heating at the same heat flux. The experimental results suggest the reason why the critical heat flux in pool boiling is higher than the widely accepted predictions in microgravity. In a drop shaft experiment with constant heating, the contact area increased dramatically at the start of microgravity and became constant. Boiling bubbles coalesced and remained just over the heating surface. PMID:15644360

  18. Experimental verification of subcooled flow boiling for tokamak pump limiter designs

    SciTech Connect

    Koski, J.A.; Beattie, A.G.; Whitley, J.B.; Croessmann, C.D.

    1987-01-01

    In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge or ''scrape-off-layer,'' they are subject to high heat fluxes. In this paper, experimental studies for a pump limiter design currently under development are discussed. Subcooled flow boiling of water and twisted tape flow enhancement are combined to enable heat removal of highly peaked local heat fluxes at the tube-water boundary in the 40 to 50 MW/m/sup 2/ range. Experiments were conducted with the use of a rastered 30 kV electron beam apparatus which is capable of producing the desired steady state heat flux levels. Objectives of the experiment were (1) to verify the heat removal model used for finite element thermal and stress analyses, (2) selection of appropriate critical heat flux (CHF) margins and criteria, and (3) development of acoustic techniques to monitor the onset of CHF during actual limiter operation.

  19. Chemical evolution and mineral deposition in boiling hydrothermal systems

    Microsoft Academic Search

    S. E. Drummond; H. Ohmoto

    1985-01-01

    A thermodynamic model of boiling hydrothermal solutions is developed and applied over a wide range of physical and chemical conditions. Vaporization of only a few percent of a solution can decrease the proton concentration by several orders of magnitude when the COâ\\/H..mu.. and COâ\\/..sigma..SOâ concentration ratios are initially high. The relationship between the proton, COâ, and ..sigma..SOâ concentrations prior to

  20. Effects of ultrasonic vibration on subcooled pool boiling critical heat flux

    NASA Astrophysics Data System (ADS)

    Jeong, J. H.; Kwon, Y. C.

    2006-10-01

    The effects of ultrasonic vibration on critical heat flux (CHF) have been experimentally investigated under natural convection condition. Flat bakelite plates coated with thin copper layer and distilled water are used as heated specimens and working fluid, respectively. Measurements of CHF on flat heated surface were made with and without ultrasonic vibration applied to working fluid. An inclination angle of the heated surface and water subcooling are varied as well. Examined water subcoolings are 5°C, 20°C, 40°C and the angles are 0°, 10°, 20°, 45°, 90°, 180°. The measurements show that ultrasonic wave applied to water enhances CHF and its extent is dependent upon inclination angle as well as water subcooling. The rate of increase in CHF increases with an increase in water subcooling while it decreases with an increase in inclination angle. Visual observation shows that the cause of CHF augmentation is closely related with the dynamic behaviour of bubble generation and departure in acoustic field.

  1. Prediction of the local pressure gradient during partially developed subcooled boiling in research reactors of high power density

    SciTech Connect

    McDuffee, J.L. [JBF Associates, Knoxville, TN (United States); Ruggles, A.E. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-02-01

    A model is presented for predicting the pressure gradient in partially developed subcooled boiling of water for velocities from 15 to 30 m/s and inlet peaked, nonuniform axial flux profiles with channel average flux values of 6 MW/m{sup 2}. The partially and fully developed boiling regions are considered separately, however, the same general modeling technique is used for both. several correlations for the void fraction at onset of significant void are considered, and their effect on the channel pressure drop is evaluated. The effect of nonuniform axial heat flux on the channel pressure drop is also evaluated. The model is compared with pressure drop data from the thermal-hydraulic test loop at Oak Ridge National Laboratory and is found to agree with the data within 24%.

  2. Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes

    Microsoft Academic Search

    S. G. Kandlikar

    1991-01-01

    The thermal behavior of a flow boiling system is represented by a flow boiling map to illustrate visually the relationships among various system parameter. An earlier flow boiling map by Collier (1981) does not include the effect of mass flux and is specific to water at low pressures. For other fluids, significant departures from the parametric trends displayed in Collier's

  3. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.

  4. Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System

    NASA Astrophysics Data System (ADS)

    Tao, Ling; Hu, Chundong; Xie, Yuanlai

    2014-05-01

    In order to realize steady-state operation of the neutral beam injection (NBI) system with high beam energy, an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux (HHF) components in the system are key issues. In this paper, taking the HHF ion dump with swirl tubes in NBI system as an example, an accurate thermal dynamic simulation method based on computational fluid dynamics (CFD) and the finite volume method is presented to predict performance of the HHF component. In this simulation method, the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling. The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube. The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components, and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way. The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system.

  5. Alumina Nanoparticle Pre-coated Tubing Ehancing Subcooled Flow Boiling Cricital Heat Flux

    E-print Network

    Truong, Bao H.

    Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and ...

  6. Immersion cooling of an array of heated elements by convective boiling of a subcooled binary liquid mixture

    NASA Astrophysics Data System (ADS)

    McGillis, W. R.; Carey, V. P.

    1991-01-01

    Boiling data and the critical heat flux conditions are reported for both channel flow and jet impingement flow using varying concentrations of R-11 in R-113. An array of ten flush-mounted heated elements on one wall of a vertical passage were cooled by subcooled boiling. Data indicate that for this binary system the addition of R-11 to R-113 does not produce a significant change in critical heat flux. For channel flow boiling, the data indicate that addition of a small amount of a less volatile component slightly increases the critical heat flux, whereas addition of a small amount of more volatile component decreases it. The critical heat flux data were also found to agree well with critical heat flux correlations for pure fluids if the mole-weighted mean properties of the mixture were used to compute the critical heat flux from the pure fluid correlation. The significance of the findings of this study with regard to the use of binary mixtures of dielectric fluids for immersion cooling of electronic components is also discussed in this paper.

  7. A Digital Photographic Study on Nucleate Boiling in Subcooled Flow for Water and Refrigerant 134a Fluids

    SciTech Connect

    In Cheol Bang; Soon Heung Chang [Korea Advanced Institute of Science and Technology, 373-1, Guseung-dong, Yuseong-ku, Daejeon, 305-701 (Korea, Republic of); Won-Pil Baek [Korea Atomic Energy Research Institute, 150, Dukjin-Dong, Yusong-Gu, Taejon 305-353 (Korea, Republic of)

    2002-07-01

    The behavior of near-wall bubbles in subcooled flow boiling has been investigated photographically for water flow in vertical, one-side heated and rectangular channels at mass fluxes of 500, 1500, 2000 kg/m{sup 2}s under atmospheric pressure and for R134a in channels of the same kind at mass fluxes of 1000, 2000 kg/m{sup 2}s under 7 bar. Digital photographic techniques are used for the visualization, which are rapidly advanced in recent. Primary attention is given to the bubble coalescence phenomenon and the structure of the near-wall bubble layer. At subcooled and low-quality conditions of both fluids, discrete attached bubbles, sliding bubbles, small coalesced bubbles and large coalesced bubbles or vapor clots are observed on the heated surface as the heat flux is increased from a low value. Particularly for R134a, vapor remnants below discrete bubble on the heating surface are observed. Nucleation site density increases with the increases in heat flux and channel-averaged enthalpy, while discrete bubbles coalesce and form large bubbles, resulting in large vapor clots. Waves formed on the surface of the vapor clots are closely related to Helmholtz instability. At sufficiently high heat fluxes, three characteristic layers were observed in the heated channel: (a) a superheated liquid layer with small bubbles attached on the heated wall, (b) a flowing bubble layer consisting of large coalesced bubbles over the superheated liquid layer, and (c) the liquid core over the flowing bubble layer. (authors)

  8. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm lithium metaborate solution respectively at the saturation temperature for 1000 psi (68.9 bar) coolant pressure. Boiling tests also revealed the formation of fine deposits of boron and lithium on the cladding surface which degraded the heat transfer rates. The boron and lithium metaborate precipitates after a 5 day test at 5000 ppm concentration and 1000 psi (68.9 bar) operating pressure reduced the heat transfer rate 21% and 30%, respectively for the two solutions.

  9. A study of system-induced instabilities in forced-convection flows with subcooled boiling

    E-print Network

    Maulbetsch, John S.

    1965-01-01

    A combined analytical and experimental program was carried out to investigate the problem of hydrodynamic stability of forcedconvection flows with boiling. The study was restricted to the flow of water in small channels ...

  10. Bubble behavior in subcooled flow boiling on surfaces of variable wettability

    E-print Network

    Tow, Emily W

    2012-01-01

    Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that ...

  11. Experimental study of static flow instability in subcooled flow boiling in parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L.

    1995-12-31

    Experimental data for static flow instability or flow excursion (FE) at conditions applicable to the Advanced Neutron Source Reactor are very limited. A series of FE tests with light water flowing vertically upward was completed covering a local exit heat flux range of 0.7--18 MW/m{sup 2}, exit velocity range of 2.8--28.4 m/s, exit pressure range of 0.117--1.7 MPa, and inlet temperature range of 40-- 50{degrees}C. Most of the tests were performed in a ``stiff`` (constant flow) system where the instability threshold was detected through the minimum of the pressure-drop curve. A few tests were also conducted using as ``soft`` (constant pressure drop) a system as possible to secure a true FE phenomenon (actual secondary burnout). True critical heat flux experiments under similar conditions were also conducted using a stiff system. The FE data reported in this study considerably extend the velocity range of data presently available worldwide, most of which were obtained at velocities below 10 m/s. The Saha and Zuber correlation had the best fit with the data out of the three correlations compared. However, a modification was necessary to take into account the demonstrated dependence of the St and Nu numbers on subcooling levels, especially in the low subcooling regime. Comparison of Thermal Hydraulic Test Loop (THTL) data, as well as extensive data from other investigators, led to a proposed modification to the Saha and Zuber correlation for onset of significant void, applied to FE prediction. The mean and standard deviation of the THTL data were 0.95 and 15%, respectively, when comparing the THTL data with the original Saha and Zuber correlation, and 0.93 and 10% when comparing them with the modification. Comparison with the worldwide database showed a mean and standard deviation of 1.37 and 53%, respectively, for the original Saha and Zuber correlation and 1.0 and 27% for the modification.

  12. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  13. Application of high-speed digital holographic interferometry for the analysis of temperature distributions and velocity fields in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Bloch, Gregor; Kuczaty, Julian; Sattelmayer, Thomas

    2014-02-01

    Holographic interferometry can be used to visualize density fields in fluids, and thus give insight into temperature distributions in flows. A fully digital reconstruction technique for holographic interferograms is presented that allows to create high-speed interferometric recordings and gives time-resolved information about heat transfer processes. The technique can also be used for a sequential (image to image) analysis of the recordings, which offers higher sensitivity and fewer errors due to optical impurities. Experiments are conducted with a vertical flow boiling channel with one heated wall, using a low boiling fluorocarbon as working liquid in regimes of steady-state nucleate boiling at critical heat flux (CHF), steady-state film boiling and CHF transient. Recording frequencies are up to 7,000 fps. The technique is used to analyze boiling processes at different fluid subcoolings with and without added turbulence. The results give enhanced insight into the temperature distributions, effects of different flow inserts and mechanisms of heat transfer in flow boiling at high heat fluxes. Furthermore, a velocimetric application of the technique is presented using cross-correlation for tracing of density gradients both in boiling and unheated flows. This application gives insight to the velocity distributions in the liquid surrounding the vapor layer. The results show good comparison to particle image velocimetry measurements for the same setup.

  14. Subcooled boiling heat transfer in a short vertical SUS304-tube at liquid Reynolds number range 5.19 × 10 4 to 7.43 × 10 5

    Microsoft Academic Search

    Koichi Hata; Suguru Masuzaki

    2009-01-01

    The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u=17.28–40.20m\\/s), the inlet liquid temperatures (Tin=293.30–362.49K), the inlet pressures (Pin=842.90–1467.93kPa) and the exponentially increasing heat input (Q=Q0exp(t\\/?), ?=8.5s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304

  15. Non-linear dynamical analyses of transient surface temperature fluctuations during subcooled pool boiling on a horizontal disk

    E-print Network

    Banerjee, Debjyoti

    2009 Keywords: Boiling Thin film thermocouples Correlation dimension Critical heat flux Leidenfrost developed nucleate boil- ing (FDNB) $7­9 near critical heat flux (CHF) condition, and from $6.6 to 7 experiments on a 62.23 mm diameter silicon wafer using PF-5060 as the test liquid. Surface temperature data

  16. Highly subcooled pool boiling heat transfer at various gravity levels Jungho Kim a,*, John F. Benton b

    E-print Network

    Kim, Jungho

    An understanding of boiling and critical heat flux in microgravity environments is important to the design whether or not gravity af- fected the boiling process. The results of these early experiments were somewhat contradictory, with some experiments showing no effect of gravity on heat transfer and others

  17. Subcooled flow boiling heat transfer and critical heat flux in water-based nanofluids at low pressure

    E-print Network

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...

  18. Boils

    MedlinePLUS

    ... it open at home. This can spread the infection. Continue to put warm, wet compresses on the area after the boil opens. You may need to have surgery to drain deep or large boils. Get treatment from you health ...

  19. Ultrahigh critical heat flux (CHF) for subcooled water flow boiling—I: CHF data and parametric effects for small diameter tubes

    Microsoft Academic Search

    Issam Mudawar; Morris B. Bowers

    1999-01-01

    Ultra-high critical heat flux (CHF) data, with many values exceeding 100 MW m?2, were obtained using high mass velocity, subcooled water flow through short, small diameter tubes. These tests produced the highest CHF of 276 MW m?2 reported in the literature for a uniformly heated tube which surpassed the prior record of 228 MW m?2. The data include broad ranges

  20. CONVECTIVE HEAT TRANSFER OF BINARY MIXTURES UNDER FLOW BOILING CONDITIONS

    E-print Network

    Kandlikar, Satish

    CONVECTIVE HEAT TRANSFER OF BINARY MIXTURES UNDER FLOW BOILING CONDITIONS E. V. McAssey Jr results are presented for the heat transfer coefficient under flow boiling conditions for water-phase non-boiling region through the fully developed subcooled flow boiling region to saturated boiling

  1. Preliminary analysis of rapid boiling heat transfer

    Microsoft Academic Search

    Jinliang Wang

    2000-01-01

    Rapid boiling is a transient heat transfer phenomenon which occurs when a subcooled or saturated liquid quickly enters a highly metastable state. The preliminary analyses of the rapid boiling heat transfer are carried out in the paper. A physical process model is suggested for describing the rapid boiling heat transfer and a boundary microlayer on the heating surface is put

  2. AN EXPERIMENTAL INVESTIGATION ON FLOW BOILING OF ETHYLENE-GLYCOL/WATER MIXTURE

    E-print Network

    Kandlikar, Satish

    AN EXPERIMENTAL INVESTIGATION ON FLOW BOILING OF ETHYLENE-GLYCOL/WATER MIXTURE Satish G. Kandlikar essentially under subcooled flow boiling conditions. Very little information is available in the literature on the subcooled flow boiling characteristics of this mixture, and there is no predictive method established

  3. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  4. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    Microsoft Academic Search

    David A. Butterfield; R. E. McDuff; M. D. Lilley; G. J. Massoth; J. E. Lupton

    1990-01-01

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area (â¼ 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol\\/kg COâ), low-chlorinity (â¼ 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol\\/kg COâ), high-chlorinity (â¼ 116% of seawater) fluid. The

  5. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  6. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  7. High flux film and transition boiling

    SciTech Connect

    Witte, L.C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting, the transition region is good, and points the way to further research that is needed to demonstrate the potential.

  8. Microjet array single-phase and flow boiling heat transfer with R134a Eric A. Browne a

    E-print Network

    Peles, Yoav

    Microjet array single-phase and flow boiling heat transfer with R134a Eric A. Browne a , Gregory J boiling a b s t r a c t An experimental study of single-phase and flow boiling heat transfer:6 6 Nud 6 128. Boiling experiments were conducted with liquid subcoolings of 10, 20, and 30 °C at jet

  9. Development of a general purpose subgrid wall boiling model from improved physical understanding for use in computational fluid dynamics

    E-print Network

    Gilman, Lindsey Anne

    2014-01-01

    Advanced modeling capabilities were developed for application to subcooled flow boiling through this work. The target was to introduce, and demonstrate, all necessary mechanisms required to accurately predict the temperature ...

  10. Pool boiling studies on nanotextured surfaces under highly subcooled conditions

    E-print Network

    Sathyamurthi, Vijaykumar

    2009-05-15

    Baughman, Dr. Mei Zhang and Dr. Shaoli Feng of the Nanotechnology Institute at University of Texas at Dallas for providing us with the test surfaces. I thank Mr. Ysidoro Ramirez of the Heat Transfer Laboratory for providing me with equipment and timely... of the Nanotechnology Institute at University of Texas at Dallas for providing us with the test surfaces.) 20 Fig. 7. Scanning electron micrograph of Type-A CNT coated test surface as viewed from top. 2.3 The Experimental Procedure The actual pool...

  11. Control Dewar Subcooler Heat Exchanger Calculations

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into two parts relating to the heat transfer mode taking place. The first part is considered the condensing part in which the helium supply stream is changed from two phase fluid to one phase liquid. The second part is the subcooling part where the liquid temperature is lowered, i.e.. subcooled. A summary of the calculations and results appears on the next page. The raw calculations follow the summary.

  12. Experimental Observation and Analysis of Enhancing Boiling Heat Transfer with Acoustic Cavitation

    Microsoft Academic Search

    SUN Baozhi

    A series of experiments is carried out to make clear the effects of acoustic cavitation on boiling heat transfer from a 20 mm diameter circular copper tube taking alcohol as liquid. The cavitating intensity and the distance between the bottom of ultrasonic transducer and the test section are measured in experiments. The experimental research shows that subcooled boiling can be

  13. Pool boiling on nano-finned surfaces

    E-print Network

    Sriraman, Sharan Ram

    2008-10-10

    with sub-cooling of 45 K. They further studied the effect of micro-fins and submicron-scale roughness on boiling of FC-72. They found that the fins with submicron-scale roughness showed the greatest enhancement (1.8 – 2.3 times that of the bare surface... POOL BOILING ON NANO-FINNED SURFACES A Thesis by SHARAN RAM SRIRAMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  14. High flux film and transition boiling. Final report, April 1988--January 1993

    SciTech Connect

    Witte, L.C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting, the transition region is good, and points the way to further research that is needed to demonstrate the potential.

  15. Microscale boiling heat transfer under 0 g and 1 g conditions 1 Based on a paper presented as a plenary talk at Eurotherm Seminar No. 57 “Microscale Heat Transfer”, Poitiers, France, July 8–10, 1998. 1

    Microsoft Academic Search

    Johannes Straub

    2000-01-01

    Boiling heat transfer on a miniature heater has been studied in freon R11 under microgravity conditions during the Spacelab Mission IML-2 in 1994 and compared with measurements on earth. Several boiling modes have been observed depending on the liquid state, the subcooling of the liquid and the heat flux. The most important role in boiling heat transfer plays the surface

  16. The flow and heat transfer in two-phase double-tube thermosiphons (the effect of subcooling)

    SciTech Connect

    Yoshida, Masamichi; Imura, Hideaki; Ippohshi, Shigetoshi

    1994-09-01

    An experimental study was performed to investigate the effect of subcooling on the flow and heat transfer in two-phase double-tube thermosiphons with three types of inner tubes using water, ethanol, and Freon 113 as the working fluids. The same experiment for a single-tube thermosiphon was also carried out for comparison. As a result, a correlating expression for the heat-transfer coefficients in two-phase double- and single-tube thermosiphons is presented. The expression presented, by taking account of subcooling and the properties of working fluids, agreed well with the experimental data. The critical heat flux increased slightly with an increase in the degree of subcooling, and the rate of increase for double-tube thermosiphon was bigger than that for the single-tube one. The circulation mass velocity first increased and then decreased, as the heat flux increased. After that, it increased again at a certain heat flux. This behavior was observe for both saturated and subcooled boiling. However, this curve was shifted to the larger heat-flux direction as the degree of sub-cooling increased.

  17. Effects of dissolved gas content on pool boiling of a highly wetting fluid

    SciTech Connect

    You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States); Simon, T.W.; Bar-Cohen, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-08-01

    Experimental results on pool boiling heat transfer from a horizontal cylinder in an electronic cooling fluid (FC-72) are presented. The effects on the boiling curve of having air dissolved in the fluid are documented, showing that fluid in the vicinity of the heating element is apparently liberated of dissolved gas during boiling. Dissolved gas was found to influence boiling incipience only with high gas concentrations (>0.005 moles/mole). For low-to-moderate concentrations, a larger superheat is required to initiate boiling and a hysteresis is observed between boiling curves taken with increasing and decreasing heat flux steps. Boiling, a very effective mode of heat transfer, is attractive for electronics cooling. The present experiment provides further documentation of the role of dissolved gas on the incipience process and shows similarities with subcooled boiling of a gas-free fluid. 20 refs., 8 figs., 1 tab.

  18. Boiling incipience in a reboiler tube

    SciTech Connect

    Ali, H.; Alam, S.S. (Dept. of Chemical Engineering, Aligarh Muslim Univ., Aligarh 202 002 (IN))

    1991-03-01

    This heating surface and liquid temperature distributions were experimentally obtained to identify the boiling incipience conditions in a single vertical tube thermosiphon reboiler with water, acetone, ethanol, and ethylene glycol as test liquids. The test section was an electrically heated stainless steel tube of 25.56-mm i.d. and 1900 mm long. The uniform heat flux values were used in the range of 3800--40 000 W/m{sup 2}, while inlet liquid subcooling were varied from 0.2 to 45.5{degrees} C. The liquid submergence was maintained around 100, 75, 50 and 30%. All the data were generated at 1-atm pressure. The maximum superheats attained around boiling incipience were taken from the wall temperature distributions and correlated with heat flux and physical properties of liquids using the expression of Yin and Abdelmessih. The heated sections required for onset of fully developed boiling with net vapor generation were determined assuming a thermal equilibrium model. In this paper a dimensionless correlation relating these values with heat flux, liquid subcooling, and submergence is proposed.

  19. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    Microsoft Academic Search

    Ken Takai; Takuro Nunoura; Jun-ichiro Ishibashi; John Lupton; Ryohei Suzuki; Hiroshi Hamasaki; Yuichiro Ueno; Shinsuke Kawagucci; Toshitaka Gamo; Yohey Suzuki; Hisako Hirayama; Koki Horikoshi

    2008-01-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids

  20. Hydrothermal Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of temporal, spatial, and compositional changes.

  1. NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY

    E-print Network

    Chang, Ho-Myung

    NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY Yeon SukChoi \\ Steven W. Van to measure the natural convection of subcooled liquid nitrogen between two vertical plates has been performed power transformer cooled by natural convection of subcooled liquid nitrogen. A liquid nitrogen bath

  2. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  3. Efficiency of a solar collector with internal boiling

    SciTech Connect

    Neeper, D.A.

    1986-06-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a week function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  4. Efficiency of a solar collector with internal boiling

    SciTech Connect

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  5. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  6. Transient Heat Transport in Subcooled He II Associated with JT Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Iwamoto, A.; Hamaguchi, S.

    2004-06-01

    Transient heat transport in subcooled He II has been investigated in a 1 m long rectangular channel with distributed contractions: one-closed end has a heater, while the other end is open to the He II bath. Experiments were conducted applying heat pulses and recording the temperature profile with seven Allan Bradley resistors placed along the channel. Cernox sensor was indium soldered on the heater surface to monitor the onset of film boiling. As the onset of heat pulse, the pressure at the heater surface increased because of phase change from subcooled He II to He I. Further increasing of heat pulse leads to coexistence of triple-phase, He I vapor layer, He I and subcooled He II, at the vicinity of heater surface. These effects induced instantaneous He II temperature drop along the channel, which is caused by Joule-Thomson (JT) effect. A simple model gives an approximate mechanism of pressure increase in the channel. The paper describes transient heat transport mechanism in the channel and discusses JT effect within the channel.

  7. Natural Circulation Loop of Subcooled Liquid Nitrogen

    Microsoft Academic Search

    M. J. Kim; H. M. Chang

    2008-01-01

    An experimental study is performed to investigate the thermal and flow characteristics of subcooled liquid nitrogen in a natural circulation loop. A round tube with uniform diameter is fabricated into a circulation loop and vertically located in a cryostat, where a GM cryocooler is heat sink at the top and an electrical heater is heat source nearly at the bottom.

  8. NATURAL CIRCULATION LOOP OF SUBCOOLED LIQUID NITROGEN

    Microsoft Academic Search

    M. J. Kim; H. M. Chang

    2008-01-01

    An experimental study is performed to investigate the thermal and flow characteristics of subcooled liquid nitrogen in a natural circulation loop. A round tube with uniform diameter is fabricated into a circulation loop and vertically located in a cryostat, where a GM cryocooler is heat sink at the top and an electrical heater is heat source nearly at the bottom.

  9. Experimental study and modeling of nucleate boiling during free planar liquid jet impingement

    Microsoft Academic Search

    Ahmed M. T Omar

    2010-01-01

    Determination of boiling heat transfer rate during liquid jet impingement cooling (LJIC) depends on the intensity of bubble generation that is dependent on many flow and surface conditions such as jet velocity, liquid temperature, and surface superheat. Many empirical correlations have been developed previously to determine the total wall heat flux under various LJIC flow velocity, subcooling and surface superheat.

  10. Thermal Conductivity of Subcooled Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Charignon, T.; Celik, D.; Hemmati, A.; Van Sciver, S. W.

    2008-03-01

    Here we present thermal conductivity measurements of subcooled equilibrium liquid hydrogen in the temperature range from 15 to 23 K and under pressures up to 1 MPa. The measurements have been done in a horizontal, guarded, flat-plates calorimeter. One dimensional heat transfer between the hot and the cold plates of the calorimeter is achieved by the placement of two thermal guards. Capacitance measurement between the calorimeter plates gives a precise and accurate value for the gap. A two-stage Gifford-McMahon cryocooler provides the cooling power to the calorimeter. The absolute temperatures are monitored using ruthenium oxide temperature sensors calibrated against the saturated vapor-pressure line of equilibrium hydrogen. Results reported in this paper are compared to existing data and an analytical model. Knowledge of the density dependence to the thermal conductivity is expected to be useful for subcooled hydrogen transport processes.

