Science.gov

Sample records for substitutionally disordered antiferromagnets

  1. Antiferromagnetic order induced by gadolinium substitution in Bi{sub 2}Se{sub 3} single crystals

    SciTech Connect

    Kim, S. W.; Jung, M. H.; Vrtnik, S.; Dolinšek, J.

    2015-06-22

    Magnetic topological insulators can serve as a fundamental platform for various spin-based device applications. We report the antiferromagnetic order induced by the magnetic impurity dopants of Gd in Gd{sub x}Bi{sub 2−x}Se{sub 3} and the systematic results with varying the Gd concentration x ( = 0.14, 0.20, 0.30, and 0.40). The antiferromagnetic order is demonstrated by the magnetic susceptibility, electrical resistivity, and specific heat measurements. The anomaly observed at T{sub N} = 6 K for x ≥ 0.30 shifts towards lower temperature with increasing the magnetic field, indicative of antiferromagnetic ground state. The Gd substitution into Bi{sub 2}Se{sub 3} enables not only tuning the magnetism from paramagnetic to antiferromagnetic for high x (≥ 0.30) but also giving a promising candidate for antiferromagnetic topological insulators.

  2. Quantum order by disorder in frustrated diamond lattice antiferromagnets.

    PubMed

    Bernier, Jean-Sébastien; Lawler, Michael J; Kim, Yong Baek

    2008-07-25

    We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the Néel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between (k, k, 0) spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc2S4, Co3O4, and CoRh2O4, i.e., specific heat data is a strong evidence for (k, k, 0) spiral ordering in all of these materials. This prediction can be tested in future neutron scattering experiments on Co3O4 and CoRh2O4, and is consistent with existing neutron scattering data on MnSc2S4. Based on this agreement, we infer a monotonically increasing relationship between frustration and the strength of quantum fluctuations. PMID:18764361

  3. Field-induced multiple order-by-disorder state selection in an antiferromagnetic honeycomb bilayer lattice

    NASA Astrophysics Data System (ADS)

    Gómez Albarracín, F. A.; Rosales, H. D.

    2016-04-01

    In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in the presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3 , we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2 symmetry and are separated by a not fully collinear classical plateau at M =1 /2 . At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low-temperature behavior of the system for a less frustrated region, J1=Jx

  4. Disorder-induced phases in the S=1 antiferromagnetic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Lajkó, Péter; Carlon, Enrico; Rieger, Heiko; Iglói, Ferenc

    2005-09-01

    We use extensive density matrix renormalization group (DMRG) calculations to explore the phase diagram of the random S=1 antiferromagnetic Heisenberg chain with a power-law distribution of the exchange couplings. We use open chains and monitor the lowest gaps, the end-to-end correlation function and the string order parameter. For this distribution at weak disorder, the system is in the gapless Haldane phase with a disorder dependent dynamical exponent, z , and z=1 signals the border between the nonsingular and singular regions of the local susceptibility. For strong enough disorder, which approximately corresponds to a uniform distribution, a transition into the random singlet phase is detected, at which the string order parameter as well as the average end-to-end correlation function are vanishing and at the same time the dynamical exponent is divergent. Singularities of physical quantities are found to be somewhat different in the random singlet phase and in the critical point.

  5. Order-by-disorder effects in antiferromagnets on face-centered cubic lattice

    NASA Astrophysics Data System (ADS)

    Batalov, L. A.; Syromyatnikov, A. V.

    2016-09-01

    We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates over the nearest-neighbor one. It is well known that a collinear magnetic structure which contains (111) ferromagnetic planes arranged antiferromagnetically along one of the space diagonals of the cube is stabilized in this model via order-by-disorder mechanism. On the mean-field level, the dipolar interaction forces spin to lie within (111) planes. By considering 1 / S corrections to the ground state energy, we demonstrate that quantum fluctuations lead to an anisotropy within (111) planes favoring three equivalent directions for the staggered magnetization (e.g., [ 11 2 bar ], [ 1 2 bar 1 ], and [ 2 bar 11 ] directions for (111) plane). Such in-plane anisotropy was obtained experimentally in related materials MnO, α-MnS, α-MnSe, EuTe, and EuSe. We find that the order-by-disorder mechanism can contribute significantly to the value of the in-plane anisotropy in EuTe. Magnon spectrum is also derived in the first order in 1 / S.

  6. Magnetic Transition to Antiferromagnetic Phase in Gadolinium Substituted Topological Insulator Bi2Te3

    PubMed Central

    Kim, Jinsu; Lee, Kyujoon; Takabatake, Toshiro; Kim, Hanchul; Kim, Miyoung; Jung, Myung-Hwa

    2015-01-01

    There are many interests to achieve long-range magnetic order in topological insulators of Bi2Se3 or Bi2Te3 by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals such as Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals of Bi2-xGdxTe3 (0 ≤ × ≤ 0.2), in which we observed magnetic phase change from paramagnetic (PM) to antiferromagnetic (AFM) phase by increasing x. This PM-to-AFM phase transition agrees with the density functional theory calculations showing a weak and short-ranged Gd-Gd AFM coupling via the intervening Te ions. The critical point corresponding to the magnetic phase transition is x = 0.09, where large linear magnetoresistance and highly anisotropic Shubnikov-de Haas oscillations are observed. These results are discussed with two-dimensional properties of topological surface state electrons. PMID:25974047

  7. Magnetic Transition to Antiferromagnetic Phase in Gadolinium Substituted Topological Insulator Bi2Te3.

    PubMed

    Kim, Jinsu; Lee, Kyujoon; Takabatake, Toshiro; Kim, Hanchul; Kim, Miyoung; Jung, Myung-Hwa

    2015-01-01

    There are many interests to achieve long-range magnetic order in topological insulators of Bi2Se3 or Bi2Te3 by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals such as Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals of Bi2-xGdxTe3 (0 ≤ × ≤ 0.2), in which we observed magnetic phase change from paramagnetic (PM) to antiferromagnetic (AFM) phase by increasing x. This PM-to-AFM phase transition agrees with the density functional theory calculations showing a weak and short-ranged Gd-Gd AFM coupling via the intervening Te ions. The critical point corresponding to the magnetic phase transition is x = 0.09, where large linear magnetoresistance and highly anisotropic Shubnikov-de Haas oscillations are observed. These results are discussed with two-dimensional properties of topological surface state electrons. PMID:25974047

  8. Substitution Effect on the Magnetic State of Delafossite CuCrO2 Having a Spin-3/2 Antiferromagnetic Triangular Sublattice

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Oozono, S.; Hokazono, T.; Uto, K.; Fujii, Y.; Beppu, Y.; Seki, S.; Onose, Y.; Tokura, Y.; Kajimoto, R.; Matsuda, M.

    2012-12-01

    We have investigated substitution effects on transport, magnetic, and thermal properties of delafossite CuCrO2 having a spin-3/2 antiferromagnetic triangular sublattice by measurements of resistivity, magnetization, specific heat, and neutron scattering. In the proceeding, we show unique effects of hole-doping by a substitution of nonmagnetic Mg2+ ions for magnetic Cr3+ ions (S = 3/2), randomness introduced between CrO2 layers by a substitution of Ag+ ions for Cu+ ions, and spin-defect introduced into CrO2 layers by a substitution of nonmagnetic Al3+ ions for Cr3+ ions upon the magnetic state in CuCrO2.

  9. Capacitive and magnetoresistive origin of magnetodielectric effects in Sm-substituted spiral antiferromagnet BiMnFe{sub 2}O{sub 6}

    SciTech Connect

    Ghara, Somnath; Sundaresan, A.; Yoo, Kyongjun; Kim, Kee Hoon

    2015-10-28

    BiMnFe{sub 2}O{sub 6} exhibits a spiral antiferromagnetic ordering below 212 K and a reentrant spin glass transition at 34 K. Further, magnetic and dielectric anomalies occur at the same temperature (T = 170 K) with a significant magnetodielectric effect. Upon substitution of Sm{sup 3+} for Bi{sup 3+} ions in Bi{sub 1−x}Sm{sub x}MnFe{sub 2}O{sub 6} (x = 0.1 and 0.2), the dielectric anomaly shifts to low temperatures (T = 135 and 72 K, respectively), whereas the magnetic anomaly develops into a weak ferromagnetism. For x = 0.2, the weak ferromagnetism occurs in a wide temperature range (90–201 K). Below 90 K, it undergoes a transition to an antiferromagnetic state. In contrast to the parent compound (x = 0), the magnetodielectric effect is observed both in the antiferromagnetic region (T < 90 K) with a maximum at the dielectric anomaly (72 K) and also in the weak ferromagnetic region. It has been shown that the magnetodielectric effect in the antiferromagnetic region has an intrinsic capacitive origin while that observed at the weak ferromagnetic region originates from magnetoresistance.

  10. Interference of quantum critical excitations and soft diffusive modes in a disordered antiferromagnetic metal

    NASA Astrophysics Data System (ADS)

    Weiß, Philipp S.; Narozhny, Boris N.; Schmalian, Jörg; Wölfle, Peter

    2016-01-01

    We study the temperature-dependent quantum correction to conductivity due to the interplay of spin density fluctuations and weak disorder for a two-dimensional metal near an antiferromagnetic (AFM) quantum critical point. AFM spin density fluctuations carry large momenta around the ordering vector Q and, at lowest order of the spin-fermion coupling, only scatter electrons between "hot spots" of the Fermi surface which are connected by Q . Earlier, it was seen that the quantum interference between AFM spin density fluctuations and soft diffusive modes of the disordered metal is suppressed, a consequence of the large-momentum scattering. The suppression of this interference results in a nonsingular temperature dependence of the corresponding interaction correction to conductivity. However, at higher order of the spin-fermion coupling, electrons on the entire Fermi surface can be scattered successively by two spin density fluctuations and, in total, suffer a small momentum transfer. This higher-order process can be described by composite modes which carry small momenta. We show that the interference between formally subleading composite modes and diffusive modes generates singular interaction corrections which ultimately dominate over the nonsingular first-order correction at low temperatures. We derive an effective low-energy theory from the spin-fermion model which includes the above-mentioned higher-order process implicitly and show that for weak spin-fermion coupling the small-momentum transfer is mediated by a composite propagator. Employing the conventional diagrammatic approach to impurity scattering, we find the correction δ σ ∝+ln2T for temperatures above an exponentially small crossover scale.

  11. Effects of disordered isovalent substitution in Fe-based superconductor

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Berlijn, Tom; Wang, Yan; Lin, Chai-Hui; Hirschfeld, P. J.; Ku, Wei

    2012-02-01

    Using a recently developed first-principles method for disordered materials [1-2], we investigate the effect of isovalent substitution in Fe-based superconductors, BaFe2(As1-xPx)2, FeTe1-xSex, and Ba(Fe1-xRux)2As2. For anion substitutions (the first two cases) effects of impurity scattering are found mostly in the anion bands. By contrast, the Ru substitution introduces much stronger scattering in the Fe bands. Surprisingly, in all the cases, the pockets near the chemical potential are the least affected, due to the low density of states near the chemical potential. Together, our results suggest an interesting scenario of enhancing superconductivity.[4pt] [1] T. Berlijn, D. Volja, W. Ku, Phys. Rev. Lett. 106, 077005 (2011).[0pt] [2] W.Ku, T. Berlijn, CC. Lee, Phys. Rev. Lett. 104, 216401 (2010).

