Science.gov

Sample records for submarine volcano located

  1. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  2. Mineralized microbes from Giggenbach submarine volcano

    NASA Astrophysics Data System (ADS)

    Jones, Brian; de Ronde, C. E. J.; Renaut, Robin W.

    2008-08-01

    The Giggenbach submarine volcano, which forms part of the Kermadec active arc front, is located ˜780 km NNE of the North Island of New Zealand. Samples collected from chimneys associated with seafloor hydrothermal vents on this volcano, at a depth of 160-180 m, contain silicified microbes and microbes entombed in reticular Fe-rich precipitates. The mineralized biota includes filamentous, rod-shaped, and rare coccoid microbes. In the absence of organic carbon for rDNA analysis or preserved cells, the taxonomic affinity of these microbes, in terms of extant taxa, remains questionable because of their architectural simplicity and the paucity of taxonomically significant features. The three-dimensional preservation of the microbes indicates rapid mineralization with a steady supply of supersaturated fluids to the nucleation sites present on the surfaces of the microbes. The mineralization styles evident in the microbes from the Giggenbach submarine volcano are similar to those associated with mineralized microbes found in terrestrial hot spring deposits in New Zealand, Iceland, Yellowstone, and Kenya. These similarities exist even though the microbes are probably different and the fluids become supersaturated with respect to opal-A by different mechanisms. For ancient rocks it means that interpretations of the depositional settings cannot be based solely on the silicified microbes or their style of silicification.

  3. Comparative Study of Submarine Volcanoes and Small Venusian Volcanic Edifices

    NASA Astrophysics Data System (ADS)

    Komatsu, G.; Krempasky, M. C.

    1996-03-01

    The small volcanic edifices on Venus are important because of their common occurrence on the planet's surface. They normally range 0-10 km in diameter. An extensive inventory has been compiled for more than 2000 small edifices. Based on this inventory, it is estimated that there are about half million identifiable small volcanic edifices on the planet. This work also indicates that the small volcanic edifices' size frequency distribution is very similar to that of submarine volcanoes (seamounts) distributed on the East Pacific Rise. It has been suggested that submarine volcanoes, particularly flat-topped seamounts located off the coast of Hawaii, are analogous to "pancake domes" on Venus. However the detailed geomorphic analysis of seamounts located on the Mid-Atlantic Ridge and Pacific Ocean Basin indicates that submarine volcanoes are better analogs for small volcanic edifices.

  4. Submarine volcanoes along the Aegean volcanic arc

    NASA Astrophysics Data System (ADS)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Alexandri, Matina; Sakellariou, Dimitris; Rousakis, Grigoris

    2013-06-01

    The Aegean volcanic arc has been investigated along its offshore areas and several submarine volcanic outcrops have been discovered in the last 25 years of research. The basic data including swath bathymetric maps, air-gun profiles, underwater photos and samples analysis have been presented along the four main volcanic groups of the arc. The description concerns: (i) Paphsanias submarine volcano in the Methana group, (ii) three volcanic domes to the east of Antimilos Volcano and hydrothermal activity in southeast Milos in the Milos group, (iii) three volcanic domes east of Christiana and a chain of about twenty volcanic domes and craters in the Kolumbo zone northeast of Santorini in the Santorini group and (iv) several volcanic domes and a volcanic caldera together with very deep slopes of several volcanic islands in the Nisyros group. The tectonic structure of the volcanic centers is described and related to the geometry of the arc and the neotectonic graben structures that usually host them. The NE-SW direction is dominant in the Santorini and Nisyros volcanic groups, located at the eastern part of the arc, where strike-slip is also present, whereas NW-SE direction dominates in Milos and Methana at the western part, where co-existence of E-W disrupting normal faults is observed. The volcanic relief reaches 1100-1200 m in most cases. This is produced from the outcrops of the volcanic centers emerging usually at 400-600 m depth and ending either below sea level or at high altitudes of 600-700 m on the islands. Hydrothermal activity at relatively high temperatures observed in Kolumbo is remarkable whereas low temperature phenomena have been detected in the Santorini caldera around Kameni islands and in the area southeast of Milos. In Methana and Nisyros, hydrothermal activity seems to be limited in the coastal areas without other offshore manifestations.

  5. Extreme Spatial Variability in Microbial Mat Communities from Submarine Hydrothermal Vents Located at Multiple Volcanoes along the Mariana Island Arc

    NASA Astrophysics Data System (ADS)

    Davis, R. E.; Moyer, C. L.

    2005-12-01

    Volcanic arc systems are the most active tectonic feature in the world, but are among the least studied. The Western Pacific contains ~20,000 km of volcanic arcs, of which only ~2% have been systematically surveyed. The lack of comprehensive knowledge of volcanic arcs is compounded by the incredible variability found in relatively short distances. The complex source history of hydrothermal fluids and the variable depths of seamounts found in island arc systems result in highly variable vent chemistries and therefore unique microbial habitats within relatively short distances. The Mariana Island Arc was surveyed in 2003 and areas with suspected hydrothermal activities were identified for targeted remote operating vehicle (ROV) exploration and sampling in 2004. Sixteen microbial mat samples from five seamounts ranging from 145-1742 mbsl and from ambient to 222C were collected and analyzed with quantitative PCR (Q-PCR), cluster analysis of terminal restriction length polymorphism (T-RFLP) community fingerprints, and by clone library analysis of small subunit ribosomal rDNA genes. The microbial mat communities from the Mariana Island Arc exhibit greater spatial variability within their community structure than microbial mats sampled from mid-ocean ridge or hotspot hydrothermal vents from a comparable scale. Microbial communities from the summit of NW Eifuku Volcano are dominated by putative iron-oxidizing phylotypes at the Yellow Top and Yellow Cone Vent sites, but are dominated by sulfur-oxidizing ?-Proteobacteria at the Champagne Vent site. Mats collected at the Mat City Vent site on E Diamante Seamount contained nearly three times as much biomass as any other mat sample collected, and is dominated by a Planctomyces phylotype. Hydrothermal sediments at the Fish Spa site located on Daikoku Seamount contained the second highest biomass detected and supported a large community of flatfish indicating a direct route for biomass being channeled up the food chain. The microbial community at Fish Spa consists of a highly diverse assemblage of Bacteroidetes, ?-Proteobacteria and Firmicutes. While in contrast, the microbial mat at the Iceberg Vent site on NW Rota I is dominated by a single phylotype of ?-Proteobacteria.

  6. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  7. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  8. Long-term eruptive activity at a submarine arc volcano.

    PubMed

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. PMID:16724063

  9. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for over 80 Ma and established the remarkable linearity of the age-progression along the chain. Glass rinds on submarine lava quenched at depth contain initial magmatic volatiles and yield data on the juvenile water, sulfur, CO2, and rare gas contents of basaltic magmas, and continue to reveal nuances of the volatile contents of lava. Rock sampling at Loihi Seamount led to the discovery of the pre-shield alkalic phase of Hawaiian volcanism, which mirrors the well-known post-shield alkalic phase. Lava compositions from the Hawaiian Ridge and Emperor Seamounts have clear affinities to present-day Hawaiian lavas, but subtle source differences as well. The progression from small to large and back to small degrees of melting at individual volcanoes and the compositional changes along the chain constrain the melting processes and source compositions of Hawaiian volcanism. Coupling the age of lavas with that of submerged coral reefs has provided data on the growth and subsidence of volcanic centers. This information has meshed nicely with the age, composition, and morphology of lavas from the 3.2-km-deep Hawaiian Scientific Drill Hole. Submarine studies have taught us much about the workings of Hawaiian Volcanoes, and in the process have stimulated new work and concepts on marine volcanism worldwide.

  10. Earthquakes of Loihi submarine volcano and the Hawaiian hot spot.

    USGS Publications Warehouse

    Klein, F.W.

    1982-01-01

    Loihi is an active submarine volcano located 35km S of the island of Hawaii and may eventually grow to be the next and S most island in the Hawaiian chain. The Hawaiian Volcano Observatory recorded two major earthquake swarms located there in 1971-1972 and 1975 which were probably associated with submarine eruptions or intrusions. The swarms were located very close to Loihi's bathymetric summit, except for earthquakes during the second stage of the 1971-1972 swarm, which occurred well onto Loihi's SW flank. The flank earthquakes appear to have been triggered by the preceding activity and possible rifting along Loihi's long axis, similar to the rift-flank relationship at Kilauea volcano. Other changes accompanied the shift in locations from Loihi's summit to its flank, including a shift from burst to continuous seismicity, a rise in maximum magnitude, a change from small earthquake clusters to a larger elongated zone, a drop in b value, and a presumed shift from concentrated volcanic stresses to a more diffuse tectonic stress on Loihi's flank. - Author

  11. Fluid Flow Patterns in a Submarine Volcano: Simulating the Hydrothermal Evolution of Brothers Volcano

    NASA Astrophysics Data System (ADS)

    Gruen, G.; de Ronde, C. E.; Driesner, T.; Heinrich, C. A.

    2010-12-01

    Brothers volcano is part of the southern Kermadec intra-oceanic arc located northeast of New Zealand, and is one of the worlds best-studied active submarine volcanoes. It provides insight into the complex subseafloor hydrology of a submarine arc volcano with evidence for different stages in its magmatic-hydrothermal evolution [1]. The volcanic edifice comprises an elongated caldera surrounding an asymmetrically centered post-collapse cone. While hydrothermal venting at the NW caldera wall is focused and dates back to at least 1,200 years, hydrothermal discharge at the cone summit is diffuse and considered to be significantly younger. Recent studies of regional seismicity and local harmonic tremor at Brothers volcano imply the existence of a hydrothermal fluid reservoir underneath the area of the present cone [2]. Using a combined finite element - finite volume method, we have computed multi-phase mass and heat transport with a process simulation scheme based on realistic fluid properties. We have used correlations that describe phase stability relations in the binary NaCl-H2O system up to 1000C [3]. Our earlier results of generic fluid flow simulations showed that water depth and seafloor topography, together with crustal permeability and the relative contributions of seawater and magmatic fluids, are first-order physical parameters controlling the fluid flow patterns and the style of hydrothermal venting. In our more recent simulations, we use available data from Brothers volcano, including detailed bathymetry, physical and chemical measurements from different vent sites and information on the size and location of the subseafloor magma chamber(s). The implementation of two distinct magmatic stages (i.e., pre-cone vs. post-cone) shows that the topography of the volcanic edifice, in combination with the location and size of an underlying magma chamber, play an important role in the style and evolution of the hydrothermal system. [1] de Ronde, C. E. J., et al. (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Economic Geology 100, p. 1097-1133. [2] Dziak, R. P., et al. (2008) Observations of regional seismicity and local harmonic tremor at Brothers volcano, south Kermadec arc, using an ocean bottom hydrophone array. Journal of Geophysical Research-Solid Earth 113, B08S04. [3] Driesner, T., and Heinrich, C. A. (2007) The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica Et Cosmochimica Acta 71, p. 4880-4901.

  12. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  13. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three CTD casts of Ahyi volcano. Plumes with optical anomalies up to 0.4 NTU were found south and west of Ahyi at 100-175 m water depth, corresponding to the depth of the new summit crater. We plan to combine the extensive T-phase, hydroacoustic, CTD, and bathymetry data from Ahyi to characterize submarine volcanic processes and quantify the size and total radiated energy of the eruption.

  14. Hydrothermal Helium Plumes over Submarine Volcanoes of the Marianas Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Baker, E. T.; Embley, R. W.; Resing, J. E.; Massoth, G. J.; Nakamura, K.; Greene, R.; Walker, S.; Lebon, G.

    2003-12-01

    During February-March, 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, the R/V T.G. Thompson conducted a comprehensive survey of hydrothermal activity along 1200 km of the Mariana Arc from 13.5 N to 22.5 N [see Embley et al., EOS Trans. AGU, 2003]. Plume surveys were conducted in the water-column above ~50 submarine volcanoes using a CTD/rosette system. A total of 70 CTD casts were completed, and discrete water samples were collected for analysis of a variety of hydrothermal tracers, including 3He, CH4, CO2, H2S, Fe, Mn, pH, and suspended particles. Although shorebased analysis of the samples is still underway, preliminary results indicate that about 11 of the 50 submarine volcanoes surveyed are hydrothermally active. Because many of the Marianas Arc volcanoes rise to within 500 m of the sea surface, hydrothermal plume signals such as light attenuation (suspended particles) and temperature anomaly have limited utility due to masking by near surface effects. For this reason 3He, an unambiguous hydrothermal tracer, has been particularly useful for identifying which of the shallow arc volcanoes are hydrothermally active. Our expectation was that the water-column helium signal might be reduced at shallow depths due to ventilation into the atmosphere. However, we observed very high 3He enrichments at shallow depths both at Maug Islands and at NW Rota #1 (14 36'N; 144 46.5'E). The 3He enrichments were strongly correlated with changes in pH, Mn, and other hydrothermal tracers. The three Maug Islands mark the perimeter of a caldera formed by an explosive eruption, and a single hydrocast in the center of the caldera detected a robust helium plume at 120-200 m depth with ? 3He reaching a maximum of 250% at 150m depth. Analysis of the co-variation of [3He] vs. [4He] at Maug gave R/Ra = 6.6 for an estimate of the end-member helium isotope ratio (R = 3He/4He and Ra = Rair). This value falls well within the range of R/Ra = 5-7 generally observed for helium at subduction zone volcanic systems. At NW Rota #1, we found a strong helium plume reaching a maximum ? 3He = 320% at 460 m depth. Surprisingly, the estimate for the end-member 3He /4He at NW Rota gave R/Ra = 8.4, outside the range normally found at subduction zones and similar to that observed along MOR spreading centers. NW Rota #1 is located about 15 km west of the main arc and is part of a cross-arc volcanic chain. Craig et al. [EOS 68, No. 44, p.1531, 1987] found a similar value of R/Ra = 8.6 in vent fluids in the Mariana Trough back-arc system at 18 13'N. Thus the higher 3He/4He ratio at NW Rota may reflect an affinity to the back-arc spreading center as opposed to a pure arc component.

  15. The Chemistry of Hydrothermal venting at a Volcano "O", a large Submarine Volcano in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Baker, E. T.; Lupton, J. E.; Lilley, M. D.; Rubin, K. H.; Buck, N. J.

    2011-12-01

    Volcano O is located in the NE Lau basin in a highly extensional region between the Tonga arc and back arc. The NE Lau basin has the highest subduction rates on Earth [Bevis et al., 1995] and is Earth's fastest-opening back-arc basin [Zellmer and Taylor, 2001]. The NE Lau Basin contains abundant recent submarine volcanism with magma production likely driven by water released from the subducting slab and decompression associated with crustal extension. One manifestation of this abundant volcanism is Volcano O, one of the largest discrete active-submarine volcanoes on Earth. It is hard to classify this volcano is either arc or back arc because its location behind the magmatic arc is inconsistent with the eruption of dacitic lavas and highly acidic hydrothermal activity reported here. Volcano O has exhibited ongoing hydrothermal activity as documented in 2004 (Lupton pers. Comm.), 2006 [Kim et al., 2009], and in both 2008 and 2010 as presented here. In 2008 and 2010, we documented intense hydrothermal plumes in several locations in the caldera. The most intense hydrothermal plume was observed in 2010 directly above a small cone on the eastern side of the caldera. A camera tow across the cone revealed fresh blocky lavas with a hint of sulfur-rich waters surrounding the cone. Here we present data on the chemistry of hydrothermal plumes at Volcano O. Of particular interest is a hydrocast conducted directly above the cone. During this hydrocast we collected fluids rich in Fe (?13,000nM), Mn (?665nM), particulate Al (?1500nM), particulate sulfur (?18000nM), and with large decreases in pH (?0.9 pH units). These anomalies are extraordinarily large and are much greater than the Fe and Mn levels observed by Kim et al. These chemical enrichments and depletions strongly suggest that Volcano O is actively degassing SO2 which, in turn, suggests that the magma chamber must be fairly shallow. This may indicate an active state of cone building at Volcano O. In addition to the above data, we will also present data on CO2 and 3He in the plumes to better constrain the source of the magmatic volatiles feeding the volcano

  16. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  17. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected. PMID:18247739

  18. New Mapping of Mariana Submarine Volcanoes with Sidescan and Multibeam Sonars

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Chadwick, W. W.; Baker, E. T.; Johnson, P. D.; Merle, S. G.; Ristau, S.

    2003-12-01

    An expedition in February/March 2003 on the R/V Thomas G. Thompson mapped more than 18,000 km2 with the towed MR1 sidescan sonar and almost 28,000 km2 with an EM300 hull-mounted multibeam system along the Mariana volcanic arc. The expedition was funded by NOAA's Office of Ocean Exploration (more on the expedition can be found at: http://oceanexplorer.noaa.gov/explorations/03fire/welcome.html). The MR1 sidescan surveys began at the northern end of a 2001 R/V Melville MR1 survey at 16 N and extended to Nikko Volcano at 23\\deg 05'N. A portion of the southern back-arc spreading center and the arc volcanoes south of 16\\deg N were mapped using the EM300 system. Of 43 submarine arc volcanoes surveyed that have basal diameters of 10 km or greater, 17 have summit calderas or craters. Of these, however, only 5 have diameters more than 2 km. In an accompanying survey of hydrothermal activity along the arc, CTD casts and/or tows were conducted over more than 50 individual volcanoes. The 11 volcanoes with active hydrothermal systems found in the course of these surveys appear to be about equally divided between those with and without summit calderas or craters (for additional information, see Baker et al., Resing et al., and Lupton et al., this session). The flanks of the submarine volcanoes and islands of the central and northern Mariana Arc consist largely of volcaniclastic flows. Most of the larger edifices have high-backscatter spoke-like patterns that probably represent coarser and/or younger flows from the summits. Higher relief high-backscatter areas, also commonly exhibiting a radial pattern, are found on many of the volcanoes' flanks. These are probably lava flows erupted along radial fissures. The Mariana Arc volcanoes are shedding large volumes of volcaniclastic material westward into the back-arc basin through a series of deep-sea channels oriented transverse to the arc that are in many places fed by flows from several volcanoes. On many of the volcaniclastic aprons of the islands and larger submarine volcanoes, sediment waves with wavelengths of up to 1.0 km and amplitudes up to 50 m commonly occur. Their crests are almost always oriented parallel to regional contours, indicating a formation mechanism related to down slope flow. In some places clear transitions occur between mass flows on the volcanoes' steeper flanks and the sediment waves on the gentler slopes of the apron. A preliminary interpretation is the sediment waves form during the transition from channelized to unconstrained flows. Sediment waves of similar scale are commonly observed on the levees of deep-sea channels and on deep-sea fans. The location and shape of the arc volcanoes are often controlled or influenced by tectonic control. Within the southern part of the Central Island Province, from about 15\\deg 50' N to 18\\deg 00' N, volcanoes often line up and/or are elongated in an E-W or an E-NE direction. There are several cross-chains of volcanoes in this region that penetrate 10's of kms into the back-arc basin. Along the northern part of the arc (the Northern Seamount Province), where the convergence direction is roughly parallel to the arc front, the structure is more complex. Several active volcanoes occur at the intersection of two or more structural lineaments northwest of Farallon de Pajaros Island. There are several volcanoes in the northern area that are narrow ridges striking in a S-SW trend 9 (arc-orthogonal).

  19. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  20. South Hachijyo Volcano -Initial Stage of Submarine Saldera Sctivity-

    NASA Astrophysics Data System (ADS)

    Sakamoto, I.; Ishida, M.

    2003-12-01

    South Hachijyo Volcano (SHV), a part of Northern Izu-Bonin Arc, is located between Hachijyojima Is. and Aogashima Is. SHV is composed of four blocks (somma) surrounding a bathymetric low. Each block is flat-topped and has a scarp with a gentle slope. The bathymetric low, encircled by the -400m contour line, extends vertically 160m to the top of the SHV. At the bottom of the bathymetric low lies a small depressional structure (caldera floor), which is approximately 2 km in diameter. At the middle of this structure lies a N-S trending central cone that is 1.3*0.9km in diameter and 100m high. We collected many dredge samples of pumice, basaltic fragments, and Q-diorite. Based on observations from a submersible, the sediments on the caldera floor consist of sorted pumice, unsorted pumice and coarse sand. Huge pumice blocks were observed near the slope of the central cone. Angular M-type pumice block and rhyolitic breccias were observed on the top of the central cone. Several rhyolitic volcanic cones (knolls) were observed around the central cone in the caldera floor. Therefore these rhyolitic fragments are associated with dome activities. The result of total geomagnetic analysis indicates that non-magnetic layer (about 600-900m thick) exists at the Hachijyo insular shelf (HIS). Non-magnetic layer in SHV covers magnetic basement, and the south part of it is shallower than the north part. Single-channel seismic records indicate that well-stratified layers (with a total thickness of 700m) exist at the HIS. These layers are corresponds to non-magnetic layer, and the thickness of these layers (interpreted as volcanic products from Hachijyojima Is.) decreases from Hachijyojima toward SHV. Therefore, the production of volcanic material from SHV has been small. Some crypt dome structures are observed under each block (somma). The seismic profiles show knolls atop the stratified somma and the caldera floor. From the geological and geophysical data, we interpret the following regarding the evolution of the SHV. Despite the fact that this volcanic structure is young, we observe morphology that suggests the existence of a caldera that is characterized by gentle slopes that are not well stratified. We interpret the relief between the caldera floor and the somma tops as having been caused by crypt dome intrusion that elevates the somma, rather than by depression of caldera floor after huge eruption. This interpretation is supported by the lack of voluminous volcanic product around the somma. In conclusion, we consider SHV to be in an initial stage of submarine caldera volcanism that is characterized by dike (knoll) complex activity without large volcanic eruptions.

  1. A Miocene submarine volcano at Low Layton, Jamaica

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

  2. A Miocene submarine volcano at Low Layton, Jamaica

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

  3. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  4. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the size distribution could also be determined for individual images. Although a complete size distribution is not possible with this technique, information about the relative distribution of large and medium size clasts is likely to provide a reasonable proxy for the overall sorting of submarine deposits. Our preliminary work represents the first attempt to carry out an in situ granulometric analysis of a thick submarine pyroclastic sequence. This general technique is likely to be valuable in future studies of submarine explosive volcanism given the recent discoveries of extensive pumiceous deposits in many submarine calderas associated with subduction zone environments.

  5. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Hbscher, Christian; Ruhnau, M.; Nomikou, P.

    2015-01-01

    Here we show for the first time the 3D-structural evolution of an explosive submarine volcano by means of reflection seismic interpretation. Four to five vertically stacked circular and cone-shaped units consisting mainly of volcaniclastics build the Kolumbo underwater volcano which experienced its first eruption > 70 ka ago and its last explosive eruption 1650 AD, 7 km NE of Santorini volcano (southern Aegean Sea). The summed volume of volcaniclastics is estimated to range between 13-22 km3. The entire Kolumbo volcanic complex has a height of ? 1 km and a diameter of ? 11 km. All volcaniclastic units reveal the same transparent reflection pattern strongly suggesting that explosive underwater volcanism was the prevalent process. Growth faults terminate upwards at the base of volcaniclastic units, thus representing a predictor to an eruption phase. Similarities in seismic reflection pattern between Kolumbo and near-by volcanic cones imply that the smaller cones evolved through explosive eruptions as well. Hence, the central Aegean Sea experienced several more explosive eruptions (? 23) than previously assumed, thus justifying further risk assessment. However, the eruption columns from the smaller volcanic cones did not reach the air and- consequently - no sub-aerial pyroclastic surge was created. The Anydros basin that hosts Kolumbo volcanic field opened incrementally NW to SE and parallel to the Pliny and Strabo trends during four major tectonic pulses prior to the onset of underwater volcanism.

  6. Distribution of tephra from the 1650 AD submarine eruption of Kolumbo volcano, Greece

    NASA Astrophysics Data System (ADS)

    Fuller, S. A.; Carey, S.; Nomikou, P.

    2013-12-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini in the Aegean Sea, last erupted in 1650 AD resulting in about 70 fatalities on Thera from gas discharge and significant coastal destruction from tsunamis. Extensive pumice rafts were reported over a large area surrounding Santorini, extending as far south as Crete. Tephra from the 1650 AD submarine eruption has been correlated in sediment box cores using a combination of mineralogy and major element composition of glass shards. The biotite-bearing rhyolite of Kolumbo can be readily discriminated from other silicic pyroclastics derived from the main Santorini complex. In general the tephra deposits are very fine grained (silt to fine sand-size), medium gray in color, and covered by about 10 cms of brown hemipelagic sediment. This corresponds to an average background sedimentation rate of 29 cm/kyr. The distribution of the 1650 AD Kolumbo tephra extends over an area larger than previously inferred from seismic profiles on the volcano's slopes and in adjacent basins. The cores indicate tephra deposits at least 19 km from the caldera, more than double the approximate 9 km inferred from seismic data. The preferential occurrence of the tephra within basins and sedimentological features such as cross bedding and laminations suggests that emplacement was dominated by sediment gravity flows generated from submarine and subaerial eruption plumes. We suggest that generation of the sediment gravity flows took place by collapse of submarine eruption columns and by Rayleigh-Taylor instabilities that formed on the sea surface as subaerial fallout accumulated from parts of the columns that breached the surface. Additionally, SEM imaging reveals particle morphologies that can be attributed to fragmentation by both primary volatile degassing (bubble wall shards) and phreatomagmatic activity (blocky equant grains). It is likely that phreatomagmatic activity became more important in the latter stages of the eruptive sequence when eruptions columns broke the surface and a small ephemeral island was formed. The fine grain marine tephra deposits surrounding Kolumbo represent the compliment to the very fines-poor proximal pumice sequence exposed in the crater walls and demonstrates the very effective fractionation of fine tephra that can take place during explosive submarine eruptions.

  7. Imaging of CO2 bubble plumes above an erupting submarine volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Merle, Susan G.; Buck, Nathaniel J.; Lavelle, J. William; Resing, Joseph A.; Ferrini, Vicki

    2014-11-01

    Rota-1 is a submarine volcano in the Mariana volcanic arc located 100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed there in 2004 and continued until at least 2010. During a March 2010 expedition, visual observations documented continuous but variable eruptive activity at multiple vents at 560 m depth. Some vents released CO2 bubbles passively and continuously, while others released CO2 during stronger but intermittent explosive bursts. Plumes of CO2 bubbles in the water column over the volcano were imaged by an EM122 (12 kHz) multibeam sonar system. Throughout the 2010 expedition numerous passes were made over the eruptive vents with the ship to document the temporal variability of the bubble plumes and relate them to the eruptive activity on the seafloor, as recorded by an in situ hydrophone and visual observations. Analysis of the EM122 midwater data set shows: (1) bubble plumes were present on every pass over the summit and they rose 200-400 m above the vents but dissolved before they reached the ocean surface, (2) bubble plume deflection direction and distance correlate well with ocean current direction and velocity determined from the ship's acoustic doppler current profiler, (3) bubble plume heights and volumes were variable over time and correlate with eruptive intensity as measured by the in situ hydrophone. This study shows that midwater multibeam sonar data can be used to characterize the level of eruptive activity and its temporal variability at a shallow submarine volcano with robust CO2 output.

  8. The growth rate of submarine volcanoes on the South Honshu and East Mariana ridges Comments

    NASA Astrophysics Data System (ADS)

    Jackson, Michael C.; Fryer, Patricia

    1991-04-01

    Growth rates, recently reported for eleven submarine volcanoes of the Mariana arc, are probably in error by several orders of magnitude. The reported growth rates are based solely on comparison of bathymetric surveys done by different methods over a 15-20-year time span. We have additional data on three of the volcanoes which argue against the inferred high growth rates. A detailed seismic reflection survey of one edifice (Fukujin Seamount) reveals that it has a very sharp peak which would be difficult to detect by more regional-scale sonar surveys. Examination of side-scan sonar images and bottom photography, and the recovery of highly weathered rocks in dredge hauls from another volcano (Kasuga Seamount), which is presumed to have grown almost 200 m in height in the last 17 years on the basis of bathymetric surveys, show it to be most likely extinct. Alvin submersible dives, as well as bottom photography and sonar images, on a third seamount (South Kasuga) show processes at its summit to be mainly erosional rather than constructional even though it is considered to be active. The inferred average growth rates of 15 m/y in height for six of the eleven volcanoes located in the northernmost part of the Mariana arc imply a volumetric volcanic production rate for this 500-km-long section of the arc of up to 9 km 3/y which exceeds the estimated global rate for all subduction zones. We believe that navigational errors and lack of total coverage over the summits of these seamounts are the main causes of the apparent differences in their minimum shoal depths between different survey methods.

  9. Gas flux measurements from a year-long hydroacoustic record at an erupting submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Baker, E. T.; Shaw, A. M.; Bohnenstiehl, D. R.; Chadwick, B.; Haxel, J. H.; Matsumoto, H.; Walker, S. L.

    2011-12-01

    The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of CO2 flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (year-long) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana island-arc) to make the first calculations of total gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1-2 minute intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. The explosion bursts are comprised of hundreds of individual (100-200 ms duration) explosion pulses totaling ~12.7M discrete pulses recorded during the year. The acoustic explosion packets are broadband: 1-80 Hz with a peak at 30 Hz. The loudest explosions occurred during February-August 2008 with a typical sound level of 192 dBrms re μPa2/Hz @ 1m, equal to ~100 W of acoustic power. Total gas flux calculated from the hydroacoustic record, 5.4 ± 0.6 Tg a-1, combined with melt inclusion information, yields an annual CO2 eruption flux of 0.4 ± 0.1 Tg a-1. This result is consistent with measured CO2 fluxes at continuously erupting subaerial volcanoes (~0.5 Tg a-1), and represents ~0.2-0.6% of the annual estimated output of CO2 from all subaerial arc volcanoes. The multi-year eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.

  10. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  11. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also

  12. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  13. Controls of surface topography on submarine and subaerial hydrothermal fluid flow and vent-site location

    NASA Astrophysics Data System (ADS)

    Bani Hassan, N.; Rupke, L.; Iyer, K. H.; Borgia, A.

    2010-12-01

    Hydrothermal convection is an important process that occurs in the oceanic lithosphere as well as within continents where the geothermal gradient is high enough to drive fluid flow. This process efficiently mines heat from the lithosphere, sustains life in the otherwise bleak settings at oceanic depths and is associated with mineral deposits. Although recent focus on hydrothermal systems has greatly improved our understanding on how they work, the detailed effects of topography on these systems has largely been ignored. While the qualitative effects of topography on hydrothermal flow are largely known (e.g. Ingebritsen 2006), we here present results from systematic numerical modeling on the importance of topography for both, subaerial and submarine hydrothermal convection. The model is based on a 2-D Finite Element Method (FEM) solver for fully compressible, single-phase, porous media fluid flow and is used to simulate hydrothermal convection in a number of synthetic studies as well as for two case studies for the Lucky Strike vent field (submarine) and the Amiata volcano (subaerial). The results of synthetic studies using sinusoidal topography variations show that topography indeed has a profound effect on the distribution and flow field of the convection cells. In the submarine case, fluid venting occurs at the topographic highs while the recharge zones are restricted to the lows. For the subaerial scenarios, the opposite occurs where groundwater flow focuses venting at flank regions and the recharge zones are situated at the highs. For example, in the submarine case, ~90% of the hydrothermal fluids vent at upper 50% of topographic highs if the number of topographic highs equals the number of plumes in a flat-top reference simulation. The results show that the focusing effect into topographic highs (submarine) and lows (subaerial) is highly dependent on the wavelength and amplitude of topography, i.e. wavelengths that are too high or low result in venting at flanks or even topographic lows (submarine case). Amplitude also has a first-order effect of focusing the vent sites on topographic highs and lows. Another observation is that the wavelength of the topography affects the number of plumes generated in the model. These findings are confirmed in two case studies for the submarine Lucky Strike hydrothermal field on the Mid-Atlantic Ridge and the subaerial geothermal field of Amiata, Italy. In both case studies the predicted vent locations fit well with the observed ones.

  14. Transition from circular to stellate forms of submarine volcanoes

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.

    2001-02-01

    Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

  15. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands adjacent to Brimstone Pit. There was also a distinct layer of turbid water on the flanks of the volcano below 700 m that is almost surely related to the eruptive activity. The layer is probably caused by resuspension of material from frequent slope failure due to episodic deposition of ejecta downslope from Brimstone Pit. The vent macrofauna on the summit of NWRota-1 consists of predominantly of shrimps and crabs with a notable dearth of sessile organisms. The unstable slopes and rain of sulfur and volcanic particulates would discourage colonies of less mobile organisms (e.g., mussels tubeworms) found at other Mariana hydrothermal sites.

  16. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.

    2004-12-01

    Remotely operated vehicle (ROV) dives were made at 7 submarine volcanoes between 14-23 N in the Mariana Arc in April 2004 with the ROPOS ROV. Six of these volcanoes were known to be hydrothermally active from CTD data collected during a previous expedition in March 2003: NW Rota-1, E Diamante, NW Eifuku, Daikoku, Kasuga-2, and Maug, a partly submerged caldera. The physical setting of hydrothermal venting varies widely from volcano to volcano. High-resolution bathymetric surveys of the summits of NW Rota-1 and NW Eifuku volcanoes were conducted with an Imagenex scanning sonar mounted on ROPOS. Near bottom observations during ROPOS dives were recorded with digital video and a digital still camera and the dives were navigated acoustically from the R/V Thompson using an ultra-short baseline system. The mapping and dive observations reveal the following: (1) The summits of some volcanoes have pervasive diffuse venting (NW Rota-1, Daikoku, NW Eifuku) suggesting that hydrothermal fluids are able to circulate freely within a permeable edifice. At other volcanoes, the hydrothermal venting is more localized (Kasuga-2, Maug, E Diamante), suggesting more restricted permeability pathways. (2) Some volcanoes have both focused venting at depth and diffuse venting near the summit (E Diamante, NW Eifuku). Where the hydrothermal vents are focused, fluid flow appears to be localized by massive lava outcrops that form steep cliffs and ridges, or by subsurface structures such as dikes. High-temperature (240 C) venting was only observed at E Diamante volcano, where the "Black Forest" vent field is located on the side of a constructional cone near the middle of E Diamante caldera at a depth of 350 m. On the side of an adjacent shallower cone, the venting style changed to diffuse discharge and it extended all the way up into the photic zone (167 m). At NW Eifuku, the pattern of both deep-focused and shallow-diffuse venting is repeated. "Champagne vent" is located at 1607 m, ~150 m below the summit, and is characterized by focused flow of CO2-rich fluids, whereas the summit has extensive areas of diffuse venting and is covered with thick bacterial mats. (3) Some of the most remarkable vent sites are deep, narrow volcanic craters at NW Rota-1 and Daikoku volcanoes. The crater at NW Rota-1 volcano (named "Brimstone Pit") is 15-m wide, 20-m deep, funnel shaped, and was actively erupting ash, lapilli, and molten sulfur. The rim of Brimstone Pit is composed of welded spatter and is located at 550 m depth, about 30 m below the summit. Other diffuse hydrothermal sites at NW Rota-1 are located along the rocky summit ridge. At Daikoku volcano, an extraordinary crater emitting cloudy hydrothermal fluid was found at 375 m depth on the north shoulder of the volcano, about 75 m below the summit. This crater was at least 135 m deep and had a remarkably cylindrical cross-section with a diameter of ~50 m. ROPOS descended 75 m into the crater and was still at least 60 m above the bottom, according to the altimeter, when we were forced to cease operations due to weather. In addition, diffuse hydrothermal fluids seep from large areas of the summit and upper slopes of Daikoku.

  17. A large submarine sand-rubble flow on kilauea volcano, hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Moore, J.G.; Calk, L.

    1979-01-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.

  18. Eruptive and depositional mechanisms of an Eocene shallow submarine volcano, Moeraki Peninsula, New Zealand

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin

    Eocene Surtseyan lapilli tuff deposits with maximum stratigraphic thicknesses of at least 175 m record a submarine volcano that underwent two cycles of edifice construction and erosion at Moeraki Peninsula, South Island, New Zealand. Basalt dike fragments, basalt clasts exhibiting fluidal deformation, and angular schist derived xenoliths are present throughout the lapilli tuff units; together with petrographic examination of the lapilli tuff, these rocks indicate that a broad range of eruptive and fragmentary mechanisms took place in the Moeraki volcano. Processes involved probably included phreatomagmatic interaction of magma with pyroclast-mud-seawater slurries in the vent. Data from two measured stratigraphic sections show that the volcano was formed during two distinct phases of eruption, separated by quiescence during which 1.5 m of laminated volcaniclastic sandstones were deposited. Lapilli tuff units below the sandstones are generally massive, while those above are well bedded and often alternate between finer- and coarser-grained lenticular bedsets. The stratigraphy and lithology of rocks at Moeraki indicate that the volcano was constructed through the explosive eruption of lapilli and ash in water no deeper than 400 m. The cone built to a height of at least 100 m above the seafloor by a combination of fall and eruption fed density currents, before eruption ceased and erosion of the volcano occurred. Renewed volcanic activity resulted in a volcano that rose above storm wave base and may even have emerged. As with modern analogues Surtla and Kavachi, erosion of the volcano to storm wave base or below quickly followed cessation of eruption.

  19. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    SciTech Connect

    Dixon, J.E.; Stolper, E.M. ); Clague, D.A. )

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  20. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun

    2015-07-01

    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)). PMID:25855623

  1. Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)

    NASA Astrophysics Data System (ADS)

    Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.

    2014-12-01

    Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.

  2. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  3. A GIS typology to locate sites of submarine groundwater discharge.

    PubMed

    Rapaglia, John; Grant, Carley; Bokuniewicz, Henry; Pick, Tsvi; Scholten, Jan

    2015-07-01

    Although many researchers agree on the importance of submarine groundwater discharge (SGD), it remains difficult to locate and quantify this process. A groundwater typology was developed based on local digital elevation models and compared to concurrent radon mapping indicative of SGD in the Niantic River, CT USA. Areas of high radon activity were located near areas of high flow accumulation lending evidence to the utility of this approach to locate SGD. The benefits of this approach are three-fold: fresh terrestrial SGD may be quickly located through widely-available digital elevation models at little or no cost to the investigator; fresh SGD may also be quantified through the GIS approach by multiplying pixelated flow accumulation with the expected annual recharge; and, as these data necessarily quantify only fresh SGD, a comparison of these data with SGD as calculated by Rn activity may allow for the separation of the fresh and circulated fractions of SGD. This exercise was completed for the Niantic River where SGD as calculated by the GIS model is 1.2m(3)/s, SGD as calculated by Rn activity is 0.73-5.5m(3)/s, and SGD as calculated via a theoretical approach is 1.8-4.3m(3)/s. Therefore fresh, terrestrial SGD accounts for 22-100% of total SGD in the Niantic River. PMID:25863321

  4. Helium Isotopes of Fluids from Submarine Volcanoes in the South-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Hsin Kao, Li; Yang, Tsanyao Frank; Wen, Hsin-Yi; Chen, Ai-Ti; Lee, Hsiao-Fen

    2014-05-01

    Many active submarine volcanoes have been found in southern Okinawa Trough. Water column samples from the hydrothermal plumes above venting volcanoes were collected during the OR2-1897 and -1984 cruises. Meanwhile, diving at shallower depths were conducted several times to collect the water samples near the venting sites. In total, 122 water samples from various depths in the offshore area of NE Taiwan were collected for dissolved gases and helium isotopes measurement. The dissolved gases of water column samples show that the CO2 concentration and the alkalinity increase with depth and become higher at the bottom, while the result of O2 concentration shows a reverse pattern. The 3He/4He ratios near the vicinity of active Kueishantao volcano show highest value, up to 5.5 RA, where RA is the atmospheric ratios of 1.39 x 10-6. The plot of 3He/4He and 3He/20Ne ratios suggests that there may be different sources in this region. Furthermore, we will estimate the helium flux from the venting volcanoes in this area.

