Sample records for subsonic aircraft plume

  1. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  2. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  3. The Kinetic Nonequilibrium Processes in the Internal Flow and in the Plume of Subsonic and Supersonic Aircrafts

    NASA Technical Reports Server (NTRS)

    Starik, Alexander M.

    1997-01-01

    (1) Our results show that under combustion of thermal destruction products of n-C8H18, and other hydrocarbon fuels with air at the equivalent ratio -0.5 and less the chemical equilibrium is not realized at the exit plane of combustion chamber and in the gas turbine and nozzle for most of small components such as NO2, NO3, HNO, HNO2, HNO3, N(x)H(y), HO2, OH. The chemical equilibrium is not realized in the internal flow of ramjet hydrogen combustion engine too. So at the nozzle exit plane both of gas-turbine hydrocarbon combustion engine and of ramjet hydrogen combustion engine the relatively large values of concentration of such small components as NO3, HNO2, N2O, HNO3, HNO, NH, N2H, HO2, H2O2 may be realized. The exact definition of these component concentration as well as concentration of NO(x), OH, SO2, O, H, H2, H2O at the nozzle exit plane is very important for plume chemistry. (2) The results which were obtained for subsonic and hypersonic aircrafts indicate on the considerable change of the composition of the gas mixture along the plume. This change can be caused not only by the mixture of combustion products with the atmosphere air but by proceeding of whole complex of nonequilibrium photochemical reactions. The photodissociation processes begin to influence on the formation of the free atoms and radicals at flight altitude H greater than or equal to 18 km. Neglect of these processes can result in essential (up to 10(exp 4) times) mistakes of values gamma(sub OH), gamma(sub O), gamma(sub H), gamma(sub HSO3) and some products of CFC's disintegration. It was found that penetration of Cl-containing species from the atmosphere into the exhaust flow and its interaction with nitrogen oxides leads to essential increasing of the concentration of Cl, Cl2, ClO2, ClNO3, CH3Cl and sometimes HCl and the decreasing of ClO concentration by comparison with background values. The results of our analysis show that the plume aircraft with both hydrocarbon and hydrogen

  4. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  5. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.

  6. Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Subsonic Technology Program

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R. (Editor)

    1997-01-01

    This first interim assessment of the subsonic assessment (SASS) project attempts to summarize concisely the status of our knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights the major areas of scientific uncertainty, through review of existing data bases and model-based sensitivity studies. In view of the need for substantial improvements in both model formulations and experimental databases, this interim assessment cannot provide confident numerical predictions of aviation impacts. However, a number of quantitative estimates are presented, which provide some guidance to policy makers.

  7. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  8. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  9. Study of LH2 fueled subsonic passenger transport aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  10. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  11. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  12. Vortex Wakes of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1999-01-01

    A historical overview will be presented of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. The seminar will describe the three areas of vortex research; namely, the magnitude of the hazard posed, efforts to reduce the hazard to an acceptable level, and efforts to develop a systematic means for avoiding vortex wakes. It is first pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The largest portion of the research conducted to date has been directed at finding ways to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from articles published in aerospace journals that are available publicly.

  13. An Integrated Low-Speed Performance and Noise Prediction Methodology for Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Olson, E. D.; Mavris, D. N.

    2000-01-01

    An integrated methodology has been assembled to compute the engine performance, takeoff and landing trajectories, and community noise levels for a subsonic commercial aircraft. Where feasible, physics-based noise analysis methods have been used to make the results more applicable to newer, revolutionary designs and to allow for a more direct evaluation of new technologies. The methodology is intended to be used with approximation methods and risk analysis techniques to allow for the analysis of a greater number of variable combinations while retaining the advantages of physics-based analysis. Details of the methodology are described and limited results are presented for a representative subsonic commercial aircraft.

  14. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  15. Hydrogen for the subsonic transport. [aircraft design and fuel requirements

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.; Snow, D. B.

    1975-01-01

    Relations between air travel and fuel requirements are examined. Alternate fuels considered in connection with problems related to a diminishing supply of petroleum include synthetic jet fuel, methane, and hydrogen. A cruise flight of a subsonic aircraft on a hydrogen-fueled jet engine was demonstrated in 1957. However, more development work is required to provide a sound engineering base for a complete air transportation system using hydrogen as fuel. Aircraft designs for alternate fuels are discussed, giving attention to hydrogen-related technology already available and new developments which are needed.

  16. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  17. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  18. Optical wave distortion at perturbations of air density near aircrafts with subsonic velocities

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Sukharev, A. A.

    2017-11-01

    The mean intensity, intensity fluctuations, and regular and random displacements of optical beams propagating through a zone of increased density formed at subsonic airflow about a turret in the turbulent atmosphere have been analyzed. It has been shown that the presence of perturbations around a turret due to the subsonic velocity of aircraft affects slightly the studied characteristics of the beam. Data illustrating changes in the studied beam characteristics for paths of different geometry and different turbulent conditions of radiation propagation are presented.

  19. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  20. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  1. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  2. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  3. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  4. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics

  5. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  6. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  7. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  8. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  9. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  10. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The use of LIDAR to characterize aircraft exhaust plumes

    DOT National Transportation Integrated Search

    2003-06-22

    Aircraft emissions are a growing concern for the FAA, airports, and the community. U.S. : and international air quality models were previously unable to accurately predict initial : plume dispersion and the resulting pollutant concentrations because ...

  12. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  13. Development of RTM and powder prepreg resins for subsonic aircraft primary structures

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.

    1993-01-01

    Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.

  14. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  15. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  16. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  17. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  18. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  19. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  20. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  1. Further considerations of engine emissions from subsonic aircraft at cruise altitude

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Le Dilosquer, M.; Singh, R.; Rycroft, M. J.

    The most significant man-made sources of pollution of the higher troposphere and lower stratosphere are exhaust emissions from civil subsonic aircraft at cruise altitude (8-12 km). This paper examines such issues by computational modelling of Boeing 747-400 flights during their cruise phase between selected city pairs, for example London to Tokyo. The engine performance, exhaust pollutant prediction, and detailed flight history analysis effects of different Mach numbers and of increasing the cruise altitude from 9.8 to 12.1 km during the flight rather than staying at a constant cruise altitude of 10.5 km are studied in detail. To minimise the overall effects of atmospheric pollution, a Mach number of 0.85 and increasing altitude is the favoured cruise technique.

  2. Subsonic Aircraft Soot: A Tracer Documenting Stratospheric Vertical Mixing and Barriers to Inter-Hemispheric Exchanges

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    Pole-to-pole variability of soot aerosol from subsonic aircraft is evidence of two important aspects of stratospheric transport. Vertical transport to 20 km pressure altitude from flight levels near 10-12 km cannot be explained by isentropic mixing. Instead, lofting in the tropics is a possibility. A strong meridional gradient implies that stratospheric soot aerosol residence time is shorter than are mixing times between the hemispheres. Therefore, little if any of exhaust constituents (with residence times similar to that of aircraft soot aerosol), emitted in heavily traveled flight corridors in northern mid-latitudes by a future supersonic fleet, would be transported to the southern hemisphere. However, a significant fraction of NOx could be lofted to altitudes above flight levels where it would dominate ozone depletion.

  3. Introduction to the SONEX (Subsonic Assessment Ozone and Nitrogen Oxides Experiment) and POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) Special Issue

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Singh, Hanwant B.; Schlager, Hans; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Emissions of atmospheric species from the engines of subsonic aircraft at cruise altitude (roughly, above seven kilometers) are of concern to scientists, the aviation industry and policymakers for two reasons. First, water vapor, soot and sulfur oxides, and related heterogeneous processes, may modify clouds and aerosols enough to perturb radiative forcing in the UT/LS (upper troposphere/lower stratosphere). A discussion of these phenomena appears in Chapter 3 of the IPCC Aviation Assessment (1999). An airborne campaign conducted to evaluate aviation effects on contrail, cirrus and cloud formation, is described in Geophysical Research Letters. The second concern arises from subsonic aircraft emissions of nitrogen oxides (NO + NO2 = NO(sub x)), CO, and hydrocarbons. These species may add to the background mixture of photochemically reactive species that form ozone. In the UT/LS, ozone is a highly effective greenhouse gas. The impacts of subsonic aircraft emissions on tropospheric NO(sub x) and ozone budgets have been studied with models that focus on UT chemistry [e.g. see discussions of individual models in Brasseur et al., 1998; Friedl et al., 1997; IPCC, 1999]. Depending on the model used, projected increases in the global subsonic aircraft fleet from 1992 to 2015 will lead to a 50-100 pptv increase in UT/LS NO. at 12 km (compared to 50-150 pptv background) in northern hemisphere midlatitudes. The corresponding 12-km ozone increase is 7-11 ppbv, or 5-10% (Chapter 4 in IPCC, 1999). Two major sources of uncertainties in model estimates of aviation effects are: (1) the often limited degree to which global models - the scale required to evaluate aircraft emissions - realistically simulate atmospheric transport and other physical processes; (2) limited UT/LS observations of trace gases with which to evaluate model performance. In response to the latter deficiency, a number of airborne campaigns aimed at elucidating the effect of aircraft on atmospheric nitrogen oxides

  4. Final report: the use of LIDAR to characterize aircraft initial plume characteristics

    DOT National Transportation Integrated Search

    2004-02-28

    Aircraft emissions are a growing concern for the FAA, airports, and the community. U.S. : and international air quality models were previously unable to accurately predict initial : plume dispersion and the resulting pollutant concentrations because ...

  5. The Role of Turbulence in Chemical and Dynamical Processes in the Near-Field Wake of Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. Steve

    2002-01-01

    During this grant, covering the period from September 1998 to December 2001, we continued the investigation of the role of turbulent mixing in the wake of subsonic aircraft initiated in 1994 for NASA's Atmospheric Effects of Aviation Project. The goal of the research has been to provide sufficient understanding and quantitative analytical capability to assess the dynamical, chemical, and microphysical interactions in the near-field wake that have the greatest potential to influence the global atmospheric impact of the projected fleet of subsonic aircraft. Through large-eddy simulations we have shown that turbulence in the early wake dynamics can have a strong effect on both the ice microphysics of contrail evolution and on wake chemistry. The wake vortex dynamics are the primary determinant of the vertical extent of the contrail; this together with the local wind shear largely determines the horizontal extent. The fraction of the initial ice crystals surviving the wake vortex dynamics, their spatial distribution, and the ice mass distribution are all sensitive to the aircraft type, assumed initial ice crystal number, and ambient humidity and turbulence conditions. Our model indicates that there is a significant range of conditions for which a smaller aircraft such as a B737 produces as significant a persistent contrail as a larger aircraft such as a B747, even though the latter consumes almost five times as much fuel. Large-eddy simulations of the near wake of a B757 provided a fine-grained chemical-dynamical representation of simplified NOx - HOx chemistry in wakes of ages from a few seconds to several minutes. By sampling the simulated data in a manner similar to that of in situ aircraft measurements it was possible to provide a likely explanation for a puzzle uncovered in the 1996 SUCCESS flight measurements of OH and HO2 The results illustrate the importance of considering fluid dynamics effects in interpreting chemistry results when mixing rates and species

  6. Power-by-Wire Development and Demonstration for Subsonic Civil Transport

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."

  7. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  8. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  9. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  10. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  11. Summary of measurement results of ozone, methane, and nonmethane hydrocarbons for C-54 aircraft. 1979 Southeastern Virginia Urban Plume Study

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Purgold, G. C.; Gregory, G. L.

    1981-01-01

    Methane, nonmethane hydrocarbon, and ozone data collected in a C-54 aircraft during the 1979 Southeastern Virginia Urban Plume Study are presented. Three major aircraft experiments were flown on five separate days in August collecting 20 hours of flight data. Direct correlation between ozone and hydrocarbon plumes was observed on several occasions.

  12. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  13. FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1977-01-01

    A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.

  14. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  15. Parameterization of plume chemistry into large-scale atmospheric models: Application to aircraft NOx emissions

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Caro, D.; Paoli, R.; Hauglustaine, D. A.; CuéNot, B.; Cozic, A.; Paugam, R.

    2009-10-01

    A method is presented to parameterize the impact of the nonlinear chemical reactions occurring in the plume generated by concentrated NOx sources into large-scale models. The resulting plume parameterization is implemented into global models and used to evaluate the impact of aircraft emissions on the atmospheric chemistry. Compared to previous approaches that rely on corrected emissions or corrective factors to account for the nonlinear chemical effects, the present parameterization is based on the representation of the plume effects via a fuel tracer and a characteristic lifetime during which the nonlinear interactions between species are important and operate via rates of conversion for the NOx species and an effective reaction rates for O3. The implementation of this parameterization insures mass conservation and allows the transport of emissions at high concentrations in plume form by the model dynamics. Results from the model simulations of the impact on atmospheric ozone of aircraft NOx emissions are in rather good agreement with previous work. It is found that ozone production is decreased by 10 to 25% in the Northern Hemisphere with the largest effects in the north Atlantic flight corridor when the plume effects on the global-scale chemistry are taken into account. These figures are consistent with evaluations made with corrected emissions, but regional differences are noticeable owing to the possibility offered by this parameterization to transport emitted species in plume form prior to their dilution at large scale. This method could be further improved to make the parameters used by the parameterization function of the local temperature, humidity and turbulence properties diagnosed by the large-scale model. Further extensions of the method can also be considered to account for multistep dilution regimes during the plume dissipation. Furthermore, the present parameterization can be adapted to other types of point-source NOx emissions that have to be

  16. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  17. The statistical average of optical properties for alumina particle cluster in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  18. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  19. Effects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface

    NASA Astrophysics Data System (ADS)

    Bae, J.-S.; Inman, D. J.; Lee, I.

    2004-07-01

    The nonlinear aeroelastic characteristics of an aircraft wing with a control surface are investigated. A doublet-hybrid method is used for the calculation of subsonic unsteady aerodynamic forces and the minimum-state approximation is used for the approximation of aerodynamic forces. A free vibration analysis is performed using the finite element and the fictitious mass methods. The structural nonlinearity in the control surface hinge is represented by both free-play and a bilinear nonlinearity. These nonlinearities are linearized using the describing function method. From the nonlinear flutter analysis, various types of limit cycle oscillations and periodic motions are observed in a wide range of air speeds below the linear flutter boundary. The effects of structural nonlinearities on aeroelastic characteristics are investigated.

  20. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  1. Follow-On Technology Requirement Study for Advanced Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.

    2003-01-01

    A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.

  2. Impact of aircraft NO x emission on NO x and ozone over China

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Isaksen, I. S. A.; Sundet, J. K.; Zhou, Xiuji; Ma, Jianzhong

    2003-07-01

    A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NO x emission on NO x and ozone over China in terms of a year 2000 scenario of subsonic aircraft NO x emission. The results show that subsonic aircraft NO x emission significantly affects northern China, which makes NO x at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NO x increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NO x increases by less than 10 pptv by virtue of subsonic aircraft NO x emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NO x emission over China is doubled, its influence is still relatively small.

  3. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  4. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic

  5. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  6. Future Carrier-Based Tactical Aircraft Study

    DOT National Transportation Integrated Search

    1996-03-01

    This report describes an aircraft database which was developed to identify technology trends for several classes of tactical naval aircraft, including subsonic attack, supersonic fighter, and supersonic multimission aircraft classes. This study used ...

  7. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  8. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  9. The future of very large subsonic transports

    NASA Technical Reports Server (NTRS)

    Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.

    1996-01-01

    The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and

  10. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  11. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  12. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  13. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  14. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  15. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  16. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  17. Flutter analysis of swept-wing subsonic aircraft with parameter studies of composite wings

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Stein, M.

    1974-01-01

    A computer program is presented for the flutter analysis, including the effects of rigid-body roll, pitch, and plunge of swept-wing subsonic aircraft with a flexible fuselage and engines mounted on flexible pylons. The program utilizes a direct flutter solution in which the flutter determinant is derived by using finite differences, and the root locus branches of the determinant are searched for the lowest flutter speed. In addition, a preprocessing subroutine is included which evaluates the variable bending and twisting stiffness properties of the wing by using a laminated, balanced ply, filamentary composite plate theory. The program has been substantiated by comparisons with existing flutter solutions. The program has been applied to parameter studies which examine the effect of filament orientation upon the flutter behavior of wings belonging to the following three classes: wings having different angles of sweep, wings having different mass ratios, and wings having variable skin thicknesses. These studies demonstrated that the program can perform a complete parameter study in one computer run. The program is designed to detect abrupt changes in the lowest flutter speed and mode shape as the parameters are varied.

  18. Advanced subsonic long-haul transport terminal area compatibility study. Volume 1: Compatibility assessment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was made to identify airplane research and technology necessary to ensure advanced transport aircraft the capability of accommodating forecast traffic without adverse impact on airport communities. Projections were made of the delay, noise, and emissions impact of future aircraft fleets on typical large urban airport. Design requirements, based on these projections, were developed for an advanced technology, long-haul, subsonic transport. A baseline aircraft was modified to fulfill the design requirements for terminal area compatibility. Technical and economic comparisons were made between these and other aircraft configured to support the study.

  19. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  20. Comparison of the chemical evolution and characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-06-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Extensive investigations of boreal fire plume evolution were undertaken during ARCTAS-B, where four distinct fire plumes that were intercepted by the aircraft over a range of down-wind distances (0.1 to 16 hr transport times) were studied in detail. Based on these analyses, there was no evidence for ozone production and a box model simulation of the data confirmed that net ozone production was slow (on average 1 ppbv h-1 in the first 3 h and much lower afterwards) due to limited NOx. Peroxyacetyl nitrate concentrations (PAN) increased with plume age and the box model estimated an average production rate of ~80 pptv h-1 in the first 3 h. Like ozone, there was also no evidence for net secondary inorganic or organic aerosol formation. There was no apparent increase in aerosol mass concentrations in the boreal fire plumes due to secondary organic aerosol (SOA) formation; however, there were indications of chemical processing of the organic aerosols. In addition to the detailed studies of boreal fire plume evolution, about 500 smoke plumes intercepted by the NASA DC-8 aircraft were segregated by fire source region. The normalized excess mixing ratios (i.e. ΔX/ΔCO) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen (NOx), ozone, PAN) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared.

