These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Active submarine volcano sampled  

NASA Astrophysics Data System (ADS)

On June 4, 1982, two full dredge hauls of fresh olivine basalt were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, from water depths of 400 and 900 m. The shallower dredge site was within one-half mile of the active submarine vent evidenced at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano located on the ‘trench-slope break’ or ‘outer-arc high’ of the New Georgia Group, approximately 35 km seaward of the main volcanic line and only 30 km landward of the base of the trench inner wall. The volcano has been observed to erupt every year or two for at least the last 30 years (see cover photographs). An island formed in 1952, 1961, 1965, and 1978, but in each case it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982.

Taylor, Brian

2

Long-term eruptive activity at a submarine arc volcano  

USGS Publications Warehouse

Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

2006-01-01

3

Voluminous submarine lava flows from Hawaiian volcanoes  

SciTech Connect

The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

1988-05-01

4

A Submarine Perspective on Hawaiian Volcanoes  

NASA Astrophysics Data System (ADS)

Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for over 80 Ma and established the remarkable linearity of the age-progression along the chain. Glass rinds on submarine lava quenched at depth contain initial magmatic volatiles and yield data on the juvenile water, sulfur, CO2, and rare gas contents of basaltic magmas, and continue to reveal nuances of the volatile contents of lava. Rock sampling at Loihi Seamount led to the discovery of the pre-shield alkalic phase of Hawaiian volcanism, which mirrors the well-known post-shield alkalic phase. Lava compositions from the Hawaiian Ridge and Emperor Seamounts have clear affinities to present-day Hawaiian lavas, but subtle source differences as well. The progression from small to large and back to small degrees of melting at individual volcanoes and the compositional changes along the chain constrain the melting processes and source compositions of Hawaiian volcanism. Coupling the age of lavas with that of submerged coral reefs has provided data on the growth and subsidence of volcanic centers. This information has meshed nicely with the age, composition, and morphology of lavas from the 3.2-km-deep Hawaiian Scientific Drill Hole. Submarine studies have taught us much about the workings of Hawaiian Volcanoes, and in the process have stimulated new work and concepts on marine volcanism worldwide.

Clague, D. A.; Moore, J. G.

2011-12-01

5

Geomechanical Characterization of Submarine Volcano-Flank Sediments, Martinique, Lesser  

E-print Network

Chapter 7 Geomechanical Characterization of Submarine Volcano-Flank Sediments, Martinique, Lesser of Montagne Pel´ee that generated large submarine mass wasting deposits. Here, we evaluate the preconditioning.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 37

Manga, Michael

6

Research Article Evolution of West Rota Volcano, an extinct submarine volcano in the  

E-print Network

submarine eruption. The youngest unit consists of 1­2 m diam- eter spheroids of rhyolite pumice, interpreted mineralization, Mariana Arc, pumice, Quaternary volcano, submarine caldera. INTRODUCTION The 3000-km long Izu

Stern, Robert J.

7

Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece  

NASA Astrophysics Data System (ADS)

Kolumbo submarine volcano, located 7 km northeast of Santorini, Greece in the Aegean Sea, last erupted in 1650 AD. Submarine and subaerial explosive activity lasted for a period of about four months and led to the formation of thick (~ 250 m) highly stratified pumice deposits on the upper crater walls as well as extensive pumice rafts that were dispersed throughout the southern Aegean Sea. Subaerial tephra fallout from eruption columns that breached the surface occurred as far east as Turkey.

Cantner, Kathleen; Carey, Steven; Nomikou, Paraskevi

2014-01-01

8

Seafloor seismic monitoring of an active submarine volcano: Local seismicity at Vailulu'u Seamount, Samoa  

E-print Network

Seafloor seismic monitoring of an active submarine volcano: Local seismicity at Vailulu'u Seamount'u; volcano; seismic monitoring; volcanic activity; submarine. Index Terms: 3025 Marine Geology and Geophysics of an active submarine volcano: Local seismicity at Vailulu'u Seamount, Samoa, Geochem. Geophys. Geosyst., 5, Q

Shearer, Peter

9

A submarine canyon as the cause of a mud volcano Liuchieuyu Island in Taiwan  

E-print Network

A submarine canyon as the cause of a mud volcano Ð Liuchieuyu Island in Taiwan J. Chowa,*, J, we also discuss the relationship between a nearby submarine canyon (Kaoping Submarine Canyon¯ection; Submarine canyon; Mud volcano 1. Introduction In the early Pliocene, the paleoenvironment of the offshore

Lin, Andrew Tien-Shun

10

Are midwater shrimp trapped in the craters of submarine volcanoes by hydrothermal venting?  

Microsoft Academic Search

The biology of Kick’em Jenny (KEJ) submarine volcano, part of the Lesser Antilles volcanic arc and located off the coast of Grenada in the Caribbean Sea, was studied during a cruise in 2003. Hydrothermal venting and an associated biological assemblage were discovered in the volcanic crater (?250m depth). Warm water with bubbling gas emanated through rock fissures and sediments. Shrimp

Karen F. Wishner; Jason R. Graff; Joel W. Martin; S. Carey; H. Sigurdsson; B. A. Seibel

2005-01-01

11

Submarine venting of liquid carbon dioxide on a Mariana Arc volcano  

E-print Network

Submarine venting of liquid carbon dioxide on a Mariana Arc volcano John Lupton NOAA/Pacific Marine, California, 92065, USA [1] Although CO2 is generally the most abundant dissolved gas found in submarine CO2-rich hydrothermal system at 1600-m depth near the summit of NW Eifuku, a small submarine volcano

Chadwick, Bill

12

New Mapping of Mariana Submarine Volcanoes with Sidescan and Multibeam Sonars  

NASA Astrophysics Data System (ADS)

An expedition in February/March 2003 on the R/V Thomas G. Thompson mapped more than 18,000 km2 with the towed MR1 sidescan sonar and almost 28,000 km2 with an EM300 hull-mounted multibeam system along the Mariana volcanic arc. The expedition was funded by NOAA's Office of Ocean Exploration (more on the expedition can be found at: http://oceanexplorer.noaa.gov/explorations/03fire/welcome.html). The MR1 sidescan surveys began at the northern end of a 2001 R/V Melville MR1 survey at 16§ N and extended to Nikko Volcano at 23\\deg 05'N. A portion of the southern back-arc spreading center and the arc volcanoes south of 16\\deg N were mapped using the EM300 system. Of 43 submarine arc volcanoes surveyed that have basal diameters of 10 km or greater, 17 have summit calderas or craters. Of these, however, only 5 have diameters more than 2 km. In an accompanying survey of hydrothermal activity along the arc, CTD casts and/or tows were conducted over more than 50 individual volcanoes. The 11 volcanoes with active hydrothermal systems found in the course of these surveys appear to be about equally divided between those with and without summit calderas or craters (for additional information, see Baker et al., Resing et al., and Lupton et al., this session). The flanks of the submarine volcanoes and islands of the central and northern Mariana Arc consist largely of volcaniclastic flows. Most of the larger edifices have high-backscatter spoke-like patterns that probably represent coarser and/or younger flows from the summits. Higher relief high-backscatter areas, also commonly exhibiting a radial pattern, are found on many of the volcanoes' flanks. These are probably lava flows erupted along radial fissures. The Mariana Arc volcanoes are shedding large volumes of volcaniclastic material westward into the back-arc basin through a series of deep-sea channels oriented transverse to the arc that are in many places fed by flows from several volcanoes. On many of the volcaniclastic aprons of the islands and larger submarine volcanoes, sediment waves with wavelengths of up to 1.0 km and amplitudes up to 50 m commonly occur. Their crests are almost always oriented parallel to regional contours, indicating a formation mechanism related to down slope flow. In some places clear transitions occur between mass flows on the volcanoes' steeper flanks and the sediment waves on the gentler slopes of the apron. A preliminary interpretation is the sediment waves form during the transition from channelized to unconstrained flows. Sediment waves of similar scale are commonly observed on the levees of deep-sea channels and on deep-sea fans. The location and shape of the arc volcanoes are often controlled or influenced by tectonic control. Within the southern part of the Central Island Province, from about 15\\deg 50' N to 18\\deg 00' N, volcanoes often line up and/or are elongated in an E-W or an E-NE direction. There are several cross-chains of volcanoes in this region that penetrate 10's of kms into the back-arc basin. Along the northern part of the arc (the Northern Seamount Province), where the convergence direction is roughly parallel to the arc front, the structure is more complex. Several active volcanoes occur at the intersection of two or more structural lineaments northwest of Farallon de Pajaros Island. There are several volcanoes in the northern area that are narrow ridges striking in a S-SW trend 9 (arc-orthogonal).

Embley, R. W.; Chadwick, W. W.; Baker, E. T.; Johnson, P. D.; Merle, S. G.; Ristau, S.

2003-12-01

13

A Miocene submarine volcano at Low Layton, Jamaica  

NASA Technical Reports Server (NTRS)

A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

Wadge, G.

1982-01-01

14

A submarine canyon as the cause of a mud volcano — Liuchieuyu Island in Taiwan  

Microsoft Academic Search

In this paper, based on 3.5kHz, UNIBOOM and conventional seismic data, we propose a model for the creation of Liuchieuyu Island, a near-shore mud volcano off the southwestern coast of Taiwan. In support of this model, we also discuss the relationship between a nearby submarine canyon (Kaoping Submarine Canyon) and the mud diapirs and mud volcanoes in the region. Seismic

J. Chow; J. S. Lee; C. S. Liu; B. D. Lee; J. S. Watkins

2001-01-01

15

Daily Variations of Methane Flux from Submarine Mud Volcanoes in Southwest Taiwan  

NASA Astrophysics Data System (ADS)

Submarine mud volcanoes are features that episodically emit gases, fluids, and mud onto the seafloor. Methane is the representative gas transport by mud volcanoes efficiently from deep buried sediment to the water column, and potentially to the atmosphere as a greenhouse gas. An active mud volcano, site-G96, located at the upper slope of southwest Taiwan, has plume from the top of mud volcano (360 m) direct to the sea surface. We can observe the bubbles at the sea surface. This study was conducted during cruise OR3-1693 in June 2013. To understand the activity of gas emissions of mud volcano, we utilized the 38kz echo sounder to scan back and forth over the site-G96 and obtained 53 acoustic images of plumes. Five water column samples were collected above the venting of G96 at the tidal maximum and minimum. Three gravity cores were taken at the mudflow site of G96. The results show high concentration of methane (38,522ul/l) and shallow depth of sulfate methane transition zone (~70cm) in the cored sediment profiles. The C1/(C2+C3) ratios from cored sediments are in the range of 29-392, indicating that the methane gas is mostly thermogenic in origin. Calculated areas of the plumes from echo sounder images show good correlation with the tide variations during the survey on 1st -2nd June 2013. Flux of methane from the water column to atmosphere can be estimated by diffusive exchange equation, showing that gas emission from an active mud volcano could be largely various (0.065, 3.426, 3.414, 0, 41.739umol m-2 d-1) from time to time, at least, in this study.

Yang, Tsung-Han; Yang, Tsanyao; Chen, Naichen; Lin, Saulwood; Wang, Pei-Ling

2014-05-01

16

Hf, Pb, Sr, and Nd Isotope Geochemistry of Submarine Lavas from Hualalai Volcano, Hawaii  

NASA Astrophysics Data System (ADS)

The volcanoes of the Hawaiian islands are distributed in two parallel trends ('Loa' and 'Kea'), whose rocks are characterized by general geochemical differences. It is broadly accepted that Hawaiian plume is composed of several components, but the chemical structure of Hawaiian plume remains a matter of considerable debate. Hualalai volcano, the third youngest on the island of Hawaii and located on Loa trend, has been in the post shield alkalic stage for >100 ky. The study of the deep submarine ridges of this volcano has not been previously conducted. Many of submarine ridge lavas are older than any exposed on land, and extend our view of Hualalai magmatism back in time. To identify source materials involved in Hualalai ridge volcanism can provide constraints on the chemical structure of the Hawaiian plume. We analyzed Hf, Pb, Sr, Nd isotopic compositions and trace element contents of 16 lava samples from the submarine ridges of Hualalai. The samples were collected from North Kona region at 2700 - 3500 m water depth by 2001 Kaiko dive (K219) and at 2100 - 4500 m depth by 2002 Shinkai 6500 dives (S690, S692). It is considered that these samples are older than 105 ka, and are erupted at the pre-shield or shield stage of this volcano based on the stratigraphy and lithology. Isotopic compositions of the lavas have 87 Sr/86Sr ratios ranging from 0.703638 to 0.703813, 143Nd/144Nd from 0.512932 to 0.512946, 176Hf/177Hf from 0.2830988 to 0.2831234, 206Pb/204Pb from 18.1554 to 18.2663, 207Pb/204Pb from 15.4488 to 15.5518, and 208Pb/204Pb from 37.8661 to 38.2583. Hf, Nd, Sr isotopic compositions of the basalt samples are similar to, and overlap with the data previously reported for shield stage tholeiite from Hualalai and older tholeiite (>100ka) from Mauna Loa. Some of new Pb isotopic data have higher 207Pb/204Pb and 208Pb/204Pb, for a given 206Pb/204Pb, than published data from Mauna Loa and Hualalai. The results indicate that the Loa Pb isotope signature of the Hualalai source was present before 105 ka.

Yamasaki, S.; Kani, T.; Hanan, B. B.; Nohda, S.

2005-12-01

17

Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii  

E-print Network

Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai rights reserved. Keywords: ocean islands; basalt; hawaiite; sulfur; submarine landslide; geochemistry 1. Introduction Interest in the processes affecting submarine flanks of Hawaiian volcanoes has grown in recent

Hammer, Julia Eve

18

New submarine volcanoes in the Okinawa back-arc opening system  

Microsoft Academic Search

The results of a series of geological and geophysical observations, it is now better known that about 11 new submarine volcanoes are developing in the southern part of the Okinawa back-arc spreading center. These volcanoes, at the water depth from 200 V 1500 meters, were first detected by a 38 kHz single-beam echo- sounding system. The images not only show

C. Lee

2008-01-01

19

Bubble Plumes above erupting NW Rota-1 submarine volcano, Mariana Arc  

NASA Astrophysics Data System (ADS)

NW Rota-1 is a submarine volcano in the Mariana volcanic arc with a summit depth of 517 m, located ~100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed here in 2004 and the volcano has remained persistently active ever since. During a March 2010 expedition to NW Rota-1 with the remotely operated vehicle Jason, we observed intermittent explosive activity at five distinct eruptive vents along a line 100-m long near the summit of the volcano (550-590 m depth). The continuous but variable eruptive activity produced CO2 bubble plumes that rose in the water column over the volcano and could be readily imaged by sonar because they provide excellent acoustic reflectors. This study compares the manifestations of NW Rota's eruptive activity as measured by several independent methods, including: (1) an EM122 multibeam sonar system (12 kHz) on the R/V Kilo Moana that imaged bubble plumes in the water column over the volcano, (2) hydrophone data that recorded the sounds of the variable eruptive activity, and (3) visual observations of the activity at the eruptive vents on the seafloor from Jason. Throughout the 2010 expedition numerous passes were made over the volcano's summit to image the bubble plumes with the EM122 multibeam sonar, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar dataset totals >95 hours of observations over a 12-day period. Analysis of the EM122 dataset shows: (1) bubble plumes were visible in the water column on every pass over the summit, (2) separate plumes were resolvable from up to 4 of the 5 eruptive vents at times, (3) plume heights and intensities were variable with time, (4) the highest observed bubble plume rise height was 415 meters above the seafloor to within 175 m of the ocean surface, while lower amplitude wisps rose to heights <100 m from the surface, (5) most of the bubble plumes were deflected to the WSW in the prevailing current. We will compare these bubble plume results to the time-series of eruptive intensity as measured by the hydrophone recordings, with ground-truth provided by the Jason visual observations at the eruptive vents. This will show to what extent the variability of eruptive output observed on the seafloor is reflected in the plume dynamics. We will also compare ocean current data from the ship's acoustic doppler current profiling (ADCP) sonar to the distance and direction of deflection of the bubble plumes. These data will be used to test whether multibeam-sonar water-column data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We also plan to compare these results with independent quantitative CO2 flux estimates made from the hydrophone data.

Chadwick, B.; Merle, S. G.; Embley, R. W.; Buck, N.; Resing, J. A.; Leifer, I.

2013-12-01

20

New submarine volcanoes in the Okinawa back-arc opening system  

NASA Astrophysics Data System (ADS)

The results of a series of geological and geophysical observations, it is now better known that about 11 new submarine volcanoes are developing in the southern part of the Okinawa back-arc spreading center. These volcanoes, at the water depth from 200 V 1500 meters, were first detected by a 38 kHz single-beam echo- sounding system. The images not only show the shape of volcano, but also the hydrothermal venting, from several tens to several hundred meters above the top of a volcano. The multi-beam echo-sounder images provide the size and 3-D view. The CDT surveys show that the bottom layer has an anomalous high of turbidity ratio. The heat flow values are very high, up to 25 HFU. The ocean bottom seismometer monitoring indicate an average of 250 earthquake events per day from magnitude of 0.9 V 4.0. The tomographic modeling provides the possible route of magma upwelling and migrating. At the southern tip of Okinawa opening system, close to Taiwan, there is an active volcanic island, the Turtle Island. This volcano was erupted about 7,000 years ago. All the above observations indicate that new submarine volcanoes are developing at the vicinity of Okinawa back-arc spreading center with a half rate of 4-6 cm/year and oriented in N-S direction.

Lee, C.

2008-12-01

21

Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii  

USGS Publications Warehouse

Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

Brent, Dalrymple G.; Moore, J.G.

1968-01-01

22

The INGV's new OBS/H: Analysis of the signals recorded at the Marsili submarine volcano  

NASA Astrophysics Data System (ADS)

The ocean bottom seismometer with hydrophone deployed on the flat top of the Marsili submarine volcano (790 m deep) by the Gibilmanna OBS Lab (CNT-INGV) from 12th to 21st July, 2006, recorded more than 1000 transient seismic signals. Nineteen of these signals were associated with tectonic earthquakes: 1 teleseismic, 8 regional (located by INGV) and 10 small local seismic events (non located earthquakes). The regional events were used to determine sensor orientation. By comparing the signals recorded with typical volcanic seismic activity, we were able to group all the other signals into three categories: 817 volcano-tectonic type B (VT-B) events, 159 occurrences of high frequency tremor (HFT) and 32 short duration events (SDE). Small-magnitude VT-B swarms, having a frequency band of 2-6 Hz and a mean length of about 30 s, were almost all recorded during the first 7 days. During the last 2 days, the OBS/H mainly recorded HFT events with frequencies of over 40 Hz and of a few minutes in length. Signals that have similar features in frequency and time domain are generally associated with hydrothermal activity. During the last two days a signal was recorded that had a frequency content similar to that of VT-B events was recorded. It will be referred to as continuous volcanic tremor (CVT). The SDE signals, characterized by a quasi-monochromatic waveform and having an exponential decaying envelope, may have been generated by oscillations of resonant bodies excited by magmatic or hydrothermal activity. By applying polarization and parametric spectral analyses, we inferred that the VT-B were probably multi P-phase events having shallow sources that were situated in narrow azimuthal windows in relation to the positions of the OBS/H. The parametric spectral analysis of the SDE signals allowed us to determine their dominant complex frequencies with high accuracy; these frequencies are distributed in two distinct clusters on the complex plane.

D'Alessandro, Antonino; D'Anna, Giuseppe; Luzio, Dario; Mangano, Giorgio

2009-05-01

23

Predicting The Timing And Location of the Next Hawaiian Volcano  

NSDL National Science Digital Library

The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also included in which students use their own calculations to predict when the next volcano on the Kea trend should appear.

Russo, Joseph; Mattox, Stephen; Kidau, Nicole

2010-01-01

24

Transition from circular to stellate forms of submarine volcanoes  

NASA Astrophysics Data System (ADS)

Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

Mitchell, Neil C.

2001-02-01

25

Volcanoes  

ERIC Educational Resources Information Center

Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

Kunar, L. N. S.

1975-01-01

26

A large submarine sand-rubble flow on kilauea volcano, hawaii  

USGS Publications Warehouse

Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.

Fornari, D.J.; Moore, J.G.; Calk, L.

1979-01-01

27

Collapse and reconstruction of Monowai submarine volcano, Kermadec arc, 1998-2004  

NASA Astrophysics Data System (ADS)

Monowai submarine volcano is one of the three most historically active volcanoes of the Kermadec arc. Repeat multibeam surveys of Monowai Cone from September 1998 and September 2004 and T wave data recorded by the Réseau Sismique Polynésien network for the same period document the collapse and subsequent regrowth of the cone within this 6-a period. Grid differencing of the two bathymetric data sets, acquired 6 a apart, reveals that a landslide ˜2230 m long occurred between the surveys, within which a postcollapse cone and talus ridge (˜0.023 km3 in volume) subsequently formed. The volume of this collapse, minus postcollapse construction, is ˜0.085 km3. We interpret an unusual, strong-amplitude T wave event on 24 May 2002 as recording "hot landsliding", where the 100- to 160-m-thick collapse has "unroofed" the uppermost parts of the vent conduit, with the subsequent explosive interaction, and cooling, of hot magma and volcaniclastic rubble with ambient seawater. This interpretation is consistent with the lack of emergent events, sharp onset, and large amplitude of the 24 May 2002 T waves. The subsequent >2500 T wave events, between November 2002 and September 2004, occurred in swarms with emerging and waning activity and with typical explosive volcanic acoustic signatures, which are interpreted as recording the regrowth of an ˜90-m-high cone back to a near-1998 elevation, at an average rate of 47 m a-1. This study provides (1) a lower bound for frequency-magnitude relationships of landsliding for submarine arc volcanoes and (2) estimates of 0.013 km3 a-1 of submarine cone growth during eruptive cycles.

Wright, Ian C.; Chadwick, William W.; de Ronde, Cornel E. J.; Reymond, Dominique; Hyvernaud, Olivier; Gennerich, Hans-Hermann; Stoffers, Peter; Mackay, Kevin; Dunkin, Miles A.; Bannister, Stephen C.

2008-08-01

28

Helium Isotopes of Fluids from Submarine Volcanoes in the South-Okinawa Trough  

NASA Astrophysics Data System (ADS)

Many active submarine volcanoes have been found in southern Okinawa Trough. Water column samples from the hydrothermal plumes above venting volcanoes were collected during the OR2-1897 and -1984 cruises. Meanwhile, diving at shallower depths were conducted several times to collect the water samples near the venting sites. In total, 122 water samples from various depths in the offshore area of NE Taiwan were collected for dissolved gases and helium isotopes measurement. The dissolved gases of water column samples show that the CO2 concentration and the alkalinity increase with depth and become higher at the bottom, while the result of O2 concentration shows a reverse pattern. The 3He/4He ratios near the vicinity of active Kueishantao volcano show highest value, up to 5.5 RA, where RA is the atmospheric ratios of 1.39 x 10-6. The plot of 3He/4He and 3He/20Ne ratios suggests that there may be different sources in this region. Furthermore, we will estimate the helium flux from the venting volcanoes in this area.

Hsin Kao, Li; Yang, Tsanyao Frank; Wen, Hsin-Yi; Chen, Ai-Ti; Lee, Hsiao-Fen

2014-05-01

29

New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece  

PubMed Central

We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

2013-01-01

30

Submarine Location Estimation via a Network of Detection-Only Sensors  

E-print Network

Submarine Location Estimation via a Network of Detection-Only Sensors Shengli Zhou and Peter by the source/target receive-geometry and the target aspect can detect the return signal. Thus, submarines can. Traditional Approach and Low-Visibility Targets Submarine detection and localization is one major applica

Zhou, Shengli

31

Plume indications from hydrothermal activity on Kawio Barat Submarine Volcano, Sangihe Talaud Sea, North Sulawesi, Indonesia  

NASA Astrophysics Data System (ADS)

Kawio Barat submarine volcano has formed in response to the active tectonic conditions in Sangihe Talaud, an area that lies in the subduction zone between the Molucca Sea Plate and Celebes Sea Plate. Submarine volcanic activity in the western Sangihe volcanic arc is controlled by the west-dipping Molucca Sea Plate as it subducts beneath the Sangihe Arc. A secondary faulting system on Kawio Barat is in a northwest - southeast direction, and creates a network of deep cracks that facilitate hydrothermal discharge in this area. Hydrothermal activity on Kawio Barat was first discovered by joint Indonesia/Australian cruises in 2003. In 2010, as part of the joint US/Indonesian INDEX-SATAL expedition, we conducted CTD casts that confirmed continuing activity. Hydrothermal plumes were detected by light -scattering (LSS) and oxidation-reduction potential (ORP) sensors on the CTD package. LSS anomalies were found between 1600-1900 m, with delta NTU levels of 0.020-0.040. ORP anomalies coincident with the LSS anomalies indicate strong concentrations of reduced species such as H2S and Fe, confirming the hydrothermal origin of the plumes. Images of hydrothermal vents on Kawio Barat Submarine volcano, recorded by high- definition underwater cameras on the ROV “Little Hercules” operated from the NOAA ship Okeanos Explorer, confirmed the presence and sources of the detected vent plumes in the northern and southwest part of the summit in 1800-1900 m depth. In southwest part of this summit chimney, drips of molten sulfur were observed in the proximity of microbal staining.

Makarim, S.; Baker, E. T.; Walker, S. L.; Wirasantosa, S.; Permana, H.; Sulistiyo, B.; Shank, T. M.; Holden, J. F.; Butterfield, D.; Ramdhan, M.; Adi, R.; Marzuki, M. I.

2010-12-01

32

Chemical Characteristics of Plumes above and Around NW-Rota Submarine Volcano: Before and During the March 2004 Eruption  

Microsoft Academic Search

During the March 2004 Ocean Exploration cruise to the Mariana Arc, a small-scale volcanic eruption was observed at the NW Rota-1 submarine volcano by the Canadian ROV ROPOS. CTD tows and casts were conducted above and around the seamount to sample the water for dissolved and particulate chemical species during the eruption. The water column around NW Rota-1 was also

G. Lebon; J. Resing; E. Baker; R. Embley; J. Lupton

2004-01-01

33

Discovery of an Active Submarine Mud Volcano Along the Nootka Fault West of Vancouver Island  

NASA Astrophysics Data System (ADS)

Submarine mud volcanoes are a common feature in margin environments, but few of them have been documented in the Northeast Pacific. However, during a Hydrosweep bathymetric survey in July, 2001, and a follow-on sub-surface seismic survey in August two mud volcanoes were imaged along the Nootka Fault, 16-18 km west of Vancouver Island at a water depth of 2500 m. The southern volcano, called Maquinna, lies directly along the southern expression of the left lateral, strike slip Nootka Fault. It is 1.5 km across, has a breached caldera and two small summit craters, and it stands about 30 m above the seafloor. The base is bounded by a narrow moat, partially filled by Holocene sediments that are flat lying; older, underlying sediments show steep downwarping towards the sides of the volcano. Subsurface imaging shows a dramatic loss of reflectivity beneath the volcano mound, which may indicate significant mobilization of material. However, a very bright reflector is seen at about 400 m depth below the volcano. This reflector is too deep for stability of methane clathrate, and is interpreted as a zone of high fluid content. A CTD vertical cast above the summit of the volcano showed strong, co-registered thermal, particulate, and oxygen anomalies that extend 50 m up into the overlying water column. These data indicate that the volcano is actively venting warm hydrothermal fluids. The fluids are depleted in CO2, contain background concentrations of CH4, but show elevated H2 concentrations above ocean background water. Microscopic examination of the Nootka hydrothermal samples shows that they contain dense and morphologically diverse microbial communities in comparison to background seawater with cell densities of 106 cells/ml. Enrichment culturing indicates that these communities include both anaerobic and aerobic organisms, some of which are thermophilic with optimal growth temperatures in excess of 50 deg C. Some of these cultures can use methane oxidation as an energy source. Additional culturing experiments and analysis of preserved samples are underway to further characterize the microbes. To further understand the biogeochemical cycles at these sites, samples recently taken from piston cores and CTD casts in this region, are being surveyed for stable and radio carbon isotope signatures of CH4, dissolved inorganic carbon, organic carbon and phospholipid bacterial biomarkers. A second volcano lies ~ 8 km to the northwest of the Maquinna that has a less well defined seafloor expression. However, like Maquinna, seismic reflectivity is lost nearly completely beneath the mound, except for a very bright reflector at about 800 m depth. It is not yet known if this volcano is hydrothermally active. It is likely that high sediment accumulation and lateral tectonic compression associated with accretionary prism formation along the west coast of Vancouver Island support overpressuring of fluids at depth along the Nootka Fault zone, resulting in growth of the two volcanoes.

Riedel, M.; Riedel, M.; Kelly, D. S.; Delaney, J. R.; Spence, G. D.; Hyndman, R. D.; Hyndman, R. D.; Mayer, L.; Calder, B.; Lilley, M. D.; Olson, E. O.; Schrenk, M. O.; Coffin, R.

2001-12-01

34

Direct Observations of Explosive Eruptive Activity at a Submarine Volcano, NW Rota-1, Mariana Arc  

NASA Astrophysics Data System (ADS)

In April 2006, a series of extraordinary observations of a deep-sea volcanic eruption were made at NW Rota-1, located at 14^{circ}36'N in the Mariana arc, western Pacific. This is a conical, basaltic-andesite submarine volcano with a summit depth of 517 m. Explosive eruptive activity at NW Rota-1 was discovered in 2004 and was witnessed again in 2005, but the activity in 2006 was especially vigorous and well documented. During six dives with the remotely operated vehicle Jason II over a period of 7 days, video observations made at close range documented a diverse and increasingly energetic range of volcanic activity that culminated in explosive bursts with flashes of glowing red lava propelled by violently expanding gases. Other notable activity included discreet degassing events, extrusion of sluggish lava flows, explosions that formed dilute density currents and/or expelled rocks and ash tens of meters from the vent, and rapid pressure oscillations apparently caused by the repeated formation and condensation of steam. During the last dive when the highest extrusion rates were observed, quasi-periodic bursts from the vent, each lasting 1-10 minutes, were separated by pauses lasting 10 seconds to a few minutes. Each burst started as a plug of crusted-over lava rose in the vent and was blown apart by expanding gases, producing large lava bombs with distinctly flat, disc-like shapes. A remarkable aspect of these observations was how close Jason II could be to the vent during the eruptions. This was because the pressure of the overlying seawater dampened the energy of the explosions and slowed the velocity of volcanic ejecta. Also, lava degassing could be visualized with great clarity underwater as either clear bubbles (CO2) or opaque yellow clouds (dominated by SO2 and H2S). A portable hydrophone with a 30-hour recording capacity was deployed twice by Jason II at the summit of NW Rota-1 during the 2006 dive series. The hydrophone data extends the visual observations made at the vent and quantifies the temporal pattern and intensity of the eruptive activity. The expedition to NW Rota-1 in 2006 was supported by the NOAA Ocean Exploration Program.

Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Deardorff, N.; Matsumoto, H.; Cashman, K. V.; Dziak, R. P.; Merle, S. G.

2006-12-01

35

Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands  

NASA Astrophysics Data System (ADS)

On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an apparent slowness of ~0.8 s/km and a back-azimuth of 135°N. These estimates have remained approximately constant since the onset of volcanic tremor, indicating a unique source and thus a single, continuing eruptive center.

Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

2012-04-01

36

Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)  

NASA Astrophysics Data System (ADS)

Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it is possible that eruption columns are likely to breach the sea surface and generate subaerial plumes. A ~10 ka pumiceous tephra layer with a similar composition to the rocks recovered during the dives has been discovered in the subaerial outcrops of Izu-Oshima, suggesting that this tephra may have originated from Oomurodashi. The deeper slopes of Oomurodashi are composed of effusive and intrusive rocks that are bimodal in composition, with basaltic dikes and lavas on the northern flank and dacite volcaniclastics on the eastern flank. This suggests that Oomurodashi is a complex of smaller edifices of various magma types, similar to what has been observed at silicic submarine calderas in the southern part of the Izu-Bonin Arc (e.g. Sumisu Caldera; Tani et al., 2008, Bull. Vol.). Furthermore, the SCS surveys revealed the presence of a buried caldera structure, ~8 km in diameter, beneath the flat-topped summit of Oomurodashi, indicating that voluminous and explosive eruptions may have occurred in the past.

Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

2013-12-01

37

The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response  

NASA Astrophysics Data System (ADS)

On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

2013-12-01

38

Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece  

NASA Astrophysics Data System (ADS)

Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes such as those associated with submarine faulting, landsliding, and magmatism. The UK Hydrographic Office, for example, has been involved in lead line measurements of seafloor depth since the early 1790s in a range of geological settings including ocean islands. Here, we report on an analysis of historical bathymetric charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, 1866 and 1928 and multibeam swath bathymetric surveys in 2001 and 2006 have been used to document changes in the depth of the seafloor in Santorini caldera. The data reveal that the flanks of the Kameni islands, a volcanic dome and dacitic lava complex in the caldera centre, have shallowed by up to 215 m and deepened by up to 60 m since 1848. The largest shallowing occurred between the 1866 and 1928 surveys and was accompanied by a significant increase in the surface area of the island of Nea Kameni, especially its southeast flank. Field observations by the French Geologist, F. A. Fouqué, during 1866-1870 suggest the shallowing is associated with the formation of the Giorgos and Aphroessa domes and their associated lava flows. Other shallowing probably occurred during 1925-1928 when lava flows filled the narrow strait between Nea Kameni and Mikra Kameni. The largest deepenings occurred between the 1928 and 2001 and 2006 surveys, on the shelf and slope of Nea Kameni. One possibility is that the deepening is caused by mass wasting due to large-scale slope failure and debris flow. Another is that it reflects a stress-induced viscoelastic relaxation of the crust following dome loading. Irrespective, the rates implied from the volumes and duration of the 19th century submarine magmatic activity are up to 0.11 km3/yr, which is significantly larger than rates inferred from mapping of surface lava flows.

Watts, A. B.; Nomikou, P.; Parks, M.; Smith, J.