  12. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE PAGESBeta

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  13. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-01

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  14. Effect of magnetoelastic coupling on spin-glass behavior in Heisenberg pyrochlore antiferromagnets with bond disorder

    NASA Astrophysics Data System (ADS)

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2014-10-01

    Motivated by puzzling aspects of spin-glass behavior reported in frustrated magnetic materials, we theoretically investigate effects of magnetoelastic coupling in geometrically frustrated classical spin models. In particular, we consider bond-disordered Heisenberg antiferromagnets on a pyrochlore lattice coupled to local lattice distortions. By integrating out the lattice degree of freedom, we derive an effective spin-only model, the bilinear-biquadratic model with bond disorder. The effective model is analyzed by classical Monte Carlo simulations using an extended loop algorithm. First, we discuss the phase diagrams in detail by showing the comprehensive Monte Carlo data for thermodynamic and magnetic properties. We show that the spin-glass transition temperature Tf is largely enhanced by the spin-lattice coupling b in the weakly disordered regime. By considering the limit of strong spin-lattice coupling, this enhancement is ascribed to the suppression of thermal fluctuations in semidiscrete degenerate manifold formed in the presence of the spin-lattice coupling. We also find that, by increasing the strength of disorder Δ, the system shows a concomitant transition of the nematic order and spin glass at a temperature determined by b, being almost independent of Δ. This is due to the fact that the spin-glass transition is triggered by the spin collinearity developed by the nematic order. Although further-neighbor exchange interactions originating in the cooperative lattice distortions result in spin-lattice order in the weakly disordered regime, the concomitant transition remains robust with Tf almost independent of Δ. We find that the magnetic susceptibility shows hysteresis between the field-cooled and zero-field-cooled data below Tf, and that the nonlinear susceptibility shows a negative divergence at the transition. These features are common to conventional spin-glass systems. Meanwhile, we find that the specific heat exhibits a broad peak at Tf, and that the

  15. Antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J.

    2016-03-01

    Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics.

  16. Antiferromagnetic spintronics.

    PubMed

    Jungwirth, T; Marti, X; Wadley, P; Wunderlich, J

    2016-03-01

    Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics. PMID:26936817

  17. Effect of Si Substitution on the Antiferromagnetic Ordering in the Kondo Semiconductor CeRu2Al10

    NASA Astrophysics Data System (ADS)

    Hayashi, Kyosuke; Muro, Yuji; Fukuhara, Tadashi; Kawabata, Jo; Kuwai, Tomohiko; Takabatake, Toshiro

    2016-03-01

    We have studied the effect of 3p electron doping on the unusual antiferromagnetic (AFM) order in the Kondo semiconductor CeRu2Al10 with TN = 27 K by measuring the magnetic susceptibility χ, specific heat C, and electrical resistivity ρ for polycrystalline samples of CeRu2Al10-ySiy. The large decrease in the absolute value of paramagnetic Curie temperature |θP| with increasing y indicates the suppression of c-f hybridization. The thermal activation behavior in ρ(T) above TN disappears for y ≥ 0.3 and TN decreases to 12 K for y = 0.38. These systematic changes in |θP|, ρ(T), and TN coincide with those reported in the 4d-electron doped system Ce(Ru1-xRhx)2Al10 with respect to the number of doped electrons per formula unit. This coincidence indicates that the Al 3p- and Ru 4d-electrons in CeRu2Al10 play the equivalent role in both the formation of hybridization gap and the unusual AFM ordering.

  18. Magnetization plateaus in the antiferromagnetic Ising chain with single-ion anisotropy and quenched disorder.

    PubMed

    Neto, Minos A; de Sousa, J Ricardo; Branco, N S

    2015-05-01

    We have studied the presence of plateaus on the low-temperature magnetization of an antiferromagnetic spin-1 chain, as an external uniform magnetic field is varied. A crystal-field interaction is present in the model and the exchange constants follow a random quenched (Bernoulli or Gaussian) distribution. Using a transfer-matrix technique we calculate the largest Lyapunov exponent and, from it, the magnetization at low temperatures as a function of the magnetic field, for different values of the crystal field and the width of the distributions. For the Bernoulli distribution, the number of plateaus increases, with respect to the uniform case [Litaiff et al., Solid State Commun. 147, 494 (2008)] and their presence can be linked to different ground states, when the magnetic field is varied. For the Gaussian distributions, the uniform scenario is maintained, for small widths, but the plateaus structure disappears as the width increases. PMID:26066165

  19. Substitutional disorder in a hypervalent diorganotin(IV) dihalide.

    PubMed

    Rotar, Adina; Varga, Richard A; Silvestru, Cristian

    2007-01-01

    The structure of bromidochloridobis[2-(dimethyl-amino-meth-yl)phen-yl]tin(IV), [SnBr(0.65)Cl(1.35)(C(9)H(12)N)(2)], contains two 2-(Me(2)NCH(2))C(6)H(4) units bonded to a Sn atom which lies on a twofold axis. The compound exhibits substitutional disorder of the halide atoms bonded to the Sn, with 1.35 occupancy for Cl and 0.65 for Br; it is isomorphous with the corresponding dichloride. The Sn atom is hexa-coordinated with a (C,N)(2)SnX(2) (X = Cl/Br) distorted octa-hedral core as a result of the strong intra-molecular N→Sn coordination trans to the Sn-X bonds (N1-Sn1-X1 = 165.8°). As a result of the inter-molecular contacts, viz. H⋯X and H⋯benzene inter-actions, the mol-ecules are arranged in a three-dimensional supra-molecular manner in the crystal structure. PMID:21200616

  20. Antiferromagnetism in R u2Mn Z (Z =Sn ,Sb ,Ge ,Si ) full Heusler alloys: Effects of magnetic frustration and chemical disorder

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Simon, Eszter; Szunyogh, László

    2015-03-01

    We present systematic theoretical investigations to explore the microscopic mechanisms leading to the formation of antiferromagnetism in R u2Mn Z (Z =Sn ,Sb ,Ge ,Si ) full Heusler alloys. Our study is based on first-principles calculations of interatomic Mn-Mn exchange interactions to set up a suitable Heisenberg spin model and on subsequent Monte Carlo simulations of the magnetic properties at finite temperature. The exchange interactions are derived from the paramagnetic state, while a realistic account of long-range chemical disorder is made in the framework of the coherent potential approximation. We find that in the case of the highly ordered alloys (Z =Sn and Sb), the exchange interactions derived from the perfectly ordered L 21 structure lead to Néel temperatures in excellent agreement with the experiments, whereas, in particular in the case of Si, the consideration of chemical disorder is essential to reproduce the experimental Néel temperatures. Our numerical results suggest that by improving a heat treatment of the samples to suppress the intermixing between the Mn and Si atoms, the Néel temperature of the Si-based alloys can potentially be increased by more than 30%. Based on calculated biquadratic exchange couplings, we evidence a lifting of degeneracy of the antiferromagnetic ground states on a frustrated face-centered-cubic lattice in the fully ordered compounds. Furthermore, we show that in strongly disordered R u2MnSi alloys, a distinct change in the antiferromagnetic ordering occurs.

  1. Disordered SU(N) antiferromagnets and the renormalization of charged instanton gases in three dimensions

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    1991-08-01

    Some generic properties of charged instanton gases are established in arbitrary dimension, including the fact that the self-energy, if it diverges, must diverge as the logarithm of the correlation length. A real-space renormalization is carried out in d=3 and recursion relations obtained under the assumption that the model can disorder without instantons. They reveal that for models with nontrivial Haldane phases, the correlation-length exponent is not altered by hedgehogs, and that generic instanton gases undergo first-order transitions in three dimensions. In special cases a second-order transition with continuously varying exponents is found.

  2. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    SciTech Connect

    Matsuda, Masaaki; Yoshida, H.; Isobe, M.; De la cruz, Clarina; Fishman, Randy Scott

    2012-01-01

    Ag{sub 2}CrO{sub 2} is an S = 3/2 frustrated triangular lattice antiferromagnet without an orbital degree of freedom. With decreasing temperature, a four-sublattice spin state develops. However, a long-range partially disordered state with five sublattices abruptly appears at T{sub N} = 24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic.

  3. Enhanced ordering temperatures in antiferromagnetic manganite superlattices

    SciTech Connect

    May, Stephen J.; Robertson, Lee; Ryan, P J; Kim, J.-W.; Santos, Tiffany S.; Karapetrova, Evgenia; Zarestky, Jerel L.; Zhai, X.; Te velthuis, Suzanne G.; Eckstein, James N.; Bader, S. D.; Bhattacharya, Anand

    2009-01-01

    The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective ordered states. Here, we demonstrate that cation-site ordering achieved via digital synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)m/(SrMnO3)2m superlattices exhibit N el temperatures (TN) that are the highest of any La1-xSrxMnO3 compound, ~70 K greater than compositionally equivalent randomly doped La1/3Sr2/3MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Via synchrotron x-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behavior in oxides through subtle structural phenomena.

  4. Enhanced ordering temperatures in antiferromagnetic manganite superlattices.

    SciTech Connect

    May, S. J.; Ryan, P. J.; Robertson, J. L.; Kim, J.-W.; Santos, T. S.; Karapetrova, E.; Zaresty, J. L.; Zhai, X.; te Velthuis, S. G. E.; Eckstein, J. N.; Bader, S. D.; Bhattacharya, A.; Iowa State Univ.; ORNL; Univ. of Illinois

    2009-01-01

    The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO{sub 3}){sub m}/(SrMnO{sub 3}){sub 2m} superlattices show Neel temperatures (TN) that are the highest of any La{sub 1-x}Sr{sub x}MnO{sub 3} compound, {approx}70 K greater than compositionally equivalent randomly doped La{sub 1/3}Sr{sub 2/3}MnO{sub 3}. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behavior in oxides through subtle structural phenomena.

  5. Antiferromagnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Barker, Joseph

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.

  6. Macroscopic response and directional disorder dynamics in chemically substituted ferroelectrics

    NASA Astrophysics Data System (ADS)

    Parravicini, Jacopo; DelRe, Eugenio; Agranat, Aharon J.; Parravicini, Gianbattista

    2016-03-01

    Using temperature-resolved dielectric spectroscopy in the range 25-320 K we investigate the macroscopic response, phase symmetry, and order/disorder states in bulk ferroelectric K1-yLiyTa1-xNbx (KLTN). Four long-range symmetry phases are identified with their relative transitions. Directional analysis of the order/disorder states using Fröhlich entropy indicates global symmetry breaking along the growth axis and an anisotropic dipolar effective thermodynamic behavior, which ranges from disordered to ordered at the same temperature for different directions in the sample. Results indicate that the macroscopic polarization, driven by nanosized polar regions, follows a microscopic perovskite eight-sites lattice model.