  11. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.

  12. Sub-cooled water detection in silicon dew point hygrometer

    Microsoft Academic Search

    R Jachowicz; J Weremczuk

    2000-01-01

    A new type of silicon dew point detector is presented in this paper. The fabricated detector structures contain a thermometer, two heaters, a capacitive interdigitated sensor for the detection of water, sub-cooled water, as well as ice. The test results of sub-cooled water recognition are carefully described. The theoretical model of the capacitive interdigitated sensor describing the principle of detection

  13. THERMAL DIFFUSION OF HEAT PULSE IN SUBCOOLED LIQUID NITROGEN

    E-print Network

    Chang, Ho-Myung

    THERMAL DIFFUSION OF HEAT PULSE IN SUBCOOLED LIQUID NITROGEN H. M. Chang1 , J. J. Byun1 , J. H ABSTRACT Transient heat transfer caused by a heat pulse in subcooled liquid nitrogen is investigated for superconducting fault current limiters (SFCL) in Korea. A thin heater attached by epoxy on one surface of a GFRP

  14. Dive and Discover's Deeper Discovery: Hydrothermal Vents

    NSDL National Science Digital Library

    Dive and Discover is an interactive distance learning web site designed to immerse you in the excitement of discovery and exploration of the deep seafloor. On this particular website, Dive and Discover takes you on a deeper discovery of hydrothermal vents. This site features an introduction to hydrothermal vent systems, including vent basics, vents around the world, chemistry, boiling points, interactive diagrams, videos, a quiz, and links to selected Dive and Discover hydrothermal vent-related seafloor expeditions. This web page also provides links to other Deeper Discovery topics, Dive and Discover seafloor expeditions, a teacher's page, and further Dive and Discover information.

  15. Boil, Boil, Toil and Trouble: The International Boiling Point Project

    NSDL National Science Digital Library

    Math Forum

    2001-01-01

    People from all over the world boil water at different elevations and post data to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point. Anyone can boil water, record information, and send it in for inclusion in the database of results. Students can analyze all the data to answer the question: What causes a pot of water to boil? Participation is invited at any time during the project's three-month span. Developed and managed by the Center for Improved Engineering and Science Education (CIESE) at Stevens Institute of Technology in Hoboken, NJ.

  16. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as p

  17. The Effect of vapor subcooling on film condensation of metals

    E-print Network

    Fedorovich, Eugene D.

    1968-01-01

    This work presents an analysis of the interfacial "vapor-condensate" temperature distribution, which includes the effect of subcooling (supersaturation) in the vapor. Experimental data from previous investigators for ...

  18. PII S0016-7037(99)00441-X Sub sea floor boiling of Red Sea Brines: New indication from noble gas data

    E-print Network

    Winckler, Gisela

    PII S0016-7037(99)00441-X Sub sea floor boiling of Red Sea Brines: New indication from noble gas boiling during the hydrothermal circulation and subsequent phase separation is shown to be a consistent, where it becomes enriched in HeMORB and ArMORB, the ascending fluid boils, and the residual liquid

  19. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  20. Mitigation of an anticipated transient without scram event in a simplified boiling water reactor by the insertion of fine-motion control rods

    Microsoft Academic Search

    H. J. Khan; H. S. Cheng

    1995-01-01

    Analysis has been performed for an anticipated transient without scram (ATWS) event in a simplified boiling water reactor. Loss of feedwater heating initiated this ATWS, which was mitigated by the insertion of fine-motion control rods. Calculations with RAMONA-4B code show that reactivity insertion, through increase in subcooling to the core, results in a rise in the core power to a

  1. Microjet array flow boiling with R134a and the effect of dissolved nitrogen Eric A. Browne, Michael K. Jensen, Yoav Peles

    E-print Network

    Peles, Yoav

    Microjet array flow boiling with R134a and the effect of dissolved nitrogen Eric A. Browne, Michael/s, subcoolings of 10, 20, and 30 °C, and jet-to-heater area ratios of 8.9% and 21% were employed. Lower enhancement of the heat transfer coefficient. Also, a previous hypothesis that nitrogen dissolved

  2. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    SciTech Connect

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Pasedag, W.F. [USDOE, Washington, DC (United States)] [USDOE, Washington, DC (United States)

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.

  3. Pool boiling of dielectric liquids on porous graphite and extended copper surfaces

    NASA Astrophysics Data System (ADS)

    Parker, Jack L.

    This work investigated pool boiling of the dielectric liquids HFE-7100 and FC-72 on plane copper and porous graphite and on copper surfaces with corner pins. The work investigated the effects of surface orientation and liquid subcooling and, for the copper surfaces with corner pins, the effect of surface roughness. In addition, investigations were made studying the heat transfer by natural convection and nucleate boiling, as well as the effects of liquid subcooling (up to 30 K) and surface inclination (0°--upward facing, to 180°--downward facing) on nucleate boiling heat transfer and Critical Heat Flux (CHF). The results are applicable to direct immersion cooling by nucleate boiling of high power computer chips dissipating 50 - 100 W/cm2 while maintaining the junction temperature for the chips below the recommended values (˜85 °C). Pool boiling experiments are performed with degassed HFE-7100 and FC-72 liquids using uniformly heated 10 x 10 mm porous graphite and copper surfaces with corner pins. The measured footprint temperatures and thermal power removed from the surfaces are used to construct the pool boiling curves and determine the critical heat flux and corresponding surface superheat. Results are compared with those obtained on plane copper of same heated footprint area. The obtained CHF values are also compared with those reported in the open literature for plane, micro-porous, and macro-structured surfaces. Digital photographs and video are obtained to help explain and interpret the results. For the first time, natural convection correlations for dielectric liquids on plane, porous, and copper with corner pins developed. These correlations are important to electronic cooling in the stand-by mode when the heat dissipation by the chips is only a few watts. Results show that the power removed by natural convection from surfaces with corner pins is 67% more than from plane Si and Cu surfaces at the same surface superheat. Using porous graphite and copper with Cu pins increases the nucleate boiling heat transfer rate over that on plane copper. On all surfaces, as the inclination angle increases, the heat transfer rate at low superheats increases slightly, then decreases with increasing angle at high superheats. However, the porous graphite and the Cu with corner pins significantly reduce the decline in boiling heat transfer rate with increasing inclination. The peak heat transfer coefficient corresponds to the minimum thermal boiling resistance and occurs at a heat flux ˜10% lower than that at CHF. Although the heat flux at the peak heat transfer coefficient is the most desirable operational point, CHF is the upper limit for cooling by nucleate boiling. Beyond CHF the electronics would overheat. Results also show that increasing the height of the corner pins increases the thermal power removed in nucleate boiling and at CHF. CHF increases linearly with increased liquid subcooling, but decreases with increased surface inclination. The decrease in CHF with increased inclination for the surfaces with corner pins is significantly smaller than on plane surfaces. For electronics cooling applications, the best mode of cooling by nucleate boiling is in saturation boiling of HFE-7100 on 5 mm tall corner pins operating at the heat flux corresponding to the minimum boiling resistance. At this condition and using the saturation temperature of HFE-7100 of 54 °C, the wall temperature is 75.2 °C, well below the limit of 85 °C. If more robust electronics are used and have a higher maximum temperature limit, boiling in 30 K subcooled liquid removed much more power. At the minimum boiling resistance, the wall temperature is 83.4 °C. (Abstract shortened by UMI.)

  4. Evidence of Ni 2FeBO 5 and m-ZrO 2 precipitates in fuel rod deposits in AOA-affected high boiling duty PWR core

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2008-02-01

    This paper describes the characteristics of corrosion product deposits found in upper regions of high axial offset anomaly (AOA) once-burnt fuel assemblies after Cycle 9 in the Callaway pressurized water reactor (PWR). The ˜100-?m-thick deposits consisted of a new type of highly porous and structured Ni-, Fe-, B-, and Zr-rich material. The analyses showed that deposits contain a large amount (about 50 wt%) of Ni-Fe oxyborate (Ni 2FeBO 5, mineral name bonaccordite), in the form of matted ˜0.1-?m-thick and ˜10-?m-long, needle-like particles. An especially high density of Ni 2FeBO 5 needles was found in a 30-40-?m-thick zone on the clad side of the deposits. This compound has not previously been reported as a component of PWR fuel crud. Common fuel crud components such as nickel ferrite and nickel oxide were observed only in small quantities (about 10 wt%). Reference samples of Ni 2FeBO 5 were obtained by hydrothermal reactions in alkaline aqueous solutions starting from about 400 °C, or by sintering at about 1000 °C. Formation of Ni 2FeBO 5 has been identified as a new mechanism for boron retention and neutron absorption on PWR fuel. Aggregates of apparently hydrothermally precipitated ˜0.1-0.3-?m-sized particles of monoclinic m-ZrO 2(˜30 wt%) were found in the deposits, which is indicative of a dissolution-precipitation process at the cladding surface. This process may be enhanced by a LiOH concentration mechanism in crud, which is a result of both sub-cooled nucleate boiling and 10B(n,?) 7Li reactions. Consistently, the isotopic abundance of 10B in Ni 2FeBO 5 in crud samples was reduced to about 10% of the total boron.

  5. Liquid Nitrogen Subcooler ofr Calorimeters LN2 Supply

    SciTech Connect

    Sarychev, Michael; /Fermilab

    2002-09-16

    This note provides calculations of heat load and coil sizing for a LN2 subcooler which will be installed in the liquid nitrogen line going from Dewar 42 to the. Liquid argon calorimeters. This subcooler must improve LN2 quality and facilitate LAr pressure regulation. The system is described in Engineering note 3740.510-EN-382. This note contains the calculations of heat loads/pressure drops of the liquid Nitrogen supply line going from the Dewar 42 to the liquid Argon calorimeters, and also the sizing of existing LN2 subcooler located in the V-tube. The note is used as a reference. The state of Nitrogen {at} point 6 - ECS entrance (according to 3740.510-EN-382) is used in the calculations. The quality of liquid x = 0.0066 with the use of existing 75 W LN2 subcooler. It has been determined that we need 29.3 W of additional subcooling in order to obtain. 100% liquid at this point with the mass flow of 25 g/s. Keeping in mind the possible error in heat transfer calculations, a 300W subcooler will be installed to replace the old 75 W subcooler. In order to achieve an acceptable conclusion, an assumption of a fully developed boundary layer was made. The hot fluid or the fluid condensing on the inside surface will determine the rate of heat transfer because A{sub o} = A{sub i} and h{sub o}A{sub o} >> h{sub i}A{sub i}. The conclusion drawn is to use a 1/2-inch copper tube wound approximately 8 times about a 9-inch diameter circle. The pressure drop in this coil will be 0.05 psi (0.0034 atm) and can be neglected.

  6. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.

  7. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  8. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1996

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    For the past decade, efforts have been growing in the development of high heat flux (HHF) components for many applications, including fusion and fission reactor components, advanced electronic components, synchrotrons and optical components, and other advanced HHF engineering applications. From a thermal prospective, work in the fusion reactor development arena has been underway in a number of areas including: (1) Plasma thermal, and electro-magnetics, and particle transport, (2) Fusion material, rheology, development, and expansion and selection; (3) High heat flux removal; and (4) Energy production and efficiency.

  9. Critical heat flux and heat transfer transition for subcooled flow boiling

    SciTech Connect

    Boyd, R.D. (Prairie View A and M Univ., TX (USA))

    1991-02-01

    The emphasis in the engineering development of fusion reactor components has been on material development. If high heat fluxes are to be accommodated with the present emphasis, low-pressure thermal data will be needed. The objectives of this experiment were to (1) expand the critical heat flux, W/cm{sup 2} data base near 4.0 kilowatts cm{sup 2} and heated coolant channel length divided by coolant chamber diameter near 100.0 (near-term application), (2) add low-pressure quantitative data to our existing knowledge of the qualitative influence of coolant exit pressure on CHF, and (3) provide thermal data in a region applicable to high heat flux components for assessing existing and evolving CHF and local heat transfer coefficient correlations (long-term).

  10. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1997

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    The Thermal Science Research Center (TSRC) at Prairie View A&M University is involved in an international fusion reactor technology development program aimed at demonstrating the technical feasibility of magnetic fusion energy. This report highlights: (1) Recent accomplishments and pinpoints thermal hydraulic problem areas of immediate concern to the development of plasma-facing components, and (2) Next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically, the near-term thermal hydraulic problem entails: (1) generating an appropriate data base to insure the development of single-side heat flux correlations, and (2) evaluating previously developed single-side/uniform heated transformations and correlations to determine which can be used to relate the vast two-phase heat transfer and critical heat flux (CHF) technical literature for uniformly heated flow channels to single-side heated channels.

  11. Experimental Two-Phase Flow Characterization of Subcooled Boiling in a Rectangular Channel

    E-print Network

    Estrada Perez, Carlos E.

    2010-01-16

    a115 a111a102 a84a101a120a97a115 a65a38a77 a85a110a105a118a101a114a115a105a116a121 a105a110 a112a97a114a116a105a97a108 a102a117a108a28a108a108a109a101a110a116 a111a102 a116a104a101 a114a101a113a117a105a114a101a109a101a110a116a115 a102a111a114 a116a...102 a84a101a120a97a115 a65a38a77 a85a110a105a118a101a114a115a105a116a121 a105a110 a112a97a114a116a105a97a108 a102a117a108a28a108a108a109a101a110a116 a111a102 a116a104a101 a114a101a113a117a105a114a101a109a101a110a116a115 a102a111a114 a116a104a101 a100a...

  12. Stability of forced-convection subcooled boiling in steady-state and transient annular flow

    SciTech Connect

    Gehrke, V.; Bankoff, S.G. [SGB Associates, Evanston, IL (United States)

    1993-06-01

    A semi-analytical model developed by Lee and Bankoff for OFI in round tubes is extended to annular or parallel-plate flows with unequal heat fluxes, and shown to compare well with data by Dougherty, et al. and by Whittle and Forgan. The model is a better fit in the high Peclet number range than the Saha-Zuber model, and is simple to use.

  13. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  14. Hydrothermal processes at Mount Rainier, Washington

    Microsoft Academic Search

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m²) of heated ground and slightly acidic boiling-point fumaroles at 76-82°C at East and West Craters on the volcano's summit; (2) A small area (less than

  15. Boiling Time and Temperature

    NSDL National Science Digital Library

    Francis Eberle

    2007-01-01

    The purpose of this assessment probe is to elicit students' ideas about the characteristic property of boiling point. The probe is used to find out whether students recognize that the temperature of a boiling liquid stays constant no matter how long heat is applied.

  16. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  17. Boiling heat transfer from a horizontal flat plate in a pool of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2010-06-01

    Heat transfer from a flat plate facing upward immersed in a liquid hydrogen pool was measured for the pressures from atmospheric to 1.1 MPa. The flat plate heater used was 10 mm in width, 100 mm in length and 0.1 mm in thickness. Critical heat fluxes (CHFs) in saturated boiling increased with the increase in pressure up to around 0.3 MPa and then decreased with further pressure increase. The CHFs under subcooled condition at each pressure increased with the increase in sub-cooling. Discussions were made on the experimental results by comparing with those of the other cryogenic liquids and also the Kutateladze's equations under saturated and subcooled conditions. The experimental CHFs were much smaller than the Kutateladze's equation for higher pressure up to critical. The heater surface temperature was found to reach the critical temperature before the occurrence of hydrodynamic instability and jump to the film boiling regime at the lower heat flux in the higher pressure range. It was suggested that the CHFs are determined not by the heat flux but by the temperature in the higher pressure range.

  18. Consideration of sub-cooled LN2 circulation system for HTS power machines

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  19. Thermal Diffusion of Heat Pulse in Subcooled Liquid Nitrogen

    Microsoft Academic Search

    H. M. Chang; J. J. Byun; J. H. Choi; C. J. Ha; M. J. Kim; H. M. Kim; T. K. Ko

    2006-01-01

    Transient heat transfer caused by a heat pulse in subcooled liquid nitrogen is investigated experimentally. This study is part of our ongoing efforts to develop a stable cryogenic cooling system for superconducting fault current limiters (SFCL) in Korea. A thin heater attached by epoxy on one surface of a GFRP plate is immersed in a liquid-nitrogen bath at temperatures between

  20. Suppression of bubbles in subcooled liquid nitrogen under heat impulse

    Microsoft Academic Search

    Kwanwoo Nam; Bok-Yeol Seok; Jung Joo Byun; Ho-Myung Chang

    2007-01-01

    This paper describes an experimental investigation to verify that subcooling of liquid nitrogen can suppress bubbles when an impulsive heat is applied. A heater is attached on a surface of substrate in liquid nitrogen which simulates the quench state of the superconducting coil in high temperature superconductor (HTS) system. A pulse of power input, whose period is around 100ms, is

  1. International Boiling Point Project

    NSDL National Science Digital Library

    2009-01-01

    The purpose of this project is to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point. Anyone can participate in this year's project. All you have to do is boil a bit of water, record a bit of information, and send it along to the website to have your results included in the database of results. Then, students can analyze all of the data to reach an answer to the question: What causes a pot of water to boil?

  2. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlanti

  3. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  4. Model for boiling and dryout in particle beds. [LMFBR

    SciTech Connect

    Lipinski, R. J.

    1982-06-01

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

  5. Hydrothermal calderas

    NASA Astrophysics Data System (ADS)

    Merle, Olivier; Barde-Cabusson, Stéphanie; van Wyk de Vries, Benjamin

    2010-03-01

    The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.

  6. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  7. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Microsoft Academic Search

    Y. F. Fan; L. H. Gong; X. D. Xu; L. F. Li; L. Zhang; L. Y. Xiao

    2005-01-01

    A 10m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN2) was used to cool the HTS cable. The sub-cooled LN2 circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN2 gas–liquid separator.

  8. Sand boils without earthquakes

    USGS Publications Warehouse

    Holzer, T.L.; Clark, M.M.

    1993-01-01

    Sedimentary deformation caused by liquefaction has become a popular means for inferring prehistoric strong earthquakes. This report describes a new mechanism for generating such features in the absence of earthquakes. Sand boils and a 180-m-long sand dike formed in Fremont Valley, California, when sediment-laden surface runoff was intercepted along the upslope part of a 500-m-long preexisting ground crack, flowed subhorizonally in the crack, and then flowed upward in the downslope part of the crack where it discharged as sand boils on the land surface. If the sand boils and their feeder dike were stratigraphically preserved, they could be misinterpreted as evidence for earthquake-induced liquefaction. -Authors

  9. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    NASA Astrophysics Data System (ADS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-09-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  10. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  11. Performance of extended surface from a cryocooler for subcooling liquid nitrogen by natural convection

    E-print Network

    Chang, Ho-Myung

    convection Yeon Suk Choi a,b , Ho-Myung Chang a,*, Steven W. Van Sciver b a Department of Mechanical May 2005; accepted 25 May 2005 Abstract Natural convection of subcooled liquid nitrogen under that subcooled liquid may generate cellular flow by natural convection. The temperature distributions

  12. Electrical Breakdown Characteristics of Superconducting Magnet System in Sub-Cooled Liquid Nitrogen

    Microsoft Academic Search

    Hyoungku Kang; Chanjoo Lee; Tae Kuk Ko; Bok-Yeol Seok

    2007-01-01

    Dielectric characteristics of gaseous helium (GHe) injected into the cooling system to make sub-cooled nitrogen condition with constant pressure is found to be extraordinarily weak in dielectric strength by H. Mitsuii (1998). In high voltage superconducting machines using the sub-cooled nitrogen cooling system, the current lead part in GHe environment could be electrical weak points rather than the superconducting magnet

  13. Is subcooling the right driving force for testing low-dosage hydrate inhibitors?

    Microsoft Academic Search

    Mosayyeb Arjmandi; Bahman Tohidi; Ali Danesh; Adrian C. Todd

    2005-01-01

    The degree of subcooling is usually used as the driving force for hydrate formation; however, it does not encompass the effect of pressure. A comprehensive driving force for hydrate formation is a function of pressure, temperature, and gas composition; however, its calculation is not as simple as that of subcooling. In this work, by application of the two latest driving

  14. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  15. Subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  16. Super eruption environments make for "super" hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Morgan, L. A.; Shanks, W. P.; Pierce, K. L.

    2006-12-01

    Hydrothermal explosions are violent events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments over areas that range from a few meters in diameter up to several kilometers in diameter. Hydrothermal explosions occur where shallow interconnected reservoirs of steam-saturated fluids underlie thermal fields. Sudden reduction in pressure causes the fluids to flash to steam resulting in significant expansion, rock fragmentation, and debris ejection. In Yellowstone, at least 20 large (>100 meters in diameter) hydrothermal explosions have been identified, and the scale of the individual events dwarfs similar features in other hydrothermal and geothermal areas of the world. Large explosions in Yellowstone have occurred over the past 16 ka at an interval of ~1 per every 700 yrs and similar events are likely to occur in the future. Our studies of hydrothermal explosive events indicate: 1) none are associated with magmatic or volcanic events; 2) several have been triggered by seismic events coupled with other processes; 3) lithic clasts and matrix from explosion deposits are extensively altered, indicating long-term, extensive hydrothermal mineralization in areas that were incorporated into the explosion deposit; 4) many lithic clasts in explosion breccia deposits contain evidence of repeated fracturing and cementation; and 4) dimensions of many documented large hydrothermal explosion craters in Yellowstone are similar to the dimensions of currently active geyser basins or thermal areas in Yellowstone. The vast majority of active thermal areas in Yellowstone are characterized by 1) high-temperature hot-water systems in areas of high heat-flow, 2) extensive systems of hot springs, fumaroles, geysers, sinter terraces, mud pots, and, in places, small hydrothermal explosion craters, 3) widespread alteration of host rocks, 4) large areal dimensions (>several 100 m) and 5) intermittent but long-lived activity (40,000 to 300,000 years). Critical requirements for large hydrothermal explosions are an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow and a water-saturated system close to or at boiling temperatures. Important factors are the active deformation of the Yellowstone caldera, active faults and moderate seismicity, high heat flow, climate changes, and regional stresses. Ascending fluids flow along fractures that develop in response to active deformation of the Yellowstone caldera and along edges of impermeable rhyolitic lava flows. Alteration, self sealing, and dissolution further constrain the distribution and development of hydrothermal fields. A partial impermeable cap can contribute to the final over-pressurization. An abrupt drop in pressure initiates steam-flashing and is instantly transmitted through interconnected fractures, resulting in a series of multiple large-scale explosions and excavation of an explosion crater. Strong similarities between large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic failures leading to large hydrothermal explosions represent a unique phase in the life cycle of a geyser basin.

  17. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  18. Boiling Radial Flow in Fractures of Varying

    E-print Network

    Stanford University

    SGP-TR-166 Boiling Radial Flow in Fractures of Varying Wall Porosity Robb Allan Barnitt June 2000 and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient

  19. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids

    NASA Astrophysics Data System (ADS)

    Sarafraz, M. M.; Hormozi, F.; Kamalgharibi, M.

    2014-09-01

    The convective boiling characteristics of dilute dispersions of CuO nanoparticles in water/ethylene glycol as a base fluid were studied at different operating conditions of (heat fluxes up to 174 kW m-2, mass fluxes range of 353-1,059 kg m-2 s-1 and sub-cooling level of 343, 353 and 363 K) inside the annular duct. The convective boiling heat transfer coefficients of nanofluids in different concentrations (vol%) of nanoparticles (0.5, 1, and 1.5) were also experimentally quantified. Results demonstrated the significant augmentation of heat transfer coefficient inside the region with forced convection dominant mechanism and deterioration of heat transfer coefficient in region with nucleate boiling dominant heat transfer mechanism. Due to the scale formation around the heating section, fouling resistance was also experimentally measured. Experimental data showed that with increasing the heat and mass fluxes, the heat transfer coefficient and fouling resistance dramatically increase and rate of bubble formation clearly increases. Obtained results were then compared to some well-known correlations. Results of these comparisons demonstrated that experimental results represent the good agreement with those of obtained by the correlations. Consequently, Chen correlation is recommended for estimating the convective flow boiling heat transfer coefficient of dilute CuO-water/ethylene glycol based nanofluids.

  20. A Photographic Study on Flow Boiling of R-134a in a Vertical Channel

    SciTech Connect

    Bang, In Cheol; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Baek, Won-Pil [Korea Atomic Energy Research Institute, 150, Dukjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2002-07-01

    The behavior of near-wall bubbles in subcooled flow boiling has been investigated photographically for R134a flow in vertical, one-side heated and rectangular channels at mass fluxes of 0, 190, 1000 and 2000 kg/m{sup 2}.s and inlet subcooling condition of 8 deg. C under 7 bar(T{sub sat} 27 deg. C). Digital photographic techniques and high-speed camera are used for the visualization, which have significantly advanced for recent decades. Primary attention is given to the bubble coalescence phenomena and the structure of the near-wall bubble layer. At subcooled and low quality conditions, discrete attached bubbles, sliding bubbles, small coalesced bubbles and large coalesced bubbles or vapor clots are observed on the heated surface as the heat flux is increased from a low value. Particularly in beginning of vapor formation, vapor remnants below discrete bubble on the heating surface are clearly observed. Nucleation site density increases with the increases in heat flux and channel-averaged enthalpy, while discrete bubbles coalesce and form large bubbles, resulting in large vapor clots. Waves formed on the surface of the vapor clots are closely related to Helmholtz instability. At CHF occurrence it is also observed that wall bubble layer beneath large vapor clots is removed and large film boiling occurs. Through the present visual test, it is observed that wall bubble layer begins to develop with the onset of nucleate boiling (ONB) and to extinguish with the occurrence of the CHF. It could be considered that this layer made an important role of CHF mechanism macroscopically. However, there may be another structure beneath wall bubbles which supplies specific information on CHF from viewpoint of microstructure based upon the observation of the liquid sublayer beneath coalesced bubbles. Through this microscopic visualization, it may be suggested that the following flow structures characterize the flow boiling phenomena: (a) vapor remnants as a continuous source of bubbles, (b) liquid sublayer depleted with bubble formation if there is not new supply of liquid, and (c) vapor clot as an obstructer blanketing liquid supply to sublayer in high heat flux. (authors)

  1. An onset of nucleate boiling criterion for horizontal flow boiling

    Microsoft Academic Search

    Olivier Zürcher; John R. Thome; Daniel Favrat

    2000-01-01

    A model to predict the onset of nucleate boiling has been successfully developed to differentiate purely convective evaporation from mixed nucleate and convective boiling during evaporation inside a horizontal tube of 14 mm I.D. Based on an extensive database collected for the natural refrigerant ammonia (R-717) over mass velocities from 10 to 140 kg · m ?2· s ?1 ,

  2. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  3. A study of electrowetting-assisted boiling

    E-print Network

    Bralower, Harrison L. (Harrison Louis)

    2011-01-01

    The classical theory of boiling heat transfer based on bubble dynamics is explained and includes a full derivation of the Rohsenow boiling correlation. An alternative, more accurate correlation for determining boiling heat ...