2013-12-01

39

Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii  

NASA Astrophysics Data System (ADS)

New multichannel reflection data and high-resolution bathymetry over the submarine slopes of Kilauea volcano provide evidence for current and prior landsliding, suggesting a dynamic interplay among slope failure, regrowth, and volcanic spreading. Disrupted strata along the upper reaches of Kilauea's flank denote a coherent slump, correlated with the active Hilina slump. The slump comprises mostly slope sediments, underlain by a detachment 3-5 km deep. Extension and subsidence along the upper flank is compensated by uplift and folding of the slump toe, which surfaces about midway down the submarine flank. Uplift of strata forming Papa`u seamount and offset of surface features along the western boundary of Kilauea indicate that the slump has been displaced ˜3 km in a south-southeast direction. This trajectory matches coseismic and continuous ground displacements for the Hilina slump block on land, and contrasts with the southeast vergence of the rest of the creeping south flank. To the northeast, slope sediments are thinned and disrupted within a recessed region of the central flank, demonstrating catastrophic slope failure in the recent past. Debris from the collapsed flank was shed into the moat in front of Kilauea, building an extensive apron. Seaward sliding of Kilauea's flank offscraped these deposits to build an extensive frontal bench. A broad basin formed behind the bench and above the embayed flank. Uplift and back tilting of young basin fill indicate recent, and possibly ongoing, bench growth. The Hilina slump now impinges upon the frontal bench; this buttress may tend to reduce the likelihood of future catastrophic detachment.

Morgan, Julia K.; Moore, Gregory F.; Clague, David A.

2003-09-01

40

Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.  

NASA Astrophysics Data System (ADS)

Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'

Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.

2006-12-01

41

3104 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007 Submarine Location Estimation Via a  

E-print Network

3104 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007 Submarine Location by the source/target receive geometry, and the target aspect can detect the return signal. Thus, submarines can and missed detections. Index Terms--Active sonar, cross section, multistatic, sensor net- work, submarine

Zhou, Shengli

42

V. Lykousis, D. Sakellariou and J. Locat (eds.). Submarine Mass Movements and Their Consequences, 395-403. 2007 Springer.  

E-print Network

V. Lykousis, D. Sakellariou and J. Locat (eds.). Submarine Mass Movements and Their Consequences, 395- 403. © 2007 Springer. REVISITING SUBMARINE MASS MOVEMENTS ALONG THE U.S. ATLANTIC CONTINENTAL in the generation of tsunamis by submarine mass movements has warranted a reassessment of their distribution

ten Brink, Uri S.

43

Long-distance magma transport from arc volcanoes inferred from the submarine eruptive fissures offshore Izu-Oshima volcano, Izu-Bonin arc  

NASA Astrophysics Data System (ADS)

Long-distance lateral magma transport away from volcanic centers in island arcs is emerging as a common phenomenon where the regional stress regime is favorable. It should also be recognized as an important factor in the construction and growth of island arcs, and a potential trigger for devastating eruptions. In this contribution, we report on recent investigations into the magma dynamics of Izu-Oshima volcano, an active basaltic volcano with an extensive fissure system. Izu-Oshima is flanked by numerous, subparallel NW-SE trending submarine ridges extending up to 22 km to the NW and the SE from the central vent. During a recent submersible survey we have identified that these ridges are fissures which erupted basaltic spatter and lava flows. Furthermore, lavas are petrographically similar along each ridge, while there are noticeable differences between ridges. The subparallel ridges are observed to transect a series of seamounts - the Izu-Tobu monogenetic volcanoes - which are dispersed across this area of the rear-arc. However, there are consistent petrographic and chemical differences between these seamounts and the ridges, indicating that they have different magma sources, yet, they are essentially bounding each other in dive tracks. The most appropriate scenario for their development is one where the Izu-Tobu Volcanoes are fed by an "in-situ" underlying source, while the NW-SE ridges are fed by lateral magma transport from Izu-Oshima. Magma erupted from each ridge is of a consistent geochemistry along its length, but has experienced crystal fractionation and some plagioclase accumulation. Compositions of the ridges are also very similar to lavas from the subaerial cones that can be traced down the flanks of Izu-Oshima. This implies that pairs of subaerial cones and submarine ridges represent the locus of magma transport events away from the storage system beneath Izu-Oshima. Hence, magma from this crustal reservoir moved upward to feed the on-edifice cones, as well as laterally to supply submarine fissures and dykes to a distance of 22 km.

Ishizuka, Osamu; Geshi, Nobuo; Kawanabe, Yoshihisa; Ogitsu, Itaru; Taylor, Rex N.; Tuzino, Taqumi; Sakamoto, Izumi; Arai, Kohsaku; Nakano, Shun

2014-09-01

44

Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano  

PubMed Central

Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu’u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu’u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu’u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

2006-01-01

45

Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia)  

NASA Astrophysics Data System (ADS)

Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio reveal the paths of the ascending fluids and melts, feeding the magma chamber. This work was partly supported by Project #7.3 of BES RAS and Project #14-05-31176 mola of RFBR.

Kukarina, Ekaterina; West, Michael; Koulakov, Ivan

2014-05-01

46

The Hilina Slump: Consequences of Slope Failure and Volcanic Spreading Along the Submarine South Flank of Kilauea Volcano, HI  

NASA Astrophysics Data System (ADS)

Kilauea volcano is the type locale to study the dynamic interplay between slope failure and volcanic spreading; this was recognized very early by Jim Moore and colleagues. New geophysical data and seafloor mapping in the area now better resolve the dramatic history of Kilauea volcano. In this seismically active setting, the interface between the oceanic crust and volcanic edifice accommodates seaward sliding of the south flank of Kilauea, probably rooted along Kilauea's East Rift Zone. Present day displacement of the south flank is punctuated by intermittent movement of the Hilina slump, defined by a set of arcuate normal faults that break the flank just downslope of Kilauea's summit. Analysis of recent multichannel seismic (MCS) data and high-resolution bathymetry over the submarine slopes of Kilauea volcano reveals that the active slump has a relatively shallow detachment, 3-5 km deep, comprises largely slope sediments, and is restricted to the upper northwestern portion of the mobile south flank. Offset morphologic features along the marginal ridge known as Papa'u seamount, constrain measurable downslope displacement of the slump to ~3 km, directed oblique to its western boundary. The MCS data also reveal the buried scar of a large-scale slope failure to the northeast of the submarine Hilina slump, which is the probable source of thick deposits of volcaniclastic breccias presently contained within the frontal midslope bench. The midslope bench developed as the mobile south flank of Kilauea plowed seaward into and offscraped the landslide debris, trapping a broad basin above the landslide scar. Uplift and back-tilting of young basin fill indicate recent, and possibly ongoing, bench growth. The Hilina slump now impinges upon this frontal bench, a buttress that may tend to reduce the likelihood of future catastrophic detachment of the landslide.

Morgan, J. K.; Moore, G. F.; Clague, D. A.

2003-12-01

47

Volcanic construction of submarine Kermadec arc volcanoes from near-bottom sidescan sonar data collected by the Sentry AUV  

NASA Astrophysics Data System (ADS)

Seafloor mapping in the deep ocean has benefitted greatly from the advent and now routine use of autonomous underwater vehicles (AUVs) to collect areally extensive near-bottom bathymetric, photographic, hydrographic, and magnetic data. For geologic investigations, AUV-derived data is often supplemented by near-bottom sidescan sonar backscatter data that provides information on seafloor substrate (e.g., sediment/bare rock) and roughness. High-frequency sidescan sonar data with comparable resolution to AUV-derived bathymetry is typically collected by deep-towed instruments at altitudes <100 m. This approach has limited use in rough terrain as rapid depth changes in towed-vehicles can significantly degrade sidescan sonar data quality. This limitation certainly applies to arc volcanoes where regional slopes in excess of 25 degrees are present on volcano flanks and much greater local slopes due steep-walled calderas and resurgent domes are common. Here we report the first deployment of a dual-frequency sidescan sonar system (Edgetech 2200M 120/410 kHz) on the National Deep Submergence Facility AUV Sentry, which can easily operate in rough terrain. Sidescan sonar data was collected over three submarine volcanoes in the Kermadec Arc (Brothers, Healy, Rumble III) on a cruise sponsored by the Institute of Geological and Nuclear Science, New Zealand. Sentry operated at ~40 m altitude with track spacing of 50-100 m. Sonar imagery from the 410 kHz channel has a spatial resolution of ~20 cm/pixel. To our knowledge, these are the first near-bottom, high-frequency sidescan sonar data collected at submarine arc volcanoes. We use these data to evaluate the type (explosive, effusive), size, and relative age of the deposits that make up these volcanic edifices based on acoustic backscatter intensity, along with ground-truthing from deep-towed photographic surveys. Relative to existing multibeam and sidescan sonar backscatter data in similar settings, the Sentry-collected sidescan sonar can resolve much smaller scale features and thus generate a higher-fidelity record of the processes responsible for arc volcano construction and evolution than was previously possible.

Soule, S. A.; de Ronde, C. E.; Leybourne, M. I.; Caratori Tontini, F.; Kaiser, C. L.; Kurras, G. J.; Kinsey, J. C.; Yoerger, D. R.

2011-12-01

48

Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ?i  

NASA Astrophysics Data System (ADS)

Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ?i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these correspond to evolutionary stages of developing rift zones, which may partially control volcano growth, mobility, and stability, and may be observable at many other oceanic volcanoes.

Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

2004-01-01

49

Repeater Fault Location for a Submarine Optical Fiber Cable Transmission System  

Microsoft Academic Search

This paper introduces a repeater fault location system for a repeated submarine optical fiber transmission system of 400 Mbits\\/ s at 1.3?m. The repeater fault location system is used in an out-of-service test. The fault locator transmits a test signal via a main optical fiber line, in order to make a loop-back path in one of the repeaters for returning

Y. Kobayashi; Y. Ichihashi

1984-01-01

50

The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response  

PubMed Central

On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

2012-01-01

51

Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.  

PubMed

Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 ?gC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems. PMID:22170423

Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

2012-06-01

52

Unusual geochemistry of hydrothermal vents on submarine arc volcanoes: Kasuga Seamounts, Northern Mariana Arc  

Microsoft Academic Search

DSRV Alvin dives in the Northern Mariana island arc recovered warm hydrothermal fluids from the summit areas of seamounts Kasuga 2 and Kasuga 3, as well as hydrothermal deposits of elemental sulfur, Fe- and Mn-oxides, and nontronite. The composition of a gas-rich ~ 39°C vent fluid sampled from Kasuga 2 Seamount is unusual compared to other submarine hydrothermal fluids in

G. M. McMurtry; P. N. Sedwick; P. Fryer; D. L. Vonderhaar; H.-W. Yeh

1993-01-01

53

Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc  

NASA Astrophysics Data System (ADS)

NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during the slow extrusion in 2009, a portable hydrophone recorded rhythmic sounds similar to those recorded during explosive activity in 2006 but at lower sound levels. The burst-and-pause pattern in the acoustic data indicates that cyclic magmatic gas build-up and release is the dominant driver of the long-term eruptive activity at NW Rota-1 over a wide range of eruption rates.

Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

2009-12-01

54

1891 Submarine eruption of Foerstner volcano (Pantelleria, Sicily) : insights into the vent structure of basaltic balloon eruptions  

NASA Astrophysics Data System (ADS)

Numerous shallow water basaltic eruptions have produced abundant floating scoria up to several meters in diameter, yet little is known about the conditions that give rise to this unusual style of volcanism. On October 17, 1891, a submarine eruption began 4 kilometers northwest of the island of Pantelleria, Sicily. The eruptive vent was located at a depth of 250 meters along the NW-SE trending Sicily Channel Rift Zone. Evidence for the eruption was provided by the occurrence of hot, scoriaceous lava "balloons" floating on the sea surface along a narrow line about 850-1000 meters long trending along the rift. These extremely vesicular fragments were spherical to ellipsoidal in shape and ranged from <50 to 250 cm in diameter. Remotely Operated Vehicles (ROVs) and existing bathymetric maps have been used to conduct the first detailed investigation of a vent site associated with this unique style of volcanism. In 2011 the ROV Hercules, deployed from the E/V Nautilus, explored the 1891 Foerstner vent using high definition video cameras and produced a high resolution bathymetric map of the area using a BlueView multibeam imaging sonar. Light backscattering and oxidation-reduction potential sensors (MAPRs) were added to Hercules to detect discharge from active venting. ROV video footage has been used in conjunction with the high resolution bathymetric data to construct a geologic map of the vent area based on a variety of facies descriptors, such as abundance of scoria bombs, occurrence of pillow or scoria flow lobes, extent of sediment cover, and presence of spatter-like deposits. Initial results of the mapping have shown that there are two main vents that erupted within the observed area of floating scoria and most likely erupted at the same time as evidenced by similar bulk chemical compositions of recovered samples. Scoria bomb beds and some scoria flow lobes largely cover the suspected main vent, located at a depth of 250 meters. Distinct pillow flow lobes cover the second, previously unknown vent located north of Foerstner volcano at a depth of around 350 meters. Given the close proximity of these two vents, the differences in deposit types may be due to changing eruption style as a function of water depth. The abundant pillow flow lobes observed at the northern vent are most likely the result of more effusive eruptions occurring in deeper water (350 m) whereas the dominantly fragmental nature of material in the main southern vent indicates more vigorous explosive activity at shallower levels (250 m). Based on the nature of deposits found at the vent areas, the basaltic balloons of the 1891 Foerstner eruption are suspected to be a result of both coarse, localized fire fountaining activity and detachment from gas-charged flow lobes. The larger and shallower southern vent area is likely to have been the main source of the basaltic balloons observed on the surface during the 1891 eruption. A review of other historic eruptions that have produced basaltic balloons suggests that this style of activity is likely to be restricted to a rather narrow range of water depths and thus recognition of the distinct deposits produced by this type of activity in ancient deposits could help place important paleodepth constraints on volcaniclastic sequences.

Kelly, J. T.; Carey, S.; Bell, K. L.; Rosi, M.; Marani, M.; Roman, C.; Pistolesi, M.; Baker, E. T.

2012-12-01

55

Chemical Characteristics of Plumes above and Around NW-Rota Submarine Volcano: Before and During the March 2004 Eruption  

NASA Astrophysics Data System (ADS)

During the March 2004 Ocean Exploration cruise to the Mariana Arc, a small-scale volcanic eruption was observed at the NW Rota-1 submarine volcano by the Canadian ROV ROPOS. CTD tows and casts were conducted above and around the seamount to sample the water for dissolved and particulate chemical species during the eruption. The water column around NW Rota-1 was also sampled in March 2003, providing a baseline for evaluating eruption-induced changes in the chemical composition of the seawater. These investigations mark the first time that water around an erupting underwater volcano has been sampled before and during an eruption. During the 2003 cruise, only an above-summit plume between 400-600 m was observed originating from NW Rota-1. This plume was distinctly hydrothermal, with high values of iron oxides and its associated oxyhdroxides, elemental sulfur, and aluminum in the form of natroalunite. In addition, the natroalunite co-occurs with a silica phase that suggests these Al-rich particles must have formed within the hydrothermal system where magmatic SO2 attacked the host rocks. During the 2004 cruise, prominent plumes were detected both around the flanks and above the summit. The flank plume completely surrounded the volcano from about 700 m to the seafloor (at least 2000 m). Bulk XRF analysis and SEM particle imagery show this plume to consist primarily of glass fragments. This plume may be caused by earthquake tremor associated with the eruption, causing resuspension of eruption debris. The summit plume consisted of a mixture of minerals similar to those sampled during the 2003 cruise, including highly elevated levels of Fe consistent with fresh lava/water interactions and/or release of subsurface rock that has previously interacted with SO2.

Lebon, G.; Resing, J.; Baker, E.; Embley, R.; Lupton, J.

2004-12-01

56

Volcanoes  

NSDL National Science Digital Library

Create a poster about volcanoes Directions: Make a poster about volcanoes. (20 points) Include at least (1) large picture (15 points) on your poster complete with labels of every part (10 points). (15 points) Include at least three (3) facts about volcanoes. (5 points each) (15 points) Write at least a three sentence summary of your poster and volcanoes. (5 points) Use at ...

Mrs. Walls

2011-01-30

57

Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).  

PubMed

We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers. PMID:20370830

Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A

2010-06-01

58

Submarine Location Estimation Via a Network of Detection-Only Sensors  

Microsoft Academic Search

It is well known to active-sonar engineers that the re- flected signal from a target can be highly aspect dependent; hence, in many cases, only receivers located in a particular zone deter- mined by the source\\/target receive geometry, and the target aspect can detect the return signal. Thus, submarines can hide well from traditional sonar systems. For these low-visibility targets,

Shengli Zhou; Peter Willett

2007-01-01

59

Submarine Location Estimation via a Network of Detection-Only Sensors  

Microsoft Academic Search

It is well known to active-sonar engineers that the reflected signal from a target can be highly aspect-dependent, hence in many cases only receivers located in a particular zone determined by the source\\/target receive-geometry and the target aspect can detect the return signal. Thus, submarines can hide well from traditional sonar systems. For these low-visibility targets, we propose a target

Shengli Zhou; Peter Willett

2006-01-01

60

Submarine Location Estimation Via a Network of Detection-Only Sensors  

Microsoft Academic Search

It is well known to active-sonar engineers that the reflected signal from a target can be highly aspect-dependent, hence in many cases only receivers located in a particular zone determined by the source\\/target receive-geometry and the target aspect can detect the return signal. Thus, submarines can hide well from traditional sonar systems. For these low-visibility targets, we propose a target

Shengli Zhou; Peter Willett

2007-01-01

61

A decade of exploring a submarine intraplate volcano: Hydrothermal manganese and iron at L?'ihi volcano, Hawai'i  

NASA Astrophysics Data System (ADS)

Decadal time series observations of hydrothermal fluid emissions from L?'ihi volcano were initiated in 1992 using a combination of submersible and shipboard sampling strategies. Magmatic-tectonic processes associated with a spectacular seismic event in July-August 1996 led to the collapse of Pele's Vents (31°C) near the volcano summit into a new pit crater (Pele's Pit) inundated by high-temperature (Tmax = 198°C) focused and lower-temperature (<95°C) diffuse fluid discharge. Variations in the concentrations and relative abundances of vented Fe and Mn characterize the precollapse, summit collapse, and postcollapse periods. The precollapse plume emanating from Pele's Vents had a low rise height (˜35 m) and concentration intensity (<5 nmol/L TDMn, 70 nmol/L TDFe, ˜1.8 km distant) and dispersed to the southwest. Plumes coeval with the 1996 summit collapse were characterized by extreme metal concentrations within Pele's Pit (up to ˜10,000 nmol/L DMn and 400,000 nmol/L TDFe) and nearby East Pit (˜34,000 nmol/L DMn and 120,000 nmol/L TDFe). An intense hydrothermal plume dispersed predominantly to the southwest of the several hundred meter deep pits with concentration anomalies as high as 236 nmol/L DMn and 3,800 nmol/L TDFe measured 9 km distant. Iron and Mn concentrations within the pits decreased >30- to 200-fold ˜1.5 months postcollapse and, during the following year, decreased a further twofold to threefold at Pele's Pit and ˜30-fold at East Pit. While a steady concentration of ˜400 nmol/L TDFe prevailed throughout the remaining years of this study at Pele's Pit, a gradual and threefold decrease in the concentration of DMn to about 15 nmol/L was observed. High-temperature fluids (128-198°C 1997-1999, ˜90°C 2001) venting simultaneously from different orifices within Pele's Pit had distinguishable Fe/Mn ratios that can be attributed to different subseafloor origins. Fe/Mn ratios characteristic of fluids moderated by high-temperature water-rock reaction had low values in 1997-1998 (1.6 ± 0.7), increasing to about 7 in 1999. Fluids moderated by magmatic degassing of CO2 had much higher Fe/Mn ratios, increasing from 24 ± 15 in 1997-1998 to 50 in 1999 and 63-87 in 2001. Fe/Mn values of dispersing plumes at L?'ihi reflect an admixture of these sources and a relative Fe abundance that is consistently high compared to mid-ocean ridge systems. The pulsed injection of Mn and Fe into the surrounding ocean associated with the 1996 tectonic-magmatic event at L?'ihi was massive. Our decadal observations confirm that Mn and Fe are useful markers of the magnitude and evolution of the effects of magmatic perturbation on hydrothermal systems influenced by chronic magmatic degassing.

Malahoff, Alexander; Kolotyrkina, Irina Ya.; Midson, Brian P.; Massoth, Gary J.

2006-06-01

62

SeaMARC 2 side-scan images of submarine volcanoes: Potential analogues for Venus  

NASA Technical Reports Server (NTRS)

The Earth's surface beneath the oceans may be very similar, in terms of ambient pressures, to the surface of Venus. For that reason it is particularly important for geologists studying the surface of Venus to understand the processes which form features on the floors of the oceans. With the SeaMARC 2 seafloor mapping system, it is possible to view a swath of seafloor that is 10 km wide (about 6.2 mi). Side scan images of the Mariana region show that volcanoes of the island arc are more complicated than previously realized and that features of the fore-arc region, which resemble volcanoes morphologically, may result from processes other than volcanism. By comparing data obtained from the ocean floor with radar images of Venus, the geological evolution of that planet may be more fully understood.

Fryer, P.; Hussong, D.; Mouginis-Mark, P. J.

1984-01-01

63

Volcanoes  

SciTech Connect

This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

Decker, R.W.; Decker, B.

1989-01-01

64

Volcanoes  

NSDL National Science Digital Library

In this lesson, students investigate the processes that build volcanoes, the types of rocks they create, the factors that influence different eruption types, and the threats volcanoes pose to their surrounding environments. They will also create a notebook of volcano characteristics and use what they have learned to identify physical features and eruption types in some real-life documented volcanic episodes.

2005-01-01

65

Volcanoes.  

ERIC Educational Resources Information Center

One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

Tilling, Robert I.

66

Unravelling the Geometry of Unstable Flanks of Submarine Volcanoes by Magnetic Investigation: the Case of the "sciara del Fuoco" Scar (stromboli Volcano, Aeolian Islands)  

NASA Astrophysics Data System (ADS)

Stromboli is the easternmost island of the Aeolian Archipelago (Tyrrhenian Sea) and one of the most active Mediterranean volcanoes. The volcanic edifice rises over 3000 m above the surrounding seafloor, from a depth of about 2000 m b.s.l. to 924 m a.s.l. The north-western flank of volcano is deeply scarred by a destructive collapse event occurred ca. 5000 years ago, and forming a big horseshoe-shaped depression, known as "Sciara del Fuoco" (SdF). This depression, 3 Km long and 2 Km wide, is supposed to extend into the sea down to 700 m b.s.l., while further basinward it turns into a fan-shaped mounted deposit down to about 2600 m b.s.l., where it merges the so-called "Stromboli Canyon". Since its formation, emerged and submerged portions of the SdF have been progressively filled by the volcanic products of the persistent activity of the Stromboli Volcano. In the last 10 years, two paroxysmal eruptions occurred in the Stromboli Volcano, during 2002-2003 and February-April 2007. During both events, the SdF has been partially covered by lava flows and affected by slope failures, also causing (for the 2002-2003 event) a local tsunami. Since the 1990's, and especially after the last two paroxysms, the submerged extension of the SdF has been intensively investigated by using swath bathymetry data. We focused principally on the magnetic anomaly pattern of the submerged SdF since the chaotic depositional system virtually cancels magnetic remanence (which at Stromboli can reach 5-10 A/m values), thus lowering magnetic residual intensity. On July 2012 we acquired new detailed sea-surface magnetic data of the SdF from the shoreline to about 7 km offshore, where the depth is more than 1800 m b.s.l. We collected data thanks to the Italian Navy ship "Nave Aretusa" and by using the Marine Magnetics SeaSPY magnetometer. At the same time, new bathymetric data were acquired in the same area by using a Kongsberg Marine multibeam systems. Although the morphologic features of the submarine prosecution of the SdF system were already studied and unveiled, the complete description of the in-depth extension of the system and the overall volume estimation is still poorly known. This has important implications for the hazard assessment of the landslide structure and most generally of the entire volcanic edifice. The application of a classical geomagnetic prospection to describe a landslide feature is an uncommon procedure yet it can be considered as innovative approach, having the advantages of effectiveness, low cost and expedition typical of the geomagnetic survey. Here we present the interpretation of the newly acquired high-resolution magnetic dataset, thanks to susceptibility and magnetic remanence values gathered from on-land rock samples at Stromboli. A 3D inverse model is here proposed, allowing a full definition of the submerged SdF structure geometry.

Muccini, F.; Cocchi, L.; Carmisciano, C.; Speranza, F.; Marziani, F.

2012-12-01

67

Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon  

NASA Astrophysics Data System (ADS)

We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created with Macromedia Director using Apple Quicktime and Quicktime VR. The exhibit is based on the NeMO Explorer web site (http://www.pmel.noaa.gov/vents/nemo/explorer.html).

Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

2002-12-01

68

Caldera structure of submarine Volcano #1 on the Tonga Arc at 21°09', southwestern Pacific: Analysis of multichannel seismic profiling  

NASA Astrophysics Data System (ADS)

Volcano #1 is a large submarine stratovolcano with a summit caldera in the south central part of the Tonga Arc. We collected and analyzed multichannel seismic profiles in conjunction with magnetic data from Volcano #1 to investigate the structure of the intracaldera fill and processes of caldera formation. The intracaldera fill, exhibiting stratified units with a maximum thickness of 2 km, consists of at least four seismic units and a thick wedge of landslide debris derived from the caldera wall. The structural caldera floor, deepening toward the northwestern rim, suggests asymmetric collapse in the initial stage, which, in turn, appears to have contributed to the creation of a caldera elongated to the northwest by enhancing gravitational instability along the northwestern caldera boundary. Occasional, but repeated, eruptions resulted in a thick accumulation of the intracaldera fill and further subsidence in the mode of piston collapse. Magnetization lows are well-defined along the structural rim of the caldera that is interpreted as the inner principal ring fault. The magnetization lows indicate sites of submarine hydrothermal vents that caused an alteration of magnetic minerals. Faults recognized on the outer slope of the volcano are interpreted to be involved in hydrothermal fluid circulation.

Kim, H.-J.; Jou, H.-T.; Lee, G.-H.; Na, J.-H.; Kim, H.-S.; Jang, U.; Lee, K.-Y.; Kim, C.-H.; Lee, S. H.; Park, C.-H.; Jung, S.-K.; Suk, B.-C.

2013-08-01

69

Unusual geochemistry of hydrothermal vents on submarine arc volcanoes: Kasuga Seamounts, Northern Mariana Arc  

NASA Astrophysics Data System (ADS)

DSRV Alvin dives in the Northern Mariana island arc recovered warm hydrothermal fluids from the summit areas of seamounts Kasuga 2 and Kasuga 3, as well as hydrothermal deposits of elemental sulfur, Fe- and Mn-oxides, and nontronite. The composition of a gas-rich ˜ 39°C vent fluid sampled from Kasuga 2 Seamount is unusual compared to other submarine hydrothermal fluids in that it is enriched by 27% in Mg 2+ and 17% in SO 42-, and depleted by 64% in Ca 2+, relative to ambient seawater. The elevated concentrations of dissolved CO 2 (calculated from pH and AT), HCO 3- and SO 42+, and near absence of H 2S, suggest that the unusual composition of this sample may result from the sub-seafloor addition of volcanic CO 2 and SO 2 to a seawater-derived hydrothermal fluid, resulting in: (1) 'chemical weathering' reactions, whereby igneous minerals or alteration phases are attacked by CO 2, adding Mg 2+ and other cations, Si, and HCO 3- into solution; and (2) hydrolysis of SO 2 to SO 42- and S(0), adding excess SO 42- with a light ? 34S signature to the fluid and causing deposition of elemental sulfur at the seafloor vents. Saturation-state calculations suggest that the concentrations of Si and Ca 2+ in the fluid may be controlled at saturation with amorphous silica and dolomite respectively. The origin of the 9.3°C fluid collected from Kasuga 3 is difficult to determine because it is compositionally close to ambient seawater and shows possible evidence of both high- and low-temperature seawater-rock reaction. Banded and interlayered deposits of nontronite and Fe- and Mn-oxides were recovered from the Kasuga 3 summit, with oxygen-isotope geothermometry suggesting a formation temperature of ˜ 22°C for the nontronite.

McMurtry, G. M.; Sedwick, P. N.; Fryer, P.; VonderHaar, D. L.; Yeh, H.-W.

1993-02-01

70

The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities  

PubMed Central

The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

2014-01-01

71

The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.  

PubMed

The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

2014-01-01

72

Simulation of Submarine Hydrothermal Systems: IV. Fluid Flow in Active Arc-Related Volcanoes  

NASA Astrophysics Data System (ADS)

Fluid flow through submarine hydrothermal systems transports a major part of the Earth's heat to its surface and greatly impacts the chemistry of crust and overlying ocean. Seafloor high-temperature vent sites are manifestations of active ore-forming systems and can be regarded as modern analogues of massive sulfide deposits whose ancient equivalents have been exploited as world-class mines on land. Recent research cruises dedicated to seafloor hydrothermal activity along convergent plate boundaries, e.g. along the intra-oceanic Kermadec arc, have systematically surveyed and sampled numerous hydrothermal plumes. Follow-up submersible dives show venting that ranges from relatively high temperature (~300° C), metal-rich fluids to lower temperature, gas-rich and metal-poor fluids. Some of these vent sites show evidence for significant contributions from magmatic sources. The physics of such systems is complex because the seawater-derived hydrothermal fluid can mix with ambient seawater and phase-separate, either via boiling or condensation, into a low-salinity vapor and a high-salinity brine. In order to model the sub-seafloor hydrology with numerical transport simulation techniques, a newly developed pressure-enthalpy-salinity scheme has been used, which includes the full phase relations of the NaCl-H2O system up to 1000° C and accurately captures boiling, condensation, and salt precipitation. We have designed a new numerical model, based on observations in currently active arc-related systems, to assess the influence of first-order physical parameters (such as seafloor topography and the contribution of magmatic fluids) to fluid flow patterns, thermal structure, and phase-separation. Preliminary results of these simulations will be presented and compared with data recently obtained from simulations at mid-ocean ridge systems. In our ongoing project, we aim to predict the optimal conditions for which metal-rich magmatic vapor may cool and contract to an aqueous liquid, which in turn is likely to generate particularly Cu- and Au-rich mineralization on the seafloor.

Gruen, G.; Coumou, D.; Weis, P.; Driesner, T.; de Ronde, C.; Heinrich, C. A.

2008-12-01

73

Volcanoes  

NSDL National Science Digital Library

This resource provides general information about volcanoes. It illustrates the growth of a volcano, using Paricutin and Mt. St. Helens as examples of an active volcano and a lava dome. The terms extinct and dormant are also discussed. This site provides an explanation of why and how volcanoes form, zones of subduction, mid-ocean ridges, and hot spots. Deadly dangers associated with eruptions are discussed as is the use of a tiltmeter for prediction. The content center lesson describes a possible connection between the lost continent of Atlantis and the island of Santorini. Dissolved gasses in magma and the creation of a lava dome are both demonstrated in the hands-on section.

Johnson, Scott

74

Mabahiss Mons, 25.5°N Red Sea Rift: Tectonics and Volcanism of a Large Submarine Dome Volcano  

NASA Astrophysics Data System (ADS)

Only little is known on the geological context of the Mabahiss Deep, located in the northern Red Sea at 25°29´N, 36°04´E. In comparison to the central Red Sea, the flat-bottomed morphology of this deep does not depict organized seafloor spreading (Martinez & Cochran 1988). Previous low resolution bathymetric (>100 m grid cell size) and crude geophysical data were unable to give detailed account on the transition from the central towards the northern Red Sea Rift and the role of the Mabahiss Deep therein. New high resolution bathymetric datasets of this region, collected during R/V Pelagia cruise 64PE351 in April 2012, reveal numerous details of the volcanism, tectonics and related sedimentary features in and around the Mabahiss Deep with focus on an unusually large, Venusian-type pancake dome volcano (first described by Guennoc et al. 1988). The main volcanic building, the Mabahiss Mons volcano, is about 8 km in diameter and rises to an average height of 450 m above the surrounding seafloor. Mabahiss Mons hosts a 2000 m in diameter and 50 m deep caldera. Satellite volcanoes and small volcanic cones are scattered around the main edifice and towards the SE. Multibeam backscatter data suggest recent eruptive activities at the flanks and within the caldera. In our first results of tectonic, volcanic and petrological investigations in the vicinity of Mabahiss Mons volcano, based on high-resolution bathymetry, backscatter data and ground truthing, we present terrain analyses, preliminary geochemical data and petrological observations from MOR-basalts. The newly collected data will help to unravel the role of the Mabahiss Deep in the geological setting of the Red Sea and the changeover from the central to the northern Red Sea Rift. References: Guennoc, P., Pautot, G., & Coutelle, A. (1988). Surficial structures of the northern Red Sea axial valley from 23° N to 28°N: time and space evolution of neo-oceanic structures. Tectonophysics, 153(1-4), 1-23. doi:10.1016/0040-1951(88)90005-4 Martinez, F., Cochran, J. R. (1988). Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics, 150(1), 1-31.

Metz, Dirk; Augustin, Nico; van der Zwan, Froukje M.; Bantan, Rashad A.; Al-Aidaroos, Ali M.

2013-04-01

75

Integration of video and infrasound to understand source locations and vent geometry at Erebus Volcano, Antarctica  

Microsoft Academic Search

Infrasound monitoring at Erebus volcano has enabled us to quantify eruption energetics and precisely determine the source location of Strombolian eruptions. Since January 2006 we have operated a three-element network of identical infrasound pressure transducers, to track explosive eruptions, triangulate source locations of the eruptions, and distinguish activity from several vents with diverse activities. In December 2006 the network was

K. R. Jones; R. C. Aster; J. B. Johnson; P. R. Kyle; W. C. McIntosh

2007-01-01

76

Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site  

NASA Astrophysics Data System (ADS)

Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus, Fabio Caratori-Tontini, Rick Davis, Kevin Roe, Edward Mitchell, Paula Keener-Chavis Carolyn Sheehan, Peter Crowhurst, Simon Richards,and Volker Ratmeyer along with the Quest-4000 team. .

Resing, J.; Embley, R. W.