  1. SHARP: Subsonic High Altitude Research Platform

    NASA Technical Reports Server (NTRS)

    Beals, Todd; Burton, Craig; Cabatan, Aileen; Hermano, Christine; Jones, Tom; Lee, Susan; Radloff, Brian

    1991-01-01

    The Universities Space Research Association is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.mi. at 100,000 ft with a 2500 lb payload. The second mission is also a polar mission, with an altitude of 70,000 ft and an increased payload of 4000 lbs. For the third mission, the aircraft will takeoff at NASA Ames, cruise at 100,000 ft carrying a 2500 lb payload, and land at Puerto Montt, Chile. The final mission requires the aircraft to take off at NASA Ames, cruise at 100,000 ft with a 1000 lb payload, make an excursion to 120,000 ft, and land at Howard AFB, Panama. Three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations have been determined to be the most suitable for meeting the above requirements. In the event that a requirement cannot be obtained within the given constraints, recommendations for proposal modifications are given.

  2. Modelling exhaust plume mixing in the near field of an aircraft

    NASA Astrophysics Data System (ADS)

    Garnier, F.; Brunet, S.; Jacquin, L.

    1997-11-01

    A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. Our investigation is focused on the near field, extending from the exit nozzle until about 30 s after the wake is generated, in the vortex phase. This study was performed by using an integral model and a numerical simulation for two large civil aircraft: a two-engine Airbus 330 and a four-engine Boeing 747. The influence of the wing-tip vortices on the dilution ratio (defined as a tracer concentration) shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. In the early wake, the engine jet location (i.e. inboard or outboard engine jet) has an important influence on the mixing rate. The plume streamlines inside the vortices are subject to distortion and stretching, and the role of the descent of the vortices on the maximum tracer concentration is discussed. Qualitative comparison with contrail photograph shows similar features. Finally, tracer concentration of inboard engine centreline of B-747 are compared with other theoretical analyses and measured data.

  3. Computer programs for estimating civil aircraft economics

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Molloy, J. K.; Neubawer, M. J.

    1980-01-01

    Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs.

  4. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  5. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  6. Atmospheric Effects of Aviation: First Report of the Subsonic Assessment Project

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M. (Editor); Friedl, Randall R. (Editor); Wesoky, Howard L. (Editor)

    1996-01-01

    This document is the first report from the Office of Aeronautics Advanced Subsonic Technology (AST) Program's Subsonic Assessment (SASS) Project. This effort, initiated in late 1993, has as its objective the assessment of the atmospheric effects of the current and predicted future aviation fleet. The two areas of impact are ozone (stratospheric and tropospheric) and radiative forcing. These are driven, respectively, by possible perturbations from aircraft emissions of NOX and soot and/or sulfur-containing particles. The report presents the major questions to which project assessments will be directed (Introduction) and the status of six programmatic elements: Emissions Scenarios, Exhaust Characterization, Near-Field Interactions, Kinetics and Laboratory Studies, Global Modeling, and Atmospheric Observations (field studies).

  7. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 2: AFT C.G. simulation and analysis

    NASA Technical Reports Server (NTRS)

    Urie, D. M.

    1979-01-01

    Relaxed static stability and stability augmentation with active controls were investigated for subsonic transport aircraft. Analytical and simulator evaluations were done using a contemporary wide body transport as a baseline. Criteria for augmentation system performance and unaugmented flying qualities were evaluated. Augmentation control laws were defined based on selected frequency response and time history criteria. Flying qualities evaluations were conducted by pilots using a moving base simulator with a transport cab. Static margin and air turbulence intensity were varied in test with and without augmentation. Suitability of a simple pitch control law was verified at neutral static margin in cruise and landing flight tasks. Neutral stability was found to be marginally acceptable in heavy turbulence in both cruise and landing conditions.

  8. Subsonic Wing Optimization for Handling Qualities Using ACSYNT

    NASA Technical Reports Server (NTRS)

    Soban, Danielle Suzanne

    1996-01-01

    The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.

  9. Alternate-fueled transport aircraft possibilities

    NASA Technical Reports Server (NTRS)

    Aiken, W. S.

    1977-01-01

    The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.

  10. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  11. The 1979 Southeastern Virginia Urban Plume Study. Volume 1: Description of experiments and selected aircraft data

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.

  12. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  13. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  14. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  15. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  16. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  17. Analysis and design of insulation systems for LH2-fueled aircraft

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R., Jr.

    1979-01-01

    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  18. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  19. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  20. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  1. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  2. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  3. Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone

    NASA Technical Reports Server (NTRS)

    Hill, G. F.; Sachse, G. W.; Cofer, W. R., III

    1981-01-01

    The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight.

  4. Jet aircraft emissions during cruise: Present and future

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1975-01-01

    Forecasts of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are compared to cruise emission for present day aircraft. The forecasts are based on: (1) knowledge of emission characteristics of combustors and augmentors; (2) combustion research in emission reduction technology, and (3) trends in projected engine designs for advanced subsonic or supersonic commercial aircraft. Recent progress that was made in the evolution of emissions reduction technology is discussed.

  5. Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond

    2015-01-01

    A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.

  6. Review of Propulsion Technologies for N+3 Subsonic Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Ashcraft, Scott W.; Padron, Andres S.; Pascioni, Kyle A.; Stout, Gary W., Jr.; Huff, Dennis L.

    2011-01-01

    NASA has set aggressive fuel burn, noise, and emission reduction goals for a new generation (N+3) of aircraft targeting concepts that could be viable in the 2035 timeframe. Several N+3 concepts have been formulated, where the term "N+3" indicate aircraft three generations later than current state-of-the-art aircraft, "N". Dramatic improvements need to be made in the airframe, propulsion systems, mission design, and the air transportation system in order to meet these N+3 goals. The propulsion system is a key element to achieving these goals due to its major role with reducing emissions, fuel burn, and noise. This report provides an in-depth description and assessment of propulsion systems and technologies considered in the N+3 subsonic vehicle concepts. Recommendations for technologies that merit further research and development are presented based upon their impact on the N+3 goals and likelihood of being operational by 2035.

  7. Noise emissions and building structural vibration levels from the Supersonic Concorde and subsconic turbojet aircraft

    DOT National Transportation Integrated Search

    1975-03-01

    Noise emissions and building structural vibration levels were measured during landing and take off operations of the Anglo/French supersonic aircraft (Concorde) and from some conventional subsonic turbojet aircraft. Measurements were made at both the...

  8. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASA’s Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  9. Total peroxy nitrates and ozone production : analysis of forest fire plumes during BORTAS campaign

    NASA Astrophysics Data System (ADS)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Lewis, Ally; Parrington, Mark; Palmer, Paul; Dari Salisburgo, Cesare

    2014-05-01

    The goal of this work is to investigate the connection between PNS and ozone within plumes emitted from boreal forest fires and the possible perturbation to oxidant chemistry in the troposphere. During the Aircraft campaign in Canada called BORTAS (summer 2011 ) were carried out several profiles from ground up to 10 km with the BAe-146 aircraft to observe the atmospheric composition inside and outside fire plumes. The BORTAS flights have been selected based on the preliminary studies of 'Plume identification', selecting those effected by Boreal forest fire emissions (CO > 200 ppbv). The FLAMBE fire counts were used concertedly with back trajectory calculations generated by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to locate the sources of Boreal biomass burning.Profiles measured on board the BAe-146 aircraft are used to calculate the productions of PNs and O3 within the biomass burning plume. By selecting the flights that intercept the biomass burning plume, we evaluate the ratio between the ozone production and the PNs production within the plume. Analyzing this ratio it is possible to determine whether O3 production or PNs production is the dominant process in the biomass burning boreal plume detected during BORTAS campaign.

  10. A comparative study of two codes with an improved two-equation turbulence model for predicting jet plumes

    NASA Technical Reports Server (NTRS)

    Balakrishnan, L.; Abdol-Hamid, Khaled S.

    1992-01-01

    Compressible jet plumes were studied using a two-equation turbulence model. A space marching procedure based on an upwind numerical scheme was used to solve the governing equations and turbulence transport equations. The computed results indicate that extending the space marching procedure for solving supersonic/subsonic mixing problems can be stable, efficient and accurate. Moreover, a newly developed correction for compressible dissipation has been verified in fully expanded and underexpanded jet plumes. For a sonic jet plume, no improvement in results over the standard two-equation model was seen. However for a supersonic jet plume, the correction due to compressible dissipation successfully predicted the reduced spreading rate of the jet compared to the sonic case. The computed results were generally in good agreement with the experimental data.

  11. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  12. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  13. Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-12-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

  14. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  15. Aerodynamic performance of a fan stage utilizing Variable Inlet Guide Vanes (VIGVs) for thrust modulation. [subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1983-01-01

    An experimental research program was conducted in the Lewis Research Center's 9x15-foot (2.74x4.57 m) low speed wind tunnel to evaluate the aerodynamic performance of an inlet and fan system with variable inlet guide vanes (VIGVs) for use on a subsonic V/STOL aircraft. At high VIGV blade angles (lower weight flow and thrust levels), the fan stage was stalled over a major portion of its radius. In spite of the stall, fan blade stresses only exceeded the limits at the most extreme flow conditions. It was found that inlet flow separation does not necessarily lead to poor inlet performance or adverse fan operating conditions. Generally speaking, separated inlet flow did not adversely affect the fan blade stress levels. There were some cases, however, at high VIGV angles and high inlet angles-of-attack where excessive blade stress levels were encountered. An evaluation term made up of the product of the distortion parameter, K alpha, the weight flow and the fan pressure ratio minus one, was found to correlate quite well with the observed blade stress results.

  16. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  17. Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  18. Subsonic aircraft: Evolution and the matching of size to performance

    NASA Technical Reports Server (NTRS)

    Loftin, L. K., Jr.

    1980-01-01

    Methods for estimating the approximate size, weight, and power of aircraft intended to meet specified performance requirements are presented for both jet-powered and propeller-driven aircraft. The methods are simple and require only the use of a pocket computer for rapid application to specific sizing problems. Application of the methods is illustrated by means of sizing studies of a series of jet-powered and propeller-driven aircraft with varying design constraints. Some aspects of the technical evolution of the airplane from 1918 to the present are also briefly discussed.

  19. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    PubMed

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  20. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  1. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  2. Predicted aircraft effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Wofsy, Steve; Kley, Dieter; Zhadin, Evgeny A.; Johnson, Colin; Weisenstein, Debra; Prather, Michael J.; Wuebbles, Donald J.

    1991-01-01

    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude.

  3. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  4. Alternate aircraft fuels prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  5. An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Teets, Edward

    1997-01-01

    An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.

  6. Representative Atmospheric Plume Development for Elevated Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law

  7. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  8. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Woodbury, N. W.

    1975-01-01

    The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089.

  9. Numerical Simulation of Tip Vortices of Wings in Subsonic and Transonic Flows,

    DTIC Science & Technology

    1986-01-01

    roll-up of the tip vor- rv : dimensionless strength of tip vortex " tex in both subsonic and transonic flows. Four test cases which used small and large...of their po- tion and the roll-up of the tip vortex has been observed for tential hazard to aircraft that encounter them in flight. To all the cases...such flows encompassing large air- tip- vortex strength. craft wakes (see for example Refs. 1-2). In spite of this, the present understanding of such

  10. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  11. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  12. Aerodynamic performance of a fan stage utilizing variable inlet guide vanes (VIGV's) for thrust modulation. [subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1983-01-01

    An experimental research program was conducted in the Lewis Research Center's 9 x 15-foot (2.74 x 4.57 m) low speed wind tunnel to evaluate the aerodynamic performance of an inlet and fan system with variable inlet guide vanes (VIGVs) for use on a subsonic V/STOL aircraft. At high VIGV blade angles (lower weight flow and thrust levels), the fan stage was stalled over a major portion of its radius. In spite of the stall, fan blade stresses only exceeded the limits at the most extreme flow conditions. It was found that inlet flow separation does not necessarily lead to poor inlet performance or adverse fan operating conditions. Generally speaking, separated inlet flow did not adversely affect the fan blade stress levels. There were some cases, however, at high VIGV angles and high inlet angles-of-attack where excessive blade stress levels were encountered. An evaluation term made up of the product of the distortion parameter, K alpha, the weight flow and the fan pressure ratio minus one, was found to correlate quite well with the observed blade stress results. Previously announced in STAR as N83-27957

  13. Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.

    1986-01-01

    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.

  14. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  15. Subsonic Round and Rectangular Twin Jet Flow Effects

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Wernet, Mark

    2014-01-01

    Subsonic and supersonic aircraft concepts proposed by NASAs Fundamental Aeronautics Program have integrated propulsion systems with asymmetric nozzles. The asymmetry in the exhaust of these propulsion systems creates asymmetric flow and acoustic fields. The flow asymmetries investigated in the current study are from two parallel round, 2:1, and 8:1 aspect ratio rectangular jets at the same nozzle conditions. The flow field was measured with streamwise and cross-stream particle image velocimetry (PIV). A large dataset of single and twin jet flow field measurements was acquired at subsonic jet conditions. The effects of twin jet spacing and forward flight were investigated. For round, 2:1, and 8:1 rectangular twin jets at their closest spacings, turbulence levels between the two jets decreased due to enhanced jet mixing at near static conditions. When the flight Mach number was increased to 0.25, the flow around the twin jet model created a velocity deficit between the two nozzles. This velocity deficit diminished the effect of forward flight causing an increase in turbulent kinetic energy relative to a single jet. Both of these twin jet flow field effects decreased with increasing twin jet spacing relative to a single jet. These variations in turbulent kinetic energy correlate with changes in far-field sound pressure level.

  16. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; hide

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  17. Spatial and temporal characterization of methane plumes from mobile platforms

    NASA Astrophysics Data System (ADS)

    O'Brien, A.; Wendt, L.; Miller, D. J.; Lary, D. J.; Zondlo, M. A.

    2013-12-01

    The spatial and temporal characterization of methane plumes from hydraulic fracturing well sites are presented. Methane measurements from the Marcellus shale region obtained using a commercial instrument on a motor vehicle are discussed. Over 100 well sites in the region were sampled and the methane signature in the vicinity of these wells is presented. Additionally, measurements of methane from our open-path instrument flown aboard the UT Dallas AMR Payload Master 100 remote-controlled, electric aircraft in the Barnett shale region are presented. Using our observations of aircraft surveys near well sites and a gaussian plume dispersion model emission estimates of fugitive methane are presented.

  18. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  19. Measurements of the vortex wakes of a subsonic and supersonic transport model in the 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Corsiglia, V. R.; Phillippe, J. J.

    1974-01-01

    The rolling moment induced on aircraft models in the wake of a model of a subsonic transport and of a supersonic transport was measured as a function of angle of attack for several configurations. The tests are described and an analysis of the data is given in this memorandum.

  20. On the use of controls for subsonic transport performance improvement: Overview and future directions

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  1. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  2. Subsonic tests of an all-flush-pressure-orifice air data system

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1981-01-01

    The use of an all-flush-pressure-orifice array as a subsonic air data system was evaluated in flight and wind tunnel tests. Two orifice configurations were investigated. Both used orifices arranged in a cruciform pattern on the airplane nose. One configuration also used orifices on the sides of the fuselage for a source of static pressure. The all-nose-orifice configuration was similar to the shuttle entry air data system (SEADS). The flight data were obtained with a KC-135A airplane. The wind tunnel data were acquired with a 0.035-scale model of the KC-135A airplane. With proper calibration, several orifices on the vertical centerline of the vehicle's nose were found to be satisfactory for the determination of total pressure and angle of attack. Angle of sideslip could be accurately determined from pressure measurements made on the horizontal centerline of the aircraft. Orifice pairs were also found that provided pressure ratio relationships suitable for the determination of Mach number. The accuracy that can be expected for the air data determined with SEADS during subsonic orbiter flight is indicated.

  3. Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Wey, Changlie

    1999-01-01

    NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a

  4. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  5. Focused Assessment of State-of-the-Art CFD Capabilities for Prediction of Subsonic Fixed Wing Aircraft Aerodynamics

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wahls, Richard A.

    2008-01-01

    Several recent workshops and studies are used to make an assessment of the current status of CFD for subsonic fixed wing aerodynamics. Uncertainty quantification plays a significant role in the assessment, so terms associated with verification and validation are given and some methodology and research areas are highlighted. For high-subsonic-speed cruise through buffet onset, the series of drag prediction workshops and NASA/Boeing buffet onset studies are described. For low-speed flow control for high lift, a circulation control workshop and a synthetic jet flow control workshop are described. Along with a few specific recommendations, gaps and needs identified through the workshops and studies are used to develop a list of broad recommendations to improve CFD capabilities and processes for this discipline in the future.

  6. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data.

    PubMed

    Baker, K R; Woody, M C; Valin, L; Szykman, J; Yates, E L; Iraci, L T; Choi, H D; Soja, A J; Koplitz, S N; Zhou, L; Campuzano-Jost, Pedro; Jimenez, Jose L; Hair, J W

    2018-10-01

    The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O 3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O 3 . Predicted wildfire ozone (O 3 ) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O 3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM 2.5 at rural monitors near the Rim fire were not usually coincident with elevated O 3 . Published by Elsevier B.V.

  7. Simulation Packages Expand Aircraft Design Options

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  8. Vehicle design considerations for active control application to subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Clement, W. F.

    1974-01-01

    The state of the art in active control technology is summarized. How current design criteria and airworthiness regulations might restrict application of this emerging technology to subsonic CTOL transports of the 1980's are discussed. Facets of active control technology considered are: (1) augmentation of relaxed inherent stability; (2) center-of-gravity control; (3) ride quality control; (4) load control; (5) flutter control; (6) envelope limiting, and (7) pilot interface with the control system. A summary and appraisal of the current state of the art, design criteria, and recommended practices, as well as a projection of the risk in applying each of these facets of active control technology is given. A summary of pertinent literature and technical expansions is included.

  9. Langley 14- by 22-foot subsonic tunnel test engineer's data acquisition and reduction manual

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Orie, Nettie M.

    1994-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel is used to test a large variety of aircraft and nonaircraft models. To support these investigations, a data acquisition system has been developed that has both static and dynamic capabilities. The static data acquisition and reduction system is described; the hardware and software of this system are explained. The theory and equations used to reduce the data obtained in the wind tunnel are presented; the computer code is not included.

  10. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  11. Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.

    2010-01-01

    A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.

  12. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  13. Experimental study of the interaction between the wing of a subsonic aircraft and a nacelle of a high by-pass ratio engine

    NASA Technical Reports Server (NTRS)

    Levart, P.

    1981-01-01

    The oncoming of a new generation of subsonic transport aircraft (with supercritical wing and high by-pass ratio turbofans) led to an experimental study of wing nacelle jet pylon interference in transonic flow. To this end, a test set-up was developed at the ONERA S3Ch wind tunnel. The nacelle models represent a turbofan by means of two compressed air jets. The scale is 1/18.5. The nacelles are fixed on a thrust balance measuring afterbody thrust and discharge coefficients. The wing is located between the sidewalls of the test section. Pressures are measured through 456 holes located on 8 airfoils. Drag coefficient of the wing is obtained by wake survey. The following parameters can vary (1) wing/nacelle position; (2) upstream Mach number (from 0.3 to 0.8); (3) jet pressure ratio; (4) with/without pylon and (5) type of nacelle. Wing nacelle interference can be studied by means of total thrust drag analysis as a functon of the various parameters. The test set-up is described and examples of results are presented.