  4. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  5. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  6. BOILING-WATER-REACTOR INSTABILITY

    Microsoft Academic Search

    Thie

    1958-01-01

    BS>The observed oscillatory behavior of five ANL boiling reactors---the ; Borax I, II, III, IV, and the Experimental Boiling Water Reactor---are described. ; The amplitude, frequency, temperature, and threshold of the oscillation are ; recorded. The kinetic theory of oscillations is illustrated by a simplified ; model using a single series feedback loop and linearized one group kinetic ; equations.

  7. Hydrothermal processes at Mount Rainier, Washington

    SciTech Connect

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  8. An experimental investigation of critical heat flux in subcooled internal flow

    E-print Network

    Shatto, Donald Patrick

    1997-01-01

    diameters, tube lengths, and mass flow rates. Methods of developing predictive correlations for subcooled critical heat flux based on dimensional analysis, and the sublayer dryout model, are described and applied to the data from these experiments. When...

  9. Patterns in Global Hydrothermal

    E-print Network

    ) High-T vents High = hydrothermal discharge Low = active or inactive discharge sites B. Davy, GNS NZ #12Patterns in Global Hydrothermal Activity noaa ocean exploration Presenter: Edward T. Baker #12;First vents discovered in the S Atl. First hi-T vents discovered on ultra-slow ridge Eruption discovered

  10. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  11. Steam-air mixture condensation in a subcooled water pool

    NASA Astrophysics Data System (ADS)

    Norman, Timothy Linhurst

    2007-12-01

    In any conceptual reactor design under postulated accidental conditions, one parameter that is considered as being highly ranked in determining the thermal-hydraulic conditions of the reactor safety components is the system pressure. To obtain a satisfactory prediction of steam partial pressure, within reasonable uncertainty in the gas space of a confined SP (suppression pool) bounded to the steam source of the break flow, one must establish a means by which local phenomena associated with steam direct contact condensation in the subcooled water pool can be fully addressed to predict the global component thermal response. For this purpose a scaled down, reduced pressure, suppression pool was designed and built to study condensation and mixing phenomena. The scaled test facility represented an idealized trapezoidal cross section, 1/10 sector of the SP with scaled height ratio of 1/4.5 and volume ratio of 1/400. The design and test conditions were based on a hierarchical scaling principle that preserves the transfer of mass, momentum, energy and condensation phenomena. Distributed thermocouples within the pool provided a means to quantify the pool thermal response. The test loop was not only instrumented with thermocouples for monitoring pool stratification but also with high speed photography for flow visualization from which to build a comprehensive database to identify the regions of the pool that were thermally stratified or mixed. Data were obtained for different pool initial subcooling and steam/air mixture flow rates. Dimensionless boundary maps were plotted from several experimental runs of pure steam injection to determine conditions when the pool transits from being homogeneously mixed to being thermally stratified. Steam-air mixture injection cases for single horizontal venting indicated that above a pool temperature of 40°C with airmass flow rates below 0.1 g/s the pool can attain thermal stratification. Models of a single phase liquid-into-liquid buoyant jet and a two-phase vapor-into-liquid turbulent jet plume injected in horizontal orientation were developed from the Reynolds averaged Navier-Stokes equations in the cylindrical system for steady axisymmetric flow and incorporated the integral plume theory. The two-phase simplified model developed to predict the pool surface temperature to within less than 0.5°C in the majority of cases.

  12. High flux film and transition boiling

    SciTech Connect

    Witte, L.C.

    1990-01-01

    This report is a bench-scale experiment on transition boiling. The author gives a detailed description on experimental apparatus and conditions. The visual observed boiling phenomena; nucleate boiling and film boiling, and the effect of heat transfer are also elucidated. 10 refs., 11 figs., 1 tab.

  13. Influence of nanoparticles on boiling heat transfer

    Microsoft Academic Search

    Dongsheng Wen

    Two sets of experiments are performed in this work to reveal the potential effect of nanoparticles on boiling heat transfer: i) pool boiling of nanofluids on two well-defined boiling surfaces and ii) bubble formation in a quiescent pool of nanofluids under adiabatic conditions. Different to the conventional thoughts that the modification of boiling heat transfer is the result of solid

  14. Trends in Alkane Boiling Points

    NSDL National Science Digital Library

    Paula Woods

    This activity is an investigation into the relationship between alkane length and boiling points. Students develop a mathematical model of this relationship and use it to make predictions and error analysis.

  15. F-LE Boiling Water

    NSDL National Science Digital Library

    2013-10-30

    This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a table showing the approximate boiling point of water at different elevations: Elevation (meters above sea level)Boiling Point (degrees Celsi...

  16. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  17. Hydrothermal synthesis of hydroxyapatite

    Microsoft Academic Search

    J S Earl; D J Wood; S J Milne

    2006-01-01

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO3)2?4H2O and (NH4)2HPO4 with distilled water, in a hydrothermal reactor at 200 C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a

  18. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    PubMed

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics. PMID:15644356

  19. Two-phase choked flow of subcooled nitrogen through a slit

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1974-01-01

    Two-phase choked flow rate and pressure distribution data are reported for subcooled nitrogen flowing through a slit. The slit was a narrow rectangular passage of equal length and width. The inlet stagnation pressure ranged from slightly above saturation to twice the thermodynamic critical pressure. Four stagnation isotherms were investigated, covering a range which spanned the critical temperature. The results suggested a uniform two-phase flow pattern with vaporization occurring at or near the exit in most cases. The results compared favorably with the theory of Henry (1970) for nonequilibrium subcooled two-phase choked flow in long tubes.

  20. Two-phase choked flow of subcooled nitrogen through a slit. [flow rate and pressure distribution

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1974-01-01

    Two-phase choked flow rate and pressure distribution data are reported for subcooled nitrogen flowing through a slit. The slip was a narrow rectangular passage of equal length and width. The inlet stagnation pressure ranged from slightly above saturation to twice the thermodynamic critical pressure. Four stagnation isotherms were investigated covering a range which spanned the critical temperature. The results suggested a uniform two-phase flow pattern with vaporization occurring at or near the exit in most cases. The results compared favorably with the theory of Henry for nonequilibrium subcooled two-phase choked flow in long tubes.

  1. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e), while varying the orientation of surface with respect to the gravity vector. In the laboratory experiments, holographic interferometry was used to obtain data on velocity and temperature fields associated with a bubble prior to, and after detachment and during sliding motion. A test rig for conducting experiments in the KC-135 was developed, but experiments could not be conducted due to the unavailability of the aircraft prior to completion of the project. Numerical simulations modeling the micro and macro regions of the bubble were carried out in three dimensions. The results of the experiments were used to validate analytical/numerical models.

  2. Submarine hydrothermal fossils confirmed

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Researchers from Princeton University (D. Crerrar et al, Econ. Geol., May 1982) have documented, in considerable detail, evidence for the formation of some of the 800 or more manganiferous chert deposits occurring in the central belt of the Fransiscan formation in northwestern California. They confirm the surprisingly old conclusion o f Tiaferro and Hudson (Cal. Div. Mines Bull., 125, 217-276, 1943) that the Fransiscan chert deposits probably represent the fossil remains of submarine hydrothermal vents.The deposits resemble recently discovered hydrothermal mounds near the Galapagos rift, the Gulf of Aden, and the Mid-Atlantic Ridge. As the Princeton investigators point out, there are important implications of the existence of deep hydrothermal circulation systems at oceanic spreading centers throughout geologic time. They note that the calculated annual flow of hydrothermal fluids in such processes is about 1017 g, which implies that the entire volume of the oceans could circulate completely every 10 million years. With such circulation, the hydrothermal processes along midocean ridges could control the composition of seawater and strongly influence the geochemical flux of elements in the marine environment.

  3. COMBUSTION OF HYDROTHERMALLY TREATED COALS

    EPA Science Inventory

    The report gives results of an evaluation of: (1) the relationship of the combustion characteristics of hydrothermally treated (HTT) coals to environmental emissions, boiler design, and interchangeability of solid fuels produced by the Hydrothermal Coal Process (HCP) with raw coa...

  4. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y. [Saga University, 1 Honjo Saga City, Saga 840-8502 (Japan)

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  5. Pool boiling on nano-finned surfaces

    E-print Network

    Sriraman, Sharan Ram

    2009-05-15

    The effect of nano-structured surfaces on pool boiling heat transfer is explored in this study. Experiments are conducted in a cubical test chamber containing fluoroinert coolant (PF5060, Manufacturer: 3M Co.) as the working fluid. Pool boiling...

  6. A study of flow boiling phenomena using real time neutron radiography

    NASA Astrophysics Data System (ADS)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and decreased with increasing radial distance. For swirling flow, the void concentration was highest in the center of each subchannel formed by the twisted tape insert, producing two local void maxima at each axial position. Furthermore, the instantaneous RTNR results show that the effects of bubble agglomeration change from one geometry to the next. To further examine the application of RTNR for void distribution measurement, both vertical and horizontal orientations were examined. These experimental results show similar cross sectional averaged axial distributions of the void fraction but significant differences in the local void behavior. The HS-XCT experiments were conducted on swirl-flow boiling of Refrigerant 123 at similar conditions as the RTNR experiments. These tests were conducted to qualitatively compare and verify the void distribution and behavior obtained using RTNR techniques. The HS-XCT results verify that during smooth flow boiling in a vertical tube the void tends to concentrate in the center of the channel and decrease outward to the channel walls. For swirl flow, the void tends to concentrate near the center of each subchannel formed by the twisted tape. Furthermore, wall region void fraction for smooth-flow boiling was significantly higher than swirling flow conditions due to the significant centrifugal forces present in swirl-flow. These centrifugal forces may improve the heat transfer and dryout behavior during swirl-flow conditions. This work contributes to the development of two-phase flow diagnostics based on penetrating radiative techniques, i.e., RTNR and HS-XCT for void distribution measurement, and enhances the knowledge of flow boiling systems. The application of HS-XCT and RTNR for the study of flow boiling phenomena using smooth and swirl-flow geometries has clearly demonstrated that differences in local void distribution result in differences in heat transfer behavior.

  7. Reconstruction of local heat fluxes in pool boiling experiments along the entire boiling curve from high

    E-print Network

    Reconstruction of local heat fluxes in pool boiling experiments along the entire boiling curve from conduction problem (IHCP) defined on an irregular three-dimensional (3D) domain in pool boiling experiments heating foil pressed to the bottom of the heater. The heat flux at the inaccessible boiling side

  8. ON THE STABILITY OF BOILING HEAT TRANSFER

    Microsoft Academic Search

    N. Zuber

    1958-01-01

    Boiling heat transfer in the nucleate region is reviewed. The ; transition film-boiling region is analyzed by considering the stability of a ; plane vortex sheet separating two inviscid fluids. Using the classical results ; of Helmholtz Kelvan and Rayleigh expressions have been derived that predict the ; maximum and minimum heat-transfer rates in the nucleate and the film-boiling ;

  9. Acoustically enhanced boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Douglas, Zachary; Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2012-05-01

    An acoustic field generated by a light-weight, low-power acoustic driver is shown to increase the critical heat flux during pool boiling by about 17%. It does this by facilitating the removal of vapor bubbles from the heated surface and suppressing the instability that leads to the transition to film boiling at the critical heat flux. Bubble removal is enhanced because the acoustic field induces capillary waves on the surface of a vapor bubble that interact with the bubble contact line on the heated surface causing the contact line to contract and detach the bubble from the surface. The acoustic field also produces a radiation pressure that helps to facilitate the bubble detachment process and also suppresses the transition to film boiling. The mechanisms associated with these interactions are explored using three different experimental setups with acoustic forcing: an air bubble on the underside of a horizontal surface, a single vapor bubble on the top side of a horizontal heated surface, and pool boiling from a horizontal heated surface. Measurements of the capillary waves induced on the bubbles, bubble motion, and heat transfer from the heated surface were performed to isolate and identify the dominant forces involved in these acoustically forced motions.

  10. Cryogenic cooling system of HTS transformers by natural convection of subcooled liquid nitrogen

    E-print Network

    Chang, Ho-Myung

    at around 65 K, and lo- cated an iron core through room-temperature bore of the cryostat. The subcooled is es- timated from the existing engineering correlations, and then the axial temperature distributions the Department of Energy SPI (Superconductivity Partner- ship Initiative) agreement [4] has pursued a completely

  11. Forced convection heat transfer of subcooled liquid nitrogen in a vertical tube

    Microsoft Academic Search

    H. Tatsumoto; Y. Shirai; K. Hata; T. Kato; M. Futakawa; M. Shiotsu

    2010-01-01

    Experimental research on forced convection heat transfer of subcooled liquid nitrogen ranging from the pressures of 0.3 MPa to its supercritical pressure is carried out for wide ranges of inlet temperature and flow velocity. A stainless steel tube heater with the inner diameter of 5.4 mm and the length of 100 mm is mounted vertically. The heat transfer coefficients in

  12. Hydrothermal carbonization of microalgae

    Microsoft Academic Search

    Steven M. Heilmann; H. Ted Davis; Lindsey R. Jader; Paul A. Lefebvre; Michael J. Sadowsky; Frederick J. Schendel; Marc G. von Keitz; Kenneth J. Valentas

    2010-01-01

    Hydrothermal carbonization is a process in which biomass is heated in water under pressure to create a char product. With higher plants, the chemistry of the process derives primarily from lignin, cellulose and hemicellulose components. In contrast, green and blue-green microalgae are not lignocellulosic in composition, and the chemistry is entirely different, involving proteins, lipids and carbohydrates (generally not cellulose).

  13. Bacteria at Hydrothermal Vents

    NSDL National Science Digital Library

    Expeditions to the Sea Floor Dive and Discover

    This website provides information on thermophiles living in deep-sea vents, including their importance in biotechnology and extraterrestrial life research. The site also contains images of thermophiles at varying scales and a link to the "Hot Topics" main page including numerous links to further information on hydrothermal vents and research conducted in deep-sea environments.

  14. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-?-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.

  15. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on computing instabilities on bubble surfaces as bubbles grow, and on quantifying the effects of both these phenomena on heat transfer; and 2) Examination of the effect of shear flow on bubble growth and heat transfer.

  16. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    SciTech Connect

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs.

  17. The International Boiling Point Project

    NSDL National Science Digital Library

    Between September 13 and December 10, 1999, the Center for Improved Engineering and Science Education (CIESE) at the Stevens Institute of Technology in Hoboken, New Jersey invites students and adults from all over the world to participate in The International Boiling Point Project. "The purpose of this project is to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point." Students, entire classes, or anyone else interested in participation must register beforehand via an online form. Data submitted online are posted at the site. The deadline for submitting data to be included in the final database is November 19, 1999. The project is an excellent forum for engaging students in the process of simple experimentation and data collection.

  18. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. (Benjamin E Lofgren and Associates, Sacramento, CA (USA))

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  19. Hydrothermal synthesis of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Earl, J. S.; Wood, D. J.; Milne, S. J.

    2006-02-01

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO3)2bold dot4H2O and (NH4)2HPO4 with distilled water, in a hydrothermal reactor at 200 °C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO4). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  20. On optimum interstage pressure for two-stage and mechanical-subcooling vapor-compression refrigeration cycles

    SciTech Connect

    Zubair, S.M.; Khan, S.H. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    1995-02-01

    The objective of the present study is to demonstrate that the optimum interstage pressure for a two-stage refrigeration system can be approximated by the saturation pressure corresponding to the arithmetic mean of the condensing and evaporating temperatures. It is also shown that the optimum performance of a refrigeration system with mechanical sub-cooling occurred when the subcooler compressor (saturation suction) temperature corresponds to the arithmetic mean of the condensing and evaporating temperatures.

  1. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  2. Protein and energy utilization of boiled rice-legume diets and boiled cereals in growing rats

    Microsoft Academic Search

    Bjørn O. Eggum; Bienvenido O. Juliano; Maria Gracia; B. Ibabao; Consuelo M. Perez; Virgilio R. Carangal

    1987-01-01

    In growing rats, boiled milled rice-legume diets (2:1 N ratio) had lower energy digestigibility than boiled milled rice and equal if not better true digestibility, biological value, and net protein utilization (NPU). Rice-soybean diets showed better NPU than the other rice-legume diets. Boiled whole-grain corn and sorghum had lower digstible energy and NPU than boiled milled rice. NPU of the

  3. Sub-Cooled Liquid Nitrogen Test System for Cooling HTS Synchronous Motor

    Microsoft Academic Search

    Anbin Chen; Fengyu Xu; Xiaokun Liu; Yubao He; Zonglin Wu; Yingshun Zhu; Zhengnan Han; Liyi Li

    2012-01-01

    A 400 kW radial-axial flux type experimental HTS synchronous motor is designed. There are twelve armature coils using HTS wires in the motor. They are accommodated in the cooling vessels made of FRP material, and twelve cooling vessels are enclosed in the vacuum vessel. In order to cool the HTS coils of the motor, a sub-cooled liquid nitrogen cryogenic system

  4. Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer

    SciTech Connect

    Johnston, Joseph E.; Selvam, R. P. [Power Electronics Leveling Solutions LLC, 700 Research Boulevard, Fayetteville, AR 72701 (United States); Bell 4190 University of Arkansas, Fayetteville, AR 72701 (United States); Silk, Eric A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2008-01-21

    Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

  5. Analysis and measurement of thermal conductivity of polypropylene laminated paper impregnated with subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Furuse, Mitsuho; Fuchino, Shuichiro

    2014-09-01

    We measured the thermal conductivity of polypropylene laminated paper (PPLP) impregnated with subcooled liquid nitrogen. PPLP is widely used for the electrical insulation of high-Tc superconducting (HTS) power transmission cables. Although the thermal conductivity of PPLP is an important factor in the design of HTS cables, there has been very limited work on its measurement in subcooled liquid nitrogen. We prepared PPLP samples and symmetrically stacked them on both sides of a heater. The stacked samples were immersed in liquid nitrogen in an open cryostat. A cryocooler mounted on the cryostat was used to maintain the subcooled temperature of the liquid nitrogen. The thermal conductivity of the stacked PPLPs was measured by the steady state method at a bath temperature of 65-75 K and was found to be 0.23-0.26 W/m K, which is about five times that measured in a vacuum as presented in available literature. We also discuss possible mechanisms for boosting the thermal conductivity of PPLP by liquid nitrogen impregnation.

  6. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.

  7. Boils

    MedlinePLUS

    ... American Osteopathic College of Dermatology. Community Search Search » Sign In Remember Me Forgot your password? Haven't registered yet? more Calendar 4/23/2015 » 4/26/2015 2015 AOCD Spring Current Concepts in Dermatology Meeting 3/30/2016 » ...

  8. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section... Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered...

  9. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section... Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered...

  10. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section... Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered...

  11. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section... Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered...

  12. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Boiling water sterilizer. 872.6710 Section... Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered...

  13. Life at Hydrothermal Vents

    NSDL National Science Digital Library

    Sohmer, Rachel.

    2002-01-01

    The first Web site is a NOVA Online Adventure from PBS (1). Into the Abyss decribes the "pitch darkness, poison gas, heavy metals, extreme acidity, and enormous pressure" found at hydrothermal vents, and offers a look at bizarre and fascinating creatures found in this environment. The next Web site from Exploring Earth, an online earth sciences text book, contains video clips taken during research expeditions along the Juan de Fuca Ridge (2). Ocean AdVENTure, a ThinkQuest Web site, offers a comprehensive and well-designed introduction to hydothermal vents from research tools to fauna to unsolved mysteries and more (3). Visitors can choose their own scientific adVENTure to explore hydrothermal vents in this interactive feature from the University of Washington School of Oceonagraphy Exploraquarium (4). Dive and Discover is "an interactive distance learning Web site designed to immerse you in the excitement of discovery and exploration of the deep seafloor." This Web site (5) extends a virtual invitation to join scientists aboard research cruises to the depth of the Pacific and Indian Oceans, providing daily logs, video, and other features for each expedition. The next Web site from the University of California-Berkeley offer a closer look at the "strange tube-dwelling worm" phylum found only near hydrothermal vents (6). Creature Features, provided by the University of Delaware Graduate College of Marine Science, contains descriptions and video clips of tubeworms, vent crabs, Pompeii crabs, and ancient bacteria found at deep sea vents (7). The last Web site (8) is a transcript of a June 1997 PBS NewsHour interview with science writer William Broad. Broad discusses his book The Universe Below: Discovering the Secrets of the Deep Sea, and relates the exciting opportunities for scientific exploration of the sea floor made possible by the end of the Cold War.

  14. Biocatalytic transformations of hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Jannasch, H. W.

    The occurrence of copious animal populations at deep-sea vents indicates an effective microbial chemosynthetic biocatalysis of hydrothermal fluids on their emission into oxygenated ambient seawater. The large metabolic and physiological diversity of microbes found at these sites, including anaerobic and aerobic hyperthermophiles, reflects an even higher variety of biocatalytic or enzymatic reactions that greatly influence deep-sea hydrothermal geochemistry.

  15. Cody hydrothermal system

    SciTech Connect

    Heasler, H.P.

    1982-01-01

    The hot springs of Colter's Hell are the surface manifestations of a much larger hydothermal system. That system has been studied to define its extent, maximum temperature, and mechanism of operation. The study area covers 2700 km/sup 2/ (1040 mi/sup 2/) in northwest Wyoming. Research and field work included locating and sampling the hot springs, geologic mapping, thermal logging of available wells, measuring thermal conductivities, analyzing over 200 oil and gas well bottom-hole temperatures, and compiling and analyzing hydrologic data. These data were used to generate a model for the hydrothermal system.

  16. SWR 1000: The Innovative Boiling Water Reactor

    Microsoft Academic Search

    Werner Brettschuh; Greg Hudson

    2004-01-01

    Framatome ANP has developed the boiling water reactor SWR 1000 in close cooperation with German nuclear utilities and with support from various European partners. This advanced reactor design marks a new era in the successful tradition of boiling water reactor technology and, with a gross electric output of between 1290 and 1330 MW, is aimed at assuring competitive power generating

  17. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  18. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  19. Boiling nucleation during liquid flow in microchannels

    Microsoft Academic Search

    X. F. Peng; H. Y. Hu; B. X. Wang

    1998-01-01

    The boiling of liquids in microchannels\\/microstructures is currently of great interest due to its very unusual phenomena and its many potential applications in a wide variety of advanced technologies. The thermodynamic aspects of phase transformations of liquids in microchannels was analyzed to further understand the boiling characteristics and to determine the conditions under which a portion of such liquids is

  20. Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.

    1998-01-01

    Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.

  1. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems. PMID:25403831

  2. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    E-print Network

    Pimenova, Anastasiya V

    2014-01-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  3. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    E-print Network

    Anastasiya V. Pimenova; Denis S. Goldobin

    2014-10-20

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  4. Acoustically Enhanced Boiling Heat Transfer

    E-print Network

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  5. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, G.; Jacqmin, Dave

    2000-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work have been limited. Here, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. Boiling involves both fluid flow and heat transfer and thus requires the solution of the Navier-Stokes and the energy equations. The numerical method is based on writing one set of governing transport equations which is valid in both the liquid and vapor phases. This local, single-field formulation incorporates the effect of the interface in the governing equations as source terms acting only at the interface. These sources account for surface tension and latent heat in the equations for conservation of momentum and energy as well as mass transfer across the interface due to phase change. The single-field formulation naturally incorporates the correct mass, momentum and energy balances across the interface. Integration of the conservation equations across the interface directly yields the jump conditions derived in the local instant formulation for two-phase systems. In the numerical implementation, the conservation equations for the whole computational domain (both vapor and liquid) are solved using a stationary grid and the phase boundary is followed by a moving unstructured two-dimensional grid. While two-dimensional simulations have been used for preliminary studies and to examine the resolution requirement, the focus is on fully three-dimensional simulations. The numerical methodology, including the parallelization and grid refinement strategy is discussed, and preliminary results shown. For buoyancy driven flow, the heat transfer is in good agreement with experimental correlations. The changes when gravity is turned off and/or fluid shear is added are discussed, as well as the difference between simulations of a layer freely releasing bubbles versus simulations using only one wavelength initial perturbation. Figure 1 shows the early stages of the formation of a three-dimensional bubble from a thin vapor layer. The boundary conditions are periodic in the x and y direction, the bottom is a hot and the top allows a free outflow. The jagged edge of the surface close to the bottom of the computational domain is due to some of the surface elements being on the other side of the domain and some elements not plotted by our plotting routine. In the second figure, we show the temperature distribution through two perpendicular planes.

  6. nanotubes via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Liu, Dan; Cui, Cai E.; Wang, Lei; Jiang, Guowei

    2014-08-01

    Red long-lasting phosphor Y2O2S:Eu3+, Zn2+, Ti4+ nanotubes were prepared by hydrothermal method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and thermoluminescence spectra (TL) were used to characterize the long-lasting phosphor. XRD investigation revealed that the product synthesised under 750 °C for 6 h was a pure phase of Y2O2S. SEM observation showed that the sulfuretted phosphor inherited the tube-like shape from the precursor. Under 325 nm UV excitation, the result indicated the strongest red-emission lines at 627 nm, corresponded to the transition from 5D0 to 7F2 level of Eu3+ ion. Both the afterglow decay curves and TL curves revealed that the phosphor had efficient luminescent and excellent long-lasting properties.