  7. Boron Substitution in Disordered Graphene-like Carbon

    NASA Astrophysics Data System (ADS)

    Schaeperkoetter, Joe; Gillespie, Andrew; Wexler, Carlos; Pfeifer, Peter; Materials Research Institute-Missouri S&T Collaboration; Paul Rulis Collaboration

    2015-03-01

    X-ray photoelectron spectroscopy was used to determine both the elemental composition of boron doped carbons as well as gain insight into the arrangement of atoms in the material. The hypothesized arrangement of atoms is a direct substitution of boron for carbon into a graphene like sheet, maintaining the hexagonal honeycomb lattice of sp2 sigma bonds. Such a boron atom would have an electronic configuration of 1s2(sp2)3 . With a graphitic carbon atom, the pz orbitals are maintained and participate in mobile pi bonds with neighboring carbon atoms, as understood in the aromatic model. Boron, however, would require a charge donation to fill its pz orbital. Thus, three possible models are proposed for the out of plane electron density: (1) the orbital remains unoccupied and the boron is a free radical, (2) charge is donated from a neighboring atom and the boron atom is ionic, (3) the delocalization of charge in the aromatic system results in a partial charge transfer with an effective charge somewhere between neutral and anionic. Our results suggest that boron is not in an anionic state, and, by doing a quantitative and simultaneous analysis from multiple elemental spectra, we conclude that no more than 2 wt% of boron is being substitutionally doped into the system.

  8. An Empirical Examination of Symptom Substitution Associated With Behavior Therapy for Tourette's Disorder.

    PubMed

    Peterson, Alan L; McGuire, Joseph F; Wilhelm, Sabine; Piacentini, John; Woods, Douglas W; Walkup, John T; Hatch, John P; Villarreal, Robert; Scahill, Lawrence

    2016-01-01

    Over the past six decades, behavior therapy has been a major contributor to the development of evidence-based psychotherapy treatments. However, a long-standing concern with behavior therapy among many nonbehavioral clinicians has been the potential risk for symptom substitution. Few studies have been conducted to evaluate symptom substitution in response to behavioral treatments, largely due to measurement and definitional challenges associated with treated psychiatric symptoms. Given the overt motor and vocal tics associated with Tourette's disorder, it presents an excellent opportunity to empirically evaluate the potential risk for symptom substitution associated with behavior therapy. The present study examined the possible presence of symptom substitution using four methods: (a) the onset of new tic symptoms, (b) the occurrence of adverse events, (c) change in tic medications, and (d) worsening of co-occurring psychiatric symptoms. Two hundred twenty-eight participants with Tourette's disorder or persistent motor or vocal tic disorders were randomly assigned to receive behavioral therapy or supportive therapy for tics. Both therapies consisted of eight sessions over 10 weeks. Results indicated that participants treated with behavior therapy were not more likely to have an onset of new tic symptoms, experience adverse events, increase tic medications, or have an exacerbation in co-occurring psychiatric symptoms relative to participants treated with supportive therapy. Further analysis suggested that the emergence of new tics was attributed with the normal waxing and waning nature of Tourette's disorder. Findings provide empirical support to counter the long-standing concern of symptom substitution in response to behavior therapy for individuals with Tourette's disorder. PMID:26763495

  9. Plaquette-triplon analysis of magnetic disorder and order in a trimerized spin-1 kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratyay; Verma, Akhilesh Kumar; Kumar, Brijesh

    2016-01-01

    A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J'>0 (nearest neighbor) and J″ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J'-J″ plane. It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J″=0 line (the nearest-neighbor case), and on both sides of it for J″≠0 , in an extended region bounded by the critical lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J″ region has a coplanar 120∘ antiferromagnetic order with √{3 }×√{3 } structure. In this phase, all the magnetic moments are of equal length, and the angle between any two of them on a triangle is exactly 120∘. The magnetic lattice in this case has a unit cell consisting of three triangles. The other gapless phase, in the positive J″ region, is found to exhibit a different coplanar antiferromagnetic order with ordering wave vector q =(0 ,0 ) . Here, two magnetic moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short moments is 120∘-2 δ , it is 120∘+δ between a short and the long one. Only when J″=J' , their magnitudes become equal and the relative angles 120∘. The magnetic lattice in this q =(0 ,0 ) phase has the translational symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the point-group symmetry is found to show up as a difference in the intensities of

  10. Partially disordered antiferromagnetism and multiferroic behavior in a frustrated Ising system CoCl2-2 SC (NH2)2

    NASA Astrophysics Data System (ADS)

    Mun, Eundeok; Weickert, Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.

    2016-03-01

    We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which a b -plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T =50 mK and up to μ0H =60 T . The Co2 +S =3 /2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Finally, we find that magnetic exchange striction induces changes in the electric polarization up to 3 μ C /m2 , and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300 μ C /m2 .

  11. Partially disordered antiferromagnetism and multiferroic behavior in a frustrated Ising system CoCl2–2SC(NH2)2

    DOE PAGESBeta

    Mun, Eundeok; Weickert, Dagmar Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.

    2016-03-01

    We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which ab-plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T = 50mK and up to μ0H = 60T. The Co2+more » S = 3/2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Lastly, we find that magnetic exchange striction induces changes in the electric polarization up to 3μC/m2, and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300μC/m2.« less

  12. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Yoshida, H.; Isobe, M.; de La Cruz, C.; Fishman, R. S.

    2012-02-01

    Ag2CrO2 consists of triangular lattice planes of CrO2, which are well separated by the metallic Ag2 layers. [1] This compound is an S=3/2 frustrated triangular lattice antiferromagnet without orbital degree of freedom. We performed neutron diffraction experiments on a powder sample of Ag2CrO2 on a neutron powder diffractometer HB-2A and a triple-axis neutron spectrometer HB-1, installed at HFIR in Oak Ridge National Laboratory. With decreasing temperature, a short-range 4-sublatice spin state develops. However, a long-range partially disordered state with 5 sublattices abruptly appears at TN=24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic. [4pt] [1] H. Yoshida et al., to appear in J. Phys. Soc. Jpn.

  13. Antiferromagnetic order and the structural order-disorder transition in the Cd6Ho quasicrystal approximant

    SciTech Connect

    Kreyssig, Andreas; Beutier, Guillaume; Hiroto, Takanobu; Kim, Min Gyu; Tucker, Gregory S.; de Boissieu, Marc; Tamura, Ryuji; Goldman, Alan I.

    2014-09-22

    It has generally been accepted that the orientational ordering of the Cd4 tetrahedron within the Cd6 R quasicrystal approximants is kinetically inhibited for R = Ho, Er, Tm and Lu by steric constraints. Our high-resolution X-ray scattering measurements of the Cd6Ho quasicrystal approximant, however, reveal an abrupt (first-order) transition to a monoclinic structure below T S = 178 K for samples that have ‘aged’ at room temperature for approximately one year, reopening this question. Using X-ray resonant magnetic scattering at the Ho L 3-edge we have elucidated the nature of the antiferromagnetic ordering below T N = 8.5 K in Cd6Ho. The magnetic Bragg peaks are found at the charge forbidden H + K + L = 2n + 1 positions, referenced to the high-temperature body-centred cubic structure. In general terms, this corresponds to antiferromagnetic arrangements of the Ho moments on adjacent clusters in the unit cell as previously found for Cd6Tb.

  14. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    SciTech Connect

    Mizrahi, M. E-mail: cabrera@fisica.unlp.edu.ar; Cabrera, A. F. E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J.; Stewart, S. J.

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  15. Association of broad icosahedral Raman bands with substitutional disorder in SiB{sub 3} and boron carbide

    SciTech Connect

    Aselage, T.L.; Tallant, D.R.

    1998-02-01

    The structure of silicon boride, SiB{sub 3}, is based on 12-atom, boron-rich icosahedra in which silicon atoms substitute for some boron atoms. Raman bands associated with vibrations of icosahedral atoms in SiB{sub 3} are quite broad, reflecting this substitutional disorder. Comparing the Raman spectra of other icosahedral borides with SiB{sub 3}, only boron carbides have similarly broad icosahedral Raman bands. The direct correlation of broad icosahedral Raman bands with substitutional disorder supports the proposition that carbon atoms replace icosahedral boron atoms in boron carbides of all compositions. {copyright} {ital 1998} {ital The American Physical Society}

  16. Long-term effects of electrotactile sensory substitution therapy on balance disorders.

    PubMed

    Yamanaka, Toshiaki; Sawai, Yachiyo; Murai, Takayuki; Nishimura, Tadashi; Kitahara, Tadashi

    2016-07-01

    This clinical research investigated whether a new type of rehabilitation therapy involving the use of a vestibular substitution tongue device (VSTD) is effective for severe balance disorders caused by unilateral vestibular loss. Sixteen patients with postural imbalances because of unilateral vestibular loss underwent training with VSTD. The VSTD transmits information on the head position to the brain through the tongue as substitutes for the lost vestibular information. The device's electrode array was placed on the tongue and participants were trained to maintain a centered body position by ensuring the electrical signals in the center of their tongue. All participants completed 10 min training sessions 2-3 times per day for 8 weeks. Functional gait assessments and the dizziness handicap inventory were, respectively, used to the evaluate participants' dynamic gait function and their severity of balance problems before and after the training period. All examined parameters improved after the 8-week training period. These changes were maintained for up to 2 years after the termination of the training program. Short-term training with VSTD had beneficial carry-over effects. VSTD training might represent a useful rehabilitation therapy in individuals with persistent balance disorders and might lead to long-term improvements in their balance performance and ability to perform daily and social activities. PMID:27213931

  17. Reduced anti-ferromagnetism promoted by Zn 3d 10 substitution at CuO 2 planar sites of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductors

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Khan, Nawazish A.

    2009-11-01

    The role of charge carriers in ZnO 2/CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d 10 ( S=0) substitution at Cu 3d 9(S={1}/{2}) sites in the inner CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron-phonon interaction has an essential role in the mechanism of high- Tc superconductivity in these compounds.

  18. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    NASA Astrophysics Data System (ADS)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  19. An efficient computational method for use in structural studies of crystals with substitutional disorder.

    PubMed

    Poloni, Roberta; Íñiguez, Jorge; García, Alberto; Canadell, Enric

    2010-10-20

    We present a computationally efficient semi-empirical method, based on standard first-principles techniques and the so-called virtual crystal approximation, for determining the average atomic structure of crystals with substitutional disorder. We show that, making use of a minimal amount of experimental information, it is possible to define convenient figures of merit that allow us to recast the determination of the average atomic ordering within the unit cell as a minimization problem. We have tested our approach by applying it to a wide variety of materials, ranging from oxynitrides to borocarbides and transition-metal perovskite oxides. In all the cases we were able to reproduce the experimental solution, when it exists, or the first-principles result obtained by means of much more computationally intensive approaches. PMID:21386597

  20. Influence of calcium substitution on defect disorder in barium titanate by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Sampaio, D. V.; Santos, J. C. A.; Rezende, M. V. dos S.; Valerio, M. E. G.; Silva, R. S.