  5. Submarine geology of the Hilina slump and morpho-structural evolution of Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Malahoff, Alexander; Shor, Alexander N.

    1999-12-01

    Marine geophysical data, including SEA BEAM bathymetry, HAWAII MR1 sidescan, and seismic reflection profiles, along with recent robot submersible observations and samples, were acquired over the offshore continuation of the mobile Kilauea volcano south flank. This slope comprises the three active hot spot volcanoes Mauna Loa, Kilauea, and Loihi seamount and is the locus of the Hawaiian hot spot. The south flank is the site of frequent low-intensity seismicity as well as episodic large-magnitude earthquakes. Its sub-aerial portion creeps seaward at a rate of approximately 10 cm/year. The Hilina slump is the only large submarine landslide in the Hawaiian Archipelago thought to be active, and this study is one of the first to more highly resolve submarine slide features there. The slump is classified into four distinct zones from nearshore to the island's base. Estimates of size based on these data indicate a slumped area of 2100 km 2 and a volume of 10,000-12,000 km 3, equivalent to about 10% of the entire island edifice. The overall picture gained from these data sets is one of mass wasting of the neovolcanic terrain as it builds upward and seaward, though reinforcement by young and pre-Hawaii seamounts adjacent to the pedestal is apparent. Extensive lava delta deposits are formed by hyaloclastites and detritus from recent lava flows into the sea. These deposits dominate the upper submarine slope offshore of Kilauea, with pillow breccia revealed at mid-depths. Along the lower flanks, massive outcrops of volcanically derived sedimentary rocks were found underlying Kilauea, thus necessitating a rethinking of previous models of volcanic island development. The morphologic and structural evolutionary model for Kilauea volcano and the Hilina slump proposed here attempts to incorporate this revelation. A hazard assessment for the Hilina slump is presented where it is suggested that displacement of the south flank to date has been restrained by a still developing northeast lateral submarine boundary. When it does fully mature, the south flank may be more subject to land slips triggered by large, long duration earthquakes and thus Kilauea may undergo more frequent episodes of failure with increased displacements.

  6. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate. PMID:23939372

  7. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  8. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Carey, S.; Papanikolaou, D.; Croff Bell, K.; Sakellariou, D.; Alexandri, M.; Bejelou, K.

    2012-06-01

    The seafloor northeast of Santorini volcano in Greece consists of a small, elongated rifted basin that has been the site of recent submarine volcanism. This area lies within the Cyclades back-arc region of the present Hellenic subduction zone where the seafloor of the eastern Mediterranean Sea is descending beneath the Aegean microplate. The Cycladic region and the Aegean Sea as a whole are known to be regions of north-south back-arc extension and thinning of continental crust. Nineteen submarine volcanic cones occur within this small rift zone, the largest of these being Kolumbo which last erupted explosively in 1650 AD, causing significant damage and fatalities on the nearby island of Santorini. Previous SEABEAM mapping and seismic studies from HCMR indicate that many of the smaller v'olcanic cones have been built above the present seafloor, while others are partly buried, indicating a range of ages for the activity along this volcanic line. None of the cones to the northeast of Kolumbo had been explored in detail prior to a cruise of the E/V Nautilus (NA007) in August 2010. The ROV Hercules was used to explore the slopes, summits and craters of 17 of the 19 centers identified on multibeam maps of the area. Water depths of the submarine volcano's summits ranged from 18 to 450 m. In general, the domes/craters northeast of Kolumbo were sediment covered and showed little evidence of recent volcanic activity. Outcrops of volcanic rock were found in the crater walls and slopes of some of the cones but they typically consisted of volcanic fragments of pumice and lava that have been cemented together by biological activity, indicative of the lack of recent eruptions. Geochemical analysis of samples collected on the northeast cones showed evidence of low temperature hydrothermal circulation on the summit and upper flanks in the form of stream-like manganese precipitates emanating from pits and fractures.

  9. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  10. Shoshonitic magmas in nascent arcs: New evidence from submarine volcanoes in the northern Marianas

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Bloomer, Sherman H.; Lin, Ping-Nan; Ito, Emi; Morris, Julie

    1988-05-01

    Volcanoes in the northern Mariana arc between Uracas (lat 20°N) and Minami Iwo Jima (24°N) are very active yet entirely submarine. In contrast to the predominantly low-K basaltic magmas of the central Mariana arc, the northern Mariana arc is dominated by more siliceous melts in the south and by shoshonites in the north. The northern arc melts have enrichments in Ba (<800 ppm), Rb (<70 ppm), Sr (<1000 ppm), Ce (<50 ppm), and (Ce/Yb)n (<24) which increase to the north as far as Iwo Jima. Lavas from volcanoes north of Iwo Jima lack these enrichments and are indistinguishable from those of the central Maranas. The shoshonites are unusual in occurring along the magmatic front of a primitive, intra-oceanic arc. We hypothesize that they represent the reconstruction of a magmatic arc following melting of enriched mantle due to the propagation of the Mariana Trough spreading center northward through the Volcano arc. Shoshonites thus may characterize the initial stages of arc construction after an episode of back-arc rifting and need not be restricted to the mature stages of arc evolution. This situation contrasts with subduction-zone initiation, where first melts may be boninites or low-K tholeiites. These differing initial melts converge toward tholeiitic and calc-alkaline compositions as arcs evolve.

  11. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    USGS Publications Warehouse

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000-4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan-USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700-4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualalai. Relatively low sulfur (330-600 ppm) and water (0.18-0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500-1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100-190 ppm) indicate deeper equilibration, at or near sample sites at water depths of -3900 to -2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from vesicles during flowage downslope after eruption in shallow water. The glass volatile compositions suggest that the tholeiitic lavas that drape the slump blocks were erupted either (1) early during shield-stage tholeiitic volcanism prior to emergence of a large subaerial edifice, or alternatively (2) from submarine radial vents during subaerial shield-building. Because no radial vents have been documented on land or underwater for the unbuttressed flanks of any Hawaii volcano, alternative (1) is favored. In comparison to other well-documented Hawaiian slumps and landslides, North Kona structures suggest a more incipient slump event, with smaller down-slope motions and lateral displacements.

  12. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Coombs, M. L.

    2006-03-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km 2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000-4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan-USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700-4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hual?lai. Relatively low sulfur (330-600 ppm) and water (0.18-0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500-1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100-190 ppm) indicate deeper equilibration, at or near sample sites at water depths of - 3900 to - 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from vesicles during flowage downslope after eruption in shallow water. The glass volatile compositions suggest that the tholeiitic lavas that drape the slump blocks were erupted either (1) early during shield-stage tholeiitic volcanism prior to emergence of a large subaerial edifice, or alternatively (2) from submarine radial vents during subaerial shield-building. Because no radial vents have been documented on land or underwater for the unbuttressed flanks of any Hawaii volcano, alternative (1) is favored. In comparison to other well-documented Hawaiian slumps and landslides, North Kona structures suggest a more incipient slump event, with smaller down-slope motions and lateral displacements.

  13. Direct Observations of Explosive Eruptive Activity at a Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Deardorff, N.; Matsumoto, H.; Cashman, K. V.; Dziak, R. P.; Merle, S. G.

    2006-12-01

    In April 2006, a series of extraordinary observations of a deep-sea volcanic eruption were made at NW Rota-1, located at 14^{circ}36'N in the Mariana arc, western Pacific. This is a conical, basaltic-andesite submarine volcano with a summit depth of 517 m. Explosive eruptive activity at NW Rota-1 was discovered in 2004 and was witnessed again in 2005, but the activity in 2006 was especially vigorous and well documented. During six dives with the remotely operated vehicle Jason II over a period of 7 days, video observations made at close range documented a diverse and increasingly energetic range of volcanic activity that culminated in explosive bursts with flashes of glowing red lava propelled by violently expanding gases. Other notable activity included discreet degassing events, extrusion of sluggish lava flows, explosions that formed dilute density currents and/or expelled rocks and ash tens of meters from the vent, and rapid pressure oscillations apparently caused by the repeated formation and condensation of steam. During the last dive when the highest extrusion rates were observed, quasi-periodic bursts from the vent, each lasting 1-10 minutes, were separated by pauses lasting 10 seconds to a few minutes. Each burst started as a plug of crusted-over lava rose in the vent and was blown apart by expanding gases, producing large lava bombs with distinctly flat, disc-like shapes. A remarkable aspect of these observations was how close Jason II could be to the vent during the eruptions. This was because the pressure of the overlying seawater dampened the energy of the explosions and slowed the velocity of volcanic ejecta. Also, lava degassing could be visualized with great clarity underwater as either clear bubbles (CO2) or opaque yellow clouds (dominated by SO2 and H2S). A portable hydrophone with a 30-hour recording capacity was deployed twice by Jason II at the summit of NW Rota-1 during the 2006 dive series. The hydrophone data extends the visual observations made at the vent and quantifies the temporal pattern and intensity of the eruptive activity. The expedition to NW Rota-1 in 2006 was supported by the NOAA Ocean Exploration Program.

  14. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few hundred years of magma emplacement in the form of rapidly rising low-salinity vapor-rich fluids. About 95% of the magmatically derived salt is temporarily trapped in the crust, either as dense brine or as precipitated halite. This retained salt can only be expelled by later convection of seawater during the waning period of the hydrothermal system (i.e., “brine mining”). While the abundant mineralization of the NW Caldera vent field at Brothers could not be classified as an economic ore deposit, our model has important implications for submarine metal enrichment and the origin of distinct ore types known from exposed systems on land. Sulfide-complexed metals (notably Au) will preferentially ascend during early vapor-dominated fluid expulsion, potentially forming gold ± copper rich vein and replacement deposits in near-seafloor zones of submarine volcanoes. Dense magmatic brine will initially accumulate chloride-complexed base metals (such as Cu, Fe, Pb and Zn) at depth before they are mobilized by seawater convection. The resulting mixed brines can become negatively buoyant when they reach the seafloor and may flow laterally towards depressions, potentially forming layers of base metal sulphides with distinct zonation of metals.

  15. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than the regional velocity model (HG50; Klein, 1989) in the shallow lithosphere above 16 km depth. This is likely a result of thick deposits of volcaniclastic sediments and fractured pillow basalts that blanket the southern submarine flank of Mauna Loa, upon which Lo';ihi is currently superimposing (Morgan et al., 2003). A broad, low-velocity anomaly was observed from 20-40 km deep beneath the area of Pahala, and is indicative of the central plume conduit that supplies magma to the active volcanoes. A localized high-velocity body is observed 4-6 km deep beneath Lo';ihi's summit, extending 10 km to the North and South. Oriented approximately parallel to Lo';ihi's active rift zones, this high-velocity body is suggestive of intrusion in the upper crust, similar to Kilauea's high-velocity rift zones.

  16. Submarine Strombolian Eruptions Observed at NW Rota-1 Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Cashman, K. V.; Embley, R. W.; Dziak, R. P.; de Ronde, C.; Matsumoto, H.; Deardorff, N.; Merle, S. G.

    2007-12-01

    Extraordinary video and hydrophone observations of a submarine explosive eruption were made with a remotely operated vehicle in April 2006 at a depth of 550-560 m on NW Rota-1, a conical, basaltic-andesite submarine volcano in the Mariana arc. The observed eruption evolved from effusive to explosive, while the eruption rate increased from near zero to 10-100 m3/hr. During the peak in activity, cyclic explosive bursts 2-6 minutes long were separated by shorter non-eruptive pauses lasting 10-100 seconds. The size of the ejecta increased with the vigor of the explosions. A portable hydrophone deployed near the vent recorded sounds correlated with the explosive bursts; the highest amplitudes were at frequencies between 10-50 Hz, but extended up to at least 1500 Hz. The acoustic data allow us to quantify the durations, amplitudes, and evolution of the eruptive events over time. The low eruption rate, high gas/lava ratio, and rhythmic eruptive behavior at NW Rota-1 are most consistent with a Strombolian eruptive style. We interpret that the eruption was primarily driven by the venting of magmatic gases, which was also the primary source of the sound recorded during the explosive bursts. The rhythmic nature of the bursts can be explained by partial gas segregation in the conduit and upward migration in a transitional regime between bubbly flow and fully-developed slug flow. The strongest explosive bursts were accompanied by flashes of red glow and oscillating eruption plumes in the vent, apparently caused by magma- seawater interaction and rapid steam formation and condensation. These data are unique because this is the first time submarine explosive eruptions have been witnessed with simultaneous near-field acoustic recordings.

  17. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. PMID:20533949

  18. Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge

    NASA Astrophysics Data System (ADS)

    Nishio, Yoshiro; Ijiri, Akira; Toki, Tomohiro; Morono, Yuki; Tanimizu, Masaharu; Nagaishi, Kazuya; Inagaki, Fumio

    2015-03-01

    To investigate fluid regimes in the Nankai accretionary wedge, we estimated the temperatures of lithium (Li) reservoirs from the Li isotope ratio (7Li/6Li) in fluids recovered from Kumano mud volcano No. 5 (KMV#5) in the Nankai forearc basin. The 7Li/6Li ratios in the KMV#5 fluids are among the lightest reported from submarine mud volcanoes. The estimated Li reservoir temperatures (310 C at maximum) were significantly higher than the smectite-to-illite conversion temperature (60-150 C), whereas the temperature of fluid from the deeper Nankai dcollement was estimated to be 150 C at maximum. Data obtained from previous conductivity surveys across the trench suggest that there are two fluid reservoirs associated with distinct dehydration processes in the Nankai subduction zone. From these results, we inferred that the discontinuous mud diapirism in the Kumano forearc basin results from the periodic injection of deep-seated fluid accumulated in the corner of the serpentinized forearc mantle wedge that travels upward via a thrust fault. The intermittent upwelling of deep-seated fluid from the Nankai accretionary wedge due to periodic breaches of a low-permeability barrier above the fluid reservoir may be associated with seismogenic fault activity.

  19. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it is possible that eruption columns are likely to breach the sea surface and generate subaerial plumes. A ~10 ka pumiceous tephra layer with a similar composition to the rocks recovered during the dives has been discovered in the subaerial outcrops of Izu-Oshima, suggesting that this tephra may have originated from Oomurodashi. The deeper slopes of Oomurodashi are composed of effusive and intrusive rocks that are bimodal in composition, with basaltic dikes and lavas on the northern flank and dacite volcaniclastics on the eastern flank. This suggests that Oomurodashi is a complex of smaller edifices of various magma types, similar to what has been observed at silicic submarine calderas in the southern part of the Izu-Bonin Arc (e.g. Sumisu Caldera; Tani et al., 2008, Bull. Vol.). Furthermore, the SCS surveys revealed the presence of a buried caldera structure, ~8 km in diameter, beneath the flat-topped summit of Oomurodashi, indicating that voluminous and explosive eruptions may have occurred in the past.

  20. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Cashman, K. V.; Embley, R. W.; Matsumoto, H.; Dziak, R. P.; de Ronde, C. E. J.; Lau, T. K.; Deardorff, N. D.; Merle, S. G.

    2008-08-01

    Extraordinary video and hydrophone observations of a submarine explosive eruption were made with a remotely operated vehicle in April 2006 at a depth of 550-560 m on NW Rota-1 volcano in the Mariana arc. The observed eruption evolved from effusive to explosive, while the eruption rate increased from near zero to 10-100 m3/h. During the peak in activity, cyclic explosive bursts 2-6 min long were separated by shorter non-eruptive pauses lasting 10-100 s. The size of the ejecta increased with the vigor of the explosions. A portable hydrophone deployed near the vent recorded sounds correlated with the explosive bursts; the highest amplitudes were 50 dB higher than ambient noise at frequencies between 10 and 50 Hz. The acoustic data allow us to quantify the durations, amplitudes, and evolution of the eruptive events over time. The low eruption rate, high gas/lava ratio, and rhythmic eruptive behavior at NW Rota-1 are most consistent with a Strombolian eruptive style. We interpret that the eruption was primarily driven by the venting of magmatic gases, which was also the primary source of the sound recorded during the explosive bursts. The rhythmic nature of the bursts can be explained by partial gas segregation in the conduit and upward migration in a transitional regime between bubbly flow and fully developed slug flow. The strongest explosive bursts were accompanied by flashes of red glow and oscillating eruption plumes in the vent, apparently caused by magma-seawater interaction and rapid steam formation and condensation. This is the first time submarine explosive eruptions have been witnessed with simultaneous near-field acoustic recordings.

  1. Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.

    2006-12-01

    Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'

  2. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  3. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, B.; Rhodes, J. M.; Singer, B. S.; Vollinger, M. J.; Garcia, M. O.

    2009-12-01

    A major impediment to our understanding of the nature and structure of the Hawaiian plume, and evaluating the competing plume models has been a lack of thick stratigraphic sections from which to obtain long temporal records of magmatic history. The Hawaii Scientific Drilling Project (HSDP) made a significant advance towards solving this problem by documenting the long-term magmatic evolution of Mauna Kea volcano on the Kea side of the plume. To evaluate comparable long-term magmatic history on the Loa side of the plume we collected a stratigraphically controlled sample suite using Jason and Pisces dives from three vertical transects of the 1.6 km high Kae Lae landslide scarp cut into Mauna Loas submarine southwest rift zone (SWR). We have undertaken an 40Ar/39Ar investigation of Mauna Loas growth history to integrate new geochronologic constraints with geochemical, and isotopic data, illuminating temporal trends within the Hawaiian plume. Obtaining precise 40Ar/39Ar ages from tholeiitic lavas younger than 500 ka containing only 0.2-0.6 wt.% K2O is challenging due to the extremely low radiogenic 40Ar contents. Furnace incremental heating experiments of groundmass separated from 15 submarine lavas have yielded four new age determinations (a 27% success rate). These four lavas give concordant age spectra with plateau and isochron ages that agree with stratigraphy. We also analyzed two previously-dated subaerial Mauna Kea tholeiites from the HSDP-2 drill core, to assess inter-laboratory reproducibility and calibrate our results to those obtained for the core. Two experiments on sample SR413-4.0 and one experiment from SR781-21.2 gave weighted mean plateau ages of 364 95 ka and 473 109, respectively, which are indistinguishable from the published 40Ar/39Ar ages of 390 70 ka and 482 67. Although Sharp and Renne (2005) preferred isochron ages for the submarine Mauna Kea tholeiites recovered from HSDP, we find that submarine Mauna Loa lavas contain trapped argon with a 40Ar/36Ar ratio that is indistinguishable from the atmospheric value of 295.5. Therefore, we consider the plateau ages to provide the most precise estimate of time elapsed since eruption. Lavas from 857, 1753, and 2112 mbsl give indistinguishable plateau ages of 473 29, 463 33, and 472 107, respectively, implying an extraordinary period of lava accumulation. If correct, this implies that ~1300 m of lava was emplaced on the SWR at a rate far exceeding that proposed in previous accumulation models for Mauna Loa or Mauna Kea, possibly correlating with the peak of the shield-building stage. Three experiments from a more K-rich lava (0.67 wt. % K2O) near the top of the landslide scarp gave a weighted mean plateau age of 193 16 ka, indicating a marked decline in eruption rates on this part of the SWR.

  4. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. This virtual exploration is part of the NeMO web site and will be at this URL http://www.pmel.noaa.gov/vents/dive.html

  5. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, Brian R.; Rhodes, J. Michael; Singer, Brad S.; Garcia, Michael O.

    2012-09-01

    New geochronologic constraints refine the growth history of Mauna Loa volcano and enhance interpretations of the petrologic, geochemical, and isotopic evolution of Hawaiian magmatism. We report results of 40Ar/39Ar incremental heating experiments on low-K, tholeiitic lavas from the 1.6 km high Kahuku landslide scarp cutting Mauna Loa's submarine southwest rift zone, and from lavas in a deeper section of the rift. Obtaining precise40Ar/39Ar ages from young, tholeiitic lavas containing only 0.2-0.3 wt.% K2O is challenging due to their extremely low radiogenic 40Ar contents. Analyses of groundmass from 45 lavas yield 14 new age determinations (31% success rate) with plateau and isochron ages that agree with stratigraphic constraints. Lavas collected from a 1250 m thick section in the landslide scarp headwall were all erupted around 470 10 ka, implying an extraordinary period of accumulation of 25 mm/yr, possibly correlating with the peak of the shield-building stage. This rate is three times higher than the estimated vertical lava accumulation rate for shield-building at Mauna Kea (8.6 3.1 mm/yr) based on results from the Hawaii Scientific Drilling Project. Between 470 and 273 ka, the lava accumulation rate along the southwest rift zone decreased dramatically to 1 mm/yr. We propose that the marked reduction in lava accumulation rate does not mark the onset of post-shield volcanism as previously suggested, but rather indicates the upward migration of the magma system as Mauna Loa evolved from a submarine stage of growth to one that is predominantly subaerial, thereby cutting off supply to the distal rift zone. Prior to 250 ka, lavas with Loihi-like isotopic signatures were erupted along with lavas having typical Mauna Loa values, implying greater heterogeneity in the plume source earlier in Mauna Loa's growth. In addition to refining accumulation rates and the isotopic evolution of the lavas erupted along the southwest rift zone, our new40Ar/39Ar results constrain the eruption of the Ninole Basalts from 227 to 108 ka and provide maximum estimates on the timing of the Ka Lae and South Kona landslides.

  6. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  7. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2015-11-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  8. Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Nomikou, P.; Moore, J. D. P.; Parks, M. M.; Alexandri, M.

    2015-03-01

    Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes, such as submarine volcanism. The British Admiralty, for example, have been involved in lead line measurements of seafloor depth since the early 1790s. Here, we report on an analysis of historical charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, late 1866, and 1925-1928 as well as multibeam swath bathymetry surveys in 2001 and 2006 have been used to document changes in seafloor depth. These data reveal that the flanks of the Kameni Islands, a dacitic dome complex in the caldera center, have shallowed by up to 175 m and deepened by up to 80 m since 1848. The largest shallowing occurred between the late 1866 and 1925-1928 surveys and the largest deepening occurred during the 1925-1928 and 2001 and 2006 surveys. The shallowing is attributed to the emplacement of lavas during effusive eruptions in both 1866-1870 and 1925-1928 at rates of up to 0.18 and 0.05 km3 a-1, respectively. The deepening is attributed to a load-induced viscoelastic stress relaxation following the 1866-1870 and 1925-1928 lava eruptions. The elastic thickness and viscosity that best fits the observed deepening are 1.0 km and 1016 Pa s, respectively. This parameter pair, which is consistent with the predictions of a shallow magma chamber thermal model, explains both the amplitude and wavelength of the historical bathymetric data and the present day rate of subsidence inferred from InSAR analysis.

  9. Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia)

    NASA Astrophysics Data System (ADS)

    Kukarina, Ekaterina; West, Michael; Koulakov, Ivan

    2014-05-01

    Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio reveal the paths of the ascending fluids and melts, feeding the magma chamber. This work was partly supported by Project #7.3 of BES RAS and Project #14-05-31176 mola of RFBR.

  10. Vailuluu Seamount, Samoa: Life and death on an active submarine volcano

    PubMed Central

    Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

    2006-01-01

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailuluu seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailuluu crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailuluu is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  11. Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano.

    PubMed

    Staudigel, Hubert; Hart, Stanley R; Pile, Adele; Bailey, Bradley E; Baker, Edward T; Brooke, Sandra; Connelly, Douglas P; Haucke, Lisa; German, Christopher R; Hudson, Ian; Jones, Daniel; Koppers, Anthony A P; Konter, Jasper; Lee, Ray; Pietsch, Theodore W; Tebo, Bradley M; Templeton, Alexis S; Zierenberg, Robert; Young, Craig M

    2006-04-25

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81 degrees C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO(2). The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  12. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but with durations of only 20-30 ms. Interestingly, explosion activity increased at West Mata for several months, observed at more distant hydrophone stations, following the September 2009 8.1 Mw Samoan earthquake. The tephra and hydrophone data were only synchronously recorded from January to May 2010, but these data indicate a repeated record of summit explosions followed by down flank debris flows, an important process in the construction of the volcanic edifice. Bathymetric differencing between 2010 and 2011 shows two large negative anomalies at the summit and a broad positive anomaly on the east flank, interpreted as a major slump that removed part of the summit during the final magma withdrawal related to formation of the summit pit crater.

  13. The Hilina Slump: Consequences of Slope Failure and Volcanic Spreading Along the Submarine South Flank of Kilauea Volcano, HI

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.; Moore, G. F.; Clague, D. A.

    2003-12-01

    Kilauea volcano is the type locale to study the dynamic interplay between slope failure and volcanic spreading; this was recognized very early by Jim Moore and colleagues. New geophysical data and seafloor mapping in the area now better resolve the dramatic history of Kilauea volcano. In this seismically active setting, the interface between the oceanic crust and volcanic edifice accommodates seaward sliding of the south flank of Kilauea, probably rooted along Kilauea's East Rift Zone. Present day displacement of the south flank is punctuated by intermittent movement of the Hilina slump, defined by a set of arcuate normal faults that break the flank just downslope of Kilauea's summit. Analysis of recent multichannel seismic (MCS) data and high-resolution bathymetry over the submarine slopes of Kilauea volcano reveals that the active slump has a relatively shallow detachment, 3-5 km deep, comprises largely slope sediments, and is restricted to the upper northwestern portion of the mobile south flank. Offset morphologic features along the marginal ridge known as Papa'u seamount, constrain measurable downslope displacement of the slump to ~3 km, directed oblique to its western boundary. The MCS data also reveal the buried scar of a large-scale slope failure to the northeast of the submarine Hilina slump, which is the probable source of thick deposits of volcaniclastic breccias presently contained within the frontal midslope bench. The midslope bench developed as the mobile south flank of Kilauea plowed seaward into and offscraped the landslide debris, trapping a broad basin above the landslide scar. Uplift and back-tilting of young basin fill indicate recent, and possibly ongoing, bench growth. The Hilina slump now impinges upon this frontal bench, a buttress that may tend to reduce the likelihood of future catastrophic detachment of the landslide.

  14. Volcanic construction of submarine Kermadec arc volcanoes from near-bottom sidescan sonar data collected by the Sentry AUV

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; de Ronde, C. E.; Leybourne, M. I.; Caratori Tontini, F.; Kaiser, C. L.; Kurras, G. J.; Kinsey, J. C.; Yoerger, D. R.

    2011-12-01

    Seafloor mapping in the deep ocean has benefitted greatly from the advent and now routine use of autonomous underwater vehicles (AUVs) to collect areally extensive near-bottom bathymetric, photographic, hydrographic, and magnetic data. For geologic investigations, AUV-derived data is often supplemented by near-bottom sidescan sonar backscatter data that provides information on seafloor substrate (e.g., sediment/bare rock) and roughness. High-frequency sidescan sonar data with comparable resolution to AUV-derived bathymetry is typically collected by deep-towed instruments at altitudes <100 m. This approach has limited use in rough terrain as rapid depth changes in towed-vehicles can significantly degrade sidescan sonar data quality. This limitation certainly applies to arc volcanoes where regional slopes in excess of 25 degrees are present on volcano flanks and much greater local slopes due steep-walled calderas and resurgent domes are common. Here we report the first deployment of a dual-frequency sidescan sonar system (Edgetech 2200M 120/410 kHz) on the National Deep Submergence Facility AUV Sentry, which can easily operate in rough terrain. Sidescan sonar data was collected over three submarine volcanoes in the Kermadec Arc (Brothers, Healy, Rumble III) on a cruise sponsored by the Institute of Geological and Nuclear Science, New Zealand. Sentry operated at ~40 m altitude with track spacing of 50-100 m. Sonar imagery from the 410 kHz channel has a spatial resolution of ~20 cm/pixel. To our knowledge, these are the first near-bottom, high-frequency sidescan sonar data collected at submarine arc volcanoes. We use these data to evaluate the type (explosive, effusive), size, and relative age of the deposits that make up these volcanic edifices based on acoustic backscatter intensity, along with ground-truthing from deep-towed photographic surveys. Relative to existing multibeam and sidescan sonar backscatter data in similar settings, the Sentry-collected sidescan sonar can resolve much smaller scale features and thus generate a higher-fidelity record of the processes responsible for arc volcano construction and evolution than was previously possible.

  15. High-Resolution Distribution of Temperature, Particle and Oxidation/Reduction Potential Anomalies From a Submarine Hydrothermal System: Brothers Volcano, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; de Ronde, C. E.; Yoerger, D.; Embley, R. W.; Davy, B.; Merle, S. G.; Resing, J. A.; Nakamura, K.

    2008-12-01

    The complex relationships between geological setting and hydrothermal venting have, to date, largely been explored with ship-based surveys that effectively examine regional relationships, or with remotely operated vehicles (ROV) and manned submersibles which allow close examination of individual vent fields. Higher- resolution surveys than are possible with ship-based techniques and broader surveys than are practical with ROVs and manned submersibles are necessary for more thoroughly understanding hydrothermal systems and their impact on ocean ecosystems. Autonomous vehicles (AUVs), such as the WHOI Autonomous Benthic Explorer (ABE) can be programmed to conduct high-resolution surveys that systematically cover a broad area of seafloor. Brothers volcano, a hydrothermally active submarine caldera volcano located on the Kermadec arc northwest of New Zealand, was surveyed in July-August 2007 using ABE. Brothers caldera is ~3 km in diameter with a floor depth of 1850 m and walls that rise 290-530 m above the caldera floor. A dacite cone with a summit depth of ~1200 m sits within the caldera, partially merging with the southern caldera wall. Prior to the survey, active hydrothermal vents were known to be perched along the NW caldera wall and located at three sites on the cone. The enclosed caldera, presence of known vent fields with differing geochemical characteristics, and existence of at least one currently inactive site made Brothers volcano an ideal site for a high-resolution survey to explore in greater detail the mass, thermal and geochemical exchanges of hydrothermal systems. During our expedition, the caldera walls and dacite cone (~7 km2) were completely surveyed by ABE with 50-60 m trackline spacing at an altitude of 50 m above the seafloor. Hydrothermal plumes were mapped with ABE's integrated CTD (conductivity- temperature-depth) and sensors measuring optical backscatter (particle concentrations) and oxidation- reduction potential (ORP; indicating the presence of reduced chemical species). This survey resulted in the first high-resolution map of temperature, particle and ORP anomalies within a hydrothermally active submarine caldera. New details about the extent and structure of the known active vent fields were revealed, and a new area of active venting was discovered along the west caldera wall. Additionally, relationships between source vents, buoyant plumes, and neutrally buoyant regional plumes mapped using standard surface ship methods can be compared. Simultaneously acquired bathymetry and magnetic anomaly data show correlations between the geomorphology of the caldera, magnetic alterations and patterns of past and present hydrothermal venting.

  16. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ?i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ?i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these correspond to evolutionary stages of developing rift zones, which may partially control volcano growth, mobility, and stability, and may be observable at many other oceanic volcanoes.

  17. Episodic massive mud eruptions from submarine mud volcanoes examined through topographical signatures

    NASA Astrophysics Data System (ADS)

    Kioka, Arata; Ashi, Juichiro

    2015-10-01

    The role of mud volcanism on subsurface fluid migration and material cycling has long been debated. Here we compile the heights and radii of offshore mud volcanoes and estimate a mean volume of episodic massive mud eruptions based on previous studies into granular flows. The volume is estimated as a function of the ratio of height to basal radius of the mud volcano's body under reasonable assumptions of the sizes of the mud conduit. Nearly all known offshore mud volcanoes are found to be polygenetic with the mean individual eruption volume of the pie-type mud volcano being several orders of magnitude larger than that of the cone type. The frequent occurrence of pie-type mud volcanoes in accretionary margins characterized by high-sediment influx is explained by their efficiency in the transport of large amounts of fluidized sediments from deep depths to the seafloor.

  18. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, Eugenio; Magdalena Santana-Casiano, J.; Gonzlez-Dvila, Melchor

    2014-05-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  19. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response.

    PubMed

    Fraile-Nuez, E; Gonzlez-Dvila, M; Santana-Casiano, J M; Arstegui, J; Alonso-Gonzlez, I J; Hernndez-Len, S; Blanco, M J; Rodrguez-Santana, A; Hernndez-Guerra, A; Gelado-Caballero, M D; Eugenio, F; Marcello, J; de Armas, D; Domnguez-Yanes, J F; Montero, M F; Laetsch, D R; Vlez-Belch, P; Ramos, A; Ariza, A V; Comas-Rodrguez, I; Bentez-Barrios, V M

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  20. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; Gonzlez-Dvila, M.; Santana-Casiano, J. M.; Arstegui, J.; Alonso-Gonzlez, I. J.; Hernndez-Len, S.; Blanco, M. J.; Rodrguez-Santana, A.; Hernndez-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domnguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vlez-Belch, P.; Ramos, A.; Ariza, A. V.; Comas-Rodrguez, I.; Bentez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  1. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  2. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest one is 160 m high, 1.3 km in diameter and tops at 67 m water depth. This high-resolution data set illustrates a wide set of geohazards in the recent lively geological history of Aysén fjord.

  3. Examples of Models Fit to Magnetic Anomalies Observed Over Subaerial, Submarine, and Subglacial Volcanoes in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Finn, C. A.; Blankenship, D. D.

    2006-12-01

    Aeromagnetic and marine magnetic surveys over the volcanically active West Antarctic rift system, constrained by seismic reflection profiles over the Ross Sea continual shelf, and radar ice sounding surveys over the West Antarctic Ice Sheet (WAIS) allowed calculation of models fit to very high-amplitude anomalies. We present several examples: exposed 2700-m high, subaerial erupted volcano Mt Melbourne; the 750-m high source of anomaly D (Hamilton submarine volcano) in the Ross sea; and the 600-m high edifice of Mt. CASERTZ beneath the WAIS. The character of these anomalies and their sources varies greatly, and is inferred to be the result of subaerial, submarine and subglacial emplacement respectively. Mt. Melbourne erupted through the WAIS at a time when it was grounded over the Ross Sea continental shelf. Highly magnetic volcanic flows inferred to have high remanent (normal) magnetization in the present field direction produce the 600-nT positive anomaly. The flows protected the edifice above the ice from erosion. Negligible amounts of probably subglacially erupted, apparently non-magnetic hyaloclastite exist in association with Mt. Melbourne. Mt. CASERTZ is nonmagnetic and the edifice is interpreted as consisting of a transient mound of unconsolidated hyaloclastite injected into the WAIS. However Mt. CASERTZ, about 8-km diameter, overlies a 200-m high, 40-km wide highly magnetic residual edifice modeled as the top of the source (an active subglacial volcano) of a 400-nT high positive anomaly. Any former edifices comprising hyaloclastite, pillow breccia or other volcanic debris injected into the moving WAIS apparently have been removed. About 400 other high- amplitude anomalies associated with low relief (80 percent less than 200 m) edifices at the base of the ice (the tops of the sources of these steep gradient anomalies) beneath the WAIS defined by radar ice sounding have been interpreted as having former hyaloclastite edifices, which were removed by the moving ice. The source of the -1300-nT negative anomaly D projecting 600 m above the Ross Sea continental shelf is enigmatic. We interpret models as either the result of reversed magnetization (less than 780 Ka) at a time of deglaciation of the continental shelf, or a hydrothermally altered central core surrounded by highly magnetic flows erupted beneath the Ross sea since deglaciation in Holocene time.

  4. 1891 Submarine eruption of Foerstner volcano (Pantelleria, Sicily) : insights into the vent structure of basaltic balloon eruptions

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Carey, S.; Bell, K. L.; Rosi, M.; Marani, M.; Roman, C.; Pistolesi, M.; Baker, E. T.

    2012-12-01

    Numerous shallow water basaltic eruptions have produced abundant floating scoria up to several meters in diameter, yet little is known about the conditions that give rise to this unusual style of volcanism. On October 17, 1891, a submarine eruption began 4 kilometers northwest of the island of Pantelleria, Sicily. The eruptive vent was located at a depth of 250 meters along the NW-SE trending Sicily Channel Rift Zone. Evidence for the eruption was provided by the occurrence of hot, scoriaceous lava "balloons" floating on the sea surface along a narrow line about 850-1000 meters long trending along the rift. These extremely vesicular fragments were spherical to ellipsoidal in shape and ranged from <50 to 250 cm in diameter. Remotely Operated Vehicles (ROVs) and existing bathymetric maps have been used to conduct the first detailed investigation of a vent site associated with this unique style of volcanism. In 2011 the ROV Hercules, deployed from the E/V Nautilus, explored the 1891 Foerstner vent using high definition video cameras and produced a high resolution bathymetric map of the area using a BlueView multibeam imaging sonar. Light backscattering and oxidation-reduction potential sensors (MAPRs) were added to Hercules to detect discharge from active venting. ROV video footage has been used in conjunction with the high resolution bathymetric data to construct a geologic map of the vent area based on a variety of facies descriptors, such as abundance of scoria bombs, occurrence of pillow or scoria flow lobes, extent of sediment cover, and presence of spatter-like deposits. Initial results of the mapping have shown that there are two main vents that erupted within the observed area of floating scoria and most likely erupted at the same time as evidenced by similar bulk chemical compositions of recovered samples. Scoria bomb beds and some scoria flow lobes largely cover the suspected main vent, located at a depth of 250 meters. Distinct pillow flow lobes cover the second, previously unknown vent located north of Foerstner volcano at a depth of around 350 meters. Given the close proximity of these two vents, the differences in deposit types may be due to changing eruption style as a function of water depth. The abundant pillow flow lobes observed at the northern vent are most likely the result of more effusive eruptions occurring in deeper water (350 m) whereas the dominantly fragmental nature of material in the main southern vent indicates more vigorous explosive activity at shallower levels (250 m). Based on the nature of deposits found at the vent areas, the basaltic balloons of the 1891 Foerstner eruption are suspected to be a result of both coarse, localized fire fountaining activity and detachment from gas-charged flow lobes. The larger and shallower southern vent area is likely to have been the main source of the basaltic balloons observed on the surface during the 1891 eruption. A review of other historic eruptions that have produced basaltic balloons suggests that this style of activity is likely to be restricted to a rather narrow range of water depths and thus recognition of the distinct deposits produced by this type of activity in ancient deposits could help place important paleodepth constraints on volcaniclastic sequences.

  5. SeaMARC 2 side-scan images of submarine volcanoes: Potential analogues for Venus

    NASA Technical Reports Server (NTRS)

    Fryer, P.; Hussong, D.; Mouginis-Mark, P. J.

    1984-01-01

    The Earth's surface beneath the oceans may be very similar, in terms of ambient pressures, to the surface of Venus. For that reason it is particularly important for geologists studying the surface of Venus to understand the processes which form features on the floors of the oceans. With the SeaMARC 2 seafloor mapping system, it is possible to view a swath of seafloor that is 10 km wide (about 6.2 mi). Side scan images of the Mariana region show that volcanoes of the island arc are more complicated than previously realized and that features of the fore-arc region, which resemble volcanoes morphologically, may result from processes other than volcanism. By comparing data obtained from the ocean floor with radar images of Venus, the geological evolution of that planet may be more fully understood.