2012-12-01

77

Volcanoes  

NSDL National Science Digital Library

This module include four problem-based learning scenarios related to volcanoes and emphasize different kinds of volcanic hazards and geologic processes. The four scenarios are: whether to build a new high school in the shadow of a restless volcanic giant, Mt. Rainier; Kilauea in Hawaii shows signs of activity. What are the prospects for the nearby population?; Mt. Hood is starting to act like Mt. St. Helens did in 1980, but Mt. Hood is just 40 miles from the metropalitan area. How might an eruption impact this populated area?; and America's largest volcano in Yellowstone National Park is stirring. Are we facing an eruption as devastating as a nuclear attack? This module is from Exploring the Environment.

2012-08-03

78

An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano  

USGS Publications Warehouse

A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

Hoblitt, R.P.

1994-01-01

79

How Slab Dip Affects the Location of Volcanoes  

NSDL National Science Digital Library

Students will plot the locations of earthquakes on the top of subducting slabs to determine slab dip and will then develop hypotheses regarding the relationship between slab dip, the depth of the slab, and volcanic activity on the surface.

Erin Beutel

80

The 2011 Eruption of Nabro Volcano (Eritrea): Earthquake Locations from a Temporary Broadband Network  

NASA Astrophysics Data System (ADS)

Nabro volcano dominates the central part of the Nabro Volcanic Range (NVR), which trends SSW-NNE covering a stretch of 110 km from the SEE margin of the Afar depression to the Red Sea. Regionally, the NVR sits within the Afar triangle, the triple junction of the Somalian, Arabian and African plates. On 12th June 2011 Nabro volcano suddenly erupted after being inactive for 10, 000 years. In response, a network of 8 seismometers, were located around the active vent. The seismic signals detected by this array and those arriving at a regional seismic station (located to the north-west) were processed to provide accurate earthquake locations for the period August-October. Transects of the volcano were used to create cross sections to aid the interpretation. Typically, the majority of the seismic events are located at the active vent and on the flanks of Nabro, with fewer events dispersed around the surrounding area. However, there appears to be a smaller hub of events to the south-west of Nabro beneath the neighbouring Mallahle volcanic caldera (located on the Ethiopian side of the international border). This may imply some form of co-dependent relationship within the plumbing of the magma system beneath both calderas.

Hamlyn, J.; Keir, D.; Hammond, J.; Wright, T.; Neuberg, J.; Kibreab, A.; Ogubazghi, G.; Goitom, B.

2012-04-01

81

Submarine landslides in French Polynesia SUBMARINE LANDSLIDES IN SOCIETY AND AUSTRAL ISLANDS,  

E-print Network

Submarine landslides in French Polynesia 1 SUBMARINE LANDSLIDES IN SOCIETY AND AUSTRAL ISLANDS of numerous submarine landslides in French Polynesia. This inventory shows an evolution of the landslide type with the age of oceanic islands. Submarine active volcanoes are subject to superficial landslides of fragmental

Clouard, Valerie

82

The design and testing of a procedure to locate fresh submarine groundwater discharge in Cyprus  

E-print Network

The aim of this collaborative project between Massachusetts Institute of Technology (MIT) and Cyprus Institute was to develop an experimental procedure for identifying fresh submarine groundwater discharge (SGD) in Cyprus. ...

Olesnavage, Kathryn M

2012-01-01

83

Volcanoes: On-Line Edition  

NSDL National Science Digital Library

This is the on-line version of a general interest publication prepared by the United States Geological Survey (USGS). It provides a general introduction to volcanoes and volcanology. Topics include types of volcanoes; types of eruptions; submarine volcanoes; and features associated with volcanic terrains (geysers, hot springs, etc.). There is also discussion of volcanoes and their association to plate tectonics, extraterrestrial volcanoes, monitoring and research efforts, and the impacts of volcanoes on human populations. A text-only version is also available.

84

Comparison of the submarine landslide by the sector collapse of Oshima-Oshima island in the northern part of Japan with the debris avalanche of off Kaimon volcano in the southern part of Japan and several landslide.  

NASA Astrophysics Data System (ADS)

Oshima-Oshima island is an active volcano located in the eastern margin of the Japan Sea off Hokkaido. Oshima-Oshima consists of Higashi-yama somma, Nishi-yama somma, and the central cone. The latest eruption occurred at the 18th century. In a huge eruption on August 1741 , Nishiyama of western part of Oshima- Oshima collapsed toward the northern submarine slope , and the horseshoe shape caldera was formed. It is proposed by Katsui et al.(1977) , Satake and Kato(2001) that Japan Sea tsunami in 1741 was generated by this collapse. Detailed swath bathymetry surveys have been conducted around Oshima-Oshima by Hydrographic and Oceanographic Department of Japan in 1993. As a result, a large area of debris avalanche deposits has been discovered on the northern submarine flanks of Oshima-Oshima island. In addition, sidescan sonar surveys was also conducted by Hydrographic and Oceanographic Department of Japan and University of Tokyo in 1995. In 1997, the lower part of the debris avalanche deposit was investigated using submersible 'Shinkai 2000' by JAMSTEC(Japan Agency for Marine-Earth Science and Technology). It was confirmed that those deposits were Oshima origins (Kato,1997). We compiled and analyzed using these detailed bathymetry data and sidescan data. As a result , we clarified a detailed geographical features of debris avalanche and the limit of their distribution. Scarp of caldera rim continues to approximately 1100m under the sea. Oshima-Oshima has diameter of approximately 16km. Oshima-Oshima has also an estimated total edifice volume (subaerial and submarine) of 127km3 and rises about 2200m from its base in 1500m depth of water. Northern part of Oshima-Oshima, the scarp of caldera rim on the subaerial area consecutively continues up to about 1100m of depth. The scarp has 100m-300m high, and width of landslide valley is about 2km. Hammocky surface starts from 1100m depth of water. Sea mount of like spur is composed of the collapse deposits has almost extended to the whole area in the trough deeper than 1100m. Debris avalanche deposits have been identified up to 2200m depth and 24km from Oshima-Oshima island, H/L is approximately 0.12. Maximum sizes of debris avalanche block is up to 1-2km width and 100m high. We divided the debris avalanche deposits into three areas (Type A-C) by the topography. Type-A is the main sedimentary area in front of the collapse area and the form is like a spur with 100 to 130m height. Type-B has a form like a knoll or block. Type-C shows gradual slope containing a small rise. We compared these feature with debris avalanche of off Kaimon volcano in the southern part of Japan and the other debris avalanche (landslide, submarine landslide).

Kaji, T.; Yamazaki, H.; Kato, Y.

2007-12-01

85

Numerical modelling of mud volcanoes and their ows using constraints from the Gulf of Cadiz  

E-print Network

Numerical modelling of mud volcanoes and their £ows using constraints from the Gulf of Cadiz of submarine mud volcanoes is between 1000 and 100 000. Because many are associated with greenhouse gases and submarine mud volcanoes is highly significant. Clues to the processes forming submarine mud volcanoes can

Biggs, Juliet

86

Volcanic evolution of the submarine super volcano, Tamu Massif of Shatsky Rise: New insights from Formation MicroScanner logging imagery  

NASA Astrophysics Data System (ADS)

Massif, the southernmost plateau of Shatsky Rise, is recently reported as the largest single volcano known on Earth. This work seeks to understand the type of volcanism necessary to form such an anomalously large single volcano by integrating core and high-resolution wireline logging data. In particular, resistivity imagery obtained by the Formation MicroScanner, in Integrated Ocean Drilling Program Hole U1347A, located on the eastern flank of Tamu Massif, was used to construct a logging-based volcanostratigraphy. This model revealed two different volcanic stages formed Tamu Massif: (i) the core part of the massif's basaltic basement was formed by a "construction phase" of volcanism with cyclic eruption events from a steady state magma supply and (ii) the very topmost basaltic section was formed by a "depositional phase" of volcanism during which long-traveling lava flows were deposited from a distant eruption center.

Tominaga, Masako; Iturrino, Gerardo; Evans, Helen F.

2015-01-01

87

Volcanic Risk Perception in Five Communities Located near the Chichón Volcano, Northern Chiapas, Mexico  

NASA Astrophysics Data System (ADS)

The Chichón volcano (17° 19’ N and 93° 15’ W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Juárez, Ostuacán, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because they do not know any plan, strategy, emergency schemes or shelters locations no even evacuation routes. In conclusion, during the 1982 eruption the risk perception of the population played an important role in the social impact on the region. We believe that if the population had had a proper perception of their volcanic risk, the number of casualties would have been lower. Thus, the present low volcanic risk perception of the five studied communities can be considered as an important element of vulnerability. Frances Rodríguez-VanGort1 and David A. Novelo-Casanova2 (1) Posgrado Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México Distrito Federal (2) Departamento de Sismología Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México Distrito Federal

Rodriguez, F.; Novelo-Casanova, D. A.

2010-12-01

88

Kinematic variables and water transport control the formation and location of arc volcanoes.  

PubMed

The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes. PMID:19494913

Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

2009-06-01

89

Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge  

NASA Astrophysics Data System (ADS)

The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater volcanic eruption linked to the heat, chemical, and biological fluxes. In the late stages of the event, the dissipation of the "event plume" into the surrounding water column and the plume's migration patterns in the ambient regional flow will be tracked using specifically designed mobile sensor-platforms. The presence of these assets opens the potential for more immediate, coordinated, and thorough event responses than the community has previously been able to mount. Given the relative abundance of information on many variables in a verifiable and archived spatial and temporal context, and the rapidly evolving ability to conduct real-time genomic analyses, our community may be able to secure entirely novel organisms that are released into the overlying ocean only under well-characterized eruptive conditions.

Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

2011-12-01

90

Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy  

USGS Publications Warehouse

We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

1998-01-01

91

Near-real time 3D probabilistic earthquakes locations at Mt. Etna volcano  

NASA Astrophysics Data System (ADS)

Automatic procedure for locating earthquake in quasi-real time must provide a good estimation of earthquakes location within a few seconds after the event is first detected and is strongly needed for seismic warning system. The reliability of an automatic location algorithm is in?uenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. On Mt. Etna, the seismic network is managed by INGV and the quasi-real time earthquakes locations are performed by using an automatic-picking algorithm based on short-term-average to long-term-average ratios (STA/LTA) calculated from an approximate squared envelope function of the seismogram, which furnish a list of P-wave arrival times, and the location algorithm Hypoellipse, with a 1D velocity model. The main purpose of this work is to investigate the performances of a different automatic procedure to improve the quasi-real time earthquakes locations. In fact, as the automatic data processing may be affected by outliers (wrong picks), the use of a traditional earthquake location techniques based on a least-square misfit function (L2-norm) often yield unstable and unreliable solutions. Moreover, on Mt. Etna, the 1D model is often unable to represent the complex structure of the volcano (in particular the strong lateral heterogeneities), whereas the increasing accuracy in the 3D velocity models at Mt. Etna during recent years allows their use today in routine earthquake locations. Therefore, we selected, as reference locations, all the events occurred on Mt. Etna in the last year (2011) which was automatically detected and located by means of the Hypoellipse code. By using this dataset (more than 300 events), we applied a nonlinear probabilistic earthquake location algorithm using the Equal Differential Time (EDT) likelihood function, (Font et al., 2004; Lomax, 2005) which is much more robust in the presence of outliers in the data. Successively, by using a probabilistic non linear method (NonLinLoc, Lomax, 2001) and the 3D velocity model, derived from the one developed by Patanè et al. (2006) integrated with that obtained by Chiarabba et al. (2004), we obtained the best possible constraint on the location of the focii expressed as a probability density function (PDF) for the hypocenter location in 3D space. As expected, the obtained results, compared with the reference ones, show that the NonLinLoc software (applied to a 3D velocity model) is more reliable than the Hypoellipse code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers are present.

Barberi, G.; D'Agostino, M.; Mostaccio, A.; Patane', D.; Tuve', T.

2012-04-01

92

NOAA Explorations: Submarine Ring of Fire 2004  

NSDL National Science Digital Library

NOAA's 2004 Submarine Ring of Fire expedition's goals are to examine over a 1,000 km stretch of submarine volcanoes and sea-floor hot springs in the Mariana Island Arc. At this website, users can find general information about the Mariana Arc, the research, and the scientists involved. Educators can find intriguing lesson plans about volcanoes and the chemistry of hydrothermal vents for grades fifth through twelfth. The site presents fascinating materials about seafloor mapping, volcanism, and vent chemistry. Visitors can view amazing satellite images of the overall Mariana Arc Volcanic Chain, its sea floor, and the NW Uracas and Ahyi submarine volcanoes.

93

Volcano Activity  

NSDL National Science Digital Library

Part of Prentice Hall's Planet Diary, this computer activity covers volcanic activity. Students research the most recent volcanic activity and the locations and names of each volcano. They then find out which tectonic plates the volcanoes are located on or if they are hot spots, and if any are part of the Ring of Fire.

94

Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters  

USGS Publications Warehouse

An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

2011-01-01

95

Vertical Motions of Oceanic Volcanoes  

NASA Astrophysics Data System (ADS)

Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift lasting a few hundred thousand years as the island migrates over a broad flexural arch related to isostatic compensation of a nearby active volcano. The arch is located about 190±30 km away from the center of volcanic activity and is also related to the rejuvenated volcanic stage on the islands. Reefs on Oahu that are uplifted several tens of m above sea level are the primary evidence for uplift as the islands over-ride the flexural arch. At the other end of the movement spectrum, both in terms of magnitude and length of response, are the rapid uplift and subsidence that occurs as magma is accumulated within or erupted from active submarine volcanoes. These changes are measured in days to years and are of cm to m variation; they are measured using leveling surveys, tiltmeters, EDM and GPS above sea level and pressure gauges and tiltmeters below sea level. Other acoustic techniques to measure such vertical movement are under development. Elsewhere, evidence for subsidence of volcanoes is also widespread, ranging from shallow water carbonates on drowned Cretaceous guyots, to mapped shoreline features, to the presence of subaerially-erupted (degassed) lavas on now submerged volcanoes. Evidence for uplift is more limited, but includes makatea islands with uplifted coral reefs surrounding low volcanic islands. These are formed due to flexural uplift associated with isostatic loading of nearby islands or seamounts. In sum, oceanic volcanoes display a long history of subsidence, rapid at first and then slow, sometimes punctuated by brief periods of uplift due to lithospheric loading by subsequently formed nearby volcanoes.

Clague, D. A.; Moore, J. G.

2006-12-01

96

Optimizing submarine berthing with a persistence incentive  

Microsoft Academic Search

Submarine berthing plans reserve mooring locations for inbound U.S. Navy nuclear submarines prior to their port entrance. Once in port, submarines may be shifted to different berthing locations to allow them to better receive services they require or to make way for other shifted vessels. However, submarine berth shifting is expensive, labor inten- sive, and potentially hazardous. This article presents

Gerald G. Brown; Kelly J. Cormican; Siriphong Lawphongpanich; Daniel B. Widdis

1997-01-01

97

Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin  

NASA Astrophysics Data System (ADS)

An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular, including the hairs and limu, unlike similar fragments from Loihi Seamount, Axial Seamount, and mid-ocean ridges that have <10% vesicles. The lava bubbles were observed to reach about 1 m in diameter, sometimes appearing to separate from the lava surface, suggesting that they are fed by gasses rising directly from the conduit. Slow-motion video analysis shows that the lava skin stretches to form thin regions that then separate, exposing still incandescent gas within. Bubbles collapse as the lava skin disrupts (usually at the top of the bubble), producing a shower of convex spatter-like lava fragments. Sheet-like lava flows are associated with collapse of the spatter cone and change to pillow lobe extrusion about 5 m from the vent orifice. One pillow lobe sample collected molten contains ~60% vesicles. We suggest that the erupting melt contains large coalesced slugs of magmatic gas and abundant small expanding vesicles that have yet to be incorporated into the large gas slugs. The contrast with Prometheus suggests highly localized conditions of magma devolatilization at W. Mata.

Clague, D. A.; Rubin, K. H.; Keller, N. S.

2009-12-01

98

Satellite observations of environmental changes from the Tonga volcano eruption in the southern tropical Pacific  

Microsoft Academic Search

Satellite measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua were used to study changes of the ocean and atmosphere following the eruption of a submarine volcano in March 2009 in the southern tropical Pacific. Significant increase of water turbidity was observed in an area of ?368 km near the location of the eruption due to the deposition of

Wei Shi; Menghua Wang

2011-01-01

99

Hawaiian Volcano Observatory  

USGS Publications Warehouse

Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

Venezky, Dina Y.; Orr, Tim

2008-01-01

100

Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size  

NASA Astrophysics Data System (ADS)

The amplitude source location (ASL) method, which uses high-frequency amplitudes under the assumption of isotropic S-wave radiation, has been shown to be useful for locating the sources of various types of volcano-seismic signals. We tested the ASL method by using synthetic seismograms and examined the source amplitudes determined by this method for various types of volcano-seismic signals observed at different volcanoes. Our synthetic tests indicated that, although ASL results are not strongly influenced by velocity structure and noise, they do depend on site amplification factors at individual stations. We first applied the ASL method to volcano-tectonic (VT) earthquakes at Taal volcano, Philippines. Our ASL results for the largest VT earthquake showed that a frequency range of 7-12 Hz and a Q value of 50 were appropriate for the source location determination. Using these values, we systematically estimated source locations and amplitudes of VT earthquakes at Taal. We next applied the ASL method to long-period events at Cotopaxi volcano and to explosions at Tungurahua volcano in Ecuador. We proposed a practical approach to minimize the effects of site amplifications among different volcano seismic networks, and compared the source amplitudes of these various volcano-seismic events with their seismic magnitudes. We found a proportional relation between seismic magnitude and the logarithm of the source amplitude. The ASL method can be used to determine source locations of small events for which onset measurements are difficult, and thus can estimate the sizes of events over a wider range of sizes compared with conventional hypocenter determination approaches. Previously, there has been no parameter widely used to quantify the sources of volcano-seismic signals. This study showed that the source amplitude determined by the ASL method may be a useful quantitative measure of volcano-seismic event size.

Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi; Ruiz, Mario; Palacios, Pablo; Ortiz, Hugo; Yepes, Hugo

2013-05-01

101

Local Seismicity beneath Suiyo Seamount, an Active Submarine Volcano, on the Izu-Ogasawara (Bonin) Island-arc System  

NASA Astrophysics Data System (ADS)

Several ocean bottom seismographic (OBS) observations were carried out to investigate seismic characteristics related to the volcanic and/or hydrothermal activity beneath Suiyo Seamount on the Izu-Ogasawara (Bonin) volcanic front. A preliminary seismic observation for 2 weeks using 4 OBSs in the caldera was carried out in Oct. 2000, and detected several kinds of seismic activities including long period events and seismicity just beneath the seamount. In 2001, we conducted a seismic refraction experiment to obtain a P wavespeed structural model of the upper crust across the seamount. In the 2002 full-dress investigation of the seismicity, we deployed 10 OBSs in and around the caldera of Suiyo Seamount region and observed more than two months from Aug. 5 to Oct. 9. The seismic activity was characterized by dominance of earthquakes with S-P times of 1-2 sec. We could locate 594 events with an RMS residual of P wave travel time of less than 0.2 s. The hypocenters concentrated at depths of 3.5-7.5 km beneath the seamount and revealed a conduit-like shape with a hollow, which indicated a relation to magma conduit. Furthermore, in the only 5 days observation during Dec. 5 to 9, 2003, we also obtained the same pattern of the hypocenter distribution. A remarkable burst detected on Dec. 6, 34 events occurred in 70 minutes, characterized the seismicity. The most events were S-P times of 0.7 s at the stations in the caldera and located just beneath the summit of Suiyo Seamount. A common characteristic in the 2002 and 2003 observation was a seismic gap at a depth around 3 km beneath the seamount. From these observations for resent 4 years, we conclude that rather stable seismic activity related to the magma conduit is maintained beneath the seamount, which may support the long-standing hydrothermal activity of Suiyo Seamount.

Nishizawa, A.; Sasahara, N.; Nishimura, Y.

2004-12-01

102

Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii  

NASA Astrophysics Data System (ADS)

Two manned submersible dives examined the Hualalai Northwest rift zone and an elongate ridge cresting at 3900 mbsl during a 2002 JAMSTEC cruise. The rift zone flank at dive site S690 (water depth 3412-2104 m) is draped by elongated and truncated pillow lavas. These olivine-rich tholeiitic lavas are compositionally indistinguishable from those examined further south along the bench, except that they span a wider range in dissolved sulfur content (200-1400 ppm). The elongate ridge investigated in dive S692, located at the base of the bench, is a package of distinct lithologic units containing volcaniclastic materials, glassy pillow breccias, and lava blocks; these units contain a range of compositions including tholeiitic basalt, transitional basalt, and hawaiite. The textures, compositions, and stratigraphic relationships of materials within the elongate ridge require that a variety of transport mechanisms juxtaposed materials from multiple eruptions into individual beds, compacted them into a coherent package of units, and brought the package to its present depth 10 km from the edge of the North Kona slump bench. Sulfur-rich hawaiite glasses at the base of the elongate ridge may represent the first extant representatives of juvenile alkalic volcanism at Hualalai. They are geochemically distinct from shield tholeiite and post-shield alkalic magmas, but may be related to transitional basalt by high-pressure crystal fractionation of clinopyroxene. Tholeiitic glasses that compose the majority of the exposed outcrop are similar to Mauna Kea tholeiites and other Hualalai tholeiites, but they differ from younger basalts in having greater incompatible element enrichments and higher CaO for a given MgO. These differences could arise from small extents of partial melting during the transition from alkalic to shield stage magmatism. Low sulfur contents of most of the volcaniclastic tholeiites point to early emergence of Hualalai above sea level relative to the development of the midslope slump bench.

Hammer, Julia E.; Coombs, Michelle L.; Shamberger, Patrick J.; Kimura, Jun-Ichi

2006-03-01

103

Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii  

USGS Publications Warehouse

Two manned submersible dives examined the Hualalai Northwest rift zone and an elongate ridge cresting at 3900 mbsl during a 2002 JAMSTEC cruise. The rift zone flank at dive site S690 (water depth 3412-2104 m) is draped by elongated and truncated pillow lavas. These olivine-rich tholeiitic lavas are compositionally indistinguishable from those examined further south along the bench, except that they span a wider range in dissolved sulfur content (200-1400 ppm). The elongate ridge investigated in dive S692, located at the base of the bench, is a package of distinct lithologic units containing volcaniclastic materials, glassy pillow breccias, and lava blocks; these units contain a range of compositions including tholeiitic basalt, transitional basalt, and hawaiite. The textures, compositions, and stratigraphic relationships of materials within the elongate ridge require that a variety of transport mechanisms juxtaposed materials from multiple eruptions into individual beds, compacted them into a coherent package of units, and brought the package to its present depth 10 km from the edge of the North Kona slump bench. Sulfur-rich hawaiite glasses at the base of the elongate ridge may represent the first extant representatives of juvenile alkalic volcanism at Hualalai. They are geochemically distinct from shield tholeiite and post-shield alkalic magmas, but may be related to transitional basalt by high-pressure crystal fractionation of clinopyroxene. Tholeiitic glasses that compose the majority of the exposed outcrop are similar to Mauna Kea tholeiites and other Hualalai tholeiites, but they differ from younger basalts in having greater incompatible element enrichments and higher CaO for a given MgO. These differences could arise from small extents of partial melting during the transition from alkalic to shield stage magmatism. Low sulfur contents of most of the volcaniclastic tholeiites point to early emergence of Hualalai above sea level relative to the development of the midslope slump bench. ?? 2005 Elsevier B.V. All rights reserved.

Hammer, J.E.; Coombs, M.L.; Shamberger, P.J.; Kimura, J.-I.

2006-01-01

104

Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals  

USGS Publications Warehouse

We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.

Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.

2002-01-01

105

Attack submarines  

SciTech Connect

This issue discusses missions for submarines, technology proliferation; implications for U.S. security; U.S. SSN-21 Seawolf versus other submarines; stability and arms control; nuclear propulsion and nuclear proliferation; air independent propulsion.

Not Available

1991-01-01

106

Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii  

USGS Publications Warehouse

Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

Dawson, P.; Whilldin, D.; Chouet, B.

2004-01-01

107

Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska  

NASA Astrophysics Data System (ADS)

Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

Dawson, Phillip B.; Chouet, Bernard A.; Power, John

2011-02-01

108

Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska  

USGS Publications Warehouse

Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

Dawson, P.B.; Chouet, B.A.; Power, J.

2011-01-01

109

Where are the Volcanoes?  

NSDL National Science Digital Library

This formative assessment item discusses common misconceptions about volcano location around the world. Resources include background and content information as well as alignment to the National Science Education Standards. The probe could easily be modified to be used with a study of earthquakes instead of volcanoes. Teachers can access other resources including facts about volcanoes and lesson ideas.

Jessica Fries-Gaither

110

Volcanoes: Annenberg Media Project  

NSDL National Science Digital Library

Volcanoes is an exhibit from the Annenberg Media Project that provides a wealth of information about volcanoes and includes sections such as Melting Rocks, the Dynamic Earth, and Forecasting. Interactive exercises enable the user to learn how rock turns into magma, how to locate volcanoes, and how to decide if building a project near a volcano is safe. Quicktime videos are used for each of the six categories to illustrate the points outlined in the text.

111

Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010  

DOE Data Explorer

Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

Jaffe, Todd

112

Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources  

SciTech Connect

In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

Eylon Shalev; Peter E. Malin; Wendy McCausland

2002-06-06

113

Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.  

PubMed

The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

2014-01-01

114

Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon  

PubMed Central

The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

2014-01-01

115

The Fukuyama volcanic rocks: Submarine composite volcano in the Late Miocene to Early Pliocene Akita-Yamagata back-arc basin, northeast Honshu, Japan  

NASA Astrophysics Data System (ADS)

The Fukuyama Volcanic Rocks are composed of pyroxene andesite (FKV-1), hornblende-pyroxene andesite (FKV-2), biotite-hornblende dacite (FKV-3) and volcaniclastic debris-flow deposits and/or turbidites. FKV-1, FKV-2 and FKV-3 are medium-K calc-alkaline rocks depleted in Nd, similar to other back-arc volcanic rocks of the northeast Japan arc and constitute a dome cluster at Fukuyama. Volcaniclastic beds surround the dome cluster and thin and fine upwards. The predominant clast type in the volcaniclastic beds changes upwards from pyroxene andesite, through hornblende-pyroxene andesite, to biotite-hornblende dacite, consistent with the stratigraphic relationships of FKV-1, FKV-2 and FKV-3 lavas. All the siltstones inter-bedded with the volcaniclastic beds and overlying the whole succession contain diatom fossils indicative of the lower part of the Thalassionema schraderi zone (7.8 Ma to 8.5 Ma), compatible with the isotopic ages of FKV-1, FKV-2 and FKV-3. The Fukuyama volcano has a total eruption volume of 60-100 km 3, with a lifetime of the order of 10 5 years, as typically observed for volcanoes in the present back-arc region of northeast Honshu. FKV-1 erupted in deep water and partly disintegrated into hyaloclastite breccias due to direct contact with water. FKV-2 lava repeatedly effused over the FKV-1 lava and produced a volcanic apron of breccias that eventually grew above wave base and was eroded by wave action. The magma of FKV-3 was probably hydrous as it contains biotite and hornblende. The FKV-3 magma could have explosively erupted from a shallow-water dome or vent emergent above the wave base, followed by growth of a degassing lava dome. Repose between eruptions allowed accumulation of silt, and after the Fukuyama eruptions ceased silt entirely mantled the volcano. A small magma supply rate perhaps allowed a relatively long period of quiescence between eruptions of FKV-1, FKV-2 and FKV-3 magmas, resulting in abrasion and reworking of volcanic fragments and accumulation of non-volcanic sediments that constitute part of the volcaniclastic apron. Oil generated in the contemporaneous or underlying sediments, migrated to the upper levels of the volcaniclastic apron and accumulated there under the thick cover of fine-grained sediments that mantle the volcano.

Yagi, Masahiko; Ohguch, Takeshi; Akiba, Fumio; Yoshida, Takeyoshi; Tiba, Tokiko

2009-10-01

116

Submarine Volcanic Cones in the São Miguel Region/Azores  

NASA Astrophysics Data System (ADS)

São Miguel, the main island of the Azores Archipelago, is located in an area ~1500 km west of Portugal where the American, African and Eurasian plates converge. Just as well as the other eight Azorian islands, it is of volcanic origin and therefore volcanic processes also play an important role for the evolution of its submarine domain. Around 300 submarine volcanic cones have been mapped in the vicinity of São Miguel Island with multi-beam data during RV Meteor cruise M79/2 . They are distributed in depth down to 3000 m. They exhibit an average diameter of 600 m, an average slope of 22° and heights mainly between 50 and 200 m, slightly decreasing with increasing water depth. Even if their morphological appearances show no segregation, the volcanic setting can be classified in three different categories. A numerous amount of cones are located on the submarine flank of Sete Cidades Volcano in the west of São Miguel considered as parasitic structures, whereas in the very east they build up an own superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano like Sete Cidades. The third class is controlled by and orientated along faults, most of them in a graben system southwest of the Island. High-resolution multichannel seismic data depicts that the graben cones extinguished synchronously in the past most likely accompanying with the end of graben formation. Backscatter data reveal a rough surface possibly caused by currents removing the fine grain-size fraction over time. However, a young cone investigated in detail is characterized by a smooth surface, a distal increasing stratification and concave shaped flanks. Other few exhibit craters, all together indicating rather a phreatomagmatic than an effusive evolution of these structures. Very similar in size and shape to cinder cones on-shore São Miguel Island, they appear to be their submarine equivalent.

Weiß, Benedikt; Hübscher, Christian; Wolf, Daniela

2014-05-01

117

2006 Nature Publishing Group Long-term eruptive activity at a submarine arc  

E-print Network

© 2006 Nature Publishing Group Long-term eruptive activity at a submarine arc volcano Robert W , Douglas A. Wiens12 & Yoshihiko Tamura13 Three-quarters of the Earth's volcanic activity is submarine of submarine eruptions have been indirect, made from surface vessels or made after the fact1­6 . We describe

Chadwick, Bill

118

On sonobuoy placement for submarine tracking  

NASA Astrophysics Data System (ADS)

This paper addresses the problem of detecting and tracking an unknown number of submarines in a body of water using a known number of moving sonobuoys. Indeed, we suppose there are N submarines collectively maneuvering as a weakly interacting stochastic dynamical system, where N is a random number, and we need to detect and track these submarines using M moving sonobuoys. These sonobuoys can only detect the superposition of all submarines through corrupted and delayed sonobuoy samples of the noise emitted from the collection of submarines. The signals from the sonobuoys are transmitted to a central base to analyze, where it is required to estimated how many submarines there are as well as their locations, headings, and velocities. The delays induced by the propagation of the submarine noise through the water mean that novel historical filtering methods need to be developed. We summarize these developments within and give initial results on a simplified example.

Kouritzin, Michael A.; Ballantyne, David J.; Kim, Hyukjoon; Hu, Yaozhong

2005-05-01

119

Hawaii's volcanoes revealed  

USGS Publications Warehouse

Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while erosion incises deep river valleys, such as those on the Island of Kaua?i. The edges of the submarine terraces that ring the islands, thus, mark paleocoastlines that are now as much as 2,000 m underwater, many of which are capped by drowned coral reefs.

Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

2003-01-01

120

An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano  

USGS Publications Warehouse

Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

2005-01-01

121

Quantitative constraints on the growth of submarine lava pillars from a monitoring instrument that was caught in a lava flow  

E-print Network

Quantitative constraints on the growth of submarine lava pillars from a monitoring instrument that are common features within the collapsed interiors of submarine sheet flows on intermediate and fast beneath each crust. During the submarine eruption of Axial Volcano in 1998 on the Juan de Fuca Ridge

Chadwick, Bill

122

Submarine canyons  

Microsoft Academic Search

This article discusses the nature and origin of submarine canyons, both the deep canyons crossing the continental slope and their shallower continuation seaward as fan-valleys. The canyons and sediments they contain are discussed in relation to the adjacent land and to the continental rise. Possible origins, including turbidity currents and upbuilding of the continental walls, are dealt with in the

F. P. Shepard

1972-01-01

123

The USGS Hawaiian Volcano Observatory Monitors Klauea's Summit Eruption  

USGS Multimedia Gallery

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i?the most active volcano in the world.  The observatory's location provides an excellent view of summit eruptive activity, which began in 2008....

124

The USGS Hawaiian Volcano Observatory Monitors Kilauea's Summit Eruption  

USGS Multimedia Gallery

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i?the most active volcano in the world.  The observatory's location provides an excellent view of summit eruptive activity, which began in 2008....

125

Shallow-water longshore drift-fed submarine fan deposition (Moisie River Delta, Eastern Canada)  

E-print Network

ORIGINAL Shallow-water longshore drift-fed submarine fan deposition (Moisie River Delta, Eastern Submarine canyons and associated submarine fans are in some cases located at the end of a littoral cell to the discovery of an unusu- ally shallow submarine fan (60 m) located at the end of a littoral cell. Sediment

St-Ong, Guillaume

126

Nicaraguan Volcanoes  

article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

2013-04-18

127

Simple Submarine  

NSDL National Science Digital Library

Using simple, inexpensive items, students build and test submarine models in a single class period. They gain insight into the engineering that's required to make these machines ascend, descend, and hover safely in extreme environments. The printable eight-page handout includes a series of inquiry-based questions that get students thinking about the complex engineering required for submersibles, illustrated experiment directions, and a worksheet that includes thought-provoking questions along with areas for recording experiment data.