  14. Aircraft Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  15. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  16. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  17. Aerodynamics of powered missile separation from F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ahmad, J. U.; Shanks, S. P.; Buning, P. G.

    1993-01-01

    A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume interactions of a missile separating from a generic wing and from an F/A-18 aircraft in transonic flow. The missile is mounted below the wing for missile separation from the wing and on the F/A-18 fuselage at the engine inlet side for missile separation from aircraft. Static and powered missile separation cases are considered to examine the influence of the missile and plume on the wing and F/A-18 fuselage and engine inlet. The aircraft and missile are at two degrees angle of attack, Reynolds number of 10 million, freestream Mach number of 1.05 and plume Mach number of 3.0. The computational results show the details of the flow field.

  18. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  19. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  20. Navier-Stokes computations useful in aircraft design

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1990-01-01

    Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.

  1. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  2. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  3. Quest for Performance: the Evolution of Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Loftin, Lawrence K., Jr.

    1985-01-01

    The technical evolution of the subsonic airplane is traced from a curiosity at the beginning of World War I to the highly useful machine of today. Included are descriptions of significant aircraft which incorporated important technical innovations and served to shape the future course of aeronautical development, as well as aircraft which represented the state-of-art in a particular time frame or were much used or liked. The discussion is related primarily to aircraft configuration evolution and associated aerodynamic characteristics and, to a lesser extent, to developments in aircraft construction and propulsion. The material is presented in a manner designed to appeal to the nontechnical reader who is interested in the evolution of the airplane, as well as to students of aeronautical engineering and others with an aeronautical background.

  4. The 1979 Southeastern Virginia Urban Plume Study (SEV-UPS): Surface and airborne studies

    NASA Technical Reports Server (NTRS)

    White, J. H.; Eaton, W. C.; Saeger, M. L.; Strong, R. B.; Tommerdahl, J. B.

    1980-01-01

    The operation of two surface monitoring stations (one in downtown Norfolk, Virginia, one south of the city near the Great Dismal Swamp) and the collection of 40 hours of airborne measurements is described. Surface site measurements of ozone, oxides of nitrogen, sulfur dioxide, temperature, dew point, b sub seat, and condensation nuclei were made. Instrument calibrations, quality assurance audits, and preliminary data analysis in support of the Urban Plume Study were also made. The air pollution problems that were addressed are discussed. Data handling procedures followed for the surface stations are presented. The operation of the aircraft sampling platform is described. Aircraft sampling procedures are discussed. A preliminary descriptive analysis of the aircraft data is given along with data or plots for surface sites, airborne studies, hydrocarbon species, and instrument performance audits. Several of the aircraft flights clearly show the presence of an urban ozone plume downwind of Norfolk in the direction of the mean wind flow.

  5. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  6. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  7. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  8. In-situ measurement of Cl2 and O3 in a stratospheric solid rocket motor exhaust plume

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Ballenthin, J. O.; Gosselin, R. B.; Meads, R. F.; Zittel, P. F.; Benbrook, J. R.; Sheldon, W. R.

    The concentration of Cl2 in the stratospheric exhaust plume of a Titan IV launch vehicle was measured with a neutral mass spectrometer carried on a WB-57F aircraft at 18.9 km altitude. Twenty nine minutes after a twilight Titan IV launch, the mean Cl2 concentration across an 8 km wide plume was 126 ± 44 ppbv, consistent with model predictions that a large fraction of the HCl in solid rocket motor exhaust is converted into Cl2 by afterburning reactions in the hot plume. Co-incident measurements with ultraviolet absorption photometers also carried on the aircraft show that ozone concentration in the plume was not different from ambient levels. This is consistent with model predictions that nighttime SRM launches will not cause transient ozone loss in the lower stratosphere. The measured Cl2 concentration equals 15% of the ambient ozone concentration suggesting that transient ozone reduction in SRM plume wakes can be expected after daytime launches when solar ultraviolet radiation will photolyze the exhaust plume Cl2.

  9. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  10. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  11. Assessing the Impact of Aircraft Emissions on the Stratosphere

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Anderson, D. E.

    1999-01-01

    For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.

  12. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  13. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  14. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  15. Effects of NOx control and plume mixing on nighttime chemical processing of plumes from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Karamchandani, Prakash; Yarwood, Greg; Peischl, Jeff; Ryerson, Thomas B.; Neuman, J. Andrew; Nowak, John B.; Holloway, John S.; Washenfelder, Rebecca A.; Brock, Charles A.; Frost, Gregory J.; Trainer, Michael; Parrish, David D.; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2012-04-01

    Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOxoxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36-44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOxemissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.

  16. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  17. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    NASA Technical Reports Server (NTRS)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  18. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1978-01-01

    In connection with the potential short-supply of petroleum based fuels, NASA has initiated investigations concerning the feasibility of aircraft using as fuel hydrogen which is to be stored in liquid form. One of the problems to be solved for an operation of such aircraft is related to the possibility of a suitable storage of the liquid hydrogen. A description is presented of an experimental study regarding the suitability of commercially available organic foams as cryogenic insulation for liquid hydrogen tanks under extensive thermal cycling typical of subsonic airline type operation. Fourteen commercially available organic foam insulations were tested. The thermal performance of all insulations was found to deteriorate with increased simulated flight cycles. Two unreinforced polyurethane foams survived over 4200 thermal cycles (representative of approximately 15 years of airline service) without evidence of structural deterioration. The polyurethane foam insulations also exhibited excellent thermal performance.

  19. Airborne Observations of Aerosol Emissions from F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Cofer, W. R.; McDougal, D. S.

    1999-01-01

    We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17

  20. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  1. An experimental study of the flow field surrounding a subsonic jet in a cross flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dennis, Robert Foster

    1993-01-01

    An experimental investigation of the flow interaction of a 5.08 cm (2.00 in.) diameter round subsonic jet exhausting perpendicularly to a flat plate in a subsonic cross flow was conducted in the NASA Ames 7x1O ft. Wind Tunnel Number One. Flat plate surface pressures were measured at 400 locations in a 30.48 cm (12.0 in.) concentric circular array surrounding the jet exit. Results from these measurements are provided in tabular and graphical form for jet-to-crossflow velocity ratios ranging from 4 to 12, and for jet exit Mach numbers ranging from 0.50 to 0.93. Laser doppler velocimeter (LDV) three component velocity measurements were made in selected regions in the developed jet plume and near the flat plate surface, at a jet Mach number of 0.50 and jet-to-crossflow velocity ratios of 6 and 8. The results of both pressure and LDV measurements are compared with the results of previous experiments. In addition, pictures of the jet plume shape at jet velocity ratios ranging from 4 to 12 were obtained using schleiren photography. The LDV measurements are consistent with previous work, but more extensive measurements will be necessary to provide a detailed picture of the flow field. The surface pressure results compare closely with previous work and provide a useful characterization of jet induced surface pressures. The results demonstrate the primary influence of jet velocity ratio and the secondary influence of jet Mach number in determining such surface pressures.

  2. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  3. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  4. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  5. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  6. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  7. Synthesis of observations of halogen-containing gases, ozone, and gaseous elemental mercury in the tropospheric plume of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Kern, C.; Lopez, T. M.; Werner, C. A.; Roberts, T. J.; Aiuppa, A.; Wang, B.

    2011-12-01

    Volcanoes are strong natural sources of halogen-containing acid gases and mercury. Most halogens are emitted from volcanoes as relatively non-reactive hydrogen halide gases, but recent field and modeling studies have shown that these species can be rapidly transformed into reactive forms via heterogeneous in-plume reactions. In order to further examine the chemical reactions that occur in volcanic plumes and their atmospheric impacts, we made ground and aircraft-based measurements of the composition of the tropospheric plume emitted from Redoubt Volcano, Alaska, which injected over 1 Tg of SO2, plus other gases and aerosols, into the subarctic free troposphere during 2009 and 2010. To our knowledge, our data include the first detailed study of ozone in a volcanic plume as well as the first measurements of HBr, HI, gaseous elemental mercury (GEM), and BrO in the plume of an Alaskan volcano. The composition of the plume was measured on June 20, 2010 using base-treated filter packs at the crater rim and by an instrumented fixed-wing aircraft on June 21 and August 19, 2010. The aircraft was used to track the chemical evolution of the plume up to ~30 km downwind (2 hours plume travel time) from the volcano. The airborne data from June 21 reveals rapid chemical ozone destruction in the plume as well as the strong influence chemical heterogeneity in background air had on plume composition. Airborne measurements on August 19 revealed several ppbv of ozone depletion near the center of the plume at a location ~5 km (20 minutes plume travel time) downwind and spectroscopic retrievals from traverses made under the plume show that BrO was present at a similar location. Simulations with the PlumeChem model reproduce the main features of the observed ozone deficits and evolution with time. The field measurements and model results suggest that autocatalytic release of reactive bromine and the formation of BrO can explain ozone destruction in the plume. Thus, volcanic eruptions in

  8. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  9. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  10. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  11. Remote monitoring of the Gravelly Run thermal plume at Hopewell and the thermal plume at the Surry Nuclear Power Plant on the James River

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Sykes, K. W.; Kuo, C. Y.

    1979-01-01

    On May 17, 1977, a remote sensing experiment was conducted on the James River, Virginia, whereby thermal spectrometer and near-infrared photography data of thermal discharges at Hopewell and the Surry nuclear power plant were obtained by an aircraft for one tidal cycle. These data were used in subsequent investigations into the near field discharge trajectories. For the Gravelly Run thermal plume at Hopewell, several empirical expressions for the plume centerline were evaluated by comparisons of the computed trajectories and those observed in the remote sensing images.

  12. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport.

    PubMed

    Moore, Richard H; Shook, Michael A; Ziemba, Luke D; DiGangi, Joshua P; Winstead, Edward L; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L; Crosbie, Ewan C; Robinson, Claire; Shingler, Taylor J; Anderson, Bruce E

    2017-12-19

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO 2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 10 16 -10 17 kg -1 and 10 14 -10 16 kg -1 , respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg -1 (except for the GE GEnx engines at 46 mg kg -1 ). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  13. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    PubMed Central

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; DiGangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-01-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016–1017 kg−1 and 1014–1016 kg−1, respectively. Black-carbon-equivalent particle mass EIs vary between 175–941 mg kg−1 (except for the GE GEnx engines at 46 mg kg−1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality. PMID:29257135

  14. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    NASA Astrophysics Data System (ADS)

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; Digangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-12-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  15. Multiple-Purpose Subsonic Naval Aircraft (MPSNA) Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Winkeljohn, D. M.; Mayrand, C. H.

    1986-01-01

    A conceptual design study compared a selected propfan-powered aircraft to a turbofan-powered aircraft for multiple Navy carrier-based support missions in the 1995 timeframe. Conventional takeoff and landing (CTOL) propfan and turbofan-powered designs and short takeoff/vertical landing (STOVL) propfan-powered designs are presented. Ten support mission profiles were defined and the aircraft were sized to be able to perform all ten missions. Emphasis was placed on efficient high altitude loiter for Airborne Early Warning (AEW) and low altitude high speed capability for various offensive and tactical support missions. The results of the study show that the propfan-powered designs have lighter gross weights, lower fuel fractions, and equal or greater performance capability than the turbofan-powered designs. Various sensitives were developed in the study, including the effect of using single-rotation versus counter-rotation propfans and the effect of AEW loiter altitude on vehicle gross weight and empty weight. A propfan technology development plan was presented which illustrates that the development of key components can be achieved without accelerated schedules through the extension of current and planned government and civil propfan programs.

  16. Numerical simulation of helicopter engine plume in forward flight

    NASA Technical Reports Server (NTRS)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  17. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  18. Hydrocarbon emissions from in-use commercial aircraft during airport operations.

    PubMed

    Herndon, Scott C; Rogers, Todd; Dunlea, Edward J; Jayne, John T; Miake-Lye, Richard; Knighton, Berk

    2006-07-15

    The emissions of selected hydrocarbons from in-use commercial aircraft at a major airport in the United States were characterized using proton-transfer reaction mass spectrometry (PTR-MS) and tunable infrared differential absorption spectroscopy (TILDAS) to probe the composition of diluted exhaust plumes downwind. The emission indices for formaldehyde, acetaldehyde, benzene, and toluene, as well as other hydrocarbon species, were determined through analysis of 45 intercepted plumes identified as being associated with specific aircraft. As would have been predicted for high bypass turbine engines, the hydrocarbon emission index was greater in idle and taxiway acceleration plumes relative to approach and takeoff plumes. The opposite was seen in total NOy emission index, which increased from idle to takeoff. Within the idle plumes sampled in this study, the median emission index for formaldehyde was 1.1 g of HCHO per kg of fuel. For the subset of hydrocarbons measured in this work, the idle emissions levels relative to formaldehyde agree well with those of previous studies. The projected total unburned hydrocarbons (UHC) deduced from the range of in-use idle plumes analyzed in this work is greater than a plausible range of engine types using the defined idle condition (7% of rated engine thrust) in the International Civil Aviation Organization (ICAO) databank reference.

  19. Development and Evaluation of a Reactive-Dispersive Plume Model: TexAQS II 2006 Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hoon; Kim, Hyun Soo; Song, Chul Han

    2015-04-01

    We describe the development and evaluation of a reactive-dispersive plume model (RDPM) that combines a photo-chemistry model with a plume dilution driven by turbulent dispersion of a power-plant plume. The plume transport and turbulent dispersion are derived from a Gaussian plume model and the plume chemistry model uses 71 HxOy-NxOy-CH4 chemistry-related reactions and 184 NMHC-related reactions. Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. To extensively understand and assess atmospheric impacts of the power-plant emissions, a general RDPM was applied to simultaneously simulate the dynamics and photo-chemistry of the Texas power-plant plumes. During the second Texas Air Quality Study 2006 (TexAQS II 2006) on 16 September 2006, pollutant concentrations were measured by NOAA WP-3D aircraft with successive transects across power-plant plumes in Texas, USA. The simulation performances of the RDPM were evaluated by a comparison study, using the observation data obtained from the measurements of a NOAA WP-3D flight during TexAQS II 2006 airborne field campaign. On 16 September, the WP-3D aircraft observed mainly meteorological parameters and particulate species concentrations, traversing the Monticello and Welsh power-plant plumes four times from transects A to D. In addition, some meteorological variables in an initial condition for model simulation were obtained from the Weather Research and Forecasting (WRF) model output for the specific objects. These power-plant plume cases were selected in this study, because a large number of nitrogen oxides and sulfur dioxide concentrations inside the power-plant plumes were measured without any interruption of other emission sources. For the Monticello and Welsh power-plant plumes, the model-predicted concentrations showed good agreements with the observed concentrations of ambient species (e.g., nitrogen oxides, ozone, sulfur dioxide, etc.) at the four transects. Based

  20. Advanced simulation noise model for modern fighter aircraft

    NASA Astrophysics Data System (ADS)

    Ikelheimer, Bruce

    2005-09-01

    NoiseMap currently represents the state of the art for military airfield noise analysis. While this model is sufficient for the current fleet of aircraft, it has limits in its capability to model the new generation of fighter aircraft like the JSF and the F-22. These aircraft's high-powered engines produce noise with significant nonlinear content. Combining this with their ability to vector the thrust means they have noise characteristics that are outside of the basic modeling assumptions of the currently available noise models. Wyle Laboratories, Penn State University, and University of Alabama are in the process of developing a new noise propagation model for the Strategic Environmental Research and Development Program. Source characterization will be through complete spheres (or hemispheres if there is not sufficient data) for each aircraft state (including thrust vector angles). Fixed and rotor wing aircraft will be included. Broadband, narrowband, and pure tone propagation will be included. The model will account for complex terrain and weather effects, as well as the effects of nonlinear propagation. It will be a complete model capable of handling a range of noise sources from small subsonic general aviation aircraft to the latest fighter aircraft like the JSF.

  1. Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Haller, William J.

    2016-01-01

    NASA's Environmentally Responsible Aviation (ERA) project has matured technologies to enable simultaneous reductions in fuel burn, noise, and nitrogen oxide (NOx) emissions for future subsonic commercial transport aircraft. The fuel burn reduction target was a 50% reduction in block fuel burn (relative to a 2005 best-in-class baseline aircraft), utilizing technologies with an estimated Technology Readiness Level (TRL) of 4-6 by 2020. Progress towards this fuel burn reduction target was measured through the conceptual design and analysis of advanced subsonic commercial transport concepts spanning vehicle size classes from regional jet (98 passengers) to very large twin aisle size (400 passengers). Both conventional tube-and-wing (T+W) concepts and unconventional (over-wing-nacelle (OWN), hybrid wing body (HWB), mid-fuselage nacelle (MFN)) concepts were developed. A set of propulsion and airframe technologies were defined and integrated onto these advanced concepts which were then sized to meet the baseline mission requirements. Block fuel burn performance was then estimated, resulting in reductions relative to the 2005 best-in-class baseline performance ranging from 39% to 49%. The advanced single-aisle and large twin aisle T+W concepts had reductions of 43% and 41%, respectively, relative to the 737-800 and 777-200LR aircraft. The single-aisle OWN concept and the large twin aisle class HWB concept had reductions of 45% and 47%, respectively. In addition to their estimated fuel burn reduction performance, these unconventional concepts have the potential to provide significant noise reductions due, in part, to engine shielding provided by the airframe. Finally, all of the advanced concepts also have the potential for significant NOx emissions reductions due to the use of advanced combustor technology. Noise and NOx emissions reduction estimates were also generated for these concepts as part of the ERA project.

  2. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    USGS Publications Warehouse

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  3. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  4. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  5. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Beier, K.; Schreier, F.

    1994-10-01

    Infrared (IR) molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants

  6. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  7. Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Sive, B. C.; Blake, D. R.; Blake, N. J.; Chen, T.-Y.; Lopez, J. P.; Anderson, B. E.; Sachse, G. W.; Vay, S. A.; Fuelberg, H. E.; Kondo, Y.; Thompson, A. M.; Rowland, F. S.

    2000-02-01

    Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC.

  8. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  9. Effects of aircraft noise on human sleep.

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.

    1972-01-01

    Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.

  10. Potential applications of advanced aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    An investigation sponsored by NASA indicates that air transportation can play an important role in the economic progress of developing countries. By the turn of the century, the rapid economic growth now occurring in many developing countries should result in a major redistribution of the world's income. Some countries now classified as 'developing' will become 'developed' and are likely to become far more important to the world's civil aviation industry. Developing countries will be increasingly important buyers of conventional subsonic long-haul jet passenger aircraft but not to the point of significant influence on the design or technological content of future aircraft of this type. However, the technological content of more specialized aircraft may be influenced by developing country requirements and reflected in designs which fill a need concerning specialized missions, related to short-haul, low-density, rough runways, and natural resource development.

  11. Farfield structure of an aircraft trailing vortex, including effects of mass injection

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Marchman, J. F., III

    1972-01-01

    Wind tunnel tests to predict the aircraft wake turbulence due to the tip trailing vortex are discussed. A yawhead pressure probe was used in a subsonic wind tunnel to obtain detailed mean flow measurements at stations up to 30 chordlengths downstream in an aircraft trailing vortex. Mass injection at the wingtip was shown to hasten the decay of the trailing vortex. A theoretical method is presented to show the effect which the circulation distribution on the wing has on the structure of the outer portion of the vortex.

  12. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  13. Neural Network Prediction of New Aircraft Design Coefficients

    NASA Technical Reports Server (NTRS)

    Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.

    1997-01-01

    This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.

  14. Subduction disfigured mantle plumes: Plumes that are not plumes?

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Stegman, D. R.; Kincaid, C. R.; Griffiths, R. W.

    2012-12-01

    "Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.

  15. Materials Aspects of Turboelectric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2009-01-01

    The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.

  16. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  17. Subsonic roll oscillation experiments on the Standard Dynamics Model

    NASA Technical Reports Server (NTRS)

    Beyers, M. E.

    1983-01-01

    The experimental determination of the subsonic roll derivatives of the Standard Dynamics Model, which is representative of a current fighter aircraft configuration, is described. The direct, cross and cross-coupling derivatives are presented for angles of attack up to 41 deg and sideslip angles in the range from -5 deg to 5 deg, as functions of oscillation frequency. The derivatives exhibited significant nonlinear trends at high incidences and were found to be extremely sensitive to sideslip angle at angles of attack near 36 deg. The roll damping and dynamic cross derivatives were highly frequency dependent at angles of attack above 30 deg. The highest values measured for the dynamic cross and cross-coupling derivatives were comparable in magnitude with the maximum roll damping. The effects of oscillation amplitude and Mach number were also investigated, and the direct derivatives were correlated with data from another facility.

  18. Observation and Modeling of the Evolution of Texas Power Plant Plumes

    EPA Science Inventory

    During the second Texas Air Quality Study 2006 (TexAQS II), a full range of pollutants was measured by aircraft in eastern Texas during successive transects of power plant plumes (PPPs). A regional photochemical model is applied to simulate the physical and chemical evolution of ...

  19. Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)

  20. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  1. Potential benefits for propfan technology on derivatives of future short- to medium-range transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.; Bowles, J. V.

    1980-01-01

    It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.

  2. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  3. Comparison of all-electric secondary power systems for civil subsonic transports

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  4. Modeling the Launch Abort Vehicle's Subsonic Aerodynamics from Free Flight Testing

    NASA Technical Reports Server (NTRS)

    Hartman, Christopher L.

    2010-01-01

    An investigation into the aerodynamics of the Launch Abort Vehicle for NASA's Constellation Crew Launch Vehicle in the subsonic, incompressible flow regime was conducted in the NASA Langley 20-ft Vertical Spin Tunnel. Time histories of center of mass position and Euler Angles are captured using photogrammetry. Time histories of the wind tunnel's airspeed and dynamic pressure are recorded as well. The primary objective of the investigation is to determine models for the aerodynamic yaw and pitch moments that provide insight into the static and dynamic stability of the vehicle. System IDentification Programs for AirCraft (SIDPAC) is used to determine the aerodynamic model structure and estimate model parameters. Aerodynamic models for the aerodynamic body Y and Z force coefficients, and the pitching and yawing moment coefficients were identified.

  5. Aircraft HO sub x and NO sub x emission effects on stratospheric ozone and temperature

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Widhopf, G. F.

    1978-01-01

    A simplified two-dimensional steady-state photochemical model of the atmosphere was developed. The model was used to study the effect on the thermal and chemical structure of the atmosphere of two types of pollution cases: (1) injection of NOx and HOx from a hypothetical fleet of supersonic and subsonic aircraft and (2) injection of HOx from a hypothetical fleet of liquid-fueled hydrogen aircraft. The results are discussed with regard to stratospheric perturbations in ozone, water vapor and temperature.

  6. Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.

    2004-01-01

    To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.

  7. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  8. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  9. An investigation of wing buffeting response at subsonic and transonic speeds: Phase 1: F-111A flight data analysis. Volume 1: Summary of technical approach, results and conclusions

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Dunmyer, W. D.

    1978-01-01

    The structural response to aerodynamic buffet during moderate to high-g maneuvers at subsonic and transonic speeds was investigated. The investigation is reported in three volumes. This volume presents a summary of the investigation with a complete description of the technical approach, description of the aircraft, its instrumentation, the data reduction procedures, results and conclusion.

  10. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  11. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  12. Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft.

    PubMed

    Zarzana, Kyle J; Min, Kyung-Eun; Washenfelder, Rebecca A; Kaiser, Jennifer; Krawiec-Thayer, Mitchell; Peischl, Jeff; Neuman, J Andrew; Nowak, John B; Wagner, Nicholas L; Dubè, William P; St Clair, Jason M; Wolfe, Glenn M; Hanisco, Thomas F; Keutsch, Frank N; Ryerson, Thomas B; Brown, Steven S

    2017-10-17

    We report enhancements of glyoxal and methylglyoxal relative to carbon monoxide and formaldehyde in agricultural biomass burning plumes intercepted by the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus campaigns. Glyoxal and methylglyoxal were measured using broadband cavity enhanced spectroscopy, which for glyoxal provides a highly selective and sensitive measurement. While enhancement ratios of other species such as methane and formaldehyde were consistent with previous measurements, glyoxal enhancements relative to carbon monoxide averaged 0.0016 ± 0.0009, a factor of 4 lower than values used in global models. Glyoxal enhancements relative to formaldehyde were 30 times lower than previously reported, averaging 0.038 ± 0.02. Several glyoxal loss processes such as photolysis, reactions with hydroxyl radicals, and aerosol uptake were found to be insufficient to explain the lower measured values of glyoxal relative to other biomass burning trace gases, indicating that glyoxal emissions from agricultural biomass burning may be significantly overestimated. Methylglyoxal enhancements were three to six times higher than reported in other recent studies, but spectral interferences from other substituted dicarbyonyls introduce an estimated correction factor of 2 and at least a 25% uncertainty, such that accurate measurements of the enhancements are difficult.

  13. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  14. Thrust modulation methods for a subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.

    1981-01-01

    Low speed wind tunnel tests were conducted to assess four methods for attaining thrust modulation for V/STOL aircraft. The four methods were: (1) fan speed change, (2) fan nozzle exit area change, (3) variable pitch rotor (VPR) fan, and (4) variable inlet guide vanes (VIGV). The interrelationships between inlet and thrust modulation system were also investigated using a double slotted inlet and thick lip inlet. Results can be summarized as: (1) the VPR and VIGV systems were the most promising, (2) changes in blade angle to obtain changes in fan thrust have significant implications for the inlet, and (3) both systems attained required level of thrust with acceptable levels of fan blade stress.

  15. Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    NASA Technical Reports Server (NTRS)

    Gilmer, B. R.; Miner, G. A.; Bristow, D. R.

    1983-01-01

    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.

  16. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    PubMed

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Wesoky, Howard L.; Miake-Lye, Richard C.; Douglass, Anne R.; Turco, Richard P.; Wuebbles, Donald J.; Ko, Malcolm K. W.; Schmeltekopf, Arthur L.

    1992-01-01

    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.

  18. High altitude subsonic parachute field programmable gate array

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.; Gromov, Konstantin; Konefat, Edward H.

    2005-01-01

    This paper describes a rapid, top down requirements-driven design of an FPGA used in an Earth qualification test program for a new Mars subsonic parachute. The FPGA is used to process and control storage of telemetry data from multiple sensors throughout; launch, ascent, deployment and descent phases of the subsonic parachute test.

  19. Pollutant monitoring of aircraft exhaust with multispectral imaging

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  20. Scanning thermal plumes. [from power plant condensers

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Madding, R. P.; Green, T., III

    1974-01-01

    In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.

  1. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  2. Durability of foam insulation for LH2 fuel tanks of future subsonic transports

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Helenbrook, R. G.

    1979-01-01

    Organic foams were tested to determine their suitability for insulating liquid hydrogen tanks of subsonic aircraft. The specimens, including nonreinforced foams and foams with chopped glass reinforcements, flame retardants, and vapor barriers, were scaled to simulate stress conditions in large tanks. The tests were conducted within aluminum tank compartments filled with liquid hydrogen and the boil-off rate was used as the criterion of thermal performance. It was found that while all insulations deteriorated with increased cycles, two nonreinforced polyurethane foams showed no structural deterioration after 4200 thermal cycles (equivalent to 15 years of airline service). It was also found that fiberglass reinforcement and flame retardants impaired thermal performance and reduced useful life of the foams. Vapor barriers enhanced structural integrity without any deterioration in thermal properties.

  3. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  4. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  5. ASHEE: a compressible, Equilibrium-Eulerian model for volcanic ash plumes

    NASA Astrophysics Data System (ADS)

    Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.

    2015-10-01

    A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10-3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the

  6. Flow Visualization of Aircraft in Flight by Means of Background Oriented Schlieren Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Hill, Michael A.; Haering, Edward A., Jr.

    2017-01-01

    The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.

  7. Study of the impact of cruise speed on scheduling and productivity of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Bond, E. Q.; Carroll, E. A.; Flume, R. A.

    1977-01-01

    A comparison is made between airplane productivity and utilization levels derived from commercial airline type schedules which were developed for two subsonic and four supersonic cruise speed aircraft. The cruise speed component is the only difference between the schedules which are based on 1995 passenger demand forecasts. Productivity-to-speed relationships were determined for the three discrete route systems: North Atlantic, Trans-Pacific, and North-South America. Selected combinations of these route systems were also studied. Other areas affecting the productivity-to-speed relationship such as aircraft design range and scheduled turn time were examined.

  8. Comparison of two transonic noise prediction formulations using the aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Spence, Peter L.

    1987-01-01

    This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.

  9. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.

    1996-01-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.

  10. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  11. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  12. The Existence of Steady Compressible Subsonic Impinging Jet Flows

    NASA Astrophysics Data System (ADS)

    Cheng, Jianfeng; Du, Lili; Wang, Yongfu

    2018-03-01

    In this paper, we investigate the compressible subsonic impinging jet flows through a semi-infinitely long nozzle and impacting on a solid wall. Firstly, it is shown that given a two-dimensional semi-infinitely long nozzle and a wall behind the nozzle, and an appropriate atmospheric pressure, then there exists a smooth global subsonic compressible impinging jet flow with two asymptotic directions. The subsonic impinging jet develops two free streamlines, which initiate smoothly at the end points of the semi-infinitely long nozzles. In particular, there exists a smooth curve which separates the fluids which go to different places downstream. Moreover, under some suitable asymptotic assumptions of the nozzle, the asymptotic behaviors of the compressible subsonic impinging jet flows in the inlet and the downstream are obtained by means of a blow-up argument. On the other hand, the non-existence of compressible subsonic impinging jet flows with only one asymptotic direction is also established. This main result in this paper solves the open problem (4) in Chapter 16.3 proposed by uc(Friedman) in his famous survey (uc(Friedman) in Mathematics in industrial problems, II, I.M.A. volumes in mathematics and its applications, vol 24, Springer, New York, 1989).

  13. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  14. Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    NASA Technical Reports Server (NTRS)

    Banuelos, Aerobel; Caballero, Maria L.; Fields, Richard S., Jr.; Ledesma, Martha E.; Murakami, Lynne A.; Reyes, Joe T.; Westra, Bryan W.

    1992-01-01

    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow.

  15. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  16. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  17. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  18. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  19. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  20. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  1. Wind tunnel investigations of forebody strakes for yaw control on F/A-18 model at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Murri, Daniel G.

    1993-01-01

    Wind tunnel investigations have been conducted of forebody strakes for yaw control on 0.06-scale models of the F/A-18 aircraft at free-stream Mach numbers of 0.20 to 0.90. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center and the Langley 7- by 10-Foot High-Speed Tunnel. The principal objectives of the testing were to determine the effects of the Mach number and the strake plan form on the strake yaw control effectiveness and the corresponding strake vortex induced flow field. The wind tunnel model configurations simulated an actuated conformal strake deployed for maximum yaw control at high angles of attack. The test data included six-component forces and moments on the complete model, surface static pressure distributions on the forebody and wing leading-edge extensions, and on-surface and off-surface flow visualizations. The results from these studies show that the strake produces large yaw control increments at high angles of attack that exceed the effect of conventional rudders at low angles of attack. The strake yaw control increments diminish with increasing Mach number but continue to exceed the effect of rudder deflection at angles of attack greater than 30 degrees. The character of the strake vortex induced flow field is similar at subsonic and transonic speeds. Cropping the strake planform to account for geometric and structural constraints on the F-18 aircraft has a small effect on the yaw control increments at subsonic speeds and no effect at transonic speeds.

  2. Aircraft Survivability. Spring 2011

    DTIC Science & Technology

    2011-01-01

    test Figure 4 Mixed Lagrangian and SPH Simulation of the Bullet Impacting the Floor Section Figure 5 Predictions of Damage to Penetrator, CMC Layer...aircraft and regulating the flow of liquid to simulate both the intrinsic change in plume intensity and the apparent change in intensity of a simulated ...the development of a digital simulation to conduct end game studies of the Eagle missile warhead- fuze combination. This was one of the first

  3. Supersonic Jet Exhaust Noise at High Subsonic Flight Speed

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Garber, Donald P.; Golub, Robert A.; Santa Maria, Odilyn L.; Orme, John S.

    2004-01-01

    An empirical model to predict the effects of flight on the noise from a supersonic transport is developed. This model is based on an analysis of the exhaust jet noise from high subsonic flights of the F-15 ACTIVE Aircraft. Acoustic comparisons previously attainable only in a wind tunnel were accomplished through the control of both flight operations and exhaust nozzle exit diameter. Independent parametric variations of both flight and exhaust jet Mach numbers at given supersonic nozzle pressure ratios enabled excellent correlations to be made for both jet broadband shock noise and jet mixing noise at flight speeds up to Mach 0.8. Shock noise correlated with flight speed and emission angle through a Doppler factor exponent of about 2.6. Mixing noise at all downstream angles was found to correlate well with a jet relative velocity exponent of about 7.3, with deviations from this behavior only at supersonic eddy convection speeds and at very high flight Mach numbers. The acoustic database from the flight test is also provided.

  4. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1976-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihooa estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5deg to 15.7deg. Data are presented for a subsonic and a transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  5. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1997-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihood estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5 deg. to 15.7 deg. Data are presented for a subsonic and transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  6. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  7. PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Frate, Franco

    2010-01-01

    Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.

  8. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  9. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  10. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  11. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  12. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  13. Spectrometry of linear energy transfer and dosimetry measurements onboard spacecrafts and aircrafts

    NASA Astrophysics Data System (ADS)

    Spurný, F.; Ploc, O.; Jadrníčková, I.

    2009-01-01

    There are only a few methods of dosimetry which can estimate the contribution of different particles to onboard spacecraft and/or aircraft exposure. This contribution describes an attempt to estimate the contribution of different components to the exposure level using MDU-Liulin energy deposition spectrometer and thermoluminescent detectors (TLD’s), in combination with a spectrometer of linear energy transfer (LET) based on track etch detectors. This equipment was exposed onboard: the International Space Station for a long period and two shorter shuttle missions and a commercial subsonic aircraft for several long-term monitoring periods from 2001 to 2006. The data obtained are analyzed from several points of view and the obtained results are presented, analyzed, and discussed.

  14. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  15. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  16. Technology for design of transport aircraft. Lecture notes for MIT courses: Seminar 1.61 freshman seminar in air transportation and graduate course 1.201, transportation systems analysis

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The design parameters which determine cruise performance for a conventional subsonic jet transport are discussed. It is assumed that the aircraft burns climb fuel to reach cruising altitude and that aeronautical technology determines the ability to carry a given payload at cruising altitude. It is shown that different sizes of transport aircraft are needed to provide the cost optimal vehicle for different given payload-range objectives.

  17. Experimental Flight Characterization of a Canard-Controlled, Subsonic Missile

    DTIC Science & Technology

    2017-08-01

    ARL-TR-8086 ● AUG 2017 US Army Research Laboratory Experimental Flight Characterization of a Canard- Controlled , Subsonic Missile...Laboratory Experimental Flight Characterization of a Canard- Controlled , Subsonic Missile by Frank Fresconi, Ilmars Celmins, James Maley, and...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) August 2017 2. REPORT TYPE Technical

  18. Hinge Moment Coefficient Prediction Tool and Control Force Analysis of Extra-300 Aerobatic Aircraft

    NASA Astrophysics Data System (ADS)

    Nurohman, Chandra; Arifianto, Ony; Barecasco, Agra

    2018-04-01

    This paper presents the development of tool that is applicable to predict hinge moment coefficients of subsonic aircraft based on Roskam’s method, including the validation and its application to predict hinge moment coefficient of an Extra-300. The hinge moment coefficients are used to predict the stick forces of the aircraft during several aerobatic maneuver i.e. inside loop, half cuban 8, split-s, and aileron roll. The maximum longitudinal stick force is 566.97 N occurs in inside loop while the maximum lateral stick force is 340.82 N occurs in aileron roll. Furthermore, validation hinge moment prediction method is performed using Cessna 172 data.

  19. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemistry is taking place, must have a round trip range exceeding 1000 km, carry a payload of about 500 lb to altitudes exceeding 80 kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of existing hardware. The only candidate that could emerge under these circumstances was a propeller driven aircraft powered by spark ignited (SI) gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some subtle physical advantages (arising from its near-stochiometric combustion) that may make it smaller and lighter than either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft includes the same people who built multi-stage turbocharged SI powerplants

  20. Airborne Remote Sensing of the Plata Plume Using STARRS

    DTIC Science & Technology

    2006-09-01

    marine constructions . www.sea-technoJlav.com .byT. RT O ’A" n. -, Airborne Remote Sensing of the Plata Plume Using STARRS A New Generation Microwave...using possibilities of adapting a Seville, MATLAB®-from The Spain-based Construcciones Aero- Mathworks Inc. (Natick, Mas- nduticas SA (CASA) Aviocar C...34 Simula-STARRS was constructed and flight of smaller coastal areas with a preci- tion, vol. 78, pp. 36-55, 2002.tested in July 2003. Since aircraft

  1. Secondary Wing System for Use on an Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E. (Inventor)

    1999-01-01

    A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight. The deployment mechanism includes a circular mounting ring and drive mechanism that connects the canard with the fuselage and permits it to rotate and to change incidence. The deployment mechanism further includes retractable fairings which serve to streamline the wing when it is retracted into the top of the fuselage.

  2. Measurement and prediction of propeller flow field on the PTA aircraft at speeds of up to Mach 0.85. [Propfan Test Assessment

    NASA Technical Reports Server (NTRS)

    Aljabri, Abdullah S.

    1988-01-01

    High speed subsonic transports powered by advanced propellers provide significant fuel savings compared to turbofan powered transports. Unfortunately, however, propfans must operate in aircraft-induced nonuniform flow fields which can lead to high blade cyclic stresses, vibration and noise. To optimize the design and installation of these advanced propellers, therefore, detailed knowledge of the complex flow field is required. As part of the NASA Propfan Test Assessment (PTA) program, a 1/9 scale semispan model of the Gulfstream II propfan test-bed aircraft was tested in the NASA-Lewis 8 x 6 supersonic wind tunnel to obtain propeller flow field data. Detailed radial and azimuthal surveys were made to obtain the total pressure in the flow and the three components of velocity. Data was acquired for Mach numbers ranging from 0.6 to 0.85. Analytical predictions were also made using a subsonic panel method, QUADPAN. Comparison of wind-tunnel measurements and analytical predictions show good agreement throughout the Mach range.

  3. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

    1994-01-01

    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

  4. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    NASA Technical Reports Server (NTRS)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  5. A simplified analysis of propulsion installation losses for computerized aircraft design

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.

    1976-01-01

    A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.

  6. Forest fire plumes sampled above Siberia during YAK-AEROSIB/POLARCAT airborne campaigns: properties and sources

    NASA Astrophysics Data System (ADS)

    Paris, J.-D.; Nedelec, P.; Stohl, A.; Arshinov, M. Yu.; Belan, B. D.; Ciais, P.

    2009-04-01

    The composition of the Siberian troposphere remains highly unknown due to a lack of measurements in this area. Siberia is a key region for a quantified understanding of many land-atmosphere exchange processes. As an example, Siberian forest fire emissions are a major extratropical source of CO to the atmosphere. Fire-emitted trace gases and particles are subject to long-range transport and may contribute to pollution of nearby Arctic. However, establishing precise top-down estimates of sources strengths based on satellite or surface network measurements for species such as CO is limited by models' ability to represent sub-grid-scale dynamics associated to the wildfire (pyroconvection) and the injection height of the plume. In an experimental effort to address this issue and to increase our knowledge of the properties of the Siberian troposphere, CO, O3, CO2 and fine particles were measured onboard a research aircraft in the frame of the YAK-AEROSIB project, partially as a contribution to the Summer 2008 POLARCAT programme. Two large scale transects were established over Northern and Central Siberia between 7 and 21 July 2008. The aircraft flight pattern consisted of ramp ascents and descents so as to sample as many vertical profiles as possible. Very high CO concentrations were observed at various altitudes, essentially in Eastern Siberia near Yakutsk and Chokurdakh. The highest concentrations (up to 600ppb) were observed between 2 and 5 km (flight ceiling being at 7km) in very thin layers (few hundreds of m thick). A Lagrangian modelling analysis (FLEXPART) revealed that the aircraft sampled fire plumes from regional fire emissions, east of Yakutsk, after about 2 days of transport. The observed fire plumes are also characterized by anomalies in O3 and excess particle concentrations. These data provide new constraints on our understanding of forest fire plume transport. They also constitute a critical testbench for the models used to assess pyrogenic emissions and

  7. Meteorology of the Southern Global Plume: African and South American Fires Pollute the South Pacific

    NASA Technical Reports Server (NTRS)

    Guo, Z.; Chatfield, R. B.

    1999-01-01

    An immense global plume of CO meanders widely around the world in the Southern Hemisphere. It arises over Southern America and Africa and flows eastward. The first emissions are in tropical Brazil, and the plume circulates around the world to South America again. The plume was largely unexpected until there were aircraft studies made in NASA's Pacific Exploratory Mission - Tropics (Part A). This paper describes the meteorology of the Global Plume, as our simulation, with a synoptic model adapted to global transport, reveals it with a tracer-CO simulation. The observations and their simulation require a particular set of conditions of pollutant accumulation, cumulonimbus venting with required strengths at a narrow range of altitude. Additionally, a particular subtropical conduction region, over the Indian Ocean, Australia, and the westeRNmost South Pacific, relatively free of storms, appears to be a key part of the mechanism. These conclusions are the results of a synoptic reconstruction of the PEMT-A period, September- October, 1996.

  8. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  9. The Impact of Subsonic Twin Jets on Airport Noise

    NASA Technical Reports Server (NTRS)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  10. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  11. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  12. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  13. Vortex generator design for aircraft inlet distortion as a numerical optimization problem

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.

  14. Emissions of Black Carbon Particles in Anthropogenic and Biomass Plumes over California during CARB 2008

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.

    2009-12-01

    Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.

  15. Design feasibility of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rowe, W. T.

    1976-01-01

    Research and development programs provide confidence that technology is in-hand to design an economically attractive, environmentally sound supersonic cruise aircraft for commercial operations. The principal results of studies and tests are described including those which define the selection of significant design features. These typically include the results of: (1) wind-tunnel tests, both subsonic and supersonic, (2) propulsion performance and acoustic tests on noise suppressors, including forward-flight effects, (3) studies of engine/airframe integration, which lead to the selection of engine cycles/sizes to meet future market, economic, and social requirements; and (4) structural testing.

  16. The Eliminator: A design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David

    1991-01-01

    The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.

  17. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  18. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  19. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  20. Numerical Predictions of Static-Pressure-Error Corrections for a Modified T-38C Aircraft

    DTIC Science & Technology

    2014-12-15

    but the more modern work of Latif et al . [11] demonstrated that compensated Pitot-static probes can be simulated accurately for subsonic and...what was originally estimated from CFD simulations in Bhamidipati et al . [3] by extracting the static-pressure error in front of the production probe...Aerodynamically Compensating Pitot Tube,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 544–547. doi:10.2514/3.45620 [11] Latif , A., Masud, J., Sheikh, S. R., and

  1. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  2. The Emission and Chemistry of Reactive Nitrogen Species in the Plume of an Athena II Rocket

    NASA Astrophysics Data System (ADS)

    Popp, P. J.; Gao, R. S.; Neuman, J. A.; Northway, M. J.; Holecek, J. C.; Fahey, D. W.; Wiedinmyer, C.; Brock, C. A.; Ridley, B. A.; Walega, J. G.; Grahek, F. E.; Wilson, J. C.; Reeves, J. M.; Toohey, D. W.; Avallone, L. M.; Thornton, B. F.; Gates, A. M.; Ross, M. N.; Zittel, P. F.

    2001-12-01

    In situ measurements of total reactive nitrogen (NOy), nitric acid (HNO3), and particles were conducted in the plume of an Athena II rocket launched from Vandenberg AFB on September 24, 1999. These measurements were obtained onboard the NASA WB-57F high-altitude research aircraft as part of the Atmospheric Chemistry of Combustion Emissions near the Tropopause (ACCENT) mission. The calculated NOy emission index, determined from measurements made during the first 3 of 6 plume intercepts, was 2.1\\pm1.0 g NO2/kg propellant, consistent with far-field rocket plume model calculations. Although nitric oxide (NO) is thought to be the primary NOy species formed in the Athena solid rocket motor (SRM) and by hot afterburning in the plume, measurements in the plume as soon as 4 minutes after emission indicate that HNO3 is the dominant NOy species. In the chlorine-rich plume, NO is converted to chlorine nitrate (ClONO2) which reacts with water on emitted alumina particles to form HNO3. The data suggest HNO3 remains absorbed on alumina particles. With the potential increase in launch vehicle traffic in the coming decades, accurate modeling of the global impact of current and future rocket fleets will require the use of emission indices validated by observations.

  3. Chance Encounter with a Stratospheric Kerosene Rocket Plume from Russia over California

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Wilson, J. C.; Ross, M. N.; Brock, C.; Sheridan, P.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.; Loewenstein, M.

    1999-01-01

    During a routine ER-2 aircraft high-altitude test flight on April 18, 1997, an unusual aerosol cloud was detected at 20 km altitude near the California coast at about 370 degrees N latitude. Not visually observed by the ER-2 pilot, the cloud was characterized bv high concentration of soot and sulfate aerosol in a region over 100 km in horizontal extent indicating that the source of the plume was a large hydrocarbon fueled vehicle, most likely a launch vehicle powered only by rocket motors burning liquid oxygen and kerosene. Two Russian Soyuz rockets could conceivably have produced the plume. The first was launched from the Baikonur Cosmodrome, Kazakhstan on April 6th; the second was launched from Plesetsk, Russia on April 9. Air parcel trajectory calculations and long-lived tracer gas concentrations in the cloud indicate that the Baikonur rocket launch is the most probable source of the plume. The parcel trajectory calculations do not unambiguously trace the transport of the Soyuz plume from Asia to North America, illustrating serious flaws in the point-to-point trajectory calculations. This chance encounter represents the only measurement of the stratospheric effects of emissions from a rocket powered exclusively with hydrocarbon fuel.

  4. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  5. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  6. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  7. Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Ko, M.; Kita, K.; Blake, D. R.; Nishi, N.; Hu, W.; Liley, J. B.; Kawakami, S.; Shirai, T.; Miyazaki, Y.; Ikeda, H.; Russel-Smith, J.; Ogawa, T.

    2003-05-01

    The Biomass Burning and Lightning Experiment Phase B (BIBLE-B) aircraft measurement campaign was conducted over the western Pacific and Australia in August and September 1999. In situ aircraft measurements of carbon monoxide (CO), nitric oxide (NO), total reactive nitrogen (NOy), ozone (O3), nonmethane hydrocarbons (NMHCs), and other species were made during BIBLE-B. Meteorological analysis shows that the trace gases emitted from biomass burning in northern Australia were mostly confined within the planetary boundary layer (below ˜3 km) by strong subsidence in the free troposphere. Removal processes of NOx (equal to measured NO + calculated NO2) and NOy in biomass burning plumes in the boundary layer are examined on the basis of correlation analysis. The photochemical lifetime of NOx in biomass burning plumes during the daytime is estimated to be 0.1 to 0.3 days using the correlations of NOx with short-lived NMHCs and hydroxyl radical (OH) concentration calculated from a constrained photochemical model. Correlation of NOy with CO shows that ˜60% of the NOy molecules originating from biomass burning were removed in the boundary layer within 2-3 days. This result is consistent with dry deposition of nitric acid (HNO3) in the plumes. It is likely that only a small fraction of NOy emitted from biomass burning was exported from the boundary layer to the free troposphere during the BIBLE-B period.

  8. Reduced order model of a blended wing body aircraft configuration

    NASA Astrophysics Data System (ADS)

    Stroscher, F.; Sika, Z.; Petersson, O.

    2013-12-01

    This paper describes the full development process of a numerical simulation model for the ACFA2020 (Active Control for Flexible 2020 Aircraft) blended wing body (BWB) configuration. Its requirements are the prediction of aeroelastic and flight dynamic response in time domain, with relatively small model order. Further, the model had to be parameterized with regard to multiple fuel filling conditions, as well as flight conditions. High efforts have been conducted in high-order aerodynamic analysis, for subsonic and transonic regime, by several project partners. The integration of the unsteady aerodynamic databases was one of the key issues in aeroelastic modeling.

  9. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  10. The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.

  11. Ozone production in the New York City urban plume

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence I.; Daum, Peter H.; Imre, Dan G.; Lee, Jai H.; Lee, Yin-Nan; Nunnermacker, Linda J.; Springston, Stephen R.; Weinstein-Lloyd, Judith; Newman, Leonard

    2000-06-01

    In the summer of 1996 the Department of Energy G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated O3 levels in the northeastern United States. Measurements of O3, O3 precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the O3 formation process and its dependence on ambient levels of NOx and volatile organic compounds (VOCs). Four flights are discussed in detail. On two of these flights, winds were from the W-SW, which is the typical direction for an O3 episode. On the other two flights, winds were from the NW, which puts a cleaner area upwind of the city. The data presented include plume and background values of O3, CO, NOx, and NOy concentration and VOC reactivity. On the W-SW flow days O3 reached 110 ppb. According to surface observations the G-1 intercepted the plume close to the region where maximum O3 occurred. At this point the ratio NOx/NOy was 20-30%, indicating an aged plume. Plume values of CO/NOy agree to within 20% with emission estimates from the core of the New York City metropolitan area. Steady state photochemical calculations were performed using observed or estimated trace gas concentrations as constraints. According to these calculations the local rate of O3 production P(O3) in all four plumes is VOC sensitive, sometimes strongly so. The local sensitivity calculations show that a specified fractional decrease in VOC concentration yields a similar magnitude fractional decrease in P(O3). Imposing a decrease in NOx, however, causes P(O3) to increase. The question of primary interest from a regulatory point of view is the sensitivity of O3 concentration to changes in emissions of NOx and VOCs. A qualitative argument is given that suggests that the total O3 formed in the plume, which depends on the entire time evolution of the

  12. Tropospheric impacts of volcanic halogen emissions: first simulations of reactive halogen chemistry in the Eyjafjallajökull eruption plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2013-04-01

    Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is

  13. Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Sellers, J. F.; Tinling, B. E.

    1980-01-01

    A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration.

  14. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  15. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  16. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  17. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arcjet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 Pa to 0.05 Pa affected the pressure distribution in the nozzle, including the pressure in the subsonic arc chamber.

  18. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    NASA Astrophysics Data System (ADS)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  19. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  20. Remote Sensing of Volcanic Clouds: Sulfur Gases and Plume Top Topography

    NASA Technical Reports Server (NTRS)

    Crisp, Joy A.

    1999-01-01

    New absorption line parameters for H2S were published and submitted to the Gestion et Etude des Informations Spectroscopiques Atmospheriques (GEISA) and high resolution transmission molecular absorption (HITRAN) databases. These new absorption line parameters will make it possible to use observations from the future Tropospheric Emission Spectrometer (TES) instrument [Earth Observing System (EOS) Chemistry Mission (CHEM) platform] to make more accurate H2S measurements if it observes an H2S-rich volcanic cloud. H2S is the second most abundant volcanic sulfur gas, and like SO2, it also converts to H2SO4 aerosols and can have a climate impact. A paper on the Moderate-resolution Imaging-Spectroradiometer (MODIS) SO2 alert is being revised. New aspects in the revision include verification of the SO2 alert during the EOS mission; factors affecting SO2 detection at thermal infrared, ultraviolet, and microwave wavelengths; radiative transfer tests; more description of satellite instruments; and thermal surface alert installed for MODIS. Her research involves the use of remote sensing to generate maps of plume top altitude. This parameter is important for models of volcanic eruption, aircraft hazards, and climate impact. The topographic shape of the top surface of a volcanic plume can provide information necessary to understand the physics controlling the injection and dispersal of a volcanic plume in the atmosphere. Glaze et al. describe the application of a photoclinometric technique to volcanic plumes. The software algorithm has been improved to account for more general plume and illumination geometries and for easily extracting position information directly from Advanced Very High-Resolution Radiometer (AVHRR) level 1B data. Testing of the algorithm has focused on acquiring AVHRR data for a variety of volcanic plumes in an effort to identify problems with the software as well as model sensitivities. The plumes chosen were erupted from volcanoes at a variety of

  1. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  2. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  3. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  4. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  5. Screech Noise Generation From Supersonic Underexpanded Jets Investigated

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2000-01-01

    Many supersonic military aircraft and some of the modern civilian aircraft (such as the Boeing 777) produce shock-associated noise. This noise is generated from the jet engine plume when the engine nozzle is operated beyond the subsonic operation limit to gain additional thrust. At these underexpanded conditions, a series of shock waves appear in the plume. The turbulent vortices present in the jet interact with the shock waves and produce the additional shock-associated noise. Screech belongs to this noise category, where sound is generated in single or multiple pure tones. The high dynamic load associated with screech can damage the tailplane. One purpose of this study at the NASA Glenn Research Center at Lewis Field was to provide an accurate data base for validating various computational fluid dynamics (CFD) codes. These codes will be used to predict the frequency and amplitude of screech tones. A second purpose was to advance the fundamental physical understanding of how shock-turbulence interactions generate sound. Previously, experiments on shock-turbulence interaction were impossible to perform because no suitable technique was available. As one part of this program, an optical Rayleigh-scattering measurement technique was devised to overcome this difficulty.

  6. Asymptotic Far Field Conditions for Unsteady Subsonic and Transonic Flows.

    DTIC Science & Technology

    1983-04-01

    3, 4, and 5). We shall use the form given by Randall. The conventional treatment of far field conditions for subsonic flows makes use of analytical...PERTURBATIONS IN A PLANE FLOW FIELD WITH A FREE STREAM MACH NUMBER ONE Figure 2 shows the wave patterns obtained in the linearized treatment of subsonic flows... treatment of the three-dimensional problem is entirely analogous to that of the plane problem. At great distances the flow field generated by a body of finite

  7. Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.

    1999-01-01

    A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.

  8. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    simulations of momentum-driven gas jets impulsively released from a vent in a pressurized container. These simulations solve flow conditions globally, thus allowing one to set empirical relations between flow conditions in different parts of the jet, most notably the shear layer, the flow centerline, and at the vent. Applying these relations to the volcanic cases gives access to the evolution of velocity and temperature at the vent. From these, the speed of sound and flow Mach number can be obtained, which in turn can be used to estimate the pressure ratio between atmosphere and vent and finally, assuming some conduit geometry and mixture density, the total amount of erupted gas. Preliminary results suggest subsonic exit velocities of the eruptive mixture at the vent, and a plume centerline velocity that can be twice as fast as the one measured at the plume boundary.

  9. What do correlations tell us about anthropogenic – biogenic interactions and SOA formation in the Sacramento plume during CARES?

    DOE PAGES

    Kleinman, Lawrence I.; Kuang, Chongai; Sedlacek, Art; ...

    2016-02-15

    During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the DOE G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada Mountains. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced bymore » the simultaneous presence of high concentrations of CO and either isoprene, MVK+MACR (sum of methyl vinyl ketone and methacrolein) or methanol, which are taken as tracers of anthropogenic and biogenic emissions. Furthermore, linear and bi-linear correlations between OA, CO, and each of three biogenic tracers, “Bio”, for individual plume transects indicate that most of the variance in OA over short time and distance scales can be explained by CO.« less

  10. Gaseous constituents in the plume from eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1981-01-01

    Measurements in the stratosphere of gaseous constituents in the plume of Mount St. Helens were obtained during five flights of the NASA U-2 aircraft between 19 May and 17 June 1980. Mixing ratios from gas chromatographic measurements on samples acquired about 24 hours after the initial eruption show considerable enhancement over nonvolcanic concentrations for sulfur dioxide (more than 1000 times), methyl chloride (about 10 times), and carbon disulfide (more than 3 times). The mixing ratio of carbonyl sulfide was comparable to nonvolcanic mixing ratios although 3 days later it was enhanced two to three times. Ion chromatography measurements on water-soluble constituents are also reported. Very large concentrations of chloride, nitrate, and sulfate ions were measured, implying large mixing ratios for the water-soluble gaseous constituents from which the anions are derived. Measurements of radon-222 present in the plume are also reported.

  11. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  12. Subsonic Maneuvering Effectiveness of High Performance Aircraft Which Employ Quasi-Static Shape Change Devices

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.

    1998-01-01

    This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.

  13. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  14. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-04-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  15. Analysis of Exhaust Plume Effects on Sonic Boom for a 59-Degree Wing Body Model

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analyses showed how the shock wave formed at the nozzle lip interacted with the nozzle boat-tail expansion wave. The nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion. Lip shock movement caused a favorable change in the observed pressure signature. These results were applied to a simplified supersonic vehicle geometry with no inlets and no tail, in which the goal was to demonstrate how under-expanded nozzle operation reduced the sonic boom signature by twelve percent. A secondary goal was to demonstrate the use of the Cart3D inviscid code for off-body pressure signatures including the nozzle plume effect.

  16. Understanding the Influence of Turbulence in Imaging Fourier-Transform Spectrometry of Smokestack Plumes

    DTIC Science & Technology

    2011-03-01

    capability of FTS to estimate plume effluent concentrations by comparing intrusive measurements of aircraft engine exhaust with those from an FTS. A... turbojet engine. Temporal averaging was used to reduce SCAs in the spectra, and spatial maps of temperature and concentration were generated. The time...density function ( PDF ) is the de- fined as the derivative of the CDF, and describes the probability of obtaining a given value of X. For a normally

  17. DONBOL: A computer program for predicting axisymmetric nozzle afterbody pressure distributions and drag at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.

    1979-01-01

    A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.

  18. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  19. Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.

    2005-01-01

    The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.

  20. Particle Size Distributions Measured in the B757 Engine Plume During EXCAVATE

    NASA Technical Reports Server (NTRS)

    Sanders, Terry; Penko, Paul; Rivera, Monica; Culler, Steve

    2005-01-01

    The Experiment to Characterize Aircraft Volatile Aerosols and Trace Species Emissions (EXCAVATE) took place at NASA Langley Research Center during January 2002. This ground based study was conducted to examine the role of fuel sulfur content on particulate emissions. Size distributions as a function of engine operating conditions were measured in the exhaust plume of a B-757 at four downstream axial locations (1 m, 10 m, 25 m and 35 m). The engine was run on JP-5 with three different sulfur concentrations, 810 ppm, 1050 ppm, 1820 ppm; and was operated over a range of power settings from idle to near-full power. Zalabsky differential-mobility analyzers DMAS), Met One condensation-nuclei counters (CNCs), and a TSI 3022 condensation-particle counter (CPC) were used to measure the size distributions. The total number-count (particle concentration), number-based Emissions Index (EInumber) and mass-based Emissions Index (E1-J increased with fuel sulfur-content and engine pressure ratio (EPR). Count Mean Diameter (Ch4D) also increased with EPR yet remained fairly constant with fuel sulfur-content for a fixed location in the exhaust plume. Also the mode and CMD both increased with distance in the plume.

  1. Measurements of Unexpected Ozone Loss in a Nighttime Space Shuttle Exhaust Plume: Implications for Geo-Engineering Projects

    NASA Astrophysics Data System (ADS)

    Avallone, L. M.; Kalnajs, L. E.; Toohey, D. W.; Ross, M. N.

    2008-12-01

    Measurements of ozone, carbon dioxide and particulate water were made in the nighttime exhaust plume of the Space Shuttle (STS-116) on 9 December 2006 as part of the PUMA/WAVE campaign (Plume Ultrafast Measurements Acquisition/WB-57F Ascent Video Experiment). The launch took place from Kennedy Space Center at 8:47 pm (local time) on a moonless night and the WB-57F aircraft penetrated the shuttle plume approximately 25 minutes after launch in the lowermost stratosphere. Ozone loss is not predicted to occur in a nighttime Space Shuttle plume since it has long been assumed that the main ozone loss mechanism associated with rocket emissions requires solar photolysis to drive several chlorine-based catalytic cycles. However, the nighttime in situ observations show an unexpected loss of ozone of approximately 250 ppb in the evolving exhaust plume, inconsistent with model predictions. We will present the observations of the shuttle exhaust plume composition and the results of photochemical models of the Space Shuttle plume. We will show that models constrained by known rocket emission kinetics, including afterburning, and reasonable plume dispersion rates, based on the CO2 observations, cannot explain the observed ozone loss. We will propose potential explanations for the lack of agreement between models and the observations, and will discuss the implications of these explanations for our understanding of the composition of rocket emissions. We will describe the potential consequences of the observed ozone loss for long-term damage to the stratospheric ozone layer should geo-engineering projects based on rocket launches be employed.

  2. The vehicle design evaluation program - A computer-aided design procedure for transport aircraft

    NASA Technical Reports Server (NTRS)

    Oman, B. H.; Kruse, G. S.; Schrader, O. E.

    1977-01-01

    The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.

  3. The detection of enhanced carbon monoxide abundances in remotely sensed infrared spectra of a forest fire smoke plume

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Strow, L. L.; Smith, W. L.; Revercomb, H. E.; Huang, H. L.

    Nadir looking infrared spectra of a forest fire smoke plume off the south shore of Long Island, New York, were obtained from a NASA ER-2 aircraft during two spatially coincident over-flights on the morning of August 25, 1995. These spectra exhibit enhanced CO column densities at the same geographic locations over the smoke plume on both over-flights with a peak CO column density ˜2.6 × 1018 cm-2, ˜6σ above the clear air background. Meteorological conditions suggest the smoke plume was confined to the planetary boundary layer (PBL), pressures ≥ 850 mb, and perhaps to a thin region near the top of the PBL. Constraining the excess CO to the PBL yields a CO mixing ratio ˜1,400 ppbv. Further constraining the CO to the model layer nearest the top of the PBL, 852-878 mb, yields-4,300 ppbv. From the spatial overlap of the spectra, the estimated width of the CO rich portion of the plume is ≤ 2.8 km vs. a plume width of ˜5 km in GOES-8 satellite visible images.

  4. Controls on Plume Spacing and Plume Population in 3-D High Rayleigh Number Thermal Convection

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2004-12-01

    Dynamics of mantle plumes are important for understanding intra-plate volcanism and heat transfer in the mantle. Using 3D numerical models and scaling analyses, we investigated the controls of convective vigor or Ra on the dynamics of thermal plumes in isoviscous and basal heating thermal convection. We examined Ra-dependence of plume population, plume spacing, plume vertical velocity, and plume radius. We found that plume population does not increase with Ra monotonically. At relatively small Ra (<106), plume population is insensitive to Ra. For 3x106plume population scales as Ra0.31 and plume spacing ˜ Ra-0.16 ˜ δ 1/2, where δ is the thermal boundary layer thickness. However, for larger Ra ( ˜ 108) plume population and plume spacing become insensitive to Ra again. This indicates that the box depth poses a limit on plume spacing and plume population. We demonstrated from both scaling analyses and numerical experiments that the scaling exponents for plume population, n, heat flux, β , and average velocity on the bottom boundary, v, satisfy n = 4β - 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes Vup ˜ Ra2(1-n+β /2)/3 and that plume radius Rup ˜ Ra2(β -1-n/2)/3, differing from the scalings for the bottom boundary velocity and boundary layer thickness.

  5. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  6. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  7. Aircraft in situ and remote sensing measurements of emissions from Etna volcano, Sicily

    NASA Astrophysics Data System (ADS)

    Vogel, A.; Weber, K.; Fischer, C.; Prata, A. J.; Durant, A. J.

    2012-04-01

    Volcanoes emit particles (silicates and sulphate aerosol) and gases (e.g., water and sulphur dioxide) which influence the radiative balance of the atmosphere. The rate at which sulphur dioxide oxidises to sulphate aerosol is poorly constrained and measurements of downwind abundance are required to quantify the rate at which this process occurs. During July and November 2011, a series of measurements were performed in emissions from Etna Volcano, Sicily, using the University of Applied Sciences (Dusseldorf) research aircraft. Both in situ and remote sensing instrumentation was simultaneously deployed to quantify the down-wind characteristics of gases and particles in the plume emitted by the volcano. In situ particle characteristics were measured using a Grimm 1.109 optical particle counter (microparticles 0.25-32 microns) and Grimm 1320 diffusion electrometer (nanoparticles 25-300 nanometers). Column abundance of sulphur dioxide was measured using a vertically-pointing differential optical absorption spectrometer (DOAS). These measurements were compared to horizontal pathlength-integrated measurements of sulphur dioxide from the Airborne Volcanic Imaging Object Detector (AVOID). Down-wind plume dispersion was discriminated through a series of aircraft transects below and through the volcanic plume. The emissions contained large amounts of nanoparticles relative to microparticles, which reflects gas-phase nucleation of sulphate aerosol. The AVOID system discriminated horizontal layering of volcanic aerosol at altitudes of up to 12,000 ft from a detection range of >50 km. Plume boundaries were discriminated using a combination of the in situ and DOAS measurements in order to compare to the pathlength-integrated measurements from AVOID.

  8. Preliminary study of propulsion systems and airplane wing parameters for a US Navy subsonic V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Zola, C. L.; Fishbach, L. H.; Allen, J. L.

    1978-01-01

    Two V/STOL propulsion concepts were evaluated in a common aircraft configuration. One propulsion system consists of cross coupled turboshaft engines driving variable pitch fans. The other system is a gas coupled combination of turbojet gas generators and tip turbine fixed pitch fans. Evaluations were made of endurance at low altitude, low speed loiter with equal takeoff fuel loads. Effects of propulsion system sizing, bypass ratio, and aircraft wing planform parameters were investigated and compared. Shaft driven propulsion systems appear to result in better overall performance, although at higher installed weight, than gas systems.

  9. A meteorological overview of the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) period

    NASA Astrophysics Data System (ADS)

    Fuelberg, Henry E.; Hannan, John R.; van Velthoven, Peter F. J.; Browell, Edward V.; Bieberbach, George; Knabb, Richard D.; Gregory, Gerald L.; Pickering, Kenneth E.; Selkirk, Henry B.

    2000-02-01

    Meteorological conditions are described during NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) that was conducted over the North Atlantic Flight Corridor (NAFC) during October and November 1997 to study the impact of aircraft emissions on atmospheric concentrations of NOx and ozone. The SONEX period exhibited frequent closed cyclones and anticyclones, as well as high-amplitude troughs and ridges. These flow patterns often caused aircraft exhaust from the NAFC to follow broad looping north-south trajectories, instead of more easterly routes that would have occurred if the flow had been more zonal. Mean meteorological conditions during SONEX include a pronounced long wave trough over the East Coast of the United States, as well as weaker low pressure over middle-latitude portions of the Atlantic Ocean. Conversely, a well-developed ridge was apparent over the North Atlantic near Iceland. Cloudiness exceeded climatology off the East Coast and the subtropical North Atlantic, with abundant lightning in these regions. There was less than average cloud cover over the middle latitudes between Newfoundland and central Europe. The tropopause was higher than climatology over much of the SONEX region, and the jet stream was located north of its typical position. These circulation features during SONEX are consistent with typical year-to-year variations. Meteorological conditions during individual SONEX flights also are described. Upper tropospheric flow patterns, 5-day backward trajectories from the flight tracks, tropopause heights, lightning data, and differential absorption lidar ozone imagery are employed. Effects of aircraft were observed on numerous flights. Stratospheric conditions were encountered during many flights, sometimes because the DC-8 passed through a tropopause fold. SONEX flight tracks frequently were downwind of regions of lightning, especially during flights from Bangor and the Azores. Finally, trajectories indicated that

  10. Assessment of the Noise Reduction Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Nickol, Craig L.

    2016-01-01

    Aircraft system noise is predicted for a portfolio of NASA advanced concepts with 2025 entry-into-service technology assumptions. The subsonic transport concepts include tube-and-wing configurations with engines mounted under the wing, over the wing nacelle integration, and a double deck fuselage with engines at a mid-fuselage location. Also included are hybrid wing body aircraft with engines upstream of the fuselage trailing edge. Both advanced direct drive engines and geared turbofan engines are modeled. Recent acoustic experimental information was utilized in the prediction for several key technologies. The 301-passenger class hybrid wing body with geared ultra high bypass engines is assessed at 40.3 EPNLdB cumulative below the Stage 4 certification level. Other hybrid wing body and unconventional tube-and-wing configurations reach levels of 33 EPNLdB or more below the certification level. Many factors contribute to the system level result; however, the hybrid wing body in the 301-passenger class, as compared to a tubeand- wing with conventional engine under wing installation, has 11.9 EPNLdB of noise reduction due to replacing reflection with acoustic shielding of engine noise sources. Therefore, the propulsion airframe aeroacoustic interaction effects clearly differentiate the unconventional configurations that approach levels close to or exceed the 42 EPNLdB goal.

  11. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  12. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  13. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  14. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.

    PubMed

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E

    2004-11-15

    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  15. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  16. Supersonic Wind Tunnel Capabilities Expanded Into Subsonic Region

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1997-01-01

    The operating envelope of the Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Lewis Research Center was recently expanded to include operation at subsonic test section speeds. This new capability generates test section air speeds ranging from Mach 0.05 to 0.35 (32 to 240 kn). Most of the expansion in air speed range was obtained by running the tunnel's main compressor at much lower speeds than ever before. The compressor drive system, consisting of four large electric motors, was run with only one or two motors energized to obtain the lower compressor speed range. This new capability makes the 10x10 SWT more versatile and gives U.S. researchers an enhanced ability to perform subsonic propulsion and aerodynamic testing.

  17. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.103 Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes compliance...

  18. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.103 Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes compliance...

  19. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  20. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  1. Transport of pollutants in plumes and PEPES: a study of transport of pollutants in power plant plumes, urban and industrial plumes, and persistent elevated pollution episodes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, W.M.

    Because of the increased concern for the regional nature of secondary air pollutants (e.g., sulfates and oxidants) the U.S. Environmental Protection Agency (EPA) sponsored a major field program in the northeastern United States during the summer of 1980. Two EPA field programs were actually carried out simultaneously. One addressed persistent elevated pollution episodes, and the other continued the 1979 northeast regional oxidant study in developing part of the data base for the regional oxidant model. Field activities were based in Columbus, OH. Ten research aircraft and several mobile and stationary surface-monitoring platforms from three EPA contractors, seven Federal Agencies, andmore » four Universities participated in the intensive measurement program between 16 July and 15 August 1980. Pollutants measured included SO/sub 2/, NO, NOx, O/sub 3/, sulfate, nitrate, and aerosols. This report describes the contractors activities. Their aircraft logged over 350 flight hours in 100 missions ranging as far east as Laconia, NH, as far south as Montgomery, AL, as far west as Texarkana, AR, and as far north as Saginaw, MI. Descriptive analyses are summarized for urban plume missions and regional missions. The quality assurance program is described, showing the efforts made to develop a well coordinated data base. Sources for reports and data are provided.« less

  2. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  3. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  4. Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Warneke, C.; Stohl, A.; Wollny, A. G.; Brock, C. A.; Cooper, O. R.; Holloway, J. S.; Trainer, M.; Fehsenfeld, F. C.; Atlas, E. L.; Donnelly, S. G.; Stroud, V.; Lueb, A.

    2006-05-01

    The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed.

  5. Subsonic stability and control derivatives for an unpowered, remotely piloted 3/8-scale F-15 airplane model obtained from flight test

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Shafer, M. F.

    1976-01-01

    In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.

  6. Mesoscale numerical investigations of air traffic emissions over the North Atlantic during SONEX flight 8: A case study

    NASA Astrophysics Data System (ADS)

    Bieberbach, George; Fuelberg, Henry E.; Thompson, Anne M.; Schmitt, Alfons; Hannan, John R.; Gregory, G. L.; Kondo, Yutaka; Knabb, Richard D.; Sachse, G. W.; Talbot, R. W.

    2000-02-01

    Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focusing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high-resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor (NAFC) over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered. These NO spikes are due to the superposition of 14 to 25 aircraft plumes transported to the DC-8 flight track during the previous 33 hours. Results confirm that aircraft emissions were responsible for two chemical signatures observed during SONEX flight 8. They also indicate that high-resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.

  7. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  8. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  9. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  10. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  11. A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-08-01

    We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event, but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long-range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~ 24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  12. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the 2011 BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, J. E.; Drummond, J. R.; Griffin, D.; Pierce, J. R.; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; Rickard, A. R.; Taylor, J. W.; Allan, J. D.; Coe, H.; Walker, K. A.; Chisholm, L.; Duck, T. J.; Hopper, J. T.; Blanchard, Y.; Gibson, M. D.; Curry, K. R.; Sakamoto, K. M.; Lesins, G.; Dan, L.; Kliever, J.; Saha, A.

    2014-02-01

    We present measurements of a long range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wildland fires burning in eastern Manitoba and western Ontario. We investigate a plume with high trace gas amounts but low amounts of particles that preceded and overlapped at the Halifax site with a second plume with high trace gas loadings and significant amounts of particulate material. We show that the first plume experienced a meteorological scavenging event but the second plume had not been similarly scavenged. This points to the necessity to account carefully for the plume history when considering long range transport since simultaneous or near-simultaneous times of arrival are not necessarily indicative of either similar trajectories or meteorological history. We investigate the origin of the scavenged plume, and the possibility of an aerosol wet deposition event occurring in the plume ~24 h prior to the measurements over Halifax. The region of lofting and scavenging is only monitored on an intermittent basis by the present observing network, and thus we must consider many different pieces of evidence in an effort to understand the early dynamics of the plume. Through this discussion we also demonstrate the value of having many simultaneous remote-sensing measurements in order to understand the physical and chemical behaviour of biomass burning plumes.

  13. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  14. Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Parrish, D. D.; Neuman, J. A.; Holloway, J. S.; Cooper, O. R.; Ryerson, T. B.; Nicks, D. K.; Flocke, F.; Roberts, J. M.; Atlas, E.; de Gouw, J. A.; Donnelly, S.; Dunlea, E.; Hübler, G.; Huey, L. G.; Schauffler, S.; Tanner, D. J.; Warneke, C.; Fehsenfeld, F. C.

    2004-12-01

    The gas-phase chemical characteristics of emission plumes transported from Asia across the Pacific Ocean observed during the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2) are described. Plumes measured in the troposphere from an aircraft were separated from the background air in data analysis using 1-s measurements of carbon monoxide (CO), total reactive nitrogen (NOy), and other gas-phase species along with back trajectory analysis. On the basis of these measurements, Asian transport plumes with CO mixing ratios greater than 150 ppbv were observed on seven flights. Correlations between 1-s observations of CO, ozone (O3), and NOy are used to characterize the plumes. The NOy/CO ratios were similar in each plume and significantly lower than those derived from estimated Asian emission ratios, indicating substantial removal of soluble NOy species during transport. Observations of nitric oxide (NO), nitrogen dioxide (NO2), nitric acid (HNO3), peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and alkyl nitrates are used with the NOy measurements to further distinguish the transport plumes by their NOy partitioning. NOy was primarily in the form of PAN in plumes that were transported in cold high-latitude and high-altitude regions, whereas in plumes transported in warmer, lower latitude and altitude regions, NOy was mainly HNO3. Additional gas-phase species enhanced in these plumes include sulfuric acid, methanol, acetone, propane, and ethane. The O3/CO ratio varied among the plumes and was affected by the mixing of anthropogenic and stratospheric influences. The complexity of this mixing prevents the determination of the relative contribution of anthropogenic and stratospheric influences to the observed O3 levels.

  15. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  16. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    EPA Science Inventory

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  17. User's manual: Subsonic/supersonic advanced panel pilot code

    NASA Technical Reports Server (NTRS)

    Moran, J.; Tinoco, E. N.; Johnson, F. T.

    1978-01-01

    Sufficient instructions for running the subsonic/supersonic advanced panel pilot code were developed. This software was developed as a vehicle for numerical experimentation and it should not be construed to represent a finished production program. The pilot code is based on a higher order panel method using linearly varying source and quadratically varying doublet distributions for computing both linearized supersonic and subsonic flow over arbitrary wings and bodies. This user's manual contains complete input and output descriptions. A brief description of the method is given as well as practical instructions for proper configurations modeling. Computed results are also included to demonstrate some of the capabilities of the pilot code. The computer program is written in FORTRAN IV for the SCOPE 3.4.4 operations system of the Ames CDC 7600 computer. The program uses overlay structure and thirteen disk files, and it requires approximately 132000 (Octal) central memory words.

  18. Production of Peroxy Nitrates in Boreal Biomass Burning Plumes over Canada During the BORTAS Campaign

    NASA Technical Reports Server (NTRS)

    Busilacchio, Marcella; Di Carlo, Piero; Aruffo, Eleonora; Biancofiore, Fabio; Salisburgo, Cesare Dari; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Hopkins, James; hide

    2016-01-01

    The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3 and total peroxy nitrates (sigma)PNs, (sigma)ROONO2. The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of (sigma)PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions.In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of (sigma)PNs, where as minimal increase of the concentrations of O3 and NO2 is observed. The (sigma)PN and O3 productions have been calculated using the rate constants of the first- and second-order react Pions of volatile organic compound (VOC) oxidation. The (sigma)PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of (sigma)PNs and O3 are greater than in the background plumes, but the increase of (sigma)PN production is more pronounced than the O3 production. The average (sigma)PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign,fire emissions impact both the oxidized NOy and O3;but (1)(sigma)PN production is amplified significantly more thanO3 production and (2) in the forest fire plumes the ratio between the O3 production and the (sigma)PN production is lower than the ratio evaluated in the background air masses, thus

  19. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  20. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  1. Subsonic Dynamics of Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.

    1997-01-01

    Subsonic dynamic stability tests performed in the NASA Langley 20-Foot Vertical Spin-Tunnel on a 0.238 scale model of the Stardust Sample Return Capsule are discussed. The tests reveal that the blunted 60 degree half-angle cone capsule is dynamically unstable at low subsonic conditions due to the aft location of the center-of-gravity (0.351 body diameters back from the nose). The divergent behavior of the capsule continued when the center-of-gravity was moved to 0.337 and 0.313 body diameters back from the nose. When the center-of-gravity was moved further forward to 0.290 body diameters back from the nose, the vehicle established itself in a limit cycle with amplitude around 10 degrees. Two afterbody modifications were examined which proved unsuccessful in alleviating the instability of the original design. Finally, the addition of different sized parachutes was examined as a means to stabilize the vehicle. The parachute tests indicate that a parachute with equivalent full scale drag area of at least 2.24 ft. is necessary to assure large perturbations are damped.

  2. A Model for the Vortex Pair Associated with a Jet in a Cross Flow

    NASA Technical Reports Server (NTRS)

    Sellers, William L.

    1975-01-01

    A model is presented for the contrarotating vortex pair that is formed by a round, turbulent, subsonic jet directed normally into a uniform, subsonic cross flow. The model consists of a set of algebraic equations that describe the properties of the vortex pair as a function of their location in the jet plume. The parameters of the model are physical characteristics of the vortices such as the vortex strength, spacing, and core size. These parameters are determined by velocity measurements at selective points in the jet plume.

  3. An Overview of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Ultra High Bypass Partnership Research Goals

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2009-01-01

    An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.

  4. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  5. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  6. Using TES retrievals to investigate PAN in North American biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Fischer, Emily V.; Zhu, Liye; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Brey, Steven; Hecobian, Arsineh; Gombos, Daniel; Cady-Pereira, Karen; Flocke, Frank

    2018-04-01

    Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (˜ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15-32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  7. Volcanic plume height measured by seismic waves based on a mechanical model

    USGS Publications Warehouse

    Prejean, Stephanie G.; Brodsky, Emily E.

    2011-01-01

    In August 2008 an unmonitored, largely unstudied Aleutian volcano, Kasatochi, erupted catastrophically. Here we use seismic data to infer the height of large eruptive columns such as those of Kasatochi based on a combination of existing fluid and solid mechanical models. In so doing, we propose a connection between a common, observable, short-period seismic wave amplitude to the physics of an eruptive column. To construct a combined model, we estimate the mass ejection rate of material from the vent on the basis of the plume height, assuming that the height is controlled by thermal buoyancy for a continuous plume. Using the estimated mass ejection rate, we then derive the equivalent vertical force on the Earth through a momentum balance. Finally, we calculate the far-field surface waves resulting from the vertical force. The model performs well for recent eruptions of Kasatochi and Augustine volcanoes if v, the velocity of material exiting the vent, is 120-230 m s-1. The consistency between the seismically inferred and measured plume heights indicates that in these cases the far-field ~1 s seismic energy radiated by fluctuating flow in the volcanic jet during the eruption is a useful indicator of overall mass ejection rates. Thus, use of the model holds promise for characterizing eruptions and evaluating ash hazards to aircraft in real time on the basis of far-field short-period seismic data. This study emphasizes the need for better measurements of eruptive plume heights and a more detailed understanding of the full spectrum of seismic energy radiated coeruptively.

  8. Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak

    2015-04-01

    Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.

  9. Subsonic Scarf Inlets Investigated

    NASA Technical Reports Server (NTRS)

    Abbott, John M.

    2005-01-01

    A computational investigation is underway at the NASA Glenn Research Center to determine the aerodynamic performance of subsonic scarf inlets. These inlets are characterized as being longer over the lower portion of the inlet, as shown in the preceding figure. One of the key variables being investigated in the research is the circumferential extent of the longer portion of the inlet. It shows two specific geometries that are being examined: one in which the length of the inlet transitions from long-to-short over the full 180 deg. from bottom to top, and a second in which the length transitions over 67.5 deg.

  10. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the BORTAS field experiment

    NASA Astrophysics Data System (ADS)

    Franklin, Jonathan E.; Griffin, Debora; Pierce, Jeffrey R.; Drummond, James R.; Waugh, David; Palmer, Paul; Chisholm, Lucy; Duck, Thomas J.; Lesins, Glen; Walker, Kaley A.; Hopper, Jason T.; Curry, Kevin R.; Sakamoto, Kimiko M.; Dan, Lin; Kliever, Jenny; O'Neill, Norm

    2013-04-01

    Wild fires started by lightning are a significant source of carbonaceous aerosols and trace gases to the atmosphere. Careful observations of biomass burning plumes are required to quantify the long range transport and chemical evolution of the outflow from these fires. During the summer of 2011 an international effort - the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) project - led by the University of Edinburgh, evaluated the chemistry and dynamics of Boreal biomass burning plumes through aircraft, satellite, and ground-based measurements. The Dalhousie Ground Station (DGS), located in Halifax, Nova Scotia, provided ground support to the BORTAS campaign. Two Fourier Transform Spectrometers (FTSs) provided solar absorption measurements of trace gases while two photometers provided aerosol optical depths. On 20 July 2011 a plume of elevated carbon monoxide and other trace gases was detected by the FTS instruments at the DGS; however, particulate data gathered from the co-located sun photometer and the Dalhousie Raman Lidar system showed no enhancement of fine-mode aerosol for the initial 7 hours of the event. After that time, particulates increased in abundance and a peak aerosol optical depth of 2.3 was measured on 21 July. FLEXPART trajectory analyses suggest that this plume originated in fires that were burning in Northwestern Ontario and Eastern Manitoba from 17 to 19 July. Despite the sparse observing network in the region, there is ample evidence of a significant lofting event via the same meso-scale convective system that tempered the burning on the 19th. We will provide an overview of this event and present evidence that precipitation scavenging was the most likely mechanism for the observed aerosol/trace gas anomaly. Support for this this research was provided by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada.

  11. Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010

    NASA Astrophysics Data System (ADS)

    Bukowiecki, N.; Zieger, P.; Weingartner, E.; Jurányi, Z.; Gysel, M.; Neininger, B.; Schneider, B.; Hueglin, C.; Ulrich, A.; Wichser, A.; Henne, S.; Brunner, D.; Kaegi, R.; Schwikowski, M.; Tobler, L.; Wienhold, F. G.; Engel, I.; Buchmann, B.; Peter, T.; Baltensperger, U.

    2011-10-01

    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17-19 April 2010 and 16-19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm-3 and 70 μgm-3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm-3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200-520) μgm-3 on 18 May 2010 over the northwestern Swiss plateau. The presented

  12. Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010

    NASA Astrophysics Data System (ADS)

    Bukowiecki, N.; Zieger, P.; Weingartner, E.; Jurányi, Z.; Gysel, M.; Neininger, B.; Schneider, B.; Hueglin, C.; Ulrich, A.; Wichser, A.; Henne, S.; Brunner, D.; Kaegi, R.; Schwikowski, M.; Tobler, L.; Wienhold, F. G.; Engel, I.; Buchmann, B.; Peter, T.; Baltensperger, U.

    2011-04-01

    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17-19 April 2010 and 16-19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μg m-3 and 70 μg m-3 (for 10-min mean values) during the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μg m-3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200-520) μg m-3 on 18 May 2010 over the northwestern Swiss plateau. The

  13. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  14. Subsonic structure and optically thick winds from Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.

    2018-06-01

    Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the

  15. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  16. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  17. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Shia, Run-Lie; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified.

  18. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  19. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  20. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 μg m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  1. Experimental Measurements of Store Separation Using Dry Ice Models in a Subsonic Flow

    DTIC Science & Technology

    2011-03-01

    slender bodies separating from rectangular cavities into low subsonic freestreams. The first part of their work presents the three phases of...aerodynamic problems relevant to separation of a thin body of revolution from rectangular cavities into subsonic or transonic flows” 13 [3]. Like many... cavity dimensions of 1.5 x 1.5 x 5.0 inches, resulting in a length-to-depth ratio of 3.33, slightly less the 3.6-6.0 used in previous research

  2. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  3. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  4. 7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  5. 5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  6. 1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  7. 3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  8. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach. [Continental Shelf and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.

    1975-01-01

    The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.

  9. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  10. Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Nagabushana, K. A.

    1991-01-01

    The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.

  11. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃ radical chemistry, and N₂O₅ heterogeneous hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organicmore » nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.« less

  12. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  13. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  14. Swirling plumes and spinning tops

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2017-11-01

    Motivated by potential effects of the Earth's rotation on the dynamics of the oil plume resulting from the Deepwater Horizon disaster in 2010, we conducted laboratory experiments on saltwater and bubble axisymmetric point plumes in a homogeneous rotating environment. The effect of rotation is conventionally characterized by a Rossby number, based on the source buoyancy flux, the rotation rate of the system and the total water depth and which ranged from 0.02 to 1.3 in our experiments. In the range of parameters studied, we report a striking new physical instability in the plume dynamics near the source. After approximately one rotation period, the plume axis tilts away laterally from the centreline and the plume starts to precess in the anticyclonic direction. We find that the mean precession frequency of the plume scales linearly with the rotation rate of the environment. Surprisingly, the precession frequency is found to be independent of the diameter of the plume nozzle, the source buoyancy flux, the water depth and the geometry of the domain. In this talk, we present our experimental results and develop simple theoretical toy models to explain the observed plume behaviour.

  15. Ridge jumps associated with plume-ridge interaction: Mantle plume-lithosphere interaction and hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2007-12-01

    Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the

  16. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  17. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  18. Summary of aircraft results for 1978 southeastern Virginia urban plume measurement study of ozone, nitrogen oxides, and methane

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.

    1980-01-01

    Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.

  19. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  20. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  1. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  2. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  3. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not

  4. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

  5. Grimsvotn ash plume detection by ground-based elastic Lidar at Dublin Airport on May 2011

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Martucci, G.; O'Dowd, C.; sauvage, L.; Nolan, P.

    2011-12-01

    Volcanic emissions comprising steam, ash, and gases are injected into the atmosphere and produce effects affecting Earth's climate. Volcanic ash is composed of non-spherical mineral and metal (particles spanning a large size range. The largest ones are likely to sediment quickly close to the eruption site. The ash component, and sulphate formed by subsequent oxidation of the SO2 occurring in clouds, poses a variety of hazards to humans and machinery on the ground, as well as damage to the aircrafts which fly through the ash layers. To mitigate such hazards the Irish Aviation Authority (IAA) equipped with an ALS Lidar, produced by LEOSPHERE, deployed at Dublin Airport, which provides real-time range-corrected backscatter signal and depolarization ratio profiles allowing the detection and monitoring of ash plumes. On May, 21st 2011, the Grimsvotn Icelandic volcano erupted, sending a plume of ash, smoke and steam 12 km into the air and causing flights to be disrupted at Iceland's main Keflavik airport and at a number of North European airports. Due to upper level global circulation, the ash plume moved from Iceland towards Ireland and North of Scotland, and was detected a number of times by the ALS Lidar above Dublin Airport between May, 21st and 25th. A preliminary analysis of the detected volcanic plume is presented here as well as a preliminary intercomparison of the microphysical and optical characteristics with the Eyjafjallajökull eruption in 2010.

  6. Elevated O3 in Fresh and Aged Lightning-NOx Plumes Interacting with Biomass Burning Plumes over the Central U.S. during DC3 (Invited)

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fütterer, D.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K.; Barth, M. C.

    2013-12-01

    During the Deep Convective Clouds and Chemistry Experiment (DC3) in summer 2012 a variety of different thunderstorm systems were investigated over the Central U.S. by the DLR research aircraft Falcon together with the NCAR GV and NASA DC-8 aircraft. In addition, the complete DC3 field phase was characterized by a number of extended wildfires burning in the surroundings of the thunderstorms. Here we mainly focus on trace gas in situ measurements, such as NOx, CO, O3, CH4, SO2, NMHC, and a variety of aerosol measurements carried out by the Falcon in the fresh (~0-6 h) and aged (~12-24 h) anvil outflow at ~10-12 km altitude. It is well-known that thunderstorms modify the trace gas composition in the upper troposphere (UT) and may affect O3 mixing ratios, an important greenhouse gas in the UT. However, a complete picture of the different processes affecting the UT-O3 composition in vicinity of thunderstorms and its large-scale effects is still missing. From the DC3 data set we present an example of small-scale effects on the O3 composition in the anvil outflow, such as immediate O3 production by an aircraft-induced flash. But we also show how the efficient convective transport that extended over the whole updraft region may transport O3-poorer air masses from the, in general, rather unpolluted inflow region (with regard to anthropogenic emissions) over the Central U.S. directly to the UT. However, in a few cases enhanced O3 mixing ratios were observed in the anvil outflow attributed to different chemical and dynamical processes. In the two most powerful convective systems, an intense MCS over Missouri/Arkansas and a supercell over Texas, extended biomass burning (BB) plumes from New Mexico interacted with the thunderstorms. Ozone production was obvious in the BB plumes transported mainly in the lower troposphere at ~2-5 km altitude (ΔO3/ΔCO=0.1). However, if these air masses affected by BB emissions (containing high amounts of O3 precursors such as CH4 and NMHC) were

  7. High performance dash-on-warning air mobile missile system. [first strike avoidance for retaliatory aircraft-borne ICBM counterattack

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Levin, A. D.

    1978-01-01

    Because fixed missile bases have become increasingly vulnerable to strategic nuclear attack, an air-mobile missile system is proposed, whereby ICBMs can be launched from the hold of large subsonic aircraft following a missile-assisted supersonic dash of the aircraft to a safe distance from their base (about 50 n mi). Three major categories of vehicle design are presented: staged, which employs vertical take-off and a single solid rocket booster similar to that used on the Space Shuttle; unstaged, which employs vertical take-off and four internally-carried reusable liquid rocket engines; and alternative concepts, some using horizontal take-off with duct-burning afterburners. Attention is given to the economics of maintaining 200 ICBMs airborne during an alert (about $600 million for each fleet alert, exclusive of acquisition costs). The chief advantages of the system lie in its reduced vulnerability to suprise attack, because it can be launched on warning, and in the possibility for recall of the aircraft if the warning proves to be a false alarm.

  8. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  9. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.

    2010-06-01

    Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{submore » 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.« less

  10. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  11. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  12. Aeropropulsion '87. Session 5: Subsonic propulsion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  13. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  14. Feasibility of Epidemiologic Research on Nonauditory Health Effects of Residential Aircraft Noise Exposure. Volume 2. Background, General Process Model and Potential Studies

    DTIC Science & Technology

    1989-01-27

    Epidemiologic Study in 120 Oklahoma City 5.4 Chronic Exposure to Sonic Booms 122 5.4.1 White Sands Missile Range 122 5.4.2 Areas Overflown by SR-71 123...5.5 Chronic Exposure to Subsonic Civil Aircraft Noise 123 5.5.1 Design of an Ecologic Study in Airport Environs 124 Iv 5.5.2 Preliminary Evaluation of...dosage-effect relationships for different groups of individuals, one must be able to argue convincingly that a noise measure reflects some aspect of

  15. Subsonic Swept Fan Blade

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  16. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  17. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  18. Abatement of an aircraft exhaust plume using aerodynamic baffles.

    PubMed

    Bennett, Michael; Christie, Simon M; Graham, Angus; Garry, Kevin P; Velikov, Stefan; Poll, D Ian; Smith, Malcolm G; Mead, M Iqbal; Popoola, Olalekan A M; Stewart, Gregor B; Jones, Roderic L

    2013-03-05

    The exhaust jet from a departing commercial aircraft will eventually rise buoyantly away from the ground; given the high thrust/power (i.e., momentum/buoyancy) ratio of modern aero-engines, however, this is a slow process, perhaps requiring ∼ 1 min or more. Supported by theoretical and wind tunnel modeling, we have experimented with an array of aerodynamic baffles on the surface behind a set of turbofan engines of 124 kN thrust. Lidar and point sampler measurements show that, as long as the intervention takes place within the zone where the Coanda effect holds the jet to the surface (i.e., within about 70 m in this case), then quite modest surface-mounted baffles can rapidly lift the jet away from the ground. This is of potential benefit in abating both surface concentrations and jet blast downstream. There is also some modest acoustic benefit. By distributing the aerodynamic lift and drag across an array of baffles, each need only be a fraction of the height of a single blast fence.

  19. SNIFFER: An aerial platform for the plume phase of a nuclear emergency

    NASA Astrophysics Data System (ADS)

    Castelluccio, D. M.; Cisbani, E.; Frullani, S.

    2012-04-01

    When a nuclear or radiological accident results in a release of a radioactive plume, AGS (Aerial Gamma Spectrometry) systems used in many countries, equipped with passive detectors, can help in giving quantitative assessment on the radiological situation (land surface contamination level) only when the air contamination due to the passage of the travelling plume has become negligible. To overcome this limitation, the Italian Institute of Health has developed and implemented a multi purpose air sampling system based on a fixed wing aircraft, for time-effective, large areas radiological surveillance (to face radiological emergency and to support homeland security). A fixed wing aircraft (Sky Arrow 650) with the front part of the fuselage properly adapted to house the detection equipment has been equipped with a compact air sampling line where the isokinetic sampling is dynamically maintained. Aerosol is collected on a Teflon® filter positioned along the line and hosted on a rotating 4-filters disk. A complex of detectors allows radionuclide identification in the collected aerosol samples. A correlated analysis of these two detectors data allows a quantitative measurement of air as well as ground surface concentration of gamma emitting radioisotopes. Environmental sensors and a GPS receiver support the characterization of the sampling conditions and the temporal and geolocation of the acquired data. Acquisition and control system based on compact electronics and real time software that operate the sampling line actuators, guarantee the dynamical isokinetic condition, and acquire the detectors and sensor data. The system is also equipped with other sampling lines to provide information on the concentration of other chemical pollutants. Operative flights have been carried out in the last years, and performances and results are presented.

  20. Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.

    2011-01-01

    Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.

  1. Heterogeneous reactions in aircraft gas turbine engines

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Miake-Lye, R. C.; Lukachko, S. P.; Waitz, I. A.

    2002-05-01

    One-dimensional flow models and unity probability heterogeneous rate parameters are used to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines. The analysis includes reactions on soot particulates and turbine/nozzle material surfaces. Results for a representative advanced subsonic engine indicate the net change in reactant mixing ratios due to heterogeneous reactions is <10-6 for O2, CO2, and H2O, and <10-10 for minor combustion products such as SO2 and NO2. The change in the mixing ratios relative to the initial values is <0.01%. Since these estimates are based on heterogeneous reaction probabilities of unity, the actual changes will be even lower. Thus, heterogeneous chemistry within the engine cannot explain the high conversion of SO2 to SO3 which some wake models require to explain the observed levels of volatile aerosols. Furthermore, turbine heterogeneous processes will not effect exhaust NOx or NOy levels.

  2. Aeroacoustic Data for a High Reynolds Number Axisymmetric Subsonic Jet

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Ukeiley, Lawrence S.; Lee, Sang W.

    1999-01-01

    The near field fluctuating pressure and aerodynamic mean flow characteristics of a cold subsonic jet issuing from a contoured convergent nozzle are presented. The data are presented for nozzle exit Mach numbers of 0.30, 0.60, and 0.85 at a constant jet stagnation temperature of 104 F. The fluctuating pressure measurements were acquired via linear and semi-circular microphone arrays and the presented results include plots of narrowband spectra, contour maps, streamwise/azimuthal spatial correlations for zero time delay, and cross-spectra of the azimuthal correlations. A pitot probe was used to characterize the mean flow velocity by assuming the subsonic flow to be pressure-balanced with the ambient field into which it exhausts. Presented are mean flow profiles and the momentum thickness of the free shear layer as a function of streamwise position.

  3. Identification of integrated airframe: Propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  4. Identification of integrated airframe-propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerald S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  5. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  6. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  7. Measurements of Friction Coefficients in a Pipe for Subsonic and Supersonic Flow of Air

    DTIC Science & Technology

    1943-07-01

    inoh inside diameter for superwaio data and of 0.375-inoh inside diameter for oubaon~o datu. The preaaure meaaurments, from whioh the friotion...pressuro difforonoes oould bo road to 0.01 oontinmtor. For the supcrsoulo data , initial preacuroa wero mcasl.wodwith a calibrated Bourdon gage. The tem~rat...specifio heata$ l.mo cl? speoific heat at oonstant prt)ssuro~ C.24!I Dtu ‘::n, Subsonic Flow The results for the subsonic tests are presented in tables I to

  8. Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.; Palo, Scott; Roesler, Carolyn; Mattia, Mario; Bruno, Valentina; Coltelli, Mauro; Fee, David

    2017-09-01

    Detection and characterization of volcanic eruptions is important both for public health and aircraft safety. A variety of ground sensors are used to monitor volcanic eruptions. Data from these ground sensors are subsequently incorporated into models that predict the movement of ash. Here a method to detect volcanic plumes using GPS signals is described. Rather than carrier phase data used by geodesists, the method takes advantage of attenuations in signal to noise ratio (SNR) data. Two datasets are evaluated: the 2009 Redoubt Volcano eruptions and the 2013/2015 eruptions at Mt. Etna. SNR-based eruption durations are compared with previously published seismic, infrasonic, and radar studies at Redoubt Volcano. SNR-based plume detections from Mt. Etna are compared with L-band radar and tremor observations. To place these SNR observations from Redoubt and Etna in context, a model of the propagation of GPS signals through both water/water vapor and tephra is developed. Neither water nor fine ash particles will produce the observed attenuation of GPS signals, while scattering caused by particles > 1 cm in diameter potentially could.

  9. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  10. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  11. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  12. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  13. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the

  14. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  15. Inter-plume aerodynamics for gasoline spray collapse

    DOE PAGES

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...

    2017-11-10

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  16. Inter-plume aerodynamics for gasoline spray collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  17. A study of sound generation in subsonic rotors, volume 2

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    Computer programs were developed for use in the analysis of sound generation by subsonic rotors. Program AIRFOIL computes the spectrum of radiated sound from a single airfoil immersed in a laminar flow field. Program ROTOR extends this to a rotating frame, and provides a model for sound generation in subsonic rotors. The program also computes tone sound generation due to steady state forces on the blades. Program TONE uses a moving source analysis to generate a time series for an array of forces moving in a circular path. The resultant time series are than Fourier transformed to render the results in spectral form. Program SDATA is a standard time series analysis package. It reads in two discrete time series and forms auto and cross covariances and normalizes these to form correlations. The program then transforms the covariances to yield auto and cross power spectra by means of a Fourier transformation.

  18. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    NASA Technical Reports Server (NTRS)

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  19. Monitoring of Carbon Dioxide and Methane Plumes from Combined Ground-Airborne Sensors

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Taylor; Honeycutt, Wes; Materer, Nicholas; Ley, Tyler; Clark, Peter

    2016-11-01

    A hybrid ground-airborne sensing network for real-time plume monitoring of CO2 and CH4 for carbon sequestration is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft and is combined with a large-scale ground network that measures gas concentration. These are combined with other atmospheric diagnostics, including thermodynamic data and velocity from ultrasonic anemometers and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted with simulated discharges of CO2 and CH4 from compressed gas tanks to mimic leaks and generate gaseous plumes, as well as field tests over the Farnsworth CO2-EOR site in the Anadarko Basin. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in space and time. Comparisons are made between the two tests and results compared with historical models combining both flight and atmospheric dynamics. Supported by Department of Energy Award DE-FE0012173.

  20. Flight-Determined, Subsonic, Lateral-Directional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and Comparisons to the Basic F-18 and Predicted Derivatives

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1999-01-01

    The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-1 8 High Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood parameter identification technique. State noise is accounted for in the identification formulation and is used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed maneuvers provided independent control surface inputs, eliminating problems of identifiability related to correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of angles of attack between 10deg and 70deg and compared to flight estimates from the basic F-18 aircraft and to predictions from ground and wind tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small uncertainty levels. Significant differences were found between flight and prediction; however, some of these differences may be attributed to differences in the range of sideslip or input amplitude over which a given derivative was evaluated, and to differences between the HARV external configuration and that of the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences in variable ranges and the lack of HARV maneuvers at certain angles of attack.

  1. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  2. ON THE IMPORTANCE OF VERY LIGHT INTERNALLY SUBSONIC AGN JETS IN RADIO-MODE AGN FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fulai, E-mail: fulai@shao.ac.cn

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light ( η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonicmore » jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.« less

  3. MISR Aoba Volcano Plume

    Atmospheric Science Data Center

    2018-06-07

    ... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...

  4. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  5. Processes Influencing Ozone Levels in Alaskan Forest Fires Plumes during Long-Range Transport over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Real, E.; Law, K. S.; Wienzierl, B.; Fiebig, M.; Petzold, A.; Wild, O.; Methven, J.; Arnold, S.; Stohl, A.; Huntrieser, H.; hide

    2006-01-01

    A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by 3 different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, is used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data, and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume is investigated using in-situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18 percent in O3 production and 24 percent in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume towards Europe. The predicted O3 changes are very dependent on temperature changes during transport, and also, on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutants level in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume are also compared in order to evaluate the photochemistry in the model. Observed slopes changed from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is

  6. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    NASA Technical Reports Server (NTRS)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  7. Plume Detection and Plume Top Height Estimation using SLSTR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-04-01

    We present preliminary results on ash and desert dust plume detection and plume top height estimates based on satellite data from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3, launched in 2016. The methods are based on the previously developed AATSR Correlation Method (ACM) height estimation algorithm, which utilized the data of the preceding similar instrument, Advanced Along Track Scanning Radiometer (AATSR). The height estimate is based on the stereo-viewing capability of SLSTR, which allows to determine the parallax between the satellite's 55° backward and nadir views, and thus the corresponding height. The ash plume detection is based on the brightness temperature difference between between thermal infrared (TIR) channels centered at 11 and 12 μm, which show characteristic signals for both desert dust and ash plumes. The SLSTR instrument provides a unique combination of dual-view capability and a wavelength range from visible to thermal infrared, rendering it an ideal instrument for this work. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with other volcanic ash and desert dust retrieval methods and dispersion models. The current work is being carried out as part of the H2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), which started in October 2016.

  8. Comparison of jet plume shape predictions and plume influence on sonic boom signature

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Melson, N. Duane

    1992-01-01

    An Euler shock-fitting marching code yields good agreement with semiempirically determined plume shapes, although the agreement decreases somewhat with increasing nozzle angle and the attendant increase in the nonisentropic nature of the flow. Some calculations for the low boom configuration with a simple engine indicated that, for flight at altitudes above 60,000 feet, the plume effect is dominant. This negates the advantages of a low boom design. At lower altitudes, plume effects are significant, but of the order that can be incorporated into the low boom design process.

  9. Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data

    NASA Technical Reports Server (NTRS)

    Potter, R. C.; Vandam, C. P.

    1995-01-01

    High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.

  10. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  11. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at

  12. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  13. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  14. Advanced Design Methodology for Robust Aircraft Sizing and Synthesis

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    1997-01-01

    Contract efforts are focused on refining the Robust Design Methodology for Conceptual Aircraft Design. Robust Design Simulation (RDS) was developed earlier as a potential solution to the need to do rapid trade-offs while accounting for risk, conflict, and uncertainty. The core of the simulation revolved around Response Surface Equations as approximations of bounded design spaces. An ongoing investigation is concerned with the advantages of using Neural Networks in conceptual design. Thought was also given to the development of systematic way to choose or create a baseline configuration based on specific mission requirements. Expert system was developed, which selects aerodynamics, performance and weights model from several configurations based on the user's mission requirements for subsonic civil transport. The research has also resulted in a step-by-step illustration on how to use the AMV method for distribution generation and the search for robust design solutions to multivariate constrained problems.

  15. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  16. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; hide

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  17. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  18. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  19. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  20. Jet Noise: A Survey and a Prediction for Subsonic Flows

    DTIC Science & Technology

    1975-08-01

    the technique was to characterize the fluctuating density in a high temperature subsonic jet using a laser schlieren system. This technique yields...Moon, L. F. " Microjet Nozzle Characterization." Report 9500-920267, Bell Aerospace Corporation, December 31, 1972. 56. Moon, L. F. and Zelazn.y, S

  1. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    NASA Astrophysics Data System (ADS)

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  2. Airborne Detection and Dynamic Modeling of Carbon Dioxide and Methane Plumes

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Mitchell, Taylor; Whyte, Seabrook

    2015-11-01

    To facilitate safe storage of greenhouse gases such as CO2 and CH4, airborne monitoring is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft that measures gas concentration and is combined with other atmospheric diagnostics, including thermodynamic data and velocity from hot-wire and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted over controlled rangeland burns and over simulated leaks. In the former case, since fire produces carbon dioxide over a large area, this was an opportunity to test in an environment that while only vaguely similar to a carbon sequestration leak source, also exhibits interesting plume behavior. In the simulated field tests, compressed gas tanks are used to mimic leaks and generate gaseous plumes. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in (x , y , z , t) . Results are compared with simulations using combined flight and atmospheric dynamic models. Supported by Department of Energy Award DE-FE0012173.

  3. Static aeroelastic behavior of a subsonic plate wing

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.

  4. Subsonic islands within a high-mass star-forming infrared dark cloud

    NASA Astrophysics Data System (ADS)

    Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou

    2018-03-01

    High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.

  5. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  6. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.

  7. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  8. Developments in steady and unsteady aerodynamics for use in aeroelastic analysis and design. [for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Bland, S. R.

    1976-01-01

    A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

  9. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Bobbitt, P. J.; Morgan, H. L.; Ferris, J. C.; Harvey, William D.

    1989-01-01

    Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9.

  10. Exceptional aerosol pollution plume observed using a new ULA-lidar approach

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick

    2016-09-01

    An exceptional particulate pollution event was sampled in June 2005 over the Ardèche region in Southern France. Airborne (at the wavelength of 355 nm) and ground-based (at the wavelength of 532 nm) lidars performed measurements simultaneously. Airborne observations were performed from an ultra-light aircraft (ULA); they offer an opportunity to test a new method for inversing lidar profiles which enables their quantitative use while the airplane flies in a scattering layer. Using the results of this approach and the ground-based lidar measurements, the aerosol plumes have been optically quantified and the diversity of particle sources (from Western Europe, North Africa and even North America) which contributed to the event has been highlighted using both spaceborne observations and multiple air mass back-trajectories.

  11. Liquid Booster Module (LBM) plume flowfield model

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  12. A comparison of the experimental subsonic pressure distributions about several bodies of revolution with pressure distributions computed by means of the linearized theory

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W

    1953-01-01

    An analysis is made of the effects of compressibility on the pressure coefficients about several bodies of revolution by comparing experimentally determined pressure coefficients with corresponding pressure coefficients calculated by the use of the linearized equations of compressible flow. The results show that the theoretical methods predict the subsonic pressure-coefficient changes over the central part of the body but do not predict the pressure-coefficient changes near the nose. Extrapolation of the linearized subsonic theory into the mixed subsonic-supersonic flow region fails to predict a rearward movement of the negative pressure-coefficient peak which occurs after the critical stream Mach number has been attained. Two equations developed from a consideration of the subsonic compressible flow about a prolate spheroid are shown to predict, approximately, the change with Mach number of the subsonic pressure coefficients for regular bodies of revolution of fineness ratio 6 or greater.

  13. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  14. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary

  15. Prometheus: Io's wandering plume.

    PubMed

    Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

    2000-05-19

    Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties.

  16. The Alberta smoke plume observation study

    NASA Astrophysics Data System (ADS)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  17. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    NASA Technical Reports Server (NTRS)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; hide

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  18. Mt Agung (Bali) Eruption Plumes

    Atmospheric Science Data Center

    2018-05-23

    article title:  Mt Agung (Bali) Eruption Plumes     View larger image ... 2017 (left) and calculated plume heights (right)   Volcanic eruptions can generate a significant amount of atmospheric aerosols ...

  19. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  20. Understanding the plume dynamics of explosive super-eruptions.

    PubMed

    Costa, Antonio; J Suzuki, Yujiro; Koyaguchi, Takehiro

    2018-02-13

    Explosive super-eruptions can erupt up to thousands of km 3 of magma with extremely high mass flow rates (MFR). The plume dynamics of these super-eruptions are still poorly understood. To understand the processes operating in these plumes we used a fluid-dynamical model to simulate what happens at a range of MFR, from values generating intense Plinian columns, as did the 1991 Pinatubo eruption, to upper end-members resulting in co-ignimbrite plumes like Toba super-eruption. Here, we show that simple extrapolations of integral models for Plinian columns to those of super-eruption plumes are not valid and their dynamics diverge from current ideas of how volcanic plumes operate. The different regimes of air entrainment lead to different shaped plumes. For the upper end-members can generate local up-lifts above the main plume (over-plumes). These over-plumes can extend up to the mesosphere. Injecting volatiles into such heights would amplify their impact on Earth climate and ecosystems.