  6. Volcanoes

    MedlinePLUS

    ... Winter Storms & Extreme Cold Space Weather Main Content Volcanoes A volcano is a mountain that opens downward ... most mountains, which are pushed up from below, volcanoes are vents through which molten rock escapes to ...

  7. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76%) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  8. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    USGS Publications Warehouse

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  9. Molecular Comparison of Bacterial Communities within Iron-Containing Flocculent Mats Associated with Submarine Volcanoes along the Kermadec Arc▿

    PubMed Central

    Hodges, Tyler W.; Olson, Julie B.

    2009-01-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities. PMID:19114513

  10. Unravelling the Geometry of Unstable Flanks of Submarine Volcanoes by Magnetic Investigation: the Case of the "sciara del Fuoco" Scar (stromboli Volcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Muccini, F.; Cocchi, L.; Carmisciano, C.; Speranza, F.; Marziani, F.

    2012-12-01

    Stromboli is the easternmost island of the Aeolian Archipelago (Tyrrhenian Sea) and one of the most active Mediterranean volcanoes. The volcanic edifice rises over 3000 m above the surrounding seafloor, from a depth of about 2000 m b.s.l. to 924 m a.s.l. The north-western flank of volcano is deeply scarred by a destructive collapse event occurred ca. 5000 years ago, and forming a big horseshoe-shaped depression, known as "Sciara del Fuoco" (SdF). This depression, 3 Km long and 2 Km wide, is supposed to extend into the sea down to 700 m b.s.l., while further basinward it turns into a fan-shaped mounted deposit down to about 2600 m b.s.l., where it merges the so-called "Stromboli Canyon". Since its formation, emerged and submerged portions of the SdF have been progressively filled by the volcanic products of the persistent activity of the Stromboli Volcano. In the last 10 years, two paroxysmal eruptions occurred in the Stromboli Volcano, during 2002-2003 and February-April 2007. During both events, the SdF has been partially covered by lava flows and affected by slope failures, also causing (for the 2002-2003 event) a local tsunami. Since the 1990's, and especially after the last two paroxysms, the submerged extension of the SdF has been intensively investigated by using swath bathymetry data. We focused principally on the magnetic anomaly pattern of the submerged SdF since the chaotic depositional system virtually cancels magnetic remanence (which at Stromboli can reach 5-10 A/m values), thus lowering magnetic residual intensity. On July 2012 we acquired new detailed sea-surface magnetic data of the SdF from the shoreline to about 7 km offshore, where the depth is more than 1800 m b.s.l. We collected data thanks to the Italian Navy ship "Nave Aretusa" and by using the Marine Magnetics SeaSPY magnetometer. At the same time, new bathymetric data were acquired in the same area by using a Kongsberg Marine multibeam systems. Although the morphologic features of the submarine prosecution of the SdF system were already studied and unveiled, the complete description of the in-depth extension of the system and the overall volume estimation is still poorly known. This has important implications for the hazard assessment of the landslide structure and most generally of the entire volcanic edifice. The application of a classical geomagnetic prospection to describe a landslide feature is an uncommon procedure yet it can be considered as innovative approach, having the advantages of effectiveness, low cost and expedition typical of the geomagnetic survey. Here we present the interpretation of the newly acquired high-resolution magnetic dataset, thanks to susceptibility and magnetic remanence values gathered from on-land rock samples at Stromboli. A 3D inverse model is here proposed, allowing a full definition of the submerged SdF structure geometry.

  11. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created with Macromedia Director using Apple Quicktime and Quicktime VR. The exhibit is based on the NeMO Explorer web site (http://www.pmel.noaa.gov/vents/nemo/explorer.html).

  12. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    SciTech Connect

    Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.; Gittings, M. L.

    2004-01-01

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  13. Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Vailulu'U Research Group, T.

    2005-12-01

    Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton, Rhea Workman, Craig Young, Robert Zierenberg.

  14. Magma Ascent to Submarine Volcanoes: Real-Time Monitoring by Means of Teleseismic Observations of Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Spicak, A.; Vanek, J.; Kuna, V. M.

    2013-12-01

    Earthquake swarm occurrence belongs to reliable indicators of magmatic activity in the Earth crust. Their occurrence beneath submarine portions of volcanic arcs brings valuable information on plumbing systems of this unsufficiently understood environment and reveals recently active submarine volcanoes. Utilisation of teleseismically recorded data (NEIC, GCMT Project) enables to observe magmatic activity in almost real time. We analysed seismicity pattern in two areas - the Andaman-Nicobar region in April 2012 and the southern Ryukyu in April 2013. In both regions, the swarms are situated 80-100 km above the Wadati-Benioff zone of the subducting slab. Foci of the swarm earthquakes delimit a seismogenic layer at depths between 9 - 35 km that should be formed by brittle and fractured rock environment. Repeated occurrence of earthquakes clustered in swarms excludes large accumulations of melted rocks in this layer. Magma reservoirs should be situated at depths greater than 35 km. Upward magma migration from deeper magma reservoirs to shallow magma chambers or to the seafloor induce earthquake swarms by increasing tectonic stress and/or decreasing friction at faults. Frequency of earthquake swarm occurrence in the investigated areas has made a volcanic eruption at the seafloor probable. Moreover, epicentral zones of the swarms often coincide with distinct elevations at the seafloor - seamounts and seamount ranges. High accuracy of global seismological data enabled also to observe migration of earthquakes during individual swarms (Fig. 1), probably reflecting dike and/or sill propagation. Triggering of earthquake swarms by distant strong earthquakes was repeatedly observed in the Andaman-Nicobar region. The presented study documents high accuracy of hypocentral determinations published by the above mentioned data centers and usefulness of the EHB relocation procedure. Epicentral map of the October 2002 earthquake swarm in southern Ryukyu showing E-W migration of events during the swarm. The swarm occurred during 29 hours on October 23 - 25 in the magnitude range 4.0 - 5.2. Open circles - epicenters of all 54 events of the swarm; red circles - epicenters of events that occurred in a particular time interval of the swarm development: (a) - starting 3 hours; (b) - following 4 hours; (c) - final 22 hours.

  15. Caldera structure of submarine Volcano #1 on the Tonga Arc at 2109'S, southwestern Pacific: Analysis of multichannel seismic profiling

    NASA Astrophysics Data System (ADS)

    Kim, Han-Joon; Jou, Hyeong-Tae; Lee, Gwang-Hoon; Na, Ji-Hoon; Kim, Hyun-Sub; Jang, Ugeun; Lee, Kyeong-Yong; Kim, Chang-Hwan; Lee, Sang Hoon; Park, Chan-Hong; Jung, Seom-Kyu; Suk, Bong-Cool

    2013-08-01

    Volcano #1 is a large submarine stratovolcano with a summit caldera in the south central part of the Tonga Arc. We collected and analyzed multichannel seismic profiles in conjunction with magnetic data from Volcano #1 to investigate the structure of the intracaldera fill and processes of caldera formation. The intracaldera fill, exhibiting stratified units with a maximum thickness of 2 km, consists of at least four seismic units and a thick wedge of landslide debris derived from the caldera wall. The structural caldera floor, deepening toward the northwestern rim, suggests asymmetric collapse in the initial stage, which, in turn, appears to have contributed to the creation of a caldera elongated to the northwest by enhancing gravitational instability along the northwestern caldera boundary. Occasional, but repeated, eruptions resulted in a thick accumulation of the intracaldera fill and further subsidence in the mode of piston collapse. Magnetization lows are well-defined along the structural rim of the caldera that is interpreted as the inner principal ring fault. The magnetization lows indicate sites of submarine hydrothermal vents that caused an alteration of magnetic minerals. Faults recognized on the outer slope of the volcano are interpreted to be involved in hydrothermal fluid circulation.

  16. Unusual geochemistry of hydrothermal vents on submarine arc volcanoes: Kasuga Seamounts, Northern Mariana Arc

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Sedwick, P. N.; Fryer, P.; VonderHaar, D. L.; Yeh, H.-W.

    1993-02-01

    DSRV Alvin dives in the Northern Mariana island arc recovered warm hydrothermal fluids from the summit areas of seamounts Kasuga 2 and Kasuga 3, as well as hydrothermal deposits of elemental sulfur, Fe- and Mn-oxides, and nontronite. The composition of a gas-rich 39C vent fluid sampled from Kasuga 2 Seamount is unusual compared to other submarine hydrothermal fluids in that it is enriched by 27% in Mg 2+ and 17% in SO 42-, and depleted by 64% in Ca 2+, relative to ambient seawater. The elevated concentrations of dissolved CO 2 (calculated from pH and AT), HCO 3- and SO 42+, and near absence of H 2S, suggest that the unusual composition of this sample may result from the sub-seafloor addition of volcanic CO 2 and SO 2 to a seawater-derived hydrothermal fluid, resulting in: (1) 'chemical weathering' reactions, whereby igneous minerals or alteration phases are attacked by CO 2, adding Mg 2+ and other cations, Si, and HCO 3- into solution; and (2) hydrolysis of SO 2 to SO 42- and S(0), adding excess SO 42- with a light ? 34S signature to the fluid and causing deposition of elemental sulfur at the seafloor vents. Saturation-state calculations suggest that the concentrations of Si and Ca 2+ in the fluid may be controlled at saturation with amorphous silica and dolomite respectively. The origin of the 9.3C fluid collected from Kasuga 3 is difficult to determine because it is compositionally close to ambient seawater and shows possible evidence of both high- and low-temperature seawater-rock reaction. Banded and interlayered deposits of nontronite and Fe- and Mn-oxides were recovered from the Kasuga 3 summit, with oxygen-isotope geothermometry suggesting a formation temperature of 22C for the nontronite.

  17. The volcanic debris avalanche on the SE submarine slope of Nisyros volcano, Greece: geophysical exploration and implications for subaerial eruption history

    NASA Astrophysics Data System (ADS)

    Livanos, Isidoros; Nomikou, Paraskevi; Papanikolaou, Dimitris; Rousakis, Grigoris

    2013-12-01

    A spectacular hummocky topography was discovered offshore of the south-eastern slope of the Nisyros island volcano in the eastern sector of the Aegean volcanic arc in 2000-2001, using multibeam bathymetric mapping and seismic profiling, and interpreted as part of a volcanic debris avalanche originating onland. During E/V Nautilus cruise NA011 in 2010, a detailed side-scan sonar and ROV exploration aimed at evaluating the surface morphology of this avalanche field. Combining the new data with selected older datasets reveals that the debris avalanche is characterized by numerous (at least 78) variously sized and shaped hummocks. Some of these are distinctly round, either scattered or aligned in groups, whereas others are elongated in the form of ridges. This is consistent with existing models accounting for variations in the longitudinal and lateral velocity ratio of landslides. Maximum dimensions reach 60 m in height above the sea bottom, 220 m in length and 230 m in width. The structures outline a large tongue-shaped, submarine hummock field of about 22.2 km2, approx. 4.8 km wide and 4.6 km long and with an estimated volume of 0.277 km3. Due to its characteristic shape, the collapsed volcanic flank is interpreted to represent a singular failing event, involving a rapid and virtually instantaneous downslope movement of the slide mass into the sea. Indeed, the H/L (height of 280 m vs. run-out of 7 km) ratio for the Nisyros slide is 0.04; plotted against volume, this falls within the theoretical bounds as well as measured values typical of submarine landslides. The timing of the event is probably related to the extrusion of Nikia lavas and their subsequent failure and formation of a main scarp observed at about 120 m depth on an 8-km-long seismic profile and a map of slope angle distribution, at the depth where the palaeo-coastline was located 40 ka ago. An inferred age of ca. 40 ka for the avalanche awaits confirmation based on dating of core material.

  18. Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece

    NASA Astrophysics Data System (ADS)

    Bell, Katherine Lynn Croff; Carey, Steven N.; Nomikou, Paraskevi; Sigurdsson, Haraldur; Sakellariou, Dimitris

    2013-06-01

    Hummocky seafloor features were discovered on the eastern flank of Santorini volcano, Greece. Multibeam bathymetric mapping, airgun seismic profiling, side scan sonar survey, and remotely operated vehicle (ROV) dives have been carried out to characterize the nature of the hummocks. These hummocks appear to be composed of several tens of blocks that are up to several hundred meters in diameter, and are the surface expression of a much larger deposit than is observed in the bathymetry. The sidescan and airgun data show that the deposit covers an area of approximately 6 km wide by 20 km long, and is up to 75 m thick. We estimate the total volume of the deposit to be approximately 4.4 109 m3. Sampling of these blocks show they are composed of pyroclastic flow deposits produced during the Minoan eruption of Santorini (ca. 3600 BP). We propose that the deposit is the result of a multi-stage landslide event that was caused by one of the several large earthquakes or volcanic eruptions that have occurred in the vicinity of Santorini since the Minoan eruption. One or more of these events likely triggered the destabilization of a part of the eastern flank of Santorini, which led to a debris avalanche, depositing blocks and forming a hummocky terrain at the base of the island's slope. The mass movement later evolved into a turbulent suspension flow that traveled 20 km or more from the presumed initial failure. Given the size of the landslide deposit, it might have a tsunami potentially affecting the islands across the southern Aegean Sea. The understanding of earthquake-landslide dynamics has important implications for hazard assessment in this seismically active, historical, and highly populated region of the world.

  19. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  20. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  1. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Rstad, Anders; Garijo, Juan Carlos; Arstegui, Javier; Fraile-Nuez, Eugenio; Hernndez-Len, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  2. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Rstad, Anders; Garijo, Juan Carlos; Arstegui, Javier; Fraile-Nuez, Eugenio; Hernndez-Len, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  3. Morphostructural study and type of volcanism of submarine volcanoes over the Pitcairn hot spot in the South Pacific

    NASA Astrophysics Data System (ADS)

    Binard, Nicolas; Hkinian, Roger; Stoffers, Peter

    1992-06-01

    Undersea volcanoes found at about 80 km southeast of the island of Pitcairn, are believed to be the manifestation of a hot-spot activity located near 12930'W 2510'S, along the strike of the Mururoa-Gambier-Pitcairn volcanic alignment. Hydrothermal activities and recent volcanic flows were observed on the two largest (20 km in basal diameter) and shallowest (60 m and 450 m depth) volcanoes. More than twenty other smaller volcanic edifices ( < 500 m in height) were mapped during a Seabeam survey covering an area of about 8000 km 2. The edifices from the Pitcairn region are conical with a low degree of flatness (summit/basal diameters ratio <0.25), and consist of fresh alkali-enriched lava flows. The other truncated edifices with a high degree of flatness ( > 0.25) made up of ancient MORB-type tholeiitic rocks are inferred to be inherited from the EPR axial regions. The shallow volcanic activity which occurred on the two largest edifices are classified as: (1) reactive eruptions, with hydromagmatic activities, giving rise to volcanic ejecta, bombs, xenoliths, and ash, and (2) quiet eruptions which formed pillows and/or lobated lavas, and large massive flows. Intrusives (dyke and sill) were observed, cutting through the volcanic ejecta near the summit ( < 500 m depth) of the seamounts. The general structural orientations of the rift zones recognized from the bathymetry of individual volcanoes (N160-180, N80, N30 and N120) are comparable to those observed in the Society and Austral hot-spot regions. These orientations were inferred as corresponding to the structural discontinuities of the ancient oceanic crust, and to the regional stress field of the Pacific plate. Rock samples from the Pitcairn region consist of alkali-basalts, basanites, trachyandesites, and trachytes which are closer in chemical composition to some of the volcanics from the Society rather than to those from the Austral hot-spot regions.

  4. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand

    NASA Astrophysics Data System (ADS)

    de Ronde, Cornel E. J.; Massoth, Gary J.; Butterfield, David A.; Christenson, Bruce W.; Ishibashi, Junichiro; Ditchburn, Robert G.; Hannington, Mark D.; Brathwaite, Robert L.; Lupton, John E.; Kamenetsky, Vadim S.; Graham, Ian J.; Zellmer, Georg F.; Dziak, Robert P.; Embley, Robert W.; Dekov, Vesselin M.; Munnik, Frank; Lahr, Janine; Evans, Leigh J.; Takai, Ken

    2011-07-01

    Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ˜600 m in a SW-NE direction with chimneys occurring over a ˜145-m depth interval, between ˜1,690 and 1,545 m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2-3 m in height, with some reaching 6-7 m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35 years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2-3 m thick. Two main types of chimney predominate: Cu-rich (up to 28.5 wt.% Cu) and, more commonly, Zn-rich (up to 43.8 wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91 ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (≤0.5 m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (≤300°C), acidic (pH ≥ 2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (≤122°C), more acidic (pH 1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3 years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206 mM/kg at the Cone site); high CO2/3He; negative δD and δ18OH2O for vent fluids; negative δ34S for sulfides (to -4.6‰), sulfur (to -10.2‰), and δ15N2 (to -3.5‰); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu + Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of "magmatic" mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (˜2.5 km long), narrow (˜300-m diameter) "pipes," consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.

  5. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  6. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    NASA Astrophysics Data System (ADS)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus, Fabio Caratori-Tontini, Rick Davis, Kevin Roe, Edward Mitchell, Paula Keener-Chavis Carolyn Sheehan, Peter Crowhurst, Simon Richards,and Volker Ratmeyer along with the Quest-4000 team. .

  7. Volcanoes

    MedlinePLUS

    ... that opens downward to a reservoir of molten rock below the surface of the earth. Unlike most ... from below, volcanoes are vents through which molten rock escapes to the earth’s surface. When pressure from ...

  8. Volcanoes

    MedlinePLUS

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  9. Dependence of Moment-tensor Solutions on Source Location Observed at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.

    2014-12-01

    Synthetic modeling aimed at measuring the capability of a seismic network to resolve source mechanisms can provide a guide to the deployment of sensors on volcanoes. Recovering the source mechanisms of events is especially challenging because at frequencies of about 1 Hz, which are common for volcanic sources, scattering strongly influences seismic recordings. The focus of this research is to explore the trade off between the number and location of seismic stations and the accuracy of seismic source reconstructions in the presence of heterogeneous structures. We investigate this relationship at Pacaya volcano, Guatemala. During a fieldwork campaign in October-November 2013, four 3-component broadband seismometers were installed around the central vent at distances between 0.6 and 1.5 km. In addition to tremor, the network recorded a long-period event that repeated thousands of times each day. In order to determine the optimal deployment strategy for the next field campaign, we conduct a sensitivity analysis using synthetic seismograms. The repetitive nature of the source and the accessibility of the volcano will facilitate deployment of a spatially-dense seismic network, in which a subset of stations is moved around the cone to enable records from dozens of sites. We used then different subsets of stations and velocity models to test the expected capability of the network to extract a reliable moment-tensor. Preliminary results highlight a strong dependence of position on the moment tensor solutions. The source mechanism changes from a sill to a dyke as the source becomes deeper. It is therefore critical to get an accurate location to better reconstruct the source mechanism. The results of this study have broad implications for volcano seismic source studies, which often involve repetitive events, but typically face the same challenges of heterogeneous, but poorly constrained structure and weak, shallow sources.

  10. The NeMO Explorer Web Site: Interactive Exploration of a Recent Submarine Eruption and Hydrothermal Vents, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Embley, R. W.

    2001-12-01

    To help visualize the submarine volcanic landscape at NOAA's New Millennium Observatory (NeMO), we have created the NeMO Explorer web site: http://www.pmel.noaa.gov/vents/nemo/explorer.html. This web site takes visitors a mile down beneath the ocean surface to explore Axial Seamount, an active submarine volcano 300 miles off the Oregon coast. We use virtual reality to put visitors in a photorealistic 3-D model of the seafloor that lets them view hydrothermal vents and fresh lava flows as if they were really on the seafloor. At each of six virtual sites there is an animated tour and a 360o panorama in which users can view the volcanic landscape and see biological communities within a spatially accurate context. From the six sites there are hyperlinks to 50 video clips taken by a remotely operated vehicle. Each virtual site concentrates on a different topic, including the dynamics of the 1998 eruption at Axial volcano (Rumbleometer), high-temperature hydrothermal vents (CASM and ASHES), diffuse hydrothermal venting (Marker33), subsurface microbial blooms (The Pit), and the boundary between old and new lavas (Castle vent). In addition to exploring the region geographically, visitors can also explore the web site via geological concepts. The concepts gallery lets you quickly find information about mid-ocean ridges, hydrothermal vents, vent fauna, lava morphology, and more. Of particular interest is an animation of the January 1998 eruption, which shows the rapid inflation (by over 3 m) and draining of the sheet flow. For more info see Fox et al., Nature, v.412, p.727, 2001. This project was funded by NOAA's High Performance Computing and Communication (HPCC) and Vents Programs. Our goal is to present a representative portion of the vast collection of NOAA's multimedia imagery to the public in a way that is easy to use and understand. These data are particularly challenging to present because of their high data rates and low contextual information. The 3-D models create effective context and new video technology allows us to present good quality video at lower data rates. Related curriculum materials for middle- and high-school students are also available from the NeMO web site at http://www.pmel.noaa.gov/vents/nemo/education.html. >http://www.pmel.noaa.gov/vents/nemo/explorer.html

  11. Volcanic Risk Perception in Five Communities Located near the Chichn Volcano, Northern Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2010-12-01

    The Chichn volcano (17 19 N and 93 15 W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Jurez, Ostuacn, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because they do not know any plan, strategy, emergency schemes or shelters locations no even evacuation routes. In conclusion, during the 1982 eruption the risk perception of the population played an important role in the social impact on the region. We believe that if the population had had a proper perception of their volcanic risk, the number of casualties would have been lower. Thus, the present low volcanic risk perception of the five studied communities can be considered as an important element of vulnerability. Frances Rodrguez-VanGort1 and David A. Novelo-Casanova2 (1) Posgrado Instituto de Geofsica, Universidad Nacional Autnoma de Mxico, Ciudad Universitaria, Mxico Distrito Federal (2) Departamento de Sismologa Instituto de Geofsica, Universidad Nacional Autnoma de Mxico, Ciudad Universitaria, Mxico Distrito Federal

  12. Volcanic evolution of the submarine super volcano, Tamu Massif of Shatsky Rise: New insights from Formation MicroScanner logging imagery

    NASA Astrophysics Data System (ADS)

    Tominaga, Masako; Iturrino, Gerardo; Evans, Helen F.

    2015-01-01

    Massif, the southernmost plateau of Shatsky Rise, is recently reported as the largest single volcano known on Earth. This work seeks to understand the type of volcanism necessary to form such an anomalously large single volcano by integrating core and high-resolution wireline logging data. In particular, resistivity imagery obtained by the Formation MicroScanner, in Integrated Ocean Drilling Program Hole U1347A, located on the eastern flank of Tamu Massif, was used to construct a logging-based volcanostratigraphy. This model revealed two different volcanic stages formed Tamu Massif: (i) the core part of the massif's basaltic basement was formed by a "construction phase" of volcanism with cyclic eruption events from a steady state magma supply and (ii) the very topmost basaltic section was formed by a "depositional phase" of volcanism during which long-traveling lava flows were deposited from a distant eruption center.

  13. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes. PMID:19494913

  14. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  15. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater volcanic eruption linked to the heat, chemical, and biological fluxes. In the late stages of the event, the dissipation of the "event plume" into the surrounding water column and the plume's migration patterns in the ambient regional flow will be tracked using specifically designed mobile sensor-platforms. The presence of these assets opens the potential for more immediate, coordinated, and thorough event responses than the community has previously been able to mount. Given the relative abundance of information on many variables in a verifiable and archived spatial and temporal context, and the rapidly evolving ability to conduct real-time genomic analyses, our community may be able to secure entirely novel organisms that are released into the overlying ocean only under well-characterized eruptive conditions.

  16. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  17. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  18. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation

    USGS Publications Warehouse

    Battaglia, J.; Got, J.-L.; Okubo, P.

    2003-01-01

    We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.

  19. Integration of video and infrasound to understand source locations and vent geometry at Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, K. R.; Aster, R. C.; Johnson, J. B.; Kyle, P. R.; McIntosh, W. C.

    2007-05-01

    Infrasound monitoring at Erebus volcano has enabled us to quantify eruption energetics and precisely determine the source location of Strombolian eruptions. Since January 2006 we have operated a three-element network of identical infrasound pressure transducers, to track explosive eruptions, triangulate source locations of the eruptions, and distinguish activity from several vents with diverse activities. In December 2006 the network was expanded to six identical pressure transducers with improved azimuthal distribution sited ~300 m to 700 m from the erupting vents. These sensors have a dynamic range of +/-125 Pa and are able to record non-distorted waveforms for almost all eruptive events. Since January 2006, eruptions have been identified from locations within the ~40 m diameter phonolitic lava lake, an adjacent smaller "active vent", and a vent ~80 m distant from the lava lake known as "Werner's". Since late 2005 until the end of 2006, activity was considerably elevated at the "lava lake", from which frequent (up to six per day) explosions were noted. These events entailed gas bubble bursts, some of which were capable of ejecting bombs more than 1 km distant and producing infrasonic transients in excess of 100 Pa at a distance of 700 m. Activity from "Werner's" vent was much more subdued in terms of eruptive frequency and the radiated acoustic energy, with all signals less than about 5 Pa at 700 m. Activity from the "active vent" was also observed, though notably, these acoustic transients were extended in duration in terms of time (> 5 s to more than 30 s), which reflects extended duration ash-venting source mechanisms, corroborated by video records. The updated infrasound network has operated through a relative lull in eruptive intensity (November - December 2006 - January 2007). Since January 2007 more frequent and larger explosions from the lava lake have been observed and recorded with infrasound and video. We quantify this recent upsurge in lava lake activity and present speculative mechanisms to account for the variable eruptive behavior of Erebus lava lake.

  20. Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii

    USGS Publications Warehouse

    Hammer, J.E.; Coombs, M.L.; Shamberger, P.J.; Kimura, Jun-Ichi

    2006-01-01

    Two manned submersible dives examined the Hualalai Northwest rift zone and an elongate ridge cresting at 3900 mbsl during a 2002 JAMSTEC cruise. The rift zone flank at dive site S690 (water depth 3412-2104 m) is draped by elongated and truncated pillow lavas. These olivine-rich tholeiitic lavas are compositionally indistinguishable from those examined further south along the bench, except that they span a wider range in dissolved sulfur content (200-1400 ppm). The elongate ridge investigated in dive S692, located at the base of the bench, is a package of distinct lithologic units containing volcaniclastic materials, glassy pillow breccias, and lava blocks; these units contain a range of compositions including tholeiitic basalt, transitional basalt, and hawaiite. The textures, compositions, and stratigraphic relationships of materials within the elongate ridge require that a variety of transport mechanisms juxtaposed materials from multiple eruptions into individual beds, compacted them into a coherent package of units, and brought the package to its present depth 10 km from the edge of the North Kona slump bench. Sulfur-rich hawaiite glasses at the base of the elongate ridge may represent the first extant representatives of juvenile alkalic volcanism at Hualalai. They are geochemically distinct from shield tholeiite and post-shield alkalic magmas, but may be related to transitional basalt by high-pressure crystal fractionation of clinopyroxene. Tholeiitic glasses that compose the majority of the exposed outcrop are similar to Mauna Kea tholeiites and other Hualalai tholeiites, but they differ from younger basalts in having greater incompatible element enrichments and higher CaO for a given MgO. These differences could arise from small extents of partial melting during the transition from alkalic to shield stage magmatism. Low sulfur contents of most of the volcaniclastic tholeiites point to early emergence of Hualalai above sea level relative to the development of the midslope slump bench. ?? 2005 Elsevier B.V. All rights reserved.

  1. Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi; Ruiz, Mario; Palacios, Pablo; Ortiz, Hugo; Yepes, Hugo

    2013-05-01

    The amplitude source location (ASL) method, which uses high-frequency amplitudes under the assumption of isotropic S-wave radiation, has been shown to be useful for locating the sources of various types of volcano-seismic signals. We tested the ASL method by using synthetic seismograms and examined the source amplitudes determined by this method for various types of volcano-seismic signals observed at different volcanoes. Our synthetic tests indicated that, although ASL results are not strongly influenced by velocity structure and noise, they do depend on site amplification factors at individual stations. We first applied the ASL method to volcano-tectonic (VT) earthquakes at Taal volcano, Philippines. Our ASL results for the largest VT earthquake showed that a frequency range of 7-12 Hz and a Q value of 50 were appropriate for the source location determination. Using these values, we systematically estimated source locations and amplitudes of VT earthquakes at Taal. We next applied the ASL method to long-period events at Cotopaxi volcano and to explosions at Tungurahua volcano in Ecuador. We proposed a practical approach to minimize the effects of site amplifications among different volcano seismic networks, and compared the source amplitudes of these various volcano-seismic events with their seismic magnitudes. We found a proportional relation between seismic magnitude and the logarithm of the source amplitude. The ASL method can be used to determine source locations of small events for which onset measurements are difficult, and thus can estimate the sizes of events over a wider range of sizes compared with conventional hypocenter determination approaches. Previously, there has been no parameter widely used to quantify the sources of volcano-seismic signals. This study showed that the source amplitude determined by the ASL method may be a useful quantitative measure of volcano-seismic event size.

  2. Long Period (LP) volcanic earthquake source location at Merapi volcano by using dense array technics

    NASA Astrophysics Data System (ADS)

    Metaxian, Jean Philippe; Budi Santoso, Agus; Laurin, Antoine; Subandriyo, Subandriyo; Widyoyudo, Wiku; Arshab, Ghofar

    2015-04-01

    Since 2010, Merapi shows unusual activity compared to last decades. Powerful phreatic explosions are observed; some of them are preceded by LP signals. In the literature, LP seismicity is thought to be originated within the fluid, and therefore to be representative of the pressurization state of the volcano plumbing system. Another model suggests that LP events are caused by slow, quasi-brittle, low stress-drop failure driven by transient upper-edifice deformations. Knowledge of the spatial distribution of LP events is fundamental for better understanding the physical processes occurring in the conduit, as well as for the monitoring and the improvement of eruption forecasting. LP events recorded at Merapi have a spectral content dominated by frequencies between 0.8 and 3 Hz. To locate the source of these events, we installed a seismic antenna composed of 4 broadband CMG-6TD Güralp stations. This network has an aperture of 300 m. It is located on the site of Pasarbubar, between 500 and 800 m from the crater rim. Two multi-parameter stations (seismic, tiltmeter, S-P) located in the same area, equipped with broadband CMG-40T Güralp sensors may also be used to complete the data of the antenna. The source of LP events is located by using different approaches. In the first one, we used a method based on the measurement of the time delays between the early beginnings of LP events for each array receiver. The observed differences of time delays obtained for each pair of receivers are compared to theoretical values calculated from the travel times computed between grid nodes, which are positioned in the structure, and each receiver. In a second approach, we estimate the slowness vector by using MUSIC algorithm applied to 3-components data. From the slowness vector, we deduce the back-azimuth and the incident angle, which give an estimation of LP source depth in the conduit. This work is part of the Domerapi project funded by French Agence Nationale de la Recherche (https://sites.google.com/site/domerapi2).

  3. Attack submarines

    SciTech Connect

    Not Available

    1991-01-01

    This issue discusses missions for submarines, technology proliferation; implications for U.S. security; U.S. SSN-21 Seawolf versus other submarines; stability and arms control; nuclear propulsion and nuclear proliferation; air independent propulsion.

  4. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore-forming fluid exsolved. Pd-rich porphyry Cu-Au deposits are associated with highly oxidized magmas. Prior to sulfide saturation Pd, Au and Cu behave as incompatible elements and concentrate in the melt with fractional crystallization, whereas Pt is depleted by early crystallization of a Pt-rich alloy and the other PGEs by the co-crystallization of the Pt-rich alloy and Cr spinel. As a consequence the Pd/Pt and Pd/Ir in the evolving melt and the magmatic volatile phases that exsolve from that melt, increase with increased fractionation. The high Pd content and high Pd/Pt (∼7-60) of Cu-Au porphyry ores therefore require the parent magma to have undergone extensive sulfide-undersaturated fractional crystallization prior to volatile exsolution. Our study also showed that the altered dacites contain PGE abundances that are similar to those of fresh dacites although Pt and Rh are slightly enriched in the altered dacites, which indicates low mobility of PGEs during secondary hydrothermal alteration.

  5. Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.

    2002-01-01

    We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.

  6. Location of eruption-related earthquake clusters at Augustine Volcano, Alaska, using station-pair differential times

    NASA Astrophysics Data System (ADS)

    Sumiejski, Laura; Thurber, Clifford; DeShon, Heather R.

    2009-03-01

    Families of similar earthquakes at shallow depths occurring over multiple timescales have been identified prior to and during the 2005-2006 eruption of Augustine Volcano. The use of conventional and double-difference location methods failed to result in stable locations, due primarily to noisy site conditions as well as unfavourable station geometry for the Alaska Volcano Observatory stations. Previous work found that relatively robust estimates of the median arrival time difference between station pairs could be determined and used a constant velocity half-space model, true station elevations and a variant of the method of hyperbolas to estimate locations for four of the clusters. We have carried out a more extensive location analysis, including data from nine clusters and incorporating a linear gradient velocity model obtained from preliminary forward modelling of the data. Our location results show a progressive shallowing of the clusters with time. Clusters prior to 2005 December lie near sea level, whereas those in 2005 December and 2006 January concentrate about 500 m above sea level (asl) prior to the explosive eruptions and about 500 and 1200 m asl, respectively, (essentially at the surface) afterwards. These results are consistent with geodetic observations and modelling.

  7. Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records

    NASA Astrophysics Data System (ADS)

    Droznin, D. V.; Shapiro, N. M.; Droznina, S. Ya.; Senyukov, S. L.; Chebrov, V. N.; Gordeev, E. I.

    2015-11-01

    We analyse daily cross-correlation computed from continuous records by permanent stations operating in vicinity of the Klyuchevskoy group of volcanoes (Kamchatka). Seismic waves generated by volcanic tremors are clearly seen on the cross-correlations between some pairs of stations as strong signals at frequencies between 0.2 and 2 Hz and with traveltimes typically shorter than those corresponding to interstation propagation. First, we develop a 2-D source-scanning algorithm based on summation of the envelops of cross-correlations to detect seismic tremors and to determine locations from which the strong seismic energy is continuously emitted. In an alternative approach, we explore the distinctive character of the cross-correlation waveforms corresponding to tremors emitted by different volcanoes and develop a phase-matching method for detecting volcanic tremors. Application of these methods allows us to detect and to distinguish tremors generated by the Klyuchevskoy and the Tolbachik, volcanoes and to monitor evolution of their intensity in time.

  8. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  9. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  10. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  11. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  12. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  13. Geology and petrology of Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    1991-01-01

    The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse. ?? 1991 Springer-Verlag.

  14. High-resolution locations of triggered earthquakes and tomographic imaging of Kilauea Volcano's south flank

    NASA Astrophysics Data System (ADS)

    Syracuse, Ellen M.; Thurber, Clifford H.; Wolfe, Cecily J.; Okubo, Paul G.; Foster, James H.; Brooks, Benjamin A.

    2010-10-01

    The spatiotemporal patterns of seismicity beneath Kilauea's south flank give insight to the structure and geometry of the decollement on which large, tsunamigenic earthquakes have occurred, and its relation to slow slip events (SSEs), which have been observed every 1 to 2 years since 1997. In order to record earthquakes triggered by a SSE that was predicted to occur in March 2007, a temporary network of 20 seismometers was deployed on Kilauea's south flank, termed the SEQ network. While the SSE did not occur until 17 June 2007, theSEQ network recorded over 3000 earthquakes, including those triggered by the SSE. We relocate hypocenters of volcano-tectonic earthquakes and invert for P and S wave velocity structure using waveform cross-correlation and double-difference tomography using data from the SEQ network and the permanent Hawaii Volcano Observatory network (HVO) data, with additional data from other previous temporary arrays. The best-constrained hypocenters, recorded by both the SEQ and HVO networks, indicate the decollement as a subhorizontal layer of seismicity at 8 km depth less than 1 km thick in most areas, with the western portion of the decollement dipping to the southeast. The seismicity triggered by the June 2007 SSE includes over 400 earthquakes overlapping with the southern edge of the decollement seismicity. A shallower swarm of earthquakes also occurred between 2 and 7 km depth in April 2007 near Apua Point, and may have been indirectly triggered by the Mw 8.1 Solomon Islands earthquake at 6000 km distance, which occurred 48 h prior to the beginning of the swarm.

  15. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Power, J.

    2011-01-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

  16. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  17. Alaska Volcano Observatory Monitoring Station

    USGS Multimedia Gallery

    An Alaska Volcano Observatory Monitoring station with Peulik Volcano behind. This is the main repeater for the Peulik monitoring network located on Whale Mountain, Beecharaof National Wildlife Refuge....

  18. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop blind geothermal resources.

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  20. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  1. Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources

    SciTech Connect

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    2002-06-06

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

  2. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  3. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the Hades cones some 30-50m below, and had traveled 100 m from the vent in the months before. This, plus hydrophone and water column data (Embley et al., G3, in review), and the occurrence of extensive deposits of young, glassy, identical composition cm-sized fragmental material 250 m from Hades suggest an earlier more vigorous phase of the eruption.

  4. High-precision earthquake location, velocity determination, and event family identification at Augustine Volcano, Alaska, from 1993 through the 2005-2006 eruption

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Prejean, S. G.; Thurber, C. H.; Power, J. A.

    2006-12-01

    Volcano seismic networks typically have few stations and marginal coverage, providing challenges for earthquake location in a complex, three-dimensional setting. To improve location precision at Augustine Volcano, Alaska, we compute a three-dimensional P-wave velocity model using double-difference (DD) tomography combined with waveform cross-correlation (WCC) techniques. We also examine temporal changes in earthquake locations and waveform characteristics associated with the 2005-2006 eruption and pre-eruptive seismicity. The Alaska Volcano Observatory (AVO) has monitored Augustine using up to 9 stations since 1993, and the AVO hypocenter and waveform catalog from 1993-2006 serves as the initial dataset. Many of the catalog hypocenters locate above the summit, reflecting the limitations of applying standard location techniques in rugged and sparsely instrumented volcanic settings. WCC using bispectrum verification improves the pick accuracy of the catalog data and is used to identify similar earthquakes. Waveform similarity at Augustine is low compared to other Alaskan volcanoes such as Redoubt, and most event families contain less than 100 events. Earthquakes recorded during a period of increasing pre-eruptive seismicity in December 2005 form clusters of similar earthquakes over periods of days. Events prior to the 2005-2006 eruption can exhibit a high degree of similarity over multiple years. The DD tomography method provides significantly improved absolute and relative earthquake locations and source region velocity information. We use differential travel times from catalog and cross-correlation data to simultaneously invert for hypocenter location and P-wave velocity structure. Previous studies have shown a high degree of north-south trending variation in compressional wave velocity at Augustine. This is reflected in severe station correction-velocity-depth tradeoffs when performing standard 1D inversions to solve for a starting model. Using our combined DD tomography and WCC approach, we better constrain the 3D nature of velocity heterogeneity beneath the volcano.