128

Source location variability and volcanic vent mapping with a small-aperture infrasound array at Stromboli Volcano, Italy  

Microsoft Academic Search

Stromboli Volcano in Italy is a persistently active, complex volcanic system. In May 2002 activity was confined to 3 major summit craters within which several active vents hosted multiple explosions each hour. During a 5-day field campaign an array of 3 low-frequency microphones was installed to investigate the coherent infrasound produced by degassing from these vents. Consistent phase lags across

Jeffrey B. Johnson

2004-01-01

129

First Survey For Submarine Hydrothermal Vents In NE Sulawesi, Indonesia  

NASA Astrophysics Data System (ADS)

The IASSHA-2001 cruise (Indonesia-Australia Survey for Submarine Hydrothermal Activity) was successfully conducted from June 1 to June 29 on board Baruna Jaya VIII. Preliminary results are reported of the first expedition to locate and study submarine hydrothermal activity in north east Sulawesi. Leg A focussed on Tomini Bay, a virtually unexplored Neogene sedimentary basin. Its objective was to test whether modern sediment-hosted hydrothermal activity occurred on the sea floor. The results of new bathymetric mapping, sediment coring and CTD/transmissometer hydrocasts negate the likely presence in central Tomini Bay of large-scale modern analogues of hydrothermal massive sulfide environments involving hydrothermal venting of basinal or magma-derived fluids into reduced sediments. It is possible that the "heat engine" required to drive circulation of basinal and hydrothermal fluids is today too weak. Surveys around Colo volcano indicate that it may be in its final stage of evolution. Leg B studied the arc and behind-arc sectors of the Sangihe volcanic island chain extending northwards from Quaternary volcanoes on the northeastern tip of Sulawesi's North Arm, near Manado. West of the main active chain and extending northwards from Manado there is a subparallel ridge surmounted by a number of high (>2000 m) seamounts of uncertain age. Fifteen relatively high-standing submarine edifices were crossed during this leg, of which nine were tested for hydrothermal activity by hydrocast and dredging. Eight sites were known from previous bathymetric surveys, and seven are new discoveries made by narrow-beam or multibeam echo sounding. Two submarine edifices at least 1000 m high were discovered in the strait immediately north of Awu volcano on Sangihe Island. One, with crest at 206 m, is surrounded by a circular platform 300m deep which we infer to be a foundered fringing reef to a formerly emergent island. The other, lacking such a platform, appears relatively young and may be parasitic to Awu volcano. It has a summit crater or small caldera, about 800 m across and breached to the northwest. A dredge hauled within the caldera returned numerous un-abraded fragments of fresh pumiceous dacite glass with prominent phenocrysts of plagioclase, orthopyroxene and clinopyroxene, plus small angular fragments of a similar but less vesicular lithology. Coatings of soft ferruginous deposit on some fragments suggest that the caldera is hydrothermally active. A highlight of the expedition was a visit to Banua Wuhu, classed as an active volcano (eruption in 1919) whose summit is just exposed at low tide. Gas bubbling, subsurface sonic activity, and venting of hydrothermal fluids with temperatures around 50ºC are known to occur on the summit at around 10 m depth, and ferruginous oxide deposits several mm thick are common. A multibeam bathymetric chart to 1000 m was prepared and deeper narrow-beam echo sounding show that Banua Wuhu is a parasitic feature on the north-western side of adjacent Mahenetang Island, also a volcanic construction, the combined edifice exceeding 3000 m in height. We recovered thoroughly altered porphyritc andesite containing disseminated pyrite and a carbonate-chlorite-clay mineral assemblage. In summary, while the IASSHA cruise located only a single but potentially significant example of modern seafloor hydrothermal activity, we collected much valuable new geological and oceanographic data on two contrasted areas in northeastern Sulawesi that with on going post-cruise processing will greatly expand our knowledge of these regions. Binns and Permana Co-Chief Scientists

McConachy, T.; Binns, R.; Permana, H.

2001-12-01

130

Close-range acoustic scattering from mud volcanoes  

Microsoft Academic Search

Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas (mostly methane) and fluidized mud emission from the earth's interior. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the later community, mud volcanoes are important because they pose a potential source of clutter for active

Charles W. Holland; Thomas C. Weber; Giuseppe Etiope

2005-01-01

131

How Submarines Work  

NSDL National Science Digital Library

In this article, presented by HowStuffWorks.com, shows how a submarine dives and surfaces in the water. It also shows how life support is maintained, how the submarine gets its power, how a submarine finds its way in the deep ocean and how submarines might be rescued. The article addresses many points effectively and is a good survey of the topic.

Brain, Marshall

132

The diversity of mud volcanoes in the landscape of Azerbaijan  

NASA Astrophysics Data System (ADS)

As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.

Rashidov, Tofig

2014-05-01

133

Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)  

NASA Astrophysics Data System (ADS)

Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.

Allen, C.; Oehler, D.

2010-12-01

134

Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)  

NASA Technical Reports Server (NTRS)

Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.

Allen, Carlton C.; Oehler, Dorothy

2010-01-01

135

Composition and Structure of Mauna Loa's Submarine West Flank, Hawaii  

NASA Astrophysics Data System (ADS)

James Moore's pioneering work on submarine landslides in the Hawaiian Islands contributed significantly to early models for the structure and evolution of Mauna Loa's submarine western flank. The west flank experienced catastrophic failure in the past, generating massive blocks and debris fields offshore. Moore recognized that the midslope bench near the base of the submarine flank must have postdated the debris avalanche, but little data existed to determine if it formed in response to further landsliding or to deeper volcanic processes. As the processes that shaped Mauna Loa are thought to be analogous to those currently active at Kilauea, an improved understanding of Mauna Loa's history can provide valuable insight into the future of the younger Hawaiian volcanoes. Several recent marine surveys in the area, including submersible surveys conducted by MBARI and JAMSTEC, and a multi-channel seismic (MCS) survey carried out by the University of Hawaii, provide important new data about the composition and structure of Mauna Loa's submarine west flank. We carried out detailed geochemical, petrographic and structural analyses of rock samples and dive videos collected from the exposed northern wall of the midslope bench, documenting a repeated sequences of volcaniclastic sandstones and breccias. This stratigraphy contrasts with the predominantly subaerially erupted basalts composing the upper flank. Several thick ponded flows or sill-like diabase units are also interspersed in the section. The volcaniclastic units are highly cemented, and many contain hydrothermal alteration products, including chlorite, zeolites, and actinolite. The most altered rocks occur near the base of the bench and the degree of alteration decreases upward in the section. Samples collected from the outer scarp of the bench show evidence for intense shearing and cataclasis at all scales. The new MCS line crosses Mauna Loa's southern submarine flank and central bench. More than 500 m of finely layered slope strata overlie the upper flank to the south, and are truncated above the Ka Lae avalanche scar. The central bench to the north, sampled by the MBARI dives, shows only thin sediment cover above a poorly reflective interior. Strong deep reflections in both locations begin to resolve the underlying oceanic crust, as well as probable fault planes that may be responsible for flank deformation in this area. The abundance of volcaniclastic rocks with Mauna Loa affinities within the bench supports the idea that giant landslides from Mauna Loa were the source of much of the offshore debris. The stratal repetition, deformation fabrics, and cementation of the volcaniclastics also suggest that the rocks composing the bench were once deeply buried and have been subsequently exhumed by thrusting, most likely driven by deep volcanic spreading.

Borchers, D.; Morgan, J. K.; Clague, D. A.; Moore, G. F.

2003-12-01

136

Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot  

Microsoft Academic Search

New multibeam and side-scan sonar surveys of Fernandina volcano and the geochemistry of lavas provide clues to the structural and magmatic development of Galápagos volcanoes. Submarine Fernandina has three well-developed rift zones, whereas the subaerial edifice has circumferential fissures associated with a large summit caldera and diffuse radial fissures on the lower slopes. Rift zone development is controlled by changes

Dennis J. Geist; Daniel J. Fornari; Mark D. Kurz; Karen S. Harpp; S. Adam Soule; Michael R. Perfit; Alison M. Koleszar

2006-01-01

137

Argon geochronology of Kilauea's early submarine history  

USGS Publications Warehouse

Submarine alkalic and transitional basalts collected by submersible along Kilauea volcano's south flank represent early eruptive products from Earth's most active volcano. Strongly alkalic basalt fragments sampled from volcaniclastic deposits below the mid-slope Hilina Bench yield 40Ar/39Ar ages from 212 ?? 38 to 280 ?? 20 ka. These ages are similar to high-precision 234 ?? 9 and 239 ?? 10 ka phlogopite ages from nephelinite clasts in the same deposits. Above the mid-slope bench, two intact alkalic to transitional pillow lava sequences protrude through the younger sediment apron. Samples collected from a weakly alkalic basalt section yield 138 ?? 30 to 166 ?? 26 ka ages and others from a transitional basalt section yield 138 ?? 115 and 228 ?? 114 ka ages. The ages are incompatible with previous unspiked K-Ar studies from samples in deep drill holes along the east rift of Kilauea. The submarine birth of Kilauea volcano is estimated at <300 ka. If the weakly alkalic sequence we dated is representative of the volcano as a whole, the transition from alkalic to tholeiitic basalt compositions is dated at ??? 150 ka. ?? 2005 Elsevier B.V. All rights reserved.

Calvert, A.T.; Lanphere, M.A.

2006-01-01

138

Reunion Island Volcano Erupts  

NASA Technical Reports Server (NTRS)

On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

2002-01-01

139

Decade Volcanoes  

NSDL National Science Digital Library

In the 1990s, the International Association of Volcanology and Chemistry of the Earth's Interior started the Decade Volcano Project. As part of their work, they designated sixteen volcanoes particularly worthy of study "because of their explosive histories and close proximity to human populations." The group recently teamed up with National Geographic to create a guide to these volcanoes via this interactive map. Navigating through the map, visitors can learn about Mount Rainier, Colima, Galeras, Santorini, and other prominent volcanoes. For each volcano, there's a brief sketch that gives the date of its last eruption, its elevation, nearby population centers, and a photograph.

140

Deep Research Submarine  

E-print Network

The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

Woertz, Jeff

2002-02-01

141

Tectonic Plates, Earthquakes, and Volcanoes  

NSDL National Science Digital Library

According to theory of plate tectonics, Earth is an active planet -- its surface is composed of many individual plates that move and interact, constantly changing and reshaping Earth's outer layer. Volcanoes and earthquakes both result from the movement of tectonic plates. This interactive feature shows the relationship between earthquakes and volcanoes and the boundaries of tectonic plates. By clicking on a map, viewers can superimpose the locations of plate boundaries, volcanoes and earthquakes.

142

Design a Submarine  

NSDL National Science Digital Library

Learners act as engineers and design mini submarines that move in the water like real submarines. The submarines must be able to float, sink, and hover steadily without touching the top of the water or resting on the bottom. Use this activity to introduce learners to density and buoyancy.

Museum of Science and Industry, Chicago

2012-01-01

143

Improved tremor and LP event locations using station-corrected waveforms: applications to data recorded with a small aperture array at Fuego volcano, Guatemala  

NASA Astrophysics Data System (ADS)

Accurate Green functions are required in order to determine the source mechanisms of low-frequency seismic events on volcanoes. Given the steep topography and alternating layers of ash and lava flows found on many volcanoes, this is particularly difficult for LP band (.5-5 Hz) tremor and discrete events. We have found that large variations in signals from LPs and tremor recorded on a small-aperture array near the active vent of Fuego volcano, Guatemala are primarily due to station site effects. This variation complicates array analyses that rely on waveform similarity and results in poorly-resolved slowness parameters. We use an iterative approach to correct for the site effects for a class of repetitive LP events and then apply those corrections to investigate non-harmonic tremor in the same frequency band. Fuego volcano, Guatemala, is an open-vent basaltic-andesite stratovolcano characterized by nearly constant, but varied low-level eruptive activity since 1999. In January 2008, we deployed small antennas of six broadband seismic and five acoustic sensors 900 m north of the active vent to investigate the source of explosions and low-frequency seismicity. The seismic array had stations spaced 30 m apart, a total aperture of ~140 m, and was deployed on the western side of a long ridge that extends from the active vent to an older portion of the edifice to the north. The infrasound sensors were deployed in a similar array, but with average station spacing of 50 m. There was no lava effusion during the deployment, but explosions were recorded approximately once per hour, with varied amounts of ash and durations from 20-150 s. In addition to the explosions, our seismic array recorded narrow band tremor with dominant frequencies of 1.6 and 1.9 Hz and discrete events that were not generally detected by the acoustic array. The dominant class of these events, which repeated approximately 10-15 times per hour, had an impulsive onset with first motion toward the vent, a short duration of <5 s, and dominant frequencies from 1-3 Hz; their similarity suggests a nondestructive source process. While waveforms are similar from event to event when viewed on the same channel, the large variation in waveforms across the array yields a large uncertainty in slowness parameter estimates. We take advantage of the high degree of similarity between events to determine relative slowness estimates. After determining the best-fit slowness parameters for a master event, we measured the relative slowness parameters for 203 similar events. The results indicate a stationary source, although subtle variations in waveforms suggest that the source mechanism or source location varied slightly with time. In order to extend this to other signals in the same frequency band, we solve for these site affects and then deconvolve them from the LP and tremor data to improve the waveform similarity. Our initial modeling suggests these effects are primarily due to variations in distance from the ridge axis. This method may be applicable to similar volcanoes with complex topography where repetitive LP events and tremor are common, but enigmatic.

Waite, G. P.; Lyons, J. J.

2010-12-01

144

Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, Alaska  

USGS Publications Warehouse

Determination of the precise locations of seismic events associated with the 1989-1990 eruptions of Redoubt Volcano posed a number of problems, including poorly known crustal velocities, a sparse station distribution, and an abundance of events with emergent phase onsets. In addition, the high relief of the volcano could not be incorporated into the hypoellipse earthquake location algorithm. This algorithm was modified to allow hypocenters to be located above the elevation of the seismic stations. The velocity model was calibrated on the basis of a posteruptive seismic survey, in which four chemical explosions were recorded by eight stations of the permanent network supplemented with 20 temporary seismographs deployed on and around the volcanic edifice. The model consists of a stack of homogeneous horizontal layers; setting the top of the model at the summit allows events to be located anywhere within the volcanic edifice. Detailed analysis of hypocentral errors shows that the long-period (LP) events constituting the vigorous 23-hour swarm that preceded the initial eruption on December 14 could have originated from a point 1.4 km below the crater floor. A similar analysis of LP events in the swarm preceding the major eruption on January 2 shows they also could have originated from a point, the location of which is shifted 0.8 km northwest and 0.7 km deeper than the source of the initial swarm. We suggest this shift in LP activity reflects a northward jump in the pathway for magmatic gases caused by the sealing of the initial pathway by magma extrusion during the last half of December. Volcano-tectonic (VT) earthquakes did not occur until after the initial 23-hour-long swarm. They began slowly just below the LP source and their rate of occurrence increased after the eruption of 01:52 AST on December 15, when they shifted to depths of 6 to 10 km. After January 2 the VT activity migrated gradually northward; this migration suggests northward propagating withdrawal of magma from a plexus of dikes and/or sills located in the 6 to 10 km depth range. Precise relocations of selected events prior to January 2 clearly resolve a narrow, steeply dipping, pencil-shaped concentration of activity in the depth range of 1-7 km, which illuminates the conduit along which magma was transported to the surface. A third event type, named hybrid, which blends the characteristics of both VT and LP events, originates just below the LP source, and may reflect brittle failure along a zone intersecting a fluid-filled crack. The distribution of hybrid events is elongated 0.2-0.4 km in an east-west direction. This distribution may offer constraints on the orientation and size of the fluid-filled crack inferred to be the source of the LP events. ?? 1994.

Lahr, J.C.; Chouet, B.A.; Stephens, C.D.; Power, J.A.; Page, R.A.

1994-01-01

145

Intra-caldera Events: A Look at the Hydrovolcanic Deposit Stratigraphically Located Between two Caldera-Forming Eruptions of Okmok Volcano, Umnak Island, Alaska  

NASA Astrophysics Data System (ADS)

Within the 10 km diameter caldera that characterizes Okmok Volcano, a field of post-caldera cones and deposits demonstrate many features associated with water-magma interactions. A unit deposited prior to the formation of the present caldera provides evidence for large explosive hydrovolcanic eruptions in the past as well. This unit is referred to as the Middle Scoria Unit as it is stratigraphically located between the ~9000 BP Okmok I and 2050 BP Okmok II caldera-forming events. Here, we present data on the stratigraphy, geochemistry, and eruptive mechanisms of the Middle Scoria Unit, which averages a thickness of 2.5 meters. The basal layer of the Middle Scoria consists of moderately well sorted, highly inflated juvenile clasts of basaltic composition (53.88 wt.% SiO2) that average 3 to 5 cm in size. Capping the base is a sequence of layers alternating between oxidized reddish lithic fragments and poorly vesicular scoria averaging 1 mm to 3 cm in size. The contacts between the scoria and lithic layers are less discrete in the top section, with a higher proportion of mixing averaging up to 75% for a clast-rich layer. The upper layers of the unit also show reverse grading and contain dense, poorly vesicular scoria fragments and lithic fragments of 2 mm to 1.5 cm in size. The Middle Scoria unit has been found on the neighboring Unalaska Island, approximately 30 km to the East, revealing a wide dispersal. Our results indicate that this eruption began as a highly explosive, purely magmatic and rare basaltic Plinian eruption. With time, the eruptive series evolved to incorporate external water, as demonstrated by the successions of oxidized lithic lapilli and poorly vesicular scoria layers. Our preliminary interpretations of the Middle Scoria indicate that Okmok Volcano may be capable of highly explosive basaltic Plinian and hydrovolcanic eruptions.

Wong, L. J.

2002-12-01

146

Thomas A. Jaggar, Hawaiian Volcano Observatory  

USGS Multimedia Gallery

Thomas A. Jaggar founded the Hawaiian Volcano Observatory in 1912 and served as its Director until 1940.  Shown here in 1925, Jaggar is at work in HVO's first building, which, at the time, was located on the northeast rim of K?lauea Volcano’s summit caldera, near the present-day Volc...

147

Volcano: Tectonic Environments  

NSDL National Science Digital Library

This site describes where volcanoes are found in terms of plate tectonics and explains why they occur at those locations. S map shows that volcanoes are located mainly at plate boundaries. Then there are explanations for plate motion, mantle convection, and magma generation. The three types of plate boundaries are listed as divergent, convergent, and transform. There is also information about the relationship between types of boundaries and types of volcanism and the fact that intraplate volcanism describes volcanic eruptions within tectonic plates. The site features a diagram that depicts each type, with a link for more information about the Earth's internal heat energy and interior structure.

Victor Camp

148

Redoubt Volcano  

USGS Multimedia Gallery

Ascending eruption cloud from Redoubt Volcano as viewed to the west from the Kenai Peninsula. The mushroom-shaped plume rose from avalanches of hot debris (pyroclastic flows) that cascaded down the north flank of the volcano. A smaller, white steam plume rises from the summit crater. ...

149

Precursory Seismic Activity at Guagua Pichincha Volcano, Ecuador: Implications for the Magmatic System of an Arc Volcano  

Microsoft Academic Search

Earthquake activity at volcanoes can offer insight into the nature of the transport and storage of magma beneath active volcanoes. Understanding the relation between volcano seismicity and the magmatic system is important in long and short-term forecasting of volcanic activity. Guagua Pichincha, a dacitic volcano located in the western cordillera of the Ecuadorian Andes, showed two years of progressive reactivation

D. R. Villagomez; M. Ruiz; H. Yepes; M. L. Hall

2003-01-01

150

In search of ancestral Kilauea volcano  

USGS Publications Warehouse

Submersible observations and samples show that the lower south flank of Hawaii, offshore from Kilauea volcano and the active Hilina slump system, consists entirely of compositionally diverse volcaniclastic rocks; pillow lavas are confined to shallow slopes. Submarine-erupted basalt clasts have strongly variable alkalic and transitional basalt compositions (to 41% SiO2, 10.8% alkalies), contrasting with present-day Kilauea tholeiites. The volcaniclastic rocks provide a unique record of ancestral alkalic growth of an archetypal hotspot volcano, including transition to its tholeiitic shield stage, and associated slope-failure events.

Lipman, P.W.; Sisson, T.W.; Ui, T.; Naka, J.

2000-01-01

151

Detail of conning tower atop the submarine. Note the wire ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

152

First Survey For Submarine Hydrothermal Vents In NE Sulawesi, Indonesia  

Microsoft Academic Search

The IASSHA-2001 cruise (Indonesia-Australia Survey for Submarine Hydrothermal Activity) was successfully conducted from June 1 to June 29 on board Baruna Jaya VIII. Preliminary results are reported of the first expedition to locate and study submarine hydrothermal activity in north east Sulawesi. Leg A focussed on Tomini Bay, a virtually unexplored Neogene sedimentary basin. Its objective was to test whether

T. McConachy; R. Binns; H. Permana

2001-01-01

153

33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Bangor Naval Submarine Base, Bangor, WA. 165.1302 Section...District § 165.1302 Bangor Naval Submarine Base, Bangor, WA. (a) Location...Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

2013-07-01

154

33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Bangor Naval Submarine Base, Bangor, WA. 165.1302 Section...District § 165.1302 Bangor Naval Submarine Base, Bangor, WA. (a) Location...Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

2011-07-01

155

33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.  

Code of Federal Regulations, 2012 CFR

...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. 165.1328 Section...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location...Washington whenever any U.S. Navy submarine is operating in the Hood Canal and is being...

2012-07-01

156

33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.  

Code of Federal Regulations, 2011 CFR

...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. 165.1328 Section...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location...Washington whenever any U.S. Navy submarine is operating in the Hood Canal and is being...

2011-07-01

157

33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.  

...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. 165.1328 Section...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location...Washington whenever any U.S. Navy submarine is operating in the Hood Canal and is being...

2014-07-01

158

33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Representation of submarine cables and pipelines on nautical charts...PROCEDURE § 209.310 Representation of submarine cables and pipelines on nautical charts...with respect to showing the locations of submarine cables and pipelines on nautical...

2011-07-01

159

33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Bangor Naval Submarine Base, Bangor, WA. 165.1302 Section...District § 165.1302 Bangor Naval Submarine Base, Bangor, WA. (a) Location...Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

2012-07-01

160

33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.  

...2014-07-01 false Representation of submarine cables and pipelines on nautical charts...PROCEDURE § 209.310 Representation of submarine cables and pipelines on nautical charts...with respect to showing the locations of submarine cables and pipelines on nautical...

2014-07-01

161

33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.  

Code of Federal Regulations, 2013 CFR

...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. 165.1328 Section...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location...Washington whenever any U.S. Navy submarine is operating in the Hood Canal and is being...

2013-07-01

162

33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Representation of submarine cables and pipelines on nautical charts...PROCEDURE § 209.310 Representation of submarine cables and pipelines on nautical charts...with respect to showing the locations of submarine cables and pipelines on nautical...

2012-07-01

163

33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.  

...2014-07-01 false Bangor Naval Submarine Base, Bangor, WA. 165.1302 Section...District § 165.1302 Bangor Naval Submarine Base, Bangor, WA. (a) Location...Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

2014-07-01

164

33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Representation of submarine cables and pipelines on nautical charts...PROCEDURE § 209.310 Representation of submarine cables and pipelines on nautical charts...with respect to showing the locations of submarine cables and pipelines on nautical...

2013-07-01

165

33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.  

Code of Federal Regulations, 2010 CFR

...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. 165.1328 Section...Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location...Washington whenever any U.S. Navy submarine is operating in the Hood Canal and is being...

2010-07-01

166

33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Bangor Naval Submarine Base, Bangor, WA. 165.1302 Section...District § 165.1302 Bangor Naval Submarine Base, Bangor, WA. (a) Location...Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

2010-07-01

167

33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Representation of submarine cables and pipelines on nautical charts...PROCEDURE § 209.310 Representation of submarine cables and pipelines on nautical charts...with respect to showing the locations of submarine cables and pipelines on nautical...

2010-07-01

168

SUBMARINE MASS MOVEMENTS IN THE BETSIAMITES AREA, GENEVIEVE CAUCHON-VOYER1  

E-print Network

SUBMARINE MASS MOVEMENTS IN THE BETSIAMITES AREA, GENEVIEVE CAUCHON-VOYER1 , JACQUES LOCAT1 A complex submarine geomorphology was revealed from multibeam bathymetry and seismic reflection surveys. Introduction Investigating submarine mass movements in order to evaluate slope stability for a region

St-Ong, Guillaume

169

Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge  

E-print Network

Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge Cheng February 2006 Available online 24 March 2006 Abstract The Kaoping submarine canyon developed on the frontal; Incision; Submarine canyon; Taiwan 1. Introduction 1.1. Geological settings The island of Taiwan is located

Lin, Andrew Tien-Shun

170

Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea  

E-print Network

Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea Martin the features as true submarine pingoes, formed by the local accumulation of hydrate (ice) below the sediment the pockmark. We suggest that these submarine hydrate-pingoes manifest the exact locations where fluid flow

Svensen, Henrik

171

Volcano Hazards Assessment for Medicine Lake Volcano, Northern California  

USGS Publications Warehouse

Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

2007-01-01

172

Submarine cable route survey  

SciTech Connect

The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

Herrouin, G.; Scuiller, T.

1995-12-31

173

Paint-Stirrer Submarine  

ERIC Educational Resources Information Center

In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

Young, Jocelyn; Hardy, Kevin

2007-01-01

174

Mount St. Helens VolcanoCam  

NSDL National Science Digital Library

This webcam shows a static image of Mount St. Helens taken from the Johnston Ridge Observatory. The Observatory and VolcanoCam are located at an elevation of approximately 4,500 feet, about five miles from the volcano. The observer is looking approximately south-southeast across the North Fork Toutle River Valley. The VolcanoCam image automatically updates approximately every five minutes. Other features include current conditions reports, weather updates, an image achive, and eruption movies. In addition, there are frequently asked questions, and information about using the VolcanoCam image and funding for the VolcanoCam.

175

Cascade Volcanoes  

USGS Multimedia Gallery

The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon....

176

Volcano Preparedness  

MedlinePLUS

... Safety Hurricane Landslide Pet Safety Poisoning Power Outage Terrorism Thunderstorm Tornado Tsunami Volcano Water Safety Wildfire Winter ... all windows, doors, and dampers. Put all machinery inside a garage or barn. Bring animals and livestock ...

177

THE SUBMARINE REVIEW SUMMER 2012  

E-print Network

THE SUBMARINE REVIEW 1 SUMMER 2012 SPURRING INNOVATION AT THE DECKPLATE LEVEL IN THE SUBMARINE FORCE LT Ryan P. Hilger, USN Submarine Student at the Naval Postgraduate School he phenomenal success to alter how we design and operate our submarines. Vice Admiral Richardson happily announced after

178

The largest Au deposits in the St Ives Goldfield (Yilgarn Craton, Western Australia) may be located in a major Neoarchean volcano-sedimentary depo-centre  

NASA Astrophysics Data System (ADS)

The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.

McGoldrick, K. L.; Squire, R. J.; Cas, R. A. F.; Briggs, M.; Tunjic, J.; Allen, C. M.; Campbell, I. H.; Hayman, P. C.

2013-10-01

179

Digital Data for Volcano Hazards at Newberry Volcano, Oregon  

USGS Publications Warehouse

Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability of coverage by future lava flows.

Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

2008-01-01

180

Nyamuragira Volcano Erupts  

NASA Technical Reports Server (NTRS)

Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

2002-01-01

181

Discovery of the Largest Historic Silicic Submarine Eruption  

NASA Astrophysics Data System (ADS)

It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

2014-05-01

182

Potential for SGD induced submarine geohazard off southwestern Taiwan  

NASA Astrophysics Data System (ADS)

The submarine groundwater discharge (SGD) is not only play important roles on material exchange between land and sea, it may also trigger liquefaction process and induce further submarine geohazards in coastal zone. Since 2006, Southern Taiwan was experienced a series of natural hazards including earthquakes and typhoon that induced severe landslides and flooding and caused huge human lives and economics losses. These natural hazards also touched off submarine cable-break incidents off southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. After the 2006 Pingtung Earthquake, the local fishermen reported disturbed waters at the Fangliao submarine canyon head. Although many researches conjectured the disturbed waters may caused by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan. The subbottom profiles reveal a series of faults and liquefaction strata exist near the head of Fanliao submarine canyon and acoustically transparent sediments with doming structures also observed at the adjacent area. Moreover, we also found pockmarks with acoustic blanking under it on the Gaoping Shelf and a series of gaseous pluming gushed from the seafloor was also observed in the shallow waters. Integrate all these data, we may reasonably infer the disturbed waters which reported by the fishermen may caused by the liquefaction process on the seafloor. In addition to geophysical observations, natural geochemical tracers (radon and radium) in conjunction with side-scan sonar were used to evaluate the distribution of SGD system in the study area. All the evidences indicate that the large earthquake in conjunction with high pore fluid pressures in the surface sediment might have easily triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

Su, C.; Lin, C.; Cheng, Y.; Chiu, H.

2013-12-01

183

Submarine neutrino communication  

E-print Network

We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

Patrick Huber

2010-08-20

184

Submarine neutrino communication  

E-print Network

We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

Huber, Patrick

2009-01-01

185

Volcano Baseball  

NSDL National Science Digital Library

In this game, learners are volcanoes that must complete several steps to erupt. Starting at home plate, learners draw cards until they have enough points to move to first base. This process repeats for each learner at each base, and each base demonstrates a different process in a volcano's eruption. The first learner to make it back to home plate erupts and is the winner. This is a good introduction to volcanoes. When learners set up a free account at Kinetic City, they can answer bonus questions at the end of the activity as a quick assessment. As a larger assessment, learners can complete the Smart Attack game after they've completed several activities.

Science, American A.

2009-01-01

186

Distal volcano-tectonic seismicity near Augustine Volcano  

USGS Publications Warehouse

Clustered earthquakes located 25 km northeast of Augustine Volcano occurred more frequently beginning about 8 months before the volcano?s explosive eruption in 2006. This increase in distal seismicity was contemporaneous with an increase in seismicity directly below the volcano?s vent. Furthermore, the distal seismicity intensified penecontemporaneously with signals in geodetic data that appear to reveal a transition from magmatic inflation of the volcano to dike injection. Focal mechanisms for five events within the distal cluster show strike-slip-fault movement. Directly above the earthquake cluster, shallow (<5 km deep) folds and faults mapped using multichannel seismic-reflection data strike northeast, parallel to the regional structural grain. About 10 km northeast of Augustine Volcano, however, the Augustine-Seldovia arch, an important trans-basin feature, strikes west and intersects the northeast-striking structural zone. We propose that the fault causing the distal earthquake cluster strikes northwest, subparallel to the arch, and is a right-lateral strike-slip fault. Future earthquake monitoring might show whether increasing activity in the remote cluster can aid in making eruption forecasts.

Fisher, Michael A.; Ruppert, Natalia A.; White, Randall A.; Sliter, Ray W.; Wong, Florence L.

2010-01-01

187

Simulating the Bed Topography of Submarine Meanders  

Microsoft Academic Search

Submarine meanders scoured by turbidity currents are common features of the ocean floor. Although hydrographic surveys have revealed some details of their planform geometry, their deep sea location inhibits detailed data collection and so knowledge of their fluid mechanics, sediment transport and bed morphology remains limited. In lieu of detailed data conceptual models have been developed by analogy with the

S. E. Darby; J. Peakall

2006-01-01

188

Submarine: Lift Bag Lander  

NSDL National Science Digital Library

In this activity (on page 4), learners create a submarine using a plastic sandwich bag. This is a fun way to learn about buoyancy and how captured gas can cause objects to float.
Note: You will also need access to a tank or swimming pool to watch your submarine dive.
Safety note: Learners will need an adult's help to drill holes in the film canister.

2014-04-24

189

Mount Rainier active cascade volcano  

NASA Technical Reports Server (NTRS)

Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

1994-01-01

190

Nyamuragira Volcano Erupts  

NASA Technical Reports Server (NTRS)

Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

2002-01-01

191

Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands  

USGS Publications Warehouse

To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

Yokose, H.; Lipman, P.W.; Kanamatsu, T.

2005-01-01

192

Klyuchevskaya Volcano  

NASA Technical Reports Server (NTRS)

The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.

2007-01-01

193

Iceland Volcano  

... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

2013-04-23

194

Hydroacoustics of a submarine eruption in the Northeast Lau Basin using an acoustic glider  

Microsoft Academic Search

A 1000-m Slocum glider® (Teledyne Webb Research Corporation) with CTD, turbidity, and hydrophone sensors was operated for two days in the Northeast Lau Basin. The survey was conducted near West Mata Volcano, where in November of 2008 the NOAA PMEL Vents program observed an active eruption emanating from near its summit at 1207 m-the deepest submarine activity ever to be

H. Matsumoto; S. E. Stalin; R. W. Embley; J. H. Haxel; D. R. Bohnenstiehl; R. P. Dziak; C. Meinig; J. A. Resing; N. M. Delich

2010-01-01

195

First Use of an Autonomous Glider for Exploring Submarine Volcanism in the SW Pacific  

Microsoft Academic Search

A 1000-m Slocum glider® (Teledyne Webb Research Corporation) with CTD, turbidity, and hydrophone sensors was operated for two days in the Northeast Lau Basin. The survey was conducted near West Mata Volcano, where in November of 2008 the NOAA PMEL Vents program observed an active eruption at its 1207 m summit---the deepest submarine activity ever before witnessed. Our goal was

H. Matsumoto; R. W. Embley; J. H. Haxel; R. P. Dziak; D. R. Bohnenstiehl; S. Stalin; C. Meinig

2010-01-01

196

Multi-Fluid Hydrodynamic Calculations Of Turbidite Deposits From Submarine-Landslide Tsunamis  

Microsoft Academic Search

Calculations with the LANL multiphysics hydrocode SAGE of tsunamis produced by submarine landslides illustrate the relation between fluid rheology and the resultant morphology of the turbidite deposits seen afterwards on the seafloor. Tsunamigenic underwater landslides can have a variety of triggers: a seismic event that pushes a stable slope of granular material past its angle of repose, an underwater volcano

G. R. Gisler; R. P. Weaver; M. L. Gittings

2006-01-01

197

The eect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in  

E-print Network

The e¡ect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements 2001 Abstract This study examines the influence of a submarine canyon on the dispersal of sediments the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km

Lin, Andrew Tien-Shun

198

135Y. Yamada et al. (eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 31,  

E-print Network

135Y. Yamada et al. (eds.), Submarine Mass Movements and Their Consequences, Advances in Natural The Munson-Nygren-Retriever (MNR) landslide complex is a series of distinct submarine landslides located, USA e-mail: jchaytor@usgs.gov Chapter 12 A Reevaluation of the Munson-Nygren- Retriever Submarine

ten Brink, Uri S.