    2016-01-01

    In this work, classical atomistic simulation was employed to study the intrinsic disorder influenced by calcium substitution in BaTiO3 structure. The defects were modeled using the Mott-Littleton approximation, in which: a spherical region of the lattice surrounding the defect is treated explicitly, all interactions are considered, and more distant parts of the lattice are treated using a continuum approach. Frenkel, Schottky, pseudo-Schottky and anti-Schottky defects in Ba1-x Ca x TiO3 (x  =  0-1) were investigated. It was found that the most probable defects to occur in this system are CaO pseudo-Schottky defect and the incorporation of \\text{Ca}\\text{Ti}\\prime \\prime with compensation by oxygen vacancy.

  1. Crystal fields, disorder, and antiferromagnetic short-range order in (Yb{sub 0.24}Sn{sub 0.76})Ru

    SciTech Connect

    Klimczuk, T; Wang, C H; Lawrence, J M; Xu, Q; Durakiewicz, T; Ronning, F; Llobet, A; Trouw, F; Kurita, N; Tokiwa, Y; Lee, Han-oh; Booth, C H; Gardner, J S; Bauer, E D; Joyce, J J; Zandbergen, H W; Movshovich, R; Cava, R J; Thompson, J D

    2011-07-18

    We report extensive measurements on a new compound (Yb{sub 0.24}Sn{sub 0.76})Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L{sub 3} x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb{sup 3+} is split by the crystalline electric field (CEF) into a Γ{sub 7} doublet ground state and a Γ{sub 8} quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a Γ{sub 6} excited state resides at 32 meV; however, the Γ{sub 8}/Γ{sub 6} transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch-Grüneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the Γ{sub 7} ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.

  2. Transport properties of random and nonrandom substitutionally disordered alloys. I. Exact numerical calculation of the ac conductivity

    NASA Astrophysics Data System (ADS)

    Hwang, M.; Gonis, A.; Freeman, A. J.

    1987-06-01

    Results of exact computer simulations for the zero-temperature ac conductivity of one-dimensional substitutionally disordered alloys are reported. These results are obtained by (i) solving for the eigenvalues and eigenvectors of a Hamiltonian associated with a specific configuration of 500 atoms on a linear chain, (ii) evaluating the ac conductivity of this configuration by using the Kubo-Greenwood formula, and (iii) averaging the resulting conductivities over 20 to 50 different configurations (the number of configurations depends on the type of disorder). In all cases convergence (i.e., a stable result) was obtained and confirmed by another independent approach (the recursive method). For not too weak disorder (defined precisely in the text), these results exhibit a great deal of fine structure that includes high peaks and gaps where the conductivity vanishes. These features are reminiscent of, and are correlated with, the similar kind of behavior of the densities of states of one-dimensional substitutionally disordered alloys. Thus we find that the fine structure in the ac-conductivity spectra of one-dimensional systems provides a rigorous testing ground for judging the validity of analytic theories for calculating the transport properties of substitutionally disordered systems.

  3. Spintronics in antiferromagnets

    SciTech Connect

    Soh, Yeong-Ah; Kummamuru, Ravi K.

    2012-05-10

    Magnetic domains and the walls between are the subject of great interest because of the role they play in determining the electrical properties of ferromagnetic materials and as a means of manipulating electron spin in spintronic devices. However, much less attention has been paid to these effects in antiferromagnets, primarily because there is less awareness of their existence in antiferromagnets, and in addition they are hard to probe since they exhibit no net magnetic moment. In this paper, we discuss the electrical properties of chromium, which is the only elemental antiferromagnet and how they depend on the subtle arrangement of the antiferromagnetically ordered spins. X-ray measurement of the modulation wavevector Q of the incommensurate antiferromagnetic spin-density wave shows thermal hysteresis, with the corresponding wavelength being larger during cooling than during warming. The thermal hysteresis in the Q vector is accompanied with a thermal hysteresis in both the longitudinal and Hall resistivity. During cooling, we measure a larger longitudinal and Hall resistivity compared with when warming, which indicates that a larger wavelength at a given temperature corresponds to a smaller carrier density or equivalently a larger antiferromagnetic ordering parameter compared to a smaller wavelength. This shows that the arrangement of the antiferromagnetic spins directly influences the transport properties. In thin films, the sign of the thermal hysteresis for Q is the same as in thick films, but a distinct aspect is that Q is quantized.

  4. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    SciTech Connect

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  5. Antiferromagnetic magnonic crystals

    NASA Astrophysics Data System (ADS)

    Troncoso, Roberto E.; Ulloa, Camilo; Pesce, Felipe; Nunez, A. S.

    2015-12-01

    We describe the features of magnonic crystals based upon antiferromagnetic elements. Our main results are that with a periodic modulation of either magnetic fields or system characteristics, such as the anisotropy, it is possible to tailor the spin-wave spectra of antiferromagnetic systems into a band-like organization that displays a segregation of allowed and forbidden bands. The main features of the band structure, such as bandwidths and band gaps, can be readily manipulated. Our results provide a natural link between two steadily growing fields of spintronics: antiferromagnetic spintronics and magnonics.

  6. Microscopic model for exchange bias from grain-boundary disorder in a ferromagnet/antiferromagnet thin film with a nanocrystalline microstructure

    SciTech Connect

    Cortie, D. L.; Biternas, A. G.; Chantrell, R. W.; Wang, X. L.; Klose, F.

    2014-07-21

    Monte Carlo spin simulations were coupled to a Voronoi microstructure-generator to predict the magnitude and behavior of exchange bias in a ferromagnet/antiferromagnet (AF) thin film bilayer with a nanocrystalline microstructure. Our model accounts for the effects of irregular grain-shapes, finite-sized particles, and the possible presence of local random-fields originating from the antiferromagnet's grain-boundary regions. As the grain-boundary represents a crystal-structure distortion, we model the local effect on the exchange constants in the Gaussian approximation which can cause regions resembling a spin glass confined to an unusual 2D topology. Although an ensemble of completely disconnected AF grains isolated by non-magnetic barriers provides a small exchange bias, the introduction of a spin-glass network at the boundaries causes a four-fold enhancement in the magnitude of the loop-shift. This implies the importance of local grain-boundary behavior in defect-engineered antiferromagnets.

  7. Low-field remanent magnetization in the disordered antiferromagnet Cs 2Fe 1- xIn xCl 5·H 2O

    NASA Astrophysics Data System (ADS)

    Westphal, C. H.; Carvalho, Z. V.; Paduan-Filho, A.; Becerra, C. C.; Palacio, F.

    2001-05-01

    Magnetization measurements on single crystals of the site-diluted antiferromagnet A 2Fe 1- xIn xCl 5·H 2O (A=Cs) were carried out at low magnetic fields ( H) applied along the easy axis. The data revealed that a remanent magnetization Mr develops below the Néel temperature TN. This Mr ( T) is parallel to the easy axis, saturates for H˜1 Oe and it increases with decreasing T. It has also the same temperature dependence as other diluted systems of the same family (A=K, Rb). For all these systems the normalized Mr( t)/ Mr( t=0.3), where t= T/ TN is the reduced temperature, is independent of x and follows a universal curve.

  8. Lifetime of gapped excitations in a collinear quantum antiferromagnet.

    PubMed

    Chernyshev, A L; Zhitomirsky, M E; Martin, N; Regnault, L-P

    2012-08-31

    We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Γ(imp)≈Γ(0)+A(TlnT)2, greatly exceeds the magnon-magnon damping, Γ(m-m)≈BT5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed. PMID:23002874

  9. From single nucleotide substitutions up to chromosomal deletions: genetic pause of leucism-associated disorders in animals.

    PubMed

    Fleck, Katharina; Erhardt, Georg; Lühken, Gesine

    2016-01-01

    Leucism is characterized by a complete or partial white skin and hair in combination with pigmented irides, which can be vivid blue or heterochromatic. This is due to a complete or partial lack of melanocytes. The underlying pathogenesis is a disturbed emigration or differentiation of neural crest-derived cells. Therefore, leucistic phenotypes can be associated with defects, which mainly impair sensory organs and nerves. In humans, a well-known example is the Waardenburg syndrome. Leucism-associated disorders were also described in mouse, rat, hamster, rabbit, mink, cat, dog, pig, sheep, llama, alpaca, cattle and horse. In some of these species already identified causal mutations affect the genes EDN3, EDNRB, KIT, MITF, PAX3, SILV and SOX10. Defect alleles represent different types of genetic variation, ranging from single nucleotide substitutions up to larger chromosomal deletions. Some of the defect alleles produce desired coat color patterns. In some but not all cases, available genetic tests enable breeders to avoid production of animals affected by a leucism-associated disorder. PMID:27529988

  10. E-Cigarettes for Immediate Smoking Substitution in Women Diagnosed with Cervical Dysplasia and Associated Disorders

    PubMed Central

    James, Shirley A.; Meier, Ellen M.; Wagener, Theodore L.; Smith, Katherine M.; Neas, Barbara R.; Beebe, Laura A.

    2016-01-01

    The aim of this study was to determine if 31 women with cervical dysplasia and associated conditions exacerbated by smoking would be successful substituting cigarettes with their choice of either nicotine replacement therapy (NRT) or electronic cigarettes (EC). Women received motivational interviewing and tried both NRT and ECs, choosing one method to use during a six-week intervention period. Daily cigarette consumption was measured at baseline, six, and 12 weeks, with differences analyzed by the Wilcoxon signed-rank test. Study analysis consisted only of women choosing to use ECs (29/31), as only two chose NRT. At the 12-week follow-up, the seven day point prevalence abstinence from smoking was 28.6%, and the median number of cigarettes smoked daily decreased from 18.5 to 5.5 (p < 0.0001). The median number of e-cigarette cartridges used dropped from 21 at the six-week follow-up to 12.5 at the 12-week follow-up. After initiating EC use, women at risk for cervical cancer were able to either quit smoking or reduce the number of cigarettes smoked per day. Although a controlled trial with a larger sample size is needed to confirm these initial results, this study suggests that using ECs during quit attempts may reduce cigarette consumption. PMID:26959042

  11. E-Cigarettes for Immediate Smoking Substitution in Women Diagnosed with Cervical Dysplasia and Associated Disorders.

    PubMed

    James, Shirley A; Meier, Ellen M; Wagener, Theodore L; Smith, Katherine M; Neas, Barbara R; Beebe, Laura A

    2016-03-01

    The aim of this study was to determine if 31 women with cervical dysplasia and associated conditions exacerbated by smoking would be successful substituting cigarettes with their choice of either nicotine replacement therapy (NRT) or electronic cigarettes (EC). Women received motivational interviewing and tried both NRT and ECs, choosing one method to use during a six-week intervention period. Daily cigarette consumption was measured at baseline, six, and 12 weeks, with differences analyzed by the Wilcoxon signed-rank test. Study analysis consisted only of women choosing to use ECs (29/31), as only two chose NRT. At the 12-week follow-up, the seven day point prevalence abstinence from smoking was 28.6%, and the median number of cigarettes smoked daily decreased from 18.5 to 5.5 (p < 0.0001). The median number of e-cigarette cartridges used dropped from 21 at the six-week follow-up to 12.5 at the 12-week follow-up. After initiating EC use, women at risk for cervical cancer were able to either quit smoking or reduce the number of cigarettes smoked per day. Although a controlled trial with a larger sample size is needed to confirm these initial results, this study suggests that using ECs during quit attempts may reduce cigarette consumption. PMID:26959042

  12. Understanding and solving disorder in the substitution pattern of amino functionalized MIL-47(V).

    PubMed

    Heinen, Jurn; Dubbeldam, David

    2016-03-14

    Electronic energies and elastic constants of four amino functionalized MIL-47(V) supercells were computed using plane wave density functional theory to determine the influence of the substituent positions on the organic linker. An inverse relationship between the ab initio energies and the elastic constants was found, indicating that the high electronic stability correlates with high mechanical stability. Torsion in all supercells was induced upon substitution, which caused strain in the NH2-MIL-47(V) supercell. The combined effect of the substituent bulkiness and the induced torsion reduced the pore volume of the NH2-MIL-47(V) structures by >7% and the surface area by >14% with respect to MIL-47(V). This reduction was confirmed by lower saturation capacities of methane, CO2 and benzene. When unfavourable substituent positions are chosen, large torsions caused a further reduction of the saturation capacity. Differences in surface area, pore volume and saturation capacity illustrate the importance of choosing the correct NH2-MIL-47(V) supercell. PMID:26660395

  13. Stimulus control analysis of language disorders: A study of substitution between voiced and unvoiced consonants

    PubMed Central

    Brasolotto, Alcione G.; de Rose, Julio C.; Stoddard, Lawrence T.; de Souza, Deisy G.

    1993-01-01

    This study attempted to analyze defective stimulus control relations underlying persistent substitution between voiced and unvoiced consonants in the speech and writing of two children. A series of 20 tests was administered repeatedly. Some tests consisted of matching-to-sample tasks, with dictated words, printed words, or pictures as samples. Comparison stimuli were arranged in pairs of printed words or pictures, such that the only difference in their corresponding spoken words was the voicing of one consonant phoneme. In other tests, a stimulus (dictated word, printed word, or picture) was presented, and the subject was required to emit an oral response (repeat the dictated word, read the printed word, or name the picture) or a written response (write to dictation, copy the word, or write a picture name). Other tests required the subjects to make a same/different distinction in pairs of dictated words that did or did not differ in the voicing of a single phoneme. Results showed distinct deficit profiles for each subject, consisting of patterns of defective stimulus control relations. The subjects were able, however, to distinguish between voiced and unvoiced sounds and to produce these sounds. ImagesFig. 1Fig. 2 PMID:22477078

  14. Spin reorientation via antiferromagnetic coupling

    SciTech Connect

    Ranjbar, M.; Sbiaa, R.; Dumas, R. K.; Åkerman, J.; Piramanayagam, S. N.

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  15. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  16. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  17. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?

    PubMed

    Calabrò, Rocco Salvatore; Cacciola, Alberto; Bertè, Francesco; Manuli, Alfredo; Leo, Antonino; Bramanti, Alessia; Naro, Antonino; Milardi, Demetrio; Bramanti, Placido

    2016-04-01

    Gait abnormalities following neurological disorders are often disabling, negatively affecting patients' quality of life. Therefore, regaining of walking is considered one of the primary objectives of the rehabilitation process. To overcome problems related to conventional physical therapy, in the last years there has been an intense technological development of robotic devices, and robotic rehabilitation has proved to play a major role in improving one's ability to walk. The robotic rehabilitation systems can be classified into stationary and overground walking systems, and several studies have demonstrated their usefulness in patients after severe acquired brain injury, spinal cord injury and other neurological diseases, including Parkinson's disease, multiple sclerosis and cerebral palsy. In this review, we want to highlight which are the most widely used devices today for gait neurological rehabilitation, focusing on their functioning, effectiveness and challenges. Novel and promising rehabilitation tools, including the use of virtual reality, are also discussed. PMID:26781943

  18. Antiferromagnetic Spin Seebeck Effect.

    PubMed

    Wu, Stephen M; Zhang, Wei; Kc, Amit; Borisov, Pavel; Pearson, John E; Jiang, J Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30  nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9  T) are applied parallel to the easy axis of the MnF_{2} thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected. PMID:26991198

  19. Electrical switching of an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Howells, B.; Železný, J.; Andrews, C.; Hills, V.; Campion, R. P.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S. S.; Martin, S. Y.; Wagner, T.; Wunderlich, J.; Freimuth, F.; Mokrousov, Y.; Kuneš, J.; Chauhan, J. S.; Grzybowski, M. J.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Jungwirth, T.

    2016-02-01

    Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

  20. Electrical switching of an antiferromagnet.

    PubMed

    Wadley, P; Howells, B; Železný, J; Andrews, C; Hills, V; Campion, R P; Novák, V; Olejník, K; Maccherozzi, F; Dhesi, S S; Martin, S Y; Wagner, T; Wunderlich, J; Freimuth, F; Mokrousov, Y; Kuneš, J; Chauhan, J S; Grzybowski, M J; Rushforth, A W; Edmonds, K W; Gallagher, B L; Jungwirth, T

    2016-02-01

    Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics. PMID:26841431

  1. Kambersky Damping in L10 Magnetic Materials of Ordered and Disordered States with Substitutional Defects

    NASA Astrophysics Data System (ADS)

    Qu, Tao; Victora, Randall

    2015-03-01

    L10 phase alloys with high magnetic anisotropy play a key role in spintronic devices. The damping constant α represents the elimination of the magnetic energy and affects the efficiency of devices. However, the intrinsic Kambersky damping reported experimentally differs among investigators and the effect of defects on α is never investigated. Here, we apply Kambersky's torque correlation technique, within the tight-binding method, to L10 ordered and disordered alloys FePt, FePd,CoPt and CoPd. In the ordered phase, CoPt has the largest damping of 0.067 while FePd has the minimum value of 0.009 at room temperature. The calculated damping value of FePt and FePd agrees well with experiment. Artificially shifting Ef, as might be accomplished by doping with impurity atoms, shows that α follows the density of states (DOS) at Ef in these four L10 alloys. We introduce lattice defects through exchanging the positions of 3d and non-3d transition elements in 36 atom supercells. The damping increases with reduced degree of chemical order, owing to the enhanced spin-flip channel allowed by the broken symmetry. This prediction is confirmed by measurements in FePt. It is demonstrated that this corresponds to an enhanced DOS at the Fermi level, owing to the rounding of the DOS with loss of long-range order. This work was supported primarily by C-SPIN (one of the six SRC STAR-net Centers) and partly by the MRSEC Program under Contract No. DMR-0819885.

  2. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO.

    PubMed

    Pereira, L M C; Wahl, U; Correia, J G; Van Bael, M J; Temst, K; Vantomme, A; Araújo, J P

    2013-10-16

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn(1-x)Fe(x)O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments. PMID:24025311

  3. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Van Bael, M. J.; Temst, K.; Vantomme, A.; Araújo, J. P.

    2013-10-01

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn1-xFexO phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments.

  4. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    PubMed

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. PMID:26272697

  5. An antiferromagnetic transverse Ising nanoisland; unconventional surface effects

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-12-01

    The phase diagrams and temperature dependences of magnetizations in a transverse Ising nanosisland with an antiferromagnetic spin configuration are studied by the use of the effective-field theory with correlations (EFT). Some novel features, such as the re-entrant phenomena with two compensation points being free from disorder induced frustration, are obtained for the magnetic properties in the system.

  6. Antiferromagnetic inclusions in lunar glass

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine

    1974-01-01

    The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.

  7. Antiferromagnetic majority voter model on square and honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Sastre, Francisco; Henkel, Malte

    2016-02-01

    An antiferromagnetic version of the well-known majority voter model on square and honeycomb lattices is proposed. Monte Carlo simulations give evidence for a continuous order-disorder phase transition in the stationary state in both cases. Precise estimates of the critical point are found from the combination of three cumulants, and our results are in good agreement with the reported values of the equivalent ferromagnetic systems. The critical exponents 1 / ν, γ / ν and β / ν were found. Their values indicate that the stationary state of the antiferromagnetic majority voter model belongs to the Ising model universality class.

  8. Antiferromagnetism in EuNiGe3

    SciTech Connect

    Goetsch, R. J.; Ananad, V. K.; Johnston, David C.

    2013-02-07

    The synthesis and crystallographic and physical properties of polycrystalline EuNiGe3 are reported. EuNiGe3 crystallizes in the noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4mm), in agreement with previous reports, with the Eu atoms at the corners and body center of the unit cell. The physical property data consistently demonstrate that this is a metallic system in which Eu spins S = 7/2 order antiferromagnetically at a temperature TN = 13.6 K.Magnetic susceptibility χ data forT >TN indicate that the Eu atoms have spin 7/2 with g = 2, that the Ni atoms are nonmagnetic, and that the dominant interactions between the Eu spins are ferromagnetic. Thus we propose that EuNiGe3 has a collinear A-type antiferromagnetic structure, with the Eu ordered moments in the ab plane aligned ferromagnetically and with the moments in adjacent planes along the c axis aligned antiferromagnetically. A fit of χ(T TN) by our molecular field theory is consistent with a collinear magnetic structure. Electrical resistivity ρ data from TN to 350 K are fitted by the Bloch-Gr¨uneisen model for electron-phonon scattering, yielding a Debye temperature of 265(2) K.Astrong decrease in ρ occurs belowTN due to loss of spin-disorder scattering. Heat capacity data at 25 K T 300Kare fitted by the Debye model, yielding the same Debye temperature 268(2) K as found from ρ(T ). The extracted magnetic heat capacity is consistent with S = 7/2 and shows that significant short-range dynamical spin correlations occur above TN. The magnetic entropy at TN = 13.6 K is 83% of the expected asymptotic high-T value, with the remainder recovered by 30 K.

  9. Electrical switching of an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Jungwirth, Tomas

    Louis Néel pointed out in his Nobel lecture that while abundant and interesting from theoretical viewpoint, antiferromagnets did not seem to have any applications. Indeed, the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization make antiferromagnets hard to control by tools common in ferromagnets. Strong coupling would be achieved if the externally generated field had a sign alternating on the scale of a lattice constant at which moments alternate in AFMs. However, generating such a field has been regarded unfeasible, hindering the research and applications of these abundant magnetic materials. We have recently predicted that relativistic quantum mechanics may offer staggered current induced fields with the sign alternating within the magnetic unit cell which can facilitate a reversible switching of an antiferromagnet by applying electrical currents with comparable efficiency to ferromagnets. Among suitable materials is a high Néel temperature antiferromagnet, tetragonal-phase CuMnAs, which we have recently synthesized in the form of single-crystal epilayers structurally compatible with common semiconductors. We demonstrate electrical writing and read-out, combined with the insensitivity to magnetic field perturbations, in a proof-of-concept antiferromagnetic memory device. We acknowledge support from European Research Council Advanced Grant No. 268066.

  10. Thermophoresis of an antiferromagnetic soliton

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav

    2015-07-01

    We study the dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant α , which can yield a drift velocity of tens of m/s under a temperature gradient of 1 K/mm for a domain wall in an easy-axis antiferromagnetic wire with α ˜10-4 .

  11. Strong correlation induced charge localization in antiferromagnets

    PubMed Central

    Zhu, Zheng; Jiang, Hong-Chen; Qi, Yang; Tian, Chushun; Weng, Zheng-Yu

    2013-01-01

    The fate of a hole injected in an antiferromagnet is an outstanding issue of strongly correlated physics. It provides important insights into doped Mott insulators closely related to high-temperature superconductivity. Here, we report a systematic numerical study of t-J ladder systems based on the density matrix renormalization group. It reveals a surprising result for the single hole's motion in an otherwise well-understood undoped system. Specifically, we find that the common belief of quasiparticle picture is invalidated by the self-localization of the doped hole. In contrast to Anderson localization caused by disorders, the charge localization discovered here is an entirely new phenomenon purely of strong correlation origin. It results from destructive quantum interference of novel signs picked up by the hole, and since the same effect is of a generic feature of doped Mott physics, our findings unveil a new paradigm which may go beyond the single hole doped system. PMID:24002668

  12. Classical antiferromagnet on a hyperkagome lattice.

    PubMed

    Hopkinson, John M; Isakov, Sergei V; Kee, Hae-Young; Kim, Yong Baek

    2007-07-20

    Motivated by recent experiments on Na4Ir3O8 [Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, arXiv:0705.2821 (unpublished)], we study the classical antiferromagnet on a frustrated three-dimensional lattice obtained by selectively removing one of four sites in each tetrahedron of the pyrochlore lattice. This "hyperkagome" lattice consists of corner-sharing triangles. We present the results of large-N mean field theory and Monte Carlo computations on O(N) classical spin models. It is found that the classical ground states are highly degenerate. Nonetheless a nematic order emerges at low temperatures in the Heisenberg model (N=3) via "order by disorder," representing the dominance of coplanar spin configurations. Implications for ongoing experiments are discussed. PMID:17678320

  13. Ising antiferromagnet on the 2-uniform lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2016-08-01

    The antiferromagnetic Ising model is investigated on the twenty 2-uniform lattices using the Monte Carlo method based on the Wang-Landau algorithm and the Metropolis algorithm to study the geometric frustration effect systematically. Based on the specific heat, the residual entropy, and the Edwards-Anderson freezing order parameter, the ground states of them were determined. In addition to the long-range-ordered phase and the spin ice phase found in the Archimedean lattices, two more phases were found. The partial long-range order is long-range order with exceptional disordered sites, which give extensive residual entropy. In the partial spin ice phase, the partial freezing phenomenon appears: A majority of sites are frozen without long-range order, but the other sites are fluctuating even at zero temperature. The spin liquid ground state was not found in the 2-uniform lattices.

  14. Intrinsic magnetization of antiferromagnetic textures

    NASA Astrophysics Data System (ADS)

    Tveten, Erlend G.; Müller, Tristan; Linder, Jacob; Brataas, Arne

    2016-03-01

    Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.

  15. Multicritical points in the three-dimensional XXZ antiferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Selke, Walter

    2013-01-01

    The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy, the XXZ model, and competing planar single-ion anisotropy in a magnetic field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. The biconical (supersolid) phase, bordering the antiferromagnetic and spin-flop phases, is found to become thermally unstable well below the onset of the disordered, paramagnetic phase, leading to interesting multicritical points.

  16. Effects of disorder and isotopic substitution in the specific heat and Raman scattering in LuB{sub 12}

    SciTech Connect

    Sluchanko, N. E. Azarevich, A. N.; Bogach, A. V.; Vlasov, I. I.; Glushkov, V. V.; Demishev, S. V.; Maksimov, A. A.; Tartakovskii, I. I.; Filatov, E. V.; Flachbart, K.; Gabani, S.; Filippov, V. B.; Shitsevalova, N. Yu.; Moshchalkov, V. V.

    2011-09-15

    Precision measurements of the specific heat and spectral intensity I({omega}) of Raman scattering for Lu{sup N}B{sub 12} single crystal samples with various boron isotopes (N = 10, 11, nat) have been performed at low and intermediate temperatures. A boson peak in the low-frequency part of the I({omega}) spectrum has been observed for the first time for lutetium dodecaboride at liquid nitrogen temperatures. It has been shown that low-temperature anomalies in the specific heat, along with the features of Raman spectra, can be interpreted in terms of the transition to a cageglass state at T* = 50-70 K, which appears when Lu{sup 3+} ions are displaced from the centrosymmetric position in cavities of a rigid covalent boron sublattice towards the randomly located boron vacancies. The concentrations of various two-level systems that correspond to two types of vibrational clusters with correlation lengths of 12-15 and 18-22 A, respectively, have been estimated. The vibrational density of states of LuB{sub 12} has been calculated from Raman spectra in the model of soft atomic potentials. An approach has been proposed to explain the dielectrization of the properties of the YbB{sub 12} compound at T < T*, as well as the features of the formation of magnetic structures in RB{sub 12} antiferromagnets (R = Tb, Dy, Ho, Er, Tm) and the suppression of superconductivity in LuB{sub 12}.

  17. Vitreous Substitutes.

    PubMed

    Foster, William Joseph

    2008-04-01

    Modern vitreoretinal surgery is a young science. While tremendous developments have occurred in instrument design and technique since Machemer first described vitrectomy surgery in 1973[1], the application of advanced materials concepts to the development of intra-ocular compounds is a particularly exciting area of research. To date, the development of vitreous substitutes has played a significant role in enabling the dramatic and progressive improvement in surgical outcome, but perhaps no other area of research has the potential to further improve the treatment of retinal detachment and other retinal disorders. While prior research has focused solely upon the ability of a compound to re-attach the retina, future research should seek to enable the surgeon to inhibit the development of proliferative vitreoretinopathy and re-detachment, the integration of stem-cell therapies with surgical retina, long-term delivery of medications to the posterior segment, and the promotion of more rapid and complete visual rehabilitation. PMID:19343097

  18. Quantum localization in bilayer Heisenberg antiferromagnets with site dilution.

    PubMed

    Roscilde, Tommaso; Haas, Stephan

    2005-11-11

    The field-induced antiferromagnetic ordering in systems of weakly coupled S = 1/2 dimers at zero temperature can be described as a Bose-Einstein condensation of triplet quasiparticles (singlet quasiholes) in the ground state. For the case of a Heisenberg bilayer, it is here shown how the above picture is altered in the presence of site dilution of the magnetic lattice. Geometric randomness leads to quantum localization of the quasiparticles or quasiholes and to an extended Bose-glass phase in a realistic disordered model. This localization phenomenon drives the system towards a quantum-disordered phase well before the classical geometric percolation threshold is reached. PMID:16384096

  19. Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Demirdiş, S.; Fasano, Y.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.; Konczykowski, Marcin; Pastoriza, H.; van der Beek, C. J.

    2013-03-01

    We present a comprehensive overview of vortex pinning in single crystals of the isovalently substituted iron-based superconductor BaFe2(As1-xPx)2, a material that qualifies as an archetypical clean superconductor, containing only sparse strong pointlike pins [in the sense of C. J. van der Beek , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.66.024523 66, 024523 (2002)]. Widely varying critical current values for nominally similar compositions show that flux pinning is of extrinsic origin. Vortex configurations, imaged using the Bitter decoration method, show less density fluctuations than those previously observed in charge-doped Ba(Fe1-xCox)2As2 single crystals. Analysis reveals that the pinning force and energy distributions depend on the P content x. However, they are always much narrower than in Ba(Fe1-xCox)2As2, a result that is attributed to the weaker temperature dependence of the superfluid density on approaching Tc in BaFe2(As1-xPx)2. Critical current density measurements and pinning force distributions independently yield a mean distance between effective pinning centers L¯˜90 nm, increasing with increasing P content x. This evolution can be understood as being the consequence of the P dependence of the London penetration depth. Further salient features are a wide vortex free “Meissner belt”, observed at the edge of overdoped crystals, and characteristic chainlike vortex arrangements, observed at all levels of P substitution.

  20. Electric voltage generation by antiferromagnetic dynamics

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo

    2016-05-01

    We theoretically demonstrate dc and ac electric voltage generation due to spin motive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the intersublattice electron dynamics treated as a perturbation. This work suggests a way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.

  1. Magnetic dilution and domain selection in the X Y pyrochlore antiferromagnet Er2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Hallas, A. M.; Maharaj, D. D.; Buhariwalla, C. R. C.; Kermarrec, E.; Butch, N. P.; Munsie, T. J. S.; Dabkowska, H. A.; Luke, G. M.; Gaulin, B. D.

    2016-08-01

    Below TN=1.1 K, the X Y pyrochlore Er2Ti2O7 orders into a k =0 noncollinear, antiferromagnetic structure referred to as the ψ2 state. The magnetic order in Er2Ti2O7 is known to obey conventional three-dimensional (3D) percolation in the presence of magnetic dilution, and in that sense is robust to disorder. Recently, however, two theoretical studies have predicted that the ψ2 structure should be unstable to the formation of a related ψ3 magnetic structure in the presence of magnetic vacancies. To investigate these theories, we have carried out systematic elastic and inelastic neutron scattering studies of three single crystals of Er2 -xYxTi2O7 with x =0 (pure), 0.2 (10 %Y ) and 0.4 (20 % Y ), where magnetic Er3 + is substituted by nonmagnetic Y3 +. We find that the ψ2 ground state of pure Er2Ti2O7 is significantly affected by magnetic dilution. The characteristic domain selection associated with the ψ2 state, and the corresponding energy gap separating ψ2 from ψ3, vanish for Y3 + substitutions between 10 % Y and 20 % Y , far removed from the three-dimensional percolation threshold of ˜60 % Y . The resulting ground state for Er2Ti2O7 with magnetic dilutions from 20 % Y up to the percolation threshold is naturally interpreted as a frozen mosaic of ψ2 and ψ3 domains.

  2. NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.

    PubMed

    Krizan, J W; Cava, R J

    2015-07-29

    We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596

  3. Antiferromagnetic and xy ferro-orbital order in insulating SrRuO3 thin films with SrO termination.

    PubMed

    Autieri, C

    2016-10-26

    By means of first-principles calculations we study the structural, magnetic and electronic properties of SrRuO3 surface for the SrO termination. We find that the RuO6 octahedra and the structure of the SrO layers at the surface are strongly modified as well as the Ru-O-Ru bond angles. We find in the thin films a d xy ferro-orbital order. The d xy orbital becomes the lowest in energy as in other quasitwodimensional ruthenates. Such structural rearrangement, together with a band reduction, leads to a modification of the magnetic properties. We compare the Jahn-Teller effect between the ferromagnetic and antiferromagnetic phases. We show that an insulating G-type antiferromagnetic phase takes place in SrRuO3 thin films, substituting the metallic phase experimentally found in every bulk Sr-ruthenates. The single layer SrRuO3 presents many similarities with the Ca2RuO4 low temperature phase, these similarities disappear with a larger number of layers. A study of the ground state of the as function of the number of layers is presented, the competition between bandwidth and Coulomb repulsion determines the ground state. We propose the disorder as responsible for the exchange bias effect observed. PMID:27588503

  4. Effect of side-chain asymmetry on the intermolecular structure and order-disorder transition in alkyl-substituted polyfluorenes

    NASA Astrophysics Data System (ADS)

    Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Haase, D.; Fröhlich, N.; Helfer, A.; Forster, M.; Scherf, U.

    2016-04-01

    We study relations among the side-chain asymmetry, structure, and order-disorder transition (ODT) in hairy-rod-type poly(9,9-dihexylfluorene) (PF6) with two identical side chains and atactic poly(9-octyl-9-methyl-fluorene) (PF1-8) with two different side chains per repeat. PF6 and PF1-8 organize into alternating side-chain and backbone layers that transform into an isotropic phase at TODT(PF 6 ) and TbiODT(PF 1 -8 ) . We interpret polymers in terms of monodisperse and bidisperse brushes and predict scenarios TODT

  5. A transverse Ising bilayer film with an antiferromagnetic spin configuration

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-10-01

    The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.

  6. Spatially anisotropic Heisenberg kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  7. Solitonlike magnetization textures in noncollinear antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ulloa, Camilo; Nunez, A. S.

    2016-04-01

    We show that proper control of magnetization textures can be achieved in noncollinear antiferromagnets. This opens the versatile toolbox of domain-wall manipulation in the context of a different family of materials. In this way, we show that noncollinear antiferromagnets are a good prospect for applications in the context of antiferromagnetic spintronics. As in many noncollinear antiferromagnets, the order parameter field takes values in SO(3). By performing a gradient expansion in the energy functional we derive an effective theory that accounts for the physics of the magnetization of long-wavelength excitations. We apply our formalism to static and dynamic textures such as domain walls and localized oscillations, and identify topologically protected textures that are spatially localized. Our results are applicable to the exchange-bias materials Mn3X , with X =Ir,Rh,Pt .

  8. Spin-Hall effects in metallic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    Materials possessing new parameters for efficient and tunable spin Hall effects are being explored, among which antiferromagnets have become one of the most promising candidates. Two distinct properties of antiferromagnets are the microscopic spin magnetic moment ordering and the intrinsic anisotropy. Thus the natural question arises whether these two unique features of antiferromagnets can become new degrees of freedom for tuning their spin Hall effects. We performed experimental studies using spin pumping and inverse spin Hall detection on prototypical CuAu-I-type metallic antiferromagnets, PtMn, IrMn, PdMn, and FeMn, in which we observed increasing spin Hall effects for the alloys with heavier elements included. In particular, PtMn shows a large spin Hall effect that is comparable to Pt. We also demonstrated that the spin transfer torques from the antiferromagnets are large enough to excite ferromagnetic resonance of an adjacent ferromagnetic layer. We conclude that the sign and magnitude of the spin Hall effects in these antiferromagnets are determined by the atomic spin-orbit coupling of the heavy elements (e.g. Pt and Ir) as well as the large spin magnetic moments of Mn. In addition, by using epitaxial growth, we investigated the influence of the different crystalline and magnetic orientations on the anisotropic spin Hall effects of these antiferromagnets. Most of the experimental results were further corroborated by first-principles calculations, which determine the intrinsic spin Hall effect contribution and suggest pronounced anisotropies. Thus metallic antiferromagnets may become an active component for manipulating spin dependent transport properties in spintronic concepts. Work at Argonne was supported by the U.S. DOE, OS, Materials Sciences and Engineering Division. Work at Center for Nanoscale Materials was supported by DOE, OS-BES (DE-AC02-06CH11357). Work at Julich was supported by SPP 1538 Programme of the DFG.

  9. Constructing a magnetic handle for antiferromagnetic manganites

    NASA Astrophysics Data System (ADS)

    Glavic, Artur; Dixit, Hemant; Cooper, Valentino R.; Aczel, Adam A.

    2016-04-01

    An intrinsic property of antiferromagnetic materials is the compensation of the magnetic moments from the individual atoms that prohibits the direct interaction of the spin lattice with an external magnetic field. To overcome this limitation we have created artificial spin structures by heteroepitaxy between two bulk antiferromagnets SrMnO3 and NdMnO3. Here, we demonstrate that charge transfer at the interface results in the creation of thin ferromagnetic layers adjacent to A -type antiferromagnetism in thick NdMnO3 layers. A novel interference based neutron diffraction technique and polarized neutron reflectometry are used to confirm the presence of ferromagnetism in the SrMnO3 layers and to probe the relative alignment of antiferromagnetic spins induced by the coupling at the ferro- to antiferromagnet interface. A density functional theory analysis of the driving forces for the exchange reveals strong ferromagnetic interfacial coupling through quantifiable short range charge transfer. These results confirm a layer-by-layer control of magnetic arrangements that constitutes a promising step on a path towards isothermal magnetic control of antiferromagnetic arrangements as would be necessary in spin-based heterostructures like multiferroic devices.

  10. Roughness effects in uncompensated antiferromagnets

    SciTech Connect

    Charilaou, M.; Hellman, F.

    2015-02-28

    Monte Carlo simulations show that roughness in uncompensated antiferromagnets decreases not just the surface magnetization but also the net magnetization and particularly strongly affects the temperature dependence. In films with step-type roughness, each step creates a new compensation front that decreases the global net magnetization. The saturation magnetization decreases non-monotonically with increasing roughness and does not scale with the surface area. Roughness in the form of surface vacancies changes the temperature-dependence of the magnetization; when only one surface has vacancies, the saturation magnetization will decrease linearly with surface occupancy, whereas when both surfaces have vacancies, the magnetization is negative and exhibits a compensation point at finite temperature, which can be tuned by controlling the occupancy. Roughness also affects the spin-texture of the surfaces due to long-range dipolar interactions and generates non-collinear spin configurations that could be used in devices to produce locally modified exchange bias. These results explain the strongly reduced magnetization found in magnetometry experiments and furthers our understanding of the temperature-dependence of exchange bias.

  11. Skin Substitutes

    PubMed Central

    Howe, Nicole; Cohen, George

    2014-01-01

    In a relatively short timespan, a wealth of new skin substitutes made of synthetic and biologically derived materials have arisen for the purpose of wound healing of various etiologies. This review article focuses on providing an overview of skin substitutes including their indications, contraindications, benefits, and limitations. The result of this overview was an appreciation of the vast array of options available for clinicians, many of which did not exist a short time ago. Yet, despite the rapid expansion this field has undergone, no ideal skin substitute is currently available. More research in the field of skin substitutes and wound healing is required not only for the development of new products made of increasingly complex biomolecular material, but also to compare the existing skin substitutes. PMID:25371771

  12. Percolation properties of the antiferromagnetic Blume-Capel model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Pawłowski, G.

    2009-04-01

    The problem of order-order and order-disorder transitions in the system described by the 2D antiferromagnetic Blume-Capel model in the presence of a magnetic field is studied by the Wang and Landau flat-histogram simulation method and by the classical Monte Carlo. Anomalous thermodynamic characteristics in low temperatures indicate different type orderings in finite temperatures. The existence of pure antiferromagnetic phases as well as mixed state is shown by detailed phenomenological analysis of the system. The border lines on the phase diagram between various orderings are determined by the complementary microscopic study of the percolation problem for c(2×2) elementary structures of antiferromagnetic ordered phases. This new approach has also shown a full agreement between the percolation threshold for the cluster of mixed phase and the critical temperature of the ordered system.

  13. Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy

    NASA Astrophysics Data System (ADS)

    Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2016-06-01

    The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.

  14. Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy.

    PubMed

    Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2016-06-01

    The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys. PMID:27143642

  15. NMR characterization of sulphur substitution effects in the KxFe2-ySe2-zSz high-Tc superconductor

    DOE PAGESBeta

    Torchetti, D. A.; Imai, T.; Lei, H. C.; Petrovic, C.

    2012-04-17

    We present a⁷⁷ Se NMR study of the effect of S substitution in the high-Tc superconductor KxFe2-ySe2-zSz in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the KxFe₂Se₂ sample due to local disorder in the Se environment. Our Knight shift ⁷⁷K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None ofmore » the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near Tc in 1/T₁T, as seen in FeSe.« less

  16. An itinerant antiferromagnetic metal without magnetic constituents

    SciTech Connect

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.

  17. An itinerant antiferromagnetic metal without magnetic constituents

    DOE PAGESBeta

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; et al

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemedmore » crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.« less

  18. An itinerant antiferromagnetic metal without magnetic constituents

    PubMed Central

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.

    2015-01-01

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems. PMID:26166042

  19. Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques.

    PubMed

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-08-19

    We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878

  20. Impurity induced antiferromagnetic order in Haldane gap compound SrNi2-xMgxV2O8

    NASA Astrophysics Data System (ADS)

    Pahari, B.; Ghoshray, K.; Ghoshray, A.; Samanta, T.; Das, I.

    2007-05-01

    The effect of nonmagnetic Mg doping in SrNi2V2O8, a Haldane gap system with a disordered ground state, was investigated using DC magnetic susceptibility and heat capacity measurements in polycrystalline samples of SrNi2-xMgxV2O8 with x=0.03, 0.05, 0.07, 0.1 and 0.14. The results clearly reveal that the substitution of Ni(S=1) ion by Mg(S=0) ion induces a magnetic phase transition with the ordering temperatures lying in the range 3.4-4.3 K, for the samples with lowest and highest value of x. The intrachain exchange constant (J/kB) and the Haldane gap (Δ) for all the compounds were estimated to be ∼98±2 and 25 K, respectively, which are close to that of the undoped compound. The magnetization data further suggest that the compounds exhibit metamagnetic behavior below TN, supporting a picture of antiferromagnet with significant magnetic anisotropy and competing intrachain and interchain interactions.

  1. Spinon dynamics in quantum integrable antiferromagnets

    NASA Astrophysics Data System (ADS)

    Vlijm, R.; Caux, J.-S.

    2016-05-01

    The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.

  2. Quantized spin waves in antiferromagnetic Heisenberg chains.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2008-10-24

    The quantized stationary spin wave modes in one-dimensional antiferromagnetic spin chains with easy axis on-site anisotropy have been studied by means of Landau-Lifshitz-Gilbert spin dynamics. We demonstrate that the confined antiferromagnetic chains show a unique behavior having no equivalent, neither in ferromagnetism nor in acoustics. The discrete energy dispersion is split into two interpenetrating n and n' levels caused by the existence of two sublattices. The oscillations of individual sublattices as well as the standing wave pattern strongly depend on the boundary conditions. Particularly, acoustical and optical antiferromagnetic spin waves in chains with boundaries fixed (pinned) on different sublattices can be found, while an asymmetry of oscillations appears if the two pinned ends belong to the same sublattice. PMID:18999780

  3. Ferroelectric polarization in antiferromagnetically coupled ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Gareeva, Z. V.; Mazhitova, F. A.; Doroshenko, R. A.

    2016-09-01

    We report the influence of interface antiferromagnetic coupling on magnetoelectric properties of ferromagnetic bi-layers. Electric polarization arising at magnetic ingomogeneity in bi-layered ferromagnetic structure with antiferromagnetic coupling at interface in applied magnetic field has been explored. Diagrams representing dependences of electric polarization on magnetic field P(H) have been constructed for two magnetic field geometries (in-plane and out-of plane fields). It has been found out that P(H) dependences demonstrate non-monotonic behavior. Peculiarities of polarization in an in-plane-oriented magnetic field have been explained by magnetization processes. It has been shown that a variety of magnetic configurations of Bloch, Neel and mixed Bloch-Neel types can be realized in antiferromagnetically coupled film due to cubic anisotropy contribution. In the area of Bloch magnetic configuration electric polarization vanishes. The critical values of magnetic fields suppressing polarization have been estimated.

  4. Antiferromagnetic Spin Wave Field-Effect Transistor.

    PubMed

    Cheng, Ran; Daniels, Matthew W; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  5. Antiferromagnetic Spin Wave Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.

  6. Antiferromagnetic Spin Wave Field-Effect Transistor

    PubMed Central

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  7. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGESBeta

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  8. Antiferromagnetic phases of the Kondo lattice

    NASA Astrophysics Data System (ADS)

    Eder, R.; Grube, K.; Wróbel, P.

    2016-04-01

    We discuss the paramagnetic and Néel-ordered phases of the Kondo lattice Hamiltonian on the two-dimensional square lattice by means of bond fermions. In the doped case we find two antiferromagnetic solutions, the first one with small ordered moment, heavy bands, and an antiferromagnetically folded large Fermi surface—i.e., including the localized spins—the second one with large ordered moment, light bands, and an antiferromagnetically folded conduction electron-only Fermi surface. The zero temperature phase diagram as a function of Kondo coupling and conduction electron density shows first- and second-order transition lines between the three different phases and agrees qualitatively with previous numerical studies. We compare to experiments on CeRh1 -xCoxIn5 and find qualitative agreement.

  9. Paramagnetic and Antiferromagnetic Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    We report on the observation of the longitudinal spin Seebeck effect in both antiferromagnetic and paramagnetic insulators. By using a microscale on-chip local heater, it is possible to generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. This technique allows us to easily access low temperatures (200 mK) and high magnetic fields (14 T) through conventional dilution refrigeration and superconducting magnet setups. By exploring this regime, we detect the spin Seebeck effect through the spin-flop transition in antiferromagnetic MnF2 when a large magnetic field (>9 T) is applied along the easy axis direction. Using the same technique, we are also able to resolve a spin Seebeck effect from the paramagnetic phase of geometrically frustrated antiferromagnet Gd3Ga5O12 (gadolinium gallium garnet) and antiferromagnetic DyScO3 (DSO). Since these measurements occur above the ordering temperatures of these two materials, short-range magnetic order is implicated as the cause of the spin Seebeck effect in these systems. The discovery of the spin Seebeck effect in these two materials classes suggest that both antiferromagnetic spin waves and spin excitations from short range magnetic order may be used to generate spin current from insulators and that the spin wave spectra of individual materials are highly important to the specifics of the longitudinal spin Seebeck effect. Since insulating antiferromagnets and paramagnets are far more common than the typical insulating ferrimagnetic materials used in spin Seebeck experiments, this discovery opens up a large new class of materials for use in spin caloritronic devices. All authors acknowledge support of the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. The use of facilities at the Center for Nanoscale Materials, was supported by the U.S. DOE, BES under Contract No. DE-AC02-06CH11357.

  10. Nonequilibrium dynamics in the antiferromagnetic Hubbard model

    NASA Astrophysics Data System (ADS)

    Sandri, Matteo; Fabrizio, Michele

    2013-10-01

    We investigate by means of the time-dependent Gutzwiller variational approach the out-of-equilibrium dynamics of an antiferromagnetic state evolved with the Hubbard model Hamiltonian after a sudden change of the repulsion strength U. We find that magnetic order survives more than what is expected on the basis of thermalization arguments, in agreement with recent dynamical mean field theory calculations. In addition, we find evidence of a dynamical transition for quenches to large values of U between a coherent antiferromagnet characterized by a finite quasiparticle residue to an incoherent one with vanishing residue, which finally turns into a paramagnet for even larger U.

  11. Half-metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: First principle calculations

    NASA Astrophysics Data System (ADS)

    Lamrani, A. Fakhim; Ouchri, M.; Benyoussef, A.; Belaiche, M.; Loulidi, M.

    2013-11-01

    Electronic structure calculations based on density functional theory within the generalized gradient approximation for double perovskite Sr2FeMoO6 and Sr2OsMoO6 have been performed using the accurate full potential augmented spherical wave method. By substituting Fe atoms by Os in the double perovskite structure oxides we have shown that it is possible to realize half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. To support our results, GGA+U electronic structure calculations have been performed showing that the half-metallic antiferromagnetic state still persists. We conclude that the origin of the antiferromagnetism in Sr2OsMoO6 may be attributed to both superexchange and generalized double exchange mechanisms via the B(3d,5d)-O(2p)-B'(4d) coupling.

  12. Doping-Induced Quantum Critical Point in an Itinerant Antiferromagnet TiAu

    NASA Astrophysics Data System (ADS)

    Santiago, Jessica; Svanidze, Eteri; Besara, Tiglet; Siegrist, Theo; Morosan, Emilia

    The recently discovered itinerant magnet TiAu is the first antiferromagnet composed of non-magnetic constituents. The spin density wave ground state develops below TN ~36 K, about an order of magnitude smaller than in Cr. Achieving a quantum critical point in this material would provide a better understanding of weak itinerant antiferromagnets, while giving long sought-after insights into the effects of spin fluctuations in itinerant electron systems. While the application of pressure increases the ordering temperature TN, partial substitution of Ti provides an alternative avenue towards achieving a quantum critical point. The non-Fermi liquid behavior accompanies the quantum phase transition, as evidenced by the divergent specific heat coefficient and linear temperature dependence of the resistivity. The transition is accompanied by enhanced electron-electron correlations as well as strong spin-fluctuations, providing an experimental avenue for the verification of the self-consistent theory of spin fluctuations.

  13. Bose and Mott glass phases in dimerized quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Krüger, F.

    2015-11-01

    We examine the effects of disorder on dimerized quantum antiferromagnets in a magnetic field, using the mapping to a lattice gas of hard-core bosons with finite-range interactions. Combining a strong-coupling expansion, the replica method, and a one-loop renormalization-group analysis, we investigate the nature of the glass phases formed. We find that away from the tips of the Mott lobes, the transition is from a Mott insulator to a compressible Bose glass, however the compressibility at the tips is strongly suppressed. We identify this finding with the presence of a rare Mott glass phase and demonstrate that the inclusion of replica symmetry breaking is vital to correctly describe the glassy phases. This result suggests that the formation of Bose and Mott glass phases is not simply a weak localization phenomenon but is indicative of much richer physics. We discuss our results in the context of both ultracold atomic gases and spin-dimer materials.

  14. Direct measurement of antiferromagnetic domain fluctuations.

    PubMed

    Shpyrko, O G; Isaacs, E D; Logan, J M; Feng, Yejun; Aeppli, G; Jaramillo, R; Kim, H C; Rosenbaum, T F; Zschack, P; Sprung, M; Narayanan, S; Sandy, A R

    2007-05-01

    Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K. PMID:17476263

  15. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  16. Indirect control of antiferromagnetic domain walls with spin current.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-02-11

    The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials. PMID:21405493

  17. Structural and physical properties of Re substituted B-site ordered and disordered SrCo{sub 1-x}Re{sub x}O{sub 3-delta} (x = 0.1, 0.25, 0.5).

    SciTech Connect

    Baszczuk, A.; Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Avdeev, M.

    2012-02-01

    Synthesis conditions, structural, magnetic and transport properties have been studied for SrCo{sub 1-x}Re{sub x}O{sub 3-{delta}} samples with x = 0.1, 0.25, 0.5. SrCo{sub 0.9}Re{sub 0.1}O{sub 3-{delta}} forms in air and remains stable on cooling indicating that small amounts of Re{sup 7+} stabilize a B-site disordered Pm-3m phase inhibiting formation of a hexagonal phase observed for SrCoO{sub 3-{delta}}. After oxygenation SrCo{sub 0.9}Re{sub 0.1}O{sub 2.94} becomes ferromagnetic below 125 K and shows metallic-like conductivity with moderate magnetoresistance at low temperatures. Fully oxygenated double perovskite Sr{sub 2}CoReO{sub 6} (x = 0.5) forms under reducing conditions and is tetragonal at room temperature. A hysteretic transition to the antiferromagnetic state at low temperatures ({approx}50-60 K) is coupled with a drastic change of electronic and thermal properties. Contrary to previous reports [A. Nag et al., Chem. Mater. 20(13) (2008) 4420-4424] SrCo{sub 0.75}Re{sub 0.25}O{sub 3} is not a partially cation ordered Sr{sub 4}Co{sub 3}ReO{sub 12} phase, but a mixture of two structural and magnetic phases with disordered SrCo{sub 1-xd}Re{sub xd}O{sub 3} and ordered SrCo{sub 1-xo}Re{sub xo}O{sub 3} compositions where xd > 0.1 and xo < 0.5.

  18. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  19. Sensory Substitution

    NASA Astrophysics Data System (ADS)

    Verrillo, Ronald T.

    The idea that the cutaneous surface may be employed as a substitute for the eyes and ears is by no means a modern notion. Although the sense of touch has long been considered as a surrogate for both the visual and auditory modalities, the focus of this chapter will be on the efforts to develop a tactile substitute for hearing, especially that of human speech. The visual system is our primary means of processing information about environmental space such as orientation, distance, direction and size. It is much less effective in making temporal discriminations. The auditory system is unparalleled in processing information that involves rapid sequences of temporal events, such as speech and music. The tactile sense is capable of processing both spatial and temporal information although not as effective in either domain as the eye or the ear.

  20. Skyrmions in square-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Keesman, Rick; Raaijmakers, