These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

(Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)  

SciTech Connect

As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

Not Available

1989-01-01

2

Jet Flows Around Microbubbles In Subcooled Boiling , Xiaofeng Pengb  

E-print Network

Jet Flows Around Microbubbles In Subcooled Boiling Hao Wanga , Xiaofeng Pengb , David M Strong jet flows were observed emanating from micro bubbles on a 100 µm diameter wire during subcooled analysis. The bubble-top jet flows were characterized by a single jet at the bubble top. Both experiments

Kihm, IconKenneth David

3

Model of critical heat flux in subcooled flow boiling  

E-print Network

The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

Fiori, Mario P.

1968-01-01

4

Variation of superheat with subcooling in nucleate pool boiling  

SciTech Connect

An analysis is presented that explains the variation of superheat with subcooling that has been observed by a number of researchers investigating nucleate boiling heat transfer at constant heat flux. It is shown that superheat initially increases with increasing subcooling near saturated conditions because of the way in which changes in active site density and average bubble frequency with increasing subcooling affect the rate of heat removal from the heater surface by enthalpy transport and microlayer evaporation. As subcooling increases further, natural convection begins to play an increasingly important role in the heat transfer process. Ultimately, natural convection is able to accommodate the entire imposed heat flux, after which superheat decreases as subcooling increases. The success of the analysis in explaining the variation of superheat with subcooling suggests that the rate of heat removal from the heater surface is completely determined by the mechanisms of enthalpy transport, natural convection, and microlayer evaporation.

Judd, R.L. (McMaster Univ., Hamilton, Ontario (Canada)); Merte, H. Jr. (Univ. of Michigan, Ann Arbor, MI (USA)); Ulucakli, M.E. (Lafayette Coll., Easton, PA (USA))

1991-02-01

5

Variation of superheat with subcooling in nucleate pool boiling  

NASA Technical Reports Server (NTRS)

An analysis is presented that explains the variation of superheat with subcooling that has been observed by a number of researchers investigating nucleate boiling heat transfer at constant heat flux. It is shown that superheat initially increases with increasing subcooling near saturated conditions because of the way in which changes in active site density and average bubble frequency with increasing subcooling affect the rate of heat removal from the heater surface by enthalpy transport and microlayer evaporation. As subcooling increases further, natural convection begins to play an increasingly important role in the heat transfer process. Ultimately, natural convection is able to accommodate the entire imposed heat flux, after which superheat decreases as subcooling increases. The success of the analysis in explaining the variation of superheat with subcooling suggests that the rate of the heat removal from the heater surface is completely determined by the mechanisms of enthalpy transport, natural convection, and microlayer evaporation.

Judd, R. L.; Merte, H., Jr.; Ulucakli, M. E.

1991-01-01

6

Experimental study of onset of subcooled annular flow boiling  

Microsoft Academic Search

An experimental study on the onset of nucleate boiling (ONB) is performed for water annular flow to provide a systematic database for low pressure and velocity conditions. A parametric study has been conducted to investigate the effect of pressure, inlet subcooling, heat and mass flux on flow boiling. The test section includes a Pyrex tube with 21mm inner diameter and

R. Ahmadi; A. Nouri-Borujerdi; J. Jafari; I. Tabatabaei

2009-01-01

7

Changes of enthalpy slope in subcooled flow boiling  

NASA Astrophysics Data System (ADS)

Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, #58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance—the control volume length—in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored.

Collado, Francisco J.; Monné, Carlos; Pascau, Antonio

2006-03-01

8

Void volumes in subcooled boiling systems  

E-print Network

Introduction: Knowledge of the pressure drop in a channel and the resulting flow redistribution is essential in predicting the performance of a nuclear reactor. The pressure drop in a channel which is experiencing boiling ...

Griffith, P.

1958-01-01

9

Effects of turbulence and secondary flows on subcooled flow boiling  

NASA Astrophysics Data System (ADS)

Experiments are conducted on the influence of turbulence and longitudinal vortices on subcooled flow boiling in a vertical, rectangular channel. Different flow inserts are used to create turbulence and vortices in the channel. Studied boiling regimes range from the onset of nucleate boiling over the critical heat flux up to fully developed film boiling. A wide range of measuring techniques is applied: time averaged particle image velocimetry (PIV) is used in cold flows for the evaluation of the effects the inserts have on the flow, high speed PIV and photography are used to determine the effects on the fluid and vapor movement in boiling experiments. Digital Holographic Interferometry is used for the evaluation of temperature distributions in the boiling flow. Furthermore, optical microprobes are used to obtain pointwise measurements in areas inaccessible to the imaging techniques. The experiments show that the flow inserts can have considerable impact on the heat fluxes and the distribution of vapor and temperature along the channel. All used inserts lead to an increase in critical heat flux, which is more pronounced for stronger turbulence and higher flow rates and fluid subcoolings. The measuring techniques reveal both a better transport of vapor from the heater surface as well as an increase in mixing in the liquid phase with flow inserts.

Bloch, Gregor; Sattelmayer, Thomas

2014-03-01

10

Nucleate boiling with high gravity and large subcooling  

SciTech Connect

Measurements of the heater surface temperature are presented for pool boiling of distilled water in an accelerating system with various subcoolings and levels of heat flux. The ranges of the experimental variables are: heat flux between 0.19 MW/m{sup 2} and 1.5 MW/m{sup 2}, accelerations normal to the flat heating surface from 1 to 100 times earth gravity, and liquid subcoolings between 0 and K and 89 K. Increasing subcooling first produces an increase and then a decrease in wall superheat, with the eventual cessation of nucleate boiling for certain combinations of conditions. The increase in wall superheat is particularly enhanced at 10g, reaching a maximum value of 9 K at 1.05 MW/m{sup 2} with 60 K subcooling. This type of behavior is attributed to the interactions between the fluid temperature distribution in the immediate vicinity of the heater surface as it is influenced by natural convection, the activation of nucleation sites, and the influence of increased buoyancy on the heat transfer associated with each departing bubble.

Ulucakli, M.E. (Lafayette Coll., Easton, PA (United States)); Merte, H. Jr. (Univ. of Michigan, Ann Arbor (United States))

1990-05-01

11

Development of a mechanistic model for forced convection subcooled boiling  

NASA Astrophysics Data System (ADS)

The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the operating conditions of the AP1000 pressurized water reactor. The effects of both axial and lateral nonuniform power distributions inside reactor fuel elements are accounted for. Boiling flows are simulated for three different computational domains of increasing complexity: a quarter-subchannel bordering a single fuel pin, two subchannels surround by an array of 2 by 3 fuel pins, and in four subchannels surrounded by an array of 3 by 3 fuel pins. The predicted behavior is consistent with expectations. In the 3 by 3 array, the two-phase coolant is predicted to flow from the hot channels to the cold channels, enhancing heat exchange between subchannels. This, in turn, demonstrates that the new model is capable of capturing the turbulence- and buoyancy-induced coolant mixing across the neighboring channels.

Shaver, Dillon R.

12

Transient model for minimum film boiling point in sub-cooled film boiling  

Microsoft Academic Search

A complete transient dynamic model for bubble growth, neck breakup, bubble detachment, interface retraction, liquid-solid contact, initial nucleation, nucleation bubble growth, and coalesce in pool film boiling on a flat plate was developed to predict the heat-transfer coefficient, minimum film-boiling temperature and heat flux in subcooled liquids. Each submodel for each step was modeled separately and coupled to the next

L. K. T

1987-01-01

13

Prediction of the critical heat flux in water subcooled flow boiling using a new mechanistic approach  

Microsoft Academic Search

A thorough examination of the results of existing models based on the liquid sublayer dryout theory suggested the need to postulate a new mechanism to predict the CHF in subcooled water flow boiling. Considering that we have local boiling with bulk subcooled conditions, there will be a distance from the wall at which the fluid temperature is equal to the

G. P. Celata; M. Cumo; Y. Katto; A. Mariani

1999-01-01

14

Interface oscillation of subcooled flow boiling in locally heated microchannels  

NASA Astrophysics Data System (ADS)

An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

Liu, J. T.; Peng, X. F.

2009-02-01

15

Simulation of subcooled boiling at low pressure conditions with RELAP5-3D computer program.  

E-print Network

??Simulation of subcooled boiling was carried out using RELAP5 thermal hydraulic computer programs. Both one-dimensional and three-dimensional analyses were carried out with one-dimensional RELAP5/MOD3.2 and… (more)

Reza, S.M. Mohsin

2012-01-01

16

Natural-convection film-boiling heat transfer. IV - Experiments of subcooled film boiling with long vapor film  

NASA Astrophysics Data System (ADS)

Heat transfer in natural-convection film boiling with long vapor film is investigated experimentally. Experiments of film boiling on horizontal cylinders of large diameter and long vertical cylinders are conducted to investigate the effect of liquid subcooling on film-boiling heat transfer. The test liquid is R-113 at atmospheric pressure. For cylinders of both types, local heat transfer coefficients of saturated and subcooled film boiling are much higher than the predictions from two-phase boundary layer theory. In the case of vertical cylinders, local heat transfer coefficients do not depend on the distance from the stagnation point even if the liquid is subcooled. In the case of horizontal cylinders of large diameter, the local value of saturated film boiling does not strongly depend on the distance from the stagnation point, but it comes to depend on the distance with increasing subcooling. In particular, the local value reaches a maximum at a distance from the stagnation point. As for averaged heat transfer coefficients of horizontal cylinders of large diameter, they increase with increasing subcooling but do not depend on the diameter even under subcooled conditions.

Ohtake, Hiroyasu; Nishio, Shigefumi

1992-03-01

17

Effect of subcooling on film boiling from a downward-facing curved surface  

SciTech Connect

Pool boiling from inclined and downward-facing flat and curved surfaces is of interest to the passive cooling of the pressure vessel lower head of a Light Water Reactor following a core meltdown accident. The effect of water subcooling on film boiling from a downward-facing curved surface was investigated experimentally. The local and surface average Nusselt numbers were correlated for both saturation and subcooling (5, 10, and 14 K) conditions. Video images of boiling surface and analysis of data demonstrated that surface rewetting in saturation boiling was hydrodynamic in nature, but thermally driven in subcooled boiling. Results confirmed that lower minimum film boiling heat flux values were associated with longer rewetting times and vice versa. Surface rewetting occurred when vapor film reached a critical thickness, {delta}{sub c}, first at the lowermost position, {theta} = 0{degree}, then sequentially at higher inclinations. For saturation boiling, {delta}{sub c} {approximately} 85 {micro}m and 180 {micro}m at {theta} = 0{degree} and 8.26{degree}, respectively. For subcooled boiling, however, {delta}{sub c} varied for {approximately}50 to 175 {micro}m, depending on the values of local inclination and water subcooling.

El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

1995-12-31

18

Numerical simulation of bubble departure in subcooled pool boiling based on non-empirical boiling and condensation model  

NASA Astrophysics Data System (ADS)

In this study, in order to clarify the heat transfer characteristics of the subcooled boiling phenomena and to discuss on their mechanism, a non-empirical boiling and condensation model for numerical simulation has been adopted. This model consists of an improved phase-change model and a consideration of a relaxation time based on the quasithermal equilibrium hypothesis. The transient three-dimensional numerical simulations based on the MARS (Multiinterface Advection and Reconstruction Solver) with the non-empirical boiling and condensation model have been conducted for an isolated boiling bubble behavior in a subcooled pool. The subcooled bubble behaviors, such as the growth process of the nucleate bubble on the heating surface, the condensation process and the extinction behaviors after departing from the heating surface were investigated, respectively. In this paper, the bubble departing behavior from the heating surface was discussed in detail. The overall numerical results showed in very good agreement with the experimental results.

Ose, Y.; Kunugi, T.

2013-07-01

19

Numerical study on temperature distribution around a boiling bubble departing from heating surface in subcooled pool  

NASA Astrophysics Data System (ADS)

In this paper, the transient three-dimensional numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) with the non-empirical boiling and condensation model have been conducted for an isolated boiling bubble behavior in a subcooled pool. The temperature distributions formed around the subcooled pool boiling bubble departing from a heating surface obtained by the numerical simulations were investigated. As the results, it was found that several thermal plumes with different temperature were formed during the bubble departure from the heating surface by using the volume rendering visualization technique.

Ose, Yasuo; Kunugi, Tomoaki

2014-06-01

20

Variation of Subcooled Film Boiling State in He II with the Pressure  

SciTech Connect

The characteristic feature of subcooled film boiling in He II was experimentally studied. The visual observation and the transient pressure and temperature measurements were performed to investigate the variation of the subcooled film boiling state with the pressure. In the highly subcooled state, the boiling state was relatively stable and little dynamic behavior of the vapor layer was observed. The pressure and temperature oscillations were hardly detected. As the pressure is reduced and consequently the degree of subcooling decreases, the thickness of vapor layer becomes thick and the dynamic behavior gradually becomes violent. The pressure and temperature oscillations appear with a very high frequency around several kHz. As the pressure further decreases to near the lambda pressure, the boiling state changes to much more violent boiling state with a frequency of several hundred Hz. A vapor bubble repeats formation and crush periodically, which apparently resembles noisy film boiling in saturated He II. The boundary between the stable and the unstable boilings seems to be in the pressure higher than the lambda pressure.

Nozawa, M.; Murakami, M.; Yamamoto, I. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8573 (Japan); Kimura, N. [Cryogenics Science Center, Applied Research Laboratory, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan)

2004-06-23

21

Local nucleation propagation on heat transfer uniformity during subcooled convective boiling  

NASA Astrophysics Data System (ADS)

Convective boiling heat transfer is an efficient cooling mechanism to dissipate amount of thermal energy by accompanying the phase transition of the working fluids. Particularly, the amount of heat dissipation capacity can be readily extensible by increasing the degree of subcooling due to initial demands requiring for coolant saturation. Under severely subcooled condition of 60°, we investigate boiling heat transfer phenomena regarding spatial heat transfer uniformity and stability on a planar surface. Severe subcooling can induce locally concentrated thermal loads due to poor spatial uniformity of the heat transfer. For reliable cooling, a high degree of spatial uniformity of the heat transfer should be guaranteed with minimized spatial deviation of heat transfer characteristics. Under pre-requisite safeguards below CHF, we experimentally elucidate the principal factors affecting the spatial uniformity of the heat transfer for a flow/thermal boundary layer considering heat transfer domains from a single-phase regime to a fully-developed boiling regime. Based on the local heat transfer evaluation, we demonstrate that full nucleation boiling over the entire heat transfer surface under subcooling conditions is favorable in terms of the uniformity of heat dissipation through the phase-change of the working fluid.

Kim, Beom Seok; Yang, Gang Mo; Shin, Sangwoo; Choi, Geehong; Cho, Hyung Hee

2015-01-01

22

Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 1—Model Development  

Microsoft Academic Search

In this work a mechanistic model has been developed for the wall heat flux partitioning during subcooled flow boiling. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall. A fraction of this energy is then utilized for vapor generation, while the rest of

Nilanjana Basu; Gopinath R. Warrier; Vijay K. Dhir

2005-01-01

23

Experimental investigation of subcooled flow boiling using synchronized high speed video, infrared thermography, and particle image velocimetry  

E-print Network

Subcooled flow boiling of water was experimentally investigated using high-speed video (HSV), infrared (IR) thermography, and particle image velocimetry (PIV) to generate a unique database of synchronized data. HSV allowed ...

Phillips, Bren Andrew

2014-01-01

24

Pool boiling studies on nanotextured surfaces under highly subcooled conditions  

E-print Network

for boiling heat transfer enhancement on heater surfaces coated with MWCNT are identified as follows: a. Enhanced surface area or nano - fin effect b. Higher thermal conductivity of MWCNT than the substrate c. Disruption of vapor-liquid vapor interface in film...

Sathyamurthi, Vijaykumar

2009-05-15

25

Analysis and Measurement of Bubble Dynamics and Associated Flow Field in Subcooled Nucleate Boiling Flows  

SciTech Connect

In recent years, subooled nucleate boiling (SNB) has attrcted expanding research interest owing to the emergence of axial offset anomaly (AOA) or crud-induced power shigt (CIPS) in many operating US PWRs, which is an unexpected deviation in the core axial power distribution from the predicted power curves. Research indicates that the formation of the crud, which directly leads to AOA phenomena, results from the presence of the subcooled nucleate boiling, and is especially realted to bubble motion occurring in the core region.

Barclay G. Jones

2008-10-01

26

Bubble Behavior in Subcooled Pool Boiling of Water under Reduced Gravity  

NASA Astrophysics Data System (ADS)

Subcooled pool boiling of water was conducted in reduced gravity performed by a parabolic flight of aircraft and a drop-shaft facility. A small stainless steel plate was physically burned out in the subcooled water by AC electric power during the parabolic flight. Boiling bubbles grew with increasing heating power but did not detached from the heating surface. The burnout heat fluxes obtained were 200 ~ 400 percent higher than the existing theories. In the ground experiment, boiling bubbles were attached to the heating surface with a flat plate placed over the heating surface, and the experiment was performed by the same heating procedure as practiced under the reduced gravity. Same burnout heat fluxes as under the reduced gravity were obtained by adjusting the plate clearance to the heating surface. As the heating time extended longer than the reduced gravity duration, the burnout heat fluxes decreased gradually and became constant. Contact area of bubbles with heating surface was observed using a transparent heating surface in microgravity performed by a drop-shaft facility. The contact area of bubbles increased significantly at the start of microgravity. It is suggested by the experimental results that the boiling bubbles expand rapidly in the high heat flux region and the rapid evaporation of liquid layer remained between the bubbles and the heating surface raises up the critical heat flux higher than the existing theories in microgravity.

Suzuki, Koichi; Suzuki, Motohiro; Takahash, Saika; Kawamura, Hirosi; Abe, Yoshiyuki

2003-01-01

27

Experimental investigation of micro-scale temperature transients in sub-cooled flow boiling on a horizontal heater  

E-print Network

and thermal transport processes, resulting in enhanced local and global heat flux values. Boiling incipience and liquid subcooling (e.g. at boiling inception and at critical heat flux). These enhancements are primar is clamped on a constant heat flux type calorimeter consisting of a vertical copper cylinder with embedded

Banerjee, Debjyoti

28

Highly subcooled pool boiling heat transfer at various gravity levels Jungho Kim a,*, John F. Benton b  

E-print Network

. A Terrier­Orion sounding rocket and the KC-135 aircraft were used to provide the microgravity and low-g envi Elsevier Science Inc. All rights reserved. Keywords: Pool boiling; Microgravity; Subcooling 1. Introduction An understanding of boiling and critical heat flux in microgravity environments is important to the design

Kim, Jungho

29

Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region  

NASA Astrophysics Data System (ADS)

A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.

Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

30

Experimental study on subcooled flow boiling on heating surfaces with different thermal conductivities  

NASA Astrophysics Data System (ADS)

Subcooled flow boiling is generally characterized by high heat transfer capacity and low wall superheat, which is essential for cooling applications requiring high heat transfer rate, such as nuclear reactors and fossil boilers. In this study, subcooled flow boiling on copper and stainless steel heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. Flow boiling heat flux and heat transfer coefficient were experimentally measured on both surfaces under different conditions, such as pressure, flow rate and inlet subcooling. Significant boiling heat transfer coefficient differences were found between the copper and the stainless steel heating surfaces. To explain the different flow boiling behaviors on these two heating surfaces, nucleation site density and bubble dynamics were visually observed and measured at different experimental conditions utilizing a high-speed digital video camera. These two parameters are believed to be keys in determining flow boiling heat flux. Wall superheat, critical cavity size and wall heat flux were used to correlate with nucleation site density data. Among them, wall heat flux shows the best correlation for eliminating both pressure and surface property effects. The observed nucleation site distribution shows a random distribution. When compared to the spatial Poisson distribution, similarity between them was found, while the measured nucleation site distribution is more uniform. From experimental observations, for the two surface materials investigated, which have similar surface wettability but sharply different thermal properties, bubble dynamics displayed fairly similar behavior. The obtained experimental results indicate that thermal conductivity of heating surface material plays an important role in boiling heat transfer. This is due to thermal conductivity having a significant impact on the lateral heat conduction at the heating surface and consequently temperature uniformity of the heating surface. A model was then developed and solved numerically for heat conduction at the heating surface when bubbles are present. Several key parameters which impact lateral heat conduction and surface temperature profile were studied. These parameters include material thermal conductivity, bubble size, heating surface thickness, etc. Numerical results show that, temperature profile on the heating surface tends to be more uniform and have a lower average value on a heating surface with higher thermal conductivity, which agrees well with the experimental observation.

Zou, Ling

31

Simulation of subcooled boiling at low pressure conditions with RELAP5-3D computer program  

E-print Network

of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Y A. Hassan (Chair of Committee) William H. Marlow (Member) Kalyan Annamalai (Member) Paul Nelson (Head... of Advisory Committee: Dr. Yassin A. Hassan Simulation of subcooled boiling was carried out using RELAP5 thermal hydraulic computer programs. Both one-dimensional and three-dimensional analyses were carried out with one-dimensional RELAP5/MOD3. 2 and three...

Reza, S.M. Mohsin

2002-01-01

32

Physical modeling and numerical simulation of subcooled boiling in one- and three-dimensional representation of bundle geometry  

SciTech Connect

Numerical simulation of subcooled boiling in one-dimensional geometry with the Homogeneous Equilibrium Model (HEM) may yield difficulties related to the very low sonic velocity associated with the HEM. These difficulties do not arise with subcritical flow. Possible solutions of the problem include introducing a relaxation of the vapor production rate. Three-dimensional simulations of subcooled boiling in bundle geometry typical of fast reactors can be performed by using two systems of conservation equations, one for the HEM and the other for a Separated Phases Model (SPM), with a smooth transition between the two models.

Bottoni, M.; Lyczkowski, R.; Ahuja, S.

1995-07-01

33

Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions  

NASA Astrophysics Data System (ADS)

Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

Le Corre, Jean-Marie

34

Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows  

SciTech Connect

Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R. [Idaho National Laboratory, MS-3870, PO Box 1625, Idaho Falls, ID, 83415 (United States); Williams, B. J. [Los Alamos National Laboratory, MS-F600, PO Box 1663, Los Alamos, NM, 87545 (United States)

2013-07-01

35

Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions  

SciTech Connect

At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling and flow velocity parametrically. Concentration variation of boron near the liquid-vapor interface was detected successfully with a newly developed miniature concentration sensor. The measured concentration variations at different radial locations from the center of cavity have the same trend as given by the numerical simulations. The deposition of boron was found near the nucleation site on the heater surface, which validates the numerical simulation. Subcooled flow boiling experiments at three pressures were performed on a nine-rod bundle with water and with boron dissolved in the water. The test runs were conducted with a wide range of mass fluxes (186 to 2800 kg/m2s) and heat fluxes (1.0 to 30.0 W/ cm2). Not only the variables required to develop mechanistic models for subcooled flow boiling were measured, but also the crud formation during boiling and its effect on the heat transfer process were investigated. (B204)

V.K. Dhir

2003-04-28

36

High heat flux removal using water subcooled flow boiling in a single-side heated circular channel  

Microsoft Academic Search

High heat flux removal from plasma-facing components and electronic heat sinks involves conjugate heat transfer analysis of the applicable substrate and flowing fluid. For the present case of subcooled flow boiling inside a single-side heated circular channel, the dimensional results show the significant radial, circumferential and axial variations in all thermal quantities for the present radial aspect ratio (Ro=outside radius

Ronald D. Boyd; Marcella Strahan; Penrose Cofie; Ali Ekhlassi; Rashad Martin

2003-01-01

37

Modeling and Thermal Performance Evaluation of Porous Curd Layers in Sub-Cooled Boiling Region of PWRs and Effects of Sub-Cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces  

SciTech Connect

A significant number of current PWRs around the world are experiencing anomalous crud deposition in the sub-cooled region of the core, resulting in an axial power shift or Axial Offset Anomaly (AOA), a condition that continues to elude prediction of occurrence and thermal/neutronic performance. This creates an operational difficulty of not being able to accurately determine power safety margin. In some cases this condition has required power ''down rating'' by as much as thirty percent and the concomitant considerable loss of revenue for the utility. This study examines two aspects of the issue: thermal performance of crud layer and effect of sub-cooled nucleate boiling on the solute concentration and its influence on initiation of crud deposition/formation on fuel pin surface.

Barclay Jones

2005-06-27

38

An experimental investigation on the confined and elongated bubbles in subcooled flow boiling in a single microchannel  

NASA Astrophysics Data System (ADS)

The characteristics of the confined bubble and elongated bubble in subcooled flow boiling in a single horizontal rectangular microchannel with hydraulic diameter Dh=1mm are studied experimentally. The channel with 1 × 1mm cross section is fabricated in a thin copper plate whose confinement number is Co=2.8 and the degassed deionized water is used as the working fluid. Visualization on the confined and elongated bubbles inside the microchannel is carried out by employing a high-speed CCD camera with a microlens. The recorded images are carefully analyzed to illustrate the behaviors of the confinement and elongation processes of the bubble. The boiling number is used as an adjustable parameter to regulate the operating conditions which is eventually found to take a vital role in the bubble elongation process. Two formation patterns of the confined and elongated bubble are identified and the interactions between the neighboring confined and elongated bubbles are elucidated.

Yin, Liaofei; Jia, Li; Guan, Peng; Liu, Fuhao

2012-12-01

39

Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study  

SciTech Connect

In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.

Anh Bui; Nam Dinh; Brian Williams

2013-09-01

40

Alumina Nanoparticle Pre-coated Tubing Ehancing Subcooled Flow Boiling Cricital Heat Flux  

E-print Network

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and ...

Truong, Bao H.

41

Bubble behavior in subcooled flow boiling on surfaces of variable wettability  

E-print Network

Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that ...

Tow, Emily W

2012-01-01

42

Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment  

NASA Technical Reports Server (NTRS)

A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

Kim, Jungho; Benton, John; Kucner, Robert

2000-01-01

43

A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer  

E-print Network

heater sizes were obtained in low-g (0.01 ± 0.025 g) and high-g (1.7 ± 0.5 g) aboard the KC-135 aircraft transfer remained unaffected. � 2003 Elsevier Inc. All rights reserved. Keywords: Microgravity; Boiling

Kim, Jungho

44

Subcooled pool film boiling from a cylinder and from a sphere placed in a liquid saturated bed of beads  

NASA Astrophysics Data System (ADS)

In film-boiling heat transfer, the most important modeling assumption may be that the liquid and vapor phases are separated by a sharp boundary without intervening two-phase region. An effort is presently made to extend the results of Cheng et al. (1982) by using a model for a porous medium's effective conductivity which can account for the structure of the porous matrix used, which in this case is a bed of spherical glass beads. Theory and experiment are found to be in good agreement.

Orozco, J.; Poulikakos, D.; Gutjahr, M.

1990-04-01

45

A quasi-multidimensional Eulerian-Lagrangian numerical model for turbulent subcooled boiling flows in single and branched channels  

NASA Astrophysics Data System (ADS)

The Particle-Fluid Model (PFM) is a modeling approach for two-phase flow which has promise for overcoming some of the limitations of the existing two-fluid models and leads to enhanced predictive capability. The model incorporates a Lagrangian representation for the dispersed phases and thus reduces the numerical diffusion associated with Eulerian schemes. In addition, it permits the interfacial interactions as well as inter-particle interactions to be modeled in a natural way. This thesis concerns further improvements to a PFM code called DISCON. In particular, stochastic models for bubble interactions such as bubble coalescence, turbulence, breakup and wall nucleation have been incorporated. Capability to model heat structures has also been added. The boiling model produces good agreement when compared to experiment data. A primary emphasis of the development was the quasi-multidimensional lateral phase distribution model and its incorporation into the Lagrangian-Eulerian single channel model. This phase distribution model is based on the physics of eddy-bubble interaction. Eddies are simulated using simple algebraic models and the bubble lateral motion is established by tracking the bubbles through a succession of eddies in turbulence. Results from the model are compared with experimental data and good agreement is obtained. Furthermore, the single channel code was extended to a pilot systems code to model branched flow passages. Models for merging and dividing flows were incorporated into the PFM code. Modeling results for a few conceptual problems have been obtained using this enhanced capability and are presented herein. Finally the modeling studies are augmented with theoretical dispersion and characteristics analysis of the conservation equations used in both the two-fluid model and in the PFM. It is shown that the Lagrangian-Eulerian system of equations results in a well posed problem. This is in contrast to the usual one-dimensional two-fluid model which constitute an ill-posed problem. The dynamic character of the two-fluid models as formulated in the RELAP5 and CATHARE codes were investigated and their respective regularization procedure were analyzed. Conclusions from these studies are summarized along with recommendations for future research.

Pokharna, Himanshu

46

Mathematical simulation of transient processes in a circular channel with granular layer under conditions of subcooled water boiling. Heating of the wall region  

Microsoft Academic Search

Results are given of a mathematical investigation of the process of heating the wall region of subcooled liquid under conditions\\u000a of pulsed heat release in the heater wall. Analysis is made of the effect of the thermophysical properties of pebble bed on\\u000a the temperature distribution and on the time of heating the wall region. The effect of the pebble bed

B. G. Pokusaev; A. K. Nekrasov; D. A. Nekrasov

2007-01-01

47

Ultrahigh critical heat flux (CHF) for subcooled water flow boiling—I: CHF data and parametric effects for small diameter tubes  

Microsoft Academic Search

Ultra-high critical heat flux (CHF) data, with many values exceeding 100 MW m?2, were obtained using high mass velocity, subcooled water flow through short, small diameter tubes. These tests produced the highest CHF of 276 MW m?2 reported in the literature for a uniformly heated tube which surpassed the prior record of 228 MW m?2. The data include broad ranges

Issam Mudawar; Morris B. Bowers

1999-01-01

48

Influences of subcooling on burnout of horizontal cylindrical heaters  

SciTech Connect

The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 130C. Photographs, and the data themselves, revealed that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection, which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcooling, and is limited by the process of molecular effusion.