199

Sedimentary facies in submarine canyons  

NASA Astrophysics Data System (ADS)

Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

2013-12-01

200

Volcanoes generate devastating waves  

SciTech Connect

Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

Lockridge, P. (National Geophysical Data Center, Boulder, CO (USA))

1988-01-01

201

Researchers Find Japanese Submarine at Pearl Harbor  

NSDL National Science Digital Library

Earlier this week, researchers from the University of Hawaii and the Hawaii Underwater Research Lab located the remains of a Japanese midget submarine. Found in 1200 feet of water, the submarine was sunk by the USS Ward just an hour before the aerial attack on Pearl Harbor on December 7, 1941. Most important, the discovery of the midget submarine offers concrete physical evidence that the United States did fire the first shot against the Japanese. Previous expeditions to locate the sub, including an effort made in 2000 by the National Geographic Society, had been unsuccessful, largely due to the fact that the area is a military "junkyard" with tons of debris on the ocean floor.For more in-depth information on this story, readers may find the first four news links particularly helpful. The fifth link leads to the Hawaii Underwater Research Lab's Web site that features photographs of the midget sub from the expedition earlier this week. The sixth link is to a Web site dealing with the history and missions of the USS Ward. The final link contains detailed information about the 2000 expedition led by Robert Ballard, with support from the National Geographic Society, to find the midget submarine.

Green, Marcia.

2002-01-01

202

Submarine Coaxial Cable Pressure Characteristics  

Microsoft Academic Search

In equalization design of submarine coaxial cable system, the cable attenuation deviation due to pressure in deep sea bottom has significant weight. This paper treats the submarine coaxial cable characteristics pressure dependency. By using an artificial ocean test facility, 1.7 inch submarine coaxial cable attenuation, phase, capacitance and insulator core diameter were studied and their pressure coefficients under a pressure

K. Aida; M. Aiki

1978-01-01

203

Tlie Submarine Caves of Bermuda  

E-print Network

Tlie Submarine Caves of Bermuda ThomasM. Iliffe Bermuda Biological Station, Ferry Reach 1-15 #12;The SubmarineCavesofBermuda ThomasM.Iliffe BermudaBiological Station,Ferry Reach 1-15 Abstract Bermuda the volcanic pedistal. Three types of submarine limestone cave morphology have so far been identified

Iliffe, Thomas M.

204

New volcano newsletter planned  

NASA Astrophysics Data System (ADS)

In the beginning, there was Volcano News, an interdisciplinary forum where volcanophiles of all stripes—4professional and amateur, “hard” and “soft” scientists alike— could exchange information. Unfortunately, Volcano News became extinct when editor-publisher Chuck Wood became involved in editing Volcanoes of North America. Janet Cullen Tanaka, a former contributing associate editor of Volcano News is planning the publication of a new interdisciplinary volcano newsletter to cover all facets of volcano studies, from geophysics to emergency management.

205

Paint-Stirrer Submarine  

NSDL National Science Digital Library

In today's fast-paced, technological world, it is a constant struggle for teachers to find new and exciting ways to challenge and engage our students. The Paint-Stirrer Submarine is a unique and challenging laboratory exercise that keeps the students enthralled. They won't even realize they are learning because they will be having too much fun. This inquiry-based, hands-on experience in building a submarine allows the students to learn about buoyancy, buoyant force, Archimedes' principle, and motion in an engaging manner. It will be an experience neither you nor your students will ever forget.

Young, Jocelyn; Hardy, Kevin

2007-02-01

206

Submarine: Soda Cup Lander  

NSDL National Science Digital Library

In this activity (on page 2), learners create a submarine using a plastic cup. This is a fun way to learn about buoyancy and density. Extensions for this activity, such as adding a propeller or manometer, are also included.
Note: You will also need access to a tank or swimming pool to watch your submarine dive.
Safety note: Learners will need an adult's help to drill holes in the film canister. Learners will also need an adult's help if they use a glue gun to attach the film canister to the plastic cup.

2014-04-24

207

Up-Close Fluid Sampling at a Deep Submarine Lava Eruption  

NASA Astrophysics Data System (ADS)

On three separate expeditions from April 2004 to April 2006 to the Mariana volcanic arc, we found eruptive activity at NW Rota 1 submarine volcano. ROVs ROPOS, Hyper Dolphin, and Jason-2 were used to survey and collect samples. The summit of the volcano is at 520 meters depth and there are numerous sites of hydrothermal activity around the east-west trending summit ridge and down the south flank. The chemical composition of vent fluids on NW Rota and the microbiological communities entrained by the fluids varies significantly according to location. There is an eruptive pit crater on the south flank about 30 meters below the summit where seawater interacts directly with erupting lava, volcanic gases and molten sulfur. On every visit, the pit has exhibited extreme variability in output, ranging from a very quiet stream of particulate sulfur smoke to violent bursts of smoke, gas bubbles, molten sulfur, highly vesicular volcaniclastic lapilli and small lava bombs. We were able to sample many hydrothermal vents around the volcano and many phases of the output at the eruptive pit. In 2004, we sampled by lowering ROPOS directly into the pit during a quiet period, and subsequently used a long sampling tube to access the pit. In 2006, the wall of the pit was absent and the volcanic vent was directly visible. During this period we were able to sample directly over the surface of slowly erupting lava. The fluid and particle samples obtained were unlike anything ever sampled in the deep sea and appear to be the result of rapid reaction of seawater with volcanic products.

Butterfield, D. A.; Embley, R. W.; Chadwick, W. W.; Lupton, J. E.; Nakamura, K.; Takano, B.; de Ronde, C.; Resing, J.; Bolton, S.; Baross, J.

2006-12-01

208

Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy  

NASA Astrophysics Data System (ADS)

Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located several active sites along the 50-km-long summit. The distribution of ORP anomalies seen during these dives correlates quite well with the locations of anomalous helium samples from 2007. An ORP anomaly of -160 mv was located at the west end of Palinuro where vent fluids up to 54°C were found. Living tubeworms, bacterial mats of various colors and textures, and small chimneys and globular spires coated with iron oxide having bright-green interiors indicative of the iron-rich hydrothermal clay nontronite were found at actively venting areas on Palinuro. ORP anomalies were generally only detected in the near-bottom MAPR mounted on Hercules. In a few locations the MAPRs on Argus (10-30 meters above bottom) and 25 meters above Argus registered anomalies not seen by the MAPR on Hercules indicating active venting nearby, but not observed along the trackline of the ROV. Only the higher-temperature vent site at the west end of Palinuro generated a plume that had an appreciable particle anomaly and rise height (seen by the Argus+25m MAPR). No anomalies were measured by the MAPR located 50 meters above Argus.

Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

2012-12-01

209

Emissions from volcanoes Christiane Textor, Hans-F. Graf, Claudia Timmreck, Alan Robock  

E-print Network

1 7 Emissions from volcanoes Christiane Textor, Hans-F. Graf, Claudia Timmreck, Alan Robock 1. GLOBAL VOLCANISM Around 380 volcanoes were active during the last century, with around 50 volcanoes's volcanoes are located in the northern hemisphere, and in tropical regions. The emission of volcanic gases

Robock, Alan

210

Fiber Optic Submarine Cables  

NASA Astrophysics Data System (ADS)

Submarine communication cables have one of the longest history in the field of technics. During the last 20 years their importance showed a drastic decay in favour of satellites. Presently their future looks bright again as they contain now optical fibers instead of coaxial pairs.

Oestreich, Ulrich H. P.

1990-01-01

211

Making a Submarine.  

ERIC Educational Resources Information Center

Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

Cornacchia, Deborah J.

2002-01-01

212

SCOOP--An Improved Submarine Cable Recovery System  

Microsoft Academic Search

For more than twenty years, acoustically controlled, buoyant subsurface arrays have been utilized by research institutions and industry for mooring, location, and retrieval of oceanographic instruments. Submarine telecommunications cable laying and repair operations typically involve location and retrieval of free cable ends left on the seafloor. In deep water areas, conventional methods for cable-end location and recovery included the use

G. Rich; J. Ewald; C. Jeffcoat; R. Weller

1984-01-01

213

Volcano Lovers  

NSDL National Science Digital Library

This Why Files article explores volcanoes and volcanic eruptions. Topics covered include: Alaska's Pavlof and its threat to jet engines; Mexico City's restless neighbor, Popocatepetl (El Popo); underground volcanic processes; modern forecasting of eruptions; various volcanic phenomena and features; large flood basalt areas around the world; California's volcanically active area, Long Valley Caldera and Mammoth Mountain; Indonesia's Krakatau eruption in 1883, which was the world's largest historical eruption; Krakatau's ecological contribution to the study of colonization of sterile lands; and central Mexico's Paricutin which was witnessed emerging from a farmer's field in 1943. Three scientists were interviewed for this article.

Tenenbaum, David

1997-01-02

214

Smithsonian Volcano Data on Google Earth  

NASA Astrophysics Data System (ADS)

Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that regional topographic mapping does not utilize a standardized global datum, so that locations from topographic maps often diverge from those of the World Geodetic System datum used in geo-registered satellite imagery. These limitations notwithstanding, virtual globe platforms such as Google Earth provide an easily accessible pathway to volcano data for a broad spectrum of users ranging from the home/classroom to Earth scientists.

Venzke, E.; Siebert, L.; Luhr, J. F.

2006-12-01

215

Nyiragonga Volcano  

NASA Technical Reports Server (NTRS)

This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

2001-01-01

216

Earth Currents in Short Submarine Cables  

Microsoft Academic Search

PRIOR to 1940, faults on submarine telephone cables between Great Britain and the Continent were normally located by direct-current methods employing a good wire in another cable. Confirmatory tests were usually made by the impedance-frequency method1. When the time came in 1944 to restore telephone communications, no good wires were available. The impedance-frequency method was employed for fault localization with

D. W. Cherry; A. T. Stovold

1946-01-01

217

Surfing for Earthquakes and Volcanoes  

NSDL National Science Digital Library

This resource is part of the Science Education Gateway (SEGway) project, funded by NASA, which is a national consortium of scientists, museums, and educators working together to bring the latest science to students, teachers, and the general public. In this lesson, students use the Internet to research data on earthquakes and volcanoes and plot locations to determine plate boundaries. Extensions include interpretation of interaction between plate boundaries, causes of earthquakes and volcanoes, and the comparison of the formation of Olympus Mons on Mars and the Hawaiian volcanic chain. There are worksheets, references, assessment ideas, and vocabulary available for educators.

Patty Coe

218

New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cádiz): morpho-structural characterization  

NASA Astrophysics Data System (ADS)

During the MVSEIS-08 cruise of 2008, ten new mud volcanoes (MVs) were discovered on the offshore Moroccan continental margin (Gulf of Cádiz) at water depths between 750 and 1,600 m, using multibeam bathymetry, backscatter imagery, high-resolution seismic and gravity core data. Mud breccias were recovered in all cases, attesting to the nature of extrusion of these cones. The mud volcanoes are located in two fields: the MVSEIS, Moundforce, Pixie, Las Negras, Madrid, Guadix, Almanzor and El Cid MVs in the western Moroccan field, where mud volcanoes have long been suspected but to date not identified, and the Boabdil and Al Gacel MVs in the middle Moroccan field. Three main morphologies were observed: asymmetric, sub-circular and flat-topped cone-shaped types, this being the first report of asymmetric morphologies in the Gulf of Cádiz. Based on morpho-structural analysis, the features are interpreted to result from (1) repeated constructive (expulsion of fluid mud mixtures) and destructive (gravity-induced collapse and submarine landsliding) episodes and (2) interaction with bottom currents.

León, Ricardo; Somoza, Luis; Medialdea, Teresa; Vázquez, Juan Tomás; González, Francisco Javier; López-González, Nieves; Casas, David; del Pilar Mata, María; del Fernández-Puga, María Carmen; Giménez-Moreno, Carmen Julia; Díaz-del-Río, Víctor

2012-12-01

219

Flushing submarine canyons  

Microsoft Academic Search

The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean1. During high sea-level

Miquel Canals; Pere Puig; Xavier Durrieu de Madron; Serge Heussner; Albert Palanques; Joan Fabres

2006-01-01

220

Super Volcano  

NSDL National Science Digital Library

Deep beneath the surface of Earth lies one of the most destructive and yet least understood of the natural forces on the planet: the super volcano. This radio broadcast presents discussions with scientists at Yellowstone National Park who are investigating this potentially devastating natural phenomenon. Yellowstone National Park is one of the largest supervolcanoes in the world. It last erupted 640,000 years ago and scientists are now predicting that the next eruption may not be far off. To discover more, a new volcanic observatory has been built in the park to monitor the extreme volcanic activity going on beneath the surface of this much visited destination. The broadcast is 30 minutes in length.

221

Subaerial, submarine and extraterrestrial volcanic morphologies: Comparisons and contrasts  

NASA Astrophysics Data System (ADS)

Interpretation of volcanic deposits on Mars is frustrated by lack of ground truth. Although orbiting instruments are collecting compositional data (as spectra), and rovers are providing detailed analyses of a few select areas on the surface, volcanic morphologies remain the primary means for our understanding of Martian volcanic behavior. Geologic mapping, combined with critical study of terrestrial analogs, provides a sound means for constraining the precise origin of volcanic deposits on Mars, Earth's sea floor, and the surfaces of the other terrestrial planets. Layered deposits within Hesperia Planum, Mars, and composing Tyrrhenus Mons (a low-relief central-vent volcano located within Hesperia Planum) have variously been interpreted to be: flood lavas, pyroclastic deposits (probably pyroclastic flows), or sedimentary deposits. Compositional data are not helpful here: the area is covered with sufficient dust to prevent orbiting instruments from measuring the bedrock composition. An additional complication is that these deposits were emplaced in the Noachian to Early Hesperian and have been subsequently modified by fluvial, mass wasting, and groundwater sapping processes. Comparing Martian deposits with terrestrial subaerial and submarine analogs provides necessary insight for interpreting the Martian deposits as effusive, explosive, or sedimentary. The planform margins of eroded subaerial ignimbrite deposits on Earth, for example, are locally dominated by aeolian exploitation of contraction cooling joints and have a crenulated margin. In contrast, the planform shape of seamounts reflects competing forces of accumulation of lava with simultaneous mass-wasting of oversteepened slopes, resulting in an almost stellate outline. Sedimentary deposits are unlikely to display thermal jointing, but may have jointing caused by local tectonics. Thus, determining the nature of these (and other) layered deposits requires the compilation of a 'preponderance of evidence,' including geologic setting, deposit morphology, and erosional history.

Gregg, T. K.

2013-12-01

222

Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-  

NASA Astrophysics Data System (ADS)

Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow, grain flow, debris flow). In general, if the speed is large during transportation, the extension to the lateral side is small. In addition, those flows show that coarse grains settle toward the base of the flow, and their speed and density reduce. The transportation mechanism of Oshima-Oshima debris avalanche is thought a debris flow, however in the case of Kaimon is thought turbidity current which has high speed and density. We clarify the relation among the transportation mechanism, the geological condition and the morphological features of submarine landslides.

Kaji, T.; Yamazaki, H.; Kato, Y.

2008-12-01

223

Naval Submarine Support Facility: Submarine Base New London (A)  

Microsoft Academic Search

n a beautiful 1999 New England summer day, while driving north on I-95, Cap- tain Jack Pine crossed the Thames River above Groton, Connecticut, and glanced down at the east bank and the New London Submarine Base. It had been a little over six years since he had commanded the attack submarine USS Boise (SSN 764), homeported in New London.

DOUGLAS A. YESENSKY

224

Types of Volcanoes  

NSDL National Science Digital Library

This volcano resource introduces the six-type classification system and points out weaknesses of the classic three-type system. The six types of volcanoes are shield volcanoes, strato volcanoes, rhyolite caldera complexes, monogenetic fields, flood basalts, and mid-ocean ridges. For each type of volcano there is a description of both structure and dynamics along with examples of each. You can account for more than ninty percent of all volcanoes with these six types. Additionally, any system will be more useful if you use modifiers from the other potential classification schemes with the morphological types.

225

Observations on the Origin of Submarine Volcanic Cone Morphologies in Hawaii  

NASA Astrophysics Data System (ADS)

Our recent models for the formation of flat-topped and pointed volcanic cones on the submarine flanks of the Hawaiian islands were based on 30 kHz multibeam bathymetry and backscatter data and the few existing samples [Clague et al., Bull. Volcanol. 62, 214-233, 2000]. During MBARI's Hawaii expedition in April-May 2001, we used the ROV TIBURON to further investigate the origins of volcanic cones. Pointed cones have steep, symmetrical, smooth slopes with no discernible summit platform. We proposed that these were monogenetic cones constructed of a uniform type of fragmental volcanic products in the manner of cinder cones on land; major differences are that submarine pointed cones are taller and do not have summit craters. Observations from dives on three such cones on the NW flank of Ni`ihau showed that the smooth acoustic character of the slopes cannot be attributed either to sediment cover or to the specific nature of volcanic products on the cones' surfaces (e.g., volcaniclastics vs. talus vs. pillow lava), but instead to a uniform distribution of these products. One of the cones is partly dissected and eroded, exposing bedded volcaniclastics in both interior and exterior, but near the summit its surface is mantled by pillow lava. The other two are located 600m apart and are composed of geochemically similar hawaiites, suggesting that they represent two vents from the same eruption. These observations are consistent with our proposal that these pointed cones were constructed by vigorous eruption of fragmental ejecta, and this gives them their steep, pointed shape. The pillow lava is a thin veneer extruded at lower effusion rate during the waning stage of eruptions. New samples from these three pointed cones are vesicular hawaiite similar to Ni'ihau's subaerial postshield alkalic lavas, and confirm that pointed cones form by eruptions of gas-rich alkalic lavas. Flat-topped volcanic cones are found on the tholeiitic submarine rift zones of all mature Hawaiian volcanoes, and are also abundant on the submarine flank of Ni`ihau. They have the form of truncated cones. We modeled them as monogenetic constructions formed by an inflating and overflowing lava pond during protracted, steady eruption of gas-poor, low-viscosity lava. Previous dive observations on flat-topped cones at Mahukona and Kohala showed that the outer slopes are covered by pillow lava flows (and talus), consistent with overflows from a lava pond, but observations on the flat tops were thwarted by heavy sediment cover. The recent TIBURON dives investigated five flat-topped cones on Ni`ihau. As before, elongated pillow lavas were observed on the outer slopes. On the flat tops, the lava flow forms protruding through the sediment were primarily hackly sheet flows, folded sheets, tumuli (which form on inflated sheet flows), and lobate lavas. Submarine hackly sheet flows indicate unusually fast-moving, well-insulated lava. Existence of these flow forms on a low-grade slope is consistent with crust forming on an actively circulating lava pond, and suggests that the crust forms over large areas of the pond at once, rather than gradually accumulating at the edges as the cone grows. The lobate flows may represent lava extruded through cracks in the crust. The flat-topped cones on Ni`ihau are confirmed to be submarine equivalents of the rejuvenated stage Kiekie Volcanics on the island. The new samples have low vesicularity, supporting the model of flat-topped cones as sustained eruptions of gas-poor, low-viscosity lava.

Reynolds, J. R.; Clague, D. A.; Hon, K.; Dixon, J. E.; Cousens, B. L.

2001-12-01

226

Submarine landslides: advances and challenges  

Microsoft Academic Search

Due to the recent development of well-integrat ed surveying techniques of the sea-floor, significant improvements were achieved in mapping and describing the morphology of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as found on land. Submarine mass movements however, can have run out

Jacques Locat; Homa J. Lee

2002-01-01

227

Flushing submarine canyons.  

PubMed

The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

2006-11-16

228

Current submarine atmosphere control technology.  

PubMed

Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application. PMID:11876194

Mazurek, W

1998-01-01

229

MTU Volcanoes Page  

NSDL National Science Digital Library

Michigan Technological University Volcanoes Page, which is sponsored by the Keweenaw Volcano Observatory, aims to provide information about volcanoes to the public and to complement other informational sites on the Web. Visitors will find information on what a volcano is, currently active volcanoes throughout the world, remote sensing of volcanoes, volcanic humor, and much more. The volcano hazard section of the site contains primarily original content that provides a Basic Guide to Volcanic Hazards and details Volcanic Cloud Hazards to Aviation, while offering volcano safety recommendations to the public. Although the site could use an update to its layout and organization, it does do a good job of presenting an interesting mix of unique information.

230

Geography World - Volcanoes  

NSDL National Science Digital Library

This portal provides links to an extensive list of volcano-related websites for the United States and around the world. Users can access articles, maps, glossaries, webcams, a dictionary of volcanoes, and many other resources.

231

Ol Doinyo Lengai Volcano  

USGS Multimedia Gallery

Scientists from the Volcano Disaster Assistance Program team and the Geological Survey of Tanzania take a sample of the most recent ashfall from Ol Doinyo Lengai as the volcano looms in the background....

232

Monitoring Active Volcanoes  

NSDL National Science Digital Library

This United States Geological Survey (USGS) publication discusses the historic and current monitoring of active volcanoes around the globe. Techniques to measure deviations in pressure and stress induced by subterranean magma movement, as well as other technologies, explain the ways in which researchers monitor and predict volcanoes. Case studies of volcanoes such as Mt. St. Helens, El Chichon, Mauna Loa, and others are discussed.

Tilling, Robert

233

A Scientific Excursion: Volcanoes.  

ERIC Educational Resources Information Center

Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

Olds, Henry, Jr.

1983-01-01

234

How Volcanoes Work  

NSDL National Science Digital Library

This educational resource describes the science behind volcanoes and volcanic processes. Topics include volcanic environments, volcano landforms, eruption dynamics, eruption products, eruption types, historical eruptions, and planetary volcanism. There are two animations, over 250 images, eight interactive tests, and a volcano crossword puzzle.

235

USGS Hawaiian Volcano Observatory  

USGS Multimedia Gallery

The USGS Hawaiian Volcano Observatory is perched on the rim of Kilauea Volcano's summit caldera (next to the Thomas A. Jaggar Museum in Hawai'i Volcanoes National Park), providing a spectacular view of the active vent in Halema‘uma‘u Crater....

236

Ice-volcano interactions Eyjafjallajkull volcano, Iceland  

E-print Network

Ice-volcano interactions in Eyjafjallajökull volcano, Iceland Eyjólfur Magnússon1, Magnús Tumi Sciences, University of Iceland, Reykjavík, Iceland 2. Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland 3. Icelandic Coast Guard SPIRIT workshop 29&30 April 2010, Toulouse Picture by Eyjólfur

Berthier, Etienne

237

Volcano Vents  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Released 5 May 2003

This low-relief shield volcano imaged with the THEMIS visible camera has two large vents which have erupted several individual lava flows. The positions of the origins of many of the flows indicate that it is probable that the vents are secondary structures that formed only after the shield was built up by eruptions from a central caldera.

Image information: VIS instrument. Latitude 17.6, Longitude 243.6 East (116.4 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2003-01-01

238

Submarine fresh water outflow detection with a dual-frequency microwave and an infrared radiometer system  

NASA Technical Reports Server (NTRS)

Since infrared measurements are only very slightly affected by whitecap and banking angle influences, the combined multifrequency radiometric signatures of the L-band, the S-band, and an infrared radiometer are used in identifying freshwater outflows (submerged and superficial). To separate the river and lagoon outflows from the submarine outflows, geographical maps with a scale of 1:100,000 are used. In all, 44 submarine freshwater springs are identified. This is seen as indicating that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. Most of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline; the success in detecting the submarine springs during both missions at the northwest portion of the island is 39%. Salinity and temperature distribution plots along the flight path in longitude and latitude coordinates reveal that runoff direction can be determined.

Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

1981-01-01

239

Facies analysis of Hlodufell basaltic subglacial to emergent volcano, SW Iceland: insights into sub-ice growth mechanisms and meltwater drainage  

NASA Astrophysics Data System (ADS)

Hlodufell is a subglacial to emergent basaltic volcano located 9km south of the Langjokull ice-cap in SW Iceland. This study is the first detailed facies analysis of this well-known volcano. The vertical facies architecture of the basal half of the volcano is typical of many basaltic subaqueous (including submarine) to emergent volcanoes, comprising basal pillow mounds overlain by Surtseyan eruption-fed subaqueously-deposited sediment gravity flows. However, facies in the upper part of the edifice demonstrate the influence of variable water levels more typical of englacial lakes. The Surtseyan sequence is overlain by two subaerial lava flow and cogenetic lava-fed delta sequences, separated by a second Surtseyan sequence. In addition, the uppermost lava flows are also draped by a thin veneer of Surtseyan tephra. Both lava-fed delta sequences are unusually dominated by subaerial lava breccias. This may be due to a number of factors that influence steep slope stability but the possibility of retreating ice walls should be considered. Detailed facies analysis also revealed evidence of the influence of ice on eruptive and depositional products throughout the history of the edifice. Some of the basal pillow mounds preserve metre-sized cavities with partial hyaloclastite fills, interpreted as meltout structures formed during sub-ice growth by ice-block stoping. Some mounds also have steep chill surfaces where pillows have been compressed against a rigid wall (now absent) interpreted as ice. The peripheral pillow mounds, particularly those to the immediate south of Hlodufell (Rani area) are draped by Surtseyan eruption-fed tephra deposited by erosive meltwater streamflows. The draping tephra was derived from both the first and second Surtseyan sequences. These observations illustrate that direct ice-contact and ice-block stoping was important during initial construction of the volcano and that meltwater drainage (particularly to the south) was important throughout its history.

Skilling, I. P.

2003-12-01

240

Alaska Volcano Observatory  

USGS Publications Warehouse

Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

Venezky, Dina Y.; Murray, Tom; Read, Cyrus

2008-01-01

241

Hawaiian submarine manganese-iron oxide crusts - A dating tool?  

USGS Publications Warehouse

Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.

Moore, J.G.; Clague, D.A.

2004-01-01

242

Multifrequency radiometer detection of submarine freshwater sources along the Puerto Rican coastline  

NASA Technical Reports Server (NTRS)

The surface area above submarine springs of fresh water exhibit temperatures and salinities lower than the surrounding sea waters. A multifrequency radiometer system which earlier demonstrated an accuracy of 1 degree C and 1 part per thousand in remotely detecting the surface temperature and salinities, respectively, was used to detect submarine freshwater springs. The first mission on February 4, 1978, consisted of overflight measurements over three fourths of the coastal areas around the Island of Puerto Rico. During the second mission on February 6, 1978, special attention was directed to the northwest portion of Puerto Rico where several submarine springs had been reported. The previously reported spring locations correlated well with the locations detected by the radiometers. After separating the surface runoffs such as rivers, lagoons, marshes, and bays, 44 submarine freshwater springs were identified which indicates that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. The majority of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline. The success of detecting the same submarine springs during both missions at the northwest portion of the island was 39%.

Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

1981-01-01

243

Surface and bottom boundary layer dynamics on a shallow submarine bank : southern flank of Georges Bank  

E-print Network

The thesis investigates the circulation at a 76-m deep study site on the southern flank of Georges Bank, a shallow submarine bank located between the deeper Gulf of Maine and the continental slope. Emphasis is placed on ...

Werner, Sandra R. (Sandra Regina)

1999-01-01

244

Leakage of magmatic-hydrothermal volatiles from a crater bottom formed by a submarine eruption in 1989 at Teishi Knoll, Japan  

NASA Astrophysics Data System (ADS)

A submarine eruption occurred off the Izu Peninsula of Japan on 13 July 1989, forming Teishi Knoll, which has a diameter of 450 m and a height of ca. 10 m above the surrounding 90-100 m deep seafloor. Immediately after the eruption, intense gas release was observed from two vents in the crater. The gas bubbling gradually decreased and apparently ceased in 1990. Given that no survey has been undertaken to examine volatile release from the crater of Teishi Knoll, we collected seawater samples at three different sites from just above the crater bottom on 17 July 2012, in order to detect signs of magmatic volatile release. Seawater samples from the crater bottom have dissolved CH4 contents and ?13C values higher than those of shallower (50-100 m deep) seawater samples. Total inorganic carbon contents from the bottom seawater samples are also higher, and ?13C and ?14C values lower than those of shallower seawater samples. These data indicate the addition of minor CH4 and CO2 of hydrothermal or magmatic origin to the bottom seawater from the crater. 3He/4He ratios and total organic carbon data are also consistent with the leakage of magmatic fluids. The most prominent CH4 and CO2 anomalies were observed at the site located closest to one of the bubbling gas sites of the 1989 eruption. As such, volcanic gas emissions still continue today at extremely low levels, 23 years after eruption of this monogenetic volcano. The monitoring of ultra-trace amounts of chemical components in seawater is a prospective method to monitor temporal changes in magmatic activity at such submarine volcanoes.

Notsu, Kenji; Sohrin, Rumi; Wada, Hideki; Tsuboi, Tatsuya; Sumino, Hirochika; Mori, Toshiya; Tsunogai, Urumu; Hernández, Pedro A.; Suzuki, Yusuke; Ikuta, Ryoya; Oorui, Kohei; Koyama, Masato; Masuda, Toshiaki; Fujii, Naoyuki

2014-01-01

245

Origin and evolution of valleys on Martian volcanoes  

NASA Technical Reports Server (NTRS)

Medium (1:2,000,000) and high (1:500,000) resolution Viking images were used to locate, map, and analyze drainage systems of six moderate-sized Martian volcanoes of various ages (including Ceraunius Tholus, Hecates Tholus, Alba Patera, Hadriaca Patera, Apollinaris Patera, and Tyrrhena Patera) in order to determine the origin and the evolution of valley forms on these volcanoes. The morphological characteristics of the drainage forms were compared to those of terrestrial volcanic valleys of known origin. On the basis of studies of valleys on the Hawaiian volcanoes, an evolutionary sequence for valleys on the Martian volcanoes is proposed.

Gulick, Virginia C.; Baker, Victor R.

1990-01-01

246

Soufriere Hills Volcano  

NASA Technical Reports Server (NTRS)

In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.

Size: 40.5 x 40.5 km (25.1 x 25.1 miles) Location: 16.7 deg. North lat., 62.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: October 29, 2002

2002-01-01

247

The Volcano Adventure Guide  

NASA Astrophysics Data System (ADS)

Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

Goff, Fraser

2005-05-01

248

Update of the volcanic risk map of Colima volcano, Mexico  

Microsoft Academic Search

The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense

C. Suarez-Plascencia; F. J. Nuñez Cornu; B. Marquez-Azua

2010-01-01

249

Density Imaging of Volcanoes with Atmospheric Muons using GRPCs  

E-print Network

for realising a precise 3D density-map of the volcano. Obviously, this imposes also to define a robust, portable at a fixed location permits mapping out the average column density in the volcano once the topography explorations. Provided the topography of the target is known, the measurement of the attenuation of the muon

Paris-Sud XI, Université de

250

Geochemical stratigraphy and magmatic evolution at Arenal Volcano, Costa Rica  

E-print Network

Geochemical stratigraphy and magmatic evolution at Arenal Volcano, Costa Rica Louise L. Bolge a Miravalles (OSIVAM), Instituto Costarricense de, Electricidad (ICE), Apdo. 10032-1000, Costa Rica Received 13; tephrostratigraphy; Central American arc 1. Introduction Arenal is a small strato volcano located in Costa Rica (10

251

Volcano-tectonics at Tharsis Tholus, Mars: Observation and Experiments  

Microsoft Academic Search

Tharsis Tholus, located to the east of the three Tharsis Montes, is a large volcano partly buried beneath volcaniclastic material. The visible edifice has a planar extent of about 155 km (NW-SE) by 125 km (NE-SW), and displays large fault scarps and a central caldera. The fault traces are extending radially from the centre of the volcano and deeply breach

Thomas Platz; Sebastian Münn; Thomas Walter

2010-01-01

252

Paleomagnetic constraints on eruption patterns at the Pacaya composite volcano, Guatemala  

Microsoft Academic Search

Pacaya volcano is an active composite volcano located in the volcanic highlands of Guatemala about 40 km south of Guatemala City. Volcanism at Pacaya alternates between Strombolian and Vulcanian, and during the past five years there has been a marked increase in the violence of eruptions. The volcano is composed principally of basalt flows interbedded with thin scoria fall units,

F Michael Conway; Jimmy F Diehl; Otoniel Matías

1992-01-01

253

Automating the Hunt for Volcanoes on Venus , U.M. Fayyad  

E-print Network

Automating the Hunt for Volcanoes on Venus M.C. Burl ¢¡ , U.M. Fayyad ¡ , P. Perona , P. Smyth on classical filtering and statistical pattern recog- nition techniques, for automatically locating volcanoes in the Magellan SAR database of Venus. Training for the specific volcano-detection task is obtained

Smyth, Padhraic

254

Hazardous Phenomena at Volcanoes  

USGS Publications Warehouse

Volcanoes generate a wide variety of phenomena that can alter the Earth's surface and atmosphere and endanger people and property. While most of the natural hazards illustrated and described in this fact sheet are associated with eruptions, some, like landslides, can occur even when a volcano is quiet. Small events may pose a hazard only within a few miles of a volcano, while large events can directly or indirectly endanger people and property tens to hundreds of miles away.

Myers, Bobbie M.; Brantley, Steven R.

1995-01-01

255

Yellowstone Volcano Observatory  

USGS Publications Warehouse

Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

Venezky, Dina Y.; Lowenstern, Jacob

2008-01-01

256

Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history  

NASA Astrophysics Data System (ADS)

The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of "wet" eruptions and Strombolian to Plinian in terms of "dry" eruptions. In historical time the magma volume extruded by individual eruptions ranges from ˜1 m 3 to ˜20 km 3 DRE, reflecting variable magma compositions, effusion rates and eruption durations. All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as "Fires", which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20-25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga-Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ-WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ˜4.5% of the eruptions is not known. Magma productivity over 1100 years equals about 87 km 3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km 3 (˜82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ-WVZ accounts for 13% of the magma and the NWZ and the

Thordarson, T.; Larsen, G.

2007-01-01

257

The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data  

Microsoft Academic Search

Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on

Shellie Rose; Michael Ramsey

2009-01-01

258

The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan  

Microsoft Academic Search

This study examines the influence of a submarine canyon on the dispersal of sediments discharged by a nearby river and on the sediment movement on the inner shelf. The study area includes the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km seaward from the mouth of the Kao-ping River in southern Taiwan. Within

James T. Liu; Kuen-jang Liu; Jeff C. Huang

2002-01-01

259

Chaiten Volcano, Chile  

NASA Technical Reports Server (NTRS)

On May 2, 2008 Chile's Chaiten Volcano erupted after 9,000 years of inactivity. Now, 4 weeks later, the eruption continues, with ash-, water-, and sulfur-laden plumes blowing hundreds of kilometers to the east and north over Chile and Argentina. On May 24, ASTER captured a day-night pair of thermal infrared images of the eruption, displayed here in enhanced, false colors. At the time of the daytime acquisition (left image) most of the plume appears dark blue because it is too thick for upwelling ground radiation to penetrate. At the edges it appears orange, indicating the presence of ash and sulfur dioxide. In the nighttime image (right), the plume is orange and red near the source, and becomes more yellow-orange further away from the vent. The possible cause is that ash is settling out of the plume further downwind, revealing the dominant presence of sulfur dioxide.

The images were acquired May 24, 2008, cover an area of 37 x 26.5 km, and are located near 42.7 degrees south latitude, 72.7 degrees west longitude.

The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

2008-01-01

260

On sonobuoy placement for submarine tracking  

Microsoft Academic Search

This paper addresses the problem of detecting and tracking an unknown number of submarines in a body of water using a known number of moving sonobuoys. Indeed, we suppose there are N submarines collectively maneuvering as a weakly interacting stochastic dynamical system, where N is a random number, and we need to detect and track these submarines using M moving

Michael A. Kouritzin; David J. Ballantyne; Hyukjoon Kim; Yaozhong Hu

2005-01-01

261

Submarine Warfare in the A Bibliography  

E-print Network

Submarine Warfare in the 20th & 21st Centuries: A Bibliography Compiled by Michaele Lee Huygen 3D, 1966. p. 205. This bibliography is a revised edition of the bibliography Submarine Warfare in the 20th & 21st Centuries, 2003, which is in turn a revised and expanded version of Submarine Warfare in the 20

262

Direct measures of Submarine Groundwater Discharge (SGD)  

E-print Network

Page: 1 Direct measures of Submarine Groundwater Discharge (SGD) over a fractured rock aquifer of submarine groundwater discharge (SGD) have been made, but measurements along the South American coast of submarine, freshwater springs have been recognized in the folk wisdom of millennia, the scientific inquiry

263

Flank tectonics of Martian volcanoes  

SciTech Connect

On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are {approximately}250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults.

Thomas, P.J. (Univ. of Wisconsin, Eau Claire (USA)); Squyres, S.W. (Cornell Univ., Ithaca, NY (USA)); Carr, M.H. (Geological Survey, Menlo Park, CA (USA))

1990-08-30

264

Alaska Volcano Observatory  

NSDL National Science Digital Library

This is the homepage of the Alaska Volcano Observatory, a joint program of the United States Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). Users can access current information on volcanic activity in Alaska and the Kamchatka Penninsula, including weekly and daily reports and information releases about significant changes in any particluar volcano. An interactive map also directs users to summaries and activity notifications for selected volcanoes, or through links to webcams and webicorders (recordings of seismic activity). General information on Alaskan volcanoes includes descriptions, images, maps, bibliographies, and eruptive histories. This can be accessed through an interactive map or by clicking on an alphabetic listing of links to individual volcanoes. There is also an online library of references pertinent to Quaternary volcanism in Alaska and an image library.

265

Gravity model studies of Newberry Volcano, Oregon  

USGS Publications Warehouse

Newberry Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7-0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data. -Authors

Gettings, M.E.; Griscom, A.

1988-01-01

266

Northern Arizona Volcanoes  

NASA Technical Reports Server (NTRS)

Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: October 21, 2003

2006-01-01

267

Mud volcanoes of the Orinoco Delta, Eastern Venezuela  

USGS Publications Warehouse

Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

2001-01-01

268

Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling  

NASA Astrophysics Data System (ADS)

The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

2014-05-01

269

Flow dynamics around downwelling submarine canyons  

NASA Astrophysics Data System (ADS)

Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (?) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

Spurgin, J. M.; Allen, S. E.

2014-10-01

270

Shiveluch Volcano, Kamchatka Peninsula, Russia  

NASA Technical Reports Server (NTRS)

On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.

Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.

The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.

The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude.

ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

2001-01-01

271

Venus - Rhea Mons Volcano  

NASA Technical Reports Server (NTRS)

Two mosaiced pieces of Magellan image strips display the area east of the Rhea Mons volcano on Venus. This image is centered at about 32.5 degrees north latitude and 286.6 degrees east longitude. The mosaic is 47 kilometers (28 miles) wide and 135 km (81 miles) long. This region has been previously identified as 'tessera' from Earth-based radar (Arecibo) images. The center of the image is dominated by a network of intersecting ridges and valleys. The radar bright north south trending features in this image range from 1 km (0.6 mile) to 3 km (1.8 miles) in length. The average spacing between these ridges is about 1.5 km (0.9 mile). The dark patches at the top of the image are smooth surfaces and may be lava flows located in lowlands between the higher ridge and the valley terrain. This image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, Calif. and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet).

1990-01-01

272

Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii - A solar component in the Earth  

Microsoft Academic Search

Noble gas elemental and isotopic abundances have been analyzed in 22 samples of basaltic glass dredged from the submarine flanks of two currently active Hawaiian volcanoes, Loihi Seamount and Kilauea. Neon isotopic ratios are enriched in Ne-20 and Ne-21 by as much as 16 percent with respect to atmospheric ratios. All the Hawaiian basalt glass samples show relatively high He-3\\/He-4

Masahiko Honda; Ian McDougall; Desmond B. Patterson; Anthony Doulgeris; David A. Clague

1993-01-01

273

Digital Transmission over Submarine Cables  

Microsoft Academic Search

The problems of transoceanic transmission of large volumes of information have been raised increasingly over the past few years. Lately, the need for transoceanic digital communications has been of interest. This paper discusses the significance of these trends and examines the technical prospects for handling large volumes of digital traffic using submarine cables. Concentrating on transatlantic traffic, an argument is

W. Litchman

1965-01-01

274

An ongoing large submarine landslide at the Japan trench  

NASA Astrophysics Data System (ADS)

This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe-shaped depression along the Japan trench.

Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

2013-12-01

275

Chiliques volcano, Chile  

NASA Technical Reports Server (NTRS)

A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.

The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.

Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.

These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

2002-01-01

276

Geology of Medicine Lake Volcano, Northern California Cascade Range  

USGS Publications Warehouse

Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

Donnelly-Nolan, Julie

1990-01-01

277

30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

278

Close-range acoustic scattering from mud volcanoes  

NASA Astrophysics Data System (ADS)

Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas (mostly methane) and fluidized mud emission from the earth's interior. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the later community, mud volcanoes are important because they pose a potential source of clutter for active sonar. Close-range (single boundary interaction) scattering measurements from a mud volcano in the Straits of Sicily were conducted with a vertical source and receive array. The data show target strengths from 800-3600 Hz of 6-12 dB for a monostatic geometry with grazing angles of 3-5 degrees. The target strengths are very similar for vertically bi-static paths with incident grazing angles of 3-5 degrees and scattered angles of 33-45 degrees. The evidence suggests that the scattering mechanism is the mud volcano (carbonate) structure. [Work supported by the Office of Naval Research and NATO Undersea Research Centre.

Holland, Charles W.; Weber, Thomas C.; Etiope, Giuseppe

2005-04-01

279

Shaking up volcanoes  

USGS Publications Warehouse

Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

Prejean, Stephanie G.; Haney, Matthew M.

2014-01-01

280

Volcanoes in the Infrared  

NSDL National Science Digital Library

In this video adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, satellite imagery and infrared cameras are used to study and predict eruptions of volcanoes in the Aleutian Islands, Alaska.

2008-11-04

281

Pb, Hf, Nd, and Sr Isotopic Variations of Hualalai Shield Stage Tholeiites from the Submarine North Kona Region  

NASA Astrophysics Data System (ADS)

We present the isotope and trace element compositions of tholeiitic lavas collected from deep submarine portions of North Kona region, the west flank of Hualalai volcano. The samples were collected from the lower section of the North Kona bench (dives K218 and K219), a submarine section at Hualalai volcano's northwest rift zone (dive S690), and an elongate ridge below the central section of the bench (dive S692) during 2001 and 2002 JAMSTEC Hawaii cruises. Hualalai volcano is presently in the post-shield alkalic stage and most of its subaerial surface is covered by alkalic basalt. All analyzed samples of the pillow lavas are tholeiites that erupted during Hualalai shield stage. It is important to identify source materials involved in the volumetrically dominant stage of Hualalai volcano in order to provide constraints for the size and distribution of compositional heterogeneities of Hawaiian plume. The isotopic compositions of the submarine North Kona tholeiites are similar to the data previously reported for Mauna Loa tholeiites. The data trends define clear mixing relationships that require at least three mantle source components. The mixing is dominated by a Koolau-like enriched component and a Kea-like depleted component. The K219 data trend toward higher epsilon Hf and 87Sr/86Sr relative to the K218, S690, and S692 arrays, requiring another component similar to that observed in post-shield lavas of Hualalai volcano. Pb isotopic compositions for samples from dive K218 and K219 form distinct non-overlapping Pb-Pb arrays suggesting further source heterogeneity. Samples from dive S690 and S692 plot on both of these trends. These findings suggest small-scale compositional heterogeneity in the source regions that can be attributed to anomalous irregular 'blobs' involved in late shield stage magmatism of Mauna Loa reported in previous works.

Yamasaki, S.; Kani, T.; Hanan, B. B.; Tagami, T.

2007-12-01

282

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001  

USGS Publications Warehouse

The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G. The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes. Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001. This catalog includes: (1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; (2) a description of instruments deployed in the field and their locations; (3) a description of earthquake detection, recording, analysis, and data archival systems; (4) station parameters and velocity models used for earthquake locations; (5) a summary of daily station usage throughout the catalog period; and (6) all HYPOELLIPSE files used to determine the earthquake locations presented in this report.

Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

2002-01-01

283

A giant three-stage submarine slide off Norway  

Microsoft Academic Search

One of the largest submarine slides known, The Storegga Slide, is located on the Norwegian continental margin. The slide is up to 450 m thick and has a total volume of about 5,600 km3. The headwall of the slide scar is 290 km long and the total run-out distance is about 800 km. The slide involved sediments of Quaternary to

Tom Bugge; Stein Befring; Robert H. Belderson; Tor Eidvin; Eystein Jansen; Neil H. Kenyon; Hans Holtedahl; Hans Petter Sejrup

1987-01-01

284

The Underwater Cuban Missile Crisis: Soviet Submarines and the Risk of Nuclear War  

NSDL National Science Digital Library

The folks at The National Security Archive are always up to something interesting, like this recently released electronic briefing book. The site provides users with access to numerous documents related to the activities of Soviet submarines during the Cuban Missile Crisis. Visitors can look over the original Soviet Navy map of the Caribbean, which shows the locations of the four Foxtrot diesel submarines that had deployed from the Kola peninsula northwest of Murmansk on October 1962, bound for Mariel port in Cuba. That's just the tip of the proverbial iceberg: the book also contains images of the diary of submariner Anatoly Petrovich Andreyev and video of Captain John Peterson (United States Navy, retired) talking at a conference in 2002 about the hunt for the submarines. It's an absolutely engrossing collection and one that will merit several return visits.

2011-01-01

285

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002  

USGS Publications Warehouse

The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.

Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

2003-01-01

286

Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007  

USGS Publications Warehouse

Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

Dixon, James P.; Stihler, Scott D.; Power, John A.

2008-01-01

287

Location, Location, Location!  

ERIC Educational Resources Information Center

Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

Ramsdell, Kristin

2004-01-01

288

34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

289

32 CFR 707.7 - Submarine identification light.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 false Submarine identification light. 707.7 Section 707.7 National Defense...WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a...

2011-07-01

290

32 CFR 707.7 - Submarine identification light.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 false Submarine identification light. 707.7 Section 707.7 National Defense...WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a...

2012-07-01

291

32 CFR 707.7 - Submarine identification light.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Submarine identification light. 707.7 Section 707.7 National Defense...WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a...

2013-07-01

292

32 CFR 707.7 - Submarine identification light.  

...2014-07-01 false Submarine identification light. 707.7 Section 707.7 National Defense...WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a...

2014-07-01

293

32 CFR 707.7 - Submarine identification light.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 2010-07-01 false Submarine identification light. 707.7 Section...ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a distinctive...

2010-07-01

294

UNCORRECTEDPROOF Hydrogeology and geochemistry of near-shore submarine  

E-print Network

UNCORRECTEDPROOF Hydrogeology and geochemistry of near-shore submarine groundwater discharge rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge in this high rainfall region. Ã? 2007 Published by Elsevier Ltd. Keywords: submarine groundwater

295

Submarines, spacecraft and exhaled breath.  

PubMed

Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another important concern is a suite of products from chemical reactions among oxidizing compounds with biological chemicals such as amines, thiols and carbonyls. SAMAP Meeting We (Armin and Joachim) attended the 2011 SAMAP conference in Taranto, Italy (10-14 October), which occurred just a few weeks after the IABR meeting in Parma, Italy (11-15 September 2011). It was held at the Officers' Club of the Taranto Naval Base under the patronage of the Italian navy; the local host was Lucio Ricciardi of the University of Insubria, Varese, Italy. At the 2011 SAMAP meeting, the theme was air-independent propulsion (AIP), meaning the capability of recharging the main batteries of the submarine without the need to surface. Only a few navies (e.g. US, UK, France, Russia, China) have historically had this capability using nuclear-powered submarines that can function underwater for extended periods of time (months). Most navies operate submarines with conventional diesel-electric propulsion, wherein diesel-powered generators charge battery banks which then drive an electric motor connected to the propeller. The batteries are charged while the boat is on the surface or during snorkelling, when the boat is submerged a few meters below the surface and a snorkel tube is extended to the surface. The period between battery charges can vary from several hours to one or two days depending on the power requirements and the nature of the mission. The process is necessary for breathing air revitalization (flushing out accumulated contaminants) and for the operation of the diesel engines. However, during this period the submarine is vulnerable to detection. Since the 1940s there have been various attempts to develop a power generation system that is independent of external air (AIP). To this end hydrogen peroxide was initially used and later liquid oxygen (LOX). Currently, most AIP submarines use fuel cell technology (LOX and hydrogen) to supplement the conventional diesel-electric system in order to extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce per

Pleil, Joachim D; Hansel, Armin

2012-03-01

296

Russian nuclear-powered submarine decommissioning  

SciTech Connect

Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

Bukharin, O. [Princeton Univ., NJ (United States); Handler, J. [Greenpeace International`s Disarmament Campaign, Washington, DC (United States)

1995-11-01

297

Saga is largest commercial submarine ever  

SciTech Connect

The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

Not Available

1985-05-01

298

Tsunami Modeling from Submarine Landslides  

NSDL National Science Digital Library

This paper describes a kinematic model that computes tsunamis generated from submarine landslides. The model is based on bathymetric (ocean floor modeling) data and historical tsunami data. The papers' main focus is the application of the model to the 1741 Oshima-Oshima Tsunami in Japan and landslide events around the Hawaiian Islands. This paper was presented at the U.S. National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium in Seattle, Washington on August 10, 2001.

Satake, Kenji; National Oceanic and Atmospheric Administration (NOAA)

299

Volcano Flank Terraces on Mars  

NASA Astrophysics Data System (ADS)

Flank terraces are bulge-like structures that occur on the slopes of at least nine large shield volcanoes on Mars, and three on Earth. Terraces have a convex-upward, convex-outward morphology, with an imbricate "fish scale" stacking pattern in plan. They occur at all elevations, are scale-invariant structures, and have similar proportions to thrust faults on Earth. Suggested mechanisms of formation include elastic self-loading, lithospheric flexure, magma chamber tumescence, flank relaxation, and shallow gravitational slumping. Terrace geometries predicted by most of these mechanisms do not agree with our observations, however. Only lithospheric flexure can fully account for terrace geometry on Mars and Earth, and so is the most likely candidate mechanism for flank terrace formation. To verify this hypothesis, we conducted scaled analogue modelling experiments, and investigated the structures formed during flexure. Cones of a sand-gypsum mix were placed upon a deep layer of silicone gel, to simulate volcanic loads upon viscoelastic Martian crust. Key parameters were varied across our experimental program. In all cases convex topographic structures developed on the cones' flanks, arranged in an imbricate, overlapping plan-view pattern. These structures closely resemble flank terraces observed on Mars, and our results provide for a basic kinematic model of terrace formation. Analogue volcanoes experienced a decrease in upper surface area whilst volume was conserved; the contractional surface strain was accommodated by outward verging, circumferentially striking thrusts. The morphology of experimental structures suggests an orientation of the principal stress axes of ?1 = radial, ?2 = concentric, and ?3 = vertical. Elsewhere (J. B. Murray et al., this volume) we detail the relationship between flank terraces and other structures such as pit craters and gräben, using Ascraeus Mons as a case study. We suggest that terraces may influence the distribution and location of these other structures, and thus play a fundamental role in the tectonic development of large shield volcanoes on Mars.

Byrne, P. K.; van Wyk de Vries, B.; Murray, J. B.; Troll, V. R.

2008-12-01

300

Tried and True: Volcano r�sum�s  

NSDL National Science Digital Library

Tired of building a paper m�ch� volcano to teach about plate tectonics? Do you want to connect science and writing? Then the volcano r�sum� project is perfect for you. This one-week, problem-based learning (PBL) project requires students to research a specific volcano and then create a r�sum� for it that describes its location, physical characteristics, eruption history, and additional information of interest. Students are also required to include references for the information included on their r�sum�s.

Corlett, Cindy; Rutherford, Sandra

2008-03-01

301

Spatial variation in fluid flow and geochemical fluxes across the sediment–seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz)  

Microsoft Academic Search

Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at

Heleen Vanneste; Boris A. Kelly-Gerreyn; Douglas P. Connelly; Rachael H. James; Matthias Haeckel; Rebecca E. Fisher; Katja Heeschen; Rachel A. Mills

2011-01-01

302

Volcanoes: Coming Up from Under.  

ERIC Educational Resources Information Center

Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

Science and Children, 1980

1980-01-01

303

Seismicity at Baru Volcano, Western Panama, Panama  

NASA Astrophysics Data System (ADS)

The Baru volcano in Western Panama (8.808°N, 82.543°W) is a 3,475 m high strato volcano that lies at about 50 km from the Costa Rican border. The last major eruptive event at this volcano occurred c.1550 AD and no further eruptive activity from that time is known. Since the 1930´s, approximately every 30 years a series of seismic swarms take place in the surroundings of the volcanic edifice. Theses swarms last several weeks alarming the population who lives near the volcano. The last of these episodes occurred on May 2006 and lasted one and a half months. More than 20,000 people live adjacent to the volcano and any future eruption has the potential to be very dangerous. In June 2007, a digital seismic monitoring network of ten stations, linked via internet, was installed around the volcano in a collaborative project between the University of Panama and the Panamanian Government. The seismic data acquisition at the sites is performed using LINUX-SEISLOG and the events are recorded by four servers at different locations using the Earth Worm system. In this work we analyze the characteristics of the volcano seismicity recorded from May 4th, 2006 to July 31st, 2008 by at least 4 stations and located at about 15 km from the summit. To determine the seismic parameters, we tested several crustal velocity models and used the seismic analysis software package SEISAN. Our final velocity model was determined using seismic data for the first four km obtained from a temporal seismic network deployed in 1981 by the British Geological Survey (BGS) as part of geothermal studies conducted at Cerro Pando, Western Panama Highlands. Our results indicate that all the events recorded in the quadrant 8.6-9.0°N and 82.2-82.7°W are located in the depth range of 0.1 to 8 km. Cross sections show vertical alignments of hypocenters below the summit although most of the seismicity is concentrated in its eastern flank reaching the town of Boquete. All the calculated focal mechanisms are of the strike slip type.

Camacho, E.; Novelo-Casanova, D. A.; Tapia, A.; Rodriguez, A.

2008-12-01

304

GPS monitoring of Hawaiian Volcanoes  

USGS Multimedia Gallery

The USGS Hawaiian Volcano Observatory uses a variety of ground- and satellite-based techniques to monitor Hawai‘i’s active volcanoes.  Here, an HVO scientist sets up a portable GPS receiver to track surface changes during an island-wide survey of Hawai‘i’s volcanoes. &n...

305

Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii  

USGS Publications Warehouse

INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

2007-01-01

306

Water in Aleutian Arc Volcanoes  

NASA Astrophysics Data System (ADS)

In the past decade, baseline data have been obtained on pre-eruptive water contents for several volcanic arcs worldwide. One surprising observation is that parental magmas contain ~ 4 wt% H2O on average at each arc worldwide [1]. Within each arc, the variation from volcano to volcano is from 2 to 6 w% H2O, with few exceptions. The similar averages at different arcs are unexpected given the order of magnitude variations in the concentration of other slab tracers. H2O is clearly different from other tracers, however, being both a major driver of melting in the mantle and a major control of buoyancy and viscosity in the crust. Some process, such as mantle melting or crustal storage, apparently modulates the water content of mafic magmas at arcs. Mantle melting may deliver a fairly uniform product to the Moho, if the wet melt process includes a negative feedback. On the other hand, magmas with variable water content may be generated in the mantle, but a crustal filter may lead to magma degassing up to a common mid-to-upper crustal storage region. Testing between these two end-member scenarios is critical to our understanding of subduction dehydration, global water budgets, magmatic plumbing systems, melt generation and eruptive potential. The Alaska-Aleutian arc is a prime location to explore this fundamental problem in the subduction water cycle, because active volcanoes vary more than elsewhere in the world in parental H2O contents (based on least-degassed, mafic melt inclusions hosted primarily in olivine). For example, Shishaldin volcano taps magma with among the lowest H2O contents globally (~ 2 wt%) and records low pressure crystal fractionation [2], consistent with a shallow magma system (< 1 km bsl). At the other extreme, Augustine volcano is fed by a mafic parent that contains among the highest H2O globally (~ 7 wt%), and has evolved by deep crystal fractionation [2], consistent with a deep magma system (~ 14 km bsl). Do these magmas stall at different depths because of different crustal regimes or because of different primary magma compositions? Do magmas degas until they physically stall, or do they stall when they start to degas? One test of this is whether H2O contents correlate with tracers from the subduction zone that are not fractionated easily during crystal fractionation or degassing. We find a strong negative correlation between H2O/Ce (based on the maximum H2O measured in a given inclusion population) and Nb/Ce in eight Aleutian volcanoes, which is well explained by variable amounts of a slab fluid, but would be fortuitous, or strongly disturbed, if major degassing took place in the crust during magma ascent. Thus, geochemical data point to a strong slab-mantle control on H2O, that may set the future course of magma ascent, storage and eruption. Integrated studies are needed to test this prediction, including seismic imaging and geodetic response of the volcanic system, from the slab to the surface. [1] Plank, et al. (2011) Min. Mag. 75: 1648. [2] Zimmer, et al. (2010) J. Pet. 51: 2411-2444.

Plank, T.; Zimmer, M. M.; Hauri, E. H.

2011-12-01

307

Submarine Hydrothermal Activity on the Aeolian Arc: New Evidence from Helium Isotopes  

NASA Astrophysics Data System (ADS)

In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of ?3He = 23% at 610 m depth compared with background values of ~7%. We also found smaller but distinct ?3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had ?3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about ?3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He maximum (W. Roether and B. Klein, private comm.). Furthermore, the maximum is too deep to be attributed to the volcanoes of the Aeolian Arc, which are active at <1000 m depth. We are currently conducting additional measurements to determine whether this deep 3He maximum is from a local hydrothermal source or is somehow related to the deep water mass transient which occurred in the eastern Mediterranean in the 1990's.

Lupton, J.; de Ronde, C.; Baker, E.; Sprovieri, M.; Bruno, P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; Greene, R.

2008-12-01

308

Venus small volcano classification and description  

NASA Technical Reports Server (NTRS)

The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep-sided domes or 'pancake domes', larger than 20 km in diameter, were included with the small volcanic domes. For the purposes of this study, only volcanic edifices less than 20 km in diameter are discussed. This forms a convenient cutoff since most of the steep-sided domes ('pancake domes') and scalloped margin domes ('ticks') are 20 to 100 km in diameter, are much less numerous globally than are the smaller diameter volcanic edifices (2 to 3 orders of magnitude lower in total global number), and do not commonly occur in large clusters or fields of large numbers of edifices.

Aubele, J. C.

1993-01-01

309

Eruption of a deep-sea mud volcano triggers rapid sediment movement  

NASA Astrophysics Data System (ADS)

Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4?m per day, and significant emissions of methane and CO2 from the seafloor.

Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

2014-11-01

310

Eruption of a deep-sea mud volcano triggers rapid sediment movement  

PubMed Central

Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4?m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354

Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

2014-01-01

311

The Worlds Deadliest Volcanoes  

NSDL National Science Digital Library

At this interactive site the student attempts to rate the eruption of a volcano according to the Volcanic Explosive Index (VEI). After seeing the step by step eruption of an actual volcano, the student is introduced to VEI scale, which includes a description of the eruption, volume of ejected material, plume height, eruption type, duration, total known eruptions with that VEI, and an example. Each factor is linked to a section where it is explained in detail. After evaluating all of the factors and rating them, the student selects a VEI number and clicks for feedback. The correct answer is given with an explanation.

312

Research on Submarine Maneuverability of Flooded Compartment  

Microsoft Academic Search

The paper establishes the emergency recovery maneuver motion model. According to the characteristic of hydrodynamics coefficients on flooded submarine, attaining hydrodynamics coefficients of different angle of attack by limited ship model hydrodynamics experiment of large angle of attack. A sensitivity index is introduced to evaluate submarine's controllability. The experiment results are regressed to two kinds of hydrodynamic coefficients for big

Liu Hui; Pu Jinyun; Jin Tao

2009-01-01

313

THE SUBMARINE REVIEW FIXED SONAR SYSTEMS  

E-print Network

is the detection of submerged vessels approaching our shores. Since World War I, sonar has been used with varying sonar hydrophones, developed during World War I, could detect submarines from several miles away degrees of success to detect submarines. By the end of World War II, it was considered the premier sensor

314

Reactivity Accident of Nuclear Submarine near Vladivostok  

Microsoft Academic Search

After the collapse of the Soviet Union and consequently the termination of the Cold War and the disarmament agreements, many nuclear warheads are in a queue for dismantling. As a result, substantial number of nuclear submarines equipped with ballistic missiles will be also withdrawn from service. However, Russian nuclear submarines have suffered from reactivity accidents five times. In the paper,

Makoto TAKANO; Vanya ROMANOVA; Hiromi YAMAZAWA; Yuri SIVINTSEV; Keith COMPTON; Vladimir NOVIKOV; Frank PARKER

2001-01-01

315

Submarine landslide geomorphology, US continental slope  

Microsoft Academic Search

The morphometric analysis of submarine landslides in four distinctly different tectonic environments on the continental slopes of Oregon, central California, Texas, and New Jersey provides useful insight into submarine process, including sediment transport mechanisms and slope stability. Using Geographic Information System (GIS) software, we identify landslides from multibeam bathymetric and GLORIA sidescan surveys based solely on surficial morphology and reflectivity.

B. g. Mcadoo; L. f. Pratson; D. l. Orange

2000-01-01

316

Submarine landslide flows simulation through centrifuge modelling  

E-print Network

SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING by Chang Shin GUE A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge Churchill College January... “Continuous effort – not strength or intelligence – is the key to unlocking our potential” - Winston Churchill ABSTRACT SUBMARINE LANDSLIDE FLOWS SIMULATION THROUGH CENTRIFUGE MODELLING Chang Shin GUE Landslides occur both onshore...

Gue, Chang Shin

2012-05-08

317

Automating the Hunt for Volcanoes on Venus  

E-print Network

Our long-term goal is to develop a trainable tool for locating patterns of interest in large image databases. Toward this goal we have developed a prototype system, based on classical filtering and statistical pattern recognition techniques, for automatically locating volcanoes in the Magellan SAR database of Venus. Training for the specific volcano-detection task is obtained by synthesizing feature templates (via normalization and principal components analysis) from a small number of examples provided by experts. Candidate regions identified by a focus of attention (FOA) algorithm are classified based on correlations with the feature templates. Preliminary tests show performance comparable to trained human observers. 1 Introduction Many geological studies use surface features to deduce processes that have occurred on a planet. The recent JPL Magellan mission, which was successful in imaging over 95% of the surface of Venus with synthetic aperture radar (SAR), has provided planetary s...

M.P. Burl; U. M. Fayyad; P. Perona; P. Smyth

1994-01-01

318

ROV Tiburon Investigation of Hawaiian Submarine Canyons  

NASA Astrophysics Data System (ADS)

MBARI conducted ROV dives around the Hawaiian Islands during an expedition of the R/V Western Flyer and Tiburon in the spring of 2001. Eight ROV dives were made to investigate five major submarine canyons offshore of Oahu, Molokai, and Hawaii in up to 3,434 m water depths. Four of these canyons are located off the windward (northern) side of these islands where onshore canyons are also well developed. Those canyons located offshore of Molokai and Oahu incise the head scars of the giant Nuuanu and Wailai submarine landslides. ROV observations and sediment and rock outcrop sampling were made in these canyons to determine their origin and present-day activity. The fifth canyon investigated is located on the leeward (southern) side of Molokai. The canyons along the windward side expose extensive stratigraphic sections that reveal the history of the islands' formation. In composite, these sections contain marine pillow basalt overlain by a substantial sequence of alternating subaerial lava flows, rounded boulder conglomerates, shallow water carbonates, and hyaloclastites that indicate coastal and marine deposition. These sequences illustrate the accretion and subsequent subsidence of the islands' flanks. These canyons also have morphologically distinct upper and lower sections. The upper reaches of the canyons are incised into the shallow water marine facies and contain broad axial channels through which active sediment transport is occurring. In contrast, the morphology of the lower canyons are strongly influenced by the giant landslides that massively altered the northern flanks of the Hawaiian chain. The lower canyons contain plunge pools and steep headwall scarps that are generally comprised of mechanically competent subaerial lava flows. The presence of multiple plunge pools with differentially eroded head scarps suggests retrogressive erosion (bottom-up process) with headward advancement of the various heads. Undercutting of the headwalls also produce periodic rockfalls and debris flows that in combination with the sediment supplied from the upper parts of the canyons is both lengthening and deepening the canyons. This progressive advancement of the erosion along the weaker haloclastite beds has produced a stair-step configuration. In contrast, the canyon we investigated on the leeward side of Molokai showed no evidence of active sediment transport and appears to be filling.

Paull, C. K.; Greene, H. G.; Caress, D. W.; Clague, D. A.; Ussler, W.; Maher, N. M.

2001-12-01

319

Seafloor geodetic reference station branched from submarine cable  

NASA Astrophysics Data System (ADS)

We launched a project supported by the Japan Society for the Science Promotion as the Grants in Aid for Scientific Research. In this project, we are aiming at developing new-generation seafloor geodetic observation system that conquers difficulties inherent with the current system. Central idea of this project is to utilize techniques of underwater robot (Autonomous Underwater Vehicle) and submarine cable to make measurements in place of using the research vessels. Combination of underwater robot and submarine cable make it possible to provide permanent seafloor reference point, to conduct the observation with selecting favorable condition of sea and GPS satellite distributions, to make much more frequent observations and to enable flexible planning of observation in response to sudden geodetic events. Prototype of the on-board system which should be installed on an AUV was finished. Several trials had been done with the system in the sea. The results from them showed that the new on-board system will reach to the higher level in performance than the current system in the near future. And then we started to dedicate ourselves mainly to developing new seafloor transponder. The current seafloor transponder system is stand-alone one which runs on internal batteries. We expect five to ten years for the lifetime of the current seafloor transponder, even though it depends on how often we perform measurements with the transponder. Replacement of the seafloor transponder will be needed when we target seafloor crustal deformation that has long time cycle more than several decades. Continuity of seafloor geodetic observation will be stopped. New seafloor transponder which we have been developing is one which can be connected to a submarine cable by wet-mate connectors. Power is supplied through submarine cable and then the new seafloor transponder will be a permanent reference station for seafloor geodetic survey. Submarine cable can supply accurate GPS time (1pps) and clock to the transponder as well as power. The new cable transponder can realize acoustic ranging between sea surface and bottom with much higher accuracy than the current system. Submarine cable system off Toyohashi (Tokai-SCANNER) in central Japan is located on the source region of the huge repeated earthquakes. It is under the control of the JAMSTEC and used for long-term geophysical monitoring. This cable is one to which we are planning to connect newly developed seafloor transponder. The cruise of JAMSTEC"fS ROV "KAIKO 7000 II" and R/V "KAIREI" is scheduled to deploy and connect the seafloor transponder to the Tokai-SCANNER cable system from Sep. 18, 2008. We will report the overview of the cable transponder system and its deployment procedure in this presentation.

Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

2008-12-01

320

Primary Initiation of Submarine Canyons  

E-print Network

The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas-giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I propose here another, unanticipated consequence of whole-Earth decompression dynamics: namely, a specific, dominant, non-erosion, underlying initiation-mechanism precursor for submarine canyons that follows as a direct consequence of Earth's early origin as a Jupiter-like gas-giant.

Herndon, J Marvin

2011-01-01

321

Primary Initiation of Submarine Canyons  

E-print Network

The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas-giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I propose here another, unanticipated consequence of whole-Earth decompression dynamics: namely, a specific, dominant, non-erosion, underlying initiation-mechanism precursor for submarine canyons that follows as a direct consequence of Earth's early origin as a Jupiter-like gas-giant.

J. Marvin Herndon

2011-02-02

322

Currents in monterey submarine canyon  

USGS Publications Warehouse

Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

Xu, J.P.; Noble, M.A.

2009-01-01

323

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003  

USGS Publications Warehouse

The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003. The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.

Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

2004-01-01

324

Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2011  

USGS Publications Warehouse

Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

2012-01-01

325

Tech trek: Viewing volcanoes  

NSDL National Science Digital Library

Help students make real-world connections to Earth science concepts such as volcanoes with the help of modern technology. This article enumerates several websites where students can explore these forces of nature in a variety of ways - all from a safe distance!

Christmann, Edwin P.; Wighting, Mervyn J.; Lucking, Robert A.

2005-03-01

326

The Super Volcano Game  

NSDL National Science Digital Library

How would you handle a volcano diasater? In this game, you've just been appointed chief of the Emergency Management Agency for Bluebear County. Everyone is counting on you to handle the eruption of Mount Spur. Download this game to find out. Before you play, make sure Flash is installed on your computer.

British Broadcasting Corporation

327

Volcano evolution on Mars  

NASA Technical Reports Server (NTRS)

The diversity of volcanic activity on Mars throughout geologic time was one of the major factors that has controlled the spatial distribution of surface mineralogies. The traditional view of Martian volcanism is one in which effusive activity has dominated the entire preserved geologic history of the planet, with the minor exception of phreatomagnetic activity and associated volcano ground-ice interactions. However, two lines of evidence have caused reconsidering of this view, and have led to the possible role of explosive volcanism on Mars. First, detailed analysis of high resolution Viking Orbiter images has provided good evidence for explosive activity on Hecates Tholus and Alba Patera. Secondly, the problems believed to exist in associating explosive volcanism with silicic magmas on Mars, and the consequent unusual magmatic evolutionary trend for Martian volcanoes from silica-rich to silica-poor, may now be circumvented by the consideration of basatic plinian activity similar in kind to terrestrial eruptions such as the 1886 Tarawera eruption. The morphologic evidence for an early phase of explosive activity on Mars is briefly reviewed, and a model is presented for the emplacement of ash-flow deposits on Martian volcanoes. The volcanoes Alba Patera and Olympus Mons are considered in this context, along with some of the older Martian tholi and paterae

Mouginis-Mark, Pete; Wilson, Lionel

1987-01-01

328

The Three Little Volcanoes  

NSDL National Science Digital Library

In this worksheet students identify and label the characteristic features of shield, cinder cone and composite volcanoes. The resource is part of the teacher's guide accompanying the video, NASA Why Files: The Case of the Mysterious Red Light. Lesson objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide.

329

Santa Maria Volcano, Guatemala  

NASA Technical Reports Server (NTRS)

The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

2002-01-01

330

A satellite geodetic survey of spatiotemporal deformation of Iranian volcanos  

NASA Astrophysics Data System (ADS)

Surface deformation in volcanic areas is usually due to movement of magma, hydrothermal activity at depth, weight of volcano, landside, etc. Iran, located at the convergence of the Eurasian and Arabian tectonic plates, is the host of five apparently inactive volcanoes, named 'Damavand', 'Taftan', 'Bazman', 'Sabalan' and 'Sahand'. Through investigation of the long term surface deformation rate at Damavand volcano, the highest point in the middle east, Shirzaei et al. (2011) demonstrated that a slow gravity-driven deformation in the form of spreading is going on at this volcano. Extending the earlier work, in this study, I explore large sets of SAR data obtained by Envisat radar satellite from 2003 through 2010 at all Iranian volcanoes. Multitemporal interferometric analysis of the SAR data sets allows retrieving sub-millimeter surface deformation at these volcanic systems. As a result, I detect a transient flank failure in the form of landslide at Damavand that is followed by elevated fumarolic activity. This suggests that landslide might have triggered volcanic unrest. Moreover, I measure significant surface deformation at Taftan and Bazman volcanos associated with different episodes of uplift and subsidence. The inverse model simulations suggest that the time-dependent inflations and deflations of extended and spherical pressurized magma chambers are responsible for the surface displacements at these volcanoes. I also detect time-dependent surface displacements at Sabalan and Sahand volcanoes, where the investigation of the type and the sources of the observed deformation is subject of ongoing research. This study is a best example that shows the absent of recent eruption can not be used as a reliable factor in volcanic hazard assessment and a continuous monitoring system is of vital importance. Reference Shirzaei, M., Walter, T.R., Nankali, H.R. and Holohan, E.P., 2011. Gravity-driven deformation of Damavand volcano, Iran, detected through InSAR time series. Geology, 39(3): 251-254.

Shirzaei, M.

2012-04-01

331

32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. OCTOBER 3, 1932. COMPLETION OF ERECTION OF STEELWORK FOR ELEVATOR. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

332

29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

333

Fuel-cell-propelled submarine-tanker-system study  

SciTech Connect

This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

Court, K E; Kumm, W H; O'Callaghan, J E

1982-06-01

334

Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2010  

USGS Publications Warehouse

Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

2011-01-01

335

Volcanism offshore of Vesuvius Volcano in Naples Bay  

USGS Publications Warehouse

High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.

Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.

1998-01-01

336

One hundred years of volcano monitoring in Hawaii  

USGS Publications Warehouse

In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

Kauahikaua, Jim; Poland, Mike

2012-01-01

337

One hundred years of volcano monitoring in Hawaii  

USGS Publications Warehouse

In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

Kauahikaua, J.; Poland, M.

2012-01-01

338

Preliminary Results of a Near-Bottom Integrated Seafloor and Water Column survey of Brothers volcano, Kermadec arc, Using the Autonomous Vehicle ABE  

NASA Astrophysics Data System (ADS)

Brothers volcano, located about 310 km NE of New Zealand along the magmatic front of the Kermadec arc, is one of the best studied intraoceanic arc submarine volcanoes. Its 3.0 x 3.5 km caldera is slightly elliptical, with the long axis oriented about N320°E and has more than 300 m relief from a rim at ~1500 m to a maximum depth of 1880 m in its NW corner. Two major hydrothermal systems were discovered on it in the late 1990s, a high temperature field (up to 302°C) on the NW wall and a lower temperature gas-rich system on the summits of a pair of dacitic cones that occupy the SE half of the caldera. Although the caldera and cones were partly explored by submersibles in 2004 and 2005, the base map, made with a surface ship multibeam, was not detailed enough to understand the context of the seafloor observations. We used the autonomous vehicle ABE launched and recovered from the R/V SONNE in July-August 2007 to conduct high resolution near-bottom surveys of the caldera and its hydrothermal systems using a multibeam sonar, magnetometer, and CTD. The caldera wall, the dacite cones and part of the flat caldera rim were mapped in 96 hours of survey time over 8 dives. In addition, very detailed water column surveys at lower altitude and closer line spacing were conducted over the two most intense hydrothermal sites (i.e., the NW caldera wall and the smaller dacite cone). Although the results are preliminary, there are obvious correlations between hydrothermal activity, wall geomorphology, structural lineations, and the magnetic signature. New hydrothermal sites were discovered on the uppermost NW rim of the caldera and on the SW wall. This new map, along with the previously collected suites of fluid, mineral and seafloor observations, provides a baseline for future monitoring of Brothers' hydrothermal and volcanic activity. It will also provide a better understanding of how the long-term interplay of hydrothermal and volcanic activity affects the geomorphic evolution of submarine arc volcanoes.

Embley, R. W.; de Ronde, C.; Davy, B.; Baker, E. T.; Resing, J. A.; Yoerger, D. R.; Merle, S. G.; Walker, S. L.

2007-12-01

339

Continuous monitoring of volcanoes with borehole strainmeters  

NASA Astrophysics Data System (ADS)

Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other volcanic regions should be observable, continuous high sensitivity strain monitoring of volcanoes provides the potential to give short time warnings of impending eruptions. Current technology allows transmission and processing of rapidly sampled borehole strain data in real-time. Such monitoring of potentially dangerous volcanoes on a global scale would provide not only a wealth of scientific information but also significant social benefit, including the capability of diverting nearby in-flight aircraft.

Linde, Alan T.; Sacks, Selwyn

340

Regional impact of submarine canyons during seasonal upwelling  

NASA Astrophysics Data System (ADS)

numerical model of the northern California Current System along the coasts of Washington and British Columbia is used to quantify the impact of submarine canyons on upwelling from the continental slope onto the shelf. Comparisons with an extensive set of observations show that the model adequately represents the seasonal development of near-bottom density, as well as along-shelf currents that are critical in governing shelf-slope exchange. Additional model runs with simplified coastlines and bathymetry are used to isolate the effects of submarine canyons. Near submarine canyons, equatorward flow over the outer shelf is correlated with dense water at canyon heads and subsequent formation of closed cyclonic eddies, which are both associated with cross-shelf ageostrophic forces. Lagrangian particles tracked from the slope to midshelf show that canyons are associated with upwelling from depths of ˜140-260 m. Source depths for upwelling are shallower than 150 m at locations away from canyons and in a model run with bathymetry that is uniform in the along-shelf direction. Water upwelled through canyons is more likely to be found near the bottom over the shelf. Onshore fluxes of relatively saline water through submarine canyons are large enough to increase volume-averaged salinity over the shelf by 0.1-0.2 psu during the early part of the upwelling season. The nitrate input from the slope to the Washington shelf associated with canyons is estimated to be 30-60% of that upwelled to the euphotic zone by local wind-driven upwelling.

Connolly, Thomas P.; Hickey, Barbara M.

2014-02-01

341

Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes  

Microsoft Academic Search

Submarine landslides along the continental slope of the U.S. Atlantic margin are potential sources for tsunamis along the U.S. East coast. The magnitude of potential tsunamis depends on the volume and location of the landslides, and tsunami frequency depends on their recurrence interval. However, the size and recurrence interval of submarine landslides along the U.S. Atlantic margin is poorly known.

Uri S. ten Brink; Homa J. Lee; Eric L. Geist; David Twichell

2009-01-01

342

Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999  

USGS Publications Warehouse

The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999. Highlights of the catalog period include: 1) a large volcanogenic seismic swarm at Akutan volcano in March and April 1996 (Lu and others, 2000); 2) an eruption at Pavlof Volcano in fall 1996 (Garces and others, 2000; McNutt and others, 2000); 3) an earthquake swarm at Iliamna volcano between September and December 1996; 4) an earthquake swarm at Mount Mageik in October 1996 (Jolly and McNutt, 1999); 5) an earthquake swarm located at shallow depth near Strandline Lake; 6) a strong swarm of earthquakes near Becharof Lake; 7) precursory seismicity and an eruption at Shishaldin Volcano in April 1999 that included a 5.2 ML earthquake and aftershock sequence (Moran and others, in press; Thompson and others, in press). The 1996 calendar year is also notable as the seismicity rate was very high, especially in the fall when 3 separate areas (Strandline Lake, Iliamna Volcano, and several of the Katmai volcanoes) experienced high rates of located earthquakes. This catalog covers the period from January 1, 1994, through December 31,1999, and includes: 1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; 2) a description of instruments deployed in the field and their locations and magnifications; 3) a description of earthquake detection, recording, analysis, and data archival; 4) velocity models used for earthquake locations; 5) phase arrival times recorded at individual stations; and 6) a summary of daily station usage from throughout the report period. We have made calculated hypocenters, station locations, system magnifications, velocity models, and phase arrival information available for download via computer network as a compressed Unix tar file.

Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

2001-01-01

343

Estimates of elastic plate thicknesses beneath large volcanos on Venus  

NASA Technical Reports Server (NTRS)

Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

Mcgovern, Patrick J.; Solomon, Sean C.

1992-01-01

344

Hazard maps of Colima volcano, Mexico  

NASA Astrophysics Data System (ADS)

Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

2011-12-01

345

Explosion craters associated with shallow submarine gas venting off Panarea island, Italy  

NASA Astrophysics Data System (ADS)

Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100 m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000 years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70 Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.

Monecke, Thomas; Petersen, Sven; Hannington, Mark D.; Anzidei, Marco; Esposito, Alessandra; Giordano, Guido; Garbe-Schönberg, Dieter; Augustin, Nico; Melchert, Bernd; Hocking, Mike

2012-11-01

346

Identification of topographic fingerprints of eruption environments: Geomorphometric evidence from volcanoes of the Reykjanes Peninsula, Iceland  

NASA Astrophysics Data System (ADS)

The geomorphometry of volcanoes provides important information on the geologic evolution of planets. Therefore, constraining the topographic characteristics of terrestrial volcanoes is an important step for comparative planetology. Here we resolve geomorphometric fingerprints of volcanic edifices formed in subaerial, submarine and subglacial environments by focusing on volcanoes of the Reykjanes Peninsula, Iceland. The Reykjanes Volcanic Belt connects the Reykjanes midoceanic spreading ridge with the Western volcanic zone. It consists of four volcanic systems that display a variety of pristine Quaternary submarine, subglacial and subaerial volcanic edifices. 35 edifices were chosen for quantitative characterization using the IS 50V digital elevation model (20m/pixel). The edifice boundaries were delimited by concave breaks in slope around their bases and edifices were grouped according to slope, size and shape. A division based on slope values proves successful in discriminating subaerial edifices from subglacial and submarine edifices. Subaerial shields have average slopes between 2.8°-6.5°, which is at least 6° less than the average slopes of submarine and subglacial edifices. Moreover, the shields can be sub-divided into tholeite (2.8°-4.6°) and picrite (5.3°-6.5°) shields based on average slope. Submarine and subglacial edifices cannot be distinguished from each other by average slopes, and were grouped together in a submarine and subglacial class. This class was sub-divided into 3 groups based on their volume and suggests an evolutionary growth trend starting with small elliptical, linear ridges (~2*10-3-7*10-3 km3) to flat topped, table-shaped mountains (~100*10-3 -640*10-3 km3), with an intermediate growth stage (~10*10-3 - 80*10-3 km3) of very variable and irregular complex edifices. Further analysis of topographic profiles, slope frequency and elevational slope development, show that it is possible to resolve individual land elements based on break in slope, such as lava cap, hyaloclastite apron, hyaloclastite slope and hyaloclastite summit. The boundary between hyaloclastite breccia and lava cap represents a passage zone that marks late-stage subaerial lava-fed deltas and is clearly defined by convex breaks in slope. Large elevation changes in the passage zone is diagnostic of lava deltas emplaced in a glacial environment, and thus mapping of elevation changes of convex breaks in slope is a potential tool for distinguishing big table-shaped volcanic edifices emplaced in a submarine or subglacial environment. This study shows that volcano morphometry can be used to obtain information on processes operating during volcano construction, its eruption environment and the resulting evolutionary growth trends. A significant advantage of this method is its application for remote and inaccessible areas such as submarine or subglacial environments as well as extraterrestrial planets. Moreover, the break in slope delimitation of edifice bases and the possibility of resolving individual landform elements makes this geomorphometric analysis directly applicable for advanced mapping techniques such as object-based image analysis.

Pedersen, G. B.; Grosse, P.

2012-12-01

347

Tharsis Volcanoes and Valles Marineris, Mars  

NASA Technical Reports Server (NTRS)

It is northern summer on Mars and clouds are very common over the famous Tharsis volcanoes during the afternoon. At the far left, a white patchy cloud denotes the location of Olympus Mons. Ascraeus Mons is under the brightest cloud toward the center left, but the volcanoes Pavonis Mons and Arsia Mons (toward lower left below Ascraeus Mons) have much less cloud cover. The patch of clouds toward the upper left mark the location of the Alba Patera volcano. The Valles Marineris trough system--so long that it would stretch across North America--is seen in the lower third of this picture. This is a color composite of 9 red and 9 blue image strips taken by the Mars Global Surveyor Mars Orbiter Camera on 9 successive orbits from pole-to-pole during the calibration phase of the mission in March 1999. The color is computer-enhanced and is not shown as it would actually appear to the human eye.

Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

1999-01-01

348

Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008  

USGS Publications Warehouse

Between January 1 and December 31, 2008, the Alaska Volcano Observatory (AVO) located 7,097 earthquakes of which 5,318 occurred within 20 kilometers of the 33 volcanoes monitored by the AVO. Monitoring highlights in 2008 include the eruptions of Okmok Caldera, and Kasatochi Volcano, as well as increased unrest at Mount Veniaminof and Redoubt Volcano. This catalog includes descriptions of: (1) locations of seismic instrumentation deployed during 2008; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2008; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2008.

Dixon, James P.; Stihler, Scott D.

2009-01-01

349

Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology  

Microsoft Academic Search

In 1992, the Nautile went to a mud volcano field located east of the Barbados accretionary wedge near 13 ° 50N. Using nannofossil analysis on cores, we determined the sedimentation rate, and provided a new estimation of the age of the mud volcanoes (750,000 years for the oldest one). Six structures have been explored with the submersible Nautile, and manifestations

Sophie Lance; Pierre Henry; Xavier Le Pichon; Siegfried Lallemant; Hervé Chamley; Frauke Rostek; Jean-Claude Faugères; Eliane Gonthier; Karine Olu

1998-01-01

350

Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy  

Microsoft Academic Search

On multi-vents volcanoes changes in activity between different vents reflect a complex fluid-dynamics of the shallow feeding systems and are often explained numerically and experimentally in terms of conduit branches and bifurcations. We present new geophysical constraints on the shallow feeding system of Etna volcano derived from array analysis of infrasound radiated from two distinct sources, one located in the

Emanuele Marchetti; Maurizio Ripepe; Giacomo Ulivieri; Salvatore Caffo; Eugenio Privitera

2009-01-01

351

Preliminary Geologic Map of Newberry Volcano, Oregon  

NASA Astrophysics Data System (ADS)

The late Pleistocene and Holocene rear-arc Newberry Volcano is located in central Oregon east of the Cascades arc axis. Total area covered by the broad, shield-shaped edifice and its accompanying lava field is about 3,200 square kilometers, encompassing all or part of 38 U.S.G.S. 1:24,000-scale quadrangles. Distance from the northernmost extent of lava flows to the southernmost is about 115 km; east-west maximum width is less than 50 km. A printed version of the preliminary map at its intended publication scale of 1:50,000 is 8 ft high by 4 ft wide. More than 200 units have been identified so far, each typically consisting of the lava flow(s) and accompanying vent(s) that represent single eruptive episodes, some of which extend 10’s of kilometers across the edifice. Vents are commonly aligned north-northwest to north-northeast, reflecting a strong regional tectonic influence. The largest individual units on the map are basaltic, some extending nearly 50 km to the north through the cities of Bend and Redmond from vents low on the northern flank of the volcano. The oldest and most distal of the basalts is dated at about 350 ka. Silicic lava flows and domes are confined to the main edifice of the volcano; the youngest rhyolite flows are found within Newberry Caldera, including the rhyolitic Big Obsidian Flow, the youngest flow at Newberry Volcano (~1,300 yr B.P.). The oldest known rhyolite dome is dated at about 400 ka. Andesite units (those with silica contents between 57% and 63%) are the least common, with only 13 recognized to date. The present 6.5 by 8 km caldera formed about 75 ka with the eruption of compositionally-zoned rhyolite to basaltic andesite ash-flow tuff. Older widespread silicic ash-flow tuffs imply previous caldera collapses. Approximately 20 eruptions have occurred at Newberry since ice melted off the volcano in latest Pleistocene time. The mapping is being digitally compiled as a spatial geodatabase in ArcGIS. Within the geodatabase, feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The geodatabase can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. Map colors are being used to indicate compositions. Some map patterns have been added to distinguish the youngest lavas and the ash-flow tuffs. Geodatabase information can be used to better understand the evolution, growth, and potential hazards of the volcano.

Donnelly-Nolan, J. M.; Ramsey, D. W.; Jensen, R. A.; Champion, D. E.; Calvert, A. T.

2010-12-01

352

Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and  

E-print Network

Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka: Kamchatka Avachinsky volcano Ambient noise tomography Deep seismic sounding Caldera forming Avacha group includes two active and potentially dangerous volcanoes, Avachinsky and Koryaksky, located close

Shapiro, Nikolai

353

The Geology and Volcanic Evolution of the Hjorliefshofthi Outlier, Iceland: A 3D exposure of a Surtseyan Volcano?  

NASA Astrophysics Data System (ADS)

Hjörleifshöfthi is a small (~4 km2) isolated Quaternary volcanic outlier in southern Iceland that provides an excellent exposure of a Surtseyan volcano. It sits in a large sandur plain formed by glacier melt water outwash from late Holocene subglacial activity at Katla volcano: Aggradation of outwash sediments turned Hjörleifshöfthi from an island into part of the mainland. Detailed field mapping, logging and sampling of Hjörleifshöfthi has allowed the recognition of thirteen lithofacies and six depositional and eruptive phases. Phase one was the pre-emergent phase of Surtseyan volcanism and is characterised by hyaloclastite deposition. Large syn-sedimentary listric faults dissect phase 1 deposits and are inferred to result from edifice collapse. In Phase 1 faulting may have acted as pathways for magma intrusion in the shallow subsurface. Reactivation of faults continued until phase 4. Phase 2 involved the continued emplacement of hyaloclastite material, reworking (due to shoaling) and the emplacement of subaerial and subaqueous lava flows, fine grained vesicular tephra and basaltic spatter. Phase 2 lava flows thicken northwards suggesting ponding in a large dammed crater separated from the sea. However, in the south, abundant hyaloclastite material was still been generated. Hjörleifshöfthi now is what remains of a small slice of a earlier emergent island. Subsidence resulted in the deposition of a shallow marine succession of reworked volcaniclastic material (Phase 3). A distinct red fine-grained, lithic-rich (with partially quenched fragments) ignimbrite succession fills topographic lows (Phase 4). The affinity of the ignimbrite succession to Hjörleifshöfthi is unknown. Phase 5 consisted of a localized lava emplacement and marine reworking of volcaniclastic material along the southern margin. Phase 5 basalt lavas flowed down into the crater and buried the marine volcaniclastic sediments. Thin (1-4 m) accretionary lapilli-bearing tuff layers (Phase 6) cap the succession. Inward-dipping beds, the location of basaltic spatter and the distribution of ballistically emplaced bombs constrain the location of the vent that supplied the early and late lava flows. The deposits of each phase have been analysed for major and trace elements to fingerprint the source of the basalt clasts in hyaloclastite material and the ignimbrites, which may have come from Katla volcano. Hjörleifshöfthi provides an excellent exposure of a submarine system.

Watton, T. J.; Thordarson, T.; Jerram, D. A.; Brown, R. J.

2012-12-01

354

Gelatin Volcanoes: Student Page  

NSDL National Science Digital Library

This is the Student Page of an activity that teaches students how and why magma moves inside volcanoes by injecting colored water into a clear gelatin cast. The Student Page contains the activity preparation instructions and materials list, key words, and a photograph of the experimental setup. There is also an extension activity question that has students predict what will happen when the experiment is run using an elongated model. This activity is part of Exploring Planets in the Classroom's Volcanology section.

355

Shiveluch and Klyuchevskaya Volcanoes  

NASA Technical Reports Server (NTRS)

A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

2007-01-01

356

Yellowstone Volcano Observatory  

NSDL National Science Digital Library

This is the homepage of the United States Geological Survey's (USGS) Yellowstone Volcano Observatory. It features news articles, monitoring information, status reports and information releases, and information on the volcanic history of the Yellowstone Plateau Volcanic Field. Users can access monthly updates with alert levels and aviation warning codes and real-time data on ground deformation, earthquakes, and hydrology. There is also a list of online products and publications, and an image gallery

357

Earthquakes and Volcanoes  

NSDL National Science Digital Library

This unit provides an introduction for younger students on earthquakes, volcanoes, and how they are related. Topics include evidence of continental drift, types of plate boundaries, types of seismic waves, and how to calculate the distance to the epicenter of an earthquake. There is also information on how earthquake magnitude and intensity are measured, and how seismic waves can reveal the Earth's internal structure. A vocabulary list and downloadable, printable student worksheets are provided.

Medina, Philip

358

Evidence for a Mega-Tsunami Generated by Giant Flank Collapse of Fogo Volcano, Cape Verde  

NASA Astrophysics Data System (ADS)

Mega-tsunamis generated by ocean island flank collapses are expected to be some of the most hazardous forces of nature, yet evidence for their near-source effects and inferred high run-ups so far is scarce or hotly debated. A newly discovered deposit on the northern coast of Santiago Island (Cape Verde), however, documents the magnitude and run-up height associated with this kind of event. Additionally to chaotic conglomerates distributed from sea-level up to 100 m elevation standing on slopes as steep as 20°, the deposit comprises a number of scattered megaclasts of submarine lava flows, limestone and tuff. The megaclasts are presently located over a higher substructural slope built on younger subaerial lava flows and at elevations ranging 160-220 m a.s.l. All megaclasts correspond to lithologies that crop out exclusively in nearby cliff faces. The origin of this deposit is consequently attributed to an exceptional wave that plucked blocks from the cliff face, transported them inland and deposited them over the higher slopes of the volcanic edifice. The distribution of the megaclasts, together with the local geomorphology, is in agreement with a tsunami that approached the island edifice from the west and was refracted along its northern flank, flooding a series of northwest-oriented valleys. This suggests that the well-known flank collapse of Fogo volcano, located 55 km west of Santiago, is the most likely source, a hypothesis being tested with surface exposure dating. The inferred run-up exceeded 200 m and is consistent with numerical simulations by Paris et al. 2011, implying that the present Fogo island morphology probably developed by at least one giant flank collapse with devastating near-source effects.

Ramalho, R. S.; Madeira, J.; Helffrich, G. R.; Schaefer, J. M.; Winckler, G.; Quartau, R.; Adena, K.

2013-12-01

359

Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the society and the austral regions  

NASA Astrophysics Data System (ADS)

The southeastern prolongations of the Society and Austral islands volcanic chains are terminated by several recent submarine volcanoes (300-3800 m in height) built on irregularly shaped crustal swells or bulges (3600-3950 m in depth). The crustal swells (about 100 km in width) is bounded by deeper abyssal hill regions (>4000 m in depth) where old volcanoes with thick Fe-Mn coatings are encountered. The rocks sampled on this ancient oceanic crust are depleted mid-ocean ridge basalts (MORBs) similar to modem volcanics encountered on the East Pacific Rise. The volcanics of the Society hot spot consist of ankaramites, picrites, alkali-basalts, basanites, tephrites, and trachytes. Highly vesiculated pillow lavas show a wide compositional range in their large ion lithophile elements (LILE) (K2O=1-4%, Nb=25-80 ppm, Zr=200-400 ppm, Ba=300-840 ppm) and compatible element variations (Mg #=40-70, Ni=80-500 ppm), and low Zr/Nb ratios (5-8). Low-K tholeiites (K2O<0.15%, Nb=3-6 ppm, Zr=56-74 ppm, Zr/Nb=10-25), also found associated with alkali-basalts and basanites from recent volcanoes, are believed to have been exposed during rejuvenation of ancient edifices. The Macdonald volcano (Austral island chain), with a base diameter of 45 km at a depth of 3850 m, was sampled from its summital area (<100 m in depth) down to 2000 m in depth. Highly vesiculated pillow lavas, volcanic ejecta, and accidental rock debris recovered differ from those of the Society hot spot volcanoes by their lower Zr/Nb (3-5), Rb/Sr (<0.045), and (Ce/Yb)N (5-10) ratios and their lower Ba (350-400 ppm) and light rare eath elements (LREE) content. The accidental rock debris (metabasalt, metadolerite, isotropic gabbros, and metagabbros) were scattered during phreatic explosive events on the flanks of the Macdonald volcano. Volcanic ejecta of basanite lapilli partially covering the accidental rock debris were formed during more recent phreatomagmatic explosions. The most undersaturated glassy pillow lava encountered in the Austral hot spot is a normative nepheline-rich rock with incipient amphibole recovered from an ancient seamount (Ra seamount) located at about 100 km northwest of the Macdonald volcano. Based on their high LREE content and low Zr/Nb (3-8) and on their high (Ce/Yb)N (5-20) (5-20), (La/Sm)N (1-5), and (La/Lu)N (7-40) ratios with respect to the MORBs, it is speculated that the intraplate volcanics (Austral and Society volcanoes) have originated from the partial melting of mixed mantle sources made up of lherzolite (MORB mantle source) and another complementary source enriched in LREEs and Nb. A recycling of continental crust or pelagic sediments in subduction zones represents a possible supply of LREEs but not of Nb. Continental metasomatized peridotites and oceanic amphibole-peridotites such as Zabargad and St. Paul's Rocks samples were proposed as potential mantle sources for intraplate magmas. Using modal and chemical (Zr, Nb, Ce, and Yb) data available in the literature, a model of partial melting of a composite mantle, obtained by mixing homblendite (Queensland's xenoliths) and spinel-lherzolites, was tested as being a possible origin for the studied rocks. This model provides adequate Zr/Nb ratios and suggests that the Society mantle source contained smaller amount of homblendite (<5 wt %) and underwent lower degree of partial melting (about 5 %) than that of the Austral hot spot (10 wt % and 10-20% respectively). However, the complementary mantle source in the Society hot spot requires larger amount of LREEs than it is necessary for the Austral volcanoes. While the Zabargad amphibole-peridotites are reasonable candidates, the metasomatized peridotite xenoliths from continental alkali-basalts and the amphibole-peridotite mylonites from St. Paul's Rocks are more suitable as a potential source for the Society parental melts enriched in Ce and La. Hence the intraplate lava compositions could be the result of recycling and remelting of an ancient oceanic upper mantle which is partially metasomatized during its lateral transfer off

Hekinian, Roger; Bideau, Daniel; Stoffers, Peter; Cheminee, Jean Louis; Muhe, Richard; Puteanus, Doris; Binard, Nicolas

1991-02-01

360

Exterior view of submarine with survey crew posed in front. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Exterior view of submarine with survey crew posed in front. From left to right: Todd Croteau - U.S. National Park Service, Joshua Price - U.S. Navy, Bert Ho - National Oceanic and Atmospheric Administration, Michael McCarthy - Western Australia Maritime Museum, Larry Murphy - U.S. National Park Service, Don Johnson- University of Nebraska Engineering School, James Delgado- Institute for Nautical Archeology, Jacinto Ahmendra - Government of Panama. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

361

Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska; Final Technical and Construction Report  

Microsoft Academic Search

The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities

Alan See; Bennie N. Rinehart; Glen Marin

1998-01-01

362

Submarine groundwater discharge to Tampa Bay: Nutrient fluxes and biogeochemistry of the coastal aquifer  

Microsoft Academic Search

To separately quantify the roles of fresh and saline submarine groundwater discharge (SGD), relative to that of rivers, in transporting nutrients to Tampa Bay, Florida, we used three approaches (Darcy's Law calculations, a watershed water budget, and a 222Rn mass-balance) to estimate rate of SGD from the Pinellas peninsula. Groundwater samples were collected in 69 locations in the coastal aquifer

Kevin D. Kroeger; Peter W. Swarzenski; Wm. Jason Greenwood; Christopher Reich

2007-01-01

363

Capacity upgrade in WDM submarine cable system  

Microsoft Academic Search

The capacity upgrade from 20 Gbit\\/s to 160 Gbit\\/s in a WDM submarine cable system has been designed based on the experimental study of the dependency of the repeater output power and the number of wavelength

Eiichi Shibano; Hidenori Taga; Toshio Kawazawa; Koji Goto

1999-01-01

364

Comparative naval architecture analysis of diesel submarines  

E-print Network

Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written ...

Torkelson, Kai Oscar

2005-01-01

365

Using Submarine Landslides to Predict Slope Stability  

NSDL National Science Digital Library

Students use detailed bathymetric maps to find submarine landslides and compare the slope of these slides to the slope of hills near school and home. By comparing the slopes they can consider slope failure, especially during earthquakes.

Shawn Doan

366

CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES  

SciTech Connect

The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

2003-02-27

367

The magmatic plumbing of the submarine Hachijo NW volcanic chain, Hachijojima, Japan: Long-distance magma transport?  

NASA Astrophysics Data System (ADS)

Recent geophysical observations on basaltic composite volcanoes in Izu-Bonin arc reveal the process of long-distance lateral magma transport within arc crust. To clarify a long-distance magma transport system of the basaltic arc volcano from geological and petrological aspects, we investigated 20-km-long submarine volcanic chains (Hachijo NW chain and Hachijo-kojima chain) and cones on the northeastern slope (NE edifices) as well as subaerial satellite cones nested Hachijo Nishiyama volcano in the northern Izu arc front. Basalts from Hachijo NW chain have more primitive composition than those from other edifices. The composition of the Hachijo NW chain basalts is controlled by fractional crystallization, while plagioclase accumulation occurred in NE edifices and subaerial satellite cones. Trace element and isotopic characteristics indicate that the same basaltic primary magma is involved in all sections of the volcano. This leads us to consider that magma was transported long distances between the Nishiyama volcano and the Hachijo NW chain. Primitive magma was laterally transported NNW for at least 20 km in the middle to lower crust (10-20 km deep) from Nishiyama volcano with only minimal crustal level modifications and formed Hachijo NW chain. On the other hand, magmas experienced crystal fractionation and accumulation at shallow magma chamber beneath Nishiyama volcano seems to have been transported in a short distance (<5 km) and formed NE trending edifices and subaerial satellite cones. The long-distance magma transport seems to be controlled by a regional extensional stress regime, while short-distance transport may be controlled by local stress regime affected by load of main volcanic edifice.

Ishizuka, Osamu; Geshi, Nobuo; Itoh, Jun'ichi; Kawanabe, Yoshihisa; Tuzino, Taqumi

2008-08-01

368

Addressing submarine geohazards through scientific drilling  

Microsoft Academic Search

Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific

A. Camerlenghi

2009-01-01

369

Personality characteristics of successful Navy submarine personnel.  

PubMed

This study evaluated the personality characteristics of senior enlisted and occupationally successful Navy submarine personnel. One hundred subjects completed the Schedule for Nonadaptive and Adaptive Personality (SNAP). Results indicated that the traits of detachment, propriety, and workaholism were most descriptive of the sample. Thirty-seven percent met SNAP criteria for a personality disorder, typically antisocial, obsessive-compulsive, or avoidant. The results are discussed in terms of adaptation to environmental demands aboard submarines. Suggestions for further research are offered. PMID:8935516

Moes, G S; Lall, R; Johnson, W B

1996-04-01

370

Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago  

NASA Astrophysics Data System (ADS)

Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1located mainly in and below the Monte Amarelo lateral collapse scar. They are interpreted as shear failures between unconsolidated material at the base of the collapse scar fill and underlying more rigid pre-collapse rocks with abundant dikes, occuring as a result of long-term gravitational re-adjustment of the collapse scar fill after inflation of the island due to the 1995 eruption. Brava experiences frequent swarms of VT events. These are located mostly offshore, with a small proportion of on-shore events. The positions of offshore events are strongly correlated with seamounts and hence are interpreted as due to submarine volcanic processes. Onshore events (0.7located both offshore and onshore. The offshore epicentres are correlated with seamounts, and hence also likely result from submarine processes. Onshore VT events are located mostly on the volcanic rift zones of the two active volcanoes on Santo Antao, which are most probably also the sources of the associated MF events and harmonic tremor as well. These onshore swarms likely record dike intrusions into the volcanic rift zones. In conclusion, we note that each island has its own distinctive pattern of seismic activity, perhaps reflecting its different stage of evolution. Full understanding of the seismic activity and how it can be interpreted in mechanistic terms, as a basis for future volcanic hazard models and eruption forecasts, will therefore require more detailed geological and geophysical investigations of each island, with different priorities in each case.

Faria, B. V.; Day, S.; Fonseca, J. F.

2013-12-01

371

Temporal Changes of Vp/Vs Ratios in the Volcano-Tectonic Seismic Swarm Zones of Redoubt Volcano, Alaska  

NASA Astrophysics Data System (ADS)

It is known that the P and S wave velocity ratios, Vp/Vs, reflect the physical and chemical properties of medium including temperature, density, and rock composition. Temporal variations of Vp/Vs ratios in volcanic regions may allow us to infer the changes in medium and magma properties beneath volcanoes. Redoubt volcano is an active volcano that is located at 175 km southwest from Anchorage. The size of volcano is about 10 km in diameter, and the volume is around 30-35 km2. The volcano has erupted several times since 1902, and most recently in 2009. The eruptions were generally explosive, and produced lava and pyroclastic flows. Seismic events in the volcano-tectonic (VT) seismic swarm zones of Redoubt volcano are well monitored by Alaska Volcanic Observatory (AVO). We investigate the Vp/Vs ratios in the VT seismic swarm zones from observed P and S arrival times. The hypocentral information is collected from the AVO seismic catalogue. Seismic data with high signal-to-noise ratios for earthquakes with epicentral distance less than 10 km are selected for analysis. A total of 6425 P and S travel-time pairs is collected. The Vp/Vs ratios are estimated using a modified Wadati method that is based on the S-P differential travel times versus P travel times. The VT seismic swarm zones are discretized by 0.1°-by-0.1° cells. Tomographic Vp/Vs ratio models are calculated before and after the recent eruption. The average Vp/Vs ratio of the study region is determined to be 1.90, which is significantly higher than that of Poisson solids. Also, systematic temporal changes in Vp/Vs ratios are observed around the volcano before and after the eruption.

Jo, E.; Hong, T.

2012-12-01

372

Methane and radioactive isotopes in submarine hydrothermal systems  

SciTech Connect

This thesis consists of two parts: 1) methane and 2) radioactive isotopes, especially radon, in submarine hydrothermal systems. Both parts deal with the use of these gases as tracers for mapping hydrothermal vents at sea, and with their relationships to other sensitive tracers such as helium, manganese, and temperature. Hydrothermal methane was used as a real-time tracer for locating new submarine hydrothermal systems along spreading axes, discovering new hydrothermal systems at two locations in Pacific Ocean: 1) 20/sup 0/S on East Pacific Rise, and 2) Mariana Trough Back-arc Basin. Methane shows good correlations with helium-3 and temperature with similar ratios in various hydrothermal systems, 3 to 42 x 10/sup 6/ for the methane to helium-3 ratio, and 3 to 19 ..mu.. cc/kg/sup 0/C for the methane to temperature anomaly. These similar ratios from different areas provide evidence for chemical homogeneity of submarine hydrothermal waters. A good correlation between methane and manganese appears to be associated only with high-temperature hydrothermal systems. Radioisotopes in the vent waters of 21/sup 0/N high-temperature hydrothermal system have end-member concentrations of 7.5 to 40 dpm/kg for Ra-226, 360 dpm/kg for Rn 222, 62 dpm/kg for Pb-210, and 19 dpm/kg for Po-210. The radon activity for this system is one order of magnitude lower, and the Pb-210 activity is one order or magnitude higher, than those a the low temperature Galapagos system. All these observations suggest that the high radon, and low Pb-210 activity observed in Galapagos system may originate from the extensive subsurface mixing and water-rock interaction in this system (direct injection of radon and scavenging of Pb-210).

Kim, K.R.

1983-01-01

373

Space Radar Image of Colombian Volcano  

NASA Technical Reports Server (NTRS)

This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companiesfor the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency,Agenzia SpazialeItaliana (ASI), with the Deutsche Forschungsanstalt fuer Luft undRaumfahrt e.v.(DLR), the major partner in science,operations, and data processing of X-SAR.

1999-01-01

374

U-Th/He Ages of HSDP-2 Submarine Samples  

NASA Astrophysics Data System (ADS)

Hawaiian lavas have been used to investigate the life-cycles of hotspot-traversing volcanoes. The ~ 3500m core recovered by the Hawaii Scientific Drill Project, phase 2 (HSDP-2) has proven invaluable in refinement of models that link plume structures and melting rates to subaerial growth and geochemical evolution. Accurate age dating of lavas is critical in linking geochemical observations to plume characteristics; however, young ages and potassium-poor lavas limit the precision of argon methods. The U-Th/He method on olivine phenocrysts has been used to successfully date Hawaiian post-shield alkali basalts and flood basalts from the Snake River Plain. We are applying the method to olivine-rich lithologies in the HSDP-2 core in an attempt to gain further information about the growth rates of Hawaiian volcanoes. Preliminary results indicate that the method could help refine the flow chronology, but that modifications to the analysis procedure may be necessary to optimize the results. A subaerial Mauna Kea tholeiitic basalt from 528m depth yields a U-Th/He age of 485 +/- 100 ka (sample SR0222), slightly older than expected based on previous determinations on stratigraphically bounding flows by the argon isochron method (Sharp et al., Gcubed, 2005). A submarine hyaloclastite sample from 2931m depth (SR930) yields a preliminary age of 650+/-100 ka, which agrees well with previous Ar measurements. A pillow lava, SR0964, was also investigated, but it yielded a complicated He release pattern and no age can be obtained. U and Th concentrations in olivine separates from all three samples are low (2.6 - 5.2 ppb U; 4.5 - 8.0 ppb Th). The submarine samples appear to have a substantial amount of magmatic helium still remaining in the olivine after in vacuo crushing, as evidenced by high R/Ra values in gas released at high temperature. Residual gas left after crushing may be up to 85% magmatic, which makes the determination of radiogenic He less accurate. Sulfur contents of glass from the host submarine lava samples are high, indicating that the lavas were incompletely degassed. Helium isotopic ratios measured from the crushing step are within error of previously published values (R/Ra = 12.4 and 12.9). Extreme R/Ra values in the 530° C pre-fusion extraction (R/Ra = 756 for SR0964 and 68 for SR0930) suggest that high-T degassing may preferentially release 3He. We are continuing a helium isotopic exploration of the lowermost 450m of HSDP-2, which will provide important information about He isotopes in the core of the Hawaiian plume, and focusing further U- Th/He investigations on samples with low-S glass.

Peterson, B. T.; Aciego, S. M.; Kennedy, B. M.; Depaolo, D. J.

2008-12-01

375

1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory  

USGS Publications Warehouse

During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

1995-01-01

376

Human-Powered Submarine Competition: World Submarine International 1996 [and] Design Technology Exhibit: A School Model.  

ERIC Educational Resources Information Center

Hibbard describes the process used by students at Millersville University to build a human-powered submarine for entry in an international submarine competition. Edwards discusses the Design Technology Exhibit held at Lu Sutton Elementary School, the purpose of which was to challenge students to design a useful structure and provide them with the…

Hibberd, John C.; Edwards, Don

1996-01-01

377

Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc  

NASA Astrophysics Data System (ADS)

Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

2013-12-01

378

Deformation time series at Llaima volcano, southern Andes  

NASA Astrophysics Data System (ADS)

Llaima volcano, with an edifice height of 3125 m and a volume of about 400 km³, is one of the largest and most active volcanoes in South America. Its eruptive history suggest a potential for very large and hazardous eruptions including pyroclastic flows, air falls and material remobilization in the form of lahars affecting regions even at the lower apron and beyond, posing a significant risk to civilizations, infrastructure and traffic ways. Llaima volcano is near constantly active; since the 17th century strombolian eruptions occurred at a mean frequency of one eruptive phase every five years. Although this strong activity and socioeconomic importance the source of magma, possible magma reservoirs and deformations prior to or associated with eruptions are hitherto unknown. One of the problems for establishing a monitoring system is that Llaima is difficult to access and located in vegetated and topographically rough terrain. To better understand the volcano physics, we created an InSAR time series based on the PS technique using 18 Envisat images from Dezember 2002 to November 2008. Using the StaMPS software we obtained 24,000 stable pixels in the vicinity of the volcano, that allow to investigate a spatiotemporal displacement field. Associated with the recent eruptions, we observed non-linear subsidence at the vicinity of the volcano base. We assessed the validiy of the deformation signal, using statistical tests and discussed the possible influence of athmospheric and topographic errors. To investigate the cause of the observed spatiotemporal deformation we employed an inverse source modelling approach, and simulated the dislocation source as an analytical pressurized spherical model. The inverted source can reproduce the observed deformation and allows to constrain the location of the magma reservoir under Llaima. Moreover we observed a signal might be associated to a slow landslide at the eastern flank of the volcano between December 2007 and Januar 2008. In this presentation we will give the detail of data processing, modelling and interpretation.

Bathke, Hannes; Walter, Thomas; Motagh, Mahdi; Shirzaei, Manoochehr

2010-05-01

379

Anatomy of a basaltic volcano  

Microsoft Academic Search

Kilauea volcano, in Hawaii, may be the best understood basaltic volcano in the world. Magma rises from a depth of 80 km or more and resides temporarily in near-surface reservoirs: eruption begins when the crust above one of these reservoirs splits open in response to a pressure increase. Repeated rift-zone eruptions compress Kilauea's flanks; after decades of accumulation, the stress

Robert I. Tilling; John J. Dvorak

1993-01-01

380

Earthquakes, Volcanoes, and Plate Tectonics  

NSDL National Science Digital Library

This page consists of two maps of the world, showing how earthquakes define the boundaries of tectonic plates. Volcanoes are also distributed at plate boundaries (the "Ring of Fire" in the Pacific) and at oceanic ridges. It is part of the U.S. Geological Survey's Cascades Volcano Observatory website, which features written material, images, maps, and links to related topics.

381

Electrical structure of Newberry Volcano, Oregon  

USGS Publications Warehouse

From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

1988-01-01

382

Gelatin Volcanoes: Teacher Page  

NSDL National Science Digital Library

This is the Teacher Page of an activity that teaches students how and why magma moves inside volcanoes by injecting colored water into a clear gelatin cast. Activity preparation instructions are on the Student Page, while the Teacher Page has background, preparation, and in-class information. An extension activity has the students repeat the experiment using a square bread pan to simulate the original research that was done using elongate models with triangular cross-sections. This activity is part of Exploring Planets in the Classroom's Volcanology section.

383

Long Valley Volcano Observatory  

NSDL National Science Digital Library

This is the homepage of the United States Geological Survey's (USGS) Long Valley Volcano Observatory (LVO). It features a variety of information on the Mono-Inyo Craters volcanic chain in Long Valley Caldera, California. Materials include a current conditions page with status reports, updates and information releases. There is also monitoring data on seismic activity, ground deformation, gases and tree kill, and hydrologic studies. Topical studies include a reference on the most recent eruption in the Inyo chain (about 250 years ago), and information on the Long Valley Exploratory Well. There are also links to USGS fact sheets and other references about the caldera.

384

How Volcanoes Work  

NSDL National Science Digital Library

How Volcanoes Work was constructed and is maintained by Dr. Vic Camp from San Diego State University's Department of Geological Sciences. The site takes a comprehensive look into every aspect of volcanic formations and eruptions, including historical eruptions (Mt. St. Helens) and volcanism on other planets. Well written and designed, this site offers excellent illustrations, photographs, and several multimedia files such as a cross-sectional view of an eruption taking place. Anyone from geology students to lifelong learners will find this site interesting and informative.

Camp, Vic.

2000-01-01

385

Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan  

NASA Astrophysics Data System (ADS)

In order to identify the mud diapirs and mud volcanoes off SW Taiwan, we have examined ?1500 km long MCS profiles and related marine geophysical data. Our results show ten quasi-linear mud diapirs, oriented NNE-SSW to N-S directions. Thirteen mud volcanoes are identified from the multibeam bathymetric data. These mud volcanoes generally occur on tops of the diapiric structures. Moreover, the active mud flow tracks out of mud volcanoes MV1, MV3 and MV6 are observed through the high backscatter intensity stripes on the sidescan sonar images. The heights of the cone-shaped mud volcanoes range from 65 m to 345 m, and the diameters at base from 680 m to 4100 m. These mud volcanoes have abrupt slopes between 5.3° and 13.6°, implying the mudflow is active and highly viscous. In contrast, the flat crests of mud volcanoes are due to relative lower-viscosity flows. The larger cone-shaped mud volcanoes located at deeper water depths could be related to a longer eruption history. The formation of mud diapirs and volcanoes in the study area are ascribed to the overpressure in sedimentary layers, compressional tectonic forces and gas-bearing fluids. Especially, the gas-bearing fluid plays an important role in enhancing the intrusion after the diapirism as a large amount of gas expulsions is observed. The morphology of the upper Kaoping Slope is mainly controlled by mud diapiric intrusions.

Chen, Song-Chuen; Hsu, Shu-Kun; Wang, Yunshuen; Chung, San-Hsiung; Chen, Po-Chun; Tsai, Ching-Hui; Liu, Char-Shine; Lin, Hsiao-Shan; Lee, Yuan-Wei

2014-10-01

386

Sea Ice Properties from Submarine Multi Beam Sonar  

NASA Astrophysics Data System (ADS)

A Konsberg EM 3002 Multibeam (MB) sonar was installed on Royal Navy submarine ‘HMS Tireless' in collaboration with the DAMOCLES project to measure properties of Arctic sea ice in Spring 2007. MB sonar makes successive, parallel, along-track narrow beam soundings comprised of 254 individual ‘pings' spread out perpendicular to the direction of motion of the parent vessel. Reconstructed multiple soundings provide high-resolution descriptions and locations of physical features of interest to mariners, i.e. submerged vessels, bathymetry of continental shelves and navigation hazards. HMS Tireless looked upward with the MB sonar, gathering data on the highly variable Arctic sea ice underside. We present 200 km of MB data, in a region located 350 km off the northern coast of Greenland, where the submarine performed a gridded overlapping survey between 12 and 13 March 2007. This ice topography data includes pressure ridge spacing, frequency and orientation, draft, and we demonstrate its ability to demarcate regions of first-year and multi-year ice.

Toberg, Nicholas; Wagner, Till

2010-05-01

387

What can we learn about the history of oceanic shield volcanoes from deep marine sediments? Example from La Reunion volcanoes.  

NASA Astrophysics Data System (ADS)

The discovery in 2006, during the oceanographic survey FOREVER, of large volcaniclastic sedimentary systems off La Réunion Island (western Indian ocean) revealed a new image of the evolution of oceanic shield volcanoes and their dismantling. Marine data obtained from 2006 to 2011 during the oceanographic surveys ERODER 1 to ERODER 4 included bathymetry, acoustic imagery, echosounding profiles, dredging and coring. Six major turbidite systems were mapped and described on the submarine flanks of La Reunion volcanic edifice and the surrounding oceanic plate. The interpretation of sediment cores enable us to characterise the processes of gravity-driven sediment transfer from land to deep sea and also to revisit the history of the volcanoes of La Réunion Island. Turbidite systems constitute a major component of the transfer of volcanic materials to the abyssal plain (Saint-Ange et al., 2011; 2013; Sisavath et al., 2011; 2012; Babonneau et al., 2013). These systems are superimposed on other dismantling processes (slow deformation such as gravity sliding or spreading, and huge landslides causing debris avalanches). Turbidite systems mainly develop in connection with the hydrographic network of the island, and especially at the mouths of large rivers. They show varying degrees of maturity, with canyons incising the submarine slope of the island and feeding depositional areas, channels and lobes extending over 150 km from the coast. The cores collected in turbidite systems show successions of thin and thick turbidites alternating with hemipelagic sedimentation. Sedimentological and stratigraphic analysis of sediment cores yielded a chronology of submarine gravity events. First-order information was obtained on the explosive activity of these volcanoes by identifying tephra layers in the cores (glass shards and pumice). In addition, major events of the volcanic and tectonic history of the island can be identified and dated. In this contribution, we focus most attention on the southernmost turbidite system (St-Joseph system). Sedimentary records allow us to establish a link between two major landslides affecting the flanks of Piton de la Fournaise volcano and the triggering of major turbidity currents. Thus, the age of these events could be obtained; their chronology being far too difficult to establish otherwise. In short: a beautiful example of the contribution of sedimentology to the study of the structural evolution of the volcanoes. References Babonneau N., Delacourt C., Cancouet R., Sisavath E., Bachelery P., Deschamps A., Mazuel A., Ammann J., Jorry S.J., Villeneuve N., 2013, Marine Geology, 346, 47-57. Saint-Ange F., Bachèlery P., Babonneau N., Michon, L., Jorry S.J., 2013, Marine Geology. 337, 35-52. Saint-Ange, F., Savoye, B., Michon, L., Bachelery, P., Deplus, C., De Voogd, B., Dyment, J., Le Drezen, E., Voisset, M., Le Friant, A., and Boudon, G., 2011. Geology, 39, 271-274, doi: 10.1130/G31478.1. Sisavath, E., Mazuel, A., Jorry, S., Babonneau, N., Bachèlery P., De Voogd, B., Salpin, M., Emmanuel, L., Beaufort, L., Toucanne, S., 2012, Sedimentary Geology, 281, p. 180-193, doi :10.1016/j.sedgeo.2012.09.010. Sisavath, E., Babonneau N., Saint-Ange F., Bachèlery P., Jorry S., Deplus C., De Voogd B., Savoye B., 2011, Marine Geology, v. 288, p. 1-17, doi:10.1016/j.margeo.2011.06.011.

Bachelery, Patrick; Babonneau, Nathalie; Jorry, Stephan; Mazuel, Aude

2014-05-01

388

Nyiragongo Volcano Erupts in the Congo  

NASA Technical Reports Server (NTRS)

Mount Nyiragongo, located in the Democratic Republic of the Congo, erupted today (January 17, 2002), ejecting a large cloud of smoke and ash high into the sky and spewing lava down three sides of the volcano. Mount Nyiragongo is located roughly 10 km (6 miles) north of the town of Goma, near the Congo's border with Rwanda. According to news reports, one river of lava is headed straight toward Goma, where international aid teams are evacuating residents. Already, the lava flows have burned through large swaths of the surrounding jungle and have destroyed dozens of homes. This false-color image was acquired today (January 17) by the Moderate-resolution Imaging Spectroradiometer (MODIS) roughly 5 hours after the eruption began. Notice Mount Nyiragongo's large plume (bright white) can be seen streaming westward in this scene. The plume appears to be higher than the immediately adjacent clouds and so it is colder in temperature, making it easy for MODIS to distinguish the volcanic plume from the clouds by using image bands sensitive to thermal radiation. Images of the eruption using other band combinations are located on the MODIS Rapid Response System. Nyiragongo eruptions are extremely hazardous because the lava tends to be very fluid and travels down the slopes of the volcano quickly. Eruptions can be large and spectacular, and flows can reach up to 10s of kilometers from the volcano very quickly. Also, biomass burned from Nyriagongo, and nearby Mount Nyamuragira, eruptions tends to create clouds of smoke that adversely affect the Mountain Gorillas living in the adjacent mountain chain. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

2002-01-01

389

Internal Waves and Tidal Conversion from a Finite Submarine Ridge  

E-print Network

Internal Waves and Tidal Conversion from a Finite Submarine Ridge Blagoje Djordjevic adviser: P is to investigate how the shape of a submarine ridge on the ocean bottom affects the generation of internal tidal

Morrison, Philip J.,

390

Open architecture framework for improved early stage submarine design  

E-print Network

Could transparency between current disparate methods improve efficiency in early stage submarine design? Does the lack of transparency between current design methods hinder the effectiveness of early stage submarine design? ...

Sewell, Eli A. (Eli Anthony)

2010-01-01

391

LATE QUATERNARY GLACIATION OF THE ERCIYES VOLCANO, CENTRAL TURKEY  

E-print Network

LATE QUATERNARY GLACIATION OF THE ERCIYES VOLCANO, CENTRAL TURKEY SARIKAYA, M. Akif1, Ã?INER, Attila, Turkey, aciner@hun.edu.tr, (2) Hydrology and Water Resources, Univ of Arizona, Tucson, AZ 85721 Mount Erciyes (3917 m), highest stratovolcano of Central Turkey, is located in the northeastern part

Zreda, Marek

392

Volcano Inflation prior to Gas Explosions at Semeru Volcano, Indonesia  

NASA Astrophysics Data System (ADS)

Semeru volcano in east Java, Indonesia, is well known to exhibit small vulcanian eruptions at the summit crater. Such eruptive activity stopped on April 2009, but volcanic earthquakes started to occur in August and a lava dome was found in the summit crater on November. Since then, lava sometimes flows downward on the slope and small explosions emitting steams from active crater frequently occur every a few to a few tens of minutes. Since the explosions repeatedly occur with short intervals and the active crater is located close to the summit with an altitude of 3676m, the explosions are considered to originate from the gas (steams) from magma itself in the conduit and not to be caused by interactions of magma with the underground water. We installed a tiltmeter at the summit on March 2010 to study the volcanic eruption mechanisms. The tiltmeter (Pinnacle hybrid type, accuracy of measurement is 1 nrad ) was set at a depth of about 1 m around the summit about 500 m north from the active crater. The data stored every 1 s in the internal memory was uploaded every 6 hours by a small data logger with GPS time correction function. More than one thousand gas explosion events were observed for about 2 weeks. We analyze the tilt records as well as seismic signals recorded at stations of CVGHM, Indonesia. The tilt records clearly show uplift of the summit about 20 to 30 seconds before each explosion. Uplifts before large explosions reach to about 20 - 30 n rad, which is almost equivalent to the volume increase of about 100 m^3 beneath the crater. To examine the eruption magnitude dependence on the uplift, we classify the eruptions into five groups based on the amplitudes of seismograms associated with explosions. We stack the tilt records for these groups to reduce noises in the signals and to get general characteristics of the volcano inflations. The results show that the amplitudes of uplifts are almost proportional to the amplitudes of explosion earthquakes while the preceding time of uplift is almost constant (20 s - 30 s). This implies that the inflation rate controls the magnitude of gas explosions. The observed preceding time of inflation prior to gas explosions are much shorter than those for the inflations before magmatic explosions (Nishi et al., 2007; Iguchi et al., 2008), which suggests that the pressurization processes in shallow conduit for gas explosions are different from that for explosions emitting ashes.

Nishimura, T.; Iguchi, M.; Kawaguchi, R.; Surono, S.; Hendrasto, M.; Rosadi, U.

2010-12-01

393

Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the TomoVes active seismic experiment  

Microsoft Academic Search

Data from the TomoVes active seismic experiment are used to study scattering effects in the shallow heterogeneous structure of Vesuvius volcano. Seismograms from shots located on the volcano itself are characterised by spindle-like envelopes, small or missing P-onsets, missing S-onsets, and long codas. Seismograms from shots in the surroundings of the volcano, on the contrary, show clear and impulsive P-

Ulrich Wegler

2003-01-01

394

Digital Geologic Map Database of Medicine Lake Volcano, Northern California  

NASA Astrophysics Data System (ADS)

Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.

Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

2010-12-01

395

Eruptive viscosity and volcano morphology  

NASA Technical Reports Server (NTRS)

Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology.

Posin, Seth B.; Greeley, Ronald

1988-01-01

396

Seismicity and Tremor Signals Associated With Magma Movements in Icelandic Volcanoes  

NASA Astrophysics Data System (ADS)

Magma movements in some of Iceland‘s volcanoes are well resolved by the national seismic network (SIL), while at others the picture is more fuzzy. Relative locations of VT events in the volcanoes have revealed the path of magmatic intrusions from the base of the crust up in to the upper crust and sometimes to eruption. Such is the case for several recent intrusions into Eyjafjallajokull volcano, as well as it‘s 2010 flank and top crater eruptions. At the neighbouring Katla volcano, the recorded seismicity in the volcano‘s caldera is predominantly shallow and associated with the most active geothermal areas of the caldera. The LP events on the volcano‘s western flank (at Godabunga) are tightly clustered in a small area at the surface and are most likely caused by interaction between the glacier covering the volcano and the glacier bed. In recent years, a few earthquakes at the base of the crust under Katla have been detected, implying intrusion of new material from the mantle. With recently improved network sensitivity around the Vatnajokull ice cap, resolution of seismicity in the volcanoes under the glacier has improved significantly. Seismic activity in several of the glacier‘s volcanoes has also increased in the the last two years signifying magmatic movements. Seismic events detected at Grímsvotn volcano are predominantly shallow and confined to the caldera. Events under the two geothermal areas represented by the Skaftar ice-cauldrons are also shallow, whereas farther west, under Hamarinn the seismicity is detected into the middle of the crust. Since 2007 there has been strong seismic activity in the upper crust (< 10 km depth) under the NE corner of the Bardarbunga caldera as well as in near-by Kistufell. Kverkfjoll volcano is also active with events mostly in the upper crust. Seismic tremor signals are frequently recorded from the glacier covered volcanoes. Most often they are associated with sub-glacial floods (jokulhlaups), but intermittent and periodic tremor bursts have also been detected under the Grimsvotn caldera lake in the months preceding an eruption and under the Skaftar cauldrons during their drainage. Similar, but much stronger periodic tremor burst were observed in the initial stages of the Eyjafjallajokull eruption, in the hours prior to the second outbust flood from the crater. Results from high-precision seismicity mapping will be presented from the Eyjafjallajokull and Katla volcanoes as well as from the active volcanoes in the Vatnajokull ice cap. Time variation of tremor signals during the Eyjafjallajokull eruption will be examined in relation to variations in seismicity, in ash output and SO2 degassing.

Vogfjord, K. S.

2010-12-01

397

Heterogeneities in the magma chambers of monogenetic volcanoes revealed by melt inclusions from the Higashi-Izu Monogenetic Volcanic Field, Japan  

NASA Astrophysics Data System (ADS)

The Higashi-Izu Monogenetic Volcanic Field (HIMVF) consists of 70 subaerial monogenetic volcanoes on the north-eastern coast of the Izu Peninsula, Japan, and a further 50 submarine monogenetic volcanoes that extend offshore to the island of Izu-Oshima, a volcano on the volcanic front of the Izu-Bonin (IB) Arc. The HIMVF has been active from 0.3 Ma until the present day. The transition from polygenetic volcanism to monogenetic volcanism on the Izu Peninsula around this time is believed to be related to a change in the stress field after the Izu Peninsula tectonic block began to collide with the Honshu Arc (Hasebe et al., 2001, B. Volcanol., 63, 377-86). Major, trace and volatile (H2O, CO2, S, Cl) element concentrations have been measured in 116 inclusions hosted in olivines from scoria erupted by two of the basaltic monogenetic volcanoes, Sukumoyama and Takatsukayama. The volcanoes are located 5 km apart, trending across the IB Arc, and erupted at ~0.27 Ma, early in the history of activity in the HIMVF. The geochemical characteristics of the inclusions have led to the following findings. Firstly, the inclusions, consistent with whole rocks data from the HIMVF, indicate that the HIMVF has a geochemical affinity with the IB rear-arc, being more enriched in large-ion lithophile elements (LILE) high field strength elements (HFSE) and rare earth elements (REE) than the volcanic front. Secondly, some of the inclusions preserve compositions that have not been previously seen in rocks from the IB Arc. Most of the inclusions are normal IB low TiO2 (0.81 to 1.18 wt.%) high Al2O3 (15.67 to 19.34 wt.%) (low TiO2-HABs), however, 20 inclusions have high TiO2 (1.11 to 2.19 wt.%), low Al2O3 (11.75 to 14.04 wt.%) (high TiO2-LABs), and three have been found to contain high TiO2 (1.34 to 1.61 wt.%) and high Al2O3 (16.06 to 19.14 wt.%). There are cases where a high TiO2-LAB inclusion occurs in the same host crystal as low TiO2-HAB inclusions. The Takatsukayama high TiO2-LABs are also characterized by a uniform enrichment in trace elements, with the exception of Sr, compared to their low TiO2-HAB counterparts and both types of inclusion at Sukumoyama. These distinct inclusion compositions are interpreted to reflect melts with different crystallization histories existing in close proximity to one another within the same magma chamber. The common low TiO2-HABs are generated by the more usual crystallization of olivine ± clinopyroxene, whereas the high TiO2-LABs can be related to low TiO2-HABs in the same host crystal by the additional crystallization of extensive amounts of plagioclase feldspar (~40 %). Finally, despite being only a few kilometres apart, the volcanoes still reveal a cross-arc variation. Although the melt inclusions from both volcanoes exhibit rear-arc geochemical characteristics, inclusions from Sukumoyama, irrespective of the compositional group, have lower K2O and Th/Nb, and higher Ba/Th. This indicates that they have a slightly greater contribution from a shallow fluid component and thus a slightly stronger flavour of the volcanic front than those from Takatsukayama.

Wysoczanski, R. J.; Nichols, A. R.; Tani, K.; Tamura, Y.; Baker, J. A.; Tatsumi, Y.

2011-12-01

398

4D seismic structure beneath Spurr volcano, Alaska  

NASA Astrophysics Data System (ADS)

Mount Spurr is a large volcano located 125 km west of Anchorage, Alaska. This dominantly andesitic stratovolcano with summit elevation of 3374 m is the highest volcano of the Aleutian Arc. Two historical eruptions of Spurr volcano have occurred in 1953 and 1992. Moreover, from July 2004 to February 2006 continuous non-eruptive activity was observed. Since 1988 the Alaska Volcano Observatory (AVO) collects information about Alaska seismicity. In this work we present evolution of the seismic structure beneath Spurr volcano obtained from 4D seismic tomography. In total 222605 rays (129387 P and 93218 S rays) coming from 17068 earthquakes and registered by 26 station of AVO seismic network were used for the tomographic inversion. After analysis of the seismic and volcano activity, 5 time periods were chosen. Variations of P and S wave velocity anomalies and Vp/Vs ratio in this 5 time periods were obtained after simultaneous iterative inversion of one combined matrix. Smoothness of the velocity anomalies variation in space and time are controlled by two additional matrix block. Results reveal clear correlation of the seismic structure and volcanic activity. In the first (October 1989 - July 1996) and fourth (January 2004 - January 2007) time periods, characterized by high activity, a prominent vertical channel directly beneath volcano is observed on the vertical sections. This channel is characterized by very high values of Vp/Vs ratio (increased P wave and decreased S wave velocities). During the three other periods with no volcanic activity, when the relaxation of the media took place, seismic structure becomes more homogeneous without strong velocity anomalies. Special attention is paid to estimation of the model resolution in different time periods and analysis of possible artifacts due to different ray coverage in different periods. Therefore a lot synthetic and real data tests were performed.

Jakovlev, Andrey; Koulakov, Ivan; West, Michael

2013-04-01

399

Estimation of submarine mass failure probability from a sequence of deposits with age dates  

USGS Publications Warehouse

The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

2013-01-01

400

Reducing Unsteady Loads on a Piggyback Miniature Submarine  

NASA Technical Reports Server (NTRS)

A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

Lin, John

2009-01-01

401

47 CFR 32.2424 - Submarine & deep sea cable.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false Submarine & deep sea cable. 32.2424...Balance Sheet Accounts § 32.2424 Submarine & deep sea cable. (a) This...shall include the original cost of submarine cable and deep sea cable...

2012-10-01

402

32 CFR 700.1058 - Command of a submarine.  

... 2014-07-01 false Command of a submarine. 700.1058 Section 700.1058 National...Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in...

2014-07-01

403

32 CFR 700.1058 - Command of a submarine.  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Command of a submarine. 700.1058 Section 700.1058 National...Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in...

2013-07-01

404

47 CFR 32.2424 - Submarine & deep sea cable.  

...2014-10-01 2014-10-01 false Submarine & deep sea cable. 32.2424...Balance Sheet Accounts § 32.2424 Submarine & deep sea cable. (a) This...shall include the original cost of submarine cable and deep sea cable...

2014-10-01

405

32 CFR 700.1058 - Command of a submarine.  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Command of a submarine. 700.1058 Section 700.1058 National...Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in...

2012-07-01

406

47 CFR 32.2424 - Submarine & deep sea cable.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false Submarine & deep sea cable. 32.2424...Balance Sheet Accounts § 32.2424 Submarine & deep sea cable. (a) This...shall include the original cost of submarine cable and deep sea cable...

2013-10-01

407

32 CFR 700.1058 - Command of a submarine.  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Command of a submarine. 700.1058 Section 700.1058 National...Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in...

2011-07-01

408

35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

409

31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

410

36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

411

32 CFR 700.1058 - Command of a submarine.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Command of a submarine. 700.1058 Section 700.1058 National...Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine shall be an officer of the line in...

2010-07-01

412

Submarine Floating Antenna Model for LORAN-C Signal  

E-print Network

Submarine Floating Antenna Model for LORAN-C Signal Processing A. MONIN LAAS-CNRS France An electromagnetic model of the floating antenna used by submarines for LORAN-C radionavigation and very low The antenna used by submarines, for LORAN-C radionavigation and very low frequency (VLF) communications

Monin, André

413

Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits  

E-print Network

Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits James W. Head III October 2001; received in revised form 19 August 2002; accepted 19 August 2002 Abstract Submarine and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent

Head III, James William

414

Optimal control design for the nonlinear manoeuvrability of a submarine  

E-print Network

Optimal control design for the nonlinear manoeuvrability of a submarine Javier Garc´ia , Diana M, submarine, optimal control, gradient descent method. 1 Introduction In the development of a naval architecture tool for the guidance and autopilot of a submarine is important to choose both an accurate

415

Tidal Conversion at a Submarine Ridge FRANOIS PTRLIS  

E-print Network

Tidal Conversion at a Submarine Ridge FRANÃ?OIS PÃ?TRÃ?LIS Laboratoire de Physique Statistique, Ecole-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized by two tide over submarine topography is a main source of the mechanical energy required to power the internal

Young, William R.

416

Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS  

NASA Technical Reports Server (NTRS)

Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS (56.0N, 160.5E) is one of several active volcanoes in the CIS and is 15,584 ft. in elevation. Fresh ash fall on the south side of the caldera can be seen as a dirty smudge on the fresh snowfall. Just to the north of the Kamchatka River is Shiveluch, a volcano which had been active a short time previously. There are more than 100 volcanic edifices recognized on Kamchatka, 15 of which are still active.

1991-01-01

417

Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of el hierro (canary islands).  

PubMed

The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID:25671714

Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

2015-01-01

418

Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)  

PubMed Central

The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID:25671714

Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

2015-01-01