  7. An Experimental Study on Thermal Energy Storage Based Reverse Cycle Defrosting Method Using Subcooling Energy of Refrigerant for Air Source Heat Pump: Characteristics of Thermal Energy Storage Operation

    Microsoft Academic Search

    Dong Jiankai; Qu Minglu; Jiang Yiqiang; Yao Yang; Deng Shiming; Wang Honglei

    2011-01-01

    the introduction introduction of the the system of thermal energy storage torage (TES) based reverse cycle defrosting method using sub-cooling energy of refrigerant for air Source heat eat p pump (ASHP) is given firstly. And And then the the characteristic of TES TES using sub-cooling energy of refrigerant in in heating is experimentally researched. The results results show that that

  8. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  9. LWR fuel rod post-subcooled blowdown scoping analysis. Technical report

    SciTech Connect

    Grubb, R.L.

    1980-08-01

    Thermal transients which occur during the post-subcooled blowdown regime of a postulated loss-of-coolant accident (LOCA) can cause significant changes in light water reactor (LWR) fuel rod material properties and geometry. The effects of these structural changes must be assessed to insure that a coolable geometry of the fuel system is maintained. An overall assessment of the fuel rod structural integrity has been made by considering the degraded structural properties of the fuel rod in conjunction with safe-shutdown earthquake (SSE) mechanical loadings and employing conventional stress analysis and fracture mechanics techniques.

  10. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

  11. Characteristics of nucleate pool boiling from porous metallic coatings

    Microsoft Academic Search

    A. E. Bergles; M. C. Chyu

    1982-01-01

    A study of pool boiling from a commercial porous metallic matrix surface is reported. The excellent steady boiling characteristics of this type of surface are confirmed; however, high wall superheats are required in most cases to initate boiling. The resultant boiling curve hysteresis does not appear to have been previously reported in the literature. This effect is indicated in recent

  12. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.

    2014-01-01

    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  13. Microbial ecology of hydrothermal biotypes

    NASA Astrophysics Data System (ADS)

    Montero, Clemente I.; Conners, Shannon B.; Johnson, Matthew R.; Pysz, Marybeth A.; Shockley, Keith R.; Kelly, Robert M.

    2004-02-01

    Hydrothermal environments, whether terrestrial or marine, provide a window into potentially thriving ecosystems on other solar bodies. If such extraterrestrial biotopes do exist, they might be inhabited by extremophilic microorganisms, perhaps related to hyperthermophiles (optimal growth temperature > 80°C) previously characterized from geothermal sites on this planet. Study of the physiological and metabolic patterns in hyperthermophiles will shed light on microbial lifestyles consistent with putative hydrothermal niches on other planets and moons.

  14. The plumbing of Old Faithful Geyser revealed by hydrothermal tremor

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Roux, P.; Cros, E.

    2013-05-01

    Faithful Geyser in Yellowstone National Park (USA) has attracted numerous scientific investigations for over two centuries to better understand its geological structure, the physics of its eruptions, and the controls of its intermittency. Using data acquired with a seismic array in 1992, we track the sources of hydrothermal tremor produced by boiling and cavitation inside the geyser. The location of seismic sources identifies a previously unknown lateral cavity at 15 m below the surface, on the SW side of the vent, and connected to the conduit. This reservoir is activated at the beginning of each geyser eruption cycle and plays a major role in the oscillatory behavior of the water level in the conduit before each eruption.

  15. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a test cell was developed. All four vertical walls of the test cell are transparent, and they allow transillumination with laser light for visualization experiments by HI. The bottom electrode is a copper cylinder, which is electrically grounded. The copper block is heated with a resistive heater and it is equipped with 6 thermocouples that provide reference temperatures for the measurements with HI. The top electrode is a mesh electrode. Bubbles are injected with a syringe into the test cell through the bottom electrode. The working fluids presently used in the interferometric visualization experiments, water and PF 5052, satisfy requirements regarding thermophysical, optical and electrical properties. A 30kV power supply equipped with a voltmeter allows to apply the electric field to the electrodes during the experiments. The magnitude of the applied voltage can be adjusted either manually or through the LabVIEW data acquisition and control system connected to a PC. Temperatures of the heated block are recorded using type-T thermocouples, whose output is read by a data acquisition system. Images of the bubbles are recorded with 35mm photographic and 16mm high-speed cameras, scanned and analyzed using various software packages. Visualized temperature fields HI allows the visualization of temperature fields in the vicinity of bubbles during boiling in the form of fringes. Typical visualized temperature distributions around the air bubbles injected into the thermal boundary layer in PF5052 are shown. The temperature of the heated surface is 35 C. The temperature difference for a pair of fringes is approximately 0.05 C. The heat flux applied to the bottom surface is moderate, and the fringe patterns are regular. In the image a bubble penetrating the thermal boundary layer is visible. Because of the axial symmetry of the problem, simplified reconstruction techniques can be applied to recover the temperature field. The thermal plume developing above the heated surface for more intensive heating is shown. The temperature distribution in the liquid is clearly 3D, and

  16. Nucleate boiling bubble growth and departure

    E-print Network

    Staniszewski, Bogumil E.

    1959-01-01

    The vapor bubble formation on the heating surface during pool boiling has been studied experimentally. Experiments were made at the atmospheric pressure 28 psi and 40 psi, using degassed distilled water and ethanol. The ...

  17. Pool boiling heat transfer characteristics of nanofluids

    E-print Network

    Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

  18. Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method

    E-print Network

    Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical of boiling flows in microscale's geometry, it is vital to quantify these transfers. To achieve this goal

  19. Origin of tonalites from the Boil Mountain ophiolitic complex, west-central Maine

    SciTech Connect

    Chow, J.S. (Boston Univ., MA (United States). Geology Dept.)

    1993-03-01

    The Boil Mountain ophiolitic complex, west-central Maine, marks the suture between the Boundary Mountain and Gander terranes that became amalgamated in the late Cambrian during a pre-Taconic collisional event known as the Penobscottian orogeny. This even formed a composite terrane that is believed to have collided with the proto-North American margin during the Ordovician Taconic orogeny. The ophiolite is unusual in that there is no associated tectonized ultramafic section; there is a lack of a sheeted dike sequence; and an intrusive tonalite layer comprises a significant volume of the complex. Preliminary major and trace element geochemical analysis of the tonalites indicates that this unit is derived by partial melting of the associated mafic volcanics. This melting may have been induced by stopping water-rich hydrothermally altered basalts into subcrustal magma chambers. The association of arc-like volcanics and plutonics of the Boil Mountain ophiolite with the adjacent Hurricane melange suggests that the Boil Mountain may be a fragment of a forearc supra-subduction zone complex. Similar interpretations have been made recently for the Late Proterozoic Bou Azzer ophiolite in Morocco and the Coast Range ophiolite.

  20. Hadronic matter near the boiling point

    Microsoft Academic Search

    Rolf Hagedorn

    1968-01-01

    Summary  Hadron collisions above ?10 GeV\\/c primary laboratory momentum show an interesting global aspect (i.e. when averaged over all final channels): they can be described as a superposition of a rather special form of thermodynamics\\u000a and of the kinematics of collective motions in the forward-backward direction. The thermodynamical behaviour is similar to\\u000a that of boiling; the boiling temperatureT\\u000a 0 is not

  1. Pool boiling heat transfer in microgravity

    Microsoft Academic Search

    J. F. Zhao; S. X. Wan; G. Liu; Z. D. Li; W. R. Hu

    2007-01-01

    A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behaviors and heat transfer in\\u000a pool boiling phenomenon both in normal gravity and in microgravity. The results on heat transfer and bubble dynamic behavior\\u000a in the experiments aboard the 22nd Chinese recoverable satellite and those in normal gravity before and after the flight experiment are reported and

  2. Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel

    SciTech Connect

    Ong, Chin L.; Thome, John R. [Laboratory of Heat and Mass Transfer (LTCM), Ecole Polytechnique Federale de Lausanne (EPFL), ME G0 520 ME Station 9, Lausanne CH 1015 (Switzerland)

    2009-04-15

    This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m{sup 2}s, heat fluxes from 2.3 kW/m{sup 2} to 250 kW/m{sup 2} at T{sub sat} = 31 C and {delta}T{sub sub} from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research. (author)

  3. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels

    SciTech Connect

    Daniels, Brian J.; Liburdy, James A.; Pence, Deborah V. [Mechanical Engineering, Oregon State University, Corvallis, OR 97330 (United States)

    2011-01-15

    Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2{sup -1/2}. There are four branching sections for a total flow length of 18 mm, a channel height of 150 {mu}m and a terminal channel width of 100 {mu}m. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large. (author)

  4. Probing Hydrothermal Organic Reaction Mechanisms with Hydrothermal Photochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Gould, I.; Shock, E.

    2013-12-01

    In most hydrothermal organic experiments the emphasis is on reaction product distributions and kinetic measurements, with mechanistic information or the direct evidence of proposed reaction intermediates rare or lacking. We believe that greater mechanistic insight will yield greater predictive power. Previously, we studied the reactions of a model ketone, dibenzylketone (DBK) in aqueous media at 300°C and 700 bars for durations up to several days [1], and found that many of the reaction products arise from coupling of benzyl and related radicals generated through homolytic bond cleavage of DBK. In the present work, we find that in situ photochemical generation of the radicals can provide independent evidence for radical intermediates in the hydrothermal reaction of DBK, yielding valuable insights into the thermal reactions. Hydrothermal photochemical experiments of DBK were conducted in water in sealed fused silica glass tubes at 300°C and 86 bars under UV irradiation for minutes. The short timescale of the experiments allows the primary radical coupling products of DBK to be generated and identified, and their follow-up reactions to be monitored directly. The primary hydrothermal photolysis products include toluene, bibenzyl, a three-benzene-ring product (with isomers), and two four-benzene-ring products (with isomers), which represent a much simpler version of the products obtained through thermal reactions under similar conversions. Most of the observed photolysis products were identical to the ones in the thermal reactions, and those not observed in thermal reactions were found to be the short-lived precursors of the thermal products. As an example, the transformation of one four-ring product to the other was attained and monitored by experiments in which hydrothermal photolysis of DBK was followed by thermolysis at 300°C for a further few hours. The transformation steps included dehydration and isomerization, which were known to be thermodynamically favorable and rapid at hydrothermal conditions [1]. These results show that several relatively stable hydrothermal products from DBK are derived from the radical-coupled intermediates, and that these intermediates can be successfully captured using the tool of hydrothermal photolysis. Analysis of the product distributions and the quantum yields for the hydrothermal photolysis also provides convincing evidence for the previously proposed radical cleavage mechanism for the thermal reactions of DBK. [1] Yang et al. (2012) Geochim. Cosmochim. Acta 98, 48-65.

  5. Anomaly Geochemical Fields in Siberian Hydrothermal Gold Deposits

    NASA Astrophysics Data System (ADS)

    Voroshilov, V.; Savinova, O.; Ananev, Yu; Abramova, R.

    2014-08-01

    The composition and internal structure of geochemical fields associated to hydrothermal gold deposits within the Siberian territory were investigated. The concentric zonal structure of ore-forming geochemical fields embracing accumulations of Au, Ag, Bi, Pb, Zn, Cu, Te, As in ore bodies and their adjacent locations, and Ni, Co, V, Cr, Mn, Ba, Ti - within the external margin of gold ore formations were determined. The thermometric properties of gas-fluid inclusions in minerals of hydrothermal gold deposits were described. The results specified not only high-mineralized but also weakly-salted fluids are involved in the formation of the deposit. The latter is subjected to both retrogressive boiling and the mechanisms of direct and reverse osmosis. In this case, ascending and descending fluids produce eddy fluxes during Earth rotation, where minerals of different composition are formed in this flow path. Produced spiral mineral-geochemical fields can be observed on satellite images as hierarchy circular pattern system. Both the analysis of anomalous geochemical field structure and satellite images make it possible to predict the ore bodies of different grades in complicated landscape geological conditions.

  6. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    E-print Network

    Li, Q; Francois, M M; He, Y L; Luo, K H

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...

  7. Experimental Study on the Electrical Breakdown Characteristics of Sub-Cooled Liquid Nitrogen for Designing a High Voltage Superconducting Machine

    Microsoft Academic Search

    Jin Bae Na; Hyoungku Kang; Young Jin Hwang; Seong Eun Yang; Dong Keun Park; Duck Kweon Bae; Tae Kuk Ko

    2010-01-01

    The electrical breakdown characteristics of liquid nitrogen should be investigated for developing of a high voltage superconducting machine. This paper deals with the experimental study for the verification of dielectric characteristics of sub-cooled in accordance with utilization factors. AC dielectric experiments were carried out by using sphere-plane electrode systems. The utilization factors of simulated electrode systems were controlled by gap

  8. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  9. Temperatures of Mediterranean Volcanic Hydrothermal Systems Reflected by Gas Geothermometry

    NASA Astrophysics Data System (ADS)

    Fiebig, J.; Tassi, F.; D'Alessandro, W.; Vaselli, O.; Woodland, A. B.

    2011-12-01

    We have addressed the genetic relationship between H2, H2O, CO, CO2, n-alkanes and n-alkenes in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, Campi Flegrei and Pantelleria (all Italy). Methane attains chemical and isotopic equilibrium with CO2 in the associated hydrothermal systems within the single liquid phase. Calculated aquifer temperatures at depth are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at Campi Flegrei and ~540°C at Pantelleria. CH4-CO2 equilibrium temperatures are in agreement with propane/propene concentration ratios. Temperatures >400°C are additionally confirmed by ethane/ethene ratios. In contrast to CH4-CO2, metastable equilibration of the alkane/alkene pairs takes place in the saturated water vapor phase. Overall agreement of vapor and liquid equilibration temperatures suggests that boiling in the investigated high-enthalpy hydrothermal systems is essentially isothermal. Our results imply that the chemical and isotopic CH4-CO2 geothermometer is least prone to re-equilibration reactions occurring in the vapor phase after vapor separation. Redox conditions during these re-equilibration reactions are homogeneously buffered by H2/H2O ratios of the vapor phase, which, in turn, are controlled by those of the parental liquid phase and by the degree of superimposed vapor separation. Amongst the redox pairs investigated, CO/CO2 is most prone to secondary vapor phase equilibration. Our results imply that the isotopic CH4-CO2 geothermometer has the potential to record temperatures of aquifers associated with dormant volcanoes. Alkene/alkane and H2/H2O concentration ratios should be measured along with CH4 and CO2 to prove independently whether isotopic equilibrium has been attained.

  10. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    NASA Astrophysics Data System (ADS)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in ?97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; ?97Mo mean = 0.35 ‰) have higher ?97Mo values than late stage (mainly 3R polytypes; ?97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower ?97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower ?97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  11. Hydrothermal pretreatment of coal

    SciTech Connect

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  12. On the evolution of convection in magmatic-hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Heinrich, C.; Matthai, S. K.

    2003-04-01

    Convective fluid circulation in continental magmatic-hydrothermal systems plays a fundamental role for the formation of ore deposits and geothermal systems. Two competing processes drive convection in continental magmatic-hydrothermal systems: gradients in temperature, which decrease the density of the fluid, and gradients in salinity, which increase the density of the fluid. While heat diffuses more rapidly than salt, salt is advected faster than heat and as a result, double-diffusive and double-advective instabilities can form which may lead to chaotic convection. Continental magmatic-hydrothermal systems can cover a wide PTX range (0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl). Under these condition, the presence of salt in the fluid increases the PT regime during which boiling and phase-separation into a highly compressible, low-salinity vapour phase and a slightly compressible, high-salinity brine phase take place. This process of phase-separation is thought to have a profound effect on the evolution of convection cells in continental magmatic-hydrothermal systems but has not yet been studied. In order to understand the effect of double-advective, double-diffusive convection and phase separation in continental magmatic-hydrothermal, we have combined a higher order finite element-finite volume algorithm and a new equation of state for the system H2O-NaCl which provides a realistic thermodynamic representation of the fluid properties including the wide PTX range of liquid + vapour coexistence for the highly saline fluids. This allows us to realistically model multi-phase fluid flow, energy and component transport in continental magmatic-hydrothermal systems, including fluid and rock properties that vary over many orders of magnitude and the geometric complexities of such systems. We have conducted several simulations of a continental magmatic-hydrothermal systems in which a hot, saline magmatic fluid exsolves from a crystallizing magma and is injected into the surrounding rock. In the simulations, we have successively varied the following input parameters: Depth of intrusion, rate of magmatic fluid production, temperature of magmatic fluid, salinity of magmatic fluid, and permeability structure. First results show that the combination of the rate at which magmatic fluid is produced and the permeability structure of the system have the most profound effect on the evolution of convection in continental magmatic-hydrothermal systems. High permeabilities in combination with relatively low fluid production rates (long lived fluid production) lead to an effective cooling mechanism during which temperatures rarely exceed 150 C. Only if the permeabilities are sufficiently low and the fluid production rate is sufficiently fast (short lived fluid production), convection cells can form that produce temperatures where phase separation can take place and ore deposits can form.

  13. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  14. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  15. Hydrothermal Systems Associated with Martian Impact Craters

    Microsoft Academic Search

    Julie A. Rathbun; Steven W. Squyres

    2002-01-01

    With widespread evidence of both heat sources and water (either liquid or solid), hydrothermal systems are likely to have existed on Mars. We model hydrothermal systems in two sizes of fresh impact craters, one simple and one complex, and find that a hydrothermal system forms on the crater floor. In the larger complex craters with a substantial melt sheet, a

  16. Hydrothermal Vents: Thar She Blows!

    NSDL National Science Digital Library

    In this lesson students will discover how the proximity of hot magma to cold ocean water creates new rocky structures around hydrothermal vents. During this activity, students will demonstrate an understanding of how the processes that result in the formation of hydrothermal vents create new ocean floor and how the transfer of energy effects solids and liquids. This hands-on activity uses online data resources and includes: focus questions, learning objectives, teaching time, audio/visual materials needed, background information, learning procedures, evaluations, extensions, as well as resources and student handouts.

  17. Hydrothermal alteration facies within the intrusive-hosted Salave gold prospect, NW Spain

    SciTech Connect

    Harris, M.

    1985-01-01

    The Salave gold prospect occurs within an Hercynian granodioritic complex intruding Cambro-Ordovician metasediments and a heterogeneous gabbroic body. Mineralization consists mostly of disseminated and veinlet pyrite, arsenopyrite, molybdenite, stibnite, and lesser sphalerite associated with a zoned sequence of hydrothermal alteration. Gold occurs as free particles and/or intergrown with the sulfides. Mathematical appraisal of analytical data suggests that the hydrothermal alteration resulted from largely isochemical redistribution processes imposed on the mineralogy of the host granodiorite by influxes of sporadically boiling fluids rich in CO/sub 2/. Hydrothermal alteration is described in terms of a zonal sequence inward from unaltered host rock through (1) chlorite-sericite alteration-(2) propylitic to advanced propylitic alterations-(3)albitites-(4) an auriferous (greater than or equal to 1g/t Au) sericite-carbonate-albite-(+/-)quartz-sulfide cataclastic facies. The zonation corresponds to increasing carbonatization, sericitization, albitization, desilification, and destruction of the original igneous texture. Aventurine alteration is common and is thought to be the product of late stage hydrothermal oxidizing conditions. Potassic alteration in the form of K-feldspar or biotite was occasionally observed.

  18. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    NASA Astrophysics Data System (ADS)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and recent laboratory experiments [4], indicating that sulfur is the key component determining the efficiency of ore formation in porphyry-style and epithermal systems. [1] Heinrich et al. (1999) Geology [2] Guillong et al. (2008) J.Anal. At. Spectrom. [3] Seo et al. (2009) Earth Planet. Sci. Lett. in review. [4] Pokrovski et al. (2008) Earth Planet. Sci. Lett.

  19. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2008-05-01

    LCH 4 testing was conducted at the Marshall Space Flight Center using the multipurpose hydrogen test bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH 4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid.

  20. QSPR for prediction of subcooled vapor pressures (log PL) of polychlorinated trans-azobenzenes.

    PubMed

    Wilczy?ska-Piliszek, Agata J; Piliszek, S?awomir; Falandysz, Jerzy

    2012-01-01

    In this study the values of subcooled vapor pressures (log P(L)) were estimated for 209 trans chloroazobenzenes (Ct-ABs) that fill some gaps in analytical and experimental data on these compounds. There are 209 chloro derivatives of trans azobenzenes that are relatively stable and more environmentally relevant than 209 chloro cis congeners. The calculations models were based on the Quantitative Structure-Property Relationship (QSPR) scheme using the semi-empirical method (PM6) in molecular package (MOPAC) software and density functional theory (DFT) method using B3LYP functional and 6-311++G** basis set) in Gaussian 03 software method and the artificial neural networks (ANNs) prediction. The values of log P(L) predicted by models used varied between -3.94 to -2.66 for Mono-; -4.85 to -2.97 for Di-; -5.18 to -3.17 for Tri-; -6.02 to -3.77 for Tetra-; -6.64 to -4.64 for Penta-; -7.36 to -4.76 for Hexa-; -7.54 to -5.79 for Hepta-; -7.75 to -6.64 for Octa-; -7.89 to -7.44 for Nona-Ct-Abs; and -8.09 and -8.13 for Deca-Ct-AB. Based on these values Ct-ABs can be grouped localized among relatively low (log P(L) -4 to -2) and low (log P(L) < -4) mobile Persistent Organic Pollutants (POPs). Both the calculation methods employed were characterized by similar prediction ability of subcooled vapor pressure values of Ct-ABs, while those of PM6 are much more efficient due to a cheaper hardware used and around 300-fold less time spent on calculations. PMID:22560028

  1. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future missions.

  2. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  3. First in-situ sensing of volcanic gas plume composition at Boiling Lake (Dominica, West Indies)

    NASA Astrophysics Data System (ADS)

    Di Napoli, R.; Aiuppa, A.; Allard, P.

    2012-12-01

    Dominica, a small Caribbean island between Martinique (to the South) and Guadeloupe (to the North), is, because of the high number of potentially active volcanic centres, one of the most susceptible sites to volcanic risk in the Lesser Antilles arc. Seven major volcanic centres, active during the last 10ka, are considered likely to erupt again, and one of these is the Valley of Desolation volcanic complex. This is an area of 0.5 km2, located in on SW Dominica, where a number of small explosion craters, hot springs, bubbling pools and fumaroles testify for vigorous and persistent hydrothermal activity. Two main phreatic explosions have been documented in historical time (1880 and 1997), and the most likely centre of future activity is the Boiling Lake, a nearby high-T volcanic crater lake produced by an undated phreatic/phreato-magmatic explosion. Hot (80 to 90°C) and acidic (4-6) waters normally characterize the steady-state activity of the lake, whereby which vigorous gas upwelling in the lake's centre feeds a persistent steaming plume. Stability of the Boiling Lake has occasionally been interrupted in the past (since 1876) by crises, the most recent in 2004, involving rapid draining of the lake and changes in water temperature and pH, likely as a result of drastic decrease of hydrothermal fluid input into the lake. While the chemical and isotopic composition of the lake waters is well characterised, there are no compositional data available for the gas plume leaving the lake, due to inherent difficulties in direct gas sampling. Here, we present the results of the first direct measurements of the Boiling Lake's plume, performed by using the MultiGAS technique in February 2012. We acquired 0.5 Hz time-series of H2O, CO2, H2S and SO2 plume concentrations, which were seen to peak (with maximum background-corrected concentrations of 3680, 101 and 25 ppm for respectively H2O, CO2 and H2S) during phases of visible increase in lake outgassing. SO2 was virtually absent in the plume. From the concentration data, the characteristic CO2/H2S (5.2±0.4) and H2O/CO2 (31.4±6) volatile ratios in the Boiling lake's atmospheric plume were derived. This reveals similar C to S signature for Boiling lake and Valley of Desolation (for which we also obtained data using the same technique), likely indicative of common source reservoir. The Boiling lake's plume is far more H2O-rich than the Valley of Desolation gas, suggesting that a significant fraction of in-plume H2O in the former originates from re-evaporation of the lake water itself. Our data here provide a first compositional baseline for quiescent volcanic gas emissions at Boiling Lake, and may form the basis to stimulate emerging geochemical monitoring programs in the area.

  4. The role of surface conditions in nucleate boiling

    E-print Network

    Griffith, P.

    1958-01-01

    Nucleation from a single cavity has been stuied indicating that cavity gemtry is aportant in two ways. The mouth diameter determines the superheat nmeded to initiate boiling and its shape determines its stability one boiling ...

  5. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  6. Boiling and condensation in a liquid-filled enclosure

    E-print Network

    Bar-Cohen Avram

    1971-01-01

    A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

  7. Transition boiling heat transfer from a horizontal surface

    E-print Network

    Berenson Paul Jerome

    1960-01-01

    An experiment, utilising a condensing fluid as the heat source, was performed to determine the heat flux vs. temperature difference curve for transition pool boiling from a horisontal surface. The boiling cure was determined ...

  8. QSPRs for the estimation of subcooled liquid vapor pressures of polycyclic aromatic hydrocarbons, and of polychlorinated benzenes, biphenyls, dibenzo-p-dioxins, and dibenzofurans at environmentally relevant temperatures.

    PubMed

    van Noort, Paul C M

    2009-10-01

    This study aims to develop estimation procedures for subcooled liquid vapor pressures of polycyclic aromatic hydrocarbons (PAHs), and of polychlorinated benzenes, biphenyls (PCBs), dibenzo-p-dioxines (PCDDs), and dibenzofurans (PCDFs) based on quantitative structure-property relationships (QSPRs) for the subcooled liquid vaporization enthalpy and entropy in terms of simple molecular structure descriptors and the system temperature. It turned out that subcooled liquid vaporization enthalpies and entropies for these compound classes can be estimated from the number of carbon atoms, the number of chlorine atoms, the number of PCB ortho-chlorine atoms and the system temperature. Subcooled liquid vapor pressures at 298 K calculated from the estimated vaporization enthalpies and entropies were equal to directly measured experimental values as well as to experimental values determined by gas chromatographic methods within, on average, 0.15 and 0.12-0.3 log units, respectively. PMID:19709716

  9. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  10. Thermal analysis of a solar collector containing a boiling fluid

    SciTech Connect

    Al-Tamimi, A.I.; Clark, J.A.

    1983-06-01

    The thermal performance of a flat-plate solar collector containing a boiling fluid is analyzed for steady-state thermosiphon operation. Collectors containing a boiling fluid have a thermal efficiency that is inherently greater than a non-boiling collector having the same value of the thermal parameter a (see Nomenclature). The general validity of the analysis is established by experimental data taken on an R-11 charged boiling collector in natural sunlight.

  11. Fundamental issues related to flow boiling in minichannels and microchannels

    Microsoft Academic Search

    Satish G. Kandlikar

    2002-01-01

    Flow boiling in small hydraulic diameter channels is becoming increasingly important in many diverse applications. The previous studies addressing the effects of the channel size on the flow patterns, and heat transfer and pressure drop performance are reviewed in the present paper. The fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and

  12. Boiling of nuclear liquid in the micro-canonical ensemble

    E-print Network

    Boiling of nuclear liquid in the micro-canonical ensemble K. Miyazaki E-mail: miyazakiro@rio.odn.ne.jp Abstract New calculus of the liquid-gas phase transition is developed for the boiling of nuclear liquid-dependence of the nuclear symmetry energy and the critical temperature of 1 #12;Boiling of nuclear liquid in the micro

  13. NISTIR 5780 Enhancement of R123 Pool Boiling by the

    E-print Network

    Oak Ridge National Laboratory

    NISTIR 5780 Enhancement of R123 Pool Boiling by the Addition of N-Hexane Mark A. Kedzierski Enhancement of R123 Pool Boiling by the Addition of N-Hexane Mark A. Kedzierski March 1996 00, Ct of pool boiling performance of a GEWA-TTM surface for three fluids: (1) pure R123, (2) R123/n-hexane (99

  14. Boiling heat transfer in rectangular microchannels with reentrant cavities

    E-print Network

    Peles, Yoav

    Boiling heat transfer in rectangular microchannels with reentrant cavities Ali Kosßar, Chih Available online 18 August 2005 Abstract This paper investigates flow boiling of water in microchannels (28­445 W/cm2 ) and mass velocities (41­302 kg/m2 s). High Boiling number and Reynolds number have

  15. Boiling in microchannels: a review of experiment and theory

    Microsoft Academic Search

    John R. Thome

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist

  16. Nucleation characteristics and stability considerations during flow boiling in microchannels

    E-print Network

    Kandlikar, Satish

    Nucleation characteristics and stability considerations during flow boiling in microchannels Satish; received in revised form 25 September 2005; accepted 3 October 2005 Abstract Flow boiling in microchannels in the flow boiling stability. To understand the role of local conditions on nucleation, the available

  17. ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING

    E-print Network

    Mitchell, John E.

    ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING WATER REACTOR AND THE HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Advanced Boiling Water Reactor - General Description . . . . . . . . . . . 3 2.1 Modifications-Dimensional Continuity Wave Equation for Boiling Mixtures . . 10 3.2.1 Derivation of Equation

  18. EFFECT OF SURFACE CHARACTERISTICS ON FLOW BOILING HEAT TRANSFER

    E-print Network

    Kandlikar, Satish

    EFFECT OF SURFACE CHARACTERISTICS ON FLOW BOILING HEAT TRANSFER Satish G. Kandlikar and Paul H ABSTRACT It is well known that the surface structure affects the pool boiling heat transfer from a heater characteristics. This fact is utilized in developing structured and sintered surfaces for enhanced boiling

  19. Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling

    E-print Network

    Shai, Isaac

    1967-01-01

    A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

  20. Transition from film boiling to nucleate boiling in forced convection vertical flow

    E-print Network

    Iloeje, Onwuamaeze C.

    1972-01-01

    The mechanism of collapse of forced cnnvection annular vertical flow film boiling, with liquid core, is investigated using liquid nitrogen at low pressures. The report includes the effect of heat flux from the buss bar. ...

  1. Classic and Hard-Boiled Detective Fiction.

    ERIC Educational Resources Information Center

    Reilly, John M.

    Through an analysis of several stories, this paper defines the similarities and differences between classic and hard-boiled detective fiction. The characters and plots of three stories are discussed: "The Red House" by A. A. Milne; "I, The Jury" by Mickey Spillane; and "League of Frightened Men" by Rex Stout. The classic detective story is defined…

  2. Future directions in boiling water reactor design

    Microsoft Academic Search

    D. R. Wilkins; J. D. Duncan; S. A. Hucik; J. I. Sweeney

    1988-01-01

    The Advances Boiling Water Reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the l1980's. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability; and reduced occupational exposure and radwaste. The ABWR incorporate the best proven features from

  3. Simplified boiling water reactor passive safety features

    Microsoft Academic Search

    H. A. Upton; F. E. Cooke; J. K. Sawabe

    1993-01-01

    This paper discusses the system functions and related hardware of key passive safety features of the simplified boiling water reactor (SBWR). The SBWR is a nominal 600-MW(electric) BWR that incorporates simplified systems and passive emergency equipment to enhance reactor operability and safety in an economical design that can be rapidly constructed. The SBWR reactor system is based on a nuclear

  4. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  5. Melting Point, Boiling Point, and Symmetry

    Microsoft Academic Search

    Robert Abramowitz; Samuel H. Yalkowsky

    1990-01-01

    The relationship between the melting point of a compound and its chemical structure remains poorly understood. The melting point of a compound can be related to certain of its other physical chemical properties. The boiling point of a compound can be determined from additive constitutive properties, but the melting point can be estimated only with the aid of nonadditive constitutive

  6. Boiling Crisis as a Critical Phenomenon

    NASA Astrophysics Data System (ADS)

    Lloveras, P.; Salvat-Pujol, F.; Truskinovsky, L.; Vives, E.

    2012-05-01

    We present the first experimental study of intermittency and avalanche distribution during a boiling crisis. To understand the emergence of power law statistics we propose a simple spin model capturing the measured critical exponent. The model suggests that behind the critical heat flux is a percolation phenomenon involving drying-rewetting competition close to the hot surface.

  7. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  8. The Plausibility of Boiling Geysers on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1995-01-01

    A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

  9. Electrohydrodynamic Pool Boiling in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Stahl, S. L.

    1996-01-01

    This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

  10. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the tr

  11. Hydrothermal Monitoring in a Quiescent Volcanic Arc: Cascade Range, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Gelwick, K.; Randolph-Flagg, N. G.; Crankshaw, I. M.; McCulloch, C. L.; Lundstrom, E. A.; Murveit, A. M.; Bergfeld, D.; Spicer, K.; Tucker, D.; Schmidt, M. E.; Mariner, R. H.; Evans, W.; Ingebritsen, S.

    2013-12-01

    Ongoing (1996-present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major-ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the U.S. Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade Range volcanic arc, from Mount Baker near the Canadian border to Mount Lassen in northern California. A concerted effort was made to develop hourly records of temperature and (or) hydrothermal solute flux spanning multiple years, suitable for comparison with other continuous geophysical monitoring data. Monitored sites included summit-fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and (or) large fluxes of magmatic CO2 or heat. As of 2009-2012 measured summit-fumarole temperatures in the Cascade Range were generally near or below the local pure-water boiling point; the maximum observed superheat was <+2.5°C at Mount Baker. Temporal variability in ground-temperature records from the summit-fumarole sites is temperature-dependent, with the hottest sites tending to show less variability. Seasonal variability in the flux of hydrothermally sourced major anions from the springs varied from essentially undetectable to a factor of 5-10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt-influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities ~>0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multi-decadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980-present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  12. A rapid, semiempirical method of calculating the stability margins of superconductors cooled with subcooled He-II: (Final report)

    SciTech Connect

    Dresner, L.

    1986-01-01

    A rapid, semiempirical method is presented for calculating the stability margins of superconductors cooled with subcooled He-II. Based on a model of Seyfert, the method takes into account both time-dependent Gorter-Mellink heat transport and the effects of interfacial Kapitza resistance. The method has been compared favorably with heat transfer data of Seyfert, stability data of Meuris, and stability data of Pfotenhauer and van Sciver. 4 refs., 7 figs., 1 tab.

  13. Sub-cooled and flashing liquid jets and droplet dispersion I. Overview and model implementation\\/validation

    Microsoft Academic Search

    Henk W. M. Witlox; Mike Harper; Adeyemi Oke; Philip J. Bowen; Peter Kay

    2010-01-01

    Many accidents involve two-phase releases of hazardous chemicals into the atmosphere. This paper describes the results of a third phase of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The aim of the project is to increase the understanding of the behaviour of sub-cooled non-flashing and superheated flashing liquid jets, and to improve the prediction of

  14. Zinc stannate nanostructures: hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-02-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  15. Mystery of the Megaplume: Hydrothermal Vent Chemistry

    NSDL National Science Digital Library

    In this lesson, students will investigate hydrothermal vents to see how the chemistry of the water they emit provides clues to the location of the vents. They should be able to describe hydrothermal vents and characterize vent plumes in terms of physical and chemical properties; describe data gathering operations in which a towed instrument package ("tow-yo") measures conductivity, temperature, and depth; and interpret temperature anomaly data to recognize a plume emanating from a hydrothermal vent.

  16. Analogue modeling of instabilities in crater lake hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, Jean; Stemmelen, Didier; Hurst, Tony; Grangeon, Jacques

    2005-02-01

    We carried out analogue experiments on two-phase boiling systems, using a porous vertical cylinder, saturated with water. The base of the cylinder was heated, and the top was cooled, as in a natural hydrothermal system. Previous work had shown that once the two-phase zone reached a certain level, thermal instabilities would develop. We made measurements of the acoustic energy related to boiling, and we found that high levels of acoustic noise were associated with the part of the cycle in which there was upward water movement. We repeated our experiments with a cooling water tank at the top of the system, representing a crater lake. This showed that periodic thermal instabilities still developed in this situation. We then compared our analogue measurements to two natural systems known to exhibit periodic behavior. There is good agreement between the thermal and acoustic cycling seen in our model and the observations made at Inferno Crater Lake in the Waimangu Geothermal area, New Zealand, whose level cycles by nearly 10 m, with a typical period of 38 days. Particularly notable is how in both systems high levels of acoustic noise are associated with rising water level. The much larger Ruapehu Crater Lake, also in New Zealand, cycled with a period of several months to a year for over a decade prior to the 1995 eruption. Strong acoustic and seismic energy usually occurred just before the lake temperature started to rise. This suggests a slightly different model, in which the increasing two-phase flow zone triggers more general convection once it reaches the base of the lake.

  17. Hydrothermal vent complexes associated with sill intrusionsin sedimentarybasins

    E-print Network

    Podladchikov, Yuri

    Hydrothermal vent complexes associated with sill intrusionsin sedimentarybasins BJIbRNJAMTVEIT1 sedimentarybasinscause strongthermal perturbations and frequentlycause extensivehydrothermalactivity.Hydrothermal vent strata surrounding a central vent complex. comprisingmultiplesandstone dykes, pipes, and hydrothermal

  18. Unorthodox bubbles when boiling in cold water

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  19. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70?°C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling. PMID:24580324

  20. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  1. Biocomplexity of Frost-Boil Ecosystems

    NSDL National Science Digital Library

    2003-01-01

    The NSF-funded project seeks to understand the complex linkages between biogeochemical cycles, vegetation, disturbance, and climate across the full summer temperature gradient in the Arctic. Researchers examine the complexity associated with self-organization in frost-boil, complexity associated with interactions between biogeochemical cycles, cryoturbation, and vegetation, and biocomplexity across spatial-temporal scales. The web site includes the project proposal, research objectives, preliminary results, maps, photographs, data sets, and publications.

  2. European simplified boiling water reactor (ESBWR) plant

    SciTech Connect

    Posta, B.A.; Goldenberg, E.A.; Sawhney, P.S. [Bechtel Corp., San Francisco, CA (United States); Rao, A.S. [General Electric Nuclear Engineering, San Jose, CA (United States)

    1996-07-01

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility.

  3. Self-propelled film-boiling liquids

    E-print Network

    H. Linke; B. J. Aleman; L. D. Melling; M. J. Taormina; M. J. Francis; C. C. Dow-Hygelund; V. Narayanan; R. P. Taylor; A. Stout

    2005-12-27

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  4. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H. [comp.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  5. POOL BOILING OF HIGH-FREQUENCY CONDUCTORS

    SciTech Connect

    Wright, S. E. (Spencer E.); Konecni, S. (Snezana); Ammerman, C. N. (Curtt N.); Sims, J. R. (James R.)

    2001-01-01

    This study presents development of a unique, powerful method for cooling high-frequency, AC conductors that can benefit end users of transformer windings, electrical machine windings, and magnet coils. This method of heat removal involves boiling a dielectric, fluorinert refrigerant that is in direct contact with litz wire conductors. A pool boiling test vessel is constructed, which provides for temperature control of the pool of fluorinert liquid. The test vessel is fitted with viewing ports so that the experiments are observed and studied with the aid of high-speed photography. Tests are performed on a variety of litz wire conductors. The boiling heat transfer coefficient is dependent on the conductor surface roughness. The size of the features on the conductor surface depends on the single-strand wire gage from which the conductor is constructed. All tests are performed with the conductors mounted horizontally. These tests are performed using a DC power supply. The results of these experiments will aid in the design of future cooling systems.

  6. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  7. Flow Boiling Pressure Drop of R134a in Micro Diameter Tubes: Experimental Results and Assessment of Correlations

    E-print Network

    2011-01-01

    Abstract The experimental results of two phase flow boiling pressure drop of R134a in vertical micro diameter stainless steel tubes are presented in this paper. The tests were conducted using four tubes; one tube with an inner diameter of 0.52 mm and 100 mm heated length and three tubes with an inner diameter of 1.1 mm and different heated lengths (150, 300 and 450 mm). Other experimental conditions include: mass flux range of 200 – 500 kg/m 2 s, system pressure range of 6 – 10 bar, inlet sub-cooling of about 5K and heat flux range of 1 – 140 kW/m 2. The results indicated that the total measured two phase pressure drop increases with increasing mass flux, heat flux (exit quality) and decreasing system pressure and tube inner diameter. The test section heated length was found to have a significant effect on the measured pressure drop per metre length. The total measured two phase pressure drop results were also compared with eighteen macro and micro scale models and correlations.

  8. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    SciTech Connect

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T. [Karlsruhe Inst. of Technology KIT, Inst. for Nuclear and Energy Technologies, Hermann-von-Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m{sup 2}s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  9. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  10. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  11. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    SciTech Connect

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required.

  12. Synthesis and characterization of a hexagonal mesoporous silica with enhanced thermal and hydrothermal stabilities

    NASA Astrophysics Data System (ADS)

    AlOthman, Zeid A.; Apblett, Allen W.

    2010-03-01

    A synthetic route was developed for a novel hexagonal mesoporous silica that has remarkably wide channel diameters and thick walls. The procedure involved the acid-catalyzed hydrolysis of tetraethylorthosilicate in a water/ethanol/isopropoanol solvent mixture while employing 1-hexadecylamine as a templating agent and mesitylene as an auxiliary agent. After removal of the template by either extraction with ethanolic hydrochloric acid or by calcination at 550 °C, the resulting mesoporous materials had surface areas of 1283 and 1211 m 2/g. The channel diameters were found to be 47.2-51.1 Å, while the wall thicknesses were 20.9-21.1 Å. X-ray powder diffraction demonstrated that the novel mesoporous silica belonged to the MCM-41 structural family. Notably, they displayed higher thermal and hydrothermal stabilities, and have higher surface areas than conventionally prepared MCM-41 silica. The thickest channel walls (21.1 Å) can withstand calcination to nearly 850 °C with minimal structural damage. The calcined sample was more resistant to hydrothermal treatment in boiling water than was the solvent-extracted product but both materials showed minimal change after 25 h of hydrothermal treatment.

  13. Formation of transparent aluminum hydroxide film with mesoscopic surface roughness by hydrothermal treatment of incompletely-nitrided sputtered aluminum film

    NASA Astrophysics Data System (ADS)

    Hori, Toshiyuki; Qiu, Zhiyong; Ishiguro, Takashi

    2010-06-01

    Incompletely-nitrided Al films (Al-N film) are deposited on the glass substrate by rf sputtering with a metallic Al target and using Ar and N2 gas mixture. With increasing film thickness up to 300nm, the surface roughness increases. And the roughness is easily controlled. The size and the number density of surface protuberance are suitable to control diffusive optical properties in the visible and near infrared regions. The films become transparent with retained roughness by boiling in ultra pure water at 368K under atmospheric pressure. The films have been transformed from composite of Al and AlN to aluminum hydroxide (Boehmite). Total transmittance of the boiled specimens exceeded that of the glass substrate itself. These facts suggest that hydrothermally-treated Al-N films with the mesoscopic surface roughness have high potential to reduce the optical loss by reflection.

  14. Hydrothermal alteration in the Reykjanes geothermal system: Insights from Iceland deep drilling program well RN-17

    NASA Astrophysics Data System (ADS)

    Marks, Naomi; Schiffman, Peter; Zierenberg, Robert A.; Franzson, Hjalti; Fridleifsson, Gudmundur Ó.

    2010-01-01

    The Reykjanes geothermal system is a seawater-recharged hydrothermal system that appears to be analogous to seafloor hydrothermal systems in terms of host rock type and low water/rock alteration. The similarities make the Reykjanes system a useful proxy for seafloor vents. At some time during the Pleistocene, the system was dominated by meteoric water recharge, and fluid composition at Reykjanes has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions. The purpose of this study is to characterize secondary mineralization, degree of metasomatic alteration, and bulk composition of cuttings from well RN-17 from the Reykjanes geothermal system. The basaltic host rock includes hyaloclastite, breccia, tuff, extrusive basalt, diabase, as well as a marine sedimentary sequence. The progressive hydrothermal alteration sequence observed with increasing depth results from reaction of geothermal fluids with the basaltic host rock. An assemblage of greenschist facies alteration minerals, including actinolite, prehnite, epidote and garnet, occurs at depths as shallow as 350 m; these minerals are commonly found in Icelandic geothermal systems at temperatures above 250 °C (Bird and Spieler, 2004). This requires hydrostatic pressures that exceed the present-day depth to boiling point curve, and therefore must record alteration at higher fluid pressures, perhaps as a result of Pleistocene glaciation. Major, minor, and trace element profiles of the cuttings indicate transitional MORB to OIB composition with limited metasomatic shifts in easily mobilized elements. Changes in MgO, K 2O and loss on ignition indicate that metasomatism is strongly correlated with protolith properties. The textures of alteration minerals reveal alteration style to be strongly dependent on protolith as well. Hyaloclastites are intensely altered with calc-silicate alteration assemblages comprising calcic hydrothermal plagioclase, grandite garnet, prehnite, epidote, hydrothermal clinopyroxene, and titanite. In contrast, crystalline basalts and intrusive rocks display a range in alteration intensity from essentially unaltered to pervasive and nearly complete albitization of igneous feldspar and uralitization of clinopyroxene. Hydrothermal anorthite (An92-An98) occurs in veins in the most altered basalt cuttings and is significantly more calcic than igneous feldspar (An48-An79). Amphibole compositions change from actinolite to hornblende at depth. Hydrothermal clinopyroxene, which occurs in veins, has greater variation in Fe content and is systematically more calcic than igneous pyroxene and also lacks uralitic textures. Solid solutions of prehnite, epidote, and garnet indicate evolving equilibria with respect to aluminum and ferric iron.

  15. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  16. Experimental Study of Heat Transfer from Stainless Steel Foil in He II during Film Boiling State

    SciTech Connect

    Zhang, P. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, 305-8573 (Japan); Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, 200030 (China); Murakami, M. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, 305-8573 (Japan)

    2004-06-23

    He II film boiling is of both academic and applied interests. However, the information about film boiling heat transfer in He II is still insufficient and needs further investigation. In the present study, a thin stainless steel foil heater (10 {mu} m thick) is used to cause boiling in He II. The heater temperature is measured to evaluate the heat transfer performance of He II film boiling under different thermal conditions. The pressure and the heater surface temperature oscillations induced by the film boiling are also simultaneously measured. The heat transfer coefficients of three kinds of boiling states: noisy film boiling, transition boiling and silent film boiling, are obtained in the present study.

  17. Molecular ecology of hydrothermal vent microbial communities

    Microsoft Academic Search

    Christian Jeanthon

    2000-01-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such

  18. AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING

    E-print Network

    Yao, Xin

    AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING AUVS by ZEYN A SAIGOL A thesis submitted of searching the ocean floor for hydrothermal vents, using autonomous underwater vehicles (AUVs). This is a hard problem because the AUV's sensors cannot directly measure the range or bearing to vents

  19. Radioisotopic studies of submarine hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Kadko, David

    1996-08-01

    The importance of mid-ocean ridge hydrothermal systems has been recognized for their role in the regulation of ocean and sediment chemistry, as well as for providing a chemosynthetic source of carbon which drives a unique population of animals found at hydrothermal vents. Despite the importance of these systems the rates, length, and depth scale of submarine hydrothermal processes are not precisely known because they are, for the most part, inaccessible to observational tools. We must therefore rely on indirect methods to quantify these processes. One way of investigating the rates, or timescales, of processes in a hydrothermal (or any natural) system is through the study and modeling of naturally occurring radioisotopes. Disequilibria among the naturally occurring radioactive decay series in vent fluids, associated mineral deposits, and overlying effluent plume have provided geochemical tools to investigate the rates of various processes occurring in submarine hydrothermal systems. Because the half-lives of the radioisotopes vary from days to many years, processes which encompass a wide range of spatial and temporal scales can be studied. This paper presents a review of methods that estimate the residence time of hydrothermal fluids in the ocean crust, establish the geochronology of seafloor sulfide deposits, investigate the rates of chemical reactions within hydrothermal effluent plumes, and derive the heat and mass flux from seafloor hydrothermal areas.

  20. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  1. A heat transfer correlation of flow boiling in micro-finned helically coiled tube

    Microsoft Academic Search

    Wenzhi Cui; Longjian Li; Mingdao Xin; Tien-Chien Jen; Qinghua Chen; Quan Liao

    2006-01-01

    Two main mechanisms, nucleate boiling and convective boiling, are widely accepted for in-tube flow boiling. Since the active nuclei on the heated wall are dominant for nucleate boiling and flow pattern governs the convective boiling, the heat transfer coefficient is strongly influenced by the wall heat flux, mass flux and vapor quality, respectively. In practical industrial applications, for example, the

  2. EFFECT OF SURFACE FINISH ON FLOW BOILING HEAT TRANSFER Satish G. Kandlikar

    E-print Network

    Kandlikar, Satish

    EFFECT OF SURFACE FINISH ON FLOW BOILING HEAT TRANSFER Satish G. Kandlikar and Paul H. Spiesman boiling heat transfer from a heater surface. The number and size distribution of cavities present and sintered surfaces for enhanced boiling performance. The nucleate boiling component in flow boiling is also

  3. Hydrothermal pretreatment of coal before molten caustic leaching

    SciTech Connect

    Akhtar, S.S.; Chriswell, C.D.

    1993-10-01

    A hydrothermal pretreatment of coal samples before caustic leaching results in efficient sulfur removal using reduced amounts of caustic and to recovery of a higher fraction of the energy content of the feed coal than caustic leaching without the pretreatment. Pretreating an Illinois No. 6 coal with boiling water followed by a float-sink separation using 50% aqueous NaOH as the heavy medium, and then leaching the floated coal with only the caustic adhering to the float portion (less than 1 part caustic to 1 part water to 1 part coal) at 390{degrees}C for 15 minutes led to the same residual levels of sulfur in the cleaned coal (0.5%) as was obtained performing the float-sink procedure and leaching procedures on a non-prewashed coal using 2.4 parts caustic to 1 part coal. When prewashed Illinois No. 6 coal was leached with lesser amounts of caustic, the energy recoveries in the cleaned coal were about 5--10% higher than when non-prewashed coal was leached with the larger amounts of caustic.

  4. D0 Silicon Upgrade: Vapor Pressure Thermometry System Near LN2 Subcooler

    SciTech Connect

    Kuwazaki, Andrew; /Fermilab

    1996-07-01

    Fermi National Accelerator Laboratory (Fermilab) is in the process of upgrading its detectors. Among these upgrades is the need for more transfer lines containing both liquid nitrogen and helium gas. These two fluids are used to provide the necessary operating cryogenic temperatures for the various detectors, such as the Visible Light Photon Counter (VLPC) and the solenoid inside the detector's calorimeter. With additional piping, it is important to monitor the temperatures to assure that the detectors can operate correctly. This can be done two ways. The first method is to use a Resistance Temperature Device, called a RTD, which is made using either a carbon resistor or a platinum resistor and measures the temperature based on resistance. The second method is to use a vapor-pressure thermometry system. This design will focus on the second method. A nitrogen Vapor Pressure Thermometer (VPT) system is designed to determine the temperature of the liquid nitrogen (LN{sub 2}) supply line, after exiting the LN{sub 2} subcooler, inside the D-Zero Assembly Hall. The operating temperature range is designed from 77 to 300 Kelvin with an initial charge pressure of 100 psia. A cylindrical bulb with a 0.1875-inch diameter and 0.625-inch length allows for minimum cold and warm 1/4-inch O.D. SS 304L tubing lengths, 12-inch and 18-inch respectively, and maintains a liquid level of 50% inside the bulb during cold operation. The amount of nitrogen needed to fill the cylindrical bulb approximately half full is 0.149 grams. In order to conform to the conventional cold volume and warm volume VPT systems, we need to enlarge the existing 1/2-inch x 2-inch SCH. 10 LN{sub 2} supply line over a one foot section to 1-inch x 3-inch SCH. 10 piping.

  5. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300?? to 500??C

    USGS Publications Warehouse

    Bischoff, J.L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300?? and 500??C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. -from Author

  6. Ongoing hydrothermal activities within Enceladus

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-Iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-01

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical `footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  7. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus. PMID:25762281

  8. Bubble departure size in flow boiling

    NASA Astrophysics Data System (ADS)

    Guan, Peng; Jia, Li; Yin, Liaofei; Tan, Zetao

    2014-12-01

    Flow boiling experiments were conducted in a vertical annular channel to study bubble departure characteristics. Deionized water was used as the working fluid, and the tests were performed at atmospheric pressure. Bubble departure diameters were obtained from the images which were captured by a high-speed digital camera. The relationship between bubble contact diameter and departure diameter was discussed. A new model base on force balance analysis, taking bubble contact diameter into account for predicting bubble departure diameter is proposed in this study. A good agreement between predicted and measured results is achieved.

  9. Boiling Fluids Behave Quite Differently in Space - Duration: 0:19.

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  10. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  11. Dynamics of the Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-09-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  12. SWR 1000: The Innovative Boiling Water Reactor

    SciTech Connect

    Brettschuh, Werner [Framatome ANP GmbH, Berlinerstrasse 295, 63067 Offenbach (Germany); Hudson, Greg [Framatome ANP Inc., 400 South Tyron Street, Charlotte, NC 28285 (United States)

    2004-07-01

    Framatome ANP has developed the boiling water reactor SWR 1000 in close cooperation with German nuclear utilities and with support from various European partners. This advanced reactor design marks a new era in the successful tradition of boiling water reactor technology and, with a gross electric output of between 1290 and 1330 MW, is aimed at assuring competitive power generating costs compared to gas- and coal-fired stations. At the same time, the SWR 1000 meets the highest safety standards, including control of a core melt accident these objectives are met by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. The plant is also protected against airplane crash loads. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burn-up all contribute towards meeting economic goals. The SWR 1000 fulfills international nuclear regulatory requirements and has been offered to TVO for the fifth nuclear unit in Finland. (authors)

  13. Predictive Microbiology in Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.; Holland, M. E.; Meyer-Dombard, D.; Amend, J. P.

    2004-12-01

    Metabolisms of high-temperature microorganisms are not revealed by molecular phylogenies, but, if known, could connect microbial and geochemical processes in hydrothermal ecosystems. Disequilibria among oxidation-reduction reactions, established by kinetic barriers to electron-transfer reactions, provide energy, and life provides the catalyst. In more-or-less closed systems, such as slowly-accumulating detrital sediments, life taps as much energy as conversion efficiency will allow, and many redox couples are driven to near-equilibrium states. In contrast, open systems like hot springs maintain persistent states of redox disequilibria that support highly diverse communities of microorganisms. In Yellowstone National Park hot springs, the magnitude of these redox disequilibria can be predicted based solely on pH, guided by past measurements of hot spring geochemistry. Geochemical diversity at Yellowstone National Park produces hydrothermal ecosystems over a pH range from less than 2 to greater than 8, with associated major and trace element concentration changes. We have assessed the supply of chemical energy in the form of redox reactions that are far from equilibrium in the Fe-S-C-O-H-N system. Field measurements of temperature, pH, dissolved oxygen, total sulfide, nitrate, nitrite, total ammonia, ferrous iron, and bicarbonate alkalinity are combined with lab analyses of sulfate, iron mineralogy, and gas composition (hydrogen, carbon dioxide, methane, carbon monoxide) in a thermodynamic analysis of the state of redox disequilibria in more than 50 hot spring habitats. Initial results (using only inorganic forms of C) yield nearly 200 reactions that are out of redox equilibrium, and which could supply energy if catalyzed. Some of these reactions, such as hydrogen oxidation, are pH independent, and the energy supply is nearly constant at about 24 kcal per mole of electrons over the entire pH range. Other reactions, which are pH dependent, show greater or lesser variations in energy supply as pH changes. As an example, the oxidation of dissolved ferrous iron to goethite varies from 26 kcal per mole of electrons (more energy-yielding than hydrogen oxidation) near pH 8, to 10 kcal per mole of electrons at pH 2. Taken together, these trends provide the first comprehensive framework for predicting which thermophilic metabolisms will prevail in which hydrothermal environments. Merging molecular microbiological methods with this type of predictive geochemical data will produce a new integrated biogeochemical approach to solving problems in microbial ecology.

  14. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  15. Design certification program of the simplified boiling water reactor

    Microsoft Academic Search

    Baechler

    1993-01-01

    General Electric (GE), the US Department of Energy, the Electric Power Research Institute (EPRI), and utilities are undertaking a cooperative program to enable advanced light water reactor (ALWR) designs to be certified by the US Nuclear Regulatory Commission (NRC). GE is seeking to certify two advanced plants; the Advanced Boiling Water Reactor (ABWR) and the Simplified Boiling Water Reactor (SBWR).

  16. Review on pool boiling heat transfer of carbon dioxide

    Microsoft Academic Search

    Dieter Gorenflo; Stephan Kotthoff

    2005-01-01

    Although application of carbon dioxide as working fluid in many fields of refrigeration technology has been recommended very often in the recent past, the data on nucleate boiling heat transfer of carbon dioxide in free convection are very scarce in the open literature and new investigations are almost entirely focussed on forced convective flow boiling. In the interpretation of the

  17. Effect of acoustic cavitation on boiling heat transfer

    Microsoft Academic Search

    D. W. Zhou; D. Y. Liu; X. G. Hu; C. F. Ma

    2002-01-01

    Boiling heat transfer on a horizontal circular copper tube in an acoustical field is investigated experimentally and the relation between the liquid cavitation, the boiling and the micro bubble radii are analyzed theoretically. The results show that cavitation bubbles have an important influence on the nucleation, growth and collapse of vapor embryo within cavities on the heat transfer surface and

  18. Reversed boiling curve phenomenon on surfaces with interlaced wettability

    NASA Astrophysics Data System (ADS)

    Hsu, C. C.; Chiu, W. C.; Kuo, L. S.; Chen, P. H.

    2014-10-01

    We experimentally investigated the effects of contact angle difference of heterogeneous wettability surfaces on pool boiling. For surfaces exhibiting heterogeneous wettability, this study determined that the pool boiling curve experiences a superheat decrease in some regions before the system achieves the critical heat flux. In addition, oscillation of the vapor column and bubble transverse motions on the heterogeneous wettability coated surface were observed.

  19. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  20. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  1. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    Microsoft Academic Search

    Jungho Kim; John McQuillen; Joe Balombin

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can

  2. Boiling treatment of ABS and PS plastics for flotation separation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling. PMID:24602834

  3. Boiling heat transfer and bubble dynamics in microgravity

    Microsoft Academic Search

    Johannes Straub

    2001-01-01

    This article presents results for pool boiling heat transfer under microgravity conditions that the author and his team have gained in a succession of experiments during the past two decades. The objective of the research work was to provide answers to the following questions: Is boiling an appropriate mechanism of heat transfer for space application? How do heat transfer and

  4. Bubble dynamics in boiling under high heat flux pulse heating

    Microsoft Academic Search

    A. Asai

    1991-01-01

    A new theoretical model of bubble behavior in boiling water under high heat flux pulse is presented. The essence of the model is nucleation in the superheated liquid followed by instantaneous formation of a vapor film, rapid bubble growth due to the pressure impulse, and cavitation bubble collapse. To check the model, boiling of methanol under 5 â¼ 50 MW

  5. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  6. Heat Transfer Mechanisms During Flow Boiling in Microchannels

    Microsoft Academic Search

    Satish G. Kandlikar

    2004-01-01

    The forces due to surface tension, inertia, and momentum change during evaporation in microchannel govern the two- phase flow patterns and the heat transfer characteristics during flow boiling. These forces are analyzed in this paper, and two new non-dimensional groups, K1 and K 2, relevant to flow boiling phenomenon are derived. These groups are able to represent some of the

  7. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  8. EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION IN A FRACTURE

    E-print Network

    Stanford University

    EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION IN A FRACTURE A REPORT SUBMITTED between heat conduction and heat convection with boiling flow in a rock fracture. An experimental coefficient. This coefficient is the proportionality factor between the heat flux to a fracture surface

  9. What Defines a Separate Hydrothermal System

    SciTech Connect

    Lawless, J.V.; Bogie, I.; Bignall, G.

    1995-01-01

    Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

  10. Candy Chemosynthesis: Biochemistry of Hydrothermal Vents

    NSDL National Science Digital Library

    In this activity, students will differentiate between requirements for life in extreme environments such as hydrothermal vents and other environments and will use soft candy as a model to create a visual image of chemicals involved in autotrophic nutrition. As they review the biochemistry of hydrothermal vents, they will discover what chemicals are used by autotrophs in extreme environments in the deep ocean and how these chemicals differ from those used by terrestrial autotrophs. They will also study a diagram showing how a hydrothermal vent (black smoker) acquires the elements and compounds that deep-sea autotrophs require.

  11. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes. PMID:17793659

  12. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or ??-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop. ?? 1978.

  13. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  14. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  15. Vision in hydrothermal vent shrimp.

    PubMed Central

    Chamberlain, S C

    2000-01-01

    Bresiliid shrimp from hydrothermal vents on the Mid-Atlantic Ridge have non-imaging eyes adapted for photodetection in light environments of very low intensity. Comparison of retinal structures between both vent shrimp and surface-dwelling shrimp with imaging eyes, and between juvenile and adult vent shrimp, suggests that vent shrimp have evolved from ancestors that lived in a light environment with bright cyclic lighting. Whether the vent shrimp live in swarms and have large dorsal eyes or live in sparse groupings and have large anterior eyes, the basic retinal adaptations are the same across species. Retinal adaptations in adult vent shrimp include the loss of dioptrics, enlargement of both the rhabdomeral segment of the photoreceptors and the light-sensitive rhabdomere therein, attenuation of the arhabdomeral segment of the photoreceptors, reduction of black screening pigment, development of a white diffusing layer behind the photoreceptors, and the loss of rhabdom turnover. PMID:11079388

  16. Hydrothermal Occurrences in Gusev Crater

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Farmer, J. D.; Milliken, R.; Mills, V. W.; Shock, E.

    2011-12-01

    Exploration of the Gusev crater landing site by the Spirit rover has revealed for the first time, in situ evidence of hydrothermal activity on Mars. Most compelling are eroded outcrops of opaline silica found adjacent to "Home Plate" [1], an eroded stack of volcaniclastic deposits stratigraphically overlain by a vesicular basalt unit [2]. Recent work [3] demonstrates that the silica outcrops occur in a stratiform unit that possibly surrounds Home Plate. The outcrops are dominated by opal-A with no evidence for diagenesis to other silica phases. No other hydrous or alteration phases have been identified within the outcrops; most notable is a lack of sulfur phases. The outcrops have porous and in some cases, brecciated microtextures. Taken together, these observations support the interpretation that the opaline silica outcrops were produced in a hot spring or perhaps geyser environment. In this context, they are silica sinter deposits precipitated from silica-rich hydrothermal fluids, possibly related to the volcanism that produced the Home Plate volcanic rocks. On Earth, debris aprons in which sinter is brecciated, reworked, and cemented, are common features of hot springs and geysers and are good analogs for the Martian deposits. An alternative hypothesis is that the silica resulted from acid-sulfate leaching of precursor rocks by fumarolic steam condensates. But stratigraphic, textural, and chemical observations tend to diminish this possibility [3]. We are conducting extensive laboratory and field investigations of silica from both hot spring/geyser and fumarole environments to understand the full range of mineralogical, chemical, textural, and morphological variations that accompany its production, in order to shed more light on the Home Plate occurrence. The recent discovery of abundant Mg-Fe carbonate (16-34 wt%) in outcrops named Comanche provides possible evidence for additional hydrothermal activity in Gusev [4]. However, the carbonate is hosted by olivine-rich (~40 wt%) volcaniclastic rocks that show no other phases indicative of significant alteration, such as phyllosilicates. Even the presence of so much olivine in the outcrops attests to minimal alteration. This suggests that the carbonate was not derived from hydrothermal alteration of the local rock. Instead, carbonate-bearing solutions sourced from elsewhere in the region may have precipitated carbonate as cement within the olivine-rich host rock [4]. An alternative hypothesis by [5] suggests that Comanche carbonate resulted from direct precipitation of evaporating brine, perhaps related to the putative ancient lake in Gusev crater, which infiltrated the host rock. In either case, the presence of outcrops of abundant carbonate and opaline silica demonstrates a rich and varied aqueous history in Gusev crater. [1] Squyres, S. W., et al. (2008), Science, 320, 1063-1067. [2] Squyres, S. W., et al. (2007), Science, 316, 738-742. [3] Ruff, S. W., et al. (2011), J. Geophys. Res., 116, E00F23, 10.1029/2010JE003767. [4] Morris, R. V., et al. (2010), Science, 329, 5990, 421-424, 10.1126/science.1189667. [5] Ruff, S. W. (2011), Lunar Planet. Sci., XLII, abstract #2708.

  17. Hydrothermal carbonization of lignocellulosic biomass.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

    2012-08-01

    Hydrothermal carbonization (HTC) is a novel thermochemical conversion process to convert lignocellulosic biomass into value-added products. HTC processes were studied using two different biomass feedstocks: corn stalk and Tamarix ramosissima. The treatment brought an increase of the higher heating values up to 29.2 and 28.4 MJ/kg for corn stalk and T. ramosissima, respectively, corresponding to an increase of 66.8% and 58.3% as compared to those for the raw materials. The resulting lignite-like solid products contained mainly lignin with a high degree of aromatization and a large amount of oxygen-containing groups. Liquid products extracted with ethyl acetate were analyzed by gas chromatography-mass spectrometry. The identified degradation products were phenolic compounds and furan derivatives, which may be desirable feedstocks for biodiesel and chemical production. Based on these results, HTC is considered to be a potential treatment in a lignocellulosic biomass refinery. PMID:22698445

  18. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  19. QSPR models of boiling point, octanolwater partition coefficient and retention time index of polycyclic aromatic hydrocarbons

    E-print Network

    Ferreira, Márcia M. C.

    QSPR models of boiling point, octanol­water partition coefficient and retention time index) is presented. Three physicochemical properties related to their environmental impact are studied: boiling point

  20. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  1. Influence of the wettability on the boiling onset.

    PubMed

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability. PMID:22166139

  2. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    PubMed Central

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  3. TRAC analysis of the effect of increased ECC subcooling on the reflood transient in the Slab Core Test Facility. [PWR

    SciTech Connect

    Smith, S.T.

    1982-01-01

    A blind posttest calculation of Slab Core Test Facility (SCTF) Run 510, the high-subcooling test, was completed with TRAC-PD2/MOD1 using initial conditions provided by the Japan Atomic Energy Research Institute (JAERI), but without knowledge of the actual test results. There is good comparison between the calculation and the data for rod temperatures, turnaround times, core differential pressures, and mass inventories, and reasonable comparison for absolute pressures, upper plenum pool formation, and fluid temperatures and mass accumulation in the steam-water separator. Comparison of this calculation with the calculation of the base case test (Run 507) shows that the qualitative behavior during reflood is calculated correctly for both cases. In addition, from this comparison the following conclusions can be drawn: for the high-subcooling case, the peak rod temperture was lower, calculated quench times were earlier, there was more entrainment and liquid carryover from the core to the upper plenum, and the liquid mass accumulation in both the core and the upper plenum was greater.

  4. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. (NOAA, Newport, OR (United States))

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  5. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kami?ski, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. PMID:25545251

  6. Biomass reforming processes in hydrothermal media

    E-print Network

    Peterson, Andrew A

    2009-01-01

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  7. Magmatic intrusions and hydrothermal systems on Mars

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.

    1992-01-01

    We are continuing our investigation of Martian hydrothermal systems and the formation of fluvial valleys on Mars. Here we present our initial numerical modeling results of hydrothermal systems associated with magmatic intrusions on Mars. To model such hydrothermal systems, we consider single, cylindrical intrusions of 4 km height 2 km below the surface. Our preliminary results of modeling hydrothermal systems associated with magmatic intrusions in the Martian environment suggest that such systems, if associated with intrusions of several 10(exp 2) km(exp 3) or larger, in the presence of permeable, water-rich subsurface should be able to provide adequate discharges of water over the time periods needed to form fluvial valleys. However, it is important to note that the amount of water ultimately available for erosion also depends on the surface and subsurface lithology.

  8. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  9. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  10. Hydrothermal crystallization of iron(III) hydroxide

    Microsoft Academic Search

    V. V. Popov; A. I. Gorbunov

    2006-01-01

    The crystallization of amorphous iron(III) hydroxide during hydrothermal treatment in aqueous suspensions was studied by x-ray\\u000a diffraction and transmission electron microscopy. The results demonstrate that, by varying the hydrothermal synthesis conditions\\u000a (pH, temperature, duration, nature and amount of additives), one can control the phase composition, shape, and size of the\\u000a forming particles. Factors that increase the concentration of soluble iron(III)

  11. Rare earth element systematics in hydrothermal fluids

    Microsoft Academic Search

    Annie Michard

    1989-01-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (>230°C) percolating

  12. Thermo-chemical variations of the hydrothermal fluids in the Berlin geothermal field (El Salvador)

    NASA Astrophysics Data System (ADS)

    Ruggieri, G.; Dallai, L.; Nardini, I.; Torio Henriquez, E.

    2009-04-01

    The liquid-dominated Berlin geothermal field is located about 110 km ESE of San Salvador, on the northern slope of the Berlin-Tecapa volcanic complex. The geothermal reservoir occurs within andesitic to basaltic lavas and tuffs. Measured temperatures in the production zones are in the 280-300Ë? C range, while in the reinjection zones are 245-250Ë? C. The reservoir fluids are NaCl waters with total dissolved solids of about 6000-10000 mg/kg and CO2 partial pressures of 0.049-0.460 MPa. A recent exploration project has been carried out by Enel GreenPower and LaGeo at the southern part of the field. A fluid inclusion studies have been carried out on core-samples from the recently explored area and from the production zone in order to obtain information on the thermo-chemical evolution of the geothermal fluids. In addition, isotopic data on hydrothermal epidote allowed to better constrain the sources of the water that circulated in the geothermal reservoir. The examined samples are mainly composed of volcanic rocks and breccias affected by hydrothermal alteration. The secondary minerals (mostly epidote, chlorite, quartz, adularia, albite, prehnite, calcite) occur either as replacement of primary minerals or within micro-fracture and voids. Fluid inclusions microthermometry has been performed on fluid inclusions found in hydrothermal and igneous quartz, albite, adularia, calcite, anhydrite and prehnite. Most of the observed inclusions are aqueous, two-phase liquid-rich inclusions; rare vapor-rich inclusions also occur in some samples. Fluid inclusion homogenization temperatures range is 191-344Ë? C; the inclusions with the highest homogenization values at each sampling depths were trapped at or close to boiling condition. A cooling process is recorded by the wide ranges of homogenization temperatures and is also evidenced by the comparison of present-day temperature at the sampling depths and fluid inclusion homogenization temperatures. In particular, a significant temperature decrease (up to 100Ë? C) occurred from the trapping of hottest fluid in the recently explored area to present-day condition at depths > 1.5 km below the ground level. Apparent salinities of many fluid inclusions are comparable to those of present-day fluids; however there are also fluid inclusions showing higher and lower salinities than present-day fluids. Low values of apparent salinity (down to 0.2 wt. % NaCl equiv.) can be related to the circulation of liquid water formed from steam condensation and/or in part to a decrease of the CO2 content in the geothermal fluid due to boiling processes. Whereas, the occurrence of inclusions in deep samples showing significantly high salinities (up to 21.2 wt.% NaCl equiv.) can be related to two processes: 1) open system fluid boiling with steam lost, or 2) injection of a high-salinity fluid in the system. The relatively high ^D values (up to -42 per mil) of the H2O in equilibrium with epidote is coherent with the sporadic input of saline fluids of magmatic derivation that mixed with geothermal fluid of meteoric origin in the deep part of the hydrothermal system. On the other hand, prolonged open system boiling processes at the temperatures indicated by fluid inclusions are not compatible with these isotopic values.

  13. Boiling water with ice: Effect of pressure on the boiling point of water

    NSDL National Science Digital Library

    This guided inquiry activity, in which ice is used to boil water in a Florence flask, works well in the introductory class to a chemistry or physical science course. The students will learn the difference between observation and inference and apply this understanding to various other situations in which observations and inferences must be made. The students will also use outside sources to try to explain why the activity worked.

  14. Hybrid modelling of a sugar boiling process

    E-print Network

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  15. The Physics of Boiling at Burnout

    NASA Technical Reports Server (NTRS)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  16. Hydrothermal disturbances at the Norris Geyser Basin, Yellowstone National Park (USA) in 2003

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Heasler, H.; Smith, R. B.

    2003-12-01

    The Norris Geyser Basin in north-central Yellowstone National Park (YNP) experienced a series of notable changes during 2003, including formation of new hot springs and fumaroles, renewed activity of dormant geysers and elevated ground temperatures. This abstract provides a short synopsis of the new hydrothermal activity. In 2000, Yellowstone's tallest geyser, Steamboat, erupted after a dormant period of nearly 9 years. It erupted twice in 2002 and then again on 26 March and 27 April 2003. Surges in flux of thermal water preceding the eruptions (preplay) were recorded by a couplet of temperature data loggers placed in the outlet stream. The data indicated pulses of water flow with 1 and ~3 day intervals. On 10 July 2003, a new thermal feature was reported just west of Nymph Lake, ~ 3.5 km northwest of the Norris Museum. A linear series of vigorous fumaroles, about 75 m long had formed in a forested area, ~ 200 m up a hill on the lake's west shore. Fine particles of rock and mineral fragments coated nearby vegetation. Fumarole temperatures were around the local boiling temperature of water (92° C). After two months, somewhat reduced steam emission was accompanied by discharge of ~ 3-10 gallons per minute of near-neutral thermal water. Trees within 4 meters of the lineament were dead and were being slowly combusted. Porkchop Geyser in Norris' Back Basin had been dormant since it exploded in 1989, littering the nearby area with boulders up to over 1 m in diameter. Since that time, its water had remained well below the boiling temperature of water. From 1 April through 1 July `03, the temperature of waters in Porkchop's vent increased continuously from 67° to 88° C. Each Summer, Norris' Back Basin experiences an "annual disturbance" where individual hot springs and geysers typically show anomalous boiling, and have measurable increases in turbidity, acidity and SO4/Cl ratios. The disturbance has been linked to depressurization of the hydrothermal system as the hydrostatic pressure of the snowmelt-fed groundwater table wanes each summer. This year, the "Norris disturbance" is estimated to have begun on 11 July 2003,when pronounced changes were noted, including thermal pools that were boiled to dryness (e.g., Pearl Geyser), creating fumaroles. Porkchop Geyser erupted for the first time since 1989 on 16 July. New mud pots formed along the Back Basin Trail and increased ground temperatures were noted over an 500 x 300 m area. Park staff noted temperatures up to 94° C at 1 cm beneath the ground surface in areas that were previously cool. Vegetation in the area immediately died and began to break down due to the high temperatures. Yellowstone National Park closed the Back Basin Trail to all visitor travel on 22 July 2003. During the first week of August 2003, the Yellowstone Volcano Observatory installed a temporary monitoring network in the Norris Geyser Basin. University of Utah staff, with equipment and personnel made available by IRIS, UNAVCO, USGS and YNP, installed seven broadband seismometers and five continuous GPS receivers. In addition, YNP deployed a series of temperature data-loggers to record changes in flow from thermal features within the Norris Back Basin. The network is intended to identify ground motions associated with fluid flow within the geyser basin that may accompany eruptions of geysers, boiling episodes or events precursory to hydrothermal explosions. The monitoring network will remain operational for between four and twelve weeks.

  17. Enceladus Plumes: A Boiling Liquid Model

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Ingersoll, A. P.

    2012-10-01

    Following the discovery of H2O vapor and particle plumes from the tiger stripes at the south pole of Enceladus (Porco et al., 2006), observational and theoretical studies have been conducted to understand the plume mechanism (e.g., Schmidt et al., 2008; Kieffer et al., 2009; Ingersoll and Pankine, 2010). Although the “Ice Chamber Model”, which assumes that ice sublimation under the stripes causes the plumes, has successfully explained the plume mass flux (e.g., Nimmo et al., 2007; Ingersoll and Pankine, 2010), it cannot explain the high salinity in the plume (Postberg et al., 2009). Ice particles condensing from a vapor are relatively salt free, but ice particles derived from a salty liquid can have high salinity. Therefore we have investigated the “Boiling Liquid Model”, which assumes that liquid H2O under the stripes causes the plumes. With conservation of mass, momentum and energy, we built a simple atmospheric model that includes controlled boiling and gas-ice wall interaction. We first assumed that the heat radiated to space comes entirely from the heat generated by condensation of the gas onto the ice wall. We varied the width (0.1-1 m) and the height (5-4000 m) of the crack as parameters. We find that the escaping vapor flux can be relatively close to the observed value (250±100 kg/s, Hansen et al., 2006, 2008) but the radiated heat flux is only 1 GW, which is much less than the observed value (15.8 GW, Howett et al., 2011). Other models (Nimmo et al., 2007; Abramov and Spencer, 2009) also have the same difficulty accounting for the observed value. We then investigated the additional heat radiated by the particles after they come out of the crack. We built a simple model to estimate the size distributions of these condensed ice particles and their radiative properties.

  18. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-02-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 °C) and major element compositions, low dissolved CO 2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 °C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 °C) fluid. All PACMANUS fluids are characterized by negative ?DO values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 °C) values (˜2.6-2.7), high endmember CO 2 (up to 274 mmol/kg) and negative ?34SS values (down to -2.7‰) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO 2 at PACMANUS is more enriched in 13C (-4.1‰ to -2.3‰) than Vienna Woods (-5.2‰ to -5.7‰), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO 4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (?80 °C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.

  19. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (< or = 80 degrees C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.

  20. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  1. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  2. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  3. Characterizing preferential groundwater discharge through boils using temperature

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.

    2014-03-01

    In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.

  4. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.

  5. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    NASA Astrophysics Data System (ADS)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (? 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ? 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N 2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where ?13C-CO 2, ?34S-H 2S, and ?15N-N 2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.

  6. Hydrothermal carbonization of agricultural residues.

    PubMed

    Oliveira, Ivo; Blöhse, Dennis; Ramke, Hans-Günter

    2013-08-01

    The work presented in this article addresses the application of hydrothermal carbonization (HTC) to produce a solid fuel named HTC-Biochar, whose characteristics are comparable to brown coal. Several batch HTC experiments were performed using agricultural residues (AR) as substrates, commonly treated in farm-based biogas plants in Germany. Different AR were used in different combinations with other biomass residues. The biogas potential from the resulting process water was also determined. The combination of different AR lead to the production of different qualities of HTC-Biochars as well as different mass and energy yields. Using more lignocellulosic residues lead to higher mass and energy yields for the HTC-Biochar produced. Whilst residues rich in carbohydrates of lower molecular weight such as corn silage and dough residues lead to the production of a HTC-Biochar of better quality and more similar to brown coal. Process water achieved a maximum of 16.3 L CH4/kg FM (fresh matter). PMID:23735795

  7. Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru

    NASA Astrophysics Data System (ADS)

    André-Mayer, Anne-Sylvie; Leroy, Jacques; Bailly, Laurent; Chauvet, Alain; Marcoux, Eric; Grancea, Luminita; Llosa, Fernando; Rosas, Juan

    2002-06-01

    The Au-Ag (±Pb-Zn) Apacheta deposit is located in the Shila district, 600 km southeast of Lima in the Cordillera Occidental of Arequipa Province, southern Peru. The vein mineralization is found in Early to Middle Miocene calc-alkaline lava flows and volcanic breccias. Both gangue and sulfide mineralization express a typical low-sulfidation system; assay data show element zoning with base metals enriched at depth and higher concentrations of precious metals in the upper part of the veins. Three main deposition stages are observed: (1) early pyrite and base-metal sulfides with minor electrum 1 and acanthite; (2) brecciation of this mineral assemblage and cross-cutting veinlets with subhedral quartz crystals, Mn-bearing calcite and rhombic adularia crystals; and finally (3) veinlets and geodal filling of an assemblage of tennantite/tetrahedrite + colorless sphalerite 2 + galena + chalcopyrite + electrum 2. Fluid inclusions in the mineralized veins display two distinct types: aqueous-carbonic liquid-rich Lw-c inclusions, and aqueous-carbonic vapor-rich Vw-c inclusions. Microthermometric data indicate that the ore minerals were deposited between 300 and 225 °C from relatively dilute hydrothermal fluids (0.6-3.4 wt% NaCl). The physical and chemical characteristics of the hydrothermal fluids show a vertical evolution, with in particular a drop in temperature and a loss of H2S. The presence of adularia and platy calcite and of co-existing liquid-rich and vapor-rich inclusions in the ore-stage indicates a boiling event. Strong H2S enrichment in the Vw-c inclusions observed at -200 m, the abundance of platy calcite, and the occurrence of hydrothermal breccia at this level may indicate a zone of intense boiling. The vertical element zoning observed in the Apacheta deposit thus seems to be directly related to the vertical evolution of hydrothermal-fluid characteristics. Precious-metal deposition mainly occurred above the 200-m level below the present-day surface, in response to a liquid/vapor phase separation due to an upward boiling front.

  8. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  9. NUMERICAL SIMULATION OF BOILING HEAT TRANSFER Ying He, Shigeo Maruyama and Masahiro Shoji

    E-print Network

    Maruyama, Shigeo

    NUMERICAL SIMULATION OF BOILING HEAT TRANSFER Ying He, Shigeo Maruyama and Masahiro Shoji It's considered that pool boiling heat transfer is closely related to the intermittent behavior simulation of boiling heat transfer. This paper reports a method to simulate heat transfer near the boiling

  10. Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel

    E-print Network

    Aussillous, Pascale

    Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b s t r a c t Boiling in microchannels is widely considered as one of the front runners in process

  11. Spatio-temporal analysis of nucleate pool boiling: identi cation of nucleation sites using

    E-print Network

    McSharry, Patrick E.

    Spatio-temporal analysis of nucleate pool boiling: identi#12;cation of nucleation sites using non are often limited by the available techniques. These limitations are especially evident in nucleate boiling boiling experiment. Spatio-temporal data for the wall temperature in pool nu- cleate boiling of water

  12. Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective

    E-print Network

    Kandlikar, Satish

    Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective Satish G Accepted 25 December 2009 Available online 20 February 2010 Keywords: Flow boiling Boiling Microchannels Mechanisms Scale Scaling a b s t r a c t Flow boiling in microchannels has received considerable attention

  13. Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Schiffman, P.; Williams, A.E.

    1984-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than 50 deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies show the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity through a typical cross-section of the reservoir of about 6 m/year. The heat in storage in that part of the reservoir hotter than 200/sup 0/C and shallower than 3 km depth is equivalent to that which would be released by the cooling of about 1 or 2 km/sup 3/ of basalt or gabbro magma.

  14. Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

  15. Hydrothermal origin of halogens at Home Plate, Gusev Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, Mariek E.; Ruff, Steven W.; McCoy, Timothy J.; Farrand, William H.; Johnson, Jeffrey R.; Gellert, Ralf; Ming, Douglas W.; Morris, Richard V.; Cabrol, Nathalie; Lewis, Kevin W.; Schroeder, Christian

    2008-06-01

    In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered clastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mössbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mössbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (+/-Fe +/- Ca +/- CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate.

  16. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (? 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal zones of active extension) common to all spreading centers, regional tectonic setting determined by stage (early, advanced), and rate (slow, intermediate-to-fast) of opening of an ocean basin about a spreading center, and local tectonic sub-setting that incorporates anomalous structural and thermal conditions conducive to mineral concentration (thermal gradient, permeability, system geometry, leaky versus tight hydrothermal systems). Temporal frames of reference comprise the relation between mineral concentration and timing of regional plutonic, volcanic and tectonic cycles and of episodic local physical and chemical events (transient stress, fluctuating heat transfer, intrusion-extrusion, fracturing, sealing, etc.). Types of hydrothermal deposits are not uniquely associated with specific tectonic settings and subsettings. Similar types of hydrothermal deposits may occur in different tectonic settings as a consequence of convergence of physical and chemical processes of concentration. Local tectonic sub-settings with conditions conducive to hydrothermal mineralization at slow-spreading centers (half rate ? 2cm y -1; length c. 28,000 km), characterized by an estimated average convective heat transfer of 15.1·10 8 cal. cm -2, deep-level ( > 3 km), relative narrow (< 5 km wide at base) magma chambers, and high topographic relief (1-5 km) are: (1) basins along linear sections of the axial zone of volcanic extrusion near transform faults at an early stage of opening, represented by a large stratiform sulfide deposit (estimated 32.5·10 6 metric tons) of the Atlantis II Deep of the Red Sea; (2) the wall along linear sections of the rift valley in the marginal zone of active extension at an advanced stage of opening, represented by encrustations and layered deposits of manganese and iron oxides, hydroxides and silicates inferred to be underlain by stockwork sulfides at the TAG Hydrothermal Field at latitude 26°C on the Mid-Atlantic Ridge; (3) transform faults, especially those with large ridge-ridge offset ( > 30 km), at an advanced stage of opening,

  17. The correlation of nucleate boiling burn-out data

    E-print Network

    Griffith, P.

    1957-01-01

    A dimensionless correlation is developed for nucleate boiling buzrnout data including the following ranges of variables. Fluids - Water Bensene n - Heptane n - Pentane Ethanol Pressure - 0.0045 to 0.96 of critical pressure ...

  18. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  19. Boiling local heat transfer enhancement in minichannels using nanofluids.

    PubMed

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 ?m hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  20. Determination of pool boiling Critical Heat Flux enhancement in nanofluids

    E-print Network

    Truong, Bao H. (Bao Hoai)

    2007-01-01

    Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

  1. Infrared thermometry study of nanofluid pool boiling phenomena

    E-print Network

    Gerardi, Craig

    Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). ...

  2. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  3. BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  4. BOILING HOUSE, INTERIOR, SECOND FLOOR, CLARIFIERS, SIEP TO THE LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, CLARIFIERS, SIEP TO THE LEFT, WITH CLARIFIER FLASH TANK ABOVE, SAMPLING STATION TO THE LEFT. VIEW FROM THE SOUTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  5. BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN BACKGROUND, THE ELEVATOR AND STAIRS GOING UP. VIEW FROM SOUTHWEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  6. Effects of surface parameters on boiling heat transfer phenomena

    E-print Network

    Truong, Bao H. (Bao Hoai)

    2011-01-01

    Nanofluids, engineered colloidal dispersions of nanoparticles in fluid, have been shown to enhance pool and flow boiling CHF. The CHF enhancement was due to nanoparticle deposited on the heater surface, which was verified ...

  7. Thermal boundary layer development in dispersed flow film boiling

    E-print Network

    Hull, Lawrence M.

    1982-01-01

    Dispersed flow film boiling consists of a dispersion of droplets which are carried over a very hot surface by their vapor. This process occurs in cryogenic equipment and wet steam turbines. It is also of interest in the ...

  8. Forced-convection, dispersed-flow film boiling

    E-print Network

    Hynek, Scott Josef

    1969-01-01

    This report presents the latest results of an investigation of the characteristics of dispersed flow film boiling. Heat transfer data are presented for vertical upflow of nitrogen in an electrically heated tube, 0.4 in. ...

  9. Hydrodynamics, heat transfer and flow boiling instabilities in microchannels 

    E-print Network

    Barber, Jacqueline Claire

    2010-01-01

    Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

  10. Pressure drop with surface boiling in small-diameter tubes

    E-print Network

    Dr?mer, Thomas

    1964-01-01

    Pressure drop for water flowing in small-diameter tubes under isothermal, nonboiling, and surface-boiling conditions was investigated. Experimental results for local pressure gradient and heattransfer coefficients are ...

  11. Flow Boiling and Condensation Experiment - Duration: 0:21.

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  12. A study of boiling water flow regimes at low pressures

    E-print Network

    Fiori, Mario P.

    1966-01-01

    "A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

  13. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 ?m hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  14. BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ABOVE RIGHT, LOW GRADE CENTRIFUGALS BELOW. CRYSTALLIZER HOT WATER TANK TO REAR. VIEW FROM NORTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  15. BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, HIGH GRADE VACUUM PANS BEYOND THE SYRUP TANKS. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  16. EAST ELEVATION OF THE ELECTRIC SHOP. BOILING HOUSE AND POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF THE ELECTRIC SHOP. BOILING HOUSE AND POWER HOUSE WING IN THE BACKGROUND. VIEW FROM THE SOUTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  17. BOILING HOUSE, SECOND FLOOR, FROM TOP OF GARVER CLARIFIER, MUD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, SECOND FLOOR, FROM TOP OF GARVER CLARIFIER, MUD FILTERS AND CAUSTIC SODA TANKS TO THE LEFT. VIEW FROM THE EAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  18. Boiling of nuclear liquid in core-collapse supernova explosions

    E-print Network

    Peter Fomin; Dmytro Iakubovskyi; Yuri Shtanov

    2007-09-02

    We investigate the possibility of boiling instability of nuclear liquid in the inner core of the proto-neutron star formed in the core collapse of a type II supernova. We derive a simple criterion for boiling to occur. Using this criterion for one of best described equations of state of supernova matter, we find that boiling is quite possible under the conditions realized inside the proto-neutron star. We discuss consequences of this process such as the increase of heat transfer rate and pressure in the boiling region. We expect that taking this effect into account in the conventional neutrino-driven delayed-shock mechanism of type II supernova explosions can increase the explosion energy and reduce the mass of the neutron-star remnant.

  19. The hydrothermal power of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2015-03-01

    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (<1 Ma) is about 50% of the total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow), and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  20. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  1. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  2. Lander Detection and Identification of Hydrothermal Deposits

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Gulick, V.

    2001-01-01

    The role of hydrothermal activity on Mars in altering crustal materials and sequestering volatiles is a critical component in understanding the interactions between the atmosphere, surface, and hydrosphere of Mars. In turn, these interactions are key elements in understanding the martian climate history, surface geology, and potential for past life on Mars. Identification of hydrothermal deposits at the surface of Mars, especially within a region in which the geologic context is clear (e.g. a volcanic region such as a Apollinarius Patera), would provide valuable information about the geologic history of the planet, and would be indicative of a potential site for the search for evidence of life on Mars. Specific hydrothermal mineral assemblages will be dependent on the environmental conditions under which the country rock was altered. Mini-TES, however, has the capacity to identify a wide range of alteration products, and Mossbauer Spectrometer will be able to identify both altered and unaltered iron-bearing bearing minerals, and will yield information on the environment in which iron oxidation has occurred. The instruments on the 2003 rover will have the capability to identify hydrothermal deposits present at the surface of the landing site, potentially yielding information about the nature of the environment in which hydrothermal alteration occurred.

  3. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  4. Pervaporation of ethanol and acetone above normal boiling temperatures

    SciTech Connect

    Windmoeller, D.; Galembeck, F. (Univ. Estadual de Campinas, Sao Paulo (Brazil))

    1992-08-01

    Pervaporation experiments were performed at higher than normal feed liquid boiling temperatures by applying pressure to the feed compartment. Ethanol, acetone, and aqueous ethanol solutions were pervaporated through silicone rubber dense membranes. Large increases were observed in the permeate flow as the temperature rose above the liquid boiling temperature. Separation factors in aqueous ethanol pervaporation are not affected by these increases in permeate output, and they are in the same range as those obtained in conventional pervaporation.

  5. 16. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Looking from west to east through boiling house. The sorghum pan is on the right. The beams; joists, and trusses are of northwest pine; side boards are of redwood. A foundation line of a loading dock and smokestack are in the foreground. Both end walls have deteriorated completely. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  6. Boiling heat transfer and bubble growth dynamics during rapid decompression

    Microsoft Academic Search

    S. P. Kung

    1980-01-01

    Boiling transition and bubble growth from a thin electrical heating wire were studied during rapid decompressions at three decompression rates, ranging from 180 to the 2nd power kPa\\/sec to 720 to the 2nd power kPa\\/sec and over a wide range of heat fluxes. It was found that the time to boiling transition could not be estimated by available steady state

  7. Microscopic explosive boiling induced by a pulsed-laser irradiation

    NASA Astrophysics Data System (ADS)

    Huai, Xiulan; Wang, Guoxiang; Jin, Renxi; Yin, Tienan; Zou, Yu

    2008-11-01

    This paper presents an experimental study of microscopic explosive boiling introduced by a pulsed laser. The violent explosive boiling was observed in the liquid film, and the vapor bubbles together with liquid droplets were expelled from the platinum film. It is found that the apparent bubble nucleation temperature is a strong function of the heating rate. The pressure signal appears as continuous oscillation and is intensified as laser power density increases.

  8. Visualization and measurements of periodic boiling in silicon microchannels

    Microsoft Academic Search

    H. Y. Wu; Ping Cheng

    2003-01-01

    A simultaneous visualization and measurement investigation has been carried out on flow boiling of water in parallel silicon microchannels of trapezoidal cross-section. Two sets of parallel microchannels, having hydraulic diameters of 158.8 and 82.8 ?m, respectively, were used. The visualization study shows that once boiling heat transfer is established, two-phase flow and single-phase liquid flow appear alternatively with time in

  9. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  10. Main Results of Na-K Alloy Boiling Investigation

    SciTech Connect

    Sorokin, G.A.; Bogoslovskaya, G.P.; Ivanov, E.F.; Sorokin, A.P. [State Scientific Center of Russian Federation Physics and Power Engineering Institute, 1 Bondarenko Sq., Obninsk, 249033, Kaluga Region (Russian Federation)

    2002-07-01

    Boiling experiments on eutectic sodium-potassium alloy in the model of fast reactor subassembly under conditions of low-velocity circulation carried out at the IPPE call for further investigations into numerical modeling of the process. The paper presents analysis of pin bundle liquid metal boiling, stages of the process, its characteristics (wall temperature, coolant temperature, flow rate. pressure void fraction and others), that allowed the pattern map to be drawn. The problem of conversion of the data gained in Na-K mock-up experiments to in-pile sodium reactor operating conditions is analyzed here, as well as thermodynamic similarity of liquid metal coolants and eutectic Na-K alloy. Data on bundle boiling in Na-K are presented in comparison with those in different liquid metals. Analysis of data on liquid metal heat transfer in cases of pool boiling, boiling in tubes, in slots, and in pin bundles, as well as data on critical heat flux in tubes was performed and discussed in the paper. The relationship for calculation of critical heat flux in liquid metal derived by the authors is presented. Results of numerical modeling of liquid metal boiling heat transfer during accident cooling of reactor core applied to experimental conditions of going from forced to natural circulation are presented, too. (authors)

  11. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  12. Infrared thermometry study of nanofluid pool boiling phenomena

    NASA Astrophysics Data System (ADS)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-12-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  13. Revisting the boiling of quark nuggets at nonzero chemical potential

    E-print Network

    Ang Li; Tong Liu; Philipp Gubler; Ren-Xin Xu

    2014-08-06

    The boiling of possible quark nuggets during the quark-hadron phase transition of the Universe at nonzero chemical potential is revisited within the microscopic Brueckner-Hartree-Fock approach employed for the hadron phase, using two kinds of baryon interactions as fundamental inputs. To describe the deconfined phase of quark matter, we use a recently developed quark mass density-dependent model with a fully self-consistent thermodynamic treatment of confinement. We study the baryon number limit $A_{\\rm boil}$ (above which boiling may be important) with three typical values for the confinement parameter $D$. It is firstly found that the baryon interaction with a softer equation of state for the hadron phase would only lead to a small increase of $A_{\\rm boil}$. However, results depend sensitively on the confinement parameter in the quark model. Specifically, boiling might be important during the Universe cooling for a limited parameter range around $D^{1/2} = 170$ MeV, a value satisfying recent lattice QCD calculations of the vacuum chiral condensate, while for other choices of this parameter, boiling might not happen and cosmological quark nuggets of $10^2 < A < 10^{50}$ could survive.

  14. Boiling and condensing pumped loop microgravity experiment

    NASA Astrophysics Data System (ADS)

    Standley, Vaughn H.; Fairchild, Jerry F.

    1991-01-01

    Aircraft testing of a boiling and condensing (two-phase) pumped loop system was conducted to investigate transient induced by low gravity (Keplerian) maneuvers. The experiment, unchanged, will repeat a selected aircraft test sequence during its flight aboard a suborbital rocket. Such a test of a two-phase system has never been done. A comparison of aircraft and rocket data, particularly equilibrium conditions, may validate aircraft testing of similar systems: Aircraft testing has been completed and preliminary results indicate that local transients induced by Keplerian maneuvers do not generate sizeable or lasting feedback. System feedback, expected to damp exponentially with loop transit time, ?loop (20 s

  15. Boiling incipience in plane rotating water films

    SciTech Connect

    Mudawwar, I. (Purdue Univ., Lafayette, IN (USA)); El-Masri, M.A. (Massachusetts Inst. of Tech., Cambridge (USA))

    1988-05-01

    Knowledge of heat transfer in rotating liquid films is of paramount importance for evaluating the thermal efficiency of gas turbines with water-cooled blades. Centrifugal forces constitute the primary driving forces for liquids flowing in radial rotating channels. Coriolis forces, on the other hand, tend to thin out the flow in the form of a film that covers one side of the channel. Fully developed motion of the film is determined by a balance between centrifugal and shear forces. Thus, rotating film motion resembles that of a free-falling gravity-driven film since both are characterized by a balance between shear and body forces. However, Coriolis forces can strongly influence interfacial waves and turbulent velocity fluctuations of rotating films. This is evident from the results of Kirkpatrick (1980), who compared film thickness measurements for the cases of free-falling and rotating films. His data indicate profound waviness at higher Reynolds numbers for the case of gravity-driven films. On the other hand, interfacial waves in rotating films were found to stabilize at Reynolds numbers in excess of 8,000. This paper focuses on the effects of Coriolis forces and wall roughness on the convective heat transfer coefficient and the incipient boiling heat flux in thin rotating films.

  16. Optimal boiling temperature for ORC installation

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Jaros?aw; Mikielewicz, Dariusz

    2012-09-01

    In the paper a research on cost-effective optimum design boiling temperature for Organic Rankine Cycle utilizing low-temperature heat sources is presented. The ratio of the heat exchanger area of the boiler to the power output is used as the objective function. Analytical relations for heat transfer area as well power of the cycle are formulated. Evaporation temperature and inlet temperature of the heat source medium as well its mass flow rate are varied in the optimization method. The optimization is carried out for three working fluids, i.e. R 134a, water and ethanol. The objective function (economics profitability, thermodynamic efficiency) leads to different optimal working conditions in terms of evaporating temperature. Maximum power generation in the near-critical conditions of subcritical ORC is the highest. The choice of the working fluid can greatly affect the objective function which is a measure of power plant cost. Ethanol exhibits a minimum objective function but not necessarily the maximum cycle efficiency.

  17. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  18. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  19. Hydrothermal processing of radioactive combustible waste

    SciTech Connect

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  20. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  1. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys

    Microsoft Academic Search

    Seth G. John; Olivier J. Rouxel; Paul R. Craddock; Alison M. Engwall; Edward A. Boyle

    2008-01-01

    Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have

  2. Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction

    Microsoft Academic Search

    Koichi Suzuki; Mika Moriyama; Yuki Yamasaki; Yui Takahashi; Chihiro Inoue

    2006-01-01

    Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and\\/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution

  3. Hydrothermal systems on Mars:an assessment of present evidence

    E-print Network

    Farmer, Jack D.

    sources, and hydrothermal processes have alsobeenproposed asamechanism foraquifer rechargeneededtoHydrothermal systems on Mars:an assessment of present evidence Jack D. Farmer NASA Ames ResearchCenter, M S 2 3 9 4 , Moffett Field, CA 94035-1000, U S A Abstract. Hydrothermal processeshavebeen

  4. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  5. Ecology of deep-sea hydrothermal vent communities: A review

    Microsoft Academic Search

    Richard A. Lutz; Michael J. Kennish

    1993-01-01

    The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems

  6. Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise,

    E-print Network

    Bohnenstiehl, Delwayne

    Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise, 27.5°­32.3°S E. T by a hydrothermal plume. Plume chemistry mostly reflected discharge from mature vent fields apparently unperturbed March/April 1998 we conducted detailed mapping and sampling of hydrothermal plumes along six segments

  7. Recent population expansion and connectivity in the hydrothermal shrimp

    E-print Network

    Teixeira, Sara

    -sea hydrothermal vents are unstable habitats that are both spatially and temporally fragmented. In vent species of the shrimp Rimicaris exoculata, which forms high-density local populations on hydrothermal vents along the Mid-Atlantic ridge. Location Deep-sea hydrothermal vents along the Mid-Atlantic Ridge. Methods We used

  8. Discovery of abundant hydrothermal venting on the ultraslow-spreading

    E-print Network

    Graham, David W.

    ............................................................................................................................................................................. Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridgesPublishing Group #12;active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6­1.3 cm yr

  9. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field

    E-print Network

    Gilli, Adrian

    of hydrothermal chimneys and black smoker vents driven by the cooling of magma beneath mid-ocean ridges and host hydrothermal vent systems. Many of these high-temperature systems are restricted to the axis of the global mid any hydrothermal system found to date, hosting diffusely venting carbonate monoliths towering tens

  10. 1 INRODUCTION The physico-chemical conditions in hydrothermal

    E-print Network

    Pichler, Thomas

    Submarine hydrothermal venting occurs at Tutum Bay (Figure 1) in shallow (5-10 m) water along the inner of venting are observed. (1) Focused discharge of a clear, hydrothermal fluid occurs at discrete ports, 10 Tutum Bay vents discharge and ultimately they are caused by changes in the hydrology of the hydrothermal

  11. Belief Change Maximisation for Hydrothermal Vent Hunting Using Occupancy Grids

    E-print Network

    Yao, Xin

    Belief Change Maximisation for Hydrothermal Vent Hunting Using Occupancy Grids Zeyn Saigol floor for hydrothermal vents. The state of the art in these problems is information lookahead Vehicle (AUV) prospecting for hydrothermal vents, which are superheated outgassings of water found on mid

  12. Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers

    E-print Network

    Holden, James F.

    is very limited. Low-temperature diffuse vent fluids, ubiquitous at hydrothermal systems, provide one microorganisms from diffuse hydrothermal vent fluids and the subseafloor at basalt-hosted mid-ocean ridges hydrothermal fluids mix with oxygen-saturated seawater in the crust, creat- ing low-temperature diffuse vents

  13. Automated Planning for Hydrothermal Vent Prospecting Using AUVs

    E-print Network

    Yao, Xin

    Automated Planning for Hydrothermal Vent Prospecting Using AUVs: RSMG Report 8 Zeyn A Saigol Thesis) to locate hydrothermal vents, which are superheated outgassings of water found on the ocean floor. Vents. Current methods for finding hydrothermal vents rely on manually defining an area for the AUV to perform

  14. The relation between earthquakes, faulting, and submarine hydrothermal mineralization

    Microsoft Academic Search

    G. P. Glasby

    1998-01-01

    Although the relationship between submarine hydrothermal activity and earthquakes was recognized over 20 years ago, it has still not been precisely defined. Faulting and permeability control fluid flow in the oceanic crust and therefore submarine hydrothermal activity at mid?ocean ridges. Microearthquakes associated with submarine hydrothermal activity tend to be small in magnitude and occur in swarms. Swarms of microearthquakes associated

  15. Hydrothermal activity and the volume of the oceans

    Microsoft Academic Search

    Nils G. Holm

    1996-01-01

    The volume of the world ocean can be regulated by exchange processes between the crust and the mantle. Hydrothermal systems of fast-spreading mid-ocean ridges operate at the critical pressure of seawater, which ensures optimal heat transport and maximal penetration of hydrothermal fluids. If the oceans were shallower, convective heat transport would be reduced and the depth of hydrothermal penetration and

  16. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  17. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1987-06-01

    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  18. VLA Shows "Boiling" in Atmosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    1998-04-01

    A team of astronomers says that observations with the National Science Foundation's Very Large Array (VLA) radio telescope show that a neighboring bloated star has giant convective plumes propelling gas from its surface (photosphere) up into the star's atmosphere. This new information contradicts long-held ideas that such stellar atmospheres are more uniform, and may resolve questions about how the star's atmosphere attains its enormous size as well as how dust and gas is driven away from the star. Jeremy Lim of the Academia Sinica Institute of Astronomy & Astrophysics in Taiwan; Chris Carilli, Anthony Beasley, and Ralph Marson of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; and Stephen White of the University of Maryland studied the red-supergiant star Betelgeuse, about 430 light-years away in the constellation Orion. They reported their findings in the April 9 issue of the scientific journal Nature. "These radio-telescope images confirm that Betelgeuse -- already more than 600 times larger than our Sun -- has a dense atmosphere that extends to many times larger still than the star itself," said Lim. "The highest-resolution image shows the star's atmosphere to have a remarkably complex structure." "To our surprise," added White, "the images also show that most of the gas in the atmosphere is only about as hot as that on the surface. Previously, all of it was thought to be very much hotter." The astronomers used the VLA to make images of Betelgeuse at a variety of radio frequencies. The series of radio observations measured the temperature of the star's atmosphere at different heights. Previous observations with the Hubble Space Telescope (HST) at ultraviolet wavelengths showed that the star's atmosphere contains very hot gas at about twice the surface temperature. The VLA images showed that there also is lower-temperature gas throughout the atmosphere. This gas is near the surface temperature at low heights and decreases in temperature progressively outwards. Although its existence was not previously suspected, this lower-temperature gas turns out to be the most abundant constituent of Betelgeuse's atmosphere. "This alters our basic understanding of red-supergiant star atmospheres," explains Lim. "Instead of the star's atmosphere expanding uniformly because of gas heated to very high temperatures near its surface, it now appears that several giant convection cells propel gas from the star's surface into its atmosphere. This creates the complex structure we observe for Betelgeuse's atmosphere." Betelgeuse can be likened to an enormous "boiling" ball of gas heated by the release of energy from nuclear fusion in its core. The circulating boiling pattern -- convection -- appears as large regions of hot upwelling gas on the star's surface. "The idea that red-supergiant stars have enormous convection cells is not new," noted Marson. "This was suggested by Martin Schwarzschild more than 20 years ago, and was seen in optical images of Betelgeuse's surface in 1990." The new picture of Betelgeuse's atmosphere also helps resolve the mystery of how massive amounts of dust and gas are expelled from red supergiant stars, an important source of enrichment for the interstellar medium. If their atmospheres were entirely very hot at lower levels, dust grains would not be able to condense there. Dust grains could possibly condense at higher levels, but there they would not get enough "push" from the star's radiation to explain their outward movement. In the new picture, the relatively cool environment at lower levels allows dust grains to condense effectively; here they can be strongly propelled by the more-intense starlight, carrying gas with them. Indeed, dust has previously been inferred to form sporadically near Betelgeuse's surface, but its presence there was difficult to reconcile with the old picture. "This method for propelling the mass outflows of red giant and supergiant stars was proposed by Sun Kwok i

  19. Hydrothermal Alteration Processes in the Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Staudigel, H.

    2003-12-01

    Hydrothermal alteration processes occurring in oceanic crust impact the physical, chemical, and biological processes of the Earth system. These hydrothermal systems are manifested in vents ranging from 350 °C black smokers, found exclusively in the axial zone of some ridge segments, to 20 °C low-temperature vents at the ridge axis or flanks. Collectively, these systems are responsible for ˜20% of Earth's total heat loss (11 TW; C. A. Stein and S. Stein (1994a, b)) and have major impact on ocean and solid earth chemistry. Elderfield and Schultz (1996) estimate black-smoker water fluxes to be ˜3.5×1012 kg yr-1 and low-temperature fluxes to be ˜6.4×1014 kg yr-1 (at 20 °C). These hydrothermal fluxes also carry substantial elemental flux between seawater and the oceanic crust. Combined with ocean-crust generation and recycling, these processes produce a two-way geochemical pathway between the oceans and the mantle. Recycling of altered oceanic crust into the mantle is likely to produce some of the mantle's chemical heterogeneity (e.g., Hofmann, 1988; see Chapter 2.04) and the delivery of mantle-derived materials to seawater through hydrothermal systems has profound effects on seawater chemistry (e.g., Wheat and Mottl, 2000; Chapters 3.15 and 6.07). Hydrothermal vents in mid-ocean ridges offer a unique habitat for very diverse biological communities that derive much of their energy needs from chemical energy in vent fluids (Jannasch and Mottl, 1985; Jannasch, 1995). The interior of the oceanic crust is likely to host a deep-ocean biosphere that reaches to at least 500 m depth ( Furnes and Staudigel, 1999).It is important to quantify hydrothermal chemical fluxes because they bear on the chemical and biological evolution of the Earth, the chemical composition of seawater, geochemical mass balance at arcs, and the heterogeneity of the mantle. Hydrothermal fluxes can be independently determined by analyzing the composition of hydrothermal fluids or by analyzing the alteration-related chemical changes in the oceanic crust. Ideally these two methods should yield the same results, but a comparison of data shows that there are major discrepancies between these types of estimates (e.g., Hart and Staudigel, 1982; Chapter 3.15). Reconciling these discrepancies is important for improving our understanding of this central theme in Earth system sciences.This review focuses on chemical flux estimates derived from studies of the oceanic crust, exploring in detail how such estimates are made, and the underlying assumptions and uncertainties. Three main themes will be covered. The first focuses the role of the original igneous characteristics of the crust in determining the nature of hydrothermal alteration processes. This includes how primary lithology and composition influence alteration, and difficulties encountered in determining an unaltered "fresh-rock" baseline composition for any particular ocean-crust section. The second theme focuses on the methods by which the bulk-altered oceanic composition is determined, and the attendant uncertainties. These include the difficulty of determining an average composition of a very heterogeneous medium by the analyses of rather small samples, and the limitations imposed by an incomplete sampling process on the ocean floor. Finally, hydrothermal fluxes inferred from ocean-crust data are compared to fluxes from hydrothermal vent studies and the reasons behind their differences are explored.

  20. Estimation of amorphous organic carbon/water partition coefficients, subcooled aqueous solubilities, and n-octanol/water distribution coefficients of alkylbenzenes and polycyclic aromatic hydrocarbons.

    PubMed

    van Noort, Paul C M

    2009-02-01

    The aim of this work was to derive a relation between the number of specific carbon atoms in alkylbenzenes and PAHs and the average logK(oc) for linear partitioning between amorphous organic carbon in soils and sediments and water. The relation between the number of specific carbon atoms and n-octanol/water partitioning and subcooled aqueous solubility was sought first, as the number of data for partitioning into amorphous organic carbon was relatively sparse. It turned out that linear partitioning into amorphous organic carbon could be described by a linear relation based on the number of aromatic carbons, the number of alkyl carbons and the number of alicyclic carbons in the same way as for n-octanol/water partitioning and subcooled liquid aqueous solubility. From the linear regressions for linear partitioning into the various amorphous organic carbons, an average intercept for the linear partitioning regression equation was derived to represent average organic carbon in soils and sediments. PMID:19091377

  1. Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    Microsoft Academic Search

    Deborah A. Glickson; Deborah S. Kelley; John R. Delaney

    2007-01-01

    Detailed characterization of the Mothra Hydrothermal Field, the most southern and spatially extensive field on the Endeavour Segment of the Juan de Fuca Ridge, provides new insights into its geologic and hydrothermal development. Meter-scale bathymetry, side-scan sonar imagery, and direct dive observations show that Mothra is composed of six actively venting sulfide clusters spaced 40–200 m apart. Chimneys within each

  2. Hydrothermal carbonization of municipal waste streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass ...

  3. Hydrothermal Vent Animals: Distribution and Biology

    Microsoft Academic Search

    J. Frederick Grassle

    1985-01-01

    Hydrothermal vent communities characterized by large clams, mussels, and vestimentiferan worms thrive on chemosynthetic microbial production. There are similarities in the animal distributions at vent communities from 20 degrees S to 46 degrees N on the Mid-Ocean Ridge in the Pacific Ocean and at cold sulfide seeps in the Gulf of Mexico. Vent communities, consisting of at least 16 previously

  4. DRILLED HYDROTHERMAL ENERGY Drilling for seawater

    E-print Network

    Water Desalination Fuel Production Waste Water Treatment Increased CO2 Absorbtion Agriculture & Mari) of cold water pipe WAS LOST 3 TIMES before demonstrating power generation #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND After a 2006 earthquake on the Big Island The NELHA cold water pipe cracked allowing warm water

  5. Hydrothermal systems and the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1994-01-01

    The author reviews current thought about life originating in hyperthermophilic microorganisms. Hyperthermophiles obtain food from chemosynthesis of sulfur and have an RNA nucleotide sequence different from bacteria and eucarya. It is postulated that a hyperthermophile may be the common ancestor of all life. Current research efforts focus on the synthesis of organic compounds in hydrothermal systems.

  6. Life in hot springs and hydrothermal vents

    Microsoft Academic Search

    Andreas H. Segerer; Sigfried Burggraf; Gerhard Fiala; Gertrud Huber; Robert Huber; Ursula Pley; Karl O. Stetter

    1993-01-01

    Hot springs and hydrothermal systems occurring within volcanic areas are inhabited by hyperthermophilic microorganisms, some of which grow at temperatures up to 110 °C. Hyperthermophiles grow anaerobically or aerobically by diverse metabolic types. Within the high temperature ecocystems, primary production is independent from solar energy.

  7. Hydrothermal carbonization of distiller’s grains

    Microsoft Academic Search

    Steven M. Heilmann; Lindsey R. Jader; Michael J. Sadowsky; Frederick J. Schendel; Marc G. von Keitz; Kenneth J. Valentas

    2011-01-01

    Wet distiller’s grains are intermediate byproducts of ethanol manufacture that have high moisture contents and require significant energy for drying and conversion into dry distiller’s grains. Hydrothermal carbonization was investigated as a wet process to provide alternative products, and chars were obtained in moderate yield that possessed high heats of combustion. The mechanism of char formation was also investigated employing

  8. Are hydrothermal vent animals living fossils?

    Microsoft Academic Search

    Crispin T. S. Little; Robert C. Vrijenhoek

    2003-01-01

    Since their discovery in 1977, hydrothermal vent communities have provided many surprises about life in the deep sea and in extreme environments. It has been suggested that vent communities contain many living fossils and that deep-sea chemosynthetic environments, such as vents and hydrocarbon seeps, are buffered from extinction events that affect the photic zone. This hypothesis is based on the

  9. The Discovery of Marine Hydrothermal Vents

    NSDL National Science Digital Library

    OceanLink

    As part of OceanLink, a website dedicated to ocean education, this site gives an overview of the discovery, geology and ecology of marine hydrothermal vents. The site also provides a menu of links to access other OceanLink pages for further ocean-related information.

  10. Stable isotopic compositions of hydrothermal vent organisms

    Microsoft Academic Search

    C. L. Dover; B. Fry

    1989-01-01

    Stable isotopic analyses were used to study trophic relationships in two communities of deep-sea hydrothermal vent organism in the Pacific Ocean. The community at Hanging Gardens on the East Pacific Rise (21°N), sampled in 1985, is dominated by two species of vestimentiferan tubeworms; communities at Alice Springs and Snail Pits on the Marianas Back Arc Spreading Center (western Pacific), sampled

  11. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results indicate that while amino acid formation with thiols as intermediates is favored in some cases, other mechanisms may have been necessary to produce significant amounts of other amino acids. Coupled with our previous results for thiols, these studies imply that sulfur may have been easily incorporated into the organic geochemistry of early Earth hydrothermal systems, leading to its widespread use in biomolecules. Formation of more complex biomolecules in hydrothermal systems may have required sulfur-bearing organic compounds as reaction intermediates.

  12. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458?Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  13. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458?Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  14. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400°C). This is because NH3 decomposition proceeds inefficiently due to efficient H2 production via serpentinization. Our experimental results also suggest that SiO2 concentration dissolved in hydrothermal fluids simulating Enceladus' condition would be buffered by the serpentine-brucite system. The presence of NH3 in the hydrothermal conditions keeps pH of the solution high (pH 9-11). We suggest that under such conditions, SiO2 concentrations in the fluids would be 0.1 mmol/L or less for temperature < 350°C. Given the SiO2 solubility of 1-10 mmol/L at 0°C and pH 9-11, direct formation of amorphous SiO2 would not occur in Enceladus' hydrothermal systems. To produce amorphous SiO2, large-scale hydrothermal activities and subsequent concentration of dissolved SiO2 in the ocean (due to freezing and/or evaporation of liquid water) would be required, which is consistent with high concentrations of radiogenic Ar and sodium salts in the plume [2, 6]. [1] Porco et al., Science 311, 1393 (2006). [2] Postberg et al., Nature 459, 1098 (2009). [3] Matson et al., Icarus 187, 569 (2007). [4] Hansen t al., Geophs. Res. Lett. 38, L11202 (2011). [5] Hsu et al., EOS Trans. AGU, (2010). [6] Waite et al., Nature 460, 487 (2009).

  15. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  16. The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch

    NASA Astrophysics Data System (ADS)

    Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.

    2009-04-01

    This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal systems are mainly volcanic or volcaniclastic types of Neogene-Quaternary age. Volcanic rocks (lava rocks) are dense with high strength and elastic modulus and low porosity and permeability. The speed of their alteration is low. Basically volcanic rocks form impermeable horizons in the structure of hydrothermal system. But sometimes they form fracture-type reservoir. The origin of fracturing can be various. Volcanoclastic rocks are characterized by lower physical and mechanical properties, higher porosity and permeability. Due to high porosity and permeability they are greatly exposed to thermal fluids so they are altered intensively. Volcaniclastic rocks are the most common host rocks of geothermal reservoirs. Typically they form porous or fracture-porous aquifers. But in some cases they form water confining layers. The well-studied example is Pauzhetskaya hydrothermal system. The main reservoir is composed of highly porous (30-40%) and permeable medium-grained tuffs. The caprock is composed of fine-grained argillized tuffs. They are highly porous but due to small pore size porosity is un-effective for fluid and permeability is low. The temperature and pressure in a hydrothermal system cardinally influence on rocks properties. High-temperature deep fluids (?>200C) cause the perfect tendency of petrophysical alteration - consolidation, hardening, a decrease of porosity and permeability, and removal of a hygroscopic moisture. This petrophysical tendency is observed independently of composition of fluids. This is the result of the development of high-temperature secondary minerals, which fill pores and cracks, and substitute matrix and phenocrystals. The contacts between grains become strong and dense, intergranular porosity is disappeared that reinforces cementation of rock. The petrophysical alteration caused by low-temperature subsurface fluids (?<150C) are more difficult and diverse. Depending on what process prevails - rocks leaching, sedimentation of secondary minerals in pores and cracks or replacement of primary minerals

  17. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1). PMID:18163874

  18. Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Kusakabe, Minoru; Bernard, Alain; Fischer, Tobias; de Brouwer, Simon; del Mundo, Esfeca

    The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water-rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T 300 °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic endmember is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system.

  19. Relict hydrothermal zones in the TAG Hydrothermal Field, Mid-Atlantic Ridge 26°N, 45°W

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.; Bogdanov, Yury A.; Gurvich, Evengy G.; Rimski-Korsakov, Nick A.; Sagalevitch, Anatoly M.; Hannington, Mark D.; Thompson, Geoffrey

    1993-06-01

    Two relict hydrothermal zones were delineated between water depths of 3400 and 3500 m at the lower part of the east wall of the rift valley of the Mid-Atlantic Ridge in the TAG hydrothermal field using a deep-towed side scan sonar tow and a camera-temperature tow along the northern 3 km of the wall, and a submersible transect. Named the North and MIR relict zones, they are located about 4 km and 2 km northeast, respectively, of the known active high-temperature sulfide mound between water depths of 3625 and 3670 m on the rift valley floor near the base of the east wall. The North zone extends about 2 km along the northern end of the lower east wall. The zone includes two moundlike features up to 30 m high by 200 m in diameter imaged by side scan sonar within a 2-km-long line of discontinuous hydrothermal deposits comprising inactive toppled and standing chimneys, layered material, and patchy dark stains on sediment photographed by the camera-temperature tow. Several other moundlike features were imaged with the side scan sonar outside of the photographic coverage. The MIR relict hydrothermal zone 2 km south of the North zone, named after the MIR submersible used to investigate it, consists of three subzones: (1) a 200-m-wide area of diverse types of hydrothermal materials exposed by normal faulting at its western margin; (2) a 400-m-wide by 700-m-long central area of discrete groups of toppled and standing inactive sulfide chimneys up to 25 m high on a substrate of red metalliferous sediment and carbonate lutite; spires sampled on the highest chimneys are composed of coarse-grained, recrystallized sulfides dominated by pyrite and chalcopyrite which contain the first primary, free gold grains (2-3 ?m diameter) found at a hydrothermal site on a mid-ocean ridge; and (3) a 150-m-wide hummocky area of layered hydrothermal material with the appearance of low temperature precipitates and carbonate lutite with patchy dark stains at its eastern margin. The active sulfide mound, the North zone, and the MIR zone are each located on the fractured western margins of gentle, dome-shaped areas of pillow flows typically 500 m in diameter interpreted as summits of volcanic centers that may have supplied heat to drive adjacent hydrothermal activity. The distribution and size of the active and inactive hydrothermal zones of the TAG field, the chronology, and the characteristics of relict samples recovered indicate a history of at least 100 ×103 years of high-temperature hydrothermal episodes with multiple overprinting stages of mineralization accompanied by alteration.

  20. Isotope hydrology of El Chichón volcano-hydrothermal system; a coupled system of crater lake and hot springs

    NASA Astrophysics Data System (ADS)

    Peiffer, L.; Taran, Y.; Rouwet, D.

    2010-12-01

    The catastrophic 1982 eruption of El Chichón (>1.5 km3 of erupted material) opened the upper hundred meters of the existing volcano-hydrothermal system. In the new formed 200m-deep crater a large shallow crater lake and numerous hot springs were formed. The lake existence and its salinity depend on the precipitation (~4000 mm/y) as well as a group of geyser-like neutral saline springs (source of Cl and SO4) and hydrothermal steam vents discharging into the lake (source of SO4). The chemistry of these “Soap Pool” (SP) springs evolved from >13,000 ppm of Cl in 1995 to ~2000-3000 ppm of Cl in 2006. Since 2006, this Cl-concentration in SP waters is constant. Similar concentrations of Cl are observed in most flank hot springs located at altitudes of ~ 600 m asl, 2-3 km from the crater. Therefore, it can be suggested that the flank springs, crater lake and crater hot springs are manifestations of the upper, relatively shallow volcano-hydrothermal system developed beneath the crater in the volcano edifice. Water isotopic composition of all types of thermal and fresh waters including fumarolic steam condensates (>100 samples collected in 1995-2010) allow to classify and distinguish different processes of shallow mixing, boiling, evaporation and water-rock isotope exchange. All spring waters from the upper system have meteoric origin, with the isotopic composition plotting close to the meteoric water line. Crater waters are strongly evolved due to shallow boiling and loss of steam. Isotopic composition of water from the lower, deep hydrothermal system is characterized by a significant positive oxygen isotopic shift and a strong Cl-d18O linear correlation. Waters from numerous cold springs that drain pyroclastic deposits demonstrate a clear negative oxygen shift. Some problems related to water isotopic composition are still remain unresolved: (1) we cannot find any traces of the infiltrated isotopically heavy lake waters, i.e., the seepage from the lake at the volcano slopes; and (2) we cannot explain the constancy and independence of d18O values (-2±1 ‰) of SP springs from Cl concentration which varied from 13,000 to 2,000 ppm over the observation time.

  1. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  2. Visualization of pool boiling from complex surfaces with internal tunnels

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert

    2012-04-01

    The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS), can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm), sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  3. Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels

    SciTech Connect

    Pastuszko, Robert [Chair of Thermodynamics and Fluids Mechanics, The Kielce University of Technology, Al. Tysiaclecia P.P. 7, 25-314 Kielce (Poland)

    2008-09-15

    Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were taken up. Experimental data were discussed for two kinds of enhanced surfaces formed by joined horizontal and vertical tunnels: tunnel structures (TS) and narrow tunnel structures (NTS). The experiments were carried out with water, ethanol and R-123 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil of 0.05 mm thickness (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 mm high rectangular fins and horizontal inter-fin surface. The effects of hole (pore) diameters, tunnel pitch for TS and tunnel width for NTS on nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing structures with subsurface tunnels, but at higher heat fluxes range. (author)

  4. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results

    E-print Network

    Kandlikar, Satish

    Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure online 4 May 2013 Keywords: Pool boiling Heat transfer enhancement Open microchannels Cylindrical tube boiling heat transfer over enhanced cylindrical microchannel test surfaces with water at atmospheric

  5. Defluoridation of drinking water by boiling with brushite and calcite.

    PubMed

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water. PMID:12399694

  6. Hydrothermal pretreatment of coal. [Heat and hydrothermal treatment at 350 degrees C

    SciTech Connect

    Ross, D.S.

    1990-05-30

    We recently examined Argonne supplied Wyodak coal under both thermal (no added water, under N{sub 2}) and hydrothermal (liquid water present, under N{sub 2}) conditions at 350{degrees}C for periods of 30 min. and 5 hr. We found that the coal produces a tar that is deposited on the reactor insert walls solely at hydrothermal conditions. The shift from 30 min. to 5 hr. yields a tar that is more volatile and has a slightly increased molecular weight. The coals recovered from thermal and hydrothermal treatments are different by pyrolysis-field ionization mass spectrometry (py-FIMS). Specifically, the hydrothermal condition yields py-FIMS volatiles with a higher weight average molecular weight and greater volatility. They are thus less polar, a conclusion consistent with other py-FIMS data showing that the volatiles from the hydrothermally treated coal are lower in phenolics. Our results show that the phenols and catechols in the coal behave very differently. Our data are consistent with a scheme in which the catechol units in the coal engage in condensation at thermal conditions, probably through a catalyzed process related to acidic sites on the mineral matter. The phenols in contrast are unreactive. At hydrothermal conditions, on the other hand, both are released hydrolytically. Thus it appears that the presence of added water decreases or eliminates thermally promoted crosslinking tied to catechol condensation. Unexpectedly, we see acetone and other simple ketones in the Wyodak pyrolysate from both the thermal and hydrothermal treatment. Acetone in some cases is the single most prominent product. These ketones are not seen, however, in the unconfined py-FIMS heating. The difference between confined and unconfined heating suggest that water evolved from the coal itself in confined heating acts in some hydrolytic fashion to liberate the ketones.

  7. 23. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: North Wall of boiling house. In the original structure the three windows on the right admitted light and air from the outside. A shed occupied the left side of the wall outside (hence no windows). in 1881 the construction of the cooling shed closed in the right three windows. The sorghum is in the foreground. The centrifugals are in the left rear. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  8. Experimental analysis of boiling enhancement from surfactant addition with electric fields

    E-print Network

    Mizerak, Jordan (Jordan P.)

    2014-01-01

    This thesis consists of an experimental investigation of the effect of surfactants on the boiling curve of water. Via adsorbtion to the boiling surface, surfactants alter the surface energy interaction during bubble formation ...

  9. Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters

    E-print Network

    Bergles A. E.

    1962-01-01

    A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

  10. Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals

    E-print Network

    Deane, Charles William

    1969-01-01

    A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

  11. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ...Catalog for Nuclear Power Plant Operators: Advanced Boiling...Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling...SROs). The examinations developed using this Catalog along...Examination Standards for Power Reactors...

  12. Performance of Charcoal Cookstoves for Haiti, Part 1: Results from the Water Boiling Test

    E-print Network

    Boiling Test Kayje Booker, Tae Won Han, Jessica Granderson, Jennifer Jones, Kathleen Lask, Nina,fivecharcoalstovesweretestedattheLBNLstove testingfacilityusingamodifiedformofversion3oftheShellFoundationHousehold EnergyProjectWaterBoiling

  13. Measurement of Nucleate Pool Boiling with Synchronized Particle Imaging Velocimetry and Infrared Thermometry

    E-print Network

    Duan, X.

    Nucleate boiling is important in many energy systems including light water reactors. Currently significant efforts are underway to develop mechanisticmodels for nucleate boiling based on computational fluid dynamics (CFD). ...

  14. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ...Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 4, 2011, Room...

  15. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise

    E-print Network

    Bohnenstiehl, Delwayne

    . Here we show that hypocentres beneath a well-studied hydrothermal vent field on the East Pacific Rise to the distribution and temper- ature of hydrothermal vents along this section of the ridge suggests that hydrothermal by hydrothermal circu- lation at the mid-ocean-ridge axis has been studied widely since deep-sea hydrothermal vent

  16. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

  17. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L. (Oak Ridge, TN)

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  18. Experimental study on bubble departure frequency for pool boiling of water/NaCl solutions

    NASA Astrophysics Data System (ADS)

    Hamzekhani, Samane; Falahieh, Majedeh Maniavi; Kamalizadeh, Mohammad Rasoul; Nazari, Zahra

    2015-01-01

    Nucleate pool boiling experiments were conducted for water and water/NaCl solutions at atmospheric pressure. Many analyses of boiling heat transfer include the terms bubble frequency in their expressions for nucleate boiling heat flux. Experimental results show that the bubble frequency increases with increasing boiling heat flux and decreases with increasing NaCl concentration at same conditions. A new model for the prediction of bubble departure frequency is proposed, which predicts the experimental data with a satisfactory accuracy.

  19. Hydrothermal phase transformation of hematite to magnetite

    PubMed Central

    2014-01-01

    Different phases of iron oxide were obtained by hydrothermal treatment of ferric solution at 200°C with the addition of either KOH, ethylenediamine (EDA), or KOH and EDA into the reaction system. As usually observed, the ?-Fe2O3 hexagonal plates and hexagonal bipyramids were obtained for reaction with KOH and EDA, respectively. When both KOH and EDA were added into the reaction system, we observed an interesting phase transformation from ?-Fe2O3 to Fe3O4 at low-temperature hydrothermal conditions. The phase transformation involves the formation of ?-Fe2O3 hexagonal plates, the dissolution of the ?-Fe2O3 hexagonal plates, the reduction of Fe3+ to Fe2+, and the nucleation and growth of new Fe3O4 polyhedral particles. PMID:24940172

  20. Colorado's hydrothermal resource base: an assessment

    SciTech Connect

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.