Elkassabgi, Y.; Lienhard, J.H. (Univ. of Houston, TX (USA))

1988-05-01

49

Boiling incipience and convective boiling of neon and nitrogen  

NASA Technical Reports Server (NTRS)

Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

Papell, S. S.; Hendricks, R. C.

1977-01-01

50

Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction  

Microsoft Academic Search

Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area (â¼ 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol\\/kg COâ), low-chlorinity (â¼ 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol\\/kg COâ), high-chlorinity (â¼ 116% of seawater) fluid. The

David A. Butterfield; R. E. McDuff; M. D. Lilley; G. J. Massoth; J. E. Lupton

1990-01-01

51

Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured surfaces  

E-print Network

of submerged jet impingement have suggested two types of boiling regimes [6], namely nucleate boiling. The inlet subcooling was varied from 0 to 40 °C. For medium velocities, stand-off ratios had little effect

Peles, Yoav

52

Subcooling for Long Duration In-Space Cryogenic Propellant Storage  

NASA Technical Reports Server (NTRS)

Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

2010-01-01

53

Condensation on a noncollapsing vapor bubble in a subcooled liquid  

NASA Technical Reports Server (NTRS)

An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.

Baumeister, K. J.; Simoneau, R. J.

1979-01-01

54

Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Heterocycles and Related Compounds  

E-print Network

Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures The vaporization enthalpies and vapor pressures of the liqiud phase from T ) 298.15 K to T ) 500 K of a series in the literature was measured on a hydrated form. Vapor pressures and normal boiling temperatures for the liquid

Chickos, James S.

55

Microchannel flow boiling mechanisms leading to burnout  

SciTech Connect

The boiling mechanisms for microchannel flow are investigated when the channel cross-section in height to width is large (of order 10/1), near its single-phase optimum. A separated flow model was developed which allowed for saturated boiling near the heated base and single-phase flow elsewhere within the channel cross-section. In these high aspect ratio heat sinks, the role of subcooled boiling was found to be insignificant relative to that of saturated boiling, the latter allowing for a doubling of the applied heat load from single-phase operation before burnout was experienced. As the exit mass quality of the saturated region approached one for increasing heat flux, both the model and the experimental case indicated a burnout condition had also been approached. The model underpredicted the measured base temperature, which has been generally noted for saturated boiling in annular two-phase flow.

Landram, C.S.

1994-03-01

56

Development of a general purpose subgrid wall boiling model from improved physical understanding for use in computational fluid dynamics  

E-print Network

Advanced modeling capabilities were developed for application to subcooled flow boiling through this work. The target was to introduce, and demonstrate, all necessary mechanisms required to accurately predict the temperature ...

Gilman, Lindsey Anne

2014-01-01

57

Modification and validation of the natural heat convection and subcooled void formation models in the code PARET  

Microsoft Academic Search

Two new modifications have been included in the current PARET code that is widely applied in the dynamic and safety analysis of research reactors. A new model was implemented for the simulation of void formation in the subcooled boiling regime, the other modification dealt with the implementation of a new approach to improve the prediction of heat transfer coefficient under

A. Hainoun; F. Alhabit; N. Ghazi

2008-01-01

58

Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop  

NASA Technical Reports Server (NTRS)

Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

Jain, K. C.

1969-01-01

59

Experimental Observation and Analysis of Enhancing Boiling Heat Transfer with Acoustic Cavitation  

Microsoft Academic Search

A series of experiments is carried out to make clear the effects of acoustic cavitation on boiling heat transfer from a 20 mm diameter circular copper tube taking alcohol as liquid. The cavitating intensity and the distance between the bottom of ultrasonic transducer and the test section are measured in experiments. The experimental research shows that subcooled boiling can be

SUN Baozhi

60

Boiling jet impingement cooling of simulated microelectronic chips  

NASA Astrophysics Data System (ADS)

Jet impingement cooling is a possible means of accommodating the high heat fluxes which result from testing miroelectronic chips at power levels well above those expected during normal operation. An apparatus is described for study of the heat transfer characteristics of chip-size electrically heated test sections with normally impinging circular submerged mets of saturated or subcooled R-113. Data were obtained for several jet velocities, with the jet directed at two positions on the heated surface. Free convection boiling data were taken for reference. The boiling curve hysteresis with jet boiling is less than with free convection. The fully developed saturated jet boiling data merge into an asymptote that coincides closely with the extrapolation of the pool boiling curve. The burnout heat flux is proportional to the cube root of jet velocity. Heat fluxes up to a million W/sq m were recorded.

Bergles, E.; Ma, C.-F.

61

To boil or not to boil -- A study of bubble embryo dormancy limits  

SciTech Connect

In the literature, particularly for refrigerants, experimental studies on the superheat required to initiate nucleate boiling tend to be widely scattered, not only among investigators but even for repeated tests by the same investigator. This study provides an explanation of why this occurs and how to avoid such scatter in future tests. With few exceptions, only re-entrant surface cavities are capable of containing dormant vapor bubble embryos. These dormant embryos are essential to initiate nucleate boiling from a cavity. The temperature (wall superheat) range over which an embryo is stable depends upon the cavity shape, neck size, and the fluid surface tension and thermal properties. Above the upper wall-superheat limit, nucleate boiling occurs. Below the lower limit, the embryo will quench (vanish) and cannot be reactivated by increasing the wall superheat. This study makes the following points, for a given cavity shape, fluid, and pressure (1) The larger the cavity neck radius, the smaller the wall-superheat range over which an embryo can exist. (2) Upon cooling any surface, the boiling cavity with the smallest neck radius will be the first to stop boiling but will require the greatest reduction in wall superheat to quench its embryo. (3) Each site that retains a (dormant) vapor embryo will resume boiling at the same wall-superheat at which it ceased boiling. (4) Small cavities can have a shape such that their vapor embryos will always exist, regardless of the wall temperature. Boiling can always be reinitiated from them. (5) Any wall subject to boiling has a memory. The greater the past wall-subcooling, the greater will be the wall-superheat required to initiate boiling. (6) The wall memory can be erased with sufficient wall-superheat and the presence of vapor.

Martin-Dominguez, I.R. [Inst. Politecnico Nacional-CIIDIR Unidad Durango, Durango City (Mexico); McDonald, T.W. [Univ. of Windsor, Ontario (Canada)

1997-12-31

62

Pool boiling from rotating and stationary spheres in liquid nitrogen  

NASA Technical Reports Server (NTRS)

Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

Cuan, Winston M.; Schwartz, Sidney H.

1988-01-01

63

Efficiency of a solar collector with internal boiling  

SciTech Connect

The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

Neeper, D.A.

1986-01-01

64

Boiling Experiment Facility for Heat Transfer Studies in Microgravity  

NASA Technical Reports Server (NTRS)

Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

Delombard, Richard; McQuillen, John; Chao, David

2008-01-01

65

Aircraft experiments of microgravity pool boiling - Evaluation of the effects of residual acceleration  

Microsoft Academic Search

The paper describes analyses of the data obtained in our aircraft pool-boiling experiments performed at Bretigny, France, in December 1989, placing the focus on possible effects of residual acceleration on the vapor-bubble behavior as well as the heat transfer characteristics. In the experiments, the apparatus including a boiling cell filled with subcooled n-pentane was fixed onto the cabin floor of

Toshiharu Oka; Yoshiyuki Abe; Kotaro Tanaka; Yasuhiko H. Mori; Akira Nagashima

1991-01-01

66

TAURUS II launch vehicle lox subcooler  

NASA Astrophysics Data System (ADS)

The Orbital Sciences Taurus II medium lift launch vehicle utilizes first stage engines fueled by liquid oxygen and RP-1. Performance of the Taurus II is enhanced by densifying the liquid oxygen from a saturation temperature of 94 K to a subcooled temperature of 77.9 K. Subcooling the 75.07 kg/s liquid oxygen flow is accomplished in a 1.907 megawatt heat exchanger cooled by a flow of 9.62 kg/s ambient pressure liquid nitrogen. Design, fabrication, insulation and testing of the densification heat exchanger is described in this paper.

McIntosh, Glen E.

2012-06-01

67

An experimental research on microbubble emission boiling  

NASA Astrophysics Data System (ADS)

In the near future, heat transfer technology with higher performance surely has more application in the field of thermal engineering, such as electrical chip cooling, power regulating system, etc. Microbubble emission boiling (MEB) is getting more attentions by many researchers due to its extremely high heat dissipation capacity and potential application in the areas mentioned above. Despite that much work has been done to MEB, heat transfer characteristics and occurrence condition as well as formation mechanism involved MEB are not illustrated clearly by far. An experimental setup is built up to study MEB visually. The heating element is a cone copper block with its upper part of a 10mm diameter cylinder which is insulated from the water by a ceramic thimble. The different liquid subcooling is obtained by a water cooler combined with an electric heater. A high-speed video camera (Photron: Fastcam SA5) is employed for recording the scenario of MEB. Our experimental results are very similar to that from other researchers, and the maximum heat flux is about 9 MW/m2 at 60K subcooling. The presence of noncondensable gas in the vapor film and the liquid subcooling has obviously impact on MEB. Moreover, numerical simulation results show that marangoni convection is perhaps one of the reasons inducing the occurrence of MEB.

Tang, Jiguo; Zhu, Guangyu; Sun, Licheng; Cao, Xiaxin

2013-07-01

68

Boiling heat transfer in reduced gravity during quenching of a hot surface with R-113  

SciTech Connect

An experimental study of the flow boiling heat transfer characteristics under microgravity conditions is presented. The experiments were conducted using R-113 by rewetting a heated bottom plate of a rectangular channel, 40 mm wide, 5 mm high and 200 mm long, aboard the KC-135 parabolic aircraft. The local surface heat flux and temperature were measured by a 2-{micro}m thick micro sensor directly fabricated on the surface of the heated plate. The film boiling heat transfer coefficients in microgravity were 70% to 80% of the values in normal gravity, and the results in both gravity conditions showed reasonable agreement with the predictions of Bromley (1953) correlation. Under microgravity, the flow rate had less effect but subcooling had a significant effect on nucleate boiling heat transfer. The effect of microgravity is similar to that due to the absence of subcooling in normal gravity, because both result in a thicker and more stable vapor layer. Also, the nucleate boiling regime covered a wider range of wall superheat below the maximum heat flux in the absence of gravity or subcooling than in the case of high subcooling and normal gravity.

Xu, J.J.; Adham-Khodaparast, K.; Kawaji, M. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry

1995-12-31

69

Transient Heat Transport in Subcooled He II Associated with JT Effect  

NASA Astrophysics Data System (ADS)

Transient heat transport in subcooled He II has been investigated in a 1 m long rectangular channel with distributed contractions: one-closed end has a heater, while the other end is open to the He II bath. Experiments were conducted applying heat pulses and recording the temperature profile with seven Allan Bradley resistors placed along the channel. Cernox sensor was indium soldered on the heater surface to monitor the onset of film boiling. As the onset of heat pulse, the pressure at the heater surface increased because of phase change from subcooled He II to He I. Further increasing of heat pulse leads to coexistence of triple-phase, He I vapor layer, He I and subcooled He II, at the vicinity of heater surface. These effects induced instantaneous He II temperature drop along the channel, which is caused by Joule-Thomson (JT) effect. A simple model gives an approximate mechanism of pressure increase in the channel. The paper describes transient heat transport mechanism in the channel and discusses JT effect within the channel.

Maekawa, R.; Iwamoto, A.; Hamaguchi, S.

2004-06-01

70

Transient Heat Transport in Subcooled He II Associated with JT Effect  

SciTech Connect

Transient heat transport in subcooled He II has been investigated in a 1 m long rectangular channel with distributed contractions: one-closed end has a heater, while the other end is open to the He II bath. Experiments were conducted applying heat pulses and recording the temperature profile with seven Allan Bradley resistors placed along the channel. Cernox sensor was indium soldered on the heater surface to monitor the onset of film boiling. As the onset of heat pulse, the pressure at the heater surface increased because of phase change from subcooled He II to He I. Further increasing of heat pulse leads to coexistence of triple-phase, He I vapor layer, He I and subcooled He II, at the vicinity of heater surface. These effects induced instantaneous He II temperature drop along the channel, which is caused by Joule-Thomson (JT) effect. A simple model gives an approximate mechanism of pressure increase in the channel. The paper describes transient heat transport mechanism in the channel and discusses JT effect within the channel.

Maekawa, R.; Iwamoto, A.; Hamaguchi, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

2004-06-23

71

Hydrothermal Processing  

SciTech Connect

This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

Elliott, Douglas C.

2011-03-11

72

Thermal Conductivity of Subcooled Liquid Hydrogen  

NASA Astrophysics Data System (ADS)

Here we present thermal conductivity measurements of subcooled equilibrium liquid hydrogen in the temperature range from 15 to 23 K and under pressures up to 1 MPa. The measurements have been done in a horizontal, guarded, flat-plates calorimeter. One dimensional heat transfer between the hot and the cold plates of the calorimeter is achieved by the placement of two thermal guards. Capacitance measurement between the calorimeter plates gives a precise and accurate value for the gap. A two-stage Gifford-McMahon cryocooler provides the cooling power to the calorimeter. The absolute temperatures are monitored using ruthenium oxide temperature sensors calibrated against the saturated vapor-pressure line of equilibrium hydrogen. Results reported in this paper are compared to existing data and an analytical model. Knowledge of the density dependence to the thermal conductivity is expected to be useful for subcooled hydrogen transport processes.

Charignon, T.; Celik, D.; Hemmati, A.; Van Sciver, S. W.

2008-03-01

73

Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle  

Microsoft Academic Search

An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system—i.e., condenser, evaporator, subcooling and superheating heat exchangers—can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling

Re?at Selba?; Önder K?z?lkan; Arzu ?encan

2006-01-01

74

Boil, Boil, Toil and Trouble: The International Boiling Point Project  

NSDL National Science Digital Library

People from all over the world boil water at different elevations and post data to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point. Anyone can boil water, record information, and send it in for inclusion in the database of results. Students can analyze all the data to answer the question: What causes a pot of water to boil? Participation is invited at any time during the project's three-month span. Developed and managed by the Center for Improved Engineering and Science Education (CIESE) at Stevens Institute of Technology in Hoboken, NJ.

Math Forum

2001-01-01

75

Dive and Discover's Deeper Discovery: Hydrothermal Vents  

NSDL National Science Digital Library

Dive and Discover is an interactive distance learning web site designed to immerse you in the excitement of discovery and exploration of the deep seafloor. On this particular website, Dive and Discover takes you on a deeper discovery of hydrothermal vents. This site features an introduction to hydrothermal vent systems, including vent basics, vents around the world, chemistry, boiling points, interactive diagrams, videos, a quiz, and links to selected Dive and Discover hydrothermal vent-related seafloor expeditions. This web page also provides links to other Deeper Discovery topics, Dive and Discover seafloor expeditions, a teacher's page, and further Dive and Discover information.

2010-04-12

76

Process for the liquefaction and subcooling of natural gas  

Microsoft Academic Search

Linde AG improved the Claude closed refrigerating cycle for liquefying and subcooling natural gas by using a mixture of nitrogen and methane as the cycle medium. This mixture allows the temperature range of evaporation to be easily adapted to the temperature range of subcooling, improves refrigerating capacity, and compensates for leakage losses of the cycle medium at less cost by

W. Foerg; P. Grimm

1974-01-01

77

CO2 transcritical vapor compression cycle with thermoelectric subcooler  

Microsoft Academic Search

In this article, the integration of two different cooling technologies: thermoelectric (TE) cooling and the vapor compression cycle (VCC), is investigated to enhance the performance of the latter. In the integrated system, the TE cooler is utilized as a subcooler of the VCC condenser or gas cooler. In this integration, the TE subcooler is operated at a small temperature lift

Jonathan Schoenfield; Yunho Hwang; Rienhard Radermacher

2012-01-01

78

CO2 Transcritical Vapor Compression Cycle with Thermoelectric Subcooler  

Microsoft Academic Search

In this paper, the integration of two different cooling technologies: thermoelectric (TE) cooling and the vapor compression cycle (VCC), is investigated to enhance the performance of the latter. In the integrated system, the TE cooler is utilized as a subcooler of the VCC condenser or gas cooler. In this integration, the TE subcooler is operated at a small temperature lift

Jonathan Schoenfield; Yunho Hwang; Rienhard Radermacher

2012-01-01

79

A Study of Nucleate Boiling with Forced Convection in Microgravity  

NASA Technical Reports Server (NTRS)

The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as p

Merte, Herman, Jr.

1999-01-01

80

Modeling of subcooling and solidification of phase change materials  

NASA Astrophysics Data System (ADS)

Phase change materials (PCM) are able to store thermal energy in small temperature intervals very efficiently due to their high latent heat. Particularly high storage capacity is found in salt hydrates. Salt hydrates however often show subcooling, thus inhibiting the release of the stored heat. In the state of the art simulations of PCM, the effect of subcooling is almost always neglected. This is a practicable approach for small subcooling, but it is problematic for subcooling in the order of the driving temperature gradient on unloading the storage. In this paper, we first present a new algorithm to simulate subcooling in a physically proper way. Then, we present a parametric study to demonstrate the main features of the algorithm and a comparison of computed and experimentally obtained data. The new algorithm should be particularly useful in simulating applications with low cooling rates, for example building applications.

Günther, Eva; Mehling, Harald; Hiebler, Stefan

2007-12-01

81

The mechanism of void formation in initially subcooled systems  

E-print Network

When an initially subcooled, water filled system undergoes a transient in heat flux or pressure such that bubbles form, the most important variable which determines the volume of the resulting void is the number of bubbles ...

Griffith, P.

1963-01-01

82

Evidence of Ni 2FeBO 5 and m-ZrO 2 precipitates in fuel rod deposits in AOA-affected high boiling duty PWR core  

NASA Astrophysics Data System (ADS)

This paper describes the characteristics of corrosion product deposits found in upper regions of high axial offset anomaly (AOA) once-burnt fuel assemblies after Cycle 9 in the Callaway pressurized water reactor (PWR). The ˜100-?m-thick deposits consisted of a new type of highly porous and structured Ni-, Fe-, B-, and Zr-rich material. The analyses showed that deposits contain a large amount (about 50 wt%) of Ni-Fe oxyborate (Ni 2FeBO 5, mineral name bonaccordite), in the form of matted ˜0.1-?m-thick and ˜10-?m-long, needle-like particles. An especially high density of Ni 2FeBO 5 needles was found in a 30-40-?m-thick zone on the clad side of the deposits. This compound has not previously been reported as a component of PWR fuel crud. Common fuel crud components such as nickel ferrite and nickel oxide were observed only in small quantities (about 10 wt%). Reference samples of Ni 2FeBO 5 were obtained by hydrothermal reactions in alkaline aqueous solutions starting from about 400 °C, or by sintering at about 1000 °C. Formation of Ni 2FeBO 5 has been identified as a new mechanism for boron retention and neutron absorption on PWR fuel. Aggregates of apparently hydrothermally precipitated ˜0.1-0.3-?m-sized particles of monoclinic m-ZrO 2(˜30 wt%) were found in the deposits, which is indicative of a dissolution-precipitation process at the cladding surface. This process may be enhanced by a LiOH concentration mechanism in crud, which is a result of both sub-cooled nucleate boiling and 10B(n,?) 7Li reactions. Consistently, the isotopic abundance of 10B in Ni 2FeBO 5 in crud samples was reduced to about 10% of the total boron.

Sawicki, Jerzy A.

2008-02-01

83

A study of forced convection boiling under reduced gravity  

NASA Technical Reports Server (NTRS)

This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

Merte, Herman, Jr.

1992-01-01

84

Evaporation, Boiling and Bubbles  

ERIC Educational Resources Information Center

Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

Goodwin, Alan

2012-01-01

85

Subcooled water flow boiling experiments under uniform high heat flux conditions  

Microsoft Academic Search

This work involves steady-state high heat flux removal in fusion reactor beam dumps, first walls in compact fusion reactors, and other applications with smooth surfaces and\\/or irregular coolant channel cross sections. In such applications, the coolant pressure is required to be low (\\/approx\\/ 1.0 MPa), and the coolant channels are moderately long (length-to-diameter ratio (L\\/D) \\/approx\\/ 100). The present experiments

1988-01-01

86

Laminar two-phase boundary layers in natural convection film boiling of subcooled liquids  

Microsoft Academic Search

Zusammenfassung Es wird die zweiphasige Grenzschichtströmung behandelt, die in unterkühlter Flüssigkeit entsteht, wenn die wärmeabgebende (vertikale) Wand eine Temperatur oberhalb des Leidenfrost-Punktes hat. Unter Einschluss des Impulstransportes an der Phasengrenzfläche werden asymptotische Lösungen ermittelt, die für sehr geringe und sehr hohe Flüssigkeitsunterkühlung gelten. Von den beiden Grenzfällen ausgehend lässt sich eine Interpolationsformel angeben, welche mit Wärmeübergangsmessungen verglichen wird, die das

Traugott H. K. Frederking; Joram Hopenfeld

1964-01-01

87

Experimental verification of subcooled flow boiling for tokamak pump limiter designs  

Microsoft Academic Search

In fusion energy research devices such as tokamaks, limiters are used to define the plasma boundary, and may serve the additional functions of plasma density and impurity control by removing neutralized particles from the plasma edge region. Because the devices must operate in the plasma edge or ''scrape-off-layer,'' they are subject to high heat fluxes. In this paper, experimental studies

J. A. Koski; A. G. Beattie; J. B. Whitley; C. D. Croessmann

1987-01-01

88

New methods of subcooled water recognition in dew point hygrometers  

NASA Astrophysics Data System (ADS)

Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

Weremczuk, Jerzy; Jachowicz, Ryszard

2001-08-01

89

International Boiling Point Project  

NSDL National Science Digital Library

The purpose of this project is to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point. Anyone can participate in this year's project. All you have to do is boil a bit of water, record a bit of information, and send it along to the website to have your results included in the database of results. Then, students can analyze all of the data to reach an answer to the question: What causes a pot of water to boil?

2009-01-01

90

Odd-Boiled Eggs  

ERIC Educational Resources Information Center

At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

Kaminsky, Kenneth; Scheman, Naomi

2010-01-01

91

Hydrothermal Processes  

NASA Astrophysics Data System (ADS)

What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlanti

German, C. R.; von Damm, K. L.

2003-12-01

92

Rapid vaporization of subcooled liquid in a capillary structure  

E-print Network

for rapid vaporization of subcooled liquid in a capillary structure. The process consists of a low-thermal-conductivity thermal conductivity of the capillary structure and the presence of the extremely steep temperature generator consists of a low-thermal-conductivity porous wick, heated from a downward-facing grooved heating

Zhao, Tianshou

93

Consideration of sub-cooled LN2 circulation system for HTS power machines  

NASA Astrophysics Data System (ADS)

We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

2012-06-01

94

Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle  

NASA Technical Reports Server (NTRS)

The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.

Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

1993-01-01

95

Model for boiling and dryout in particle beds. [LMFBR  

SciTech Connect

Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

Lipinski, R. J.

1982-06-01

96

Flow boiling of water on nanocoated surfaces in a microchannel  

E-print Network

Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

2010-01-01

97

Hydrothermal calderas  

NASA Astrophysics Data System (ADS)

The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.

Merle, Olivier; Barde-Cabusson, Stéphanie; van Wyk de Vries, Benjamin

2010-03-01

98

Sand boils without earthquakes  

USGS Publications Warehouse

Sedimentary deformation caused by liquefaction has become a popular means for inferring prehistoric strong earthquakes. This report describes a new mechanism for generating such features in the absence of earthquakes. Sand boils and a 180-m-long sand dike formed in Fremont Valley, California, when sediment-laden surface runoff was intercepted along the upslope part of a 500-m-long preexisting ground crack, flowed subhorizonally in the crack, and then flowed upward in the downslope part of the crack where it discharged as sand boils on the land surface. If the sand boils and their feeder dike were stratigraphically preserved, they could be misinterpreted as evidence for earthquake-induced liquefaction. -Authors

Holzer, T.L.; Clark, M.M.

1993-01-01

99

On the mechanism of flashing injection of initially subcooled fuels  

SciTech Connect

The mechanisms responsible for flash-boiling injection were investigated. Using an electromagnetic injector developed for this study, propane, methanol and indolene were heated and injected into a constant-volume vessel. Two regimes of flash-boiling injection were identified. In the first regime, flash-boiling occurs within the injector nozzle without an increase in spray-cone angle. In the second regime, the nozzle exist pressure is sufficiently low that the two-phase compressible mixture created by flash-boiling within the injector nozzle is underexpanded at the nozzle exit and expands externally to increase the spray-cone angle.

Oza, R.D.

1984-02-01

100

Physical interpretation of geysering phenomena and periodic boiling instability at low flows  

SciTech Connect

Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ``geysering``, and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ``bumping`` when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations.

Duffey, R.B.; Rohatgi, U.S.

1996-03-01

101

Pool film boiling from rotating and stationary spheres in liquid nitrogen. [for SSME turbopump ball bearings  

NASA Technical Reports Server (NTRS)

Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.

Cuan, Winston M.; Schwartz, Sidney H.

1988-01-01

102

Frequency analysis of fluctuations of the temperature of a heater and of sound noise in boiling used for the diagnostics of the changes in the heat-transfer regimes  

NASA Astrophysics Data System (ADS)

The present paper reports the results of the experimental investigations into the density of distribution of the temperature and sound noise in boiling on a heat-releasing surface. The experiments were carried out with the heater in a pool of water subcooled below the saturation temperature at the atmospheric pressure. There has been established a correlation between spectral characteristics of temperature fluctuations and sound noise associated with boiling. On the basis of the analysis of spectral characteristics and the density of distribution of temperature fluctuations, the method for the classification of boiling regimes has been suggested.

Deev, V. I.; Kutsenko, K. V.; Lavrukhin, A. A.; Maslov, Yu. A.; Delov, M. I.

2014-08-01

103

Geometrical vapor blocker for parallel condensation tubes requiring subcooling  

NASA Astrophysics Data System (ADS)

An apparatus and method is disclosed for regulating flow of working fluid through parallel condensation tubes requiring subcooling. The apparatus provides an elongated restriction element extending into the outlet of the respective condensation tubes to the approximate point of onset of subcooling. The elongated restriction element is braced externally to the condensation tube with a support that is used for positioning and maintaining the elongated restriction element in the correct position. The elongated restriction element has a pentagonal cross-section and is slightly undersized with respect to the working fluid passageways through the condensation tubes. The restriction member significantly restricts flow of partially vaporized working fluid but does not significantly affect the flow of fully liquid working fluid.

Ungar, Eugene K.; Cornwell, John D.; Harwell, William D.

1994-11-01

104

SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES  

SciTech Connect

Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

Richard Schultz

2010-08-01

105

Dielectric coefficient and density of subcooled liquid oxygen  

Microsoft Academic Search

The results of high precision dielectric coefficient measurements of subcooled liquid oxygen in the temperature range from 56 to 91K and under pressures up to 1MPa are reported. The measurements are performed using a three-terminal flat plate capacitor and a single-frequency, ultra-precision capacitance bridge. Measurement results are combined with the previously published data in different pressure and\\/or temperature ranges to

D. Celik; S. W. Van Sciver

2005-01-01

106

Dielectric coefficient and density of subcooled liquid hydrogen  

Microsoft Academic Search

Here we present precision dielectric coefficient measurements of subcooled equilibrium liquid hydrogen in the temperature range from 15 to 23K and under pressures up to 1MPa. The measurements were performed using a three-terminal flat plate capacitor and a single-frequency, ultra-precision capacitance bridge. These results are combined with the previously published data to express the dielectric coefficient in the form of

T. Charignon; D. Celik; A. Hemmati; S. W. Van Sciver

2007-01-01

107

Thermal design and tests of a subcooled superfluid helium refrigerator  

NASA Astrophysics Data System (ADS)

Design methods for a subcooled superfluid helium refrigerator with high efficiency are studied. The design details are presented for a He I heat exchanger (perforated disk stack type), a He II heat exchanger (low fin tube type), an expansion valve, a safety valve, an initial filling valve and a pumping system. Heat loss, cooling capacity and cooldown time are also calculated. The test results for the trial-manufactured refrigeration system are presented in comparison with the designed values.

Hakuraku, Y.; Ogata, H.

108

Solar water boiling device  

Microsoft Academic Search

A solar water boiling device having an insulated enclosure with an opening in its front provided with a light-transmissive cover. Within the enclosure is a water container preferably formed as a discrete unit separable from the enclosure. The enclosure provides insulation such that heat losses through its side and rear walls are small compared with heat loss through the cover.

Burkhardt

1985-01-01

109

Physics based boiling simulation  

Microsoft Academic Search

In order to animate complex fluid motion, computer animators have to rely on simulation systems that automat- ically generate the dynamics in a physics-based manner. We focus in this paper on the phenomenon of boiling, which, due to its complex formulation and physics, has seen very little work done in the graphics field. We pro- pose a new Eulerian method

Viorel Mihalef; B. Unlusu; Dimitris N. Metaxas; Mark Sussman; M. Yousuff Hussaini

2006-01-01

110

Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system  

Microsoft Academic Search

Subcooling of the refrigerant at the exit of the condenser in a simple vapor-compression refrigeration system allows the refrigerant to enter the main cycle evaporator with low quality. Thus, allowing the refrigerant to absorb more heat in the evaporator; thereby improving the coefficient of performance (COP) of the system. In an integrated mechanical-subcooling vapor-compression refrigeration system, the subcooling is performed

Jameel-ur-Rehman Khan; Syed M. Zubair

2000-01-01

111

Investigations of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions  

NASA Astrophysics Data System (ADS)

In this work a building block type of approach is used so that a basic understanding of the processes that contribute to nucleate boiling heat fluxes under microgravity conditions can be developed. This understanding will lead to development of a mechanistic model for nucleate boiling heat transfer which could eventually be used as a design tool in space applications. Task Description Task 1: Fabrication of the Experimental Setup. Under this task, the test section and liquid holding and viewing chambers will be fabricated. Artificial cylinder cavities will be formed on silicon wafers. A single cavity and two or four cavities, with a prescribed spacing and size, will be formed. The desired nucleation wall superheat will be used to determine the size of the mouth of the cavities. Task 2: Experiments. The basic experiments for flow and temperature field around single and multiple (2 or 4 separated or merged bubbles growing on downward facing or inclined surfaces) will be carried out under normal gravity conditions. The experiments will be conducted at one atmosphere pressure, but liquid subcooling will be varied from 0 to 30C. Water and PF-5050 will be used as test liquids. Task 3: Analytical/Numerical Models. In this task, transient temperature and flow field in vapor and liquid will be determined during growth of a single bubble. Analysis will include the evolution of the vapor-liquid interface and development of microlayer underneath the bubbles. For merged bubbles, detailed calculations of flow and temperature field will be carried out for transient shapes of vapor stems supporting a large bubble and the corresponding evaporation rate. Flow and temperature field for a bubble sliding along a heated wall will also be determined. Microgravity conditions will be simulated and a framework of a numerical tool for prediction of nucleate boiling heat fluxes under microgravity conditions will be developed. Task 4: Experiments in a KC-135. To understand bubble growth and detachment behavior of single or large merged bubbles, boiling experiments will be conducted under low gravity (10-2 g) conditions of the aircraft. In these experiments, 'designed' surfaces will be used. Visual observations and heat transfer data will be taken, but holography will not be used. The apparatus used for laboratory experiments will also be employed for experiments in the aircraft. Task 5: Experiments in the Space Shuttle. Effort will be devoted for defining a boiling experiment to be conducted on a 'designed' surface. The experiment will provide microgravity data on bubble growth and departure. These data are needed for development of a credible model for nucleate boiling heat fluxes under microgravity conditions. The heat transfer data will also be obtained and will be used to validate the models.

Dhir, Vijay K.; Hasan, M.

2003-01-01

112

Critical discharge of initially subcooled water through slits. [PWR; BWR  

SciTech Connect

This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model.

Amos, C N; Schrock, V E

1983-09-01

113

A theory of dropwise condensation at large subcooling including the effect of the sweeping  

NASA Astrophysics Data System (ADS)

The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum.

Yamali, C.; Merte, H., Jr.

114

How Does Water Boil?  

NASA Astrophysics Data System (ADS)

Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

Zahn, Dirk

2004-11-01

115

How does water boil?  

PubMed

Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network. PMID:15601117

Zahn, Dirk

2004-11-26

116

Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.  

USGS Publications Warehouse

Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

2010-01-01

117

Test of condensate subcooling coils for air conditioners  

SciTech Connect

A 2-ton compact air conditioner was developed for the shelter environmental control application. The cooling capacity requirement was 2 tons at an outdoor ambient temperature of 110{degree}F (43{degree}C) and an indoor dry-bulb temperature of 80{degree}F (27{degree}C), 67{degree}F (19{degree}C) wet bulb (W.B), and with a sensible heat ration of 0.8. A serpentine coil was installed at the bottom of the drain pan to take advantage of cool condensate for improved cooling capacity. The coil was so arranged in the prototype unit that three different condensate reuse options can be tested by either connecting the coil to the condenser exit or compressor inlet (desuperheating) or by cutting the coil completely out of the system operation. The added coil did increase the cooling capacity by 5.5 to 8.8% and lower the discharge pressure by 5 to 10 psi (35 to 70KPa) at 95{degree}F (35{degree}C) outdoor temperature compared with the test data when the coil was not used at all. The coil worked best when it was used as a subcooling coil for refrigerant liquid. This paper presents some quantitative test results for the performance of the unit when the additional coil was used as a subcooling coil or a desuperheating coil, or not used at all. 9 figs.

Mei, V.C.; Chen, F.C.; Miller, W.A. (Oak Ridge National Lab., TN (USA)); Gulati, N. (Department of the Army, Fort Belvoir, VA (USA))

1990-01-01

118

Subcooled choked flow through steam generator tube cracks  

NASA Astrophysics Data System (ADS)

The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

Wolf, Brian J.

119

Boiling liquid cauldron status report  

SciTech Connect

The progress made over the past year in assessing the feasibility of the high-temperature, boiling cauldron blanket concept for the tanden mirror reactor is reviewed. The status of the proposed experiments and recently revised estimates of the vapor void fraction in the boiling pool are discussed.

Hoffman, M.A.

1980-12-28

120

Design and test of a compact optics system for the pool boiling experiment  

NASA Technical Reports Server (NTRS)

The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

Ling, Jerri S.; Laubenthal, James R.

1990-01-01

121

Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report  

SciTech Connect

The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended.

Aksan, S.N.; Stierli, F.; Analytis, G.T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

1992-03-01

122

On the mechanism of flashing injection of initially subcooled fuels  

Microsoft Academic Search

The mechanisms responsible for flash-boiling injection were investigated.\\u000d\\u000a\\u0009Using an electromagnetic injector developed for this study, propane,\\u000d\\u000a\\u0009methanol and indolene were heated and injected into a constant-volume\\u000d\\u000a\\u0009vessel. Two regimes of flash-boiling injection were identified. In\\u000d\\u000a\\u0009the first regime, flash-boiling occurs within the injector nozzle\\u000d\\u000a\\u0009without an increase in spray-cone angle. In the second regime, the\\u000d\\u000a\\u0009nozzle exist pressure is

R. D. Oza

1984-01-01

123

Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."  

SciTech Connect

Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

2011-01-19

124

Hydrothermal Mineralization Along the Volcanically Active Mariana Arc  

NASA Astrophysics Data System (ADS)

In March and April, 2004, ROPOS ROV dives took place from the R/V T.G. Thompson along the volcanically active Mariana arc to ground truth CTD data collected a year earlier that indicated hydrothermal activity. Dives took place on seven volcanoes, six of which showed hydrothermal activity. We present data on samples collected from NW Rota-1 (14° , 36'N, 144° , 46'E), E. Diamante (15° , 56'N, 145° , 41'E), and NW Eifuku (21° , 29'N, 144° , 03'E), the three sites most studied. All the hydrothermal systems found are associated with volcano summits, or with resurgent domes inside a caldera. Brimstone vent at NW Rota-1 provided a dramatic display of thick, bellowing, yellow plumes that contained ash and molten sulfur. This site occurs at 500 m water depth and clearly shows closely associated magmatic-hydrothermal discharge. Sulfur was the dominant hydrothermal mineral deposited around the vent and occurs as spheres in the surrounding volcaniclastic sediment, fracture fill and veins, and massive deposits. The Black Forest vent field at E Diamante consists of a sulfide-sulfate chimney system developed at about 650 m water depth. This is the only mature system discovered and consists of numerous tall (up to 9 m) chimneys. The measured fluid temperature of 240° C produces boiling at the depth of the vents. The chimneys and mounds are composed of varying amounts of pyrite, sphalerite, chalcopyrite, barite, and anhydrite. Hydrothermal Mn oxides occur on the surface of inactive chimneys. This mineralogy contrasts with the other two systems, which deposit sulfur as the dominant hydrothermal product. The Cu-Zn-Fe-Ba mineralization is perhaps largely controlled by water/rock interaction. A unique hydrothermal field (Champagne field) was found at NW Eifuku where liquid CO2 is discharging from focused- and diffuse-flow vents at 1600 m water depth. The focused-flow vents consist of small chimneys and mounds up to a meter high that are composed of sulfur and yet to be identified minerals. Sulfides were not recovered from this site. At Champagne, sulfur also occurs as crusts on the surface of sediment in areas of diffuse-flow venting, as fracture fill and veins, and as massive deposits. The dominant characteristics of the hydrothermal mineralization along the Mariana arc are shallow-water systems, highly permeable rocks, gas (SO2, H2S, CO2)-rich discharge, and magmatic-hydrothermal systems controlled by the depth-to-boiling-point curve. These characteristics result predominantly in the subsurface deposition of sulfide mineralization, with E Diamante being the exception.

de Ronde, C. E.; Hein, J. R.; Embley, R. W.; Stern, R. J.

2004-12-01

125

Hydrothermal processes at Mount Rainier, Washington  

SciTech Connect

Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

Frank, D.G.

1985-01-01

126

When water does not boil at the boiling point.  

PubMed

Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers. PMID:17336380

Chang, Hasok

2007-03-01

127

Film boiling of mercury droplets  

NASA Technical Reports Server (NTRS)

Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

1975-01-01

128

Patterns in Global Hydrothermal  

E-print Network

) High-T vents High = hydrothermal discharge Low = active or inactive discharge sites B. Davy, GNS NZ #12Patterns in Global Hydrothermal Activity noaa ocean exploration Presenter: Edward T. Baker #12;First vents discovered in the S Atl. First hi-T vents discovered on ultra-slow ridge Eruption discovered

129

Hydrothermal Liquefaction of Biomass  

Microsoft Academic Search

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically

Douglas C

2010-01-01

130

Film boiling on spheres in single- and two-phase flows.  

SciTech Connect

Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

Liu, C.; Theofanous, T. G.

2000-08-29

131

F-LE Boiling Water  

NSDL National Science Digital Library

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a table showing the approximate boiling point of water at different elevations: Elevation (meters above sea level)Boiling Point (degrees Celsi...

132

Heater size and heater aspect ratio effects on subcooled pool boiling heat transfer in low-g  

E-print Network

as one of the primary obsta- cles to implementation of high efficiency Rankine cycle based power aspect ratio was varied by selectively powering 2 · 2, 2 · 4, 2 · 6, 2 · 8, and 2 · 10 arrays of heaters circuitry was used to maintain an isothermal boundary condition on the heater surface while the power

Kim, Jungho

133

Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests  

NASA Technical Reports Server (NTRS)

Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

1998-01-01

134

Recent Hydrothermal Systems  

NASA Astrophysics Data System (ADS)

The investigation of recent hydrothermal systems, especially the understanding of their development and structure, is one of the main fields of application of reactive transport simulation models. The aim of numerical studies of recent hydrothermal systems is to set-up or evaluate conceptual models of geothermal areas which are able to describe the processes of fluid flow and heat transfer as well as to explain the formation of observed alteration products. This is the preliminary stage to the application of reactive transport simulation for reservoir management (compare Chap. 7) where evaluated models are used for parameter estimation in response to the exploitation of a hydrothermal system. Within the first part of this chapter typical, currently published numerical studies of recent hydrothermal systems are summarized. The published case studies describe sophisticated numerical simulations contributing new insights to the understanding of the structure and development of hydrothermal systems. The following second part is a detailed case study of the shallow hydrothermal system of Waiwera (New Zealand). The case study evaluates the proposed conceptual model of the geothermal field and the derived natural state is used for history matching of the exploitation since 1863. Under consideration of the current conditions reservoir development is estimated until the year 2018.

Kühn, Michael

135

On optimum interstage pressure for two-stage and mechanical-subcooling vapor-compression refrigeration cycles  

Microsoft Academic Search

The objective of the present study is to demonstrate that the optimum interstage pressure for a two-stage refrigeration system can be approximated by the saturation pressure corresponding to the arithmetic mean of the condensing and evaporating temperatures. It is also shown that the optimum performance of a refrigeration system with mechanical sub-cooling occurred when the subcooler compressor (saturation suction) temperature

S. M. Zubair; S. H. Khan

1995-01-01

136

Acoustically enhanced boiling heat transfer  

NASA Astrophysics Data System (ADS)

An acoustic field generated by a light-weight, low-power acoustic driver is shown to increase the critical heat flux during pool boiling by about 17%. It does this by facilitating the removal of vapor bubbles from the heated surface and suppressing the instability that leads to the transition to film boiling at the critical heat flux. Bubble removal is enhanced because the acoustic field induces capillary waves on the surface of a vapor bubble that interact with the bubble contact line on the heated surface causing the contact line to contract and detach the bubble from the surface. The acoustic field also produces a radiation pressure that helps to facilitate the bubble detachment process and also suppresses the transition to film boiling. The mechanisms associated with these interactions are explored using three different experimental setups with acoustic forcing: an air bubble on the underside of a horizontal surface, a single vapor bubble on the top side of a horizontal heated surface, and pool boiling from a horizontal heated surface. Measurements of the capillary waves induced on the bubbles, bubble motion, and heat transfer from the heated surface were performed to isolate and identify the dominant forces involved in these acoustically forced motions.

Douglas, Zachary; Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

2012-05-01

137

Orientation and related buoyancy effects in low-velocity flow boiling.  

PubMed

This work is an extension of experimental results reported previously, which might provide design guidance for approximating certain aspects of the flow boiling process in microgravity but taking place in Earth gravity. In that research the buoyancy effects on the bubble dynamics were minimized by the imposition of a liquid velocity parallel to a flat heater surface in the inverted horizontal position, or nearly horizontal (within +/-5 degrees ), thus holding the heated liquid and vapor formed close to the heater surface. For the fluid used, liquid velocities in the range U= 5-10 cm/s were judged to be critical for changes in the behavior of the flow boiling process. Using the hydraulic diameter of the rectangular duct used, with the heater surface embedded in one side, this velocity range gives rise to flow Reynolds numbers on the order of 4400-8800. It was subsequently judged to be of interest to extend the range of orientation of the flat heater surface relative to gravity to the full circular range of 0-360 degrees, in increments of 45 degrees, and the results of this work are presented here. A solid massive copper heater with a gold-plated boiling heat transfer surface 19 x 38 mm in size, previously used for critical heat flux measurements with boiling, provided a near-uniform surface temperature. Only steady measurements of heat flux and surface temperature were possible with the copper heater. R-113 was the fluid used; the velocity was varied over the interval of 4-28 cm/s; bulk liquid subcooling was varied over 5-11 degrees C; and heat flux varied over 0-10 w/cm(2). PMID:19426318

Merte, Herman; Schultz, William W; Liu, Quanyi; Keller, Robert B

2009-04-01

138

Computations of Boiling in Microgravity  

NASA Technical Reports Server (NTRS)

The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on computing instabilities on bubble surfaces as bubbles grow, and on quantifying the effects of both these phenomena on heat transfer; and 2) Examination of the effect of shear flow on bubble growth and heat transfer.

Tryggvason, Gretar; Jacqmin, David

1999-01-01

139

Hydrothermal Reactivity of Amines  

NASA Astrophysics Data System (ADS)

The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-?-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.

Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

2013-12-01

140

The International Boiling Point Project  

NSDL National Science Digital Library

Between September 13 and December 10, 1999, the Center for Improved Engineering and Science Education (CIESE) at the Stevens Institute of Technology in Hoboken, New Jersey invites students and adults from all over the world to participate in The International Boiling Point Project. "The purpose of this project is to discover which factor in the experiment (room temperature, elevation, volume of water, or heating device) has the greatest influence on boiling point." Students, entire classes, or anyone else interested in participation must register beforehand via an online form. Data submitted online are posted at the site. The deadline for submitting data to be included in the final database is November 19, 1999. The project is an excellent forum for engaging students in the process of simple experimentation and data collection.

141

Transient Heat Transport in Subcooled He II Associated with JT Effect  

Microsoft Academic Search

Transient heat transport in subcooled He II has been investigated in a 1 m long rectangular channel with distributed contractions: one-closed end has a heater, while the other end is open to the He II bath. Experiments were conducted applying heat pulses and recording the temperature profile with seven Allan Bradley resistors placed along the channel. Cernox sensor was indium

R. Maekawa; A. Iwamoto; S. Hamaguchi

2004-01-01

142

Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons  

E-print Network

Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures and liquid vapor pressures from T ) 298.15 K to T ) 510 K of a series of polyaromatic hydrocarbons have been of a thermochemical cycle, and agreement is within the combined experimental uncertainties. Vapor pressures

Chickos, James S.

143

Initiation of water hammer in horizontal or nearly-horizontal pipes containing steam and subcooled water  

NASA Astrophysics Data System (ADS)

Water slug formation in a stratified countercurrent flow of steam and subcooled water in a horizontal or nearly horizontal pipe which traps a large steam bubble which then collapses rapidly and causes a water hammer is discussed. This water hammer initiating mechanism was studied.

1983-02-01

144

1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer  

NASA Astrophysics Data System (ADS)

A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.

Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.

2002-05-01

145

D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler  

SciTech Connect

Included in this engineering note are three separate calculation divisions. The first calculations are the determination of the required thickness of the LN{sub 2} subcooler flat head according to ASME code. This section includes Appendix A-C. The minimum plate thickness determined was 0.563 in. The actual thickness chosen in fabrication was a 3/4-inch plate milled to 0.594-inch at the bolt circle. Along with the plate thickness, this section calculates the required reinforcement area at the top plate penetrations. It was found that a 1/4-inch fillet weld at each penetration was adequate. The next set of calculations were done to prove that the subcooler internal pressure will always be less than 15 psig and therefore will not be classified as a pressure vessel. The subcooler is always open to a vent pipe. Appendix D calculations show that the vent pipe has a capacity of 1042 lbs/hr if 15 psig is present at the subcooler. It goes on to show that the inlet piping would at that flow rate, see a pressure drop of 104 psig. The maximum supply pressure of the LN{sub 2} storage dewar is 50 psig. Appendix E addresses required flow rates for steady state, loss of vacuum, or fire conditions. Page E9 shows a summary which states the maximum pressure would be 1.50 psig at fire conditions and internal pressure.

Kuwazaki, Andrew; Leicht, Todd; /Fermilab

1995-10-04

146

CFD simulation of steam jet-induced thermal mixing in subcooled water pool  

Microsoft Academic Search

This study examined the IRWST thermal mixing phenomena induced by a steam jet in a subcooled water pool. Due to the limitation of the current CFD code to simulate condensation, the steam condensation region model was developed to evaluate the thermal mixing phenomena. Within this region, all the steam was condensed into water, and the steam mass and energy inputs

Young-Tae Moon; Hee-Do Lee; Goon-Cherl Park

2009-01-01

147

A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles  

SciTech Connect

In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs.

Nelson, R.A.; Unal, C.

1991-01-01

148

Models and Stability Analysis of Boiling Water Reactors  

SciTech Connect

We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the U.S. NRC requirement of DR is not rigorously satisfied in the low-flow/high-power region; hence, this region should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced. Moreover, the simulation frequency of 0.5Hz determined in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal neutron kinetics equations results in growing nonlinear oscillations.

John Dorning

2002-04-15

149

Sub-cooled liquid helium flow supply for design D magnet cooling at MDTF. [Magnet Development and Test Facility  

SciTech Connect

The parameters of the subcooled 4ATM helium flow from MTDF refrigerator and helium subcooler proposed to cool the SSC Design 'D' magnet is discussed. The system operating parameters are pressure - 4ATM and temperature - 4.35K. The higher than normal operating pressure is obtained by shutting down the cold turbine (T2) of MTDF refrigerator, and then not J-T the high pressure dense helium gas until after the magnet and liquid return line. The resultant helium temperature at the refrigerator outlet is described and the heat transfer tube length of the subcooler required to cool the flow to the ultimate desired temperature is evaluated.

Ohmori, T.

1986-07-01

150

Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California  

SciTech Connect

The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

Lofgren, B.E. (Benjamin E Lofgren and Associates, Sacramento, CA (USA))

1990-05-01

151

Boils  

MedlinePLUS

... 2/2017 2017 AOCD Spring Current Concepts in Dermatology Meeting more Latest News 6/9/2014 Medicare Complaint Form 4/3/2014 The Burning Truth 12/19/2013 Osteopathic Training Statement 7/2/2013 The Truth About Tanning 4/24/2013 Sun Safety IQ Online Surveys About AOCD The AOCD was recognized in ...

152

An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels  

NASA Astrophysics Data System (ADS)

In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.

Trujillo, Abraham Gerardo

153

On optimum interstage pressure for two-stage and mechanical-subcooling vapor-compression refrigeration cycles  

SciTech Connect

The objective of the present study is to demonstrate that the optimum interstage pressure for a two-stage refrigeration system can be approximated by the saturation pressure corresponding to the arithmetic mean of the condensing and evaporating temperatures. It is also shown that the optimum performance of a refrigeration system with mechanical sub-cooling occurred when the subcooler compressor (saturation suction) temperature corresponds to the arithmetic mean of the condensing and evaporating temperatures.

Zubair, S.M.; Khan, S.H. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

1995-02-01

154

The effect of refrigerant combinations on performance of a vapor compression refrigeration system with dedicated mechanical sub-cooling  

Microsoft Academic Search

Performance characteristics due to use of different refrigerant combinations in vapor compression cycles with dedicated mechanical sub-cooling are investigated. For scratch designs, R134a used in both cycles produced the best results in terms of COP, COP gain and relative compressor sizing. In retrofit cases, considering the high sensitivity of COP to the relative size of heat exchangers in the sub-cooler

Bilal Ahmed Qureshi; Syed M. Zubair

155

Enhancement of Pool Boiling Heat Transfer in Confined Space  

E-print Network

Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

Hsu, Chia-Hsiang

2014-05-05

156

Boiling Point Detector for Surface Cooking Unit  

Microsoft Academic Search

The new type of boiling point detector is discussed which detects the boiling point of water in a container irrespective of the volume of water or the type of container. This detector consists of the sensor unit using a thermistor and the signal processor unit using a one-chip 4-b microcomputer. The sensor unit is covered with a stainless casing. It

Haruo Terai; Yasumichi Kobayashi; Shigeharu Nakamoto

1984-01-01

157

AN ATOMIZATION MODEL FOR FLASH BOILING SPRAYS  

Microsoft Academic Search

This paper presents an atomization model for sprays under flash boiling conditions. The automization is represented by the secondary breakup of a bubble\\/droplet system, and the breakup is considered as the result of two competing mechanisms: aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from a pintle injector under flash boiling

YANGBING ZENG; CHIA-FON F. LEE

2001-01-01

158

Boiling nucleation during liquid flow in microchannels  

Microsoft Academic Search

The boiling of liquids in microchannels\\/microstructures is currently of great interest due to its very unusual phenomena and its many potential applications in a wide variety of advanced technologies. The thermodynamic aspects of phase transformations of liquids in microchannels was analyzed to further understand the boiling characteristics and to determine the conditions under which a portion of such liquids is

X. F. Peng; H. Y. Hu; B. X. Wang

1998-01-01

159

Microgravity Heat Transfer in Flow Boiling  

Microsoft Academic Search

To investigate flow boiling in microgravity, test sections of transparent heated tube and transparent heating surface were developed, and heat transfer characteristics were directly related to the liquid–vapor behaviors observed. The experiments were performed on board aircraft where the boiling system was exposed in series to normal, hyper and reduced gravity fields along a parabolic trajectory. In the experiments using

Haruhiko Ohta

2003-01-01

160

Pool Boiling Experiment Has Successful Flights  

NASA Technical Reports Server (NTRS)

The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

1996-01-01

161

Pool Boiling Experiment Has Five Successful Flights  

NASA Technical Reports Server (NTRS)

The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

Chiaramonte, Fran

1997-01-01

162

Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice  

NASA Technical Reports Server (NTRS)

Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

Simoneau, R. J.

1975-01-01

163

Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components  

E-print Network

We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

Anastasiya V. Pimenova; Denis S. Goldobin

2014-10-20

164

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10

165

Subcooling Effects for Flooding Experiments with Steam and Water in a Large Diameter Vertical Tube  

E-print Network

to the amount of ECC penetration. f = e N p J f;in (2.9) Again, an analogy can be deduced from the Wallis parameters to the Kutate- ladze parameters to illustrate the dependence of ooding on the amount of water subcooling [12]. [Kg f( cp hfg )( f... and the Wallis Correlation : : : : : : : : : : : : : 5 2.2 The Kutateladze Correlation : : : : : : : : : : : : : : : : : : : : : : : 6 2.3 Steam and Water Flooding Tests : : : : : : : : : : : : : : : : : : : : 9 2.4 Flooding Mechanisms...

Cullum, Wes

2012-10-19

166

Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer  

SciTech Connect

Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

Johnston, Joseph E.; Selvam, R. P. [Power Electronics Leveling Solutions LLC, 700 Research Boulevard, Fayetteville, AR 72701 (United States); Bell 4190 University of Arkansas, Fayetteville, AR 72701 (United States); Silk, Eric A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2008-01-21

167

An experimental study of subcooled choked flow through steam generator tube cracks  

NASA Astrophysics Data System (ADS)

The Work conducted in this Research involved the simulation of Pressurized Water Reactor Conditions of Steam Generators to study the complex phenomenon of Subcooled Choked Flow or two-phase critical flow that occurs when water leaks from the primary side of a steam generator into the secondary side, thus making it highly relevant to Reactor Safety and Probabilistic Risk assessment methods. Slits of small L/D ratio were manufactured and tested on the Facility for Leak Rate Testing at pressures (6.89 MPa) and high temperatures (280°C) relevant to Pressurized Water Reactors over a range of subcooling. Small flow channel length was used (1.3mm) equivalent to steam generator tube thickness with the study of a variety of geometries with differences in surface roughness. Unique to literature, the samples had very small L/Ds and the study was a controlled parametric study of choked flow. The effect of L/D was examined, compared to recent studies conducted at Purdue University by Wolf and Revankar while contrasting with others in literature. Analytical models were applied highlighting the importance of non-equilibrium effects and contrasted with other studies of different L/Ds. RELAP5, a well developed code widely utilized in industry was studied to analyze its predictive capabilities and conditions for best estimate. L/D effects on mass fluxes were studied and it was observed that mass fluxes were affected to a very small degree by subcooling.

Vadlamani, Ram Anand

168

Hydrothermal alteration and evolution of the Ohakuri hydrothermal system, Taupo volcanic zone, New Zealand  

NASA Astrophysics Data System (ADS)

Erosion and excavations at Ohakuri in the Taupo Volcanic zone have exposed the upper portion (100-150 m) of a hydrothermal system that was active sometime between 700,000 and 160,000 years ago. Extensive hydrothermal alteration occurred within a host sequence of young, relatively undeformed, chemically and lithologically similar unwelded rhyolitic ignimbrite and air-fall tuffs. Mapping and petrologic work have identified six distinct alteration types. An early event formed a concentrically zoned suite of alteration through the pervasive movement of alkaline chloride type water. In the innermost zone, primary rock components were almost entirely converted to quartz + adularia ± illite ± hematite ± leucoxene. Mineralized veins and breccias of quartz ± pyrite ± adularia ± chlorite formed here in response to episodic hydraulic fracturing. This zone grades outward and upward into a zone of less intense, lower rank alteration with a mordenite + clinoptilolite + smectite + opal ± hematite assemblage, then a zone of weak clay alteration and into fresh rock. Calcite is conspicuously absent from the entire suite. Acid-sulphate type water, formed from steam-condensate, dominated the shallow activity in a second stage of alteration that followed local erosion. Widespread but discontinuous alteration converted the ignimbrite to kaolinite + opal ± hematite, with alunite occurring in the more intense zones. This alteration locally overprints the early alkali-chloride produced suite, but the focus of the second-stage activity was north of the focus of the older event. Scattered opaline sinters and silicified surficial deposits are products of either still later activity or the waning part of the second stage. Chemical analysis shows that the various alteration types have characteristic patterns of major element addition and removal; these reflect the key hydrothermal mineral reactions that formed the new assemblages. Quartz-adularia alteration involved mainly silicification, dehydration and cation exchange (K + for Na 2+, H +, Ca 2+, Mg 2+), whereas alteration in the mordenite zone was mostly a moderate hydration process. Kaolinite alteration involved strong hydration, hydrolysis and redistribution of silica. Trace elements show varying degrees of mobility and correlation with major elements. Alteration features identify the important upflow zones, zones of mixing between hydrothermal and shallow groundwater, and changes in alkali chloride water level. They also reflect a transition from diffuse to channel flow as sealing eliminated original rock porosity, and led to hydraulic fracturing which maintained fracture permeability in the system. Mineralogy and fluid inclusion studies indicate that the primary fluid at now-exposed levels was a high-pH (7-8), low-CO 2 and low-H 2S water cooler than 200°C, probably modified by boiling at depth.

Henneberger, R. C.; Browne, P. R. L.

1988-05-01

169

Geology and hydrothermal resources in the northern Lake Abaya area (Ethiopia)  

NASA Astrophysics Data System (ADS)

The northern Lake Abaya area located in the southern part of the Main Ethiopian Rift (MER) evidently contains an advective hydrothermal system. Regional extensional tectonics and subsidence that began in Late Miocene was followed by rift margin rhyolitic volcanism which produced extensive ignimbrite succession and rift shoulder trachytic volcanism in Pliocene. The extensional axis of the MER became the locus of volcanic activity in the Quaternary with bimodal basalt - rhyolitic volcanic products in the rift floor. Shallow crustal magma chambers feeding the axial volcanic complexes provide heat for the hydrothermal system which reside in Tertiary volcanic succession and is capped by lacustrine and volcanoclastic graben infill sediments. Duguna Fango rhyolitic volcanic complex which has extruded as much volume of volcanic products as all the other felsic centers put together is the most important heat source for the hydrothermal system and related manifestations. The closed drainage basin centered at Lake Abaya with adjacent plateau receiving over 1500 mm annual precipitation maintains a stable recharge for the prevailing hydrothermal system. Regional ground water flow direction is to the southwest following Bilate River which is the major river draining into the lake flowing parallel to the major NNE-SSW structural pattern of MER. Analyses of remote sensing data provided some insight into how the structural fabric had a control on the distribution of the groups of hydrothermal manifestations identified as hydrothermal fields. Thermal infrared image showed distinct thermal signature over the rift floor where hydrothermal fields are situated as compared to the plateau and areas covered by the cap-rock. A hydrothermal field around Duguna Fango volcanic complex has volcanological favorable setting despite lower inferred reservoir equilibrium geothermometer temperatures on the thermal springs. About 30 km to the south two other hydrothermal fields are located at a latitudinal distance of less than 15 km between each other. The near boiling point spring #6 of Northwest Abaya discharge mature water with highest geothermal fluid - host rock equilibrium geothermometer temperatures which together with a nearby fumarolic activity may be explained as an outflow. Across Chewkare graben the Bolcho and northeast Abaya hydrothermal fields located between Bilate and Gidabo rivers geochemically appear to be from a different high-enthalpy geothermal reservoir probably related to the cluster of felsic volcanic centers such as Chericho, Kilisa, Donga and Werencha. The high temperature springs indicate the existence of at least two geochemically distinct hydrothermal reservoirs in the study area. It remains to be proven weather an up-flow of an advective hydrothermal system centered to the north around Duguna Fango have long distance concealed out flows to the south on the northern shores of Lake Abaya which is the hydrologic depocenter.

Chernet, Tadiwos

2011-09-01

170

Acoustically Enhanced Boiling Heat Transfer  

E-print Network

An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

Z. W. Douglas; M. K. Smith; A. Glezer

2008-01-07

171

Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)  

NASA Technical Reports Server (NTRS)

Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.

Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.

1998-01-01

172

Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere  

NASA Astrophysics Data System (ADS)

Hydrothermal eruptions have occurred in many hot water geothermal fields. This paper concentrates on examples from New Zealand but also mentions others elsewhere, which demonstrate points of particular interest. Numerous small eruptions (maximum focal depths of about 90 m) have occurred in historic times (past 150 years) at Wairakei/Tauhara, Rotorua, Tikitere, Ngatamariki, Mokai and Waimangu. The presence of breccia deposits shows that much larger (with estimated maximum focal depths of about 450 m), prehistoric hydrothermal eruptions have also occurred at Kawerau, Wairakei, Tikitere, Orakeikorako, Te Kopia, Rotokawa and Waiotapu. One of the largest known hydrothermal eruptions in New Zealand took place at Rotokawa 6060±60 years ago; this produced a deposit that extended over an area with a diameter of 4 km, and has a maximum thickness of 11 m. Deposits from hydrothermal eruptions are typically very poorly sorted, matrix-supported, and may contain hydrothermally altered clasts that derive from within the geothermal reservoir. Their lithologies and alteration mineralogies are useful guides to subsurface conditions. Hydrothermal eruptions do not require any direct input of either mass or energy derived directly from a magma and, thus, differ from both phreatic and phreatomagmatic eruptions. Many hydrothermal eruptions in a hot water field start very close to the ground surface and result from the rapid formation of steam due to a sudden pressure reduction. This steam provides the energy necessary to brecciate, lift and eject fragments of the host rocks as a flashing front descends and water nearby in the reservoir boils. A rock brecciation zone accompanies this front, and both precede the descent of the eruption surface. A hydrothermal eruption continues until the steam is produced too slowly to lift the brecciated rocks. There is no genetic difference between the small eruptions induced by exploitation and those which occur as a geothermal system evolves naturally and whose effects may penetrate to much greater depths. Hydrothermal eruptions do not need the presence of either field-wide cap rocks or pressures within a reservoir that exceed that provided by a hydrostatic column of water very close to its boiling temperature.

Browne, P. R. L.; Lawless, J. V.

2001-02-01

173

Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants  

NASA Astrophysics Data System (ADS)

The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

Yoshida, Suguru; Fujita, Yasunobu

174

Hydrothermal processes at seafloor spreading centers,  

SciTech Connect

This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

Sleep, N.H.

1983-01-01

175

nanotubes via hydrothermal method  

NASA Astrophysics Data System (ADS)

Red long-lasting phosphor Y2O2S:Eu3+, Zn2+, Ti4+ nanotubes were prepared by hydrothermal method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence and thermoluminescence spectra (TL) were used to characterize the long-lasting phosphor. XRD investigation revealed that the product synthesised under 750 °C for 6 h was a pure phase of Y2O2S. SEM observation showed that the sulfuretted phosphor inherited the tube-like shape from the precursor. Under 325 nm UV excitation, the result indicated the strongest red-emission lines at 627 nm, corresponded to the transition from 5D0 to 7F2 level of Eu3+ ion. Both the afterglow decay curves and TL curves revealed that the phosphor had efficient luminescent and excellent long-lasting properties.

Huang, Ping; Liu, Dan; Cui, Cai E.; Wang, Lei; Jiang, Guowei

2014-08-01

176

Experiments on microgravity boiling heat transfer by using transparent heaters  

Microsoft Academic Search

To clarify the relation between the liquid–vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling and pool boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation

H Ohta

1997-01-01

177

Description of boiling project burnout detector  

E-print Network

Introduction: In order to effectively utilize the high heat flux available through the mechanism of nucleate boiling in forced convection heat transfer, it is of primary importance that the maximum flux or "burnout" ...

Raymond, M. W.

1957-01-01

178

Pool boiling heat transfer characteristics of nanofluids  

E-print Network

Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2007-01-01

179

Nucleate boiling bubble growth and departure  

E-print Network

The vapor bubble formation on the heating surface during pool boiling has been studied experimentally. Experiments were made at the atmospheric pressure 28 psi and 40 psi, using degassed distilled water and ethanol. The ...

Staniszewski, Bogumil E.

1959-01-01

180

Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores  

USGS Publications Warehouse

Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

1990-01-01

181

Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States  

USGS Publications Warehouse

Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, W.C.

2014-01-01

182

A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions  

NASA Technical Reports Server (NTRS)

Experimental studies of growth and detachment processes of a single bubble and multiple bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft. Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was designed and built. Artificial cavities of diameters 10 microns, 7 microns and 4 microns were made on a thin polished Silicon wafer that was electrically heated by a number of small heating elements on the back side in order to control the surface superheat. Bubble growth period, bubble size and shape from nucleation to departure were measured under subcooled and saturation conditions. Significantly larger bubble departure diameters and bubble growth periods than those at earth normal gravity were observed. Bubble departure diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3 mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that the bubble departure diameter can be approximately related to the gravity level through the relation D(sub d) proportional 1/g(exp 1/2). For water,the effect of wall superheat and liquid subcooling on bubble departure diameter is found to be small.The growth periods are found to be very sensitive to liquid subcooling at a given wall superheat. However,the preliminary results of single bubble dynamics using PF5060 showed that the departure diameter increases when wall superheat is elevated at the same gravity and subcooling. Growth period of single bubbles in water has been found to vary as t(sub g) proportional g(exp -.93). For water, when the magnitude of horizontal gravitational components was comparable to that of gravity normal to the surface, single bubbles slid along the heater surface and departed with smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a very small horizontal gravitational component caused the sliding of bubble along the surface. The numerical simulation has been carried out by solving under the condition of axisymmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the model the contribution of micro-layer has been included and instantaneous shape of the evolving vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The numerical simulations are in good agreement with the experimental data for both the departure diameters and the growth periods. In the study on dynamics of multiple bubbles, horizontal merger of 2,3 4,and 5 bubbles was observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached bubble is smaller than that of a single bubble departing at the same gravity level. During and after bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type bubbles. The experimental and numerical studies conducted so far have brought us a step closer to prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space flight are continuing.

Dhir, V. K.; Hasan, M. M.

2000-01-01

183

Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient  

NASA Astrophysics Data System (ADS)

Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.

Woo, Kyoungsuk

184

Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields  

NASA Technical Reports Server (NTRS)

In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a test cell was developed. All four vertical walls of the test cell are transparent, and they allow transillumination with laser light for visualization experiments by HI. The bottom electrode is a copper cylinder, which is electrically grounded. The copper block is heated with a resistive heater and it is equipped with 6 thermocouples that provide reference temperatures for the measurements with HI. The top electrode is a mesh electrode. Bubbles are injected with a syringe into the test cell through the bottom electrode. The working fluids presently used in the interferometric visualization experiments, water and PF 5052, satisfy requirements regarding thermophysical, optical and electrical properties. A 30kV power supply equipped with a voltmeter allows to apply the electric field to the electrodes during the experiments. The magnitude of the applied voltage can be adjusted either manually or through the LabVIEW data acquisition and control system connected to a PC. Temperatures of the heated block are recorded using type-T thermocouples, whose output is read by a data acquisition system. Images of the bubbles are recorded with 35mm photographic and 16mm high-speed cameras, scanned and analyzed using various software packages. Visualized temperature fields HI allows the visualization of temperature fields in the vicinity of bubbles during boiling in the form of fringes. Typical visualized temperature distributions around the air bubbles injected into the thermal boundary layer in PF5052 are shown. The temperature of the heated surface is 35 C. The temperature difference for a pair of fringes is approximately 0.05 C. The heat flux applied to the bottom surface is moderate, and the fringe patterns are regular. In the image a bubble penetrating the thermal boundary layer is visible. Because of the axial symmetry of the problem, simplified reconstruction techniques can be applied to recover the temperature field. The thermal plume developing above the heated surface for more intensive heating is shown. The temperature distribution in the liquid is clearly 3D, and

Herman, Cila

1999-01-01

185

Thermal-hydraulic instabilities in pressure tube graphite-moderated boiling water reactors  

SciTech Connect

Thermally induced two-phase instabilities in non-uniformly heated boiling charmers in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to {minus}150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

Tsiklauri, G.; Schmitt, B.

1995-09-01

186

Experimental studies of adiabatic flow boiling in fractal-like branching microchannels  

SciTech Connect

Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2{sup -1/2}. There are four branching sections for a total flow length of 18 mm, a channel height of 150 {mu}m and a terminal channel width of 100 {mu}m. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large. (author)

Daniels, Brian J.; Liburdy, James A.; Pence, Deborah V. [Mechanical Engineering, Oregon State University, Corvallis, OR 97330 (United States)

2011-01-15

187

Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel  

SciTech Connect

This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m{sup 2}s, heat fluxes from 2.3 kW/m{sup 2} to 250 kW/m{sup 2} at T{sub sat} = 31 C and {delta}T{sub sub} from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research. (author)

Ong, Chin L.; Thome, John R. [Laboratory of Heat and Mass Transfer (LTCM), Ecole Polytechnique Federale de Lausanne (EPFL), ME G0 520 ME Station 9, Lausanne CH 1015 (Switzerland)

2009-04-15

188

A two-dimensional model for boiling in an active particle bed: BOIL  

Microsoft Academic Search

In order to model two-dimensional boiling in an active particle bed, a two dimensional, steady state, isothermal model was assembled, starting from the mass, momentum, and energy conservation laws. The momentum balance includes capillary and gravity effects and two phase flow pressure losses. This physical description is translated into a mathematical model and implemented as a numerical code, BOIL, using

P. H. Theunissen; J. M. Buchlin

1984-01-01

189

Outline of Pool Boiling Experiment for Nucleate Boiling Heat Transfer by Aircraft Experiment  

Microsoft Academic Search

Investigation of mechanisms in nucleate boiling in microgravity is essential for the development of high efficiency thermal management systems in space. A transparent heating surface with multiple arrays of 88 thin film temperature sensors and mini-heaters was developed for the clarification of boiling heat transfer mechanisms in microgravity through the study of the relation between local heat transfer coefficients and

Oleg Kabov; Queeckers Patrick; Sergey Chikov; Yusuke Kotani; Yoshino Sakata; Yuka Asada; Tadashi Nagayasu; Yoichi Sato; Yasuhisa Shinmoto; Osamu Kawanami; Haruhiko Ohta

2009-01-01

190

Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications  

USGS Publications Warehouse

The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

Hemley, J.J.; Hunt, J.P.

1992-01-01

191

Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation.  

PubMed

Subcritical water, that is, water above the boiling and below critical point, is a unique and sustainable reaction medium. Based on its solvent properties, in combination with the often considerable intrinsic water content of natural biomass, it is often considered as a potential solvent for biomass processing. Current knowledge on biomass transformation in subcritical water is, however, still rather scattered without providing a consistent picture. Concentrating on fundamental physical and chemical aspects, this review summarizes the current state of knowledge of hydrothermal biomass conversion in subcritical water. After briefly introducing subcritical water as a reaction medium, its advantages for biomass processing compared to other thermal processes are highlighted. Subsequently, the physical-chemical properties of subcritical water are discussed in the light of their impact on the occurring chemical reactions. The influence of major operational parameters, including temperature, pressure, and reactant concentration on hydrothermal biomass transformation processes are illustrated for selected carbohydrates. Major emphasis is put on the nature of the carbohydrate monomers, since the conversion of the respective polymers is analogous with the additional prior step of hydrolytic depolymerization. PMID:21322117

Möller, Maria; Nilges, Peter; Harnisch, Falk; Schröder, Uwe

2011-05-23

192

Anomaly Geochemical Fields in Siberian Hydrothermal Gold Deposits  

NASA Astrophysics Data System (ADS)

The composition and internal structure of geochemical fields associated to hydrothermal gold deposits within the Siberian territory were investigated. The concentric zonal structure of ore-forming geochemical fields embracing accumulations of Au, Ag, Bi, Pb, Zn, Cu, Te, As in ore bodies and their adjacent locations, and Ni, Co, V, Cr, Mn, Ba, Ti - within the external margin of gold ore formations were determined. The thermometric properties of gas-fluid inclusions in minerals of hydrothermal gold deposits were described. The results specified not only high-mineralized but also weakly-salted fluids are involved in the formation of the deposit. The latter is subjected to both retrogressive boiling and the mechanisms of direct and reverse osmosis. In this case, ascending and descending fluids produce eddy fluxes during Earth rotation, where minerals of different composition are formed in this flow path. Produced spiral mineral-geochemical fields can be observed on satellite images as hierarchy circular pattern system. Both the analysis of anomalous geochemical field structure and satellite images make it possible to predict the ore bodies of different grades in complicated landscape geological conditions.

Voroshilov, V.; Savinova, O.; Ananev, Yu; Abramova, R.

2014-08-01

193

Enhancements of Nucleate Boiling Under Microgravity Conditions  

NASA Technical Reports Server (NTRS)

This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

Zhang, Nengli; Chao, David F.; Yang, W. J.

2000-01-01

194

Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (Freon-113) for vertical constant heat flux surfaces  

SciTech Connect

Experiments were done using subcooled Freon-113 sprayed vertically downward. Local and average heat transfers were investigated fro Freon-113 sprays with 40 C subcooling, droplet sizes 200-1250{mu}m, and droplet breakup velocities 5-29 m/s. Full-cone type nozzles were used to generate the spray. Test assemblies consisted of 1 to 6 7.62 cm vertical constant heat flux surfaces parallel with each other and aligned horizontally. Distance between heated surfaces was varied from 6.35 to 76.2 mm. Steady state heat fluxes as high as 13 W/cm{sup 2} were achieved. Dependence on the surface distance from axial centerline of the spray was found. For surfaces sufficiently removed from centerline, local and average heat transfers were identical and correlated by a power relation of the form seen for normal-impact sprays which involves the Weber number, a nondimensionalized temperature difference, and a mass flux parameter. For surfaces closer to centerline, the local heat transfer depended on vertical location on the surface while the average heat transfer was described by a semi-log correlation involving the same parameters. The heat transfer was independent of the distance (gap) between the heated surfaces for the gaps investigated.

Kendall, C.M. [Lawrence Livermore National Lab., CA (United States); Holman, J.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mechanical Engineering

1996-06-06

195

Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems  

NASA Astrophysics Data System (ADS)

We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in ?97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; ?97Mo mean = 0.35 ‰) have higher ?97Mo values than late stage (mainly 3R polytypes; ?97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower ?97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower ?97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

2014-07-01

196

Temperatures of Mediterranean Volcanic Hydrothermal Systems Reflected by Gas Geothermometry  

NASA Astrophysics Data System (ADS)

We have addressed the genetic relationship between H2, H2O, CO, CO2, n-alkanes and n-alkenes in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, Campi Flegrei and Pantelleria (all Italy). Methane attains chemical and isotopic equilibrium with CO2 in the associated hydrothermal systems within the single liquid phase. Calculated aquifer temperatures at depth are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at Campi Flegrei and ~540°C at Pantelleria. CH4-CO2 equilibrium temperatures are in agreement with propane/propene concentration ratios. Temperatures >400°C are additionally confirmed by ethane/ethene ratios. In contrast to CH4-CO2, metastable equilibration of the alkane/alkene pairs takes place in the saturated water vapor phase. Overall agreement of vapor and liquid equilibration temperatures suggests that boiling in the investigated high-enthalpy hydrothermal systems is essentially isothermal. Our results imply that the chemical and isotopic CH4-CO2 geothermometer is least prone to re-equilibration reactions occurring in the vapor phase after vapor separation. Redox conditions during these re-equilibration reactions are homogeneously buffered by H2/H2O ratios of the vapor phase, which, in turn, are controlled by those of the parental liquid phase and by the degree of superimposed vapor separation. Amongst the redox pairs investigated, CO/CO2 is most prone to secondary vapor phase equilibration. Our results imply that the isotopic CH4-CO2 geothermometer has the potential to record temperatures of aquifers associated with dormant volcanoes. Alkene/alkane and H2/H2O concentration ratios should be measured along with CH4 and CO2 to prove independently whether isotopic equilibrium has been attained.

Fiebig, J.; Tassi, F.; D'Alessandro, W.; Vaselli, O.; Woodland, A. B.

2011-12-01

197

On the evolution of convection in magmatic-hydrothermal systems  

NASA Astrophysics Data System (ADS)

Convective fluid circulation in continental magmatic-hydrothermal systems plays a fundamental role for the formation of ore deposits and geothermal systems. Two competing processes drive convection in continental magmatic-hydrothermal systems: gradients in temperature, which decrease the density of the fluid, and gradients in salinity, which increase the density of the fluid. While heat diffuses more rapidly than salt, salt is advected faster than heat and as a result, double-diffusive and double-advective instabilities can form which may lead to chaotic convection. Continental magmatic-hydrothermal systems can cover a wide PTX range (0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl). Under these condition, the presence of salt in the fluid increases the PT regime during which boiling and phase-separation into a highly compressible, low-salinity vapour phase and a slightly compressible, high-salinity brine phase take place. This process of phase-separation is thought to have a profound effect on the evolution of convection cells in continental magmatic-hydrothermal systems but has not yet been studied. In order to understand the effect of double-advective, double-diffusive convection and phase separation in continental magmatic-hydrothermal, we have combined a higher order finite element-finite volume algorithm and a new equation of state for the system H2O-NaCl which provides a realistic thermodynamic representation of the fluid properties including the wide PTX range of liquid + vapour coexistence for the highly saline fluids. This allows us to realistically model multi-phase fluid flow, energy and component transport in continental magmatic-hydrothermal systems, including fluid and rock properties that vary over many orders of magnitude and the geometric complexities of such systems. We have conducted several simulations of a continental magmatic-hydrothermal systems in which a hot, saline magmatic fluid exsolves from a crystallizing magma and is injected into the surrounding rock. In the simulations, we have successively varied the following input parameters: Depth of intrusion, rate of magmatic fluid production, temperature of magmatic fluid, salinity of magmatic fluid, and permeability structure. First results show that the combination of the rate at which magmatic fluid is produced and the permeability structure of the system have the most profound effect on the evolution of convection in continental magmatic-hydrothermal systems. High permeabilities in combination with relatively low fluid production rates (long lived fluid production) lead to an effective cooling mechanism during which temperatures rarely exceed 150 C. Only if the permeabilities are sufficiently low and the fluid production rate is sufficiently fast (short lived fluid production), convection cells can form that produce temperatures where phase separation can take place and ore deposits can form.

Geiger, S.; Driesner, T.; Heinrich, C.; Matthai, S. K.

2003-04-01

198

Boiling on Microconfigured Composite Surfaces Enhanced  

NASA Technical Reports Server (NTRS)

Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future missions.

Chao, David F.

2000-01-01

199

Hydrothermal Systems Associated with Martian Impact Craters  

Microsoft Academic Search

With widespread evidence of both heat sources and water (either liquid or solid), hydrothermal systems are likely to have existed on Mars. We model hydrothermal systems in two sizes of fresh impact craters, one simple and one complex, and find that a hydrothermal system forms on the crater floor. In the larger complex craters with a substantial melt sheet, a

Julie A. Rathbun; Steven W. Squyres

2002-01-01

200

Mathematical simulation of transient processes in a circular channel with granular layer under conditions of subcooled water boiling. Formation of pressure wave  

Microsoft Academic Search

The process of formation and growth of vapor bubbles until the instant of their merging into a vapor film is investigated\\u000a in view of actual roughness of the surface and of the dependence of activation time of the respective nucleation sites on\\u000a the surface temperature under conditions of pulsed heat release in the heater wall. A microlayer model is employed

B. G. Pokusaev; D. A. Nekrasov

2008-01-01

201

Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming  

USGS Publications Warehouse

Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

Bargar, Keith E.; Beeson, Melvin H.

1985-01-01

202

Hydrothermal Vents: Thar She Blows!  

NSDL National Science Digital Library

In this lesson students will discover how the proximity of hot magma to cold ocean water creates new rocky structures around hydrothermal vents. During this activity, students will demonstrate an understanding of how the processes that result in the formation of hydrothermal vents create new ocean floor and how the transfer of energy effects solids and liquids. This hands-on activity uses online data resources and includes: focus questions, learning objectives, teaching time, audio/visual materials needed, background information, learning procedures, evaluations, extensions, as well as resources and student handouts.

203

On the theory of the conversion of metallic mixed phases. 5: Fluctuations and nucleation in sub-cooled phases  

NASA Technical Reports Server (NTRS)

A comparison is made between fluctuation-theoretical calculations and empirical results. Concentration fluctuations and the resulting separation, and the distribution function of the reversible fluctuations are approximately calculated. The relation of this distribution to the concentration-dependence of the free energy is discussed. Possible effects of fluctuations are discussed, and other attempts to explain the sub-cooling are described.

Borelius, G.

1988-01-01

204

A two-dimensional model for boiling in an active particle bed: BOIL  

NASA Astrophysics Data System (ADS)

In order to model two-dimensional boiling in an active particle bed, a two dimensional, steady state, isothermal model was assembled, starting from the mass, momentum, and energy conservation laws. The momentum balance includes capillary and gravity effects and two phase flow pressure losses. This physical description is translated into a mathematical model and implemented as a numerical code, BOIL, using an optimized numerical solving process. One and two-dimensional test cases are run to emphasize the effects of boundary conditions; heat source distribution; relative permeability laws; and Leverett function coefficient. Results allow a good level of confidence in BOIL. Two-dimensional effects of capillary forces are discussed.

Theunissen, P. H.; Buchlin, J. M.

1984-10-01

205

Hydrothermal alteration facies within the intrusive-hosted Salave gold prospect, NW Spain  

SciTech Connect

The Salave gold prospect occurs within an Hercynian granodioritic complex intruding Cambro-Ordovician metasediments and a heterogeneous gabbroic body. Mineralization consists mostly of disseminated and veinlet pyrite, arsenopyrite, molybdenite, stibnite, and lesser sphalerite associated with a zoned sequence of hydrothermal alteration. Gold occurs as free particles and/or intergrown with the sulfides. Mathematical appraisal of analytical data suggests that the hydrothermal alteration resulted from largely isochemical redistribution processes imposed on the mineralogy of the host granodiorite by influxes of sporadically boiling fluids rich in CO/sub 2/. Hydrothermal alteration is described in terms of a zonal sequence inward from unaltered host rock through (1) chlorite-sericite alteration-(2) propylitic to advanced propylitic alterations-(3)albitites-(4) an auriferous (greater than or equal to 1g/t Au) sericite-carbonate-albite-(+/-)quartz-sulfide cataclastic facies. The zonation corresponds to increasing carbonatization, sericitization, albitization, desilification, and destruction of the original igneous texture. Aventurine alteration is common and is thought to be the product of late stage hydrothermal oxidizing conditions. Potassic alteration in the form of K-feldspar or biotite was occasionally observed.

Harris, M.

1985-01-01

206

Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits  

NASA Astrophysics Data System (ADS)

Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and recent laboratory experiments [4], indicating that sulfur is the key component determining the efficiency of ore formation in porphyry-style and epithermal systems. [1] Heinrich et al. (1999) Geology [2] Guillong et al. (2008) J.Anal. At. Spectrom. [3] Seo et al. (2009) Earth Planet. Sci. Lett. in review. [4] Pokrovski et al. (2008) Earth Planet. Sci. Lett.

Seo, J.; Guillong, M.; Heinrich, C.

2009-05-01

207

The role of surface conditions in nucleate boiling  

E-print Network

Nucleation from a single cavity has been stuied indicating that cavity gemtry is aportant in two ways. The mouth diameter determines the superheat nmeded to initiate boiling and its shape determines its stability one boiling ...

Griffith, P.

1958-01-01

208

Transition boiling heat transfer from a horizontal surface  

E-print Network

An experiment, utilising a condensing fluid as the heat source, was performed to determine the heat flux vs. temperature difference curve for transition pool boiling from a horisontal surface. The boiling cure was determined ...

Berenson Paul Jerome

1960-01-01

209

Boiling and condensation in a liquid-filled enclosure  

E-print Network

A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

Bar-Cohen Avram

1971-01-01

210

An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.  

ERIC Educational Resources Information Center

Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

Goodwin, Alan; Orlik, Yuri

2000-01-01

211

Electrohydrodynamic Pool Boiling in Reduced Gravity  

NASA Technical Reports Server (NTRS)

This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

Shaw, Benjamin D.; Stahl, S. L.

1996-01-01

212

Boiling and condensing pumped loop microgravity experiment  

Microsoft Academic Search

Aircraft testing of a boiling and condensing (two-phase) pumped loop system was conducted to investigate transient induced by low gravity (Keplerian) maneuvers. The experiment, unchanged, will repeat a selected aircraft test sequence during its flight aboard a suborbital rocket. Such a test of a two-phase system has never been done. A comparison of aircraft and rocket data, particularly equilibrium conditions,

Vaughn H. Standley; Jerry F. Fairchild

1991-01-01

213

The Plausibility of Boiling Geysers on Triton  

NASA Technical Reports Server (NTRS)

A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

Duxbury, N. S.; Brown, R. H.

1995-01-01

214

Natural Convection Boiling Potassium Flow Loop  

NASA Astrophysics Data System (ADS)

The conceptual design of a natural convection boiling potassium flow loop (at the 1 gm/sec flow rate) is described. This flow loop is designed to study the effects of solute mass transport between various solid phase construction materials and the potassium working fluid as well as the effects of the boiling heat transfer coefficient on such parameters as: wetting contact angle, artificial cavity size and surface number density, viscosity, surface tension, fluid velocity, and the acceleration field (among other things). For mass transport, the equilibrium parameters (that is: Gibbs Free Energy of Formation, Enthalpy of Formation, Entropy, and activity coefficient) for each important solute species will be estimated along with the temperature dependent forward kinetic rate constants between the solid and liquid phases. For the boiling heat transfer coefficient, the effects of wall superheat and hydraulic stability will also be investigated. The natural convection boiling potassium flow loop hardware will be constructed from special stainless steels (so that vacuum operation with refractory materials is not required) and will contain appropriate oxygen getters and electrochemical cells for controlling the amount of detrimental compound oxides in the potassium melt.

Shimkevich, Alexander L.; Ivanovsky, Michael N.; Morozov, Valentine A.; Sprouse, Kenneth M.

1994-07-01

215

21 CFR 872.6710 - Boiling water sterilizer.  

Code of Federal Regulations, 2012 CFR

A boiling water sterilizer is an AC-powered device that consists of a container for boiling water. The device is intended to sterilize dental and surgical instruments by submersion in the boiling water in the container. (b) Classification. Class I (general controls). [55 FR 48439,...

2012-04-01

216

Boiling in microchannels: a review of experiment and theory  

Microsoft Academic Search

A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist

John R. Thome

2004-01-01

217

Fundamental issues related to flow boiling in minichannels and microchannels  

Microsoft Academic Search

Flow boiling in small hydraulic diameter channels is becoming increasingly important in many diverse applications. The previous studies addressing the effects of the channel size on the flow patterns, and heat transfer and pressure drop performance are reviewed in the present paper. The fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and

Satish G. Kandlikar

2002-01-01

218

Mechanism of nucleate pool boiling heat transfer to sodium and the criterion for stable boiling  

E-print Network

A comparison between liquid metals and other common fluids, like water, is made as regards to the various stages of nucleate pool boiling. It is suggested that for liquid metals the stage of building the thermal layer plays ...

Shai, Isaac

1967-01-01

219

Transition from film boiling to nucleate boiling in forced convection vertical flow  

E-print Network

The mechanism of collapse of forced cnnvection annular vertical flow film boiling, with liquid core, is investigated using liquid nitrogen at low pressures. The report includes the effect of heat flux from the buss bar. ...

Iloeje, Onwuamaeze C.

1972-01-01

220

Hydrothermal processes at seafloor spreading centers,  

SciTech Connect

This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

1983-01-01

221

Prediction of the boiling temperature and heat flux in sugar–water solutions under pool-boiling conditions  

Microsoft Academic Search

Condensing of a sugar–water solution is a widely used production process, especially in food industry. In this study, boiling\\u000a temperature and heat transfer of different concentration levels of sugar\\/water solution is experimentally studied. In the\\u000a experiment, the pool boiling with constant temperature difference between surface and boiling temperature is investigated.\\u000a Boiling point of sugar\\/water solution depends on sugar mass concentration

Mustafa Özdemir; Hüseyin Pehlivan

2008-01-01

222

Cryogenic Boil-Off Reduction System Testing  

NASA Technical Reports Server (NTRS)

Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

2014-01-01

223

Some factors affecting the metering of subcooled water with a choked venturi  

SciTech Connect

A series of experiments was performed to characterize the subcooled choking process in a convergent-divergent nozzle with a constant-area throat. The experiments were conducted in a low-pressure flow loop capable of a maximum water flow rate of 5.5 L/s with a pressure head of 300 kPa. The pressure and temperature upstream of the nozzle in the flow loop were adjusted between 90 and 300 kPa and 53 and 96/sup 0/C, respectively. The variables measured in this study of critical flow phenomena were the flow rate, upstream pressure and temperature, and the axial wall pressure profiles in the nozzle. Critical mass flow rate data were acquired along five isotherms as a function of stagnation pressure. Factors affecting metering performance are examined.

Fincke, J.R.; Collins, D.R.

1981-01-01

224

Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant  

NASA Technical Reports Server (NTRS)

Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

2007-01-01

225

Hydrothermal brecciation in the Jemez fault zone, Valles Caldera, New Mexico: Results from continental Scientific Drilling Program core hole VC-1  

NASA Astrophysics Data System (ADS)

An unusual breccia sequence penetrated in the lower 30 m of Continental Scientific Drilling Program core hole VC-1 (total depth 856 m) records a complex hydrothermal history culminating in hydraulic rock rupture and associated alteration at the edge of the Quaternary Valles caldera. The breccias, both tectonic and hydrothermal in origin, were formed in the Jemez fault zone, near the intersection of this major regional structure with the caldera's ring-fracture margin. Tectonic breccias in the sequence are contorted, crushed, and sheared. Coexisting hydrothermal breccias lack such frictional textures but display matrix flow foliation and prominent clast rounding, features characteristic of fluidization. These hydrothermal breccias were intensely altered, during at least five major stages, to quartz-illite-phengite-pyrite aggregates; traces of molybdenite occur locally. This assemblage indicates interaction with hydrothermal fluid at temperatures in excess of 200°C. The extrapolated present maximum temperature of 184°C in the breccia zone therefore represents considerable cooling since these phases were formed. Fluid inclusions in the breccias also preserve evidence of the prior passage of hotter fluids. The inclusions are principally two phase, liquid rich, secondary in origin, and concentrated in hydrothermal quartz. Older, high-salinity inclusions, unrelated to brecciation, homogenize in the temperature range 189°-246°C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize in the temperature range 230°-283°C; locally coexisting liquid- and vapor-rich inclusions document periodic boiling of the dilute fluids. These fluid-inclusion data, along with the probable age of the hydrothermal breccias (<1.5 Ma), the assumed depth at which they developed (about 515 m), and the contemporaneous state of stress (extensional) can be combined to model hydrothermal brecciation at the VC-1 site. The minimum fluid pressure (Pfr) required to hydrofracture these rocks was probably about 7.5 MPa (0.0146 MPa/m). A boiling point versus depth curve based on these Pfr values graphically defines the physical conditions prevailing when the breccias were formed. When fluid pressure at the assumed depth of brecciation exceeded that curve, in response to rapid release of confining pressure possibly augmented by renewed heating, flashing hydrothermal fluid fractured the enclosing rock. Large overpressures, most likely induced by sudden seismic cracking of a hydrothermally sealed portion of the Jemez fault zone, led to local fluidization of the resulting breccias. Late quartz veining, hydrothermal alteration, and molybdenite mineralization were probably produced by the fluids responsible for brecciation.

Hulen, Jeffrey B.; Nielson, Dennis L.

1988-06-01

226

Hydrothermal Monitoring in a Quiescent Volcanic Arc: Cascade Range, Northwestern United States  

NASA Astrophysics Data System (ADS)

Ongoing (1996-present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major-ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the U.S. Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade Range volcanic arc, from Mount Baker near the Canadian border to Mount Lassen in northern California. A concerted effort was made to develop hourly records of temperature and (or) hydrothermal solute flux spanning multiple years, suitable for comparison with other continuous geophysical monitoring data. Monitored sites included summit-fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and (or) large fluxes of magmatic CO2 or heat. As of 2009-2012 measured summit-fumarole temperatures in the Cascade Range were generally near or below the local pure-water boiling point; the maximum observed superheat was <+2.5°C at Mount Baker. Temporal variability in ground-temperature records from the summit-fumarole sites is temperature-dependent, with the hottest sites tending to show less variability. Seasonal variability in the flux of hydrothermally sourced major anions from the springs varied from essentially undetectable to a factor of 5-10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt-influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities ~>0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multi-decadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980-present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

Gelwick, K.; Randolph-Flagg, N. G.; Crankshaw, I. M.; McCulloch, C. L.; Lundstrom, E. A.; Murveit, A. M.; Bergfeld, D.; Spicer, K.; Tucker, D.; Schmidt, M. E.; Mariner, R. H.; Evans, W.; Ingebritsen, S.

2013-12-01

227

Unorthodox bubbles when boiling in cold water  

NASA Astrophysics Data System (ADS)

High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

Parker, Scott; Granick, Steve

2014-01-01

228

Enhanced Droplet Control by Transition Boiling  

PubMed Central

A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

Grounds, Alex; Still, Richard; Takashina, Kei

2012-01-01

229

Melting point, boiling point, and symmetry.  

PubMed

The relationship between the melting point of a compound and its chemical structure remains poorly understood. The melting point of a compound can be related to certain of its other physical chemical properties. The boiling point of a compound can be determined from additive constitutive properties, but the melting point can be estimated only with the aid of nonadditive constitutive parameters. The melting point of some non-hydrogen-bonding, rigid compounds can be estimated by the equation MP = 0.772 * BP + 110.8 * SIGMAL + 11.56 * ORTHO + 31.9 * EXPAN - 240.7 where MP is the melting point of the compound in Kelvin, BP is the boiling point, SIGMAL is the logarithm of the symmetry number, EXPAN is the cube of the eccentricity of the compound, and ORTHO indicates the number of groups that are ortho to another group. PMID:2235894

Abramowitz, R; Yalkowsky, S H

1990-09-01

230

Unorthodox bubbles when boiling in cold water.  

PubMed

High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70?°C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling. PMID:24580324

Parker, Scott; Granick, Steve

2014-01-01

231

High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO{sub 2} using ionic liquid as a template  

SciTech Connect

Mesoporous silicas and Fe-SiO{sub 2} with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 {sup o}C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 {sup o}C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 {sup o}C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO{sub 2} has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 {sup o}C for 12 d or steam-treated at 600 {sup o}C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO{sub 2} with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: {yields} Increasing aging temperature improved the hydrothermal stability of materials. {yields}Addition of NaF enhanced the polymerization degree of silicates. {yields} Mesoporous SiO{sub 2} and Fe-SiO{sub 2} obtained have remarkable hydrothermal stability.

Liu, Hong, E-mail: liuhong@shu.edu.c [Department of Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Wang, Mengyang [Department of Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Hu, Hongjiu [College of Science, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Liang, Yuguang; Wang, Yong; Cao, Weiran [Department of Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Wang, Xiaohong [Institute of Nano Micro Energy, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

2011-03-15

232

Boiling Point of Capillary-condensed Water  

Microsoft Academic Search

A CONSIDERABLE amount of experimental work on freezing-point depressions of capillary condensates has been reported in the literature in recent years1. Carman2 has given an account of a few more properties in which capillary-held liquids differ from the same materials in bulk conditions. Boiling points of condensates, however, do not appear to have been studied in detail. We have devised

M. L. Lakhanpal; B. R. Puri

1953-01-01

233

Biocomplexity of Frost-Boil Ecosystems  

NSDL National Science Digital Library

The NSF-funded project seeks to understand the complex linkages between biogeochemical cycles, vegetation, disturbance, and climate across the full summer temperature gradient in the Arctic. Researchers examine the complexity associated with self-organization in frost-boil, complexity associated with interactions between biogeochemical cycles, cryoturbation, and vegetation, and biocomplexity across spatial-temporal scales. The web site includes the project proposal, research objectives, preliminary results, maps, photographs, data sets, and publications.

2003-01-01

234

Self-propelled film-boiling liquids  

E-print Network

We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

H. Linke; B. J. Aleman; L. D. Melling; M. J. Taormina; M. J. Francis; C. C. Dow-Hygelund; V. Narayanan; R. P. Taylor; A. Stout

2005-12-27

235

Observational study of pool boiling under microgravity  

Microsoft Academic Search

Pool boiling experiments under microgravity were conducted, utilizing parabolic flight maneuvers with a CNES Caravelle 6R aircraft. The experimental apparatus taken aboard the aircraft was constructed to enable simultaneous recording, by a video camera, of the side view of vapor bubbles generated on Joule-heated titanium foil immersed in a pool of n-pentane liquid, and the color pattern exhibited by a

Toshiharu Oka; Yoshiyuki Abe; Kotaro Tanaka; Yasuhiko H. Mori; Akira Nagashima

1992-01-01

236

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling---Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

NASA Astrophysics Data System (ADS)

Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed---including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates. The numerical predictions show reasonable agreement with the results from experiments performed at microgravity. For nucleate boiling at microgravity the simulations predict a drastic change in vapor removal pattern when compared to Earth normal gravity. The predictions match well with experimental results. However, simulated heat transfer rates were significantly under-predicted.

Aktinol, Eduardo

237

Fundamental Boiling and RP-1 Freezing Experiments  

NASA Technical Reports Server (NTRS)

This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

Goode, Brian; Turner, Larry D. (Technical Monitor)

2001-01-01

238

Mystery of the Megaplume: Hydrothermal Vent Chemistry  

NSDL National Science Digital Library

In this lesson, students will investigate hydrothermal vents to see how the chemistry of the water they emit provides clues to the location of the vents. They should be able to describe hydrothermal vents and characterize vent plumes in terms of physical and chemical properties; describe data gathering operations in which a towed instrument package ("tow-yo") measures conductivity, temperature, and depth; and interpret temperature anomaly data to recognize a plume emanating from a hydrothermal vent.

239

Analogue modeling of instabilities in crater lake hydrothermal systems  

NASA Astrophysics Data System (ADS)

We carried out analogue experiments on two-phase boiling systems, using a porous vertical cylinder, saturated with water. The base of the cylinder was heated, and the top was cooled, as in a natural hydrothermal system. Previous work had shown that once the two-phase zone reached a certain level, thermal instabilities would develop. We made measurements of the acoustic energy related to boiling, and we found that high levels of acoustic noise were associated with the part of the cycle in which there was upward water movement. We repeated our experiments with a cooling water tank at the top of the system, representing a crater lake. This showed that periodic thermal instabilities still developed in this situation. We then compared our analogue measurements to two natural systems known to exhibit periodic behavior. There is good agreement between the thermal and acoustic cycling seen in our model and the observations made at Inferno Crater Lake in the Waimangu Geothermal area, New Zealand, whose level cycles by nearly 10 m, with a typical period of 38 days. Particularly notable is how in both systems high levels of acoustic noise are associated with rising water level. The much larger Ruapehu Crater Lake, also in New Zealand, cycled with a period of several months to a year for over a decade prior to the 1995 eruption. Strong acoustic and seismic energy usually occurred just before the lake temperature started to rise. This suggests a slightly different model, in which the increasing two-phase flow zone triggers more general convection once it reaches the base of the lake.

Vandemeulebrouck, Jean; Stemmelen, Didier; Hurst, Tony; Grangeon, Jacques

2005-02-01

240

The impact of fouling on performance of a vapor compression refrigeration system with integrated mechanical sub-cooling system  

Microsoft Academic Search

Performance characteristics due to fouling in a vapor compression cycle with integrated mechanical sub-cooling are investigated for various applications. Considering the first set of refrigerants i.e. R134a, R410A and R407C, from a first law standpoint, the COP indicates that R134a always performs better unless only the evaporator is being fouled. From a second law standpoint, the second-law efficiency indicates that

Bilal Ahmed Qureshi; Syed M. Zubair

2012-01-01

241

High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO 2 using ionic liquid as a template  

NASA Astrophysics Data System (ADS)

Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 °C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 °C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 °C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 °C for 12 d or steam-treated at 600 °C for 6 h.

Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

2011-03-01

242

Hydrothermal vent complexes associated with sill intrusionsin sedimentarybasins  

E-print Network

Hydrothermal vent complexes associated with sill intrusionsin sedimentarybasins BJIbRNJAMTVEIT1 sedimentarybasinscause strongthermal perturbations and frequentlycause extensivehydrothermalactivity.Hydrothermal vent strata surrounding a central vent complex. comprisingmultiplesandstone dykes, pipes, and hydrothermal

Podladchikov, Yuri

243

Strength analysis of CARR-CNS with crescent-shape moderator cell and helium sub-cooling jacket covering cell  

NASA Astrophysics Data System (ADS)

The new type of the moderator cell was developed for the cold neutron source (CNS) of the China Advanced Research Reactor (CARR) which is now being constructed at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the helium sub-cooling jacket is adopted. The structure of the moderator cell is optimized by the stress FEM analysis. A crescent-shape would help to increase the volume of the moderator cell for fitting it to the four cold neutron guide tubes, even if liquid hydrogen, not liquid deuterium, was used as a cold moderator. The helium sub-cooling jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the outer shell of the moderator cell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down first into the helium sub-cooling jacket and then flows up to the condenser. The theory of the self-regulation suitable to the thermo-siphon type of the CNS is also applicable and validated.

Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Shen, Feng; Yuan, Luzheng; Cheng, Liang

2005-12-01

244

Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity  

NASA Technical Reports Server (NTRS)

The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

2013-01-01

245

Water boiling inside carbon nanotubes: toward efficient drug release.  

PubMed

We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release. PMID:21648482

Chaban, Vitaly V; Prezhdo, Oleg V

2011-07-26

246

Natural saltwater upconing by boils: field measurements and numerical modeling  

NASA Astrophysics Data System (ADS)

In this study, natural saltwater upconing by boils was investigated using field measurements and numerical simulations. As one-quarter of The Netherlands lies below mean sea level, the upward flow of saline groundwater leads to the salinization of surface waters for large areas, impacting on agriculture and aquatic ecosystems. The largest seepage fluxes are found in deep polders with surface water levels maintained as low as 6 to 8 m below sea level. Recent studies showed that preferential groundwater discharge through boils is the dominant salinization source in these deep polders. Boils occur as conduits in the upper aquitard that connect the underlying aquifer to the surface through which groundwater discharges at high velocities. Groundwater preferentially discharging through boils contains up to hundred times more salt than diffuse forms of groundwater discharge. The upconing of deep saline groundwater induced by the localized, high-velocity flow through boils is the mechanism that leads to the high boil water salinities. The local boil system and associated natural salt water upconing were explored in the field in three different hydrogeological settings. Measurements of the aquifer salinity distribution, temperature, boil discharge, boil salinity and aquifer heads showed that the preferential flow through boils creates localized and narrow saltwater upconing spikes. The possibility to seal the boil at its source vent as a measure to abate surface water salinization was explored in the field. Numerical modeling with the code SEAWAT was applied to investigate the upconing processes in more detail. The field measurements were largely reproduced by the numerical model. 56 different cases, which differ in aquifer properties, salinity distribution, boil discharge and lateral regional flow,were defined to determine the most important boil salinity controlling factors. For each upconing case the sources of boil water, i.e. the contribution to boil discharge from different aquifer depths, were derived from the model results. The contributing depth distributions showed a form opposite to the aquifer salinity distribution, with higher contributions from shallower and less saline groundwater. This illustrates the importance of the density distribution in the aquifer on the saltwater upconing mechanism. The numerical results showed that the most important factors controlling the contributing depths and boil salinity are boil discharge, the horizontal hydraulic conductivity of the aquifer, the depth of the interface and the salinity (and therefore density) contrast within the aquifer. Within a small area of clustered boils, boil salinity varies between individual boils and is determined by the combination of its discharge and its position within the boil area, whereas the total discharge of boil clusters is the principal factor that controls natural saltwater upconing and total salt loads. Regional lateral flow had a large impact on the upconing mechanism in terms of flow patterns but had a minor effect on both the contribution of saline and fresh groundwater to boil discharge and boil salinity. Both measurements and model results will be presented at the EGU.

de Louw, Perry; Vandenbohede, Alexander; Werner, Adrian; Oude Essink, Gualbert

2013-04-01

247

A review on boiling heat transfer enhancement with nanofluids  

PubMed Central

There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

2011-01-01

248

Experimental Study of Heat Transfer from Stainless Steel Foil in He II during Film Boiling State  

SciTech Connect

He II film boiling is of both academic and applied interests. However, the information about film boiling heat transfer in He II is still insufficient and needs further investigation. In the present study, a thin stainless steel foil heater (10 {mu} m thick) is used to cause boiling in He II. The heater temperature is measured to evaluate the heat transfer performance of He II film boiling under different thermal conditions. The pressure and the heater surface temperature oscillations induced by the film boiling are also simultaneously measured. The heat transfer coefficients of three kinds of boiling states: noisy film boiling, transition boiling and silent film boiling, are obtained in the present study.

Zhang, P. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, 305-8573 (Japan); Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, 200030 (China); Murakami, M. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, 305-8573 (Japan)

2004-06-23

249

WALL-TO-FLUID TRANSFER MECHANISMS IN BOILING FLOWS  

Microsoft Academic Search

To better understand and predict the boiling flow processes, accurate two-fluid numerical models are needed. One of the important goals of the NURESIM project is to assess and improve the simulation capability of the three-dimensional two-fluid codes for prediction of local boiling flow processes. The boiling flow is strongly affected by local mechanisms in the turbulent boundary layer near the

Mavko Borut

2005-01-01

250

A two-phase model for subcooled and superheated liquid jets  

SciTech Connect

This paper describes a two-phase jet model for predicting the liquid rainout (capture) and composition of subcooled and superheated HF/additive pressurized liquid releases. The parent droplets of the release mixture constitute the fist phase. The second phase can in general be a vapor-liquid fog. The drops are not in equilibrium with the fog phase with which they exchange mass and energy. The fog at any location is assumed to be in local equilibrium. Correlations are developed for predicting the initial drop size for hydrodynamic breakup of jets. Applications are discussed in this paper for HF/additive mixtures. The fog phase calculations account for HF oligomerization and HF-water complex formation in the vapor phase and equilibrium between the liquid and vapor in the fog. The model incorporates jet trajectory calculations and hence can predict the amount of liquid rained out (liquid capture) and the capture distance. The HF captures predicted by the model for various release conditions are in agreement with small and large scale release experiments.

Muralidhar, R.; Jersey, G.R.; Krambeck, F.J. [Mobil Research and Development Corp., Paulsboro, NJ (United States); Sundaresan, S. [Princeton Univ., NJ (United States). Dept. of Chemical Engineering

1995-12-31

251

Hydrothermal synthesis of vanadium oxides  

SciTech Connect

The use of mild hydrothermal methods to synthesize vanadium oxides is reviewed, with particular emphasis on those with layer and 3-dimensional structures. A wide range of studies have been performed predominantly in the past decade to grow new materials that might have interesting electrochemical and magnetic properties. Most emphasis has been placed on vanadium oxides that contain organic species or simple cations such as the alkali metals, alkaline earths, zinc and copper. The key parameters determining the structures formed are reviewed, including pH and the organic structure-directing ion. Some initial electrochemical studies are described.

Chirayil, T.; Zavalij, P.Y.; Whittingham, M.S. [State Univ. of New York, Binghamton, NY (United States)] [State Univ. of New York, Binghamton, NY (United States)

1998-10-01

252

AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING  

E-print Network

AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING AUVS by ZEYN A SAIGOL A thesis submitted of searching the ocean floor for hydrothermal vents, using autonomous underwater vehicles (AUVs). This is a hard problem because the AUV's sensors cannot directly measure the range or bearing to vents

Yao, Xin

253

Molecular ecology of hydrothermal vent microbial communities  

Microsoft Academic Search

The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such

Christian Jeanthon

2000-01-01

254

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect

This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Biddy, M.; Davis, R.; Jones, S.

2013-03-01

255

Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.  

PubMed

Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area. PMID:23563082

Shi, Weidong; Song, Shuyan; Zhang, Hongjie

2013-07-01

256

TUNABLE HYDROTHERMAL SYNTHESIS OF BAMNO3 NANOCRYSTALS  

Microsoft Academic Search

Although synthesis of nanooxides has been attempted by many different and innovative chemical approaches, further research is still needed to develop inexpensive and mass- production methods capable to provide pure products and thus make nanocrystals' technological applications viable. Hydrothermal synthesis matches these requirements. Under hydrothermal conditions, where an aqueous reaction mixture is heated above 100 ºC in a sealed reaction

Ana Querejeta; Marina Parras; Aurea Varela; Jose González-Calbet

257

Hydrothermal metamorphism in the Larderello Geothermal Field  

SciTech Connect

The various tectonic units underlying the Larderello-Travale geothermal region have undergone hydrothermal metamorphism. The hydrothermal mineral assemblages are generally consistent with the temperatures now measured in the wells, leading to the hypothesis that solid phases deposited from a liquid medium during a hot-water stage that preceded the vapor-dominated one. 61 refs.

Cavarretta, G.; Gianelli, G.; Puxeddu, M.

1980-01-01

258

Bubble departure size in flow boiling  

NASA Astrophysics Data System (ADS)

Flow boiling experiments were conducted in a vertical annular channel to study bubble departure characteristics. Deionized water was used as the working fluid, and the tests were performed at atmospheric pressure. Bubble departure diameters were obtained from the images which were captured by a high-speed digital camera. The relationship between bubble contact diameter and departure diameter was discussed. A new model base on force balance analysis, taking bubble contact diameter into account for predicting bubble departure diameter is proposed in this study. A good agreement between predicted and measured results is achieved.

Guan, Peng; Jia, Li; Yin, Liaofei; Tan, Zetao

2014-12-01

259

Heat transfer analyses of liquid heated boiling fluids with attention to transition boiling  

Microsoft Academic Search

Four major methods of analysis were developed for the turbulent flow of a liquid metal in an annulus under a thermally developing condition with arbitrary axial wall temperature distribution. The methods were applied to measurements made in two large scale test facilities, at Argonne National Laboratory and Westinghouse Electric Corp., where water boiling inside of a tube was the forcing

Shin

1986-01-01

260

Boiling Fluids Behave Quite Differently in Space - Duration: 0:19.  

NASA Video Gallery

The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

261

Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon  

NASA Technical Reports Server (NTRS)

The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

1993-01-01

262

Boiling on the surface of a rotating disc  

Microsoft Academic Search

An experimental unit to study heat-transfer characteristics while boiling at subatmospheric pressure of a horizontal smooth spinning disc was designed and built. Evaporation experiments were carried out with the speed of rotation varying from 0 to 1000 rpm and the feed flow rate from 1 to 5 litre\\/min. The boiling temperature varied between 40 and 50 °C. Water and corn

S. Yanniotis; D. Kolokotsa

1996-01-01

263

Boiling treatment of ABS and PS plastics for flotation separation.  

PubMed

A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling. PMID:24602834

Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

2014-07-01

264

Heat Transfer Mechanisms During Flow Boiling in Microchannels  

Microsoft Academic Search

The forces due to surface tension, inertia, and momentum change during evaporation in microchannel govern the two- phase flow patterns and the heat transfer characteristics during flow boiling. These forces are analyzed in this paper, and two new non-dimensional groups, K1 and K 2, relevant to flow boiling phenomenon are derived. These groups are able to represent some of the

Satish G. Kandlikar

2004-01-01

265

Modeling acid-gas generation from boiling chloride brines  

Microsoft Academic Search

BACKGROUND: This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a

Guoxiang Zhang; Nicolas Spycher; Eric Sonnenthal; Carl Steefel

2009-01-01

266

Boiling heat transfer and bubble dynamics in microgravity  

Microsoft Academic Search

This article presents results for pool boiling heat transfer under microgravity conditions that the author and his team have gained in a succession of experiments during the past two decades. The objective of the research work was to provide answers to the following questions: Is boiling an appropriate mechanism of heat transfer for space application? How do heat transfer and

Johannes Straub

2001-01-01

267

Investigations of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions  

Microsoft Academic Search

In this work a building block type of approach is used so that a basic understanding of the processes that contribute to nucleate boiling heat fluxes under microgravity conditions can be developed. This understanding will lead to development of a mechanistic model for nucleate boiling heat transfer which could eventually be used as a design tool in space applications. Task

Vijay K. Dhir; M. Hasan

2003-01-01

268

Bubble dynamics in boiling under high heat flux pulse heating  

Microsoft Academic Search

A new theoretical model of bubble behavior in boiling water under high heat flux pulse is presented. The essence of the model is nucleation in the superheated liquid followed by instantaneous formation of a vapor film, rapid bubble growth due to the pressure impulse, and cavitation bubble collapse. To check the model, boiling of methanol under 5 â¼ 50 MW

A. Asai

1991-01-01

269

Effect of acoustic cavitation on boiling heat transfer  

Microsoft Academic Search

Boiling heat transfer on a horizontal circular copper tube in an acoustical field is investigated experimentally and the relation between the liquid cavitation, the boiling and the micro bubble radii are analyzed theoretically. The results show that cavitation bubbles have an important influence on the nucleation, growth and collapse of vapor embryo within cavities on the heat transfer surface and

D. W. Zhou; D. Y. Liu; X. G. Hu; C. F. Ma

2002-01-01

270

Dynamics of the Yellowstone hydrothermal system  

NASA Astrophysics Data System (ADS)

Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

Hurwitz, Shaul; Lowenstern, Jacob B.

2014-09-01

271

Dynamics of the Yellowstone hydrothermal system  

USGS Publications Warehouse

The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

Hurwitz, Shaul; Lowenstern, Jacob B.

2014-01-01

272

Conversion of direct process high-boiling residue to monosilanes  

DOEpatents

A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

2000-01-01

273

Little low-power boiling never hurt anybody. [LMFBR  

SciTech Connect

Failures in the shutdown heat removal system of an LMFBR might lead to flow stagnation and coolant boiling in the reactor core. At normal operating power, the onset of sodium boiling will lead to film dryout and melting of the cladding and fuel within a few seconds. On the other hand, both calculations and currently available experimental data indicate that at heat fluxes corresponding to decay heat power levels, boiling leads to improved heat removal; and it limits the temperature rise in the fuel pins. Therefore, when setting safety criteria for decay heat removal systems, there is no reason to preclude sodium boiling per se because of heat removal considerations. As an example that illustrates the beneficial impact of coolant boiling, a case involving temporary loss of feedwater and staggered pump failures in a hypothetical, 1000-MWe loop-type reactor was run in the SASSYS-1 code.

Dunn, F.E.

1985-01-01

274

Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.  

PubMed

Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

2010-03-01

275

Seawater bicarbonate removal during hydrothermal circulation  

NASA Astrophysics Data System (ADS)

High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

2013-12-01

276

Hydrothermal Synthesis of Loessial Mesoporous Materials  

NASA Astrophysics Data System (ADS)

In order to sustain the inherent porous properties of loess, hydrothermal synthesis of mesoporous materials from loess was carried out under saturated steam pressure at 100-200 °C for up to 24h. The experimental results showed that the curing temperature and time exerted a positive influence on the strength development, which was believed to be due to tobermorite formation. Moreover, during the hydrothermal process, a huge number of new mesopores could be formed within the matrix. Therefore a tough and mesoporous material could be produced from loess hydrothermally, which is expected to provide a good humidity regulating property.

Lu, L.; Jing, Z.; Wang, Z.; Pan, X.; Ishida, E. H.

2010-11-01

277

Candy Chemosynthesis: Biochemistry of Hydrothermal Vents  

NSDL National Science Digital Library

In this activity, students will differentiate between requirements for life in extreme environments such as hydrothermal vents and other environments and will use soft candy as a model to create a visual image of chemicals involved in autotrophic nutrition. As they review the biochemistry of hydrothermal vents, they will discover what chemicals are used by autotrophs in extreme environments in the deep ocean and how these chemicals differ from those used by terrestrial autotrophs. They will also study a diagram showing how a hydrothermal vent (black smoker) acquires the elements and compounds that deep-sea autotrophs require.

278

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non intrusive method  

E-print Network

Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non densities. Indeed, microchannels are already attrac- tive in many domains such as: electronics cooling removal, and they have large heat dissipa- tion capabilities. Moreover, microchannels can be used

279

Hyperbaric hydrothermal atomic force microscope  

DOEpatents

A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

2002-01-01

280

Hyperbaric Hydrothermal Atomic Force Microscope  

DOEpatents

A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

2003-07-01

281

Hydrothermal carbonization of lignocellulosic biomass.  

PubMed

Hydrothermal carbonization (HTC) is a novel thermochemical conversion process to convert lignocellulosic biomass into value-added products. HTC processes were studied using two different biomass feedstocks: corn stalk and Tamarix ramosissima. The treatment brought an increase of the higher heating values up to 29.2 and 28.4 MJ/kg for corn stalk and T. ramosissima, respectively, corresponding to an increase of 66.8% and 58.3% as compared to those for the raw materials. The resulting lignite-like solid products contained mainly lignin with a high degree of aromatization and a large amount of oxygen-containing groups. Liquid products extracted with ethyl acetate were analyzed by gas chromatography-mass spectrometry. The identified degradation products were phenolic compounds and furan derivatives, which may be desirable feedstocks for biodiesel and chemical production. Based on these results, HTC is considered to be a potential treatment in a lignocellulosic biomass refinery. PMID:22698445

Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

2012-08-01

282

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06

283

Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5  

USGS Publications Warehouse

A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or ??-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop. ?? 1978.

Keith, T.E.C.; Muffler, L.J.P.

1978-01-01

284

High level disinfection of a home care device; to boil or not to boil?  

PubMed

We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively. PMID:22277192

Winthrop, K L; Homestead, N

2012-03-01

285

Simulation of Submarine Hydrothermal Systems: IV. Fluid Flow in Active Arc-Related Volcanoes  

NASA Astrophysics Data System (ADS)

Fluid flow through submarine hydrothermal systems transports a major part of the Earth's heat to its surface and greatly impacts the chemistry of crust and overlying ocean. Seafloor high-temperature vent sites are manifestations of active ore-forming systems and can be regarded as modern analogues of massive sulfide deposits whose ancient equivalents have been exploited as world-class mines on land. Recent research cruises dedicated to seafloor hydrothermal activity along convergent plate boundaries, e.g. along the intra-oceanic Kermadec arc, have systematically surveyed and sampled numerous hydrothermal plumes. Follow-up submersible dives show venting that ranges from relatively high temperature (~300° C), metal-rich fluids to lower temperature, gas-rich and metal-poor fluids. Some of these vent sites show evidence for significant contributions from magmatic sources. The physics of such systems is complex because the seawater-derived hydrothermal fluid can mix with ambient seawater and phase-separate, either via boiling or condensation, into a low-salinity vapor and a high-salinity brine. In order to model the sub-seafloor hydrology with numerical transport simulation techniques, a newly developed pressure-enthalpy-salinity scheme has been used, which includes the full phase relations of the NaCl-H2O system up to 1000° C and accurately captures boiling, condensation, and salt precipitation. We have designed a new numerical model, based on observations in currently active arc-related systems, to assess the influence of first-order physical parameters (such as seafloor topography and the contribution of magmatic fluids) to fluid flow patterns, thermal structure, and phase-separation. Preliminary results of these simulations will be presented and compared with data recently obtained from simulations at mid-ocean ridge systems. In our ongoing project, we aim to predict the optimal conditions for which metal-rich magmatic vapor may cool and contract to an aqueous liquid, which in turn is likely to generate particularly Cu- and Au-rich mineralization on the seafloor.

Gruen, G.; Coumou, D.; Weis, P.; Driesner, T.; de Ronde, C.; Heinrich, C. A.

2008-12-01

286

Hybrid modelling of a sugar boiling process  

E-print Network

The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

Lauret, Alfred Jean Philippe; Gatina, Jean Claude

2012-01-01

287

The Physics of Boiling at Burnout  

NASA Technical Reports Server (NTRS)

The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

2000-01-01

288

Enceladus Plumes: A Boiling Liquid Model  

NASA Astrophysics Data System (ADS)

Following the discovery of H2O vapor and particle plumes from the tiger stripes at the south pole of Enceladus (Porco et al., 2006), observational and theoretical studies have been conducted to understand the plume mechanism (e.g., Schmidt et al., 2008; Kieffer et al., 2009; Ingersoll and Pankine, 2010). Although the “Ice Chamber Model”, which assumes that ice sublimation under the stripes causes the plumes, has successfully explained the plume mass flux (e.g., Nimmo et al., 2007; Ingersoll and Pankine, 2010), it cannot explain the high salinity in the plume (Postberg et al., 2009). Ice particles condensing from a vapor are relatively salt free, but ice particles derived from a salty liquid can have high salinity. Therefore we have investigated the “Boiling Liquid Model”, which assumes that liquid H2O under the stripes causes the plumes. With conservation of mass, momentum and energy, we built a simple atmospheric model that includes controlled boiling and gas-ice wall interaction. We first assumed that the heat radiated to space comes entirely from the heat generated by condensation of the gas onto the ice wall. We varied the width (0.1-1 m) and the height (5-4000 m) of the crack as parameters. We find that the escaping vapor flux can be relatively close to the observed value (250±100 kg/s, Hansen et al., 2006, 2008) but the radiated heat flux is only 1 GW, which is much less than the observed value (15.8 GW, Howett et al., 2011). Other models (Nimmo et al., 2007; Abramov and Spencer, 2009) also have the same difficulty accounting for the observed value. We then investigated the additional heat radiated by the particles after they come out of the crack. We built a simple model to estimate the size distributions of these condensed ice particles and their radiative properties.

Nakajima, Miki; Ingersoll, A. P.

2012-10-01

289

Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study  

SciTech Connect

Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

Hammond, S.R. (NOAA, Newport, OR (United States))

1990-08-10

290

Hydrothermal synthesis of cerium(IV) oxide  

SciTech Connect

CeO{sub 2} powders have been prepared from cerium(III) nitrate, cerium(IV) sulfate, and cerium(IV) ammonium sulfate under hydrothermal conditions at 120 to 200 C for 5 to 40 h. The effects of the starting cerium compounds, hydrothermal treatment temperature, and the concentration of the solutions on the crystal growth of CeO{sub 2} were investigated. CeO{sub 2} powders hydrothermally synthesized at 180 C for 5 h from cerium(IV) salts had very fine particle sizes (30 {angstrom}); on the other hand, the powder from the cerium(III) salt had a relatively coarse particle size (160 {angstrom}). Although the crystallite size of the powder synthesized from the cerium(IV) compounds depended on the treatment temperature, that from the cerium(III) compound was insensitive to the treatment temperature. The mechanisms for the growth of CeO{sub 2} particles under hydrothermal conditions are discussed.

Hirano, Masanori; Kato, Etsuro [Aichi Inst. of Tech., Toyota (Japan). Dept. of Applied Chemistry

1996-03-01

291

Chemical environments of submarine hydrothermal systems  

NASA Technical Reports Server (NTRS)

Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

Shock, Everett L.

1992-01-01

292

Development of potential ecological niches in impact-induced hydrothermal systems: The small-to-medium size impacts  

NASA Astrophysics Data System (ADS)

Effect of meteorite impact on the biological evolution is usually considered by its catastrophic consequences. However, the impacts can create opportunity for other organisms and the structures themselves can serve as suitable ecological niches (oases) for life. In this contribution we present results of modeling of an impact-induced hydrothermal (IHT) system in a small-to-medium sized impact crater, where the development of zones habitable for primitive hydrothermal thermophilic and hypethermophilic microorganisms was studied. The impact and geothermal modeling was verified against the 4-km diameter Kärdla complex structure, Hiiumaa Island, Estonia. If there is an sufficient amount of water present in the target (e.g., sea cover, groundwater or permafrost resources) then the differential temperature fields created by the impact initiate a hydrothermal circulation system within the crater. The results of transient fluid flow and heat transfer simulations in Kärdla suggest that immediately after impact the temperatures in the central area, which contains the most hydrothermal alteration, were well above the boiling point. However, due to efficient heat loss at the groundwater vaporization front, the vapor-dominated area disappears within a few decades. In the central uplift area, the conditions favorable for thermophilic microorganisms (temperatures <100 °C) were reached in 500-1000 years after the impact. The overall cooling to ambient temperatures in the deeper parts of the central uplift lasted for thousands of years. In the crater depression and rim area the initial temperatures, suggested by the impact modeling, were much lower - from 150 °C to ambient temperatures, except locally in fracture zones and suevite pockets. Our data suggest that in small-to-medium size impact craters with insignificant melting, the suitable conditions for hydrothermal microbial communities are established shortly (tens to few hundreds of years as maximum) after the impact in most parts of the crater. In the central uplift area the microbial colonization is inhibited for about a thousand years. However, this is the area, which afterwards retains the optimum temperatures (45-120 °C) needed for hydrothermal microorganisms for the longest period. Geochemical and mineralogical data suggest, in general, neutral pH 7(±1) fluid of the IHT system, which is, when compared to volcanic hydrotherms, richer in dissolved oxygen and poor in reduced compounds. This suggests the preference for sulfur-reducing microorganisms in the possible impact-induced hydrothermal communities.

Versh, Evelin; Kirsimäe, Kalle; Jõeleht, Argo

2006-12-01

293

Transition boiling heat transfer and the film transition regime  

NASA Technical Reports Server (NTRS)

The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

Ramilison, J. M.; Lienhard, J. H.

1987-01-01

294

Hydrothermal industrialization: direct heat development. Final report  

SciTech Connect

A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

Not Available

1982-05-01

295

Rare earth element systematics in hydrothermal fluids  

SciTech Connect

Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

Michard, A. (Centre de Recherches Petrographiques et Geochimiques, Vandoeuvre-les-Nancy (France))

1989-03-01

296

Esterification of fatty acid catalyzed by hydrothermally stable propylsulfonic acid-functionalized mesoporous silica SBA-15.  

PubMed

Propylsulfonic acid-functionalized mesoporous silica SBA-15 has been synthesized via one-step strategy at 130°C based on the co-condensation of TEOS and MPTMS in the presence of Pluronic 123 polymer and H?O? in HCl aqueous solution. The synthesized solid exhibited hydrothermal stability in boiling water without significant change in textural properties. The catalytic performance of the synthesized solid was studied in the esterification of oleic acid with methanol. The experimental results revealed that the large mesopore structures of SBA-15-PrSO?H solid synthesized at 130°C could favor a facile access of oleic acid to the acid sites, making the comparable activity to that of phenyl ethyl sulfonic acid functionalized silica and higher than that of dry amberlyst-15. PMID:23728335

Mar, Win Win; Somsook, Ekasith

2013-01-01

297

Characterizing preferential groundwater discharge through boils using temperature  

NASA Astrophysics Data System (ADS)

In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.

Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.

2014-03-01

298

Pool and flow boiling in variable and microgravity  

NASA Technical Reports Server (NTRS)

As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.

Merte, Herman, Jr.

1994-01-01

299

Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea  

USGS Publications Warehouse

Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus Spreading Center. Variations in alkali and dissolved gas abundances with Cl at PACMANUS and NE Pual suggest that phase separation has affected fluid chemistry despite the low temperatures of many vents. In further contrast to Vienna Woods, substantial modification of PACMANUS/NE Pual fluids has taken place as a result of seawater ingress into the upflow zone. Consistently high measured Mg concentrations as well as trends of increasingly non-conservative SO4 behavior, decreasing endmember Ca/Cl and Sr/Cl ratios with increased Mg indicate extensive subsurface anhydrite deposition is occurring as a result of subsurface seawater entrainment. Decreased pH and endmember Fe/Mn ratios in higher Mg fluids indicate that the associated mixing/cooling gives rise to sulfide deposition and secondary acidity production. Several low temperature (< or = 80 degrees C) fluids at PACMANUS/NE Pual also show evidence for anhydrite dissolution and water-rock interaction (fixation of B) subsequent to seawater entrainment. Hence, the evolution of fluid compositions at Pual Ridge reflects the cumulative effects of water/rock interaction, admixing and reaction of fluids exsolved from silicic magma, phase separation/segregation and seawater ingress into upflow zones.

Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

2011-01-01

300

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel  

E-print Network

Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b s t r a c t Boiling in microchannels is widely considered as one of the front runners in process

Aussillous, Pascale

301

Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru  

NASA Astrophysics Data System (ADS)

The Au-Ag (±Pb-Zn) Apacheta deposit is located in the Shila district, 600 km southeast of Lima in the Cordillera Occidental of Arequipa Province, southern Peru. The vein mineralization is found in Early to Middle Miocene calc-alkaline lava flows and volcanic breccias. Both gangue and sulfide mineralization express a typical low-sulfidation system; assay data show element zoning with base metals enriched at depth and higher concentrations of precious metals in the upper part of the veins. Three main deposition stages are observed: (1) early pyrite and base-metal sulfides with minor electrum 1 and acanthite; (2) brecciation of this mineral assemblage and cross-cutting veinlets with subhedral quartz crystals, Mn-bearing calcite and rhombic adularia crystals; and finally (3) veinlets and geodal filling of an assemblage of tennantite/tetrahedrite + colorless sphalerite 2 + galena + chalcopyrite + electrum 2. Fluid inclusions in the mineralized veins display two distinct types: aqueous-carbonic liquid-rich Lw-c inclusions, and aqueous-carbonic vapor-rich Vw-c inclusions. Microthermometric data indicate that the ore minerals were deposited between 300 and 225 °C from relatively dilute hydrothermal fluids (0.6-3.4 wt% NaCl). The physical and chemical characteristics of the hydrothermal fluids show a vertical evolution, with in particular a drop in temperature and a loss of H2S. The presence of adularia and platy calcite and of co-existing liquid-rich and vapor-rich inclusions in the ore-stage indicates a boiling event. Strong H2S enrichment in the Vw-c inclusions observed at -200 m, the abundance of platy calcite, and the occurrence of hydrothermal breccia at this level may indicate a zone of intense boiling. The vertical element zoning observed in the Apacheta deposit thus seems to be directly related to the vertical evolution of hydrothermal-fluid characteristics. Precious-metal deposition mainly occurred above the 200-m level below the present-day surface, in response to a liquid/vapor phase separation due to an upward boiling front.

André-Mayer, Anne-Sylvie; Leroy, Jacques; Bailly, Laurent; Chauvet, Alain; Marcoux, Eric; Grancea, Luminita; Llosa, Fernando; Rosas, Juan

2002-06-01

302

Microbial interactions with hydrothermal fluids  

NASA Astrophysics Data System (ADS)

When copious populations of animals clustering around deep-sea hydrothermal vents were first observed [Lonsdale, 1977, Ballard, 1977; Corliss et al., 1979], the foremost question concerned the origin of these unexpectedly high quantities of biomass. The deep sea has long been known as a desert-like environment, the input of energy for the heterotrophic production of biomass in the absence of light being limited to the sedimenting of particulate organic matter from the photosynthetically productive surface waters to the bottom. The decomposition and mineralization of this organic carbon occurs largely in the upper 200-300 m layers of the world oceans averaging at about 95% of their total primary productivity. Of the renaming 5% only about one fifth reaches the sea floor at greater depths in particulate form [e.g. Honjo and Manganini, 1993]. The scant benthic deep-sea animal populations, their diversity and feeding strategies reflect this limited particulate food source [Sanders et al., 1972]. Some of this particulate organic matter is replenished from dissolved organic carbon by microbial growth, the so-called "microbial loop".

Jannasch, Holger W.

303

BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN BACKGROUND, THE ELEVATOR AND STAIRS GOING UP. VIEW FROM SOUTHWEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

304

Boiling local heat transfer enhancement in minichannels using nanofluids  

NASA Astrophysics Data System (ADS)

This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 ?m hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

2013-03-01

305

Effects of surface parameters on boiling heat transfer phenomena  

E-print Network

Nanofluids, engineered colloidal dispersions of nanoparticles in fluid, have been shown to enhance pool and flow boiling CHF. The CHF enhancement was due to nanoparticle deposited on the heater surface, which was verified ...

Truong, Bao H. (Bao Hoai)

2011-01-01

306

Determination of pool boiling Critical Heat Flux enhancement in nanofluids  

E-print Network

Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

Truong, Bao H. (Bao Hoai)

2007-01-01

307

Burnout in forced convection nucleate boiling of water  

E-print Network

Data are presented for burnout in forced coivection nucleate boiling of water at pressures above 500 psia. A dimensionless correlation is devised for. the M.I.T. data which is found to be valid for certain recent data ...

Reynolds John Mitchell

1957-01-01

308

Infrared thermometry study of nanofluid pool boiling phenomena  

E-print Network

Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). ...

Gerardi, Craig

309

Boiling local heat transfer enhancement in minichannels using nanofluids  

PubMed Central

This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 ?m hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

2013-01-01

310

Hydrodynamics, heat transfer and flow boiling instabilities in microchannels   

E-print Network

Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...

Barber, Jacqueline Claire

2010-01-01

311

Flow Boiling and Condensation Experiment - Duration: 0:21.  

NASA Video Gallery

The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

312

BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

313

Experimental design for study of nucleate boiling in porous structures  

E-print Network

The superheat required to initiate nucleate boiling inside porous wicks is not well understood in practice. This thesis reports the design of an experimental setup for investigating the onset of vapor nucleation in sintered ...

Kelley, Mitchell Joseph

2011-01-01

314

Release and evaporation of volatiles during boiling of unhopped wort.  

PubMed

The release and evaporation of volatile compounds was studied during boiling of wort. The observed parameters were boiling time, boiling intensity, wort pH, and wort density. The effect of every parameter was discussed and approached chemically, with an eye on beer-aging processes. The results indicated that pH highly influenced the release of flavor compounds and that the formation of Strecker aldehydes was linear with boiling time. However, because of evaporation of volatiles, information about the applied thermal load on wort is lost when using a volatile heat load indicator. The thiobarbituric acid (TBA) method, which includes the nonvolatile precursors of volatile aging compounds, proved to be a more reliable method to determine all kinds of heat load on wort. Finally, it was discussed how the obtained insights could help to understand the mechanism of beer aging. PMID:18547048

De Schutter, David P; Saison, Daan; Delvaux, Filip; Derdelinckx, Guy; Rock, Jean-Marie; Neven, Hedwig; Delvaux, Freddy R

2008-07-01

315

Thermal boundary layer development in dispersed flow film boiling  

E-print Network

Dispersed flow film boiling consists of a dispersion of droplets which are carried over a very hot surface by their vapor. This process occurs in cryogenic equipment and wet steam turbines. It is also of interest in the ...

Hull, Lawrence M.

1982-01-01

316

20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

317

BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ABOVE RIGHT, LOW GRADE CENTRIFUGALS BELOW. CRYSTALLIZER HOT WATER TANK TO REAR. VIEW FROM NORTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

318

A study of boiling water flow regimes at low pressures  

E-print Network

"A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

Fiori, Mario P.

1966-01-01

319

Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system  

NASA Astrophysics Data System (ADS)

Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (? 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ? 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N 2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where ?13C-CO 2, ?34S-H 2S, and ?15N-N 2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.

Janik, Cathy J.; McLaren, Marcia K.

2010-01-01

320

16. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

16. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Looking from west to east through boiling house. The sorghum pan is on the right. The beams; joists, and trusses are of northwest pine; side boards are of redwood. A foundation line of a loading dock and smokestack are in the foreground. Both end walls have deteriorated completely. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

321

Visualization and measurements of periodic boiling in silicon microchannels  

Microsoft Academic Search

A simultaneous visualization and measurement investigation has been carried out on flow boiling of water in parallel silicon microchannels of trapezoidal cross-section. Two sets of parallel microchannels, having hydraulic diameters of 158.8 and 82.8 ?m, respectively, were used. The visualization study shows that once boiling heat transfer is established, two-phase flow and single-phase liquid flow appear alternatively with time in

H. Y. Wu; Ping Cheng

2003-01-01

322

Nucleate boiling heat transfer: possibilities and limitations of theoretical analysis  

Microsoft Academic Search

The paper considers the different ways of nucleate boiling investigation, and in particular, presents the analysis of the\\u000a latest numerical studies of the nucleate boiling primary processes (isolated bubble growth, thin liquid film flow and evaporation\\u000a near the nucleation site). Many features of the process that were only the hypothesis became established facts after the direct\\u000a numerical simulation. However, in

V. V. Yagov

2009-01-01

323

Pervaporation of ethanol and acetone above normal boiling temperatures  

SciTech Connect

Pervaporation experiments were performed at higher than normal feed liquid boiling temperatures by applying pressure to the feed compartment. Ethanol, acetone, and aqueous ethanol solutions were pervaporated through silicone rubber dense membranes. Large increases were observed in the permeate flow as the temperature rose above the liquid boiling temperature. Separation factors in aqueous ethanol pervaporation are not affected by these increases in permeate output, and they are in the same range as those obtained in conventional pervaporation.

Windmoeller, D.; Galembeck, F. (Univ. Estadual de Campinas, Sao Paulo (Brazil))

1992-08-01

324

Optimal boiling temperature for ORC installation  

NASA Astrophysics Data System (ADS)

In the paper a research on cost-effective optimum design boiling temperature for Organic Rankine Cycle utilizing low-temperature heat sources is presented. The ratio of the heat exchanger area of the boiler to the power output is used as the objective function. Analytical relations for heat transfer area as well power of the cycle are formulated. Evaporation temperature and inlet temperature of the heat source medium as well its mass flow rate are varied in the optimization method. The optimization is carried out for three working fluids, i.e. R 134a, water and ethanol. The objective function (economics profitability, thermodynamic efficiency) leads to different optimal working conditions in terms of evaporating temperature. Maximum power generation in the near-critical conditions of subcritical ORC is the highest. The choice of the working fluid can greatly affect the objective function which is a measure of power plant cost. Ethanol exhibits a minimum objective function but not necessarily the maximum cycle efficiency.

Mikielewicz, Jaros?aw; Mikielewicz, Dariusz

2012-09-01

325

Boiling and condensing pumped loop microgravity experiment  

SciTech Connect

Aircraft testing of a boiling and condensing (two-phase) pumped loop system was conducted to investigate transient induced by low gravity (Keplerian) maneuvers. The experiment, unchanged, will repeat a selected aircraft test sequence during its flight aboard a suborbital rocket. Such a test of a two-phase system has never been done. A comparison of aircraft and rocket data, particularly equilibrium conditions, may validate aircraft testing of similar systems: Aircraft testing has been completed and preliminary results indicate that local transients induced by Keplerian maneuvers do not generate sizeable or lasting feedback. System feedback, expected to damp exponentially with loop transit time, {theta}{sub loop} (20 s{lt}{theta}{sub loop}{lt}30 s) is negligible compared to local temperature transients having shorter equilibrium times, {theta}{sub local} (5{lt}{theta}{sub local}{lt}10 s). Since {theta}{sub local} is typically 2 to 5 times shorter than the duration of low gravity, {ital t}{sub 0{minus}{ital g}} (20 s{lt}t{sub 0{minus}{ital g}}{lt}25 s), equilibrium conditions are approximated. Transients following a transition from normal to low gravity resulted from destratification of hot and cold fluid, loss of the liquid convection component in laminar flows, and a reduction in condensing heat transfer.

Standley, V.H.; Fairchild, J.F. (Weapons Laboratory, Technology Assessment Directorate, Space Nuclear Power Branch, Kirtland AFB, New Mexico (USA))

1991-01-10

326

A microgravity boiling and convective condensation experiment  

NASA Technical Reports Server (NTRS)

A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

1987-01-01

327

Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties.  

PubMed

Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm ?3n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure. PMID:22327221

Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

2012-03-21

328

Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico  

SciTech Connect

This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than 50 deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies show the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity through a typical cross-section of the reservoir of about 6 m/year. The heat in storage in that part of the reservoir hotter than 200/sup 0/C and shallower than 3 km depth is equivalent to that which would be released by the cooling of about 1 or 2 km/sup 3/ of basalt or gabbro magma.

Elders, W.A.; Bird, D.K.; Schiffman, P.; Williams, A.E.

1984-01-01

329

Hydrothermal mineralization at seafloor spreading centers  

NASA Astrophysics Data System (ADS)

The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (? 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal zones of active extension) common to all spreading centers, regional tectonic setting determined by stage (early, advanced), and rate (slow, intermediate-to-fast) of opening of an ocean basin about a spreading center, and local tectonic sub-setting that incorporates anomalous structural and thermal conditions conducive to mineral concentration (thermal gradient, permeability, system geometry, leaky versus tight hydrothermal systems). Temporal frames of reference comprise the relation between mineral concentration and timing of regional plutonic, volcanic and tectonic cycles and of episodic local physical and chemical events (transient stress, fluctuating heat transfer, intrusion-extrusion, fracturing, sealing, etc.). Types of hydrothermal deposits are not uniquely associated with specific tectonic settings and subsettings. Similar types of hydrothermal deposits may occur in different tectonic settings as a consequence of convergence of physical and chemical processes of concentration. Local tectonic sub-settings with conditions conducive to hydrothermal mineralization at slow-spreading centers (half rate ? 2cm y -1; length c. 28,000 km), characterized by an estimated average convective heat transfer of 15.1·10 8 cal. cm -2, deep-level ( > 3 km), relative narrow (< 5 km wide at base) magma chambers, and high topographic relief (1-5 km) are: (1) basins along linear sections of the axial zone of volcanic extrusion near transform faults at an early stage of opening, represented by a large stratiform sulfide deposit (estimated 32.5·10 6 metric tons) of the Atlantis II Deep of the Red Sea; (2) the wall along linear sections of the rift valley in the marginal zone of active extension at an advanced stage of opening, represented by encrustations and layered deposits of manganese and iron oxides, hydroxides and silicates inferred to be underlain by stockwork sulfides at the TAG Hydrothermal Field at latitude 26°C on the Mid-Atlantic Ridge; (3) transform faults, especially those with large ridge-ridge offset ( > 30 km), at an advanced stage of opening,

Rona, Peter A.

1984-01-01

330

Ancient Hydrothermal Springs in Arabia Terra, Mars  

NASA Technical Reports Server (NTRS)

Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

Oehler, Dorothy Z.; Allen, Carlton C.

2008-01-01

331

Sample Return from Ancient Hydrothermal Springs  

NASA Technical Reports Server (NTRS)

Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

Allen, Carlton C.; Oehler, Dorothy Z.

2008-01-01

332

Numerical study of low concentration nanofluids pool boiling, investigating of boiling parameters introducing nucleation site density ratio  

NASA Astrophysics Data System (ADS)

The present study consists of a pool boiling model modified for nanofluids. The effect of particle size, surface roughness were considered in this work. Nucleation site density ratio was introduced and a correlation was derived based on literature experimental data. Moreover, heat flux partitioning model was employed to evaluate proposed model for boiling heat transfer. The validity was assessed by comparing the results with experimental data. Nucleation site density ratio can predict heat transfer enhancement of nanofluids.

Niknam, Pouriya H.; Haghighi, M.; Kasiri, N.; Khanof, M. H.

2014-09-01

333

Marine diagenesis of hydrothermal sulfide  

SciTech Connect

An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

Moammar, M.O.

1985-01-01

334

VLA Shows "Boiling" in Atmosphere of Betelgeuse  

NASA Astrophysics Data System (ADS)

A team of astronomers says that observations with the National Science Foundation's Very Large Array (VLA) radio telescope show that a neighboring bloated star has giant convective plumes propelling gas from its surface (photosphere) up into the star's atmosphere. This new information contradicts long-held ideas that such stellar atmospheres are more uniform, and may resolve questions about how the star's atmosphere attains its enormous size as well as how dust and gas is driven away from the star. Jeremy Lim of the Academia Sinica Institute of Astronomy & Astrophysics in Taiwan; Chris Carilli, Anthony Beasley, and Ralph Marson of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; and Stephen White of the University of Maryland studied the red-supergiant star Betelgeuse, about 430 light-years away in the constellation Orion. They reported their findings in the April 9 issue of the scientific journal Nature. "These radio-telescope images confirm that Betelgeuse -- already more than 600 times larger than our Sun -- has a dense atmosphere that extends to many times larger still than the star itself," said Lim. "The highest-resolution image shows the star's atmosphere to have a remarkably complex structure." "To our surprise," added White, "the images also show that most of the gas in the atmosphere is only about as hot as that on the surface. Previously, all of it was thought to be very much hotter." The astronomers used the VLA to make images of Betelgeuse at a variety of radio frequencies. The series of radio observations measured the temperature of the star's atmosphere at different heights. Previous observations with the Hubble Space Telescope (HST) at ultraviolet wavelengths showed that the star's atmosphere contains very hot gas at about twice the surface temperature. The VLA images showed that there also is lower-temperature gas throughout the atmosphere. This gas is near the surface temperature at low heights and decreases in temperature progressively outwards. Although its existence was not previously suspected, this lower-temperature gas turns out to be the most abundant constituent of Betelgeuse's atmosphere. "This alters our basic understanding of red-supergiant star atmospheres," explains Lim. "Instead of the star's atmosphere expanding uniformly because of gas heated to very high temperatures near its surface, it now appears that several giant convection cells propel gas from the star's surface into its atmosphere. This creates the complex structure we observe for Betelgeuse's atmosphere." Betelgeuse can be likened to an enormous "boiling" ball of gas heated by the release of energy from nuclear fusion in its core. The circulating boiling pattern -- convection -- appears as large regions of hot upwelling gas on the star's surface. "The idea that red-supergiant stars have enormous convection cells is not new," noted Marson. "This was suggested by Martin Schwarzschild more than 20 years ago, and was seen in optical images of Betelgeuse's surface in 1990." The new picture of Betelgeuse's atmosphere also helps resolve the mystery of how massive amounts of dust and gas are expelled from red supergiant stars, an important source of enrichment for the interstellar medium. If their atmospheres were entirely very hot at lower levels, dust grains would not be able to condense there. Dust grains could possibly condense at higher levels, but there they would not get enough "push" from the star's radiation to explain their outward movement. In the new picture, the relatively cool environment at lower levels allows dust grains to condense effectively; here they can be strongly propelled by the more-intense starlight, carrying gas with them. Indeed, dust has previously been inferred to form sporadically near Betelgeuse's surface, but its presence there was difficult to reconcile with the old picture. "This method for propelling the mass outflows of red giant and supergiant stars was proposed by Sun Kwok i

1998-04-01

335

NOAA's VENTS program targets oceanic hydrothermal effects  

NASA Astrophysics Data System (ADS)

The VENTS Program was established in 1984 to focus interdisciplinary research of the National Oceanographic and Atmospheric Administration on the oceanic effects of hydrothermal activity along seafloor spreading centers. Since then, the accelerating rate of discoveries in this area of research has resulted in increased recognition of the importance of seafloor hydrothermal venting as a fundamental process for transfer of mass and heat from the Earth's interior to its surface—a process that is active intermittently, but not uncommonly, along the entire 60,000 km-long global spreading-center system. As the nation's civilian ocean agency, NOAA undertakes research to understand processes that affect the ocean environment. The VENTS program's highest priority is studies that address large-scale hydrothermal chemical and thermal effects on the ocean, or the potential for such effects, that manifest themselves over relatively short time periods—from years to centuries.

Hammond, S.; Fox, C.; Embley, R.; Baker, E.; Bernard, E.; Massoth, G.; Feely, R.; Cannon, G.; Rona, P.

336

Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013  

DOE Data Explorer

A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

Scott Painter; Adam Atchley; Dylan Harp

337

The BGU/CERN solar hydrothermal reactor  

E-print Network

We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

2014-01-01

338

Depolymerization of sulfated polysaccharides under hydrothermal conditions.  

PubMed

Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions. PMID:24361592

Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

2014-01-30

339

Characterization of advanced preprocessed materials (Hydrothermal)  

SciTech Connect

The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

Rachel Emerson; Garold Gresham

2012-09-01

340

Hydrothermal pretreatment of bamboo and cellulose degradation.  

PubMed

A systematic hydrothermal pretreatment of bamboo chips had been conducted with an aim to trace the cellulose degradation. The results showed that cellulose chain cleavage basically occurred when the temperature exceeded 150°C. A slightly higher DP (degree of polymerization) than starting material had been observed at low temperature pretreatment. Treatment at higher temperature (? 170°C) caused severe cleavage of cellulose and therefore gave rise to low DP with more soluble species. DP of cellulose declined drastically without additional hemicelluloses dissolution when hemicelluloses removal reached to the limit level. Cellulose degradation under hydrothermal pretreatment generally followed the zero reaction kinetics with the activity energy of 121.0 kJ/mol. Besides, the increase of cellulose crystalline index and the conversion of I?-I? had also observed at the hydrothermal pretreatment. PMID:24077149

Ma, X J; Cao, S L; Lin, L; Luo, X L; Hu, H C; Chen, L H; Huang, L L

2013-11-01

341

Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System  

NASA Technical Reports Server (NTRS)

NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

2011-01-01

342

Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen  

NASA Technical Reports Server (NTRS)

Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

Simoneau, R. J.

1975-01-01

343

Biogeochemistry of hydrothermally and adjacent non-altered soils  

Technology Transfer Automated Retrieval System (TEKTRAN)

As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

344

Recent population expansion and connectivity in the hydrothermal shrimp  

E-print Network

-sea hydrothermal vents are unstable habitats that are both spatially and temporally fragmented. In vent species of the shrimp Rimicaris exoculata, which forms high-density local populations on hydrothermal vents along the Mid-Atlantic ridge. Location Deep-sea hydrothermal vents along the Mid-Atlantic Ridge. Methods We used

Teixeira, Sara

345

Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers  

E-print Network

is very limited. Low-temperature diffuse vent fluids, ubiquitous at hydrothermal systems, provide one microorganisms from diffuse hydrothermal vent fluids and the subseafloor at basalt-hosted mid-ocean ridges hydrothermal fluids mix with oxygen-saturated seawater in the crust, creat- ing low-temperature diffuse vents

Holden, James F.

346

Discovery of abundant hydrothermal venting on the ultraslow-spreading  

E-print Network

............................................................................................................................................................................. Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridgesPublishing Group #12;active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6­1.3 cm yr

Graham, David W.

347

Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise,  

E-print Network

Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise, 27.5°­32.3°S E. T by a hydrothermal plume. Plume chemistry mostly reflected discharge from mature vent fields apparently unperturbed March/April 1998 we conducted detailed mapping and sampling of hydrothermal plumes along six segments

Bohnenstiehl, Delwayne

348

Ecology of deep-sea hydrothermal vent communities: A review  

Microsoft Academic Search

The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems

Richard A. Lutz; Michael J. Kennish

1993-01-01

349

ORIGINAL ARTICLE Ultra-diffuse hydrothermal venting supports  

E-print Network

ORIGINAL ARTICLE Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive University, Bellingham, WA, USA A novel hydrothermal field has been discovered at the base of Lo¯ihi Seamount seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed

Moyer, Craig

350

Automated Planning for Hydrothermal Vent Prospecting Using AUVs  

E-print Network

Automated Planning for Hydrothermal Vent Prospecting Using AUVs: RSMG Report 8 Zeyn A Saigol Thesis) to locate hydrothermal vents, which are superheated outgassings of water found on the ocean floor. Vents. Current methods for finding hydrothermal vents rely on manually defining an area for the AUV to perform

Yao, Xin

351

Belief Change Maximisation for Hydrothermal Vent Hunting Using Occupancy Grids  

E-print Network

Belief Change Maximisation for Hydrothermal Vent Hunting Using Occupancy Grids Zeyn Saigol floor for hydrothermal vents. The state of the art in these problems is information lookahead Vehicle (AUV) prospecting for hydrothermal vents, which are superheated outgassings of water found on mid

Yao, Xin

352

A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field  

E-print Network

of hydrothermal chimneys and black smoker vents driven by the cooling of magma beneath mid-ocean ridges and host hydrothermal vent systems. Many of these high-temperature systems are restricted to the axis of the global mid any hydrothermal system found to date, hosting diffusely venting carbonate monoliths towering tens

Gilli, Adrian

353

1 INRODUCTION The physico-chemical conditions in hydrothermal  

E-print Network

Submarine hydrothermal venting occurs at Tutum Bay (Figure 1) in shallow (5-10 m) water along the inner of venting are observed. (1) Focused discharge of a clear, hydrothermal fluid occurs at discrete ports, 10 Tutum Bay vents discharge and ultimately they are caused by changes in the hydrology of the hydrothermal

Pichler, Thomas

354

A hydrothermal hot-pressing method: Apparatus and application  

Microsoft Academic Search

Loose particles occurring in sediment are transformed into sedimentary rock by a process termed lithification, which is a chemical process that reduces the original porosity by compaction and cementation [1]. A hydrothermal hot-pressing method is intended for artificial lithification. In this study, silica powder including mineralizer solution is compressed under hydrothermal conditions from outside an autoclave for hydrothermal hot-pressing and

N. Yamasaki; K. Yanagisawa; M. Nishioka; S. Kanahara

1986-01-01

355

Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin  

NASA Astrophysics Data System (ADS)

A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

2006-12-01

356

Geothermal reservoirs in hydrothermal convection systems  

SciTech Connect

Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

Sorey, M.L.

1982-01-01

357

Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1  

SciTech Connect

Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

Hulen, J.B.; Nielson, D.L.

1987-06-01

358

Dynamics of changes in the physical characteristics of a hydrothermally altered geological section according to nonisothermal physicochemical simulation (the Mutnovsky Volcano)  

NASA Astrophysics Data System (ADS)

The paper presents the results of numerical simulation of a subaerial volcanic hydrothermal system. The model is based on the factual data on the rock composition and the geological structure of the Mutnovsky Volcano. We develop a new approach to construct the numerical model of a volcanic hydrothermal system. According to this approach, at each step of the calculation, for each point of the spatiotemporal domain, the thermophysical properties are determined; further, these properties are used in the calculation of the equilibrium state of the system. This procedure allows us to take into account the dynamic changes in the T-P conditions in the cross section and the migration of the phase boundaries. As well, using this approach, we can pass from "conditional" time in the description of the evolution of the magmagenic fluid system to the "virtually dimensional time" of the development of the simulated ore-magmatic system, from the onset of melt crystallization in the intrusive chamber up to the termination of the retrograde boiling of the melt. The simulation shows that, depending on the structure of the lower part of the section, contrasting hydrothermal systems can develop in the originally homogeneous medium. The relation between the temperature, and, therefore, phase composition of the fluid and the features of the hydrothermal alteration in volcanic rocks is demonstrated. Among other questions, in the present paper we discuss the changes in the density and magnetic properties of the volcanogenic section.

Bessonova, E. P.; Gora, M. P.; Shevko, A. Ya.; Chudnenko, K. V.; Cherepanova, V. K.

2011-06-01

359

Enhanced boiling heat transfer in horizontal test bundles  

SciTech Connect

Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

1994-08-01

360

Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge  

Microsoft Academic Search

Detailed characterization of the Mothra Hydrothermal Field, the most southern and spatially extensive field on the Endeavour Segment of the Juan de Fuca Ridge, provides new insights into its geologic and hydrothermal development. Meter-scale bathymetry, side-scan sonar imagery, and direct dive observations show that Mothra is composed of six actively venting sulfide clusters spaced 40–200 m apart. Chimneys within each

Deborah A. Glickson; Deborah S. Kelley; John R. Delaney

2007-01-01

361

Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions  

NASA Astrophysics Data System (ADS)

This study investigates the hydrodynamic characteristics of droplet impingement on heated surfaces and compares the effect of surface temperature when using water and a nanofluid on a polished and nanostructured surface. Results are obtained for an impact Reynolds number and Weber number of approximately 1700 and 25, respectively. Three discs are used: polished silicon, nanostructured porous silicon and gold-coated polished silicon. Seven surface temperatures, including single-phase (non-boiling) and two-phase (boiling) conditions, are included. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. Results of water and a water-based single-wall carbon-nanotube nanofluid impinging on a polished silicon surface are compared to determine the effects of nanoparticles on impinging dynamics. The nanofluid results in larger spreading velocities, larger spreading diameters and an increase in early-stage dynamic contact angle. Results of water impinging on both polished silicon and nanostructured silicon show that the nanostructured surface enhances the heat transfer for evaporative cooling at lower surface temperatures, which is indicated by a shorter evaporation time. Using a nanofluid or a nanostructured surface can reduce the total evaporation time up to 20% and 37%, respectively. Experimental data are compared with models that predict dynamic contact angle and non-dimensional maximum spreading diameter. Results show that the molecular-kinetic theory's dynamic contact angle model agrees well with current experimental data for later times, but over-predicts at early times. Predictions of maximum spreading diameter based on surface energy analyses indicate that these models over-predict unless empirical coefficients are adjusted to fit the test conditions. This is a consequence of underestimates of the dissipative energy for the conditions studied.

Shen, Jian; Liburdy, James A.; Pence, Deborah V.; Narayanan, Vinod

2009-11-01

362

Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions.  

PubMed

This study investigates the hydrodynamic characteristics of droplet impingement on heated surfaces and compares the effect of surface temperature when using water and a nanofluid on a polished and nanostructured surface. Results are obtained for an impact Reynolds number and Weber number of approximately 1700 and 25, respectively. Three discs are used: polished silicon, nanostructured porous silicon and gold-coated polished silicon. Seven surface temperatures, including single-phase (non-boiling) and two-phase (boiling) conditions, are included. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. Results of water and a water-based single-wall carbon-nanotube nanofluid impinging on a polished silicon surface are compared to determine the effects of nanoparticles on impinging dynamics. The nanofluid results in larger spreading velocities, larger spreading diameters and an increase in early-stage dynamic contact angle. Results of water impinging on both polished silicon and nanostructured silicon show that the nanostructured surface enhances the heat transfer for evaporative cooling at lower surface temperatures, which is indicated by a shorter evaporation time. Using a nanofluid or a nanostructured surface can reduce the total evaporation time up to 20% and 37%, respectively. Experimental data are compared with models that predict dynamic contact angle and non-dimensional maximum spreading diameter. Results show that the molecular-kinetic theory's dynamic contact angle model agrees well with current experimental data for later times, but over-predicts at early times. Predictions of maximum spreading diameter based on surface energy analyses indicate that these models over-predict unless empirical coefficients are adjusted to fit the test conditions. This is a consequence of underestimates of the dissipative energy for the conditions studied. PMID:21715897

Shen, Jian; Liburdy, James A; Pence, Deborah V; Narayanan, Vinod

2009-11-18

363

Stable isotopic compositions of hydrothermal vent organisms  

Microsoft Academic Search

Stable isotopic analyses were used to study trophic relationships in two communities of deep-sea hydrothermal vent organism in the Pacific Ocean. The community at Hanging Gardens on the East Pacific Rise (21°N), sampled in 1985, is dominated by two species of vestimentiferan tubeworms; communities at Alice Springs and Snail Pits on the Marianas Back Arc Spreading Center (western Pacific), sampled

C. L. Dover; B. Fry

1989-01-01

364

Are hydrothermal vent animals living fossils?  

Microsoft Academic Search

Since their discovery in 1977, hydrothermal vent communities have provided many surprises about life in the deep sea and in extreme environments. It has been suggested that vent communities contain many living fossils and that deep-sea chemosynthetic environments, such as vents and hydrocarbon seeps, are buffered from extinction events that affect the photic zone. This hypothesis is based on the

Crispin T. S. Little; Robert C. Vrijenhoek

2003-01-01

365

Hydrothermal solidification of inorganic waste materials  

Microsoft Academic Search

To create an environmently friendly community, the authors have investigated the recycling technology of inorganic, wastes to make high performance building materials and the stabilization technology of toxic heavy metals by using hydrothermal treatment. The inorganic waste materials used were bottom ash and fly ash from incinerated municipal waste, incinerated ash from sewage sludge, concrete waste, and construction sludge. These

Mikihiro Oida; H. Maenami; H. Shin; H. Kuno; Hideki Ishida

2001-01-01

366

Hydrothermal gasification of biomass and organic wastes  

Microsoft Academic Search

Wet biomass and organic wastes can be efficiently gasified under hydrothermal conditions to produce a hydrogen rich fuel gas. New experiments in two tubular flow reactors and in two batch autoclaves with carbohydrates, with aromatic compounds, with glycine as a model compound for proteins and with real biomass are reported for different residence times, temperatures and pressures. It was found

H. Schmieder; J. Abeln; N. Boukis; E. Dinjus; A. Kruse; M. Kluth; G. Petrich; E. Sadri; M. Schacht

2000-01-01

367

Hydrothermal Vent Animals: Distribution and Biology  

Microsoft Academic Search

Hydrothermal vent communities characterized by large clams, mussels, and vestimentiferan worms thrive on chemosynthetic microbial production. There are similarities in the animal distributions at vent communities from 20 degrees S to 46 degrees N on the Mid-Ocean Ridge in the Pacific Ocean and at cold sulfide seeps in the Gulf of Mexico. Vent communities, consisting of at least 16 previously

J. Frederick Grassle

1985-01-01

368

Physical balances in subseafloor hydrothermal convection cells  

Microsoft Academic Search

We use a simplified model of convection in a porous medium to investigate the balances of mass and energy within a subseafloor hydrothermal convection cell. These balances control the steady state structure of the system and allow scalings for the height, permeability, and residence time of the “reaction zone” at the base of the cell to be calculated. The scalings

Tim E. Jupp; Adam Schultz

2004-01-01

369

Experimental constraints on hydrothermal activities in Enceladus  

NASA Astrophysics Data System (ADS)

One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400°C). This is because NH3 decomposition proceeds inefficiently due to efficient H2 production via serpentinization. Our experimental results also suggest that SiO2 concentration dissolved in hydrothermal fluids simulating Enceladus' condition would be buffered by the serpentine-brucite system. The presence of NH3 in the hydrothermal conditions keeps pH of the solution high (pH 9-11). We suggest that under such conditions, SiO2 concentrations in the fluids would be 0.1 mmol/L or less for temperature < 350°C. Given the SiO2 solubility of 1-10 mmol/L at 0°C and pH 9-11, direct formation of amorphous SiO2 would not occur in Enceladus' hydrothermal systems. To produce amorphous SiO2, large-scale hydrothermal activities and subsequent concentration of dissolved SiO2 in the ocean (due to freezing and/or evaporation of liquid water) would be required, which is consistent with high concentrations of radiogenic Ar and sodium salts in the plume [2, 6]. [1] Porco et al., Science 311, 1393 (2006). [2] Postberg et al., Nature 459, 1098 (2009). [3] Matson et al., Icarus 187, 569 (2007). [4] Hansen t al., Geophs. Res. Lett. 38, L11202 (2011). [5] Hsu et al., EOS Trans. AGU, (2010). [6] Waite et al., Nature 460, 487 (2009).

Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

2012-12-01

370

Fungal colonization of an Ordovician impact-induced hydrothermal system  

PubMed Central

Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458?Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

2013-01-01

371

Fungal colonization of an Ordovician impact-induced hydrothermal system.  

PubMed

Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458?Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

2013-01-01

372

Boiling heat transfer on fins - experimental and numerical procedure  

NASA Astrophysics Data System (ADS)

The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

Orzechowski, T.; Tyburczyk, A.

2014-03-01

373

3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

374

Hydrothermal systems in small ocean planets.  

PubMed

We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1). PMID:18163874

Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

2007-12-01

375

The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch  

NASA Astrophysics Data System (ADS)

This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal systems are mainly volcanic or volcaniclastic types of Neogene-Quaternary age. Volcanic rocks (lava rocks) are dense with high strength and elastic modulus and low porosity and permeability. The speed of their alteration is low. Basically volcanic rocks form impermeable horizons in the structure of hydrothermal system. But sometimes they form fracture-type reservoir. The origin of fracturing can be various. Volcanoclastic rocks are characterized by lower physical and mechanical properties, higher porosity and permeability. Due to high porosity and permeability they are greatly exposed to thermal fluids so they are altered intensively. Volcaniclastic rocks are the most common host rocks of geothermal reservoirs. Typically they form porous or fracture-porous aquifers. But in some cases they form water confining layers. The well-studied example is Pauzhetskaya hydrothermal system. The main reservoir is composed of highly porous (30-40%) and permeable medium-grained tuffs. The caprock is composed of fine-grained argillized tuffs. They are highly porous but due to small pore size porosity is un-effective for fluid and permeability is low. The temperature and pressure in a hydrothermal system cardinally influence on rocks properties. High-temperature deep fluids (?>200C) cause the perfect tendency of petrophysical alteration - consolidation, hardening, a decrease of porosity and permeability, and removal of a hygroscopic moisture. This petrophysical tendency is observed independently of composition of fluids. This is the result of the development of high-temperature secondary minerals, which fill pores and cracks, and substitute matrix and phenocrystals. The contacts between grains become strong and dense, intergranular porosity is disappeared that reinforces cementation of rock. The petrophysical alteration caused by low-temperature subsurface fluids (?<150C) are more difficult and diverse. Depending on what process prevails - rocks leaching, sedimentation of secondary minerals in pores and cracks or replacement of primary minerals

Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.

2009-04-01

376

Effect of surface properties on nucleate pool boiling  

SciTech Connect

A series of experiments on nucleate pool boiling was performed by use of an oxygen-free copper rod and platinum wires of different surface properties under both normal gravity condition and microgravity condition. As a result of the experiments, under normal gravity condition, the bubbling on thick cracked silicone-coated surfaces and that on scale surfaces were more vigorous than that on mirror-finished (copper) surfaces, that on bare (Pt) surfaces, that on thin silicone-coated surfaces and that on thick silicone-coated surfaces. The boiling curves on the mirror-finished surface, the bare surface, the thin silicone-coated surface and the thick cracked silicone-coated surface were equal to those predicted by the Rohsenow's correlation. The superheats on the thick silicone-coated surface and the scale surface were larger than those predicted by the Rohsenow's correlation. The boiling curves on the non-cracked silicone-coated surface and the scale surface corrected by those heat resistance were equal to those predicted by the Rohsenow's correlation. The superheat on the thick silicone-coated surface corrected by its heat resistance was smaller than that predicted by the Rohsenow's correlation. The thick cracked silicone-coated surface enhanced the nucleate boiling heat transfer. On the other hand, under microgravity condition, the bubbles stayed around heated surfaces except scale surfaces. The boiling curve on the bare surface under microgravity condition was equal to that under normal gravity condition. The effect of surface properties on the nucleate boiling heat transfer under microgravity condition was equal to that under normal gravity condition.

Haze, Ikuya; Tomemori, Hideki; Motoya, Daiju; Osakabe, Masahiro

1999-07-01

377

23. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

23. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: North Wall of boiling house. In the original structure the three windows on the right admitted light and air from the outside. A shed occupied the left side of the wall outside (hence no windows). in 1881 the construction of the cooling shed closed in the right three windows. The sorghum is in the foreground. The centrifugals are in the left rear. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

378

Isotope hydrology of El Chichón volcano-hydrothermal system; a coupled system of crater lake and hot springs  

NASA Astrophysics Data System (ADS)

The catastrophic 1982 eruption of El Chichón (>1.5 km3 of erupted material) opened the upper hundred meters of the existing volcano-hydrothermal system. In the new formed 200m-deep crater a large shallow crater lake and numerous hot springs were formed. The lake existence and its salinity depend on the precipitation (~4000 mm/y) as well as a group of geyser-like neutral saline springs (source of Cl and SO4) and hydrothermal steam vents discharging into the lake (source of SO4). The chemistry of these “Soap Pool” (SP) springs evolved from >13,000 ppm of Cl in 1995 to ~2000-3000 ppm of Cl in 2006. Since 2006, this Cl-concentration in SP waters is constant. Similar concentrations of Cl are observed in most flank hot springs located at altitudes of ~ 600 m asl, 2-3 km from the crater. Therefore, it can be suggested that the flank springs, crater lake and crater hot springs are manifestations of the upper, relatively shallow volcano-hydrothermal system developed beneath the crater in the volcano edifice. Water isotopic composition of all types of thermal and fresh waters including fumarolic steam condensates (>100 samples collected in 1995-2010) allow to classify and distinguish different processes of shallow mixing, boiling, evaporation and water-rock isotope exchange. All spring waters from the upper system have meteoric origin, with the isotopic composition plotting close to the meteoric water line. Crater waters are strongly evolved due to shallow boiling and loss of steam. Isotopic composition of water from the lower, deep hydrothermal system is characterized by a significant positive oxygen isotopic shift and a strong Cl-d18O linear correlation. Waters from numerous cold springs that drain pyroclastic deposits demonstrate a clear negative oxygen shift. Some problems related to water isotopic composition are still remain unresolved: (1) we cannot find any traces of the infiltrated isotopically heavy lake waters, i.e., the seepage from the lake at the volcano slopes; and (2) we cannot explain the constancy and independence of d18O values (-2±1 ‰) of SP springs from Cl concentration which varied from 13,000 to 2,000 ppm over the observation time.

Peiffer, L.; Taran, Y.; Rouwet, D.

2010-12-01

379

Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer  

NASA Technical Reports Server (NTRS)

Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

Kim, Jungho; McQuillen, John; Balombin, Joe

2002-01-01

380

Vertical boil propagation from a submerged estuarine sill C. Chris Chickadel,1  

E-print Network

in Washington State. Locations of boil disruptions and boil diameters at the surface were quantified with downstream bends will vertically self-advect and erupt at the surface [Nezu and Nakagawa, 1993; Mu

Talke, Stefan

381

Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals  

E-print Network

A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

Deane, Charles William

1969-01-01

382

Forced-convection surface-boiling heat transfer and burnout in tubes of small diameters  

E-print Network

A basic heat-transfer apparatus was designed and constructed for the study of forced-convection boiling in small channels. The various regions of forced-convection surface boiling were studied experimentally and analytically. ...

Bergles A. E.

1962-01-01

383

Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge  

NASA Astrophysics Data System (ADS)

During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

2002-12-01

384

Acoustic emission feedback control for control of boiling in a microwave oven  

SciTech Connect

An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

White, T.L.

1990-05-02

385

Acoustic emission feedback control for control of boiling in a microwave oven  

SciTech Connect

This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

White, T.L.

1991-02-26

386

Experimental study on bubble departure frequency for pool boiling of water/NaCl solutions  

NASA Astrophysics Data System (ADS)

Nucleate pool boiling experiments were conducted for water and water/NaCl solutions at atmospheric pressure. Many analyses of boiling heat transfer include the terms bubble frequency in their expressions for nucleate boiling heat flux. Experimental results show that the bubble frequency increases with increasing boiling heat flux and decreases with increasing NaCl concentration at same conditions. A new model for the prediction of bubble departure frequency is proposed, which predicts the experimental data with a satisfactory accuracy.

Hamzekhani, Samane; Falahieh, Majedeh Maniavi; Kamalizadeh, Mohammad Rasoul; Nazari, Zahra

2015-01-01

387

Acoustic emission feedback control for control of boiling in a microwave oven  

DOEpatents

An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

White, Terry L. (Oak Ridge, TN)

1991-01-01

388

Seismic identification of along-axis hydrothermal flow on the East Pacific Rise  

E-print Network

. Here we show that hypocentres beneath a well-studied hydrothermal vent field on the East Pacific Rise to the distribution and temper- ature of hydrothermal vents along this section of the ridge suggests that hydrothermal by hydrothermal circu- lation at the mid-ocean-ridge axis has been studied widely since deep-sea hydrothermal vent

Bohnenstiehl, Delwayne

389

Electrochemical study of aluminum corrosion in boiling high purity water  

NASA Technical Reports Server (NTRS)

Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

Draley, J. E.; Legault, R. A.

1969-01-01

390

Adhesion test with water boiling method at high-temperature  

Microsoft Academic Search

Water boiling test can evaluate the adhesion between base asphalt (A-70, etc.) and stone, but cannot evaluate the adhesion between modified asphalt , the asphalt with all kinds of anti-stripping products and stone. The reason is that modified asphalt has better adhesion than base asphalt at the same test temperature, and it is very hard to damage the adhesion interface.

Zhi Li; Xiao-ning Zhang

2011-01-01

391

Design Challenge: How to Keep Items Cool in Boiling Water?  

NSDL National Science Digital Library

This is a design challenge about heat transfer and insulation. Learners will apply the scientific method to design and build a container that will keep items cool when placed in boiling water. They will practice collaboration in team-building and in teamwork. This is lesson 4 of 4 at the Grade 9-12 range of the module, Staying Cool.

392

Facilitating Conceptual Change in Students' Understanding of Boiling Concept  

ERIC Educational Resources Information Center

The objective of this study was to construct a teaching strategy for facilitating students' conceptual understanding of the boiling concept. The study is based on 52 freshman students in the primary science education department. Students' ideas were elicited by a test consisting of nine questions. Conceptual change strategy was designed based on…

Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor; Unal, Suat; Calik, Muammer

2007-01-01

393

Flow Boiling Critical Heat Flux in Reduced Gravity  

NASA Technical Reports Server (NTRS)

This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

2004-01-01

394

Research on radiation detectors, boiling transients, and organic lubricants  

NASA Technical Reports Server (NTRS)

The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

1974-01-01

395

Environmental qualification testing of the prototype pool boiling experiment  

Microsoft Academic Search

The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware

J. Andrew Sexton

1992-01-01

396

Heat transfer and nucleation in pool-boiling  

Microsoft Academic Search

The creation of bubbles is a fundamental process in boiling heat transfer. There must be a correlation between heat transfer and bubble action. In order to find out more about it a number of tubes of different materials, diameters and surface finish were investigated and their heat transfer coefficients were determined. Besides the overall heat transfer coefficient, local heat transfer

Erich Hahne; Gerrit Barthau

2006-01-01

397

Teachers College Students' Conceptions about Evaporation, Condensation, and Boiling.  

ERIC Educational Resources Information Center

An open-ended, written test was administered to 364 students divided into four groups according to their scientific learning background at a teachers college. Results indicate that although the science-major students performed better than nonscience majors, their understanding of condensation and boiling concepts still needed to be enhanced.…

Chang, Jin-Yi

1999-01-01

398

Experimental demonstration of contaminant removal from fractured rock by boiling.  

PubMed

This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix. PMID:20666474

Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

2010-08-15

399

A Mechanistic Study of Nucleate Boiling Under Microgravity Conditions  

Microsoft Academic Search

The overall objective of this work is to study nucleate boiling heat transfer under microgravity conditions in such a way that while providing basic knowledge of the phenomena, it also leads to development of simulation models and correlations that can be used as design tools for a wide range of gravity levels. In the study a building block type of

V. K. Dhir; G. R. Warrier; M. M. Hasan

2002-01-01

400

The dynamics of a boiling bubble before and after detachment  

Microsoft Academic Search

An overview is given of prediction methods for motion and deformation of a bubble that is created by boiling at a wall, at times before and after detachment, with a focus on added mass forces in the vicinity of the wall. The possibility to apply added mass coefficients derived in potential flows also to flows with vorticity is examined. An

2006-01-01

401

Microscale Heaters Detailed Boiling Behavior in Normal Gravity and Microgravity  

NASA Technical Reports Server (NTRS)

Pool boiling in microgravity is an area of both scientific and practical interest. Conducting tests in microgravity, as well as lunar and Martian gravity, makes it possible to assess the effect of the density difference between the vapor and liquid phases on the overall boiling process and to assess the relative magnitude of these effects in comparison to other "forces" and phenomena, such as surface tension forces, liquid momentum forces, and microlayer evaporation. The microscale heater developed under a NASA Glenn Research Center grant serves as a unique tool to probe the fundamental mechanisms associated with pool boiling. An experimental package was designed and built by the University of Maryland and tested on the NASA Johnson Space Center KC-135 experimental aircraft and a NASA WFF Terrier Orion Sounding Rocket under NASA Grants NAG3-2228 and NCC3-783. A square array of 96 microscale heaters was constructed and installed into a special boiling chamber. A fluorinert, FC-72, was used as the test fluid. A variety of tests were conducted at different pressures, heater wall temperatures, bulk fluid temperatures, and gravity levels.

McQuillen, John B.

2002-01-01

402

Boiling heat transfer and droplet spreading of nanofluids.  

PubMed

Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids. PMID:24330044

Murshed, S M Sohel; de Castro, C A Nieto

2013-11-01

403

Preliminary computational studies of flash boiling for fuel injectors in gasoline direct injection automotive engines  

Microsoft Academic Search

A flash boiling model is being developed to capture the effects of bubble nucleation and growth inside an injector. This model will be applied to the study of flash boiling fuel injector sprays in gasoline direct injection (GDI) automotive engines. There is potential for flash boiling to reduce drop sizes, increase spray cone angles, and ultimately produce more favorable combustible

Dar-Lon Chang; Chia-fon F. Lee

2002-01-01

404

Biocomplexity associated with biogeochemical cycles in arctic frost-boil ecosystems  

E-print Network

i Biocomplexity associated with biogeochemical cycles in arctic frost-boil ecosystems Principal CYCLES IN ARCTIC FROST-BOIL ECOSYSTEMS A PROJECT SUMMARY The central goal of this project to changing climate. We focus on frost-boils because: (1) The processes that are involved in the self

Wagner, Diane

405

Cross flow boiling in tube bundles. Annual technical report 1, Aug 82-1 Aug 83  

Microsoft Academic Search

The research on boiling in confined spaces has been completed. This problem is of great importance to the boiling induced corrosion in the steam generator crevices between the tube and the support structures. In the report of 1981, analysis of single phase flow, two phase flow, and dryout in crevices have been presented. Experimental results of boiling and dryout in

Yao

1983-01-01

406

Noise Decomposition in Boiling Water Reactors with Application to Stability Monitoring  

E-print Network

Noise Decomposition in Boiling Water Reactors with Application to Stability Monitoring J. Karlsson in boiling water reactor (BWR) noise measure- ments, based on flux factorization techniques (i.e., using reactors4 or flux oscillations in boiling water reactors5,6 ~BWRs!. In these cases the different modes have

Pázsit, Imre

407

High Temperature Hydrothermal Components in the Sediment Cover of the Saldanha Hydrothermal Field  

NASA Astrophysics Data System (ADS)

The Saldanha hydrothermal field is located at a non-transform offset (NTO5), between the FAMOUS and AMAR segments on the Mid-Atlantic Ridge (N36° 34'; W33° 26'). This field was discovered in 1998 during the Saldanha cruise (FCT, Portugal and IFREMER, France) and was revisited in 2001 during the Seahma cruise (FCT, Portugal) and in 2004 during the CD167 cruise (NOC, UK and FCT, Portugal). It is a serpentinite-hosted hydrothermal field and in situ observations revealed that hydrothermal vents are scarce and disseminated along the ocean floor over an area of approximately 400m2. Weakly venting fluids discharge through centimeter-sized orifices. Maximum fluid temperatures of 9° C were measured with the Victor ROV in 2001. Surface sediments have been collected from the Saldanha hydrothermal field in 1998, 2001 and 2004 and differences concerning mineralogy and geochemistry were recorded between these sediments. Mineralogy, whole sediment geochemistry and isotope ((? 13C, ? 18O, Pb and Nd) data suggest geochemical variations in hydrothermal activity in this system. Hydrothermal activity is more strongly recorded in sediments collected in 2004, which are richer in sulfide mineralization and in hydrothermally- derived elements such as Cu, Zn, Fe, Co, Ni and S. In these sediments, rare earth elements (REE) patterns are characteristically derived from vent fluids, with enrichment in light REE and a pronounced positive Eu anomaly. The seawater-derived REE components in these sediments are low, as revealed by a small negative Ce anomaly. Lead isotopic ratios are typically less radiogenic in the youngest sediments when compared with the ones recorded in 1998 and 2001 sediments, demonstrating a negligible contribution of Pb from pelagic sediments. This is in agreement with neodymium isotope analyses indicating a smaller seawater contribution in the 2004 sediments. Oxygen isotope compositions (?18OSMOW=6,59-11,63‰) of hydrothermal calcites present throughout the 2004 sediment core imply much higher temperatures of mineral precipitation (up to 260° C ) than those measured directly at the vent orifices in 2001 (9° C).Hydrothermal minerals are precipitated subsurface, preserving minerals from oxidizing conditions. The high temperature of mineral precipitation suggested by our data requires a significant heat input to this system, raising the question of the heat source of this system and the role of serpentinization processes, as no magmatic heat source has yet been found.

Dias, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Mills, R. A.; Taylor, R. N.; Barriga, F. J.

2006-12-01

408

Colorado's hydrothermal resource base: an assessment  

SciTech Connect

As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

Pearl, R.H.

1981-01-01

409

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

2013-03-31

410

Hydrothermal synthesis of lutetium disilicate nanoparticles  

NASA Astrophysics Data System (ADS)

A simple, low-cost hydrothermal method was developed to synthesize irregular-and rod-shaped lutetium disilicate (Lu2Si2O7) powders with sizes ranging from 71 to 340 nm. The synthesis temperature was 260 °C, which is nearly 1300 °C lower than that required for the solid-state reaction. The results indicated that both the hydrothermal temperature and pH values had great influences on the composition, crystalline phase and morphology of the powders. The formation mechanism, basic thermophysical properties, stability and anticorrosion properties of the Lu2Si2O7 powders were also investigated. The obtained powders possessed low thermal conductivity, a suitable thermal expansion coefficient (3.92-5.17×10-6 K-1) with the silicon-based substrate and excellent thermal and structural stability. During hot corrosion testing, the surfaces of the samples appeared to react with the water and molten salt vapors, but no serious failure occurred.

Tang, Xiaoping; Gao, Yanfeng; Chen, Hongfei; Luo, Hongjie

2012-04-01

411

Modeling acid-gas generation from boiling chloride brines  

SciTech Connect

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16

412

Phase relations and adiabats in boiling seafloor geothermal systems  

USGS Publications Warehouse

Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

Bischoff, J.L.; Pitzer, K.S.

1985-01-01

413

Evolving lipid vesicles in prebiotic hydrothermal environments  

NASA Astrophysics Data System (ADS)

We compared three different kinds of lipid vesicles made of saturated fatty acids, unsaturated fatty acids, and phospholipids for their evolutionary capabilities in a simulated hydrothermal environment.Encapsulation of the glycine monomers enhanced the oligomerization of peptides in all cases. Fatty acid vesicles remained stable at higher temperatures and efficiently utilized heat energy for this synthetic reaction. Phospholipid vesicles were destabilized by higher temperatures, and thus were found to be better suited to enhance synthetic reactions at lower temperatures

Furuuchi, Ryo; Imai, Ei-Ichi; Honda, Hajime; Hatori, Kuniyuki; Matsuno, Koichiro

2005-08-01

414

Explore Life at a Hydrothermal Vent  

NSDL National Science Digital Library

This site features Flash movies about the physical and biological characteristics of submarine vents. Some of the animations are simulated and some are real footage from remotely controlled instruments. Topics include the chemistry of water emitted by hydrothermal vents, as well as worms, octopuses, and other biota that inhabit these extreme environments. The video clips were taken during research expeditions along the Juan de Fuca Ridge, off the coast of Washington and Oregon.

Classzone - Exploring Earth

415

New Type of Hydrothermal Vents Found  

NSDL National Science Digital Library

This CNN news article discusses the discovery of a new class of hydrothermal vents in the mid-Atlantic Ocean, called the Lost City, formed by heat generated when seawater reacts with mantle rocks rather than by volcanic activity. The article also notes the importance of the discovery to microbiologists, as some of these new vents were inhabited by single-cell organisms called thermophiles. Links to other CNN.com articles and resources are provided as well.

Walker, Alex

416

Modeling Microbiological Interactions with Hydrothermal Flow  

NASA Technical Reports Server (NTRS)

All organisms require energy. Characterizing and quantifying the biological demand for energy places constraints on the possible interactions of organisms with each other and with the environment. This talk will consider energetic and mass transfer constraints on the ecology of hydrothermal vent microbes. Following a general introduction to the biological energy requirements and their link to environmental conditions, energy constraints will be applied to several vent-relevant case studies.

Hoehler, Tori

2006-01-01

417

Chemoautotrophic Symbiosis in a Hydrothermal Vent Gastropod  

Microsoft Academic Search

An undescribed gastropod species collected from recently discovered deep-sea hydrothermal vents in the western Pacific contains endosymbiotic bacteria within specialized gill cells. The snails inhabit rocky vent openings where they are exposed directly to warm (2- 25°C) sulfide-rich (750 nM) water emitted from the vents. The gills of this snail contain elemental sulfur and high activities of enzymes catalyzing sulfide

JEFFREY L. STEIN; S. CRAIG GARY; ROBERT R. HESSLER; SUGURU OHTA; RUSSELL D. VETTER; JAMES J. CHILDRESS; HORST FELBECK

1988-01-01

418

Synthesis of BN nanocrystals under hydrothermal conditions  

Microsoft Academic Search

Boron nitride nanocrystals with high crystalline perfection and high yield have been successfully prepared by a hydrothermal synthesis route. The experimental results show that the addition of N2H4 H2O and NH4Cl into the reaction mixture significantly improved the perfection and sample yield. Furthermore, the results of powder X-ray diffraction, fourier transformation infrared spectroscopy, transmission electron microscopy, selective area electron diffraction

Yu Meiyan; Shouyi Dong; Kai Li; Xiaopeng Hao; Zefeng Lai; Qilong Wang; Deliang Cui; Minhua Jiang

2004-01-01

419

The Hydrothermal Growth of Rare Earth Orthoferrites  

Microsoft Academic Search

Rare earth and yttrium orthoferrites, RFeO3, where R is Y, Yb, Ho, and Tb, have grown under hydrothermal conditions from 20 ml KOH and NaOH solutions at 375°C, ?8000 psi, and ?t=30° in the ?110? and ?001? directions at rates as great as 6 mil?day. Ease of growth appears to be inversely related to the ionic radius of R3+. TbFeO3

E. D. Kolb; D. L. Wood; R. A. Laudise

1968-01-01

420

Biology of the Lucky Strike hydrothermal field  

Microsoft Academic Search

Newly discovered hydrothermal vent communities at Lucky Strike on the Mid-Atlantic Ridge (37°18?N, 32°16?W) are comprised of an invertebrate fauna sufficiently different from known vent faunas of TAG and Snake Pit to consider Lucky Strike part of a new biogeographic province. The dominant component of the fauna is a new species of mussel, and the most unusual feature of the

Cindy Lee Van Dover; Daniel Desbruyères; Michel Segonzac; Thierry Comtet; Luiz Saldanha; Aline Fiala-Medioni; Charles Langmuir

1996-01-01

421

Boiling, colloid nucleation and aggregation, and the genesis of bonanza Au-Ag ores of the sleeper deposit, Nevada  

NASA Astrophysics Data System (ADS)

A deep “parent” composition for bonanza oreforming fluids at the Sleeper deposit was calculated by the computer program SOLVEQ using fluid-inclusion microthermometric and gas data, and by assuming equilibrium with the following minerals present in vein samples below the bonanza zones: gold, chalcedony, adularia, pyrite, chalcopyrite, and acanthite. The calculated dissolved gold content of 295 ppb is approximately 2 orders of magnitude higher than that assumed for typical geothermal systems. Thus, a gold-enriched fluid appears to have been a principal factor in the genesis of bonanza Au-Ag ores at the Sleeper deposit. Geochemical modelling of possible ore-forming processes using the computer program CHILLER, with the reconstructed ore-forming solution as a starting composition, indicates that boiling most closely reproduces observed minerals and their relative abundances in bonanza ores. The constraint imposed by the association of amorphous silica with gold precludes all of the mixing scenarios modelled, such as mixing with cold and steam-heated groundwaters (acid-sulfate, CO2-rich). Modelling indicates that boiling of a gold-rich deep solution leads to rapid gold precipitation, and that the amount of gold precipitated initially is large relative to other minerals. These factors apparently led to nucleation of colloidal gold particles instead of in-situ gold deposition or coprecipitation with other phases. Gold colloids apparently were entrained in the upward-flowing hydrothermal solutions and grew as they travelled. Upon reaching a critical size (10 100 nm?), they were deposited due to orthokinetic aggregation at an elevation and temperature at which amorphous silica was nucleating and aggregating.

Saunders, J. A.; Schoenly, P. A.

1995-06-01

422

Hydrothermal carbonization of poly(vinyl chloride).  

PubMed

Poly(vinyl chloride) (PVC) was subjected to hydrothermal carbonization in subcritical water at 180-260°C. Dehydrochlorination increased with increasing reaction temperature. The release of chlorine was almost quantitative above ?235°C. The fraction of organic carbon (OC) recovered in the hydrochar decreased with increasing operating temperature from 93% at 180°C to 75% at 250°C. A wide array of polycyclic aromatic hydrocarbons (PAHs) could be detected in the aqueous phase, but their combined concentration amounted to only ?140?gg(-1) PVC-substrate at 240°C. A pathway for the formation of cyclic hydrocarbons and O-functionalized organics was proposed. Chlorinated hydrocarbons including chlorophenols could only be identified at trace levels (low ppb). Polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs) could not be detected. The sorption potential of the hydrochar turned out to be very low, in particular for polar organic pollutants. Our results provide strong evidence that hydrothermal carbonization of household organic wastes which can be tied to co-discarded PVC-plastic residues is environmentally sound regarding the formation of toxic organic products. Following these findings, hydrothermal treatment of PVC-waste beyond operating temperatures of ?235°C to allow complete release of organic chlorine should be further pursued. PMID:25150971

Poerschmann, J; Weiner, B; Woszidlo, S; Koehler, R; Kopinke, F-D

2015-01-01

423

Diffuse flow from hydrothermal vents. Doctoral thesis  

SciTech Connect

The effluent from a collection of diffuse hydrothermal vents was modelled to determine the fate of the source of flow under typical environmental conditions at seafloor spreading centers. A laboratory simulation was conducted to test an analytic model of diffuse plume rise. The results showed that diffuse plumes are likely to remain near the seafloor, with their maximum rise height scaled with the diameter of the source of diffuse flow. The entrainment of ambient seawater into these plumes is limited by the proximity to the seafloor, thus slowing the rate of dilution. The model of diffuse plume behaviour was used to guide the design and implementation of a scheme for monitoring the flow from diffuse hydrothermal vents in the ocean. A deployment of an array at the Southern Juan de Fuca Ridge yielded measurements of a variety of diffuse plume properties, including total heat output. Two distinct sources of hydrothermal flow were detected during the field deployment. The larger source was 1-1.5km north of the instrument array, and its energy output was 450 + or - 270MW. A smaller source was located 100m east of one instrument in the array. The energy output of the source was 12 + or - 8MW. The rise heights of the centerlines of these plumes were 45m and 10m, respectively.

Trivett, D.A.

1991-08-01

424

Hydrothermal reaction of fly ash. Final report  

SciTech Connect

The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

Brown, P.W.

1994-12-31

425

Materials selection in hydrothermal oxidation processes  

SciTech Connect

Results of a literature and an experience survey on materials selection in subcritical and supercritical water oxidation processes are presented in this paper. Some hydrothermal process environments with moderate pH levels and low levels of reactive halide ions were mild enough to allow the use of AISI 316 and similar stainless alloys. The engineering alloys most commonly utilized in hydrothermal oxidation processes were found to be alloys C-276 and 625. However, the corrosivity in some environments appeared to be beyond the limits of alloys C-276 and 625 and required materials with higher corrosion resistance. Titanium alloys such as Ti-Gr2, Ti-Gr9 and Ti-Gr12 had value in terms of their corrosion resistance under some cases of highly oxidizing conditions. For severe applications, noble metals such as Pt, Pt-Ir and Pt-Rh were used as liners and overlays to minimize corrosive attack. Newer developed alloys such as alloy C-4, C-22, 59,686 and C-2000 haven`t yet been evaluated in hydrothermal oxidation process environments, In addition to materials selection, design innovations were used to minimize conditions for corrosive attack in process equipment.

Tebba, S.; Kane, R.D. [CLI International, Inc., Houston, TX (United States)

1998-12-31

426

Volatiles Produced and Consumed by Microorganisms in Active Hydrothermal Systems  

Microsoft Academic Search

Volatiles are one of the primary links from the mantle to the biological communities at hydrothermal systems. Microorganisms, either free-living or symbionts, are the primary means by which these volatiles are utilized in hydrothermal environments. The volatiles being discharged at active hydrothermal systems of most importance to microbiological communities are CH4, H2, H2S and CO2. CH4, H2 and H2S can

M. D. Lilley; E. J. Olson; D. A. Butterfield

2002-01-01

427

Extraction of edingtonite from a natural zeolite under hydrothermal conditions  

NASA Astrophysics Data System (ADS)

In the present study, edingtonite has been extracted from natural zeolite clinoptilolite by simulating the natural hydrothermal conditions in the laboratory, under the influence of solutions with different concentrations of Ba+2 and Na+, varying from 0.5 to 2.8 mol/L, at 150 °C. In this work, the essential hydrothermal conditions have been provided by hydrothermal autoclaves. The natural and laboratory prepared samples were characterized by XRD, XRF and SEM methods.

Tutti, F.; Kamyab, S. M.; Barghi, M. A.; Badiei, A.

2013-01-01

428

Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems  

NASA Astrophysics Data System (ADS)

In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isotope compositions of the hydrothermal fluid are, in turn, controlled by subseafloor physical and chemical processes, including fluid-rock interactions, phase separation and partitioning of fluids, and precipitation of minerals. We hypothesized that specific physicochemical principles describe the linkages among the living ecosystems, hydrothermal fluids, and geological background in deep-sea hydrothermal systems. We estimated the metabolic energy potentially available for productivity by chemolithotrophic microorganisms at various hydrothermal vent fields. We used a geochemical model based on hydrothermal fluid chemistry data compiled from 89 globally distributed hydrothermal vent sites. The model estimates were compared to the observed variability in extant microbial communities in seafloor hydrothermal environments. Our calculations clearly show that representative chemolithotrophic metabolisms (e.g., thiotrophic, hydrogenotrophic, and methanotrophic) respond differently to geological and geochemical variations in the hydrothermal systems. Nearly all of the deep-sea hydrothermal systems provide abundant energy for organisms with aerobic thiotrophic metabolisms; observed variations in the H2S concentrations among the hydrothermal fluids had little effect on the energetics of thiotrophic metabolism. Thus, these organisms form the base of the chemosynthetic microbial community in global deep-sea hydrothermal environments. In contrast, variations in H2 concentrations in hydrothermal fluids significantly impact organisms with aerobic and anaerobic hydrogenotrophic metabolisms. Particularly in H2-rich ultramafic rock-hosted hydrothermal systems, anaerobic and aerobic hydrogenotrophy is more energetically significant than thiotrophy. The CH4 concentration also has a considerable impact on organisms with aerobic and anaerobic methanotrophic metabolisms, particularly in sediment-associated hydrothermal systems. Recently clarified patterns and functions of existing microbial communities and their metabolisms are generally consistent with the results of our thermodynamic modeling of the hydrothermal mixing zones. These relationships provide important directions for future research addressing the origin and early evolution of life on Earth as well as for the search for extraterrestrial life.

Nakamura, Kentaro; Takai, Ken

2014-12-01

429

Hydrothermal synthesis map of bismuth titanates  

SciTech Connect

The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

Sardar, Kripasindhu [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-05-15

430

Zero Boil Off Cryogen Storage for Future Launchers  

NASA Technical Reports Server (NTRS)

Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.

Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

2001-01-01

431

Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus  

E-print Network

Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus;2 Abstract: The present study reports on the metallothionein expression in the hydrothermal vent mussel and conserved throughout the animal kingdom. The hydrothermal vent environment presents peculiarities (high

Paris-Sud XI, Université de

432

Geochemical Characterization of Hydrothermal Plumes Above Hydrothermally Active Volcanos on the Mariana Arc  

NASA Astrophysics Data System (ADS)

During February-March, 2003, a comprehensive survey of hydrothermal plumes and their geochemistry was made along 1200 km of the Mariana Arc from 13.5° N to 22.5° N. Eight of the 50 submarine volcanoes surveyed had intense hydrothermal emissions indicated by extremely elevated levels of Fe, Mn, ? CO2, H2S, particulate sulfur, particulate Fe, and/or particulate Al (PAl). The geochemical signature in the plumes above each of the eight volcanos was distinctly different, with elevated levels of Fe being the most common feature. Hydrothermal activity was found at another three volcanos but the chemical anomalies at these sites were much smaller. Of particular geochemical interest were elevated levels of PAl that were observed at three sites of intense activity with the NW Rota site having PAl > 1100nM. SEM-IXRF analysis of the particles found in the plumes revealed them to be Natroalunite, (K,Na)Al2(SO4)3OH6. Elevated Al levels have been observed only rarely in hydrothermal systems and their plumes (e.g., in the Manus Basin by Gamo et al., 1993) and have never been observed along the mid ocean ridges. The elevated Al must arise from SO2- or sulfuric acid-rich hydrothermal fluids stripping Al from the host rocks resulting in the pervasive argillic alteration found in various arc and back arc settings. This interpretation is supported by elevated Fe:Mn ratios which are closer to those found in the host rocks than those found in MOR hydrothermal fluids. End member hydrothermal fluids that might support the Al levels found in the plumes have never been found, suggesting that the fluids producing this type of alteration are rare. The total Fe concentrations above the eight most active volcanos ranged from 90 to 2300 nM Fe, averaging > 700nM. Of these volcanos, two are within 200 m of the surface of the ocean while another four were within 450m, thereby making these volcanos potentially large sources of the trace nutrient Fe to the surface oceans. The elevated levels of Fe also have important implications for the geo-chemical cycle of other elements (e.g., P) that are scavenged from the oceans during Fe oxidation and particle formation. Scavenging may be the ultimate removal mechanism for these elements from the oceans, suggesting that arc hydrothermalism may provide an important sink for these elements in their oceanic geochemical cycles.

Resing, J. A.; Lebon, G.; Baker, E.; Lupton, J.; Nakamura, K.; Massoth, G.; Embley, R.

2003-12-01

433

A New Theory of Nucleate Pool Boiling in Arbitrary Gravity  

NASA Technical Reports Server (NTRS)

Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different gravity levels, with a good agreement with experimental evidence. The other problem bears upon equilibrium shapes of a detached bubble near a heated surface in exceedingly low gravity. In low gravity or in weightlessness, the bubble can remain in the close vicinity of the surface for a long time, and its shape is greatly affected by the Marangoni effect due to both temperature and possible surfactant concentration being nonuniform along the interface. The bubble performs at these conditions like a heat pipe, with evaporation at the bubble lower boundary and condensation at its upper boundary, and ultimately ensures a substantial increase in heat removal as compared with that in normal gravity. Some other problems relevant to nucleate pool and forced convection boiling heat transfer are also discussed.

Buyevich, Y. A.; Webbon, Bruce W.

1995-01-01

434

Targeting organic molecules in hydrothermal environments on Mars  

NASA Astrophysics Data System (ADS)

Hydrothermal deposits on Mars Hydrothermal systems are proposed as environments that could support organic synthesis, the evolution of life or the maintenance of life [1,2,3]. They have therefore been suggested as primary targets for exploration on Mars [1,2,4,].There is now confidence that hydrothermal deposits occur at the martian surface. This is based on a range of criteria that could point towards hydrothermal activity, including volcanic activity, magmatic-driven tectonism, impact cratering in icy terrains, hydrous alteration of minerals and typical hydrothermal mineralogies [4]. The proposals to search for evidence of life at martian hydrothermal sites have been focussed on seeking morphological evidence of microbial activity [5]. Here we discuss the potential to seek a chemical signature of organic matter in hydrothermal systems. Organics in terrestrial hydrothermal systems Terrestrial hydrothermal systems can have large quantities of organic matter because they intersect organic-rich sedimentary rocks or oil reservoirs. Thus the signatures that they contain reflect some preexisting concentration of fossil organic compounds, rather than life which was active in the hydrothermal system. If any extant life was incorporated in these hydrothermal systems, it is swamped by the fossil molecules. Examples of environments where organic materials may become entrained include subsurface hydrothermal mineral deposits, generation of hydrothermal systems by igneous intrusions, and hot fluid venting at the seafloor. Nevertheless, there is value in studying the interactions of hydrothermal systems with fossil organic matter, for information about the survivability of organic compounds, phase relationships between carbonaceous and noncarbonaceous materials, and where in hydrothermal deposits to find evidence of organic matter. Microbial colonization of hot spring systems is feasible at depth within the systems and at the surface where the hydrothermal waters discharge. Discharging fluids will also precipitate minerals due to drop in temperature and pressure, and colonising organisms are likely to become entrained by the minerals. Attempts to find evidence of microbial activity related to hydrothermal systems in the geological record have therefore been focussed on hydrothermal mineral precipitates. Organic matter is found in hydrothermal precipitates back into the Precambrian [6]. Fig. 1 Settings for organic matter in hydrothermal systems. Surface discharge could be in subaerial or subaqueous environment. Application of SERS Studies using conventional laser Raman instruments have made a good case for application of this type of spectroscopy to planetary exploration. The detection of pigments sited in microbial matter in a range of samples from extreme environments (e.g. [7]) has supported development of the technique for space exploration generally, and Mars exploration in particular [8]. A major advantage of conventional Raman spectroscopy is that it can be applied to simultaneous characterization of bond types in both organic and inorganic materials. Surface-Enhanced Raman Spectroscopy (SERS) increases the sensitivity by several orders of magnitude, and overcomes the problems created by natural fluorescence [9]. SERS is achieved by adsorbing the target analyte onto the surface of a metal. We are combining the additional sample processing necessary for SERS with sample preparation in a microfluidic format (including extraction and sample concentration). The final result will be a very rapid assay, capable of detecting ppb concentrations of certain organic analytes. This approach was tested at a site in Iceland, where young/active hydrothermal systems are focussed in a rift environment. Sulphur species are prevalent, in a range of oxidation states, including sulphates, sulphides and native sulphur. Thus they are a useful model for systems that might exist on Mars, where sulphur species are widespread and therefore likely to be incorporated into hydrothermal systems. Microbial colonization of the Iceland sites is evident as pigme

Parnell, J.; Bowden, S. A.; Lindgren, P.; Wilson, R.; Cooper, J. M.

2008-09-01

435

Acoustic measurement of boiling instabilities in a solar receiver  

SciTech Connect

An acoustic technique was developed and used to search for boiling instabilities in the prototype receiver for the Barstow 10 MW Solar Thermal Pilot Plant. Instabilities, consisting of movements of the transition zone between regions of nucleate and film boiling, were observed. The periods of these fluctuations ranged between three and fifteen seconds with no indications of preferred frequencies. The peak to peak amplitudes of the fluctuations averaged 0.4 meters under steady state conditions at absorbed power levels between 2.0 and 3.2 MW. Transient fluctuations with amplitudes up to 2.0 meters were also seen. These transients usually lasted between 30 and 300 seconds. It was not possible to pinpoint the causes of these transients.

Beattie, A. G.

1980-11-01

436

Numerical analysis of contaminant removal from fractured rock during boiling  

NASA Astrophysics Data System (ADS)

A multiphase heat transfer numerical model is used to simulate a laboratory experiment of contaminant removal at boiling temperatures from a rock core representing the matrix adjacent to a fracture. The simulated temperature, condensate production, contaminant and bromide concentrations are similar to experimental data. A key observation from the experiment and simulation is that boiling out approximately 1/2 pore volume (50 mL) of water results in the removal of essentially 100% of the dissolved volatile contaminant (1,2-DCA). A field-scale simulation using the multiple interacting continua (MINC) discretization approach is conducted to illustrate possible applications of thermal remediation of fractured geologic media, assuming uniform heating. The results show that after 28% of the pore water (including both steam vapor and liquid water) was extracted, and essentially all the 1,2-DCA mass (more than 99%) was removed.

Chen, Fei; Falta, Ronald W.; Murdoch, Lawrence C.

2012-06-01

437

Considerations in predicting burnout of cylinders in flow boiling  

SciTech Connect

Previous investigations of the critical heat flux in flow boiling have resulted in widely different hydrodynamic mechanisms for the occurrence of burnout. Results of the present study indicate that existing models are not completely realistic representations of the process. The present study sorts out the influences of the far-wake bubble breakoff and vapor sheet characteristics, gravity, surface wettability, and heater surface temperature distribution on the peak heat flux in flow boiling on cylindrical heaters. The results indicate that burnout is dictated by near-surface effects. The controlling factor appears to be the vapor escape pattern close to the heater surface. It is also shown that a deficiency of liquid at the downstream end of the heater surface is not the cause of burnout.

Sadasivan, P.; Lienhard, J.H. (Univ. of Houston, TX (United States))

1992-02-01

438

Investigation of horizontal flow boiling of pure and mixed refrigerants  

SciTech Connect

The research involved determining experimental heat-transfer coefficients (HTC), examining the phenomena involved in the physical process, and analyzing the predictive ability of available models and correlations. This work was done for pure R152a and R13B1 and for mixtures of these refrigerants. The mixtures yielded sharply lower heat transfer coefficients than either pure refrigerant. With pure refrigerants, full suppression of nucleate boiling (FSNB) occurs only at rather low pressures. Correlative evidence suggests that suppression is easier to achieve with mixtures than pure fluids. In the evaporation-dominated heat-transfer regime, Chen's correlation was successfully applied to the refrigerants with and without the occurrence of FSNB conditions. In the nucleate-boiling-dominated regime, the Stephan and Abdelsalam method was validated for pure fluids, and used successfully with Thome's method for mixtures. Pressure-drop correlations for pure fluids were also extended to mixtures without modification.

Ross, H.D.

1986-11-01

439

15. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: North side of sorghum pan and boiling range flue, with furnace-end in background. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace end (in background) to the smokestack end (in foreground). After the hot cane juice moved through the separate compartments until it reached the final compartment (now missing two sides) where it was drawn out from the copper lip in the corner. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

440

Numerical analysis of contaminant removal from fractured rock during boiling.  

PubMed

A multiphase heat transfer numerical model is used to simulate a laboratory experiment of contaminant removal at boiling temperatures from a rock core representing the matrix adjacent to a fracture. The simulated temperature, condensate production, contaminant and bromide concentrations are similar to experimental data. A key observation from the experiment and simulation is that boiling out approximately 1/2 pore volume (50 mL) of water results in the removal of essentially 100% of the dissolved volatile contaminant (1,2-DCA). A field-scale simulation using the multiple interacting continua (MINC) discretization approach is conducted to illustrate possible applications of thermal remediation of fractured geologic media, assuming uniform heating. The results show that after 28% of the pore water (including both steam vapor and liquid water) was extracted, and essentially all the 1,2-DCA mass (more than 99%) was removed. PMID:22579665

Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C

2012-06-01