  5. White submarine

    NASA Astrophysics Data System (ADS)

    While not everyone gets to live in a yellow submarine, the scientific community may get to have a decommissioned U.S. Navy nuclear submarine dedicated to it. The Sturgeon class of submarines, which scientists say are the ideal choice for the project, will be coming up for decommissioning in this next decade. So the time is ripe, scientists say. Two weeks ago, oceanographers, submarine specialists, marine biologists, and geophysicists, among others met at AGU headquarters in Washington to discuss how to get the project in the water. If all goes well, the project would be the "biggest thing that ever happened in ocean and Earth science," according to Lloyd Keigwin of the Woods Hole Oceanographic Institution, who convened the meeting. For example, the submarine could make many types of "compelling" research possible that can not be done now by other means, such as studies in the Arctic that may have significant bearing on global change research, Keigwin says. However, the imposing hurdles that the project must overcome are as big as the opportunities it offers. Foremost, there is a question as to who will pick up the tab for such an endeavor.

  6. Submarine atmospheres.

    PubMed

    Knight, D R; Tappan, D V; Bowman, J S; O'Neill, H J; Gordon, S M

    1989-12-01

    Nuclear submariners live and work in an atmosphere composed of approximately 80% naturally occurring nitrogen, 19% oxygen (manufactured aboard ship), and a complex mixture of inorganic and organic contaminants. The concentrations of contaminants exist as a balance between the rates of production from human and operational activities and the rate of removal by engineering systems. The biological effects of inorganic gases, particularly carbon dioxide, have been extensively studied. Investigators are now attempting to define the composition and concentration of volatile organic compounds that accumulate during 90-day submergences. Medical studies have not conclusively shown that crewmembers incur adverse health effects from continuous exposures to the sealed atmospheres of nuclear submarines. PMID:2574918

  7. Submarine atmospheres

    SciTech Connect

    Knight, D.R.; Tappan, D.V.; Bowman, J.S.; O'Neill, H.J.; Gordon, S.M.

    1990-07-01

    Nuclear submariners live and work in an atmosphere composed of approximately 80% naturally occurring nitrogen, 19% oxygen (manufactured aboard ship), and a complex mixture of inorganic and organic contaminants. The concentrations of contaminants exist as a balance between the rates of production from human and operational activities and the rate of removal by engineering systems. The biological effects of inorganic gases, particularly carbon dioxide, have been extensively studied. Investigators are now attempting to define the composition and concentration of volatile organic compounds that accumulate during 9O-day submergences. Medical studies have not conclusively shown that crewmembers incur adverse health effects from continuous exposures to the sealed atmospheres of nuclear submarines.

  8. Locating sources of volcanic tremor and emergent events by seismic triangulation: Application to Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    MéTaxian, Jean-Philippe; Lesage, Philippe; Valette, Bernard

    2002-10-01

    We address the issue of locating the sources of volcanic tremor and emergent events with a method requiring a limited amount of equipment. A network of several triangular seismic antennas made of vertical sensors is used. The slowness vectors are estimated at each array on a sliding window by inverting the time delays between the sensors calculated with the cross-spectral method. A probabilistic approach is adopted whereby each measure and its error are represented by a probability density function (PDF). A weighted summation of the PDFs is carried out in which the stable directions of propagation are enhanced. The effects of the structural heterogeneities are taken into account by introducing an additional error associated to a robust hyperbolic secant (sech)-type PDF. The resulting PDFs of the back-azimuth are combined to calculate a PDF of the source location. The maximum likelihood of this PDF is taken as an estimate of the source position and its spread is characterized by a covariance analysis. Data from an experiment carried out at Arenal volcano (Costa Rica) with four arrays are analyzed. The precision and robustness of the method are tested by exploring the influence of the array configuration and other parameters. The mean standard deviation on the position of the sources is 600 m for the tremor and 400 m for the explosions and long-period (LP) events. Several tremors, explosions and LP events are analyzed and their sources located. The seismogenic zone is located in a 600 m radius area centered on the active crater.

  9. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  10. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, J.; Tseng, W.; Liu, C.

    2006-12-01

    This study presents the results of recent intense submarine geophysical surveys conducted offshore southwestern Taiwan. Mud volcanoes and gassy sediments have been identified from chirp sonar and seismic reflection profile data. The distribution of gassy sediments and mud volcanoes have been compiled which shows that they extend from the accretionary wedge province to the passive China continental margin province. Submarine mud volcanoes could be grouped into four main clusters in the accretionary wedge province: offshore Kaohsiung, Kaoping Submarine Canyon, Fenliao Submarine Canyon and Yung-An Lineament. Each cluster is composed of several to more than 10 submarine mud volcanoes. Their origin could be related to the gas hydrate dissociation with the rising of high-pressure fluid along faults or the mud diapir pierced the sea floor.

  11. Submarine Silicic Explosive Eruptions: what can submarine pyroclasts tell us?

    NASA Astrophysics Data System (ADS)

    Carey, R.; Allen, S.; McPhie, J.; Fiske, R. S.; Tani, K.

    2014-12-01

    Our understanding of submarine volcanism is in its infancy with respect to subaerial eruption processes. Two fundamental differences between eruptions in seawater compared to those on land are that (1) eruptions occur at higher confining pressures, and (2) in a seawater medium, which has a higher heat capacity, density and viscosity than air. Together with JAMSTEC collaborators we have a sample suite of submarine pumice deposits from modern volcanoes of known eruption depths. This sample suite spans a spectrum of eruption intensities, from 1) powerful explosive caldera-forming (Myojin Knoll caldera); to 2) weakly explosive cone building (pre-caldera Myojin Knoll pumice and Kurose-Nishi pumice); to 3) volatile-driven effusive dome spalling (Sumisu knoll A); to 4) passive dome effusion (Sumisu knoll B and C). This sample suite has exceptional potential, not simply because the samples have been taken from well-constrained, sources but because they have similar high silica contents, are unaltered and their phenocrysts contain melt inclusions. Microtextural quantitative analysis has revealed that (i) clast vesicularities remain high (69-90 vol.%) regardless of confining pressure, mass eruption rate or eruption style , (ii) vesicle number densities scale with inferred eruption rate, and (iii) darcian and inertial permeabilities of submarine effusive and explosive pyroclasts overlap with explosively-erupted subaerial pyroclasts.

  12. Submarine Volcanic Cones in the São Miguel Region/Azores

    NASA Astrophysics Data System (ADS)

    Weiß, Benedikt; Hübscher, Christian; Wolf, Daniela

    2014-05-01

    São Miguel, the main island of the Azores Archipelago, is located in an area ~1500 km west of Portugal where the American, African and Eurasian plates converge. Just as well as the other eight Azorian islands, it is of volcanic origin and therefore volcanic processes also play an important role for the evolution of its submarine domain. Around 300 submarine volcanic cones have been mapped in the vicinity of São Miguel Island with multi-beam data during RV Meteor cruise M79/2 . They are distributed in depth down to 3000 m. They exhibit an average diameter of 600 m, an average slope of 22° and heights mainly between 50 and 200 m, slightly decreasing with increasing water depth. Even if their morphological appearances show no segregation, the volcanic setting can be classified in three different categories. A numerous amount of cones are located on the submarine flank of Sete Cidades Volcano in the west of São Miguel considered as parasitic structures, whereas in the very east they build up an own superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano like Sete Cidades. The third class is controlled by and orientated along faults, most of them in a graben system southwest of the Island. High-resolution multichannel seismic data depicts that the graben cones extinguished synchronously in the past most likely accompanying with the end of graben formation. Backscatter data reveal a rough surface possibly caused by currents removing the fine grain-size fraction over time. However, a young cone investigated in detail is characterized by a smooth surface, a distal increasing stratification and concave shaped flanks. Other few exhibit craters, all together indicating rather a phreatomagmatic than an effusive evolution of these structures. Very similar in size and shape to cinder cones on-shore São Miguel Island, they appear to be their submarine equivalent.

  13. The USGS Hawaiian Volcano Observatory Monitors Kilauea's Summit Eruption

    USGS Multimedia Gallery

    The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i?the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008....

  14. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title: Nicaraguan Volcanoes View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project: MISR category: gallery ...

  15. Argon geochronology of Kilauea's early submarine history

    USGS Publications Warehouse

    Calvert, A.T.; Lanphere, M.A.

    2006-01-01

    Submarine alkalic and transitional basalts collected by submersible along Kilauea volcano's south flank represent early eruptive products from Earth's most active volcano. Strongly alkalic basalt fragments sampled from volcaniclastic deposits below the mid-slope Hilina Bench yield 40Ar/39Ar ages from 212 ?? 38 to 280 ?? 20 ka. These ages are similar to high-precision 234 ?? 9 and 239 ?? 10 ka phlogopite ages from nephelinite clasts in the same deposits. Above the mid-slope bench, two intact alkalic to transitional pillow lava sequences protrude through the younger sediment apron. Samples collected from a weakly alkalic basalt section yield 138 ?? 30 to 166 ?? 26 ka ages and others from a transitional basalt section yield 138 ?? 115 and 228 ?? 114 ka ages. The ages are incompatible with previous unspiked K-Ar studies from samples in deep drill holes along the east rift of Kilauea. The submarine birth of Kilauea volcano is estimated at <300 ka. If the weakly alkalic sequence we dated is representative of the volcano as a whole, the transition from alkalic to tholeiitic basalt compositions is dated at ??? 150 ka. ?? 2005 Elsevier B.V. All rights reserved.

  16. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052 C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (<1cm) rounded xenoliths are common. A comprehensive study of the volcano's petrography and whole-rock chemistry is currently underway. Jun Jaegyu is the northernmost volcanic center of the James Ross Island Volcanic Group (JRIVG), and the only center in this region of the Antarctic Peninsula with evidence of recent activity. It lies along the boundary between the Late Cenozoic JRIVG and the Upper Paleozoic rocks of the Trinity Peninsula Formation. While the tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  17. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km southsouthwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe steaming and smoking (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the north flank fumarole have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its maximum depth of 45 m (resulting pH ~2.9), and preventing the annual salmon run in the King Salmon River. A simultaneous release of gas and acidic aerosols from the crater caused widespread vegetation damage along the flow path. Since 2005, we have been monitoring the crater lake water that continues to flow into Mother Goose Lake by collecting surface water samples for major cation and anion analysis, measuring surface-water pH of affected drainages, and photo-documenting the condition of the summit crater lake. This report describes water sampling locations, provides a table of chemistry and pH measurements, and documents the condition of the summit crater between 2004 and 2011. In September 2013, the report was updated with results of water-chemistry samples collected in 2011 and 2012, which were added as an addendum.

  18. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  19. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  20. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes

    USGS Publications Warehouse

    Battaglia, J.; Aki, K.

    2003-01-01

    We present a method for locating the source of seismic events on Piton de la Fournaise. The method is based on seismic amplitudes corrected for station site effects using coda site amplification factors. Once corrected, the spatial distribution of amplitudes shows smooth and simple contours for many types of events, including rockfalls, long-period events and eruption tremor. On the basis of the simplicity of these distributions we develop inversion methods for locating their origins. To achieve this, the decrease of the amplitude as a function of the distance to the source is approximated by the decay either of surface or body waves in a homogeneous medium. The method is effective for locating rockfalls, long-period events, and eruption tremor sources. The sources of eruption tremor are usually found to be located at shallow depth and close to the eruptive fissures. Because of this, our method is a useful tool for locating fissures at the beginning of eruptions.

  1. The giant submarine alika debris slide, Mauna Loa, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.; Normark, W.R.; Moore, J.G.; Wilson, J.B.; Gutmacher, C.E.

    1988-01-01

    A 4000-km2 area of submarine slump and slide deposits along the W flank of Mauna Loa volcano has been mapped with GLORIA side-scan sonar images, seismic reflection profiles, and new bathymetry. The youngest deposits are 2 debris avalanche lobes that travelled from their breakaway area near the present shoreline as much as 100 km into the Hawaiian Deep at water depths of 4800 m. The 2 lobes partly overlap and together are designated the Alika slide. They were derived from the same source area and probably formed in rapid succession. Slumping on Mauna Loa has been most intense adjacent to the large arcuate bend in its SW rift zone, as the rift zone migrated westward away from the growing Kilauea volcano. Slumping events were probably triggered by seismic activity accompanying dike injection along the rift zone. Such massive slumps, landslides and distal submarine turbidity flows appear to be widespread on the flanks of Hawaiian volcanoes.-from Authors

  2. Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, Alaska

    USGS Publications Warehouse

    Lahr, J.C.; Chouet, B.A.; Stephens, C.D.; Power, J.A.; Page, R.A.

    1994-01-01

    Determination of the precise locations of seismic events associated with the 1989-1990 eruptions of Redoubt Volcano posed a number of problems, including poorly known crustal velocities, a sparse station distribution, and an abundance of events with emergent phase onsets. In addition, the high relief of the volcano could not be incorporated into the hypoellipse earthquake location algorithm. This algorithm was modified to allow hypocenters to be located above the elevation of the seismic stations. The velocity model was calibrated on the basis of a posteruptive seismic survey, in which four chemical explosions were recorded by eight stations of the permanent network supplemented with 20 temporary seismographs deployed on and around the volcanic edifice. The model consists of a stack of homogeneous horizontal layers; setting the top of the model at the summit allows events to be located anywhere within the volcanic edifice. Detailed analysis of hypocentral errors shows that the long-period (LP) events constituting the vigorous 23-hour swarm that preceded the initial eruption on December 14 could have originated from a point 1.4 km below the crater floor. A similar analysis of LP events in the swarm preceding the major eruption on January 2 shows they also could have originated from a point, the location of which is shifted 0.8 km northwest and 0.7 km deeper than the source of the initial swarm. We suggest this shift in LP activity reflects a northward jump in the pathway for magmatic gases caused by the sealing of the initial pathway by magma extrusion during the last half of December. Volcano-tectonic (VT) earthquakes did not occur until after the initial 23-hour-long swarm. They began slowly just below the LP source and their rate of occurrence increased after the eruption of 01:52 AST on December 15, when they shifted to depths of 6 to 10 km. After January 2 the VT activity migrated gradually northward; this migration suggests northward propagating withdrawal of magma from a plexus of dikes and/or sills located in the 6 to 10 km depth range. Precise relocations of selected events prior to January 2 clearly resolve a narrow, steeply dipping, pencil-shaped concentration of activity in the depth range of 1-7 km, which illuminates the conduit along which magma was transported to the surface. A third event type, named hybrid, which blends the characteristics of both VT and LP events, originates just below the LP source, and may reflect brittle failure along a zone intersecting a fluid-filled crack. The distribution of hybrid events is elongated 0.2-0.4 km in an east-west direction. This distribution may offer constraints on the orientation and size of the fluid-filled crack inferred to be the source of the LP events. ?? 1994.

  3. Small Dusty Volcano

    NASA Technical Reports Server (NTRS)

    2005-01-01

    3 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, dust-covered, volcano in the Jovis Fossae region of Mars. While Mars is known for its extremely large volcanoes, such as Olympus Mons, many small volcanoes also occur on the red planet, particularly in the Tharsis region. This small volcano is a good example of those. It was originally found by members of the MGS Mars Orbiter Laser Altimeter (MOLA) team during the MGS primary mission. The volcano is old, and cratered. Its surface is mantled by dust, and its caldera (summit depression) has some dust-covered wind ripples on its floor.

    Location near: 20.7oN, 111.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season Northern Autumn

  4. Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)

    NASA Astrophysics Data System (ADS)

    Allen, C.; Oehler, D.

    2010-12-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.

  5. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.

  6. Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Connor, Laura J.; Cañon-Tapia, Edgardo; Le Corvec, Nicolas

    2013-12-01

    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ˜700 km long (N-S) and 70 to 150 km wide (W-E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10-1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10-2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW-SE and N-S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE-SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate cones parallel to NW-SE to N-S oriented tectonic structures. In the forearc, the existence of N-S and NE-SW oriented volcanic features indicates a rotation in the stress field orientation compared to the arc.

  7. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.

  8. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical

  9. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  10. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  11. Submarine explosive volcanism in the southeastern Terceira Rift/São Miguel region (Azores)

    NASA Astrophysics Data System (ADS)

    Weiß, B. J.; Hübscher, C.; Wolf, D.; Lüdmann, T.

    2015-09-01

    Morphologic studies with sonar data and in situ observations of modern eruptions have revealed some information suggesting how submarine volcanic cones develop, but the information only addresses the modern surfaces of these features. Here, we describe a study combining morphological data with high-resolution seismic reflection data collected over cones within the southeastern Terceira Rift - a succession of deep basins, volcanic bathymetric highs and islands (e.g. São Miguel) representing the westernmost part of the Eurasian-Nubian plate boundary. The cones (252) are distributed in depths down to 3200 m and exhibit an average diameter of 743 m, an average slope of 20° and heights mainly between 50 and 200 m. The cones are here classified into three different categories by physiographic or tectonic setting (we find no particular morphometric differences in cone shapes between these areas). First, numerous cones located at the submarine flanks of São Miguel's Sete Cidades and Fogo Volcano are considered to be parasitic structures. Second, in the southeast of the island, they form a superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano. Third, some cones are controlled by faults, mostly in a graben system southwest of the island. High-resolution multichannel seismic data indicates that the graben cones evolved synchronously with the graben formation. Bottom currents then probably removed the surficial fine grain-size fraction, leaving rough surface textures of the cones, which backscatter sonar signals strongly in the data recorded here. However, a young cone investigated in detail is characterized by a smooth surface, a marked increase of internal stratification with increasing distance from the summit and upwards concave flanks. Others exhibit central craters, suggesting an explosive than an effusive evolution of these structures. The morphological characteristics of these submarine cones show that they have similar sizes and shapes to cinder cones onshore São Miguel.

  12. Detail of conning tower atop the submarine. Note the wire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  13. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  14. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  15. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  16. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  17. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  18. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  19. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  20. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  1. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  2. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  3. Primitive Submarine Basalts and Magmatic Variation of Pagan and Daon, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ishizuka, O.; Stern, R. J.; Nunokawa, A.; Shukuno, H.; Kawabata, H.; Embley, R. W.; Bloomer, S. H.; Nichols, A. R.; Tatsumi, Y.

    2011-12-01

    Pagan is an active volcano located in the central island province of the Mariana arc (1807'N) and is one of the largest volcanoes in the Mariana arc; its main edifice rises from a base ~3,000 m below sea level (b.s.l.) and has a volume of 2,160 km3 (Bloomer et al., 1989). Daon is a small reararc seamount 25 km SW of Pagan (1758'N). We visited the submarine portions of the two volcanoes in 2010 (NT10-12), using ROV Hyper-Dolphin and RV Natsushima. Rocks were collected from the northeastern and southwestern flanks of the Pagan volcano at 1,500-2,000 m b.s.l. (dive HPD1147) and at 2,020-2,330 m b.s.l. (HPD1148), respectively, and from the southern flank of Daon at 2,360-2,580 m b.s.l. (HPD1149). Fresh pillow lavas dominate in all three dives, but the rocks recovered from HPD1147 seem to be the youngest based on very light sediment cover and no Mn coating. Sediment cover is considerably more extensive at HPD1148, and all rocks from Daon (HPD1149) had 0-10 mm thick Mn coating. Submarine Pagan lavas show major element compositions typical of subaerial Pagan basalts (Marske et al., 2011; Elliott et al., 1997; Woodhead, 1989), although the least fractionated compositions recovered from HPD1147 extend to much higher MgO (7-11 wt %) and Mg# (60-70), than the subaerial lavas. We recognize two types of primitive basalts from Pagan and Daon. Daon has plagioclase-olivine basalt (POB) and clinopyroxene-olivine basalt (COB), petrographic types that are similar to those reported from NW Rota-1 volcano (Tamura et al., 2011). Pagan has two types of COB, both having 10-11 wt % MgO; COB-1 has higher Ba/Zr and Sr/Zr and lower Zr/Y than COB-2 at the same MgO content, indicating that COB-1 has a greater subduction component and formed from higher degrees of mantle melting than COB-2. Similar distinct primitive magmas like those recognized from NW Rota-1 also coexist at Pagan and Daon.

  4. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  5. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  6. Potential for SGD induced submarine geohazard off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C.; Lin, C.; Cheng, Y.; Chiu, H.

    2013-12-01

    The submarine groundwater discharge (SGD) is not only play important roles on material exchange between land and sea, it may also trigger liquefaction process and induce further submarine geohazards in coastal zone. Since 2006, Southern Taiwan was experienced a series of natural hazards including earthquakes and typhoon that induced severe landslides and flooding and caused huge human lives and economics losses. These natural hazards also touched off submarine cable-break incidents off southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. After the 2006 Pingtung Earthquake, the local fishermen reported disturbed waters at the Fangliao submarine canyon head. Although many researches conjectured the disturbed waters may caused by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan. The subbottom profiles reveal a series of faults and liquefaction strata exist near the head of Fanliao submarine canyon and acoustically transparent sediments with doming structures also observed at the adjacent area. Moreover, we also found pockmarks with acoustic blanking under it on the Gaoping Shelf and a series of gaseous pluming gushed from the seafloor was also observed in the shallow waters. Integrate all these data, we may reasonably infer the disturbed waters which reported by the fishermen may caused by the liquefaction process on the seafloor. In addition to geophysical observations, natural geochemical tracers (radon and radium) in conjunction with side-scan sonar were used to evaluate the distribution of SGD system in the study area. All the evidences indicate that the large earthquake in conjunction with high pore fluid pressures in the surface sediment might have easily triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  7. Utilization of reactor bays of decommissioned submarines

    SciTech Connect

    Lugavtsov, O.V.; Malakhov, A.G.; Popkov, K.K.

    1994-11-01

    Radiation concerns regarding dismantling and storage of decommissioned reactors and reactor bays from nuclear submarines are briefly summarized. Calculation results are presented for gamma dose rates, contamination density, and the expected location of maximum exposure dose rate on the submarine hull. However, it is noted that radiation measurements must be obtained for each ship due to differences in operating conditions. Long-term storage options for containerized reactors and reactor bays are very briefly outlined; these include placing them in concrete-lined trenches shielded from the atmosphere or in underground tunnels shielded from water. 5 refs., 1 fig., 1 tab.

  8. Thomas A. Jaggar, Hawaiian Volcano Observatory

    USGS Multimedia Gallery

    Thomas A. Jaggar founded the Hawaiian Volcano Observatory in 1912 and served as its Director until 1940. Shown here in 1925, Jaggar is at work in HVO's first building, which, at the time, was located on the northeast rim of K?lauea Volcanos summit caldera, near the present-day Volc...

  9. Geochronology, geochemistry and geophysics of Mahukona Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hanano, D.; Garcia, M. O.; Weis, D. A.; Flinders, A. F.; Ito, G.; Kurz, M. D.

    2009-12-01

    Mahukona is an extinct submarine volcano that fills a gap in the Loa-trend of paired Hawaiian volcanoes between Hualalai and Kaho`olawe. A new marine survey of the seamount was undertaken in an attempt to resolve the location of the volcano’s summit. The multibeam bathymetry showed no clear summit. The gravity data reveals a central oval-shaped residual gravity anomaly with a maximum density 85 kg/m3 greater than the surrounding edifice, which could be the frozen magmatic center of Mahukona. Eighteen weakly to strongly olivine-phyric samples were collected by submersible from the shallower parts (>2 km) of the volcano to supplement previous dredged samples. These fresh, mostly glassy samples vary from low-silica tholeiites to weakly alkali basalts. Ar-Ar weighted plateau ages range from 653 ka for a tholeiite to 479 and 351 ka for transitional basalts. These ages straddle the predicted age for the end of shield building (435 ka) and are older than previous ages for transitional basalts (310-298 ka; Clague and Calvert, 2008). Trace elements show a moderate range of variability (33% for Ba and Nb) and parallel primitive mantle normalized patterns suggesting variable degrees of melting of a similar source. Zr/Nb ratios for this Loa chain volcano (11-14) span the Loa-Kea boundary. Pb, Sr, Nd and Hf isotope ratios for 12 samples are distinct from adjacent Kohala volcano with Loihi-like values, although they are slightly higher in Hf and Nd at a given Pb isotope value. Most samples have Loa-like Pb isotope ratios, although two tholeiites have Kea-like ratios but high, Loa-like Zr/Nb. Sr isotopes are well correlated with the other isotopic systems indicating no ancient carbonate-rich sediment source component is needed. Mahukona He isotope ratios overlap with those found at Lo`ihi Seamount. Higher values are found in transitional basalts and lower in the tholeiites (16-21 vs. 12-14 Ra), which is opposite to other Hawaiian volcanoes. With high-precision data sets for more volcanoes along the Hawaiian chain in multiple stages of growth, we will be able to resolve the fine structure and evolution of the Hawaiian plume. Clague, D. and Calvert, A. 2008. Bull. Volcanol.

  10. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  11. Redoubt Volcano

    USGS Multimedia Gallery

    Ascending eruption cloud from Redoubt Volcano as viewed to the west from the Kenai Peninsula. The mushroom-shaped plume rose from avalanches of hot debris (pyroclastic flows) that cascaded down the north flank of the volcano. A smaller, white steam plume rises from the summit crater. ...

  12. In search of ancestral Kilauea volcano

    USGS Publications Warehouse

    Lipman, P.W.; Sisson, T.W.; Ui, T.; Naka, J.

    2000-01-01

    Submersible observations and samples show that the lower south flank of Hawaii, offshore from Kilauea volcano and the active Hilina slump system, consists entirely of compositionally diverse volcaniclastic rocks; pillow lavas are confined to shallow slopes. Submarine-erupted basalt clasts have strongly variable alkalic and transitional basalt compositions (to 41% SiO2, 10.8% alkalies), contrasting with present-day Kilauea tholeiites. The volcaniclastic rocks provide a unique record of ancestral alkalic growth of an archetypal hotspot volcano, including transition to its tholeiitic shield stage, and associated slope-failure events.

  13. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  14. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  15. Subtle and Not-So-Subtle Variability in Very-Long-Period Earthquakes at Fuego Volcano, Guatemala Reveal Details on Vent Location and Eruption Style

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lyons, J. J.; Nadeau, P. A.

    2012-12-01

    Repeated short-term deployments of seismic, infrasound, video, and gas-emission instruments at Fuego volcano, Guatemala have revealed three types of very-long-period (VLP) earthquakes associated with conduit sealing, pressure accumulation, and release. Major differences in waveforms are due to changes in vent locations. Vulcanian explosions and gas puffing from the summit vent produce waveforms that differ only slightly in peak period. Vulcanian explosions from a flank vent produce very different VLP waveforms. In January 2008, ash-rich, vulcanian explosions issued from a vent on the western flank and produced a distinct type of VLP (Type 1). Bomb-rich explosions from the summit vent in January 2009 produced a much shorter duration VLP (Type 2), but a vulcanian-style ash release. Type 3 VLP events occurred during ash-free exhalations from the summit vent in January 2008; waveforms for Type 2 and 3 VLP events were similar although Type 3 were lower amplitude and shorter in duration. Weak infrasound records for Type 1 explosions compared to Type 2 suggest lower magma pressures and higher porosity for Type 1. Type 3 events correlate with spikes in SO2 emission rate and are driven by partial sealing and rapid release of ash-free gas at the summit vent. In 2012, both vents were active again and produced waveforms like those observed in earlier deployments. We also had a 9-station network of broadband stations that allow for improved waveform modeling. We suggest variations in the VLP period may provide a new tool for monitoring conditions within the conduit.xamples of VLP waveforms from Type 1 explosions (red, in a), Type 2 explosions (blue in b) and Type 3 puffing exhalations (black in c) and their spectra (d) highlight the waveform shape and frequency content of each. All data were deconvolved and filtered with the same 2-pole acausal Butterworth filter with corners at 60 and 12 seconds. In each of the plots, the fine lines are for individual events and the thick lines are stacked waveforms or spectra. The spectra (d) are stacks of normalized spectra for all the events.

  16. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  17. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  18. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  19. Cascade Volcanoes

    USGS Multimedia Gallery

    The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon....

  20. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  1. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  2. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  3. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  4. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.

  5. Intermediate products of sulfur disproportional reaction and their physical role in effusive to explosive submarine volcanic activity

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takano, B.; Butterfield, D. A.; Resing, J.; Chadwick, W. W.; Embley, R. W.

    2009-12-01

    Recent direct observations of submarine volcanic activity in the Mariana Arc are giving us a chance to examine the role of volcanic gas in submarine volcanic conduits. Unlike subaerial volcanoes, where hydrogeologic conditions have different character from place to place, the overlying water mass above submarine volcanoes gives a uniform hydrographic setting. Currently, the places where we can directly observe submarine volcanic activity are located deeper than 400 m, which raises the boiling point of seawater to over 240 deg C. This situation allows us to examine the interaction of volcanic gases with ambient seawater at a shorter distance from the magma source than at subaerial volcanic settings. Arc volcano settings give us longer and more frequent opportunities to make observations and provide a more diverse range of submarine volcanism than ridge settings. Among the three major components of volcanic gases (i.e., H2O, CO2 and SO2), water follows a two phase boundary below the critical temperature after volatile components leave from the magmatic source. Milky sulfur sol bearing hydrothermal fluid is commonly observed throughout Mariana active sites. Most of the sulfur sol (colloidal elemental sulfur and polysulfides) might be formed by disproportional reaction of sulfur dioxide with seawater when water vapor shrinks to liquid water. The reaction creates not only sulfur sol but also various types of sulfite, which affects the pH of seawater. We detected short-lived sulfite species in the water column above several active Mariana volcanoes such as NW Rota-1, Daikoku and Nikko by on-board HPLC. Because most observations are made on the liquid phase side of H2O boundary, it is very hard to get data to investigate the physical and chemical sulfur sol forming process occurring on the vapor phase side or at the critical state (i.e., near the magma source process). Carbon dioxide behaves as a gas at a wide range of pressures and temperatures and carries heat and sulfur dioxide effectively and quickly to the seafloor. At Nikko Seamount carbon dioxide bubbles penetrated the intentionally excavated liquid sulfur pond beneath a hydrothermal vent. The bubbles have misty surfaces, which indicated progressive disproportional reaction of carried sulfur dioxide with ambient seawater. Although the temperature along most of the conduit up to the seafloor is above the freezing point of elemental sulfur, coalescence of sulfur sol, which creates masses of liquid sulfur, mostly occur when the mixture of hydrothermal fluid and volcanic gas leaves the two phase boundary of water near the seafloor. The polymerization state of liquid sulfur governs the resistance against volcanic gas flow near the surface of volcanic conduits. Several types of liquid sulfur spherules were sampled at NW Rota-1 eruption site.

  6. Unmanned submarine vehicle

    SciTech Connect

    Hervieu

    1984-05-15

    An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

  7. Submarine Volcanic Cones in the Central Aleutian Arc: Relationship to Arc Rifting and Oblique Plate Convergence

    NASA Astrophysics Data System (ADS)

    Reynolds, J. R.; Greene, G.; Krutikov, L.; Vallier, T. L.

    2004-12-01

    Plate convergence along the 2200km Aleutian Arc varies from orthogonal at the Alaskan Peninsula to fully strike-slip on the west end of the arc. Deformation response of the upper plate to oblique convergence appears to accelerate markedly between Adak (177W) and Amchitka Pass (180W). On a regional scale, this deformation appears to be concentrated at the boundaries of crustal blocks, with clockwise rotation and westward translation [Geist et al., Tectonics 7, 327-341, 1988]. In the block rotation model, extensional rift structures develop between the blocks in arc-normal orientation. Summit basins develop at the northern, trailing edge of the blocks in arc-parallel orientation. These summit basins are located near or within the volcanic front. Thus structures in the upper plate driven by oblique convergence are predicted to interact with arc volcanism. We report on multibeam mapping in 2003-2004 and ROV Jason II dives in 2004. The data reveal locations and patterns of fault structures, volcanic cones, and lithologies in several locations critical to understanding the arc's response to oblique convergence. A large submarine volcano, named Amchixtam Chaxsxii in the Unangan language, was mapped next to Semisopochnoi Island. Additional small cones are identified on the flank of Tanaga Volcano, and near Bobrof Volcano on possible fault structures. The largest extensional `block boundary' is located at Amchitka Pass; in this area the seafloor is offset by a network of faults. Small volcanic cones are clustered at these faults. Some show signs of erosion and mass wasting; others, especially deeper ones, are intact. Surfaces are dominated by `a`a flows and spatter, and have light sediment cover and moderately fresh lavas. Our mapping focused on specific sites that were chosen to be representative, and suggests that (1) small, probably monogenetic cones are common; (2) the cones occur preferentially in areas of extensional faulting in the volcanic front; (3) these cones are present largely because of oblique convergence and arc deformation. Geochemical analyses will test their relationship to nearby subaerial arc volcanoes.

  8. Seismic Attenuation beneath Tateyama Volcano, Central Japan

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Kawakata, H.; Doi, I.

    2014-12-01

    Subsurface structures beneath active volcanoes have frequently been investigated (e.g., Oikawa et al., 1994: Sudo et al., 1996), and seismic attenuation beneath some active volcanoes are reported to be strong. On the other hand, few local subsurface structures beneath volcanoes whose volcanic activities are low have been investigated in detail, though it is important to study them to understand the potential of volcanic activity of these volcanoes. Then, we analyzed the seismic attenuation beneath Tateyama volcano (Midagahara volcano) located in central Japan, whose volcanic activity is quite low. We used seismograms obtained by Hi-net deployed by NIED (National Research Institute for Earth Science and Disaster Prevention). Hi-net is one of the densest seismic station networks in the world, and the spatial interval of their seismographs is about 20 km, which is suitable for investigating local structure beneath an individual volcano. We estimated S-wave attenuation using seismograms at five stations near Tateyama volcano for nineteen small, local, shallow earthquakes (M 2.7-4.0) that occurred from January 2012 to December 2013. We divided these earthquakes into six groups according to their hypocenter locations. We used twofold spectral ratios around the first S-arrivals to investigate the S-wave attenuation when S-waves passed through the region beneath Tateyama volcano. We focused on station pairs located on opposite sides of Tateyama volcano to each other, and earthquake pairs whose epicenters were located almost along the line connecting Tateyama volcano and the two stations, so that the spectral ratios reflect a local structure beneath Tateyama volcano. Twofold spectral ratios of all seismograms for S waves having northwestern or southeastern sources show strong attenuation beneath Tateyama volcano. On the other hand, those of seismograms having northeastern or southwestern sources show much weaker attenuation, which suggested that the region of strong attenuation is anisotropic and/or has complicated shape.

  9. The USGS Hawaiian Volcano Observatory Monitors Kilauea's Summit Eruption

    USGS Multimedia Gallery

    The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world.  The observatory's location provides an excellent view of summit eruptive activity, which began in 2008....

  10. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  11. A new species of Copepoda Harpacticoida, Xylora calyptogenae spec. n., with a carnivorous life-style from a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) with notes on the systematics of the Donsiellinae Lang, 1948

    NASA Astrophysics Data System (ADS)

    Willen, Elke

    2006-12-01

    A new species of harpacticoid copepods, Xylora calyptogenae spec. n., from Edison Seamount, a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) is described. The new species belongs to the Donsiellinae Lang, 1944, a highly specialised taxon, the members of which have previously been encountered only in association with decaying wood and/or wood-boring isopods. A closer relationship of the Donsiellinae with the Pseudotachidiidae Lang, 1936, can be stated on the basis of characteristics concerning the setation and/or segmentation of A1, A2, Mxl, Mxp, the shape of the female P5, anal somite, sexual dimorphisms on P2 and P3 and missing caudal seta I. Within the Pseudotachidiidae, the Donsiellinae again can be well characterized, e.g. by the setation and segmentation of A2, Mxl, swimming-legs, the shape of P1, female P5, male P2, sexual dimorphism and male P5. The Donsiellinae share some apomorphies with the pseudotachidiid subtaxon Paranannopinae Por, 1986: setation/segmentation of Mx, P1, A1. X. calyptogenae spec. n. is more closely related to Xylora bathyalis Hicks 1988 living in the deep sea wood substrata in New Zealand waters. Some traits of the evolutionary history of the Donsiellinae become evident, probably starting from the more primitive deep sea taxa X .calyptogenae spec. n., which lives in the hydrothermal seafloor in the absence of decaying wood, and X. bathyalis, which is found in decaying wood but not necessarily associated with the wood-boring isopod Limnoria Leach, 1814, towards the more advanced genera such as Donsiella Stephensen, 1936, which invades shallow waters and, further, clings to Limnoria, forming a close and, for the copepod, probably obligatory association. The specialised mouthparts of X. calyptogenae spec. n. seem to facilitate the grabbing and fixing of larger and/or active food items. This is confirmed by the presence of a large prey organism, presumably a copepod, consumed either alive or dead, in the gut of one of the available specimens. This morphology of the mouthparts is also shared by the closely related X. bathyalis.

  12. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  14. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  15. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    ... of which are so thick that they block the penetration of light from CALIPSO's lidar to the surface. The yellow layer near the surface over France is believed to be primarily air pollution, but could also contain ash from the volcano. Highlighting its ...

  16. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

  17. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  18. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application. PMID:11876194

  19. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  20. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  1. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-03-01

    We investigate the role of submarine groundwater discharge on the offshore temperature and salinity field and its effect on the present-day extent of submarine permafrost and gas hydrate stability on the North American Beaufort Shelf with a two-dimensional numerical model based on the finite volume method. This study finds that submarine groundwater discharge can play a large role in submarine permafrost evolution and gas hydrate stability, suggesting that local hydrology may control the evolution of submarine permafrost as strongly as does sea level or paleoclimatic conditions. Submarine permafrost evolution shows transient behavior over potentially long time scales (e.g., several glacial cycles) before a balance of density- and pressure-driven flows is established with the permeability variations imposed by the overlying permafrost layer. The "detectable" offshore permafrost extent is related to the quasi-stationary location of the saltwater-freshwater transition. Larger values of submarine groundwater discharge allow permafrost to extend farther offshore because fresh pore water preserves relict ice. Therefore, differences in the permafrost extent at locations that share similar paleoclimatic history may be explained in part by differences in the local hydrology. Gas hydrate stability on the North American Beaufort Shelf may be more widespread than currently thought because low-ice saturation, highly degraded submarine permafrost likely exists beyond the boundary detectable by common geophysical methods.

  2. Submarine fan lobes

    SciTech Connect

    Shanmugam, G.

    1989-03-01

    Submarine fan lobes constitute major hydrocarbon reservoirs throughout the world. Therefore, a clear understanding of their geometry and facies relationships is critical for exploring and exploiting these sandstone bodies effectively. However, a multitude of submarine fan lobe terminologies (e.g., depositional lobe, suprafan lobe, fan lobe, erosional lobe, channelized lobe, ponded lobe, leveed-valley lobe, type I lobe, and type II lobe) advocating widely different meanings, has flourished in the sedimentologic literature. A critical evaluation of this problem has resulted in the following suggestions: (1) lobes are considered to be turbidite sand bodies that develop at the mouths of channels in deep-sea fan environments; (2) the term depositional lobe should be restricted to lower-fan deposits of fans that exhibit facies C and thickening-upward cycles; (3) the term suprafan lobe refers to middle-fan deposits of certain small, sand-rich, modern fans that exhibit a convex-upward depositional bulge in seismic reflection profiles; (4) the terms fan lobe, erosional lobe, channelized lobe, ponded lobe, and leveed-valley lobe do not represent true channel-mouth deposits and therefore are potentially confusing; (5) lower-fan sheet sands of large modern fans may not be equivalent to depositional lobes of ancient fans; and (6) popular fan models with lobes are not always applicable because they disregard large modern fans without lobes (e.g., Mississippi fan).

  3. 33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... personnel. 33 CFR Section 165, Subpart B, contains additional provisions applicable to the RNA created in.... Navy submarines, Hood Canal, WA. 165.1328 Section 165.1328 Navigation and Navigable Waters COAST GUARD... 165.1328 Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location. The...

  4. 33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... personnel. 33 CFR Section 165, Subpart B, contains additional provisions applicable to the RNA created in.... Navy submarines, Hood Canal, WA. 165.1328 Section 165.1328 Navigation and Navigable Waters COAST GUARD... 165.1328 Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location. The...

  5. 33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... personnel. 33 CFR Section 165, Subpart B, contains additional provisions applicable to the RNA created in.... Navy submarines, Hood Canal, WA. 165.1328 Section 165.1328 Navigation and Navigable Waters COAST GUARD... 165.1328 Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location. The...

  6. 33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... personnel. 33 CFR Section 165, Subpart B, contains additional provisions applicable to the RNA created in.... Navy submarines, Hood Canal, WA. 165.1328 Section 165.1328 Navigation and Navigable Waters COAST GUARD... 165.1328 Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location. The...

  7. 33 CFR 165.1328 - Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... personnel. 33 CFR Section 165, Subpart B, contains additional provisions applicable to the RNA created in.... Navy submarines, Hood Canal, WA. 165.1328 Section 165.1328 Navigation and Navigable Waters COAST GUARD... 165.1328 Regulated Navigation Area; U.S. Navy submarines, Hood Canal, WA. (a) Location. The...

  8. Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-

    NASA Astrophysics Data System (ADS)

    Kaji, T.; Yamazaki, H.; Kato, Y.

    2008-12-01

    Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow, grain flow, debris flow). In general, if the speed is large during transportation, the extension to the lateral side is small. In addition, those flows show that coarse grains settle toward the base of the flow, and their speed and density reduce. The transportation mechanism of Oshima-Oshima debris avalanche is thought a debris flow, however in the case of Kaimon is thought turbidity current which has high speed and density. We clarify the relation among the transportation mechanism, the geological condition and the morphological features of submarine landslides.

  9. The Initiation of Submarine Debris Flow after 2006 Pingtung Earthquake Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Liu, J. T.; Chiu, H. T.; Li, S. J.

    2014-12-01

    On 26?27 December 2006, a series of submarine cables were damaged offshore southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. The cable breakages were caused by gravity flows which triggered by the Pingtung earthquake doublet occurred on 26 December 2006 at 20:26 (21.9N, 120.6E; ML 7.0) and 20:34 (21.97N, 120.42E; ML 7.0) offshore of Fangliao Twonship and meanwhile the local fishermen reported disturbed waters at the head of Fangliao submarine canyon. Although many researchers conjectured the disturbed waters may cause by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan, the actual mechanism is still unclear. In previous studies, a series of faults, liquefaction strata, pockmarks and acoustically transparent sediments with doming structures were observed at the head of Fanliao submarine canyon and may highly related to the submarine groundwater discharge off southwestern Taiwan. Recently, further multi-beam surveys were conducted at the east of Fangliao submarine canyon head and the result shows large area of seafloor subsidence after Pingtung Earthquake. The area of subsidence is over 60 km2 with maximum depth around 5 meters. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable was failed (CH-US CN-W2-1: 2213.287'N, 12033.722'E) after Pingtung Earthquake. All the evidences point out the large earthquake might triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  10. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. )

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  11. Character of seismic motion at a location of a gas hydrate-bearing mud volcano on the SW Barents Sea margin

    NASA Astrophysics Data System (ADS)

    Franek, Peter; Mienert, Jrgen; Buenz, Stefan; Gli, Louis

    2014-08-01

    The Hkon Mosby mud volcano (HMMV) at 1270 m water depth on the SW Barents Sea slope has been intensively studied since its discovery in 1989. A variety of sensors monitored morphological, hydrological, geochemical, and biological parameters in the HMMV area. An ocean bottom seismometer deployment allowed us to register seismic motion for 2 years, from October 2008 to October 2010. The analysis of seismic records documents two types of seismic signals. The first type are harmonic tremors with frequency peaks around 4-5 and 8-10 Hz that occur in swarms. Their origin could be from fluid flow circulation or resonant vibrations of gas bubbles or from delayed movement of fluid-rich sediments in the conduit or in a deeper pseudo-mud chamber of the HMMV. Because swarms occur with a periodicity of ~ 6 h, tide-related effects are suspected to influence the mechanism originating the tremors. The second type of signals are regional earthquakes that were in 15 cases recognized in seismic records. The activity of harmonic tremors was not significantly affected by earthquakes.

  12. Earthquake occurrence reveals magma ascent beneath volcanoes and seamounts in the Banda region

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Kuna, Václav; Vaněk, Jiří

    2013-12-01

    Characteristic seismicity patterns beneath the volcanic arcs of the Banda region, SE Asia, suggest that magmatic processes have recently occurred beneath submarine portions of the arcs, forming yet-unrecognised submarine volcanoes. We have found that almost 50 % of earthquakes spatially associated with the Banda and Ambon volcanic arcs occurred in sequences with epicenters often concentrated in a small area and foci distributed in vertically elongated domains. The most pronounced occurrence of such earthquake series and swarms was observed in the area of the Manipa submarine basin (latitude 3.75°S, longitude 127.5°E, ESE of Buru Island), the remarkable morphology of which resembles a huge caldera (60 km in diameter) with a distinct cone seamount in its center, reaching almost 3000 m above seafloor. Another candidate for an unrecognised submarine volcano is an area between volcanoes Banda Api and Manuk, with a huge 1973/74 earthquake swarm. We assume that such a specific occurrence of earthquakes is induced by magma ascent and migration along faults above the subducting slab, with magma possibly occasionally reaching the sea floor. Utilization of teleseismic data can thus reveal activation of plumbing systems of submarine volcanoes, and highlight areas with the potential of near-future volcanic events.

  13. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  14. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located several active sites along the 50-km-long summit. The distribution of ORP anomalies seen during these dives correlates quite well with the locations of anomalous helium samples from 2007. An ORP anomaly of -160 mv was located at the west end of Palinuro where vent fluids up to 54C were found. Living tubeworms, bacterial mats of various colors and textures, and small chimneys and globular spires coated with iron oxide having bright-green interiors indicative of the iron-rich hydrothermal clay nontronite were found at actively venting areas on Palinuro. ORP anomalies were generally only detected in the near-bottom MAPR mounted on Hercules. In a few locations the MAPRs on Argus (10-30 meters above bottom) and 25 meters above Argus registered anomalies not seen by the MAPR on Hercules indicating active venting nearby, but not observed along the trackline of the ROV. Only the higher-temperature vent site at the west end of Palinuro generated a plume that had an appreciable particle anomaly and rise height (seen by the Argus+25m MAPR). No anomalies were measured by the MAPR located 50 meters above Argus.

  15. Iceland: Eyjafjallajkull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title: Eyjafjallajkull Volcano Ash Plume Particle Properties ... satellite flew over Iceland's erupting Eyjafjallajkull volcano on April 19, 2010, its Multi-angle Imaging SpectroRadiometer (MISR) ...

  16. Seismic evidence of a second submarine eruption in the north of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Berrocoso, M.; de la Cruz-Reyna, S.; Marrero, J. M.; Garcia, A.

    2012-04-01

    From the July 19, 2011 an increase of seismicity, accompanied by a remarkable process of deformation, was detected on the island of El Hierro. This reactivation process, instrumental and scientifically monitored, culminates in the occurrence of a submarine eruption, with the emergence of a strong tremor signal, in the south of the island on October 10, 2011. Both processes (unrest and eruption) have different phases and behaviors clearly evidenced by the deformation and seismicity. This work is the result of an exhaustive analysis of seismic signals from three stations deployed on the island of El Hierro(CTAB and CTIG (IGN) and REST (CSIC)), in order to explain the behavior of the volcanic system responsible for the submarine eruption of Las Calmas sea and its evolution, as well as evidence of a second submarine eruption in the north of the island (ElGolfo). The spectral content of signals from the seismic stations in the north of the island (CTIG and CTAB) and the area around the eruption (REST) has the dominant peak at different frequencies. The amplitude modulations of the seismic noise evolved differently in CTAB and CTIG than REST being particularly significant changes in amplitude and frequency after the occurrence of events of magnitude greater than 4. The evolution of the volcano-tectonic cumulative seismic energy shows the occurrence of two similar eruptive episodes, in which two phases can be distinguished. The first phase of both cycles has a constant rate with seismic events of magnitude less than 3 to reach the energy of 10 ^ 11 Joule. From that moment the magnitude grows rapidly exceeding magnitude 4. In the second phase the seismic events are mainly located in the south of the island, before the onset of visual evidences of the eruption (October 11, 2011) and later (November 2011) the seismic events are mainly located in the north of the island, where no visible signs have been detected. In both cases the appearance or changes in the tremor signal was observed. The presence of a second eruptive vent in the North solves some of the most important enigmas raised from the occurrence of a seismic event of magnitude 4.6 (November 11, 2011). The sudden disappearance of the seismicity in the north of the island is due to the opening of the new eruptive vent and is similar to what happened with the seismicity in the south after the eruption in Las Calmas sea. The pattern of seismic energy release is also similar in the two cases. The strong amplitude modulations in the tremor can be explained as an oscillation in a fluid reservoir with two leaks. This same process explains the rapid oscillations detected in the deformation

  17. Submarine fresh water outflow detection with a dual-frequency microwave and an infrared radiometer system

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    Since infrared measurements are only very slightly affected by whitecap and banking angle influences, the combined multifrequency radiometric signatures of the L-band, the S-band, and an infrared radiometer are used in identifying freshwater outflows (submerged and superficial). To separate the river and lagoon outflows from the submarine outflows, geographical maps with a scale of 1:100,000 are used. In all, 44 submarine freshwater springs are identified. This is seen as indicating that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. Most of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline; the success in detecting the submarine springs during both missions at the northwest portion of the island is 39%. Salinity and temperature distribution plots along the flight path in longitude and latitude coordinates reveal that runoff direction can be determined.

  18. Shrimp Populations on Northwest Rota, an Active Volcano of the Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, V.; Juniper, S. K.; Limn, H.; Jones, W. J.; Vrijenhoek, R.; Webber, R.; Eerkes-Medrano, D.

    2004-12-01

    NW Rota-1 is a submarine volcano that manifested active volcanic and hydrothermal activity during submersible surveys in March 2004 (see Embley et al.). Substratum on the volcano summit (520 m depth) was entirely basalt outcrop or variously-sized ejecta lying near the angle of repose. While no fauna inhabited the rim of the volcanic pit, patches of shrimp were located within 25 m and on the nearby summit. Two species are present. Opaepele cf. loihi shows few morphological differences from either a nearby population on Eifuku Volcano (see Chadwick et al.) at 1700 m depth or from the type locality in Hawaii. A molecular comparison of COI sequences of 13 specimens found little difference from two Hawaiian sequences. Video observations detail frequent feeding activity using spatulate chelipeds to trim microbial filaments as the cephalothorax sways across the substratum. The second species is an undescribed Alvinocaris. Juveniles of this species appear to form clusters distinct from Opaepele where they also graze on filaments. Sparse adults of Alvinocaris range up to 5.5 cm long and display aggressive behaviour moving through patches of smaller shrimp. Densities of Opaepele were highest on sloping rock walls (over 500 per sq.m.) whereas adult Alvinocaris were more abundant on rubble. This division may reflect food preference: microbial filaments versus polychaetes and meiofauna. Characterization of particulates from these substrata was conducted using visual sorting and stable isotope composition. As Alvinocaris matures, the chelipeds enlarge, enabling a greater predatory capacity. Measurements of Opaepele from digital in situ images reveal a population structure suggesting a recent recruitment. Average size is significantly smaller than the Eifuku population and no egg-bearing females were collected. The disjunct range of this species where it occurs on active volcanoes 6000 km apart is puzzling. Further work on intermediate sites and into the reproductive strategy of the species is required.

  19. Observations of Local Seismicity and Harmonic Tremor Using an Ocean Bottom Hydrophone Array at Brothers Volcano, South Kermadec Arc.

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Lau, T. K.; Matsumoto, H.

    2005-12-01

    The submarine Brothers volcano is an important link in the volcanic chain of the southern Kermadec Arc system in the Southwest Pacific Ocean north of New Zealand. The 3-3.5 km wide caldera has a center depth of 1850m and steep surrounding walls of 300-450m. Active hydrothermal venting distinguished Brothers as a point of focus for the New Zealand American Submarine Ring of Fire (NZASRoF) expeditions in 2004 and 2005. Due to its remote location, moderate to small magnitude seismicity around the Brothers area is largely unknown. In late September 2004, four ocean bottom hydrophones (OBHs) were deployed on the caldera floor. In April 2005, three of the four instruments were recovered intact. These three OBHs continuously recorded, for seven months, the low frequency (0-110Hz) acoustic field around Brothers volcano, in particular seismic P- and S-waves propagating through the crust and acoustic T-waves in the water column . Preliminary analysis reveals seismicity rates on the order of 106 earthquakes per month. In addition to seismic arrivals, low frequency harmonic tremor is frequently and independently observed on each of the OBH instruments, often occurring subsequent to the larger seismic events. Qualitative comparisons of these signals with tremor observed from the Volcano Islands south of Japan (Dziak and Fox, 2002) show them to be nearly equivalent in frequency structure, suggesting the origin of the tremor observed at Brothers may also be attributed to resonance of a magma-gas mixture in a large chamber or conduit near the water/ seafloor boundary.

  20. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the edge of the Aleutian ridge appears to strongly control their likelihood for, and direction of, past collapse. The ridge's steep drop to the north greatly increases potential runout length for slides that originate at the island chain. ?? 2007 Elsevier B.V. All rights reserved.

  1. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  2. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

  3. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the

  4. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  5. Multifrequency radiometer detection of submarine freshwater sources along the Puerto Rican coastline

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    The surface area above submarine springs of fresh water exhibit temperatures and salinities lower than the surrounding sea waters. A multifrequency radiometer system which earlier demonstrated an accuracy of 1 degree C and 1 part per thousand in remotely detecting the surface temperature and salinities, respectively, was used to detect submarine freshwater springs. The first mission on February 4, 1978, consisted of overflight measurements over three fourths of the coastal areas around the Island of Puerto Rico. During the second mission on February 6, 1978, special attention was directed to the northwest portion of Puerto Rico where several submarine springs had been reported. The previously reported spring locations correlated well with the locations detected by the radiometers. After separating the surface runoffs such as rivers, lagoons, marshes, and bays, 44 submarine freshwater springs were identified which indicates that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. The majority of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline. The success of detecting the same submarine springs during both missions at the northwest portion of the island was 39%.

  6. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  7. Santorini Volcano

    NASA Astrophysics Data System (ADS)

    Heiken, Grant

    What is it about Santorini (Thera) that attracts volcanologists? This small archipelago in the Aegean has captivated volcanic pilgrims since Fouque published his geologic study of the volcanic field in 1879 [Fouqué, 1879].It must be the combination of its spectacular setting, rising out of the blue waters of the Aegean, the remarkable exposures that lay open its violent past for everyone to see, or possibly the slower pace of life and remarkable Greek hospitality Perhaps it is the Lower Bronze Age town of Akrotiri, destroyed yet preserved by a large explosive eruption 3600 years ago. There are thousands of volcanoes yet to be studied on our planet, but for 140 years, groups of volcanologists have regularly visited this flooded caldera complex to add yet another bit of information to the foundation laid by Fouqué.

  8. Did the crew of the submarine H.L. Hunley suffocate?

    PubMed

    Lance, Rachel M; Moon, Richard E; Crisafulli, Michael; Bass, Cameron R

    2016-03-01

    On the evening of February 17th, 1864, the Confederate submarine H.L. Hunley attacked the Union ship USS Housatonic outside Charleston, South Carolina and became the first submarine in history to successfully sink an enemy ship in combat. One hypothesis for the sinking of the Confederate submarine H.L. Hunley is that the crew, in the enclosed vessel, suffered a lack of oxygen and suffocated. This study estimates the effects of hypoxia and hypercapnia on the crew based on submarine gas volume and crew breathing dynamics. The calculations show the crew of the Hunley had a minimum of 10min between the onset of uncomfortable hypercapnia symptoms and danger of loss of consciousness from hypoxia. Based on this result and the location of the crew when discovered, hypoxia and hypercapnia do not explain the sinking of the world's first successful combat submarine. PMID:26821202

  9. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse events at Monowai and one at NW Rota-1, as well as constructional deposits extending down the flanks of these volcanoes. Acoustic records at Monowai and NW Rota-1 suggest sector collapse events are infrequent while eruptions, and the resulting supply of depositional material, have been nearly continuous. The sector collapse events occurred at times remote from our plume surveys, so, large landslide events are not a prerequisite for the presence of deep ash plumes. Despite a wide range of summit depths (<10 m at Kavachi to 1500 m at W Mata), lava types (basaltic-andesite, boninite, and basalt), and eruptive styles (Surtseyan, Strombolian, and effusive flows with active pillow formation), the deep particle plumes at each of these volcanoes are remarkably similar in their widespread distribution (to 10s of km from the summit and at multiple depths down the flanks) and composition (dominantly fresh volcanic ash). Moderate eruption rates, lava-seawater interaction and steep slopes below an eruptive vent may be sufficient to initiate the transport of fine ash into the ocean environment and distal sediments via these types of plumes.

  10. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would enable global comparisons of plate boundary structures and processes and could facilitate a more coordinated approach to optimizing the future acquisition of these high-value data by the global research community.

  11. The chronology of the martian volcanoes

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Saunders, R. S.

    1979-01-01

    The volcanoes of Mars have been divided into three groups based on morphology: basaltic shields, domes and composite cones, and highland patera. A fourth group can be added to include the volcano-tectonic depressions. Using crater counts and the absolute chronology of Soderblom, an attempt is made to estimate the history of the volcanoes. Early in the martian history, about 2.5 b.y. ago, all three styles of volcanoes were active at various locations on the surface. At approximately 1.7-1.8 b.y. ago a transition occurred in the style and loci of volcanic construction. Volcanoes of younger age appear to be only of the basaltic shield group and are restricted to the Tharsis region. This same transition was noted by a change in the style of the basaltic shield group. Older shields were small low features, while the younger shields are significantly broader and taller.

  12. Lavas from Active Boninite and Very Recent Basalt Eruptions at Two Submarine NE Lau Basin Sites

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Clague, D. A.; Resing, J. A.; Michael, P. J.; Keller, N. S.; Baker, E. T.

    2009-12-01

    Very young submarine lava flows were discovered at two sites in the NE Lau Basin during a May 2009 NSF-NOAA expedition. The multidisciplinary rapid response expedition was organized to investigate these sites based on chemical and physical water column signatures observed during a NOAA-led regional study in Nov. 2008. An active eruption was discovered and observed for 5 days in May 2009 at W. Mata volcano, just behind the northernmost segment of the Tofua arc. The ongoing eruption produced extrusive and pyroclastic deposits from multiple vents near the 1200m depth summit of the volcano. Lavas were sampled from the summit and volcano flanks using the ROV Jason II. The samples indicate that W. Mata is currently erupting orthopyroxene-clinopyroxene-olivine porphyritic boninite magmas, which is also the predominant rock composition elsewhere on the seamount. The youngest lavas are very fresh, highly vesicular (up to ~30%) and occur as predominantly pillow and lobate forms, sometimes mantled by very young pyroclastic deposits and/or thin chemical coatings of presumed microbial and/or inorganic origin. The coatings and pyroclast apron make it difficult to map the extent of the youngest deposits by visual indicators alone, so we are currently dating 7 well-distributed samples from the W. Mata summit by 210Po-210Pb chronology. Very preliminary age results indicate that samples collected near the active vents are <1 month old, although samples collected further afield erupted sometime between early 2009 and Fall 2008, implying either that active vents have migrated or that lavas flowed farther from the vents in earlier eruptive phases. Extremely fresh but no longer active lava flows were also discovered along 2 km of the NE Lau Spreading Center axis, at 1600m water depth. The highly vesicular and sparsely phyric basalts occur as a series of high effusion rate sheets and lobates at vent-proximal sites along the ridge axis, transitional to pillows in distal locations. Very preliminary 210Po-210Pb data on 5 NELSC lavas suggest the eruption occurred over at least a few months, with significant chemical heterogeneity (e.g., ~1 wt% MgO variation), and with highly enriched compositions (e.g., Th=3.3 ppm, Th/U >3.8). 210Po activity in 3 samples suggest a Nov 2008 eruption, consistent with interpretations from water column physical and chemical characteristics measured in Nov. 2008. 210Po in 2 other lavas suggest early 2009 and mid 2008 eruptions, respectively. Some young lavas at both volcanoes had native sulfur deposits on or within them, which has not been observed at recent submarine eruption sites on mid-ocean ridges or Loihi, but has been seen at NW Rota seamount (Mariana arc). Our goal is to define the age, duration, composition and magnitude of both NE Lau eruptions to help quantify magmatic, hydrothermal, and ecological impacts and geochemical signatures of interest to the US Ridge2000 and Margins programs, which partially supported the NE Lau response expedition. Geochemical characterization of samples is ongoing with shore-based collaborators.

  13. Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons

    NASA Astrophysics Data System (ADS)

    Kelly, Joshua T.; Carey, Steven; Pistolesi, Marco; Rosi, Mauro; Croff-Bell, Katherine Lynn; Roman, Chris; Marani, Michael

    2014-07-01

    On October 17, 1891, a submarine eruption started at Foerstner volcano located within the Pantelleria Rift of the Strait of Sicily (Italy). Activity occurred for a period of 1 week from an eruptive vent located 4 km northwest of the island of Pantelleria at a water depth of 250 m. The eruption produced lava balloons that discharged gas at the surface and eventually sank to the seafloor. Remotely operated vehicle (ROV) video footage and high-resolution multi-beam mapping of the Foerstner vent site were used to create a geologic map of the AD 1891 deposits and conduct the first detailed study of the source area associated with this unusual type of submarine volcanism. The main Foerstner vent consists of two overlapping circular mounds with a total volume of 6.3 105 m3 and relief of 60 m. It is dominantly constructed of clastic scoriaceous deposits with some interbedded pillow lavas. Petrographic and geochemical analyses of Foerstner samples by X-ray fluorescence and inductively coupled plasma mass spectrometry reveal that the majority of the deposits are vesicular, hypocrystalline basanite scoria that display porphyritic, hyaloophitic, and vitrophyric textures. An intact lava balloon recovered from the seafloor consists of a large interior gas cavity surrounded by a thin lava shell comprising two distinct layers: a thin, oxidized, quenched crust surrounding the exterior of the balloon and a dark gray, tachylite layer lying beneath it. Ostwald ripening is proposed to be the dominant bubble growth mechanism of four representative Foerstner scoria samples as inferred by vesicle size distributions. Characterization of the diversity of deposit facies observed at Foerstner in conjunction with quantitative rock texture analysis indicates that submarine Strombolian-like activity is the most likely mechanism for the formation of lava balloons. The deposit facies observed at the main Foerstner vent are very similar to those produced by other known submarine Strombolian eruptions (short pillow flow lobes, large scoriaceous clasts, spatter-like vent facies). Balloons were likely formed from the rapid cooling of extremely vesicular magma fragments as a result of a gas-rich frothy magma source. The exterior of these fragments hyperquenched forming a vesicular glassy shell that acted as an insulating layer preventing magmatic gas in its interior from escaping and thus allowing flotation as densities reached less than 1,000 kg/m3. We believe that lava balloons are a common eruptive product, as the conditions required to generate these products are likely to be present in a variety of submarine volcanic environments. Additionally, the facies relationships observed at Foerstner may be used as a paleoenvironmental indicator for modern and ancient basaltic shallow submarine eruptions because of the relatively narrow depth range over which they likely occur (200-400 m).

  14. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the salinity field and location of the freshwater-saltwater transition. Our results suggest that the role of salt transport and its effect on permafrost evolution can provide context for the interpretation of recent permafrost maps and methane observations in the Arctic.

  15. Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot

    NASA Astrophysics Data System (ADS)

    Geist, Dennis J.; Fornari, Daniel J.; Kurz, Mark D.; Harpp, Karen S.; Adam Soule, S.; Perfit, Michael R.; Koleszar, Alison M.

    2006-12-01

    New multibeam and side-scan sonar surveys of Fernandina volcano and the geochemistry of lavas provide clues to the structural and magmatic development of Galápagos volcanoes. Submarine Fernandina has three well-developed rift zones, whereas the subaerial edifice has circumferential fissures associated with a large summit caldera and diffuse radial fissures on the lower slopes. Rift zone development is controlled by changes in deviatoric stresses with increasing distance from the caldera. Large lava flows are present on the gently sloping and deep seafloor west of Fernandina. Fernandina's submarine lavas are petrographically more diverse than the subaerial suite and include picrites. Most submarine glasses are similar in composition to aphyric subaerially erupted lavas, however. These rocks are termed the "normal" series and are believed to result from cooling and crystallization in the subcaldera magma system, which buffers the magmas both thermally and chemically. These normal-series magmas are extruded laterally through the flanks of the volcano, where they scavenge and disaggregate olivine-gabbro mush to produce picritic lavas. A suite of lavas recovered from the terminus of the SW submarine rift and terraces to the south comprises evolved basalts and icelandites with MgO = 3.1 to 5.0 wt.%. This "evolved series" is believed to form by fractional crystallization at 3 to 5 kb, involving extensive crystallization of clinopyroxene and titanomagnetite in addition to plagioclase. "High-K" lavas were recovered from the southwest rift and are attributed to hybridization between normal-series basalt and evolved-series magma. The geochemical and structural findings are used to develop an evolutionary model for the construction of the Galápagos Platform and better understand the petrogenesis of the erupted lavas. The earliest stage is represented by the deep-water lava flows, which over time construct a broad submarine platform. The deep-water lavas originate from the subcaldera plumbing system of the adjacent volcano. After construction of the platform, eruptions focus to a point source, building an island with rift zones extending away from the adjacent, buttressing volcanoes. Most rift zone magmas intrude laterally from the subcaldera magma chamber, although a few evolve by crystallization in the upper mantle and deep crust.

  16. Leakage of magmatic-hydrothermal volatiles from a crater bottom formed by a submarine eruption in 1989 at Teishi Knoll, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Sohrin, Rumi; Wada, Hideki; Tsuboi, Tatsuya; Sumino, Hirochika; Mori, Toshiya; Tsunogai, Urumu; Hernndez, Pedro A.; Suzuki, Yusuke; Ikuta, Ryoya; Oorui, Kohei; Koyama, Masato; Masuda, Toshiaki; Fujii, Naoyuki

    2014-01-01

    A submarine eruption occurred off the Izu Peninsula of Japan on 13 July 1989, forming Teishi Knoll, which has a diameter of 450 m and a height of ca. 10 m above the surrounding 90-100 m deep seafloor. Immediately after the eruption, intense gas release was observed from two vents in the crater. The gas bubbling gradually decreased and apparently ceased in 1990. Given that no survey has been undertaken to examine volatile release from the crater of Teishi Knoll, we collected seawater samples at three different sites from just above the crater bottom on 17 July 2012, in order to detect signs of magmatic volatile release. Seawater samples from the crater bottom have dissolved CH4 contents and ?13C values higher than those of shallower (50-100 m deep) seawater samples. Total inorganic carbon contents from the bottom seawater samples are also higher, and ?13C and ?14C values lower than those of shallower seawater samples. These data indicate the addition of minor CH4 and CO2 of hydrothermal or magmatic origin to the bottom seawater from the crater. 3He/4He ratios and total organic carbon data are also consistent with the leakage of magmatic fluids. The most prominent CH4 and CO2 anomalies were observed at the site located closest to one of the bubbling gas sites of the 1989 eruption. As such, volcanic gas emissions still continue today at extremely low levels, 23 years after eruption of this monogenetic volcano. The monitoring of ultra-trace amounts of chemical components in seawater is a prospective method to monitor temporal changes in magmatic activity at such submarine volcanoes.

  17. A comparison of eruption mechanisms in subaerial and submarine arc environments (Invited)

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Chadwick, W.; Fiske, R. S.; Deardorff, N.

    2009-12-01

    The past few decades of research on submarine arc volcanism have produced exciting new observations that allow us to address long-standing questions about the role of seawater on submarine eruption dynamics. Although conduit processes in submarine arc volcanoes are probably similar to those in their subaerial counterparts, as illustrated by similarities in bubble and crystal textures in erupted pyroclasts, the effect of the overlying water column on syn- and post-eruptive processes can be dramatic. Perhaps most important is a blurring of the distinction between primary and secondary emplacement of pyroclastic material as a consequence of rapid remobilization of primary deposits down submarine slopes. As a result, it may prove difficult to distinguish between submarine pyroclastic (primary) and volcaniclastic (secondary) deposits in the geologic record. Other subaerial eruptive categories are also less distinct in the submarine environment. Plume rise is suppressed by the efficiency of steam condensation, from loss of buoyancy due to mixing with seawater, and by the rapid deceleration of solid pyroclasts in the overlying water column. Together these processes contribute to efficient segregation of fine and coarse pyroclasts very close to the vent. As magmatic steam contained within pyroclasts also condenses and drives rapid ingestion of seawater, most pyroclasts will sink, which promotes cone growth over development of widespread pyroclastic deposits. An exception is material that is sufficiently fine-grained to be carried by water currents. Efficient winnowing of fines from both fall and flow deposits renders the grain-size distinction between these deposit types less distinctive than in subaerial deposits. Finally, seawater-induced spalling of fragments from effusive extrusions accompanied by vigorous degassing can produce a local fall deposit, thus blurring the distinction between explosive and effusive eruptive mechanisms. Together these observations suggest caution in direct transferal of terminology and interpretations developed for subaerial eruptions to the submarine environment.

  18. Constructing the upper crust of the Mid-Atlantic Ridge: A reinterpretation based on the Puna Ridge, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Cann, Johnson R.

    1999-11-01

    The volcanic morphology of a number of segments of the slow spreading Mid-Atlantic Ridge (MAR) have been reinterpreted based on our understanding of dike emplacement, dike propagation, and eruption at the East Rift Zone of Kilauea Volcano, Hawaii and its submarine extension, the Puna Ridge. The styles of volcanic eruption at the submarine Puna Ridge are remarkably similar to those of the axial volcanic ridges (AVRs) constructed on the median valley floor of the MAR. We use this observation to relate volcanic processes occurring at Kilauea Volcano to the MAR. We now consider that volcanic features (e.g., seamounts and lava terraces) built on the flanks of the AVRs are secondary features that are fed from lava tubes or channels, not primary features fed directly from an underlying dike. We examine simple models of pipe flow and conclude that lava tubes can transport lava down the flanks of submarine rifts to build all of the volcanic features observed there. In addition, deep water lava tubes are strong enough to withstand the pressures of a few megapascals that the building of a volcanic structure 150 m high at the end of the tube would generate. The volumes of individual volcanic terraces and seamounts on the Puna Ridge and at the MAR are large (0.1-1 km3) and similar to the volumes of lava flows that are broadly distributed at the subaerial East Rift Zone of Kilauea. This striking difference in the volcanic morphology on a scale of 1-2 km (producing terraces and seamounts underwater and low-relief flows on land) must be related to the enhanced cooling and to the greater mechanical stability of tubes in the submarine environment. We suggest that at the MAR a crustal magma reservoir, most likely located beneath shallow, flat sections of the segment, provides magma to the rift axis through dikes that propagate laterally tens of kilometers. The zone of dike intrusion, at least in the neighborhood of the magma body, is likely narrower than the width resurfaced by flows, yielding a crustal structure that has a rapid vertical transition from lavas to sheeted dikes. At segment ends the zone of dike intrusion is likely to be wider, giving a resulting structure with a more gradual transition from lavas to dikes.

  19. Ol Doinyo Lengai Volcano

    USGS Multimedia Gallery

    Scientists from the Volcano Disaster Assistance Program team and the Geological Survey of Tanzania take a sample of the most recent ashfall from Ol Doinyo Lengai as the volcano looms in the background....

  20. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (?) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  1. Volcano-Tectonic Deformation at Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Galgana, G.; Corpuz, E.; Bartel, B.

    2004-12-01

    Taal Volcano, located in southern Luzon, Philippines, is an unusual, tholeiitic volcano situated within a calc-alkaline arc. It is one of the most active volcanic centers in the Philippines, with some 33 historic volcanic eruptions over the past four centuries. Volcanism at Taal is at least partly tectonically controlled, suggested by its location at the intersection of regional fault structures and by the location and shape of both Taal's caldera and Volcano Island. The alignment of modern eruption centers, are controlled by regional and local structures. Here, we review geomorphic and geodetic observations that constrain both tectonic and volcanic deformation in the vicinity of Taal volcano. We use GPS measurements from a 52-station GPS network measured from 1996 - 2001 to investigate overall plate interaction and microplate (intra-arc) deformation. The velocity field indicates that the majority of the Philippine Sea - Eurasia plate convergence is taking place west of Luzon, presumably largely by subduction at the Manila trench. A relatively small fraction of the convergence appears to be taking place within Luzon or across the East Luzon trough. The major intra-arc deformation is accommodated by strike-slip motion along the Philippine Fault, ranging from 25-40 mm/yr left-lateral slip. Detailed measurements in southern Luzon also indicate significant intra-arc deformation west of the Philippine Fault. GPS measurements in southwestern Luzon indicate significant motion within the arc, which could be explained by 11-13 mm/yr of left-lateral shear along the "Macolod Corridor", within which Taal Volcano resides. A dense network of continuous single- and dual-frequency GPS receivers at Taal Volcano, Philippines reveals highly time-variable deformation behavior, similar to that observed at other large calderas. While the caldera has been relatively quiescent for the past 2-3 years, previous deformation includes two major phases of intra-caldera deformation, including two phases of inflation and deflation in 1998-2000. The February-November 2000 period of inflation was characterized by approximately 120 mm of uplift of the center of Volcano Island relative to the northern caldera rim, at average rates up to 216 mm/yr. The source of deflation in 1999 was modeled as a contractional Mogi point source centered at 4.2 km depth beneath Volcano Island; the source of inflation in 2000 was modeled as a dilatational Mogi point source centered at 5.2 km depth beneath Volcano Island. The locations of the two sources are indistinguishable within the 95% confidence estimates. Modeling using a running four-month time window from June 1999-March 2001 reveals little evidence for source migration. We find marginal evidence for an elongate source whose long axis is oriented NW-SE, paralleling the caldera-controlling fault system. We suggest that the two periods of inflation observed at Taal represent episodic intrusions of magma into a shallow reservoir centered beneath Volcano Island whose position is controlled at least in part by regional tectonic structures.

  2. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  3. Obstacle avoidance sonar for submarines

    NASA Astrophysics Data System (ADS)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  4. Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Prez Bustamante, J. C.; Correa Olan, J. C.; Gutirrez Jimnez, A. J.; Adn Gonzlez, N.; Bravo Cardona, E. F.

    2007-05-01

    Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacn-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tanctaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcn del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcn de Enmedio, VE; and Volcn del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759-1774 eruption. Therefore, in spite of the long-standing idea of Jorullo being a monogenetic volcano, we hypothesize it as a stratovolcano in the making. The polygenetic nature of the volcano and the processes described here for Jorullo volcano (cone collapse, phreatomagmatic activity) are of great importance because of their implications for hazards assessment.

  5. Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures

    NASA Astrophysics Data System (ADS)

    Rotella, Melissa D.; Wilson, Colin J. N.; Barker, Simon J.; Ian Schipper, C.; Wright, Ian C.; Wysoczanski, Richard J.

    2015-08-01

    Despite increasing recognition of silicic pumice-bearing deposits in the deep marine environment, the processes involved in explosive silicic submarine eruptions remain in question. Here we present data on bubble sizes and number densities (number of bubbles per unit of melt matrix) for deep submarine-erupted pumices from three volcanoes (Healy, Raoul SW and Havre) along the Kermadec arc (SW Pacific) to investigate the effects of a significant (>~1 km) overlying water column and the associated increased hydrostatic pressure on magma vesiculation and fragmentation. We compare these textural data with those from chemically similar, subaerially-erupted pyroclasts from nearby Raoul volcano as well as submarine-erupted 'Tangaroan' fragments derived by non-explosive, buoyant detachment of foaming magma from Macauley volcano, also along the Kermadec arc. Deep submarine-erupted pumices are macroscopically similar (colour, density, texture) to subaerial or shallow submarine-erupted pumices, but show contrasting microscopic bubble textures. Deep submarine-erupted pyroclasts have fewer small (< 10 μm diameter) bubbles and narrower bubble size distributions (BSDs) when compared to subaerially erupted pyroclasts from Raoul (35-55 μm vs. 20-70 μm range in volume based median bubble size, respectively). Bubble number density (BND) values are consistently lower than subaerial-erupted pyroclasts and do not display the same trends of decreasing BND with increasing vesicularity. We interpret these textural differences to result from deep submarine eruptions entering the water column at higher pressures than subaerial eruptions entering the atmosphere (~ 10 MPa vs. 0.1 MPa for a vent at 1000 mbsl). The presence of an overlying water column acts to suppress rapid acceleration of magma, as occurs in the upper conduit of subaerial eruptions, therefore suppressing coalescence, permeability development and gas loss, amounting to closed-system degassing conditions. The higher confining pressure environment of deep submarine settings hinders extensive post-fragmentation clast expansion, coalescence of bubbles, and thinning of bubble walls, causing clasts to have similar BND values regardless of their vesicularity. Although deep submarine-erupted pyroclasts are closely similar to their subaerial counterparts on the basis of bulk vesicularities and macroscopic appearance, they differ markedly in their microscopic textures, allowing them to be fingerprinted in modern and ancient pumiceous marine sediments.

  6. Volcano Vents

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2003

    This low-relief shield volcano imaged with the THEMIS visible camera has two large vents which have erupted several individual lava flows. The positions of the origins of many of the flows indicate that it is probable that the vents are secondary structures that formed only after the shield was built up by eruptions from a central caldera.

    Image information: VIS instrument. Latitude 17.6, Longitude 243.6 East (116.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  8. USGS Hawaiian Volcano Observatory

    USGS Multimedia Gallery

    The USGS Hawaiian Volcano Observatory is perched on the rim of Kilauea Volcano's summit caldera (next to the Thomas A. Jaggar Museum in Hawai'i Volcanoes National Park), providing a spectacular view of the active vent in Halema‘uma‘u Crater....

  9. Spreading Flanks of Ocean-Island Volcanoes: Similarities and Differences at Mauna Loa and Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Eakins, B. W.; Yokose, H.

    2003-12-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from JAMSTEC submersibles (Japan Marine Science and Technology Center) show that prominent benches at mid-depths on flanks of both Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Both volcanoes have mid-slope benches that record the same general processes of slope failure on varying scales, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. Outboard of the South Kona bench are large slide blocks, containing mixed subaerial and submarine Mauna Loa rocks, that appear to constitute a distal facies of the same large landslide event(s). The dive results also suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench. In contrast, the Hilina bench developed as Kilauea volcano has spread seaward, in part riding piggyback on the still active south flank of Mauna Loa. The Hilina bench is underlain by coarse volcaniclastic sediments derived largely from submarine-erupted pre-shield alkalic and transitional basalts of ancestral Kilauea. The south flank of Kilauea is thus far not associated with any massive slide deposits comparable to the distal blocks of the South Kona slide complex.

  10. The 1998 eruption of Axial Seamount: New insights on submarine lava flow emplacement from high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Clague, D. A.; Embley, R. W.; Perfit, M. R.; Butterfield, D. A.; Caress, D. W.; Paduan, J. B.; Martin, J. F.; Sasnett, P.; Merle, S. G.; Bobbitt, A. M.

    2013-10-01

    Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge at 46N, 130W, erupted in January 1998 along 11 km of its upper south rift zone. We use ship-based multibeam sonar, high-resolution (1 m) bathymetry, sidescan sonar imagery, and submersible dive observations to map four separate 1998 lava flows that were fed from 11 eruptive fissures. These new mapping results give an eruption volume of 31 106 m3, 70% of which was in the northern-most flow, 23% in the southern-most flow, and 7% in two smaller flows in between. We introduce the concept of map-scale submarine lava flow morphology (observed at a scale of hundreds of meters, as revealed by the high-resolution bathymetry), and an interpretive model in which two map-scale morphologies are produced by high effusion-rate eruptions: "inflated lobate flows" are formed near eruptive vents, and where they drain downslope more than 0.5-1.0 km, they transition to "inflated pillow flows." These two morphologies are observed on the 1998 lava flows at Axial. A third map-scale flow morphology that was not produced during this eruption, "pillow mounds," is formed by low effusion-rate eruptions in which pillow lava piles up directly over the eruptive vents. Axial Seamount erupted again in April 2011 and there are remarkable similarities between the 1998 and 2011 eruptions, particularly the locations of eruptive vents and lava flow morphologies. Because the 2011 eruption reused most of the same eruptive fissures, 58% of the area of the 1998 lava flows is now covered by 2011 lava.

  11. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  12. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes-essential for quantitative short-term eruption forecasts-will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.

  13. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes. PMID:18845753

  14. Infrared science of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, William A.; Moxham, R.M.; Polcyn, R.C.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs is- suing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  15. Mount Rainier, a decade volcano

    SciTech Connect

    Kuehn, S.C.; Hooper, P.R. . Dept. of Geology); Eggers, A.E. . Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  16. Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Hocking, Michael W. A.; Hannington, Mark D.; Percival, Jeanne B.; Stoffers, Peter; Schwarz-Schampera, Ulrich; de Ronde, C. E. J.

    2010-04-01

    The Calypso Hydrothermal Vent Field (CHVF) is located along an offshore extension of the Taupo Volcanic Zone (TVZ), an area of abundant volcanism and geothermal activity on the North Island of New Zealand. The field occurs within a northeast-trending submarine depression on the continental shelf approximately 10-15 km southwest of the White Island volcano in the Bay of Plenty. The graben has been partially filled by tephra from regional subaerial volcanic eruptions, and active hydrothermal venting occurs at several locations along its length. The vents occur at water depths of 160 to 190 m and have temperatures up to 201 °C. Recovered samples from the vent field include variably cemented and veined volcaniclastic sediments containing an assemblage of clay minerals, amorphous silica, barite, As-Sb-Hg sulfides, and abundant native sulfur. The volcanic glass has been altered primarily to montmorillonite and mixed-layer illite-montmorillonite; illite, and possibly minor talc and mixed-layer chlorite-smectite or chlorite-vermiculite are also present. A hydrothermal versus diagenetic origin for the smectite is indicated by the presence of both illite and mixed-layer clays and by the correlation between the abundance of clay minerals and the abundance of native sulfur in the samples. The mineralization and alteration of the volcanic host rocks are similar to that observed in near-neutral pH geothermal systems on land in the TVZ (e.g., Broadlands-Ohaaki). However, the clay minerals in the CHVF have a higher concentration of Mg in the dioctahedral layer and a higher interlayer Na content than clay minerals from Broadlands-Ohaaki, reflecting the higher concentrations of Mg and Na in seawater compared to meteoric water. Minerals formed at very low pH (e.g., kaolinite and alunite), typical of steam-heated acid-sulfate type alteration in the TVZ geothermal environment, were not found. Mixing with seawater likely prevented the formation of such low-pH mineral assemblages. The occurrence of illite and mixed-layer illite-smectite close to the seafloor in the CHVF, rather than at depth as in the Broadlands system, is interpreted to reflect the higher pressures associated with submarine venting. This allows hotter fluids to be discharged before they boil, and thus minerals that are encountered mainly at depth in subaerial geothermal systems can form close to the seafloor.

  17. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  18. 30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. Pit crater formation and mass-wasting on West Mata volcano in 2010-2011 interpreted from repeat bathymetric surveys

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Dziak, R. P.; Rubin, K. H.; Martinez, F.; Crowhurst, P. V.

    2012-12-01

    A multibeam bathymetric resurvey of West Mata submarine volcano in the NE Lau basin in November 2011 has revealed major depth changes in the summit area where explosive boninite eruptions were observed by remotely operated vehicle in 2009. The bathymetry differencing between the December 2010 survey and the November 2011 survey, both made with the EM122 system on the R/V Kilo Moana, reveals some well-defined anomalies. There are two large negative anomalies at the summit and a lesser amplitude but broader area positive anomaly downslope on the eastern flank. The western negative anomaly is basically a deep pit of ~70-80 m right where the Hades eruptive vent was located in 2009. The larger, linear negative anomaly to the east appears to be a submarine slide that took off part of the preexisting summit ridge and a portion of the upper flank of the volcano and extends for more than a kilometer to the east. Downslope and east of that is an elongated area positive anomaly extending about kilometer downslope that likely represents the portion of the slide material that is within the resolution of the multibeam difference grids (~ 5-10 m). A smaller negative anomaly on the west rift zone is less certain because it's located on a steeper slope where differencing errors are higher. We also recorded water column acoustic scans over the volcano's summit using the ship's EM122 sonar. The water column data did not show obvious bubble plumes rising from the summit or any of the acoustic dropouts recorded during May 2010 multibeam surveys, the latter of which we interpreted as errors in the sound velocity profile induced by temperature/particle anomalies in the rising plume. Because we know that the volcano has cyclic activity and that gas bubbles would be relatively small at this depth (1200 m) and difficult to detect acoustically, our assessment is that the volcano appeared to have a reduced output of heat and gas during the one month observation period relative to the 2009-10 observations. We interpret the December 2010 - November 2011 bathymetric changes on West Mata as evidence of an event or events over a year (there was no significant change between May 2010 and December 2010) that culminated in magma withdrawal at the summit vents that in turn may have induced a major slump that removed part of the summit area. For the most clearly-defined area of change on the summit and eastern flank of the volcano, the amount of measurable negative change is approximately 2.5 times positive change. This "missing" material can be accounted for by some combination of broader dispersal downslope from the slump and/or radial pyroclastic dispersal from the summit and magma withdrawal. The effect of this event on the summit volcanic/hydrothermal system is not clear because we did not conduct any CTD casts in 2011 and the acoustic data from the water column is ambiguous. Part of the answer may lie in the data from the hydrophone near West Mata that was deployed in 2010 and is slated to be recovered in 2012. We will also be conducting a dive to the summit of West Mata with a remotely operated vehicle. These new data and observations will hopefully provide us the exact timeline for the event or events that occurred in 2011 and provide a view of the current state of the volcano.

  20. Explorations of Mariana Arc Volcanoes Reveal New Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Chadwick, W. W., Jr.; Lupton, J. E.; Resing, J. A.; Massoth, G. J.; Nakamura, K.

    2004-01-01

    Some 20,000 km of volcanic arcs, roughly one-third the length of the global mid-ocean ridge (MOR) system, rim the western Pacific Ocean. Compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated ~600 submarine arc volcanoes is only beginning [Ishibashi and Urabe, 1995; De Ronde et al., 2003]. To help alleviate this under-sampling, the R/V T. G. Thompson was used in early 2003 (9 February to 5 March) to conduct the first complete survey of hydrothermal activity along 1200 km of the Mariana intra-oceanic volcanic arc. This region includes both the Territory of Guam and the Commonwealth of the Northern Mariana Islands. The expedition mapped over 50 submarine volcanoes with stunning new clarity (Figures 1 and 2) and found active hydrothermal discharge at 12 sites, including the southern back-arc site. This includes eight new sites along the arc (West Rota, Northwest Rota, E. Diamante, Zealandia Bank, Maug Caldera, Ahyi, Daikoku, and Northwest Eifuku) and four sites of previously known hydrothermal activity (Seamount X, Esmeralda, Kasuga 2, and Nikko) (Figures 1 and 2). The mapping also fortuitously provided a ``before'' image of the submarine flanks of Anatahan Island, which had its first historical eruption on 10 May 2003 (Figures 1 and 3).

  1. Elysium Mons Volcano

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On July 4, 1998--the first anniversary of the Mars Pathfinder landing--Mars Global Surveyor's latest images were radioed to Earth with little fanfare. The images received on July 4, 1998, however, were very exciting because they included a rare crossing of the summit caldera of a major martian volcano. Elysium Mons is located at 25oN, 213oW, in the martian eastern hemisphere. Elysium Mons is one of three large volcanoes that occur on the Elysium Rise-- the others are Hecates Tholus (northeast of Elysium Mons) and Albor Tholus (southeast of Elysium Mons). The volcano rises about 12.5 kilometers (7.8 miles) above the surrounding plain, or about 16 kilometers (9.9 miles) above the martian datum-- the 'zero' elevation defined by average martian atmospheric pressure and the planet's radius.

    Elysium Mons was discovered by Mariner 9 in 1972. It differs in a number of ways from the familiar Olympus Mons and other large volcanoes in the Tharsis region. In particular, there are no obvious lava flows visible on the volcano's flanks. The lack of lava flows was apparent from the Mariner 9 images, but the new MOC high resolution image--obtained at 5.24 meters (17.2 feet) per pixel--illustrates that this is true even when viewed at higher spatial resolution.

    Elysium Mons has many craters on its surface. Some of these probably formed by meteor impact, but many show no ejecta pattern characteristic of meteor impact. Some of the craters are aligned in linear patterns that are radial to the summit caldera--these most likely formed by collapse as lava was withdrawn from beneath the surface, rather than by meteor impact. Other craters may have formed by explosive volcanism. Evidence for explosive volcanism on Mars has been very difficult to identify from previous Mars spacecraft images. This and other MOC data are being examined closely to better understand the nature and origin of volcanic features on Mars.

    The three MOC images, 40301 (red wide angle), 40302 (blue wide angle), and 40303 (high resolution, narrow angle) were obtained on Mars Global Surveyor's 403rd orbit around the planet around 9:58 - 10:05 p.m. PDT on July 2, 1998. The images were received and processed at Malin Space Science Systems (MSSS) around 4:00 p.m. PDT on July 4, 1998.

    This image: MOC image 40303, shown at 25% of its original size. North is approximately up, illumination is from the right. Resolution of picture shown here is 21 meters (69 feet) per pixel. Image was received with bright slopes saturated at DN=255.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. What controls earthquakes at Aleutian arc volcanoes?

    NASA Astrophysics Data System (ADS)

    Buurman, H.; West, M. E.; Cameron, C.

    2012-12-01

    Alaska has around 100 Holocene active volcanoes spread over 3000 km of the Aleutian arc, from Mount Wrangell in southcentral Alaska to Buldir Island in the western Aleutian islands. The range in volcanic styles across the arc is as great as the distance that it spans, and so too is the accompanying volcano seismicity. This study examines whether there are systematic influences on volcano seismicity across the Aleutian arc that can account for distinctive patterns in earthquake behaviour, such as the paucity of deep (>20 km depth) volcanic earthquakes in the Cook Inlet region compared to volcanic earthquakes at the westernmost portion of the Alaska Peninsula. We investigate whether physical factors such as volcano size, geographic location relative to the subduction zone, the regional setting - including the type of crust and the distance between the vent and the ocean - and the local angle and rate of subduction affect volcano seismicity. We use continuous seismic data recorded over a 10-year period at 47 volcanoes to characterise patterns in seismicity. Our analyses consider the number and locations of hypocenters, waveform characteristics such as frequency content and magnitude, and the frequency and style of volcanic unrest during the study period.

  3. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  4. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  5. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.

  6. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  7. Saga is largest commercial submarine ever

    SciTech Connect

    Not Available

    1985-05-01

    The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

  8. How volcano monitoring in New Zealand can contribute to a global volcano dataset: The GeoNet Project

    NASA Astrophysics Data System (ADS)

    Jolly, G. E.; Scott, B.

    2009-12-01

    Volcanism plays an important role in New Zealand. Much of the landscape of the central North Island owes its shape to volcanism, with the soils supporting forestry and farming economies, geothermal systems providing renewable electricity production and the spectacular landscape supporting tourism and adventure. However volcanism also has it disadvantages: eruptive activity brings physical damage and economic losses and, sometimes, tragically the loss of life. Historically, in New Zealand, volcanoes represent the largest single source of fatalities from natural disasters. To better mitigate the hazard from New Zealands volcanoes, a multidisciplinary approach is applied. In 2001 the NZ Earthquake Commission (EQC) commenced funding the GeoNet project, providing the first totally national modern geological hazard monitoring system in New Zealand. The GeoNet project is responsibly for monitoring and assessing all of the active volcanoes (and other geological hazards) in New Zealand. The volcano monitoring programme is integrated into the national seismograph and geodetic networks. The volcano monitoring covers active volcanic cones, resting calderas, volcanic fields, and submarine volcanoes. Monitoring techniques include volcano seismology, geodesy, gas and water chemistry, remote sensing and other geophysical techniques, producing a wide variety of data sets, with both temporal and spatial distribution. These data sets form the basis for detailed research to achieve in depth understanding of these volcanoes and will contribute to the global knowledge of volcanic processes. However to achieve this the data sets need to be accessible by a range of end users, so that they can be used to underpin fundamental research and applied hazard assessments. This presentation will outline the NZ data sets and the problems of presenting and sharing them globally.

  9. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  10. Soufriere Hills Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

    This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.

    Size: 40.5 x 40.5 km (25.1 x 25.1 miles) Location: 16.7 deg. North lat., 62.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: October 29, 2002

  11. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Goff, Fraser

    2005-05-01

    Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

  12. Seismic structure of Taal volcano

    NASA Astrophysics Data System (ADS)

    You, Shuei-Huei; Gung, Yuancheng; Konstantinou, Konstantinos I.; Lin, Cheng-Horng; Chang, Emmy T. Y.

    2010-05-01

    In order to investigate seismicity and tectonic structure under Taal volcano, Philippines, a temporary seismic array consisting of 8 stations was deployed in this area since March 2008. As a pioneer seismic study in this area, our first goal is to build a robust 1-D velocity model using local earthquakes. In the mean time, we also apply ambient noise cross-correlation technique to the continuous records, aiming to search for the potential volcanic structure perturbations. While we were trying to retrieve Empirical Green's functions from cross-correlation functions (CCF) of ambient noise, unexpected linear drifting of clock time are clearly identified by the gradual shifting of symmetric center of daily CCFs. The clock errors have been further confirmed by comparing earthquake signals from teleseismic events. The errors are corrected before further data processing. Over 1100 local events are recorded in the duration from March 2008 to November 2008. Phase pickings from about 450 events are used to invert for event locations and 1-D velocity model by using the standard packages HYPO71 and VELEST. The obtained 1-D velocity model of Taal volcano is lower than the global average (AK135) at the depths less than 10 km, and most events (~90%) are also located at this shallow depth range. Two groups of seismicity are noticed, with the major one clustered under the western shore of Taal lake ranging, and the other spread from Main Crater Lake to the eastern of Taal volcano complex.

  13. Origin and evolution of valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Baker, Victor R.

    1990-01-01

    Medium (1:2,000,000) and high (1:500,000) resolution Viking images were used to locate, map, and analyze drainage systems of six moderate-sized Martian volcanoes of various ages (including Ceraunius Tholus, Hecates Tholus, Alba Patera, Hadriaca Patera, Apollinaris Patera, and Tyrrhena Patera) in order to determine the origin and the evolution of valley forms on these volcanoes. The morphological characteristics of the drainage forms were compared to those of terrestrial volcanic valleys of known origin. On the basis of studies of valleys on the Hawaiian volcanoes, an evolutionary sequence for valleys on the Martian volcanoes is proposed.

  14. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  15. Iceland's Grmsvtn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajkull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grmsvtn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajkull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grmsvtn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  16. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  17. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another important concern is a suite of products from chemical reactions among oxidizing compounds with biological chemicals such as amines, thiols and carbonyls. SAMAP Meeting We (Armin and Joachim) attended the 2011 SAMAP conference in Taranto, Italy (10-14 October), which occurred just a few weeks after the IABR meeting in Parma, Italy (11-15 September 2011). It was held at the Officers' Club of the Taranto Naval Base under the patronage of the Italian navy; the local host was Lucio Ricciardi of the University of Insubria, Varese, Italy. At the 2011 SAMAP meeting, the theme was air-independent propulsion (AIP), meaning the capability of recharging the main batteries of the submarine without the need to surface. Only a few navies (e.g. US, UK, France, Russia, China) have historically had this capability using nuclear-powered submarines that can function underwater for extended periods of time (months). Most navies operate submarines with conventional diesel-electric propulsion, wherein diesel-powered generators charge battery banks which then drive an electric motor connected to the propeller. The batteries are charged while the boat is on the surface or during snorkelling, when the boat is submerged a few meters below the surface and a snorkel tube is extended to the surface. The period between battery charges can vary from several hours to one or two days depending on the power requirements and the nature of the mission. The process is necessary for breathing air revitalization (flushing out accumulated contaminants) and for the operation of the diesel engines. However, during this period the submarine is vulnerable to detection. Since the 1940s there have been various attempts to develop a power generation system that is independent of external air (AIP). To this end hydrogen peroxide was initially used and later liquid oxygen (LOX). Currently, most AIP submarines use fuel cell technology (LOX and hydrogen) to supplement the conventional diesel-electric system in order to extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce periodic ventilation of the submarine's interior and thus put a greater burden on the various maintenance systems. We note that the spaceflight community has similar issues; their energy production mechanisms are essentially air independent in that they rely almost entirely on photovoltaic arrays for electricity generation, with only emergency back-up power from alcohol fuel cells. In response to prolonged underwater submarine AIP operations, months-long spaceflight operations onboard the ISS and planning for future years-long missions to Mars, there has been an increasing awareness that bio-monitoring is an important factor for assessing the health and awareness states of the crewmembers. SAMAP researchers have been proposing various air and bio-monitoring instruments and methods in response to these needs. One of the most promising new methodologies is the non-invasive monitoring of exhaled breath. So, what do the IABR and SAMAP communities have in common? Inhalation toxicology. We are both concerned with contamination from the environment, either as a direct health threat or as a confounder for diagnostic assessments. For example, the exhaled breath from subjects in a contaminated and enclosed artificial environment (submarine or spacecraft) can serve as a model system and a source of contamination for their peers in a cleaner environment. In a similar way, exhaled anaesthetics can serve as a source of contamination in hospital/clinical settings, or exhalation of occupational exposures to tetrachloroethylene can impact family members at home. Instrumentation development. Both communities have similar needs for better, more specific and more sensitive instruments. Certainly, the analytical instruments to be used onboard submarines and spacecraft have severe restrictions on energy use, physical size and ease of operation. The medical and clinical communities have similar long-term plans for their analytical tools, in this case to take breath analysis away from the large complex instruments in the laboratory to the outpatient clinic and eventually to the home care market. Similarly, for environmental and public health research, it is always desirable to have easily operated and deployable instruments that can be taken to the field, rather than bringing numerous subjects to a central laboratory. Bio-monitoring. Although the SAMAP community is much more focused on air rather than breath measurement, this is changing because of the realization that longer deployment times (on submarines and spacecraft) will affect more than just acute health. To monitor longer-term health outcomes, there is a great deal of commonality between our respective research communities. Any instrument that monitors for contaminants in environmental air could certainly be adapted to breath analysis for assessing exposures and health state. Instruments that simultaneously provide rapid response and high specificity to a broad range of analytes, such as those based on optical spectroscopy and mass spectrometry, are particularly valued. The path forward We found the SAMAP meeting to be a worthwhile experience, largely from the discovery that another high-tech community exists with similar needs as the IABR community. Some collaboration could be fruitful for us; we suggest that the IABR community stay in contact with SAMAP in the future and attempt to attend each other's meetings if possible. SAMAP meetings tend to run on a two year cycle and so the next one has not yet been announced. We will let the IABR community know when the next meeting is scheduled, and will certainly make the SAMAP people aware of IABR meetings and the Journal of Breath Research. This article has been subjected to EPA Agency review and approved for publication. Statements do not necessarily reflect official Agency policy. PMID:22366644

  18. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  19. Cladistic analysis applied to the classification of volcanoes

    NASA Astrophysics Data System (ADS)

    Hone, D. W. E.; Mahony, S. H.; Sparks, R. S. J.; Martin, K. T.

    2007-11-01

    Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. ( Earth Planet Sci Lett 197:105 106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.

  20. Geomorphic evolution of the Piton des Neiges volcano (Réunion Island, Indian Ocean): Competition between volcanic construction and erosion since 1.4 Ma

    NASA Astrophysics Data System (ADS)

    Salvany, Tiffany; Lahitte, Pierre; Nativel, Pierre; Gillot, Pierre-Yves

    2012-01-01

    Réunion Island (Indian Ocean) is a volcanic complex whose eruptive history was dominated by the activity of two main edifices: Piton des Neiges (PN) and Piton de la Fournaise (PF) volcanoes. The tropical climate induces erosion processes that permanently compete with volcanic constructional processes. Exposed to the trade winds and associated heavy rainfalls, the northeastern part of the island exhibits the most complex morphological evolution. Geomorphological analysis, performed on a 50 m DEM and associated to new K-Ar ages has clarified the overall history of PN volcano. Each massif is assigned to one of the main building stages of the edifice. In addition, the arrangement of these different massifs reveals that the eruptive phases have led to successive relief inversions and successive excavations of large central depressions in the proximal area. As a result, the younger massifs are always located in more proximal parts of the volcano, the youngest being close to the edifice center. In distal areas, early lava flows were channeled into valleys incised along the massif boundaries, leading to a more complex geochronological organization. Quantitative study of the dissection of PN volcano allows us to propose a minimum eroded volume of 101 ± 44 and 105 ± 41 km 3 for the Mafate and Cilaos "Cirques" (depressions), respectively, during the last 180 kyr and a minimum average long-term erosion rate of 1.2 ± 0.4 km 3/ka. This leads us to estimate the removed volume during the whole history of PN volcano (> 1000 km 3) as equivalent to the volume of the deposits identified on the submarine flanks of Piton des Neiges volcano. Therefore, as regressive erosion appears to be the prevailing geomorphic process during the whole PN history, it questions the presence of major flank collapses younger than 1.4 Ma on this volcano. Erosion processes have largely been neglected in recent models, but our study emphasizes them as a key component of landscape development and a major process in the morphological evolution of Réunion Island that has to be fully integrated in future studies.

  1. Volcano Deformation and Modeling on Active Volcanoes in the Philippines from ALOS InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, Anieri M.; Amelung, Falk; Eco, Rodrigo

    2015-05-01

    Bulusan, Kanlaon, and Mayon volcanoes have erupted over the last decade, and Taal caldera showed signs of volcanic unrest within the same time range. Eruptions at these volcanoes are a threat to human life and infrastructure, having over 1,000,000 people living within 10 km from just these 4 volcanic centers. For this reason, volcano monitoring in the Philippines is of extreme importance. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA) to make an InSAR time series analysis over Bulusan, Kanlaon, Mayon, and Taal volcanoes for the 2007-2011 period. Time-dependent deformation was detected at all of the volcanoes. Deformation related to changes in pressurization of the volcanic systems was found on Taal caldera and Bulusan volcanoes, with best fitting Mogi sources located at half-space depths of 3.07 km and 0.5 km respectively.

  2. Correlation of submarine deposits and witness accounts of the 1952 Myojinsho submarine eruption, Izu-Bonin arc, by bathymetric survey

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Tani, K.; Maeno, F.; Fiske, R. S.; Shukuno, H.; Ito, K.; Shimoda, G.; Suzuki, Y. J.; Yoshida, T.; Taniguchi, H.

    2009-12-01

    The relationship between eruptive phenomena during the 1952 phreatomagmatic eruption and consequent deposits under seawater is discussed, on the basis of bathymetric survey of Myojinsho volcano, Izu-Bonin island arc (3255N, 14000E). We carried out some research cruises by the ship Natsushima (JAMSTEC) in 2006-2008. We used unmanned bathymetric vehicle, Hyperdolphin, for observation and sampling of the submarine deposit. Myojinsho volcano is an active post-caldera volcano that grew on the northeastern rim of Myojinsho caldera (8 x 6 km in diameter). There have been many reports of colored seawater, and we also recognized a bubbly column above the summit of Myojinsho (Myojin reef; ca. 50 m below sea level) during acoustic survey. The 1952 eruption was the latest eruption that formed and destroyed new island above sea level, and would have been the first submarine eruption to be recorded by good scientific standard. This eruption was firstly recognized at the middle of September, 1952, and explosions and dome growth have been documented for about 1 year till the middle of September, 1953. There are many time series color photographs of explosions so that we can evaluate these explosions quantitatively (Ossaka, 1991). These records indicate that most of the cocks tail jets are limited within the proximal area (ca. 500m) from the center of explosions, whereas the base surges and lateral steam clouds reach farther than ca. 500 m. During the bathymetric survey, we found several small lobes of pumice-rich deposits (< 1 m thick, several meter wide, several tens of meter long) on the sandy flat slope father than ca. 500 m from the summit of Myojinsho (deeper than ca. 300 m below sea level). Large pumices are concentrated at the front of each lobe, and the lobes become thinner toward the summit. On the other hand, the proximal deposit (<500 m from the summit) is characterized by scattered large angular blocky rocks or pumices. The largest blocks are as large as several meters in diameter. The compositional variations and textural features of these pumices and blocks are similar to those reported for samples obtained during the eruption. The correspondence of the lateral changes in witnessed phenomena (cocks tail jets to base surges) and in depositional features (scattered blocks to pumice lobes) would indicate that (1) the lobes of pumices are derived either by base surges or by lateral steam clouds, and that (2) large angular blocks are derived by cocks tail jets during explosions or dome collapse occurred at the end of the eruption.

  3. Reference PMHS Sled Tests to Assess Submarining.

    PubMed

    Uriot, Jrme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard

    2015-11-01

    Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor. PMID:26660745

  4. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  5. Segmentation and Tracking of Anticyclonic Eddies during a Submarine Volcanic Eruption Using Ocean Colour Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  6. Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangr, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  7. Flank tectonics of Martian volcanoes

    SciTech Connect

    Thomas, P.J. ); Squyres, S.W. ); Carr, M.H. )

    1990-08-30

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are {approximately}250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults.

  8. Seafloor geodetic reference station branched from submarine cable

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

    2008-12-01

    We launched a project supported by the Japan Society for the Science Promotion as the Grants in Aid for Scientific Research. In this project, we are aiming at developing new-generation seafloor geodetic observation system that conquers difficulties inherent with the current system. Central idea of this project is to utilize techniques of underwater robot (Autonomous Underwater Vehicle) and submarine cable to make measurements in place of using the research vessels. Combination of underwater robot and submarine cable make it possible to provide permanent seafloor reference point, to conduct the observation with selecting favorable condition of sea and GPS satellite distributions, to make much more frequent observations and to enable flexible planning of observation in response to sudden geodetic events. Prototype of the on-board system which should be installed on an AUV was finished. Several trials had been done with the system in the sea. The results from them showed that the new on-board system will reach to the higher level in performance than the current system in the near future. And then we started to dedicate ourselves mainly to developing new seafloor transponder. The current seafloor transponder system is stand-alone one which runs on internal batteries. We expect five to ten years for the lifetime of the current seafloor transponder, even though it depends on how often we perform measurements with the transponder. Replacement of the seafloor transponder will be needed when we target seafloor crustal deformation that has long time cycle more than several decades. Continuity of seafloor geodetic observation will be stopped. New seafloor transponder which we have been developing is one which can be connected to a submarine cable by wet-mate connectors. Power is supplied through submarine cable and then the new seafloor transponder will be a permanent reference station for seafloor geodetic survey. Submarine cable can supply accurate GPS time (1pps) and clock to the transponder as well as power. The new cable transponder can realize acoustic ranging between sea surface and bottom with much higher accuracy than the current system. Submarine cable system off Toyohashi (Tokai-SCANNER) in central Japan is located on the source region of the huge repeated earthquakes. It is under the control of the JAMSTEC and used for long-term geophysical monitoring. This cable is one to which we are planning to connect newly developed seafloor transponder. The cruise of JAMSTEC"fS ROV "KAIKO 7000 II" and R/V "KAIREI" is scheduled to deploy and connect the seafloor transponder to the Tokai-SCANNER cable system from Sep. 18, 2008. We will report the overview of the cable transponder system and its deployment procedure in this presentation.

  9. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: October 21, 2003

  10. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lsekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. PMID:17051217

  11. The ecology and distribution of benthic foraminifera at the Hkon Mosby mud volcano (SW Barents Sea slope)

    NASA Astrophysics Data System (ADS)

    Wollenburg, J. E.; Mackensen, A.

    2009-08-01

    To investigate a possible influence of submarine methane seepage on benthic foraminiferal communities, Rose Bengal stained ("live") and empty tests of benthic foraminifera were studied from the sediment surface down to 15 cm sub-bottom depth of 12 sites at the Hkon Mosby mud volcano (HMMV). In addition, one reference site well away from the seep sites, but from similar water depths and the same general hydrographic setting was occupied for comparison. The HMMV is located at 1265 m water depth on the SW Barents Sea continental slope. Distinct living foraminiferal associations at the HMMV are linked to specific sedimentary, microbial, and macrofaunal habitats. In the center of the crater, and in crater areas completely covered by bacterial mats, Cassidulina reniforme is the only, albeit rare, living species. Below the top few millimeters, sediments are anoxic and devoid of living specimens. At the rim of the mud volcano, at sites densely populated by pogonophoran tube worms, three benthic foraminiferal associations are found; (i) a Fontbotia wuellerstorfi-Lobatula lobatula association living attached to the upper parts of pogonophoran tubes, which protrude into oxic water, (ii) a diverse Cassidulina neoteretis association populating dysoxic sediments of the surface centimeter, and (iii) a species-poor Bolivina pseudopunctata association colonizing the subsurface sediments down to four centimeters. Generally, we did not find endemic or seep indicative species or associations at the HMMV. However, the HMMV live faunas dominated by B. pseudopunctata are not found at the reference site nor are they described from comparable water depths and environments without gas seepages from the Norwegian-Greenland Seas. In the center and outer rim of the mud volcano, a C. neoteretis-Reophax guttifer dead association, similar to the one at the reference site, characterizes an assemblage of strongly corroded and partly displaced tests. At bacterial mat sites, a C. reniforme dead association corresponds to the living one. Thus both the living and the dead associations are indicative of a specific bacterial mat environment at the HMMV.

  12. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  13. Geochemical monitoring network at El Hierro (Canary Islands) before and during 2011 submarine eruption

    NASA Astrophysics Data System (ADS)

    Torres, P. A.; Meletlidis, S.; Luengo-Oroz, N.; Moure, D.; Rodero, C.; Villasante-Marcos, V.; Abella, R.; Lpez, C.; Blanco, M. J.

    2012-04-01

    Since 17 July 2011 an important increase in the number of seismic events located in El Hierro (Canary Islands, Spain) was detected by the seismic network of the Instituto Geogrfico Nacional (I.G.N.). This increment was interpreted as a precursory signal of a potential eruption, which in fact took place three months later (10th October 2011). In order to improve and complete the volcano monitoring network several geochemical parameters were measured since the beginning of the anomalous seismic activity. Measurements of CO2 diffuse flux through the soil were carried out in the major part of the island: the central zone, El Golfo (northern area) and the zone delimitated by the western rift. More than 450 measurements were accomplished during July, August, and September 2011. Analysis of the data revealed the existence of a spatial anomaly with relative high CO2 diffuse flux in the southwest part of the El Golfo area, close to the zone where the anomalous seismicity was located. This abnormal flux, almost aligned with the western limit of the seismic swarm, was not detected again in measurements accomplished on September in the same area. Between July and August, four geochemical stations were installed in three sub-horizontal galleries and in one well. Air and soil temperature were measured in all galleries and air 222Rn concentration was determined in the four stations. Two of the galleries were also equipped with a sensor in order to obtain measurements of CO2 concentration in the air. The sampling period for each parameter was established in ten minutes. Anomalous high 222Rn concentrations were detected in the station located in the well, apparently related to increases in the seismic accumulated energy and the GPS deformation rates. Taking into account the location of the earthquake epicentres and in order to study the evolution over the time of some physicochemical parameters of groundwater, four wells in the El Golfo area were regularly sampled since July 2011. Temperature, pH, electric conductivity and total dissolved solids were periodically measured. Water samples were also collected in order to determine major and trace elements. In situ measurements did not show any significant changes that could be related directly to the volcanic-seismic activity. However, the highest water temperature and the lowest pH value were obtained in the well located closer to the zone where the maximum values of CO2 diffuse flux were detected. Water samples were also taken on the stain generated by the submarine eruption and the nearby area since the beginning of the eruptive process. Chemical analysis revealed that seawater directly affected by the volcanic emissions, experimented an important increase in the concentration of several heavy metals.

  14. Identification and Implications of a Submarine Monogenetic Field in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.

    2012-12-01

    Short-lived, volcanism at discrete, closely spaced volcanic cones and low lying lava flows in the NE corner of the Lau backarc basin shares many characteristics with subaerial monogenetic fields. We use geological, morphological, petrological, and geochemical observations of this volcanic field made on five research expeditions since 2008, along with comparisons to well-known terrestrial monogenetic fields to assess whether the Mata volcanic group is best thought of as a submarine mongenetic volcanic field (a term rarely, if ever, applied to submarine settings). The volcanism has constructed a series of 9 small, very closely spaced, hydrothermally-active, elongate volcanic edifices near the east-west portion of the Tonga Trench, which are 1.5 to 7.5 km apart (summit to summit) and are 450 to 1400m tall. Only one of the volcanoes (West Mata) is currently active, erupting boninite pillow lavas along with explosively-generated volcaniclastic sediments. The ages of the youngest volcanics on the other Mata volcanoes are not yet determined but most are hydrothermally active and are surfaced with relatively young lava flows without significant sediment cover. The volcanoes are all formed predominantly of low effusion rate pillow lavas with variable amounts of pyroclastic deposits mantling the constructional topography, suggesting relatively long-lived volcanism (ca 100-200 yrs) at each center, similar to large lava shields in Iceland (e.g., skjaldbreidur). Detailed stratigraphic observations are as yet only available for one volcano (with more to come during an ROV field campaign in Sept. 2012). Bottom photographs provide no clear evidence for long-lived hiatuses at any of these cones and bathymetric data do not intricate overlapping constructional structures, resurgent construction, or large scale collapse or mass wasting structures, as might be expected for a protracted, many-eruption volcanic history at any single volcano. However, the oldest edifice does show evidence of post-volcanic tectonism and several of the smallest volcanoes appear to be built on a basement of either failed earlier volcanoes or rifted lithosphere. All but one of the cones are built of broadly boninitic volcanic products (the other is meimikite), yet major and trace element compositions are distinct enough (Glancy et al., this volume) to imply that each is fed by separate, poorly mixed, small magma batches, much like the MGVF in central western Mexico. The northern portion of the Lau Basin is the fastest opening backarc on Earth; this rapid extension combined with thin lithosphere, and episodic and dispersed magma supply from the nearby subduction system, appears to promote conditions favoring dispersed monogenetic volcanism over longer lived volcanic edifices or ridges.erspective view of the Matas from the west

  15. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  16. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  17. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  18. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  19. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  20. 32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. OCTOBER 3, 1932. COMPLETION OF ERECTION OF STEELWORK FOR ELEVATOR. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  1. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  2. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  3. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  4. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  5. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  6. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  7. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bdvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mrdalsjkull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jkulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajkull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mrdalsjkull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mrdalsjkull near the glacial stream of Hafursarjkull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes in seismicity arising from magma movement in the crust are characteristic properties of almost all active volcanoes. Meanwhile the study of the seismicity and propagation of elastic waves through the earth have the potential to give us important information about the internal structure of volcanoes. As very little is known of the 3D structure of Katla volcano and in order to define the 3D velocity structure and the geometry of the possible magma chamber, both P and S-wave travel time data from the most active period of seismicity (July-November 2011) are inverted simultaneously for both hypocenter locations and 3D velocity structure by using Local Earthquake Tomography (LET).

  8. Estimating the empirical probability of submarine landslide occurrence

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  9. Southeastern Australia's Submarine Landslides : a Model for Their Occurence

    NASA Astrophysics Data System (ADS)

    Hubble, T.; Clarke, S. L.; Yu, P.; Airey, D.; Keene, J.

    2012-12-01

    Recent work has identified an extensive region of the eastern Australian Continental Margin offshore Northern NSW and Southern Queensland which has experienced intense submarine erosion dominated by large-scale, submarine-landsliding that has removed enormous amounts of Neogene to recent sediment from the upper and middle continental slope. Preliminary findings demonstrate that i) some upper slope slides are geologically very young (< 20 kA), ii) the most recent slides occurred in relatively shallow depths and were volumetrically large enough (~3 cu km) to have been capable of generating damaging tsunami if shed as single masses and iii) the mid-slope slides are comprised of compacted Neogene sediments; iv) some of the mid-slope slide scars are huge (several 10's of cu km); and v) some of the mid-slope slide masses probably remained largely intact during sliding, potentially generated megatsunami, and are suspected to located on the abyssal Tasman Sea plain adjacent to the margin. A conceptual model that accounts for the apparent onset of sliding approximately 15 million years ago and the continuing deconstruction of the margin has been developed. This model posits that erosion of material from the middle and lower slope by deep, cold-water, ocean currents originating in Antartica occurred contemporaneously with an increase in the frequency and intensity of earthquakes due to increasing tectonic interaction between Australia and Asia. These two processes acted together to initiate and then sustain the submarine landsliding.

  10. Recurrence Periods of Earthquake-Induced Submarine Landslides

    NASA Astrophysics Data System (ADS)

    Rodrguez-Ochoa, R.; Nadim, F.

    2014-12-01

    Submarine landslides represent a constant threat to offshore installations deployed along the continental slope, therefore the estimation of the recurrence period of slope failures is a key parameter to assess the risk associated with potential massive transport of soil sediments. The initiation of submarine slope failures may be due to long-term triggers like the formation of weak layers, sedimentation rates and fault displacements, as well as short-term triggers like earthquakes and storm waves, or a combination of both of them. The recurrence period of submarine slope failures can be linked to the recurrence period of their triggers. When the main trigger of slope failure is an earthquake, it is possible to estimate numerically the probability density of the return period for slope failure by using the seismic hazard curve and a mechanical model for earthquake-triggered slope instability. This paper presents a procedure to calculate the conditional probability of slope failure with the maximum probability density (peak) to obtain the return period of the earthquake event with the largest probability of inducing a slope failure. The conditional probability corresponding to the maximum probability density is estimated after obtaining several conditional cumulative probability points for different earthquake return periods, and matching a cumulative distribution function (CDF) to those points; finally, the maximum probability density of the corresponding probability density function (PDF) is obtained. The suggested analytical procedure is applied and compared with available geological evidence in a site located in the Gulf of Mexico.

  11. Fuel-cell-propelled submarine-tanker-system study

    SciTech Connect

    Court, K E; Kumm, W H; O'Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  12. Shiveluch Volcano, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.

    Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.

    The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.

    The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude.

    ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

  13. Regional impact of submarine canyons during seasonal upwelling

    NASA Astrophysics Data System (ADS)

    Connolly, Thomas P.; Hickey, Barbara M.

    2014-02-01

    A numerical model of the northern California Current System along the coasts of Washington and British Columbia is used to quantify the impact of submarine canyons on upwelling from the continental slope onto the shelf. Comparisons with an extensive set of observations show that the model adequately represents the seasonal development of near-bottom density, as well as along-shelf currents that are critical in governing shelf-slope exchange. Additional model runs with simplified coastlines and bathymetry are used to isolate the effects of submarine canyons. Near submarine canyons, equatorward flow over the outer shelf is correlated with dense water at canyon heads and subsequent formation of closed cyclonic eddies, which are both associated with cross-shelf ageostrophic forces. Lagrangian particles tracked from the slope to midshelf show that canyons are associated with upwelling from depths of 140-260 m. Source depths for upwelling are shallower than 150 m at locations away from canyons and in a model run with bathymetry that is uniform in the along-shelf direction. Water upwelled through canyons is more likely to be found near the bottom over the shelf. Onshore fluxes of relatively saline water through submarine canyons are large enough to increase volume-averaged salinity over the shelf by 0.1-0.2 psu during the early part of the upwelling season. The nitrate input from the slope to the Washington shelf associated with canyons is estimated to be 30-60% of that upwelled to the euphotic zone by local wind-driven upwelling.

  14. The seismicity of Marapi volcano, West Sumatra.

    NASA Astrophysics Data System (ADS)

    D'Auria, L.

    2009-04-01

    Marapi is one of the active volcanoes in West Sumatra. It is a stratovolcano with an edifice that is elongated in the ENE-WSW direction. Its elevation is about 2,900 m a.s.l. The summit area is characterized by a caldera that contains some active craters aligned along the ENE-WSW direction. The Marapi volcano is an attractive region for tourists and hosts many small communities its surrounding areas. The recent history of Mt. Marapi is characterized by explosive activity at the summit craters. No lava flows have passed the rim of the summit caldera in recent times. The last eruption occurred on August 5, 2004, and consisted of moderate explosive activity from the central crater. In 1975 an eruption with magmatic and phreatic explosive phases and mudflows and lahars occurred that caused fatalities in the surrounding areas. Since 1980 other eruptions have occurred at Marapi volcano. Even if the explosive intensities of those eruptions have been small to moderate, in some cases, there were fatalities. A cooperation project started between Italy and Indonesia (COVIN) for the monitoring of volcanoes in West Sumatra. In the context of this project a monitoring centre has been set up at the Bukittinggi Observatory and a seismological monitoring system for Marapi volcano has been realized. This system is based on a broadband seismic network including 4 three-component stations. The data acquired by the broadband network of Marapi volcano are continuous recordings of the seismic signals starting from 19/10/2006. Volcano-Tectonic and Long Period events of Marapi volcano together with regional and teleseismic earthquakes are recorded. Several events of high magnitude located at short distances from the network were also recorded such as on March 6, 2007, when two events of Magnitudes Mw 6.4 and 6.3 were recorded with the epicentres near the Marapi volcano. During the following days, there was a sequence of hundreds of aftershocks. The preliminary analysis of the seismicity of the Marapi Volcano indicates that the broadband network installed under the joint Italy-Indonesia project provides great help for its study and for the monitoring of this active volcanic and seismogenic area.

  15. Complete data listings for CSEM soundings on Kilauea Volcano, Hawaii

    SciTech Connect

    Kauahikaua, J.; Jackson, D.B.; Zablocki, C.J.

    1983-01-01

    This document contains complete data from a controlled-source electromagnetic (CSEM) sounding/mapping project at Kilauea volcano, Hawaii. The data were obtained at 46 locations about a fixed-location, horizontal, polygonal loop source in the summit area of the volcano. The data consist of magnetic field amplitudes and phases at excitation frequencies between 0.04 and 8 Hz. The vector components were measured in a cylindrical coordinate system centered on the loop source. 5 references.

  16. Short and Long Term Volcano Instability Studies at Concepcion Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Saballos, Jose A.

    Concepcion is the most active composite volcano in Nicaragua, and is located on Ometepe Island, within Lake Nicaragua. Moderate to small volcanic explosions with a volcanic explosivity index (VEI) of 1-2 have been characteristic of this volcano during the last four decades. Although its current activity is not violent, its volcanic deposits reveal stages of violent activity involving Plinian and sub-Plinian eruptions that deposited vast amounts of volcanic tephra in the Atlantic Ocean. These observations, together with the 31,000 people living on the island, make Concepcion volcano an important target for volcanological research. My research focuses on the investigation of the stability of the volcano edifice of Concepcion, using geophysical data such as gravity, geodetic global positioning system (GPS), sulphur dioxide (SO2) flux, real-time seismic amplitude (RSAM), and satellite remotely-sensed data. The integration of these data sets provides information about the short-term behavior of Concepcion, and some insights into the volcano's long-term behavior. This study has provided, for the first time, information about the shallow dynamics of Concepcion on time scales of days to weeks. I furnish evidence that this volcano is not gravitationally spreading in a continuous fashion as previously thought, that its bulk average density is comparable to that of a pile of gravel, that the volcano edifice is composed of two major distinctive lithologies, that the deformation field around the volcano is recoverable in a matter of days, and that the deformation source is located in the shallow crust. This source is also degassing through the relatively open magmatic conduit. There are, however, several remaining questions. Although the volcano is not spreading continuously there is the possibility that gravitational spreading may be taking place in a stick-slip fashion. This has important implications for slope stability of the volcano, and the associated hazards. The factors influencing the long term slope stability of the volcano are still not fully resolved, but internal volcanic processes and anthropogenic disturbances appear to be the major factors.

  17. Tephra layers: A controlling factor on submarine translational sliding?

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Kutterolf, Steffen; Hensen, Christian; Moerz, Tobias; Brueckmann, Warner

    2010-05-01

    Submarine slope failures occur at all continental margins, but the processes generating different mass wasting phenomena remain poorly understood. Multibeam bathymetry mapping of the Middle America Trench reveals numerous continental slope failures of different dimensions and origin. For example, large rotational slumps have been interpreted to be caused by slope collapse in the wake of subducting seamounts. In contrast, the mechanisms generating translational slides have not yet been described. Lithology, shear strength measurements, density, and pore water alkalinity from a sediment core across a slide plane indicate that a few centimeters thick intercalated volcanic tephra layer marks the detachment surface. The ash layer can be correlated to the San Antonio tephra, emplaced by the 6000 year old caldera-forming eruption from Masaya-Caldera, Nicaragua. The distal deposits of this eruption are widespread along the continental slope and ocean plate offshore Nicaragua. Grain size measurements permit us to estimate the reconstruction of the original ash layer thickness at the investigated slide. Direct shear test experiments on Middle American ashes show a high volume reduction during shearing. This indicates that marine tephra layers have the highest hydraulic conductivity of the different types of slope sediment, enabling significant volume reduction to take place under undrained conditions. This makes ash layers mechanically distinct within slope sediment sequences. Here we propose a mechanism by which ash layers may become weak planes that promote translational sliding. The mechanism implies that ground shaking by large earthquakes induces rearrangement of ash shards causing their compaction (volume reduction) and produces a rapid accumulation of water in the upper part of the layer that is capped by impermeable clay. The water-rich veneer abruptly reduces shear strength, creating a detachment plane for translational sliding. Tephra layers might act as slide detachment planes at convergent margins of subducting zones, at submarine slopes of volcanic islands, and at submerged volcano slopes in lakes.

  18. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  19. An Overview of Geodetic Volcano Research in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  20. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin

    USGS Publications Warehouse

    Lee, H.J.

    2009-01-01

    Submarine landslides are distributed unevenly both in space and time. Spatially, they occur most commonly in fjords, active river deltas, submarine canyon-fan systems, the open continental slope and on the flanks of oceanic volcanic islands. Temporally, they are influenced by the size, location, and sedimentology of migrating depocenters, changes in seafloor pressures and temperatures, variations in seismicity and volcanic activity, and changes in groundwater flow conditions. The dominant factor influencing the timing of submarine landslide occurrence is glaciation. A review of known ages of submarine landslides along the margins of the Atlantic Ocean, augmented by a few ages from other submarine locations shows a relatively even distribution of large landslides with time from the last glacial maximum until about five thousand years after the end of glaciation. During the past 5000??yr, the frequency of occurrence is less by a factor of 1.7 to 3.5 than during or shortly after the last glacial/deglaciation period. Such an association likely exists because of the formation of thick deposits of sediment on the upper continental slope during glacial periods and increased seismicity caused by isostatic readjustment during and following deglaciation. Hydrate dissociation may play a role, as suggested previously in the literature, but the connection is unclear.

  1. Chiliques volcano, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.

    The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.

    Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.

    These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

  2. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  3. Vent of Sand Volcano

    USGS Multimedia Gallery

    Vent of sand volcano produced by liquefaction is about 4 ft across in strawberry field near Watsonville. Strip spanning vent is conduit for drip irrigation system. Furrow spacing is about 1.2 m (4 ft) on center....

  4. CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES

    SciTech Connect

    Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

    2003-02-27

    The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

  5. Sediment wave-forms and modes of construction on Mariana (and other) intra-oceanic arc volcanoes

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Stern, R. J.; Chadwick, B.; Tamura, Y.; Merle, S. G.

    2014-12-01

    Most intra-oceanic arc volcanoes are composite edifices constructed primarily in the submarine environment, built up by volcaniclastic sediments derived from hydroclastic and pyroclastic processes at/near the summits, punctuated by occasional lava flows and intrusions. Of particular interest in the mode of construction are extensive fields of large sediment waveforms (SWFs), up to >2 km wavelength and >100 m amplitude, on the submarine flanks of many islands and seamounts within the Mariana and other intra-oceanic subduction zones. These SWFs are composed of coarse-grained volcaniclastic sediments derived from the (approximate) point source summits of the island and submarine volcanoes. SWFs around some seamounts and islands, particularly those with large calderas, define quasi-concentric ring-like ridges, suggesting formation by density currents generated during submarine and island eruptions, and preserved for 10s of thousands of years. Some types of SWFs appear to have formed by progressive slumping of oversteepened slopes without fluidization. General conclusions about the origin of SWFs are hampered by the dearth of samples and high resolution seismic reflection profiles. However, large coherent slumps and debris avalanches documented for some ocean islands (e.g., Hawaiian Islands) are (mostly) are not as evident on the composite arc volcanoes. Submarine Mariana arc (and other intra-oceanic arc) volcanism probably spread volcaniclastic material primarily during submarine "Neptunian" eruptions and by progressive slides and other sediment flow rather than by catastrophic flank collapse. These processes could mitigate the Hawaiian-style of tsumami hazard, but Krakatoa-type tsunami hazards exist.

  6. Living with volcanoes: The sustainable livelihoods approach for volcano-related opportunities

    NASA Astrophysics Data System (ADS)

    Kelman, Ilan; Mather, Tamsin A.

    2008-05-01

    Although the negative impacts of volcanism on society are well documented and accepted, many possible benefits from volcanoes are not always fully considered. This paper provides suggestions for understanding and implementing volcanoes' benefits by suggesting further application of existing risk management frameworks to volcanology: living with risk by using the sustainable livelihoods approach at the local level. This paper presents an overview bringing established paradigms into volcanic risk management where they are sometimes absent despite their advantages. The sustainable livelihoods approach is important in its application to volcanic scenarios in four ways: Understanding, communicating, and managing vulnerability and risk and local perceptions of vulnerability and risk beyond immediate threats to life. Maximising the benefits to communities of their volcanic environment, especially during quiescent periods, without increasing vulnerability. Managing crises. Managing reconstruction and resettlement after a crisis. An overview of case studies is provided showing how volcanic opportunities could be used for sustainable livelihoods. The approach of living with volcanic risks and benefits could be adopted and implemented as an integral part of changing perceptions of volcanoes and of managing volcano-related crisis and non-crisis situations. However, the sustainable livelihoods approach is not a panacea, so limitations are discussed along with why living near a volcano cannot solve all livelihood concerns. In particular, livelihood diversity and livelihood transferability to other locations assists in living with volcanoes.

  7. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  8. 3D Onshore-Offshore Seismic Investigation of Kilauea Volcano, HI

    NASA Astrophysics Data System (ADS)

    Park, J.; Peters, L.; Morgan, J. K.; Zelt, C. A.; Benesh, N.; Okubo, P. G.

    2003-12-01

    Kilauea volcano is one of the most active oceanic volcanoes. The interplay of intrusion, eruption, volcanic spreading and slope failure defines a dynamic system which is largely hidden from view. Earthquake data, recorded by the onland seismic stations, have illuminated the internal structure of Kilauea's subaerial edifice. Marine reflection profiles have provided insight into its submarine south flank. However, there are few constraints to link the onshore-offshore regions, nor to resolve the deep structure of the submarine edifice. Our study attempts to image the shallow and deep crustal structure of Kilauea volcano and adjacent regions to better understand this dynamic volcanic system. In 1998, a marine seismic survey conducted on the R/V Maurice Ewing generated ~2,000 km of shots, which were recorded by the HVO-USGS Seismic Network on the Island of Hawaii. This arrangement of receivers and active seismic sources yields a unique set of ray paths that cover the onshore and offshore region of Kilauea's south flank. The data recorded at about 30 onland stations have high enough quality to permit arrivals to be picked to more than 100 km offset. As an initial test of data quality, we compared observed traveltimes to those predicted through 3D forward modeling of several simple velocity models developed for Kilauea and surrounding volcanoes, yielding very good fits. Using these initial velocity volumes as starting models, we conducted 3D tomographic inversions of observed first arrivals. Our preliminary results reproduce high velocity anomalies correlated with intrusive complexes that have been previously recognized on-land beneath Mauna Loa and Kilauea summits and rift zones, and extend these observations into the offshore regions. Low velocity zones are detected beneath the upper submarine flanks of Mauna Loa and Kilauea, suggestive of thick packages of volcaniclastic sediment or landslide debris. Further analysis is expected to better resolve the detailed internal structure of Kilauea volcano and surrounding areas.

  9. Microbiological and Geochemical Characterization of the Deep Subsurface Environment: Kumano Mud Volcano, Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Ijiri, A.; Morono, Y.; Orphan, V. J.; Inagaki, F.

    2013-12-01

    Submarine mud volcanoes play an important environmental role by delivering deep-sourced fluids, elements, and hydrocarbons to the seafloor. These fluxes in turn support chemosynthetic benthic communities. However, due to difficulty in accessing the deep biosphere most mud volcano samples only represent the top one to several meters below seafloor (mbsf) obtainable by remotely operated vehicle (ROV) or gravity cores. Thus, the geochemical and microbiological conditions, as well as vertical homogeneity, deep within mud volcanoes remains poorly constrained. In 2012, using the deep-sea drilling vessel Chikyu, we drilled one of the most active submarine mud volcanoes in the Kumano forearc basin of the Nankai Trough, off the Kii Peninsula of Japan (3367.581'N, 13656.8085'E: 1,986.7 m in water depth). Cores were obtained down to 200 mbsf. Cell counts indicate the presence of microorganisms at relatively low abundance (less than 105 cells/cm3) throughout the cored depth. Molecular analyses reveal vertical heterogeneity in the microbial community composition, including specific depth horizons harboring putative methanogenic and methanotrophic phylotypes at >100 mbsf. Geochemical profiles indicate the potential for microbial activity and rate measurements with radiotracers revealed active homoacetogenesis rates that were 2-3 orders of magnitude higher than rates of homo- and acetoclastic methanogenesis. To assess active autotrophic, methanotrophic and heterotrophic populations, 13C- and 15N-amendment experiments with sediment samples collected from 15 and 115 mbsf were established and single cell stable isotope analyses with nanoSIMS are in progress. Our samples and analyses represent a unique observation of a subseafloor setting different from previously explored stratified sediments on continental margins and will allow further understanding of how submarine mud volcanoes contribute to geochemical and microbiological fluxes into the surface biosphere.

  10. Personality characteristics of successful Navy submarine personnel.

    PubMed

    Moes, G S; Lall, R; Johnson, W B

    1996-04-01

    This study evaluated the personality characteristics of senior enlisted and occupationally successful Navy submarine personnel. One hundred subjects completed the Schedule for Nonadaptive and Adaptive Personality (SNAP). Results indicated that the traits of detachment, propriety, and workaholism were most descriptive of the sample. Thirty-seven percent met SNAP criteria for a personality disorder, typically antisocial, obsessive-compulsive, or avoidant. The results are discussed in terms of adaptation to environmental demands aboard submarines. Suggestions for further research are offered. PMID:8935516

  11. Seismic Structure Beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    You, S. H.; Gung, Y.; Konstantinou, K. I.; Lin, C. H.

    2014-12-01

    The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous "Decade Volcanoes" in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the northwestern shore of Taal Lake. Such magmatic signatures have never been reported in previous studies, suggesting that new eruption centers might be forming in places away from the historical craters on Taal Volcano Island.

  12. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  13. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and K?lauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  14. [Tuberculosis in the crew of a submarine].

    PubMed

    Suzuki, S; Nakabayashi, K; Ohkouchi, H; Hatada, J; Kawaguchi, S; Sakai, M; Sasaki, N; Ito, A

    1997-01-01

    We report the apparent spread of mycobacterial tuberculosis among a submarine crew from a crew member with a low grade of infectivity. The air-conditioning system of submarines requires completely closed recirculation of ambient air. If a person with pulmonary tuberculosis were in a submarine, one would expect to find a high incidence of tuberculosis among others on the ship. The index patient was a 35-year-old member of a submarine crew. An abnormal shadow was found on a chest roentgenogram during an annual medical checkup, and he was hospitalized for examination. Acid-fast bacilli were found in his gastric secretions, but he did not complain of coughing and no tuberculosis bacilli were found in his sputum. All members of the submarine crew were examined, and some who were on board with the index patient reacted strongly. Because those who were also suspected to be infected were usually not close to the index patient's living quarters and had little contact with the patient in the submarine, we strongly suspect that the closed ventilation system contributed to the spread of the infection. Control of tuberculosis in a sealed environment requires detailed investigation of the environment and completion of chemoprophylaxis. Adequate ventilation and ultraviolet radiation are more effective than decontamination with disinfectants for the control of infectious droplet nuclei. Ships should be equipped with those systems. PMID:9071158

  15. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Lvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible. PMID:16844646

  16. Explosion craters associated with shallow submarine gas venting off Panarea island, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Hannington, Mark D.; Anzidei, Marco; Esposito, Alessandra; Giordano, Guido; Garbe-Schnberg, Dieter; Augustin, Nico; Melchert, Bernd; Hocking, Mike

    2012-11-01

    Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100 m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000 years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70 Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.

  17. Exterior view of submarine with survey crew posed in front. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of submarine with survey crew posed in front. From left to right: Todd Croteau - U.S. National Park Service, Joshua Price - U.S. Navy, Bert Ho - National Oceanic and Atmospheric Administration, Michael McCarthy - Western Australia Maritime Museum, Larry Murphy - U.S. National Park Service, Don Johnson- University of Nebraska Engineering School, James Delgado- Institute for Nautical Archeology, Jacinto Ahmendra - Government of Panama. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  18. Hydraulic and Morphodynamic Characteristics of Submarine Channel Confluences

    NASA Astrophysics Data System (ADS)

    Ismail, H.; Viparelli, E.; Ezz, H.; Imran, J.

    2013-12-01

    Submarine channel systems are receiving increased attention recently for their potential in transporting and depositing hydrocarbons via turbidity currents into the deep ocean. In order to better predict the locations of hydrocarbon reserves, a more complete understanding of the hydraulic behavior of flows within the channels is necessary. Past field observations have shown that submarine channels have straight and meandering reaches, along with junctions in channel systems; flows in the submarine environment (i.e. density currents) may propagate as a single pulse or as a sustained flow over a prolonged period. This work aims to further the understanding of submarine channel systems by focusing on the hydraulic behavior of submarine channel confluences due to both sudden release (i.e. pulse events) and sustained flows. The associated morphodynamic consequences at and near the confluence are also assessed as they relate to the observed hydraulic conditions. Observational goals include comparisons to heavily studied characteristics of subaerial river channel confluences. These include flow separation zones, helical flow cells, existence of vertical shear layers, avalanche faces upstream of the junction, and deep central scours in the junction. For this investigation, a physical model was built to simulate a 45 degree submarine channel junction with an erodible bed in which two fully conservative density currents are released in each upstream reach and allowed to collide before creating a single combined current in the downstream reach. The pulse events focused on the head of the density currents and were simulated using a lock-exchange mechanism in which a fixed volume of salt water was locked in each upstream reach of the flume before being suddenly released into the ambient water downstream. HD images were used to obtain 1D velocity both up- and down-stream of the junction, and bathymetry measurements were obtained using an ultrasonic probe after each experiment. The sustained (i.e. steady) events focus on the body of the current and were simulated by continuously releasing salt water into the flume initially filled with ambient water. In this case, 2D velocity measurements were obtained around the junction at five elevations, and bed evolution is tracked qualitatively after each test. It has been observed that: 1) a clear shear layer forms between contributing flows; 2) there is evidence of flow separation near the bed downstream of the junction; 3) the current accelerates as it reforms after the collision in the junction; 4) the location and orientation of the central scour differs from river junctions in the sustained case; 5) the sudden release case shows very little scour in the junction zone. This data is used to develop and validate a numerical simulation of both types of density current releases in which further variations on initial conditions can be assessed for their impact on the velocity field and sediment transport in submarine channel junctions.

  19. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G. The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes. Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001. This catalog includes: (1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; (2) a description of instruments deployed in the field and their locations; (3) a description of earthquake detection, recording, analysis, and data archival systems; (4) station parameters and velocity models used for earthquake locations; (5) a summary of daily station usage throughout the catalog period; and (6) all HYPOELLIPSE files used to determine the earthquake locations presented in this report.

  1. Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts

    USGS Publications Warehouse

    Coombs, M.L.; Sisson, T.W.; Lipman, P.W.

    2006-01-01

    Major-element and volatile (H2O, CO2, S) compositions of glasses from the submarine flanks of Kilauea Volcano record its growth from pre-shield into tholeiite shield-stage. Pillow lavas of mildly alkalic basalt at 2600-1900 mbsl on the upper slope of the south flank are an intermediate link between deeper alkalic volcaniclastics and the modern tholeiite shield. Lava clast glasses from the west flank of Papau Seamount are subaerial Mauna Loa-like tholeiite and mark the contact between the two volcanoes. H2O and CO2 in sandstone and breccia glasses from the Hilina bench, and in alkalic to tholeiitic pillow glasses above and to the east, were measured by FTIR. Volatile saturation pressures equal sampling depths (10 MPa = 1000 m water) for south flank and Puna Ridge pillow lavas, suggesting recovery near eruption depths and/or vapor re-equilibration during down-slope flow. South flank glasses are divisible into low-pressure (CO20.5 wt.%, S 1000-1700 ppm), and high-pressure groups (CO2 >40 ppm, S >???1000 ppm), corresponding to eruption ???sea level, at moderate water depths (300-1000 m) or shallower but in disequilibrium, and in deep water (> 1000 m). Saturation pressures range widely in early alkalic to strongly alkalic breccia clast and sandstone glasses, establishing that early Kilauea's vents spanned much of Mauna Loa's submarine flank, with some vents exceeding sea level. Later south flank alkalic pillow lavas expose a sizeable submarine edifice that grew concurrent with nearby subaerial alkalic eruptions. The onset of the tholeiitic shield stage is marked by extension of eruptions eastward and into deeper water (to 5500 m) during growth of the Puna Ridge. Subaerial and shallow water eruptions from earliest Kilauea show that it is underlain shallowly by Mauna Loa, implying that Mauna Loa is larger, and Kilauea smaller, than previously recognized.

  2. Human-Powered Submarine Competition: World Submarine International 1996 [and] Design Technology Exhibit: A School Model.

    ERIC Educational Resources Information Center

    Hibberd, John C.; Edwards, Don

    1996-01-01

    Hibbard describes the process used by students at Millersville University to build a human-powered submarine for entry in an international submarine competition. Edwards discusses the Design Technology Exhibit held at Lu Sutton Elementary School, the purpose of which was to challenge students to design a useful structure and provide them with the

  3. Volcanic Explosions, Seismicity, and Debris from the West and North Mata Volcano Complex, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Haxel, J.; Walker, S.; Fowler, M.

    2010-12-01

    The discovery of the explosively erupting deep-ocean West Mata volcano in the northeast Lau Basin offers an unprecedented opportunity for in situ and near-field studies of the hydroacoustic wavefield produced by a submarine arc volcano, as well as the relationship between gas-driven explosions and the formation of volcanic-hydrothermal plumes. From December 2009 to April 2010, we re-initiated acoustic monitoring of the West Mata system by deploying four hydrophone moorings in a diamond-shaped geometry encompassing the summit and a set of nearby volcanic edifices known as the North Matas. Recent water column surveys over the North Matas found intense volcanic plumes suggesting that one or more of these volcanoes may be in an active eruption phase similar to West Mata. Each mooring contained a single sound-channel moored hydrophone (~1000 m depth) with a sample-rate of 1 kHz. The southern mooring in the array also included two optical backscatter and temperature sensors (MAPRs) attached to the mooring line (at 1800 m (data lost due to a battery failure) and 2250 m (~300 mab) depth) to detect plumes of volcanic debris that detach from the flank of West Mata. The acoustic record shows that West Mata volcano was continually erupting during the 5-month period of the experiment, producing broadband explosions every few seconds and long episodes of both mono- and poly-chromatic volcanic tremor. The MAPR record shows at least four major and several minor events, lasting from days to >week, that may correspond to debris flows. In most cases these episodes begin with a turbidity spike that slowly decreases while also fluctuating between elevated and ambient levels with the semidiurnal tides, as indicated by the temperature record. This linked temperature-turbidity fluctuation requires the events to be thin (<~100 m?) lenses that vertically oscillate around the MAPR depth while dissipating. High turbidity values (0.15-5 NTU) in some events imply these debris flows regularly move substantial quantities of material downslope. Source locations derived from the first 700 explosions recorded (~12 hrs) are near the northwest summit of West Mata, consistent with the locations of previously mapped eruption vents. Earthquake (T-phase) locations derived to date show dozens of events focused at the northernmost North Mata volcano as well as hundreds of earthquakes from throughout the region. A contemporaneous Lau Basin hydrophone experiment showed that West Mata explosions and tremor can be detected ~600 km to the south, illustrating that West Mata is a significant, continuous source of seismo-acoustic energy in the region and offers a rare chance to ground-truth the sounds of deep-ocean eruptions since they were originally recognized on far-field military hydrophones during the 1950s.

  4. Submarine-fan facies associations of the Eocene Butano Sandstone, Santa Cruz mountains, California

    USGS Publications Warehouse

    Nilsen, T.H.

    1984-01-01

    The Eocene Butano Sandstone was deposited as a submarine fan in a relatively small, partly restricted basin in a borderland setting. It is possibly as thick as 3000 m and was derived from erosion of nearly Mesozoic granitic and older metamorphic rocks located to the south. Deposition was at lower bathyal to abyssal water depths. The original fan may have been 120-to 160-km long and 80-km wide. Outcrops of submarine-canyon, innerfan, middle-fan, and outer-fan facies associations indicate that the depositional model of Mutti and Ricci Lucchi can be used to describe the Butano Sandstone. ?? 1984 Springer-Verlag New York Inc.

  5. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.

  6. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  7. Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb-Zn deposits?

    USGS Publications Warehouse

    Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.

    1998-01-01

    Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.

  8. Methane and radioactive isotopes in submarine hydrothermal systems

    SciTech Connect

    Kim, K.R.

    1983-01-01

    This thesis consists of two parts: 1) methane and 2) radioactive isotopes, especially radon, in submarine hydrothermal systems. Both parts deal with the use of these gases as tracers for mapping hydrothermal vents at sea, and with their relationships to other sensitive tracers such as helium, manganese, and temperature. Hydrothermal methane was used as a real-time tracer for locating new submarine hydrothermal systems along spreading axes, discovering new hydrothermal systems at two locations in Pacific Ocean: 1) 20/sup 0/S on East Pacific Rise, and 2) Mariana Trough Back-arc Basin. Methane shows good correlations with helium-3 and temperature with similar ratios in various hydrothermal systems, 3 to 42 x 10/sup 6/ for the methane to helium-3 ratio, and 3 to 19 ..mu.. cc/kg/sup 0/C for the methane to temperature anomaly. These similar ratios from different areas provide evidence for chemical homogeneity of submarine hydrothermal waters. A good correlation between methane and manganese appears to be associated only with high-temperature hydrothermal systems. Radioisotopes in the vent waters of 21/sup 0/N high-temperature hydrothermal system have end-member concentrations of 7.5 to 40 dpm/kg for Ra-226, 360 dpm/kg for Rn 222, 62 dpm/kg for Pb-210, and 19 dpm/kg for Po-210. The radon activity for this system is one order of magnitude lower, and the Pb-210 activity is one order or magnitude higher, than those a the low temperature Galapagos system. All these observations suggest that the high radon, and low Pb-210 activity observed in Galapagos system may originate from the extensive subsurface mixing and water-rock interaction in this system (direct injection of radon and scavenging of Pb-210).

  9. Submarine landslide hazard off Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, S. K.; Tsai, C. H.; Doo, W. B.; Lin, S. S.

    2014-12-01

    In the northern margin of the western end of the Okinawa Trough, three major submarine channels running across the continental margin are distinctive. From east to west, they are the North Mein-Hua Submarine Canyon, Mein-Hua Submarine Canyon and the Keelung Valley. To the east of the Mein-Hua Submarine Canyon, the slope of the continental margin is quite gentle, implying that the risk of slope instability is low. However, between the Keelung Valley and the Mei-Hua Submarine Canyon, the slope is rather steep. We have conducted multi-channel reflection seismics, sub-bottom profilers and multi-beam bathymetry in this area. The results show two general trends of fracture or faulting. The NE-SW trending faults generally follow the major orientation of the Taiwan mountain belt. Thus, these faults could be reverse faults from the former collisional thrust faults to currently post-collisional normal faults. Another almost E-W trending faults are consistent with the N-S extending of the Southern Okinawa Trough. Because the most significant faulting in the northwest end of the study is probably associated with the offshore extension of the Kenchiao Fault or the Sanchiao Fault, we consider either of these two faults as the northeast boundary (headwall) of the potential submarine landslide. Taking the stability slope angle of 0.5 degree as the stable landslide slope as shown in the area to the northeast of the study area, we estimate the total volume of the potential submarine landslide could be 300 cubic kilometers. Such a landslide volume may generate a local tsunami and affect especially the northeast coast of Taiwan.

  10. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  11. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  12. Eruption of a deep-sea mud volcano triggers rapid sediment movement

    NASA Astrophysics Data System (ADS)

    Feseker, Tomas; Boetius, Antje; Wenzhfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

    2014-11-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Hkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4?m per day, and significant emissions of methane and CO2 from the seafloor.

  13. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Hkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4?m per day, and significant emissions of methane and CO? from the seafloor. PMID:25384354

  14. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  15. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  16. Seismicity at Baru Volcano, Western Panama, Panama

    NASA Astrophysics Data System (ADS)

    Camacho, E.; Novelo-Casanova, D. A.; Tapia, A.; Rodriguez, A.

    2008-12-01

    The Baru volcano in Western Panama (8.808°N, 82.543°W) is a 3,475 m high strato volcano that lies at about 50 km from the Costa Rican border. The last major eruptive event at this volcano occurred c.1550 AD and no further eruptive activity from that time is known. Since the 1930´s, approximately every 30 years a series of seismic swarms take place in the surroundings of the volcanic edifice. Theses swarms last several weeks alarming the population who lives near the volcano. The last of these episodes occurred on May 2006 and lasted one and a half months. More than 20,000 people live adjacent to the volcano and any future eruption has the potential to be very dangerous. In June 2007, a digital seismic monitoring network of ten stations, linked via internet, was installed around the volcano in a collaborative project between the University of Panama and the Panamanian Government. The seismic data acquisition at the sites is performed using LINUX-SEISLOG and the events are recorded by four servers at different locations using the Earth Worm system. In this work we analyze the characteristics of the volcano seismicity recorded from May 4th, 2006 to July 31st, 2008 by at least 4 stations and located at about 15 km from the summit. To determine the seismic parameters, we tested several crustal velocity models and used the seismic analysis software package SEISAN. Our final velocity model was determined using seismic data for the first four km obtained from a temporal seismic network deployed in 1981 by the British Geological Survey (BGS) as part of geothermal studies conducted at Cerro Pando, Western Panama Highlands. Our results indicate that all the events recorded in the quadrant 8.6-9.0°N and 82.2-82.7°W are located in the depth range of 0.1 to 8 km. Cross sections show vertical alignments of hypocenters below the summit although most of the seismicity is concentrated in its eastern flank reaching the town of Boquete. All the calculated focal mechanisms are of the strike slip type.

  17. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  18. Understanding Merapi-type Volcanoes

    NASA Astrophysics Data System (ADS)

    Purbawinata, Mas Atje; Ratdomopurbo, Antonius; Surono, null; Pallister, John; Luehr, Birger; Newhall, Chris

    2007-01-01

    ``We have to understand volcano science to know what to monitor.'' That simple statement by Antonius Ratdomopurbo, director of the Indonesian Center for Volcano Technology [Balai Penyelidikan dan Pengembangan-Teknologi (BPPTK)], captured the spirit and content of a recent workshop about Merapi and Merapi-type volcanoes.

  19. GPS monitoring of Hawaiian Volcanoes

    USGS Multimedia Gallery

    The USGS Hawaiian Volcano Observatory uses a variety of ground- and satellite-based techniques to monitor Hawai‘i’s active volcanoes.  Here, an HVO scientist sets up a portable GPS receiver to track surface changes during an island-wide survey of Hawai‘i’s volcanoes. &n...

  20. Mayon volcano, southeast Luzon, Philippines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mayon volcano is the most active volcano in the Philippines, located just north of the coastal town of Legaspi in southern Luzon about 325 km southeast of Manila. Mayon is a near-perfect cone; its steep, forested slopes look rather like a bull's eye when viewed from above. For scale, Mayon's circular footprint is about 16 km in diameter. This photograph was taken from the Space Shuttle on April 8, 1997. At the time the photo was taken, Mayon sported a steam plume from the summit. The lighter (non-forested) regions that radiate from the summit to the southern slopes are flows from eruptions that have occurred over the past twenty-five years. The current eruption, which started June 24, 2001, is sending flows down the southeast slope in the general direction of Legaspi. Image STS083-747-88 was provided by the by the Earth Sciences and Image Analysis Laboratory, Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  1. Water in Aleutian Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Plank, T.; Zimmer, M. M.; Hauri, E. H.

    2011-12-01

    In the past decade, baseline data have been obtained on pre-eruptive water contents for several volcanic arcs worldwide. One surprising observation is that parental magmas contain ~ 4 wt% H2O on average at each arc worldwide [1]. Within each arc, the variation from volcano to volcano is from 2 to 6 w% H2O, with few exceptions. The similar averages at different arcs are unexpected given the order of magnitude variations in the concentration of other slab tracers. H2O is clearly different from other tracers, however, being both a major driver of melting in the mantle and a major control of buoyancy and viscosity in the crust. Some process, such as mantle melting or crustal storage, apparently modulates the water content of mafic magmas at arcs. Mantle melting may deliver a fairly uniform product to the Moho, if the wet melt process includes a negative feedback. On the other hand, magmas with variable water content may be generated in the mantle, but a crustal filter may lead to magma degassing up to a common mid-to-upper crustal storage region. Testing between these two end-member scenarios is critical to our understanding of subduction dehydration, global water budgets, magmatic plumbing systems, melt generation and eruptive potential. The Alaska-Aleutian arc is a prime location to explore this fundamental problem in the subduction water cycle, because active volcanoes vary more than elsewhere in the world in parental H2O contents (based on least-degassed, mafic melt inclusions hosted primarily in olivine). For example, Shishaldin volcano taps magma with among the lowest H2O contents globally (~ 2 wt%) and records low pressure crystal fractionation [2], consistent with a shallow magma system (< 1 km bsl). At the other extreme, Augustine volcano is fed by a mafic parent that contains among the highest H2O globally (~ 7 wt%), and has evolved by deep crystal fractionation [2], consistent with a deep magma system (~ 14 km bsl). Do these magmas stall at different depths because of different crustal regimes or because of different primary magma compositions? Do magmas degas until they physically stall, or do they stall when they start to degas? One test of this is whether H2O contents correlate with tracers from the subduction zone that are not fractionated easily during crystal fractionation or degassing. We find a strong negative correlation between H2O/Ce (based on the maximum H2O measured in a given inclusion population) and Nb/Ce in eight Aleutian volcanoes, which is well explained by variable amounts of a slab fluid, but would be fortuitous, or strongly disturbed, if major degassing took place in the crust during magma ascent. Thus, geochemical data point to a strong slab-mantle control on H2O, that may set the future course of magma ascent, storage and eruption. Integrated studies are needed to test this prediction, including seismic imaging and geodetic response of the volcanic system, from the slab to the surface. [1] Plank, et al. (2011) Min. Mag. 75: 1648. [2] Zimmer, et al. (2010) J. Pet. 51: 2411-2444.

  2. Submarine Volcanology: 1950 to 2050 and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.

    2010-12-01

    The vigorous pursuit of submarine volcanism as a major field emerged in the mid 1900’s with the post WWII recognition that there is a Mid-Ocean Ridge System that is a 70,000 km long volcanic mountain chain stretching around the world like the strings on a baseball. By the mid 1960’s it emerged that rocks from volcanic feature were consistently basaltic in character and that they were the direct result of major melting processes associated with rise of much deeper mantle material beneath the spreading ridges in a global plate tectonics framework. More than 60% of the volcanism on the planet occurs in submarine environments. The next major discovery, using the deep diving submarine ALVIN, was in the late 1970’s involving hydrothermal systems near active ridges close to the Galapagos Islands and Baja California. The idea that these vent sites were the locus of major biological productivity based on volcanically-driven chemosynthesis was a fundamental new insight in the deep ocean ecology of our planet. This was a major planetological discovery and was followed within about 15 years with an even more powerful realization: our planet has a vast sub seafloor microbial biosphere thriving in the pores and the cracks of the oceanic crust driven by circulation of modified ocean fluids through large portions of the lithosphere. These organisms are largely supported by degassing and water-rock reactions associated with submarine volcanoes. Some estimates have posited that: 1) these thermally active systems and the chemosynthetic lifestyle are a natural consequence of certain types of planetary evolution, 2) that life may have originated in these systems, and, 3) that the biomass associated with the modern sub seafloor systems rivals most other living carbon on the continents. Indeed, parallel exploration of the outer solar system has lead to propositions that the second moon of Jupiter, Europa, has (or had) a high potential to harbor analogous hydrothermal life forms owing to the fact that it is covered with water ice and is the next door neighbor to the most volcanically active body in the solar system - Io. Future approaches to studying both terrestrial and off-planet volcanic systems will involve an increasingly sophisticated use of cutting edge technologies enabled by robotic systems, novel and mobile sensor modalities in four dimensions, very high bandwidth communication systems, power extraction from the environment, massive computational power, nanotech systems, unparalleled in situ imaging capabilities, and the capacity to support human telepresence and machine autonomy in remote environments at levels that are totally unprecedented. Earth’s oceans will be the experimental test bed for deploying and maturing these capabilities, but oceans in our solar system and beyond will become the ultimate targets for exploration of one of the ultimate questions: Are we alone

  3. Venus small volcano classification and description

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep-sided domes or 'pancake domes', larger than 20 km in diameter, were included with the small volcanic domes. For the purposes of this study, only volcanic edifices less than 20 km in diameter are discussed. This forms a convenient cutoff since most of the steep-sided domes ('pancake domes') and scalloped margin domes ('ticks') are 20 to 100 km in diameter, are much less numerous globally than are the smaller diameter volcanic edifices (2 to 3 orders of magnitude lower in total global number), and do not commonly occur in large clusters or fields of large numbers of edifices.

  4. A preliminary seismic study of Taal Volcano, Luzon Island Philippines

    NASA Astrophysics Data System (ADS)

    You, S.-H.; Gung, Y.; Lin, C.-H.; Konstantinou, K. I.; Chang, T.-M.; Chang, E. T. Y.; Solidum, R.

    2013-03-01

    The very active Taal Volcano lies in the southern part of Luzon Island only 60 km from Manila, the capital of the Philippines. In March 2008 we deployed a temporary seismic network around Taal that consisted of 8 three-component short period seismometers. This network recorded during the period from March to November 2008 about 1050 local events. In the early data processing stages, unexpected linear drifting of clock time was clearly identified for a number of stations. The drifting rates of each problematic station were determined and the errors were corrected before further processing. Initial location of each event was derived by manually picked P-/S-phases arrival times using HYPO71 and a general velocity model based on AK135. Since the velocity structure beneath Taal is essentially unknown, we used travel times of 338 well-located events in order to derive a minimum 1D velocity model using VELEST. The resulting locations show that most events occurred at the shallow depth beneath the Taal Volcano, and two major earthquake groups were noticed, with one lying underneath the western shore of Taal lake and the other one spread around the eastern flank of the Taal Volcano. Since there is no reported volcano activities during the operation period of our seismic array, we are still not confident to interpret these findings in terms of other natures of volcano at the current stage. However, our work represents an important pioneer step towards other more advanced seismic studies in Taal Volcano.

  5. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    NASA Technical Reports Server (NTRS)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  6. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. 31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  8. 36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  9. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea cable and other material used in the construction of such plant. Subsidiary record categories,...

  10. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  11. Preliminary Results of a Near-Bottom Integrated Seafloor and Water Column survey of Brothers volcano, Kermadec arc, Using the Autonomous Vehicle ABE

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; de Ronde, C.; Davy, B.; Baker, E. T.; Resing, J. A.; Yoerger, D. R.; Merle, S. G.; Walker, S. L.

    2007-12-01

    Brothers volcano, located about 310 km NE of New Zealand along the magmatic front of the Kermadec arc, is one of the best studied intraoceanic arc submarine volcanoes. Its 3.0 x 3.5 km caldera is slightly elliptical, with the long axis oriented about N320E and has more than 300 m relief from a rim at ~1500 m to a maximum depth of 1880 m in its NW corner. Two major hydrothermal systems were discovered on it in the late 1990s, a high temperature field (up to 302C) on the NW wall and a lower temperature gas-rich system on the summits of a pair of dacitic cones that occupy the SE half of the caldera. Although the caldera and cones were partly explored by submersibles in 2004 and 2005, the base map, made with a surface ship multibeam, was not detailed enough to understand the context of the seafloor observations. We used the autonomous vehicle ABE launched and recovered from the R/V SONNE in July-August 2007 to conduct high resolution near-bottom surveys of the caldera and its hydrothermal systems using a multibeam sonar, magnetometer, and CTD. The caldera wall, the dacite cones and part of the flat caldera rim were mapped in 96 hours of survey time over 8 dives. In addition, very detailed water column surveys at lower altitude and closer line spacing were conducted over the two most intense hydrothermal sites (i.e., the NW caldera wall and the smaller dacite cone). Although the results are preliminary, there are obvious correlations between hydrothermal activity, wall geomorphology, structural lineations, and the magnetic signature. New hydrothermal sites were discovered on the uppermost NW rim of the caldera and on the SW wall. This new map, along with the previously collected suites of fluid, mineral and seafloor observations, provides a baseline for future monitoring of Brothers' hydrothermal and volcanic activity. It will also provide a better understanding of how the long-term interplay of hydrothermal and volcanic activity affects the geomorphic evolution of submarine arc volcanoes.

  12. Transporting submarine engines to power the PRT

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The city of Hampton was unable to supply adequate electric power to operate the PRT. Navy Captain Walter S. Diehl, Bureau of Aeronautics, acquired two 1000 hp submarine engines which were to be disposed of. BuAer 'loaned' the engines to the NACA, one of which is shown here. Next to the engine is Donald H. Wood, a mechanical engineer from Rensselaer Polytechnic Institute and Fred Weick's assistant. Propeller Research Tunnel (PRT) engineer Donald H. Wood ponders the unlikely transfer of a submarine engine from rail car to NACA truck, May 1926. Two such diesel engines powered the PRT.

  13. A model for the submarine depthkeeping team

    NASA Technical Reports Server (NTRS)

    Ware, J. R.; Best, J. F.; Bozzi, P. J.; Kleinman, D. W.

    1981-01-01

    The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented.

  14. Preliminary radon measurements at Villarrica volcano, Chile

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Ulivieri, G.

    2013-10-01

    We report data from a radon survey conducted at Villarrica volcano. Measurements have been obtained at selected sites by E-PERM® electrets and two automatic stations utilizing DOSEman detectors (SARAD Gmbh). Mean values for Villarrica are 1600 (±1150) Bq/m3 are similar to values recorded at Cerro Negro and Arenal in Central America. Moderately higher emissions, at measurement sites, were recorded on the NNW sector of the volcano and the summit, ranging from 1800 to 2400 Bq/m3. These measurements indicate that this area could potentially be a zone of flank weakness. In addition, the highest radon activities, up to 4600 Bq/m3, were measured at a station located near the intersection of the Liquiñe-Ofqui Fault Zone with the Gastre Fault Zone. To date, the Villarrica radon measurements reported here are, together with those collected at Galeras (Colombia), the sole radon data reported from South American volcanoes. This research may contribute to improving future geochemical monitoring and volcano surveillance.

  15. Discovery of a Young Submarine Rift Zone Near Madeira Island: the Leading Edge of the Madeira Hotspot Track?

    NASA Astrophysics Data System (ADS)

    Klgel, A.; Hoernle, K. A.; Geldmacher, J.

    2003-12-01

    During RV "METEOR" cruise M51/1 in 2001, a hitherto unknown submarine ridge off Madeira island was discovered, hydroacustically mapped and sampled. Funchal ridge (working name) extends from near the capital Funchal over 50 km to the south and rises up to 600 m over the surrounding seafloor. At least 20 volcanic cones have been identified along the ridge, including a volcanic field at its southern end. Funchal ridge represents a classic rift zone and shows some similarities to the ridge forming the Desertas islands further northeast. Many of the alkalic basalts dredged are remarkably fresh and are highly vesicular despite sampling depths of up to 3600 m. We thus propose that Funchal ridge is the locus of most recent volcanic activity of Madeira Archipelago, marking the present location of the hotspot. This interpretation is in agreement with the concentration of small earthquakes around the ridge and with the occurrence of stratigraphically young cinder cones in prolongation of the ridge near the city of Funchal. The volcanic field at the southern end of the ridge where activity is concentrated may thus represent the early shield stage of a future island. Preliminary Sr, Nd and Pb isotope data support this interpretation since samples from Funchal ridge overlap with those from the isotopically enriched Madeira shield stage but differ from the less radiogenic post-erosional stage presently occurring on Madeira. According to our model, Funchal ridge could become the fourth large volcano of the Archipelago following Porto Santo (14.3 - 11.1 Ma subaerial age range), Madeira (4.6 Ma to <10 ka), and the Desertas islands (3.6 - <3.2 Ma). The reason for formation of a long ridge instead of a circular seamount at this early stage may be the overlap of the new edifice with Madeira's lower slope. Gravitative stresses of such a geometry, combined with gravitative spreading of Madeira, can qualitatively explain the observed relations as we have modelled by analogue experiments.

  16. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  17. Augustine Volcano Sampling

    USGS Multimedia Gallery

    Students climb out of ravine on north flank of Augustine Volcano during descent from sampling the 2006 lava flow during 2010 summer field campaign. From left: Laurel Morrow (junior geology major at CSUF), Matthew Bidwell (Science teacher at South Junior High School in Anaheim, CA), Ashley Melendez (...

  18. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  19. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  20. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  1. Volcano evolution on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Pete; Wilson, Lionel

    1987-01-01

    The diversity of volcanic activity on Mars throughout geologic time was one of the major factors that has controlled the spatial distribution of surface mineralogies. The traditional view of Martian volcanism is one in which effusive activity has dominated the entire preserved geologic history of the planet, with the minor exception of phreatomagnetic activity and associated volcano ground-ice interactions. However, two lines of evidence have caused reconsidering of this view, and have led to the possible role of explosive volcanism on Mars. First, detailed analysis of high resolution Viking Orbiter images has provided good evidence for explosive activity on Hecates Tholus and Alba Patera. Secondly, the problems believed to exist in associating explosive volcanism with silicic magmas on Mars, and the consequent unusual magmatic evolutionary trend for Martian volcanoes from silica-rich to silica-poor, may now be circumvented by the consideration of basatic plinian activity similar in kind to terrestrial eruptions such as the 1886 Tarawera eruption. The morphologic evidence for an early phase of explosive activity on Mars is briefly reviewed, and a model is presented for the emplacement of ash-flow deposits on Martian volcanoes. The volcanoes Alba Patera and Olympus Mons are considered in this context, along with some of the older Martian tholi and paterae

  2. Identification of topographic fingerprints of eruption environments: Geomorphometric evidence from volcanoes of the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B.; Grosse, P.

    2012-12-01

    The geomorphometry of volcanoes provides important information on the geologic evolution of planets. Therefore, constraining the topographic characteristics of terrestrial volcanoes is an important step for comparative planetology. Here we resolve geomorphometric fingerprints of volcanic edifices formed in subaerial, submarine and subglacial environments by focusing on volcanoes of the Reykjanes Peninsula, Iceland. The Reykjanes Volcanic Belt connects the Reykjanes midoceanic spreading ridge with the Western volcanic zone. It consists of four volcanic systems that display a variety of pristine Quaternary submarine, subglacial and subaerial volcanic edifices. 35 edifices were chosen for quantitative characterization using the IS 50V digital elevation model (20m/pixel). The edifice boundaries were delimited by concave breaks in slope around their bases and edifices were grouped according to slope, size and shape. A division based on slope values proves successful in discriminating subaerial edifices from subglacial and submarine edifices. Subaerial shields have average slopes between 2.8°-6.5°, which is at least 6° less than the average slopes of submarine and subglacial edifices. Moreover, the shields can be sub-divided into tholeite (2.8°-4.6°) and picrite (5.3°-6.5°) shields based on average slope. Submarine and subglacial edifices cannot be distinguished from each other by average slopes, and were grouped together in a submarine and subglacial class. This class was sub-divided into 3 groups based on their volume and suggests an evolutionary growth trend starting with small elliptical, linear ridges (~2*10-3-7*10-3 km3) to flat topped, table-shaped mountains (~100*10-3 -640*10-3 km3), with an intermediate growth stage (~10*10-3 - 80*10-3 km3) of very variable and irregular complex edifices. Further analysis of topographic profiles, slope frequency and elevational slope development, show that it is possible to resolve individual land elements based on break in slope, such as lava cap, hyaloclastite apron, hyaloclastite slope and hyaloclastite summit. The boundary between hyaloclastite breccia and lava cap represents a passage zone that marks late-stage subaerial lava-fed deltas and is clearly defined by convex breaks in slope. Large elevation changes in the passage zone is diagnostic of lava deltas emplaced in a glacial environment, and thus mapping of elevation changes of convex breaks in slope is a potential tool for distinguishing big table-shaped volcanic edifices emplaced in a submarine or subglacial environment. This study shows that volcano morphometry can be used to obtain information on processes operating during volcano construction, its eruption environment and the resulting evolutionary growth trends. A significant advantage of this method is its application for remote and inaccessible areas such as submarine or subglacial environments as well as extraterrestrial planets. Moreover, the break in slope delimitation of edifice bases and the possibility of resolving individual landform elements makes this geomorphometric analysis directly applicable for advanced mapping techniques such as object-based image analysis.

  3. Estimation of submarine mass failure probability from a sequence of deposits with age dates

    USGS Publications Warehouse

    Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

    2013-01-01

    The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaikes Information Criterion (AIC) and Akaikes Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

  4. Seasonal variation in a tropical lagoon with submarine groundwater discharges

    NASA Astrophysics Data System (ADS)

    Tenorio, L.; Gmez-Valds, J.; Enriquez, C.; Trevio, C.; Marino-Tapia, I.; Lpez-Aguiar, K.

    2013-05-01

    The Chelem-Chuburna-Yucalpeten lagoon system is located at 2117'N and 8940'W in the Yucatan peninsula, Mexico. Temperature, conductivity, sea level, atmospheric pressure, solar radiation, and wind speed measurements were recorded in this lagoon, during various oceanographic surveys within 2010-2012. During the experiments, which included diurnal variations during spring and neap tidal cycles, CTD profiles were collected in 35 oceanographic stations and moored instruments were deployed at strategic locations. The aim of this work is to investigate transitions of thermohaline properties in a tropical lagoon with submarine groundwater discharges (SGDs) to increase the knowledge of the principal processes that control circulation and mixing in this kind of bodies of water. Results show that the lagoon is saltier than the ocean in the dry season and the opposite pattern is observed in the rain season. During the rain season could be more freshwater supplied from SGDs.

  5. The use of rotational invariants for the interpretation of marine CSEM data with a case study from the North Alex mud volcano, West Nile Delta

    NASA Astrophysics Data System (ADS)

    Hölz, Sebastian; Swidinsky, Andrei; Sommer, Malte; Jegen, Marion; Bialas, Jörg

    2015-04-01

    Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the `North Alex' mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud volcano generation and subsequently refilled with new mud volcano sediments during a later stage of activity. Increased resistivities at depth cannot be explained by compaction alone, but instead require a combination of compaction and increased cementation of the older sediments, possibly in connection to trapped, cooled down mud volcano fluids, which have a depleted chlorinity. At shallow depths (≤50 m) bulk resistivities generally decrease and for locations around the mud volcano's centre 1-D models show bulk resistivities in a range between 0.5 and 0.7 Ωm, which we interpret in terms of gas saturation levels by means of Archie's Law. After a detailed analysis of the material parameters contained in Archie's Law we derive saturation levels between 0 and 25 per cent, which is in accordance with observations of active degassing and a reflector with negative polarity in the seismics section just beneath the seafloor, which is indicative of free gas.

  6. Submarine glaciated landscapes of central and northern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Shaw, John; Lintern, Gwyn

    2015-04-01

    Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also, sub-bottom profiling shows that some mass transport deposits apparent on the multibeam imagery are not recent, and are blanketed by postglacial mud. Thus, submarine slope failure has been occurring throughout postglacial time; 4) Large, detached bedrock blocks on the fjord sidewall are currently being investigated with a view to understanding their rates of movement. They are provisionally interpreted as creep features, similar to terrestrial sackung.

  7. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003. The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.

  8. Earthquake sources near Uturuncu Volcano

    NASA Astrophysics Data System (ADS)

    Keyson, L.; West, M. E.

    2013-12-01

    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  9. Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  10. PEFCs for naval ships and submarines: many tasks, one solution

    NASA Astrophysics Data System (ADS)

    Sattler, Gunter

    Polymer electrolyte fuel cells (PEFCs) for air-independent propulsion systems have been developed and tested under submarine conditions and are thus ready for submarine application. A demand analysis and the presentation of the requirements for naval surface ships and submarines will be followed by the description of the realisation concepts for PEFC propulsion plants. Based on the results of FC operation on board of a submarine and the system design for the new German submarine Class 212, synergy effects will be derived from that for surface ships. Finally, future aspects will be pointed out including PEFC propulsion for merchant ships.

  11. Gravity, Bathymetry and Submarine Volcanism in the Mesozoic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Kalnins, L. M.

    2007-12-01

    Submarine volcano loading studies suggest that the effective elastic thickness, Te, of oceanic lithosphere increases with age at the time of loading. Therefore, a seamount formed on a ridge crest will be characterised by a lower Te than a similar size feature that formed off-ridge. Compilations of data where both crustal and sample ages are known show that Te is given approximately by the depth to the 450 oceanic isotherm, based on plate cooling models. By comparing observed bathymetry and gravity anomalies to predictions based on simple elastic plate models it is possible to estimate Te and hence the age of oceanic lithosphere at the time of loading at bathymetric features of unknown tectonic setting. Early results based on ~100 features suggested that Hess Rise, Necker ridge, Line Islands, and Manihiki Plateaus formed on-ridge and, hence, that there was a major period of volcanism in the central Pacific ~90- 120 Ma. This 'event' appears to have been accompanied by deep-water volcanism, as shown by the pioneering work of Roger L. Larson in the Nauru Basin. Recently, Watts et al. (2006) used a bathymetric prediction technique to estimate the Te at >9000 seamounts in the Wessel (2001) database. Plots of Te Vs. age at features of known age, however, revealed considerable scatter with many lower values at old ages than expected. Te maps show that these low values form a broad swath from East Pacific Rise crest in the SE, through the Tuamotu Plateau region, to the Line and Marshall Islands and Mid-Pacific Mountains in the NW. The SE end of the swath includes the region dubbed the South Pacific Isotopic and Thermal Anomaly (SOPITA) and some features (e.g. Marcus Wake Guyots, Lines Islands) at the NW end backtrack into the SOPITA. Therefore, some of the scatter maybe caused by a regional shallowing of the controlling isotherm. This has been verified using a moving window admittance technique which suggest controlling isotherms of <~350 as the SOPITA region is approached. These new constraints on the controlling isotherms are used here to estimate the distribution of submarine volcanism in the Mesozoic Pacific Ocean through time.

  12. Reconnaissance seismology at nine volcanoes of the central Andes

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Krzesni, D.; Button, N.; Welch, M.; Jay, J.; Henderson, S.; Glass, B.; Soler, V.; Amigo, A.; Sunagua, M.; Minaya, E.; Clavero, J. E.; Barrientos, S. E.

    2012-12-01

    The seismicity of the volcanoes of the central Andes of Bolivia and Chile is poorly constrained. We have deployed small temporary networks (1 to 5 stations each) of short and intermediate period seismometers for several months to years at eight potentially active volcanoes in Chile and Bolivia between the years 2004 and 2011. We record background seismicity at these volcanoes for the first time in order to compare it with other manifestations of volcanic activity like fumaroles, ground deformation, and satellite observed thermal anomalies as well as setting a baseline for future episodes of unrest. Seismometers were deployed near the volcanoes Irruputuncu, Olca, Olla\\:{u}e, Parinacota, Isluga, Guallatiri, Putana, all near the Chile-Bolivia border, Láscar volcano, Chile, and the hydrothermal field Sol de Manana, Bolivia. All of these areas were selected because they have thermal anomalies in nighttime satellite ASTER infrared observations, active fumaroles, or recent eruptive activity. The seismic data were used to create a catalog for the region containing more than 5000 local and regional earthquake locations. All phase arrivals were picked manually by visually inspecting waveforms and locations were determined using the generalized earthquake-location (GENLOC) program that is part of the Antelope software package. Over the course of 4 months, Ollag\\:{u}e volcano was found to be most active with an average of 1.5 earthquakes per day within 25km, and sometimes as many as 10 per day. Over the course of 10 months, Guallatiri volcano was found to the be most active of the volcanoes monitored in Chile with an average of 0.7 earthquakes per day within 25km, and sometimes as many as 7 per day. Earthquake swarms were identified near Ollag\\:{u}e, Guallatiri, Puchuldiza Geysers, Putana, and potentially Parinacota. The swarms at Puchuldiza were recorded on at least two different days, one swarm consisted of more than 20 earthquakes in a time period of about about 5 hours. Swarms at Putana volcano in late 2009 may correspond in time with a pulse of ground uplift observed by satellite InSAR, but the other swarms do not appear to have measurable deformation associated with them. Putana also appears to have numerous small local earthquakes triggered by the 27 February 2010 M_{w} 8.8 Maule, Chile earthquake (about 1600 km distant) as did the nearby Uturuncu volcano in Bolivia. On the other hand, Láscar volcano in Chile did not have significant triggered local seismicity from the 2010 earthquake in spite of having many more recent eruptions than Putana and Uturuncu.

  13. Volcanism offshore of Vesuvius Volcano in Naples Bay

    USGS Publications Warehouse

    Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.

    1998-01-01

    High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.

  14. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  15. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  16. One Hundred Years of Volcano Monitoring in Hawaii

    NASA Astrophysics Data System (ADS)

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of K?lauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  17. The submarine South Sandwich arc: structure, instability and sediment wave formation

    NASA Astrophysics Data System (ADS)

    Leat, P. T.; Tate, A. J.; Deen, T. J.; Day, S. J.; Owen, M.

    2010-12-01

    The South Sandwich volcanic arc, in the South Atlantic, is one of the worlds prime examples of an intra-oceanic arc in an entirely oceanic setting, and is unaffected by collision or arc rifting. During the 2010 (cruise JR206) we succeeded in completing, for the first time, bathymetric mapping of the entire 650 km x 100 km submarine arc using multibeam sonar. The new survey shows that there are nine main volcanic centers and ca. twenty main seamounts in the 540 km long volcanic arc. The central seven volcanic centers are 3-3.5 km high and emerge as the main South Sandwich Islands. The northernmost center, around Protector Shoal, is an at least partly silicic cluster of seven stratovolcano seamounts and a 15 km diameter volcanic plateau. The southern Adventure center, which is 45 km across and 1.7 km high, is newly-discovered, and consists of a chain of seamounts and two submarine calderas. Seven distinct calderas are identified in both large centers and seamounts within the arc. There are also three 60 km long tectonically controlled, northwest-southeast-trending seamount chains that extend from the volcanic front to the rear of the arc. The volcanoes have been affected by a range of mass wasting phenomena, including debris avalanches, slumps, erosion at sea level and sediment dispersal by mass flows. There is abundant evidence of slope instability and landsliding of volcanoes during their initial stages of growth, when they form seamounts yet to rise above sea level. On the other hand, the forms of the emergent volcanoes indicate that they have only rarely collapsed to form large tsunamigenic landslides. There are abundant large, striking, wave-like structures that have wavelengths of 2-4 km and amplitudes of 50-150 m on the ca. 2-3 submarine slopes of these volcanoes. TOPAS sub-bottom imagery shows stratified units in the wave-like structures that prograde downslope from wave crests and that can locally be traced from crest to crest, indicating that they are sediment waves, although modified by slumping. Sediment wave fields have central channels and originate from chutes connecting them to shallow shelves around the islands. The origin of the large volumes of sediment required to form the sediment wave fields is interpreted to result from high rates of coastal erosion. The emergent volcanoes are largely glaciated, with many glaciers discharging sediment at the coast. Coasts are unprotected from South Atlantic swell and dominated by eroding cliffs. Sediment on the shelves is discharged along the cutes as turbidity currents or other mass flows towards to sediment wave fields. The resulting thick piles of sediments on lower volcano flanks appear to have reduced slopes and hence increased slope stability.

  18. Exploration models for submarine slope sandstones

    SciTech Connect

    Slatt, R.M.

    1986-09-01

    Recent published studies have demonstrated a far greater potential than previously recognized for submarine slope sandstones to contain significant oil and gas reserves in the Gulf Coast and elsewhere. Comparison of modern slopes with outcrop and subsurface analogs from several areas provided the framework for developing the following submarine slope sandstone exploration models: submarine canyon fill, slope gully/channel fill, slope spillover sand sheets, and intraslope basin fill. Submarine canyon fill is mainly shale, but sandstone beds that form stratigraphic traps may be present. Canyon shale fill juxtaposed against older sandstones can also form stratigraphic traps. Gully/channel fills are sandstones deposited on shallow-gradient slopes or ramps. The proximity of these sandstones to slope shales provides opportunities for stratigraphic traps to develop. Spillover sand sheets are resedimented from a shelf to a shallow-gradient slope and are associated with gully/channel fills. Intraslope basin fill is mainly shale, but elongate, sheetlike, or fan-shaped turbidite sandstones can provide stratigraphic traps. In all of these deposits, slope shales may be sufficiently enriched in organic carbon to be potential hydrocarbon source rocks; the potential for organic-rich shales to accumulate is highest in intraslope basin fill.

  19. Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  20. Seatbelt submarining injury and its prevention countermeasures: How a cantilever seat pan structure exacerbate submarining

    PubMed Central

    Thorbole, Chandrashekhar K.

    2015-01-01

    The purpose of this study and a case report was to demonstrate seat belt webbing induced injury due to seatbelt submarining during the frontal motor vehicle crash. Submarining is an undesired phenomenon during a frontal crash scenario and is dependent on design features of the seat pan and seatbelt system. The lack of adequate anti-submarining features at any seating position with three-point restraint can cause abdominal solid and hollow organ injuries. This paper reports a case of submarining and factors that exacerbated this phenomenon leading to critical occupant abdominal injury. This case report and the following injury causation analysis demonstrate the shortcomings of a cantilever seat pan design in context to the occupant safety. The inadequate seat pan anti-submarining feature in association with lack of seatbelt load-limiter and Pretensioner reduces the level of occupant protection offered by the seat belt system in the rear seat. This case report shows the dangers of cantilever seat pan design and its association with increased risk of submarining causing severe abdominal injuries. PMID:26985421

  1. Space Radar Image of Ruiz Volcano, Colombia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the Ruiz-Tolima volcanic region in central Colombia, about 150 kilometers (93 miles) west of Bogata. The town of Manizales, Colombia, is the pinkish area in the upper right of the image. Ruiz Volcano, also known as Nevado del Ruiz, is the dark red peak below and right of the image center. A small circular summit crater is visible at the top of Ruiz. Tolima Volcano is the sharp peak near the lower left corner of the image. The red color of the image is due to the snow cover and the lack of vegetation at high elevations in these volcanic mountains. Ruiz Volcano, at 5,389 meters (17,681 feet) elevation, is capped by glaciers. In 1985, an explosive eruption melted parts of these glaciers, triggering mudflows along narrow canyons on the sides of the volcano. The town of Armero, located just off the right side of the image, was buried by mud and 21,000 residents were killed. Scientists are using radar images of these remote yet dangerous volcanoes to understand the threats they pose to local populations. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 14, 1994. The image is centered at 4.8 degrees north latitude and 75.3 degrees west longitude. North is toward the upper right. The image shows an area 40 kilometers by 48 kilometers (24.8 miles by 29.8 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  2. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  3. Phase 1 Final Report: Titan Submarine

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of liquid methane into the currently predicted predominantly ethane Kraken Mare. During an extended ninety-day mission, it would transit the throat of Kraken (now Seldon Fretum) and perform similar explorations in other areas of Kraken Mare. Once this half year of exploration is completed the submarine could be tasked to revisit points of interest and perhaps do a complete sonar mapping of the seas. All in all, the submarine could explore over 3,000 km (1,864 mi) in its primary mission at an average speed of 0.3 meters per second.

  4. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  5. Receiver Function Analyses of Uturuncu Volcano, Bolivia and Lastarria/Cordon Del Azufre Volcanoes, Chile

    NASA Astrophysics Data System (ADS)

    Mcfarlin, H. L.; Christensen, D. H.; Thompson, G.; McNutt, S. R.; Ryan, J. C.; Ward, K. M.; Zandt, G.; West, M. E.

    2014-12-01

    Uturuncu Volcano and a zone between Lastarria and Cordon del Azufre Volcanoes (also calledLazufre), have seen much attention lately because of significant and rapid inflation of one to twocentimeters per year over large areas. Uturuncu is located near the Bolivian-Chilean border, andLazufre is located near the Chilean-Argentine border. The PLUTONS Project deployed 28broadband seismic stations around Uturuncu Volcano, from April 2009 to Octobor 2012, and alsodeployed 9 stations around Lastarria and Cordon del Azufre volcanoes, from November, 2011 toApril 2013. Teleseismic receiver functions were generated using the time-domain iterativedeconvolution algorithm of Ligorria and Ammon (1999) for each volcanic area. These receiverfunctions were used to better constrain the depths of magma bodies under Uturuncu and Lazufre,as well as the ultra low velocity layer within the Altiplano-Puna Magma Body (APMB). Thelow velocity zone under Uturuncu is shown to have a top around 10 km depth b.s.l and isgenerally around 20 km thick with regional variations. Tomographic inversion shows a well resolved,near vertical, high Vp/Vs anomaly directly beneath Uturuncu that correlates well with adisruption in the receiver function results; which is inferred to be a magmatic intrusion causing alocal thickening of the APMB. Preliminary results at Lazufre show the top of a low velocityzone around 5-10 km b.s.l with a thickness of 15-30 km.

  6. Evidence for a Mega-Tsunami Generated by Giant Flank Collapse of Fogo Volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Ramalho, R. S.; Madeira, J.; Helffrich, G. R.; Schaefer, J. M.; Winckler, G.; Quartau, R.; Adena, K.

    2013-12-01

    Mega-tsunamis generated by ocean island flank collapses are expected to be some of the most hazardous forces of nature, yet evidence for their near-source effects and inferred high run-ups so far is scarce or hotly debated. A newly discovered deposit on the northern coast of Santiago Island (Cape Verde), however, documents the magnitude and run-up height associated with this kind of event. Additionally to chaotic conglomerates distributed from sea-level up to 100 m elevation standing on slopes as steep as 20, the deposit comprises a number of scattered megaclasts of submarine lava flows, limestone and tuff. The megaclasts are presently located over a higher substructural slope built on younger subaerial lava flows and at elevations ranging 160-220 m a.s.l. All megaclasts correspond to lithologies that crop out exclusively in nearby cliff faces. The origin of this deposit is consequently attributed to an exceptional wave that plucked blocks from the cliff face, transported them inland and deposited them over the higher slopes of the volcanic edifice. The distribution of the megaclasts, together with the local geomorphology, is in agreement with a tsunami that approached the island edifice from the west and was refracted along its northern flank, flooding a series of northwest-oriented valleys. This suggests that the well-known flank collapse of Fogo volcano, located 55 km west of Santiago, is the most likely source, a hypothesis being tested with surface exposure dating. The inferred run-up exceeded 200 m and is consistent with numerical simulations by Paris et al. 2011, implying that the present Fogo island morphology probably developed by at least one giant flank collapse with devastating near-source effects.

  7. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  8. False Color Image of Volcano Sapas Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day, is the length of a Magellan mapping cycle. The spacecraft completed its first mapping cycle and primary mission on May 15, 1991, and immediately began its second cycle. During the first cycle, Magellan mapped more than 80 percent of the planet's surface and the current and subsequent cycles of equal duration will provide complete mapping of Venus. Magellan was launched May 4, 1989, aboard the space shuttle Atlantis and went into orbit around Venus August 10, 1990.

  9. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals and current monitoring level; associated hazards; and detailed descriptions of possible eruption scenarios. Where data allows, the likelihood of different eruption scenarios will also be depicted by probabilistic event trees. The chapters are illustrated with a number of figures, interactive maps and photographs.

  10. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999. Highlights of the catalog period include: 1) a large volcanogenic seismic swarm at Akutan volcano in March and April 1996 (Lu and others, 2000); 2) an eruption at Pavlof Volcano in fall 1996 (Garces and others, 2000; McNutt and others, 2000); 3) an earthquake swarm at Iliamna volcano between September and December 1996; 4) an earthquake swarm at Mount Mageik in October 1996 (Jolly and McNutt, 1999); 5) an earthquake swarm located at shallow depth near Strandline Lake; 6) a strong swarm of earthquakes near Becharof Lake; 7) precursory seismicity and an eruption at Shishaldin Volcano in April 1999 that included a 5.2 ML earthquake and aftershock sequence (Moran and others, in press; Thompson and others, in press). The 1996 calendar year is also notable as the seismicity rate was very high, especially in the fall when 3 separate areas (Strandline Lake, Iliamna Volcano, and several of the Katmai volcanoes) experienced high rates of located earthquakes. This catalog covers the period from January 1, 1994, through December 31,1999, and includes: 1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; 2) a description of instruments deployed in the field and their locations and magnifications; 3) a description of earthquake detection, recording, analysis, and data archival; 4) velocity models used for earthquake locations; 5) phase arrival times recorded at individual stations; and 6) a summary of daily station usage from throughout the report period. We have made calculated hypocenters, station locations, system magnifications, velocity models, and phase arrival information available for download via computer network as a compressed Unix tar file.

  11. The Geology and Volcanic Evolution of the Hjorliefshofthi Outlier, Iceland: A 3D exposure of a Surtseyan Volcano?

    NASA Astrophysics Data System (ADS)

    Watton, T. J.; Thordarson, T.; Jerram, D. A.; Brown, R. J.

    2012-12-01

    Hjrleifshfthi is a small (~4 km2) isolated Quaternary volcanic outlier in southern Iceland that provides an excellent exposure of a Surtseyan volcano. It sits in a large sandur plain formed by glacier melt water outwash from late Holocene subglacial activity at Katla volcano: Aggradation of outwash sediments turned Hjrleifshfthi from an island into part of the mainland. Detailed field mapping, logging and sampling of Hjrleifshfthi has allowed the recognition of thirteen lithofacies and six depositional and eruptive phases. Phase one was the pre-emergent phase of Surtseyan volcanism and is characterised by hyaloclastite deposition. Large syn-sedimentary listric faults dissect phase 1 deposits and are inferred to result from edifice collapse. In Phase 1 faulting may have acted as pathways for magma intrusion in the shallow subsurface. Reactivation of faults continued until phase 4. Phase 2 involved the continued emplacement of hyaloclastite material, reworking (due to shoaling) and the emplacement of subaerial and subaqueous lava flows, fine grained vesicular tephra and basaltic spatter. Phase 2 lava flows thicken northwards suggesting ponding in a large dammed crater separated from the sea. However, in the south, abundant hyaloclastite material was still been generated. Hjrleifshfthi now is what remains of a small slice of a earlier emergent island. Subsidence resulted in the deposition of a shallow marine succession of reworked volcaniclastic material (Phase 3). A distinct red fine-grained, lithic-rich (with partially quenched fragments) ignimbrite succession fills topographic lows (Phase 4). The affinity of the ignimbrite succession to Hjrleifshfthi is unknown. Phase 5 consisted of a localized lava emplacement and marine reworking of volcaniclastic material along the southern margin. Phase 5 basalt lavas flowed down into the crater and buried the marine volcaniclastic sediments. Thin (1-4 m) accretionary lapilli-bearing tuff layers (Phase 6) cap the succession. Inward-dipping beds, the location of basaltic spatter and the distribution of ballistically emplaced bombs constrain the location of the vent that supplied the early and late lava flows. The deposits of each phase have been analysed for major and trace elements to fingerprint the source of the basalt clasts in hyaloclastite material and the ignimbrites, which may have come from Katla volcano. Hjrleifshfthi provides an excellent exposure of a submarine system.

  12. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  13. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arstegui, Javier; Gonzlez, Jos M; Montero, Mara F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID:25671714

  14. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID:25671714

  15. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the countrys capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquern, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local communities. Another concern is a landslide and an associated debris flow (a watery flow of mud, rock, and debris--also known as a lahar) that could occur during periods of no volcanic activity. An event of this type occurred in 1998 at Casita volcano in Nicaragua when extremely heavy rainfall from Hurricane Mitch triggered a landslide that moved down slope and transformed into a rapidly moving debris flow that destroyed two villages and killed more than 2000 people. Historical landslides up to a few hundred thousand cubic meters in volume have been triggered on San Salvador volcano by torrential rainstorms and earthquakes, and some have transformed into debris flows that have inundated populated areas down stream. Destructive rainfall- and earthquake-triggered landslides and debris flows on or near San Salvador volcano in September 1982 and January 2001 demonstrate that such mass movements in El Salvador have also been lethal. This report describes the kinds of hazardous events that occur at volcanoes in general and the kinds of hazardous geologic events that have occurred at San Salvador volcano in the past. The accompanying volcano-hazards-zonation maps show areas that are likely to be at risk when hazardous events occur again.

  16. Hawaiian Volcanoes: Deep Underwater Perspectives

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiichi; Lipman, Peter W.; Garcia, Michael O.; Naka, Jiro; Aramaki, Shigeo

    In the summer of 1963, when a group of Japanese scientists arrived at the aged building of the Hawaiian Volcano Observatory, run by the U.S. Geological Survey, there began a program of cooperation and friendship between American and Japanese volcanologists that continues to the present. The late Professor Takeshi Minakami, a top volcano-physicist long involved in research at various volcanoes, including Asama, then the most active volcano in Japan, led the Japanese group. The time coincided with a changeover in Hawaii, from the pioneering volcanologic studies of Harold Stearns, Gordon Macdonald, and Jerry Eaton to more comprehensive research by younger volcanologists. The Japanese team was also fortunate enough to witness a rift zone eruption at Kilauea volcano (Alae eruption, July 1963), a direct, eye-opening encounter with a volcano plumbing system in action.

  17. Continental margin large-scale instability controlling the flank sliding of Etna volcano

    NASA Astrophysics Data System (ADS)

    Chiocci, F. L.; Coltelli, M.; Bosman, A.; Cavallaro, D.

    2011-05-01

    Etna volcano is affected by a downward sliding of its eastern flank, as rapid as a few cm/year, whose nature is highly debated. Recently collected marine geological and geophysical data allows a detailed image of the morphostructural setting of the continental margin facing the volcano. Here, a large bulge offsets the margin that is deeply affected by widespread semicircular steps, interpreted as evidence of large-scale gravitational instability. Such features permeate the whole margin and extend inshore to the volcano sector where the larger ground deformations are measured. Both submarine instability and subaerial flank sliding are bounded by two regional tectonic lineaments interpreted as weakness lines. These cross the coastline to accommodate the basinward movement of this large sector of the continental margin topped by the Etna volcanic pile. The new data allows re-interpreting the tectonic setting of the coastal belt and proposing a novel structural model, highlighting the active role of the continental margin instability to drive the seaward sliding of the volcano's eastern flank. This model may suggest why a very active basaltic volcano has so unusually developed in front of an active thrust belt.

  18. Tharsis Volcanoes and Valles Marineris, Mars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    It is northern summer on Mars and clouds are very common over the famous Tharsis volcanoes during the afternoon. At the far left, a white patchy cloud denotes the location of Olympus Mons. Ascraeus Mons is under the brightest cloud toward the center left, but the volcanoes Pavonis Mons and Arsia Mons (toward lower left below Ascraeus Mons) have much less cloud cover. The patch of clouds toward the upper left mark the location of the Alba Patera volcano. The Valles Marineris trough system--so long that it would stretch across North America--is seen in the lower third of this picture. This is a color composite of 9 red and 9 blue image strips taken by the Mars Global Surveyor Mars Orbiter Camera on 9 successive orbits from pole-to-pole during the calibration phase of the mission in March 1999. The color is computer-enhanced and is not shown as it would actually appear to the human eye.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Shiveluch and Klyuchevskaya Volcanoes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  20. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  1. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  2. Volcanoes and climate

    NASA Technical Reports Server (NTRS)

    Toon, O. B.

    1982-01-01

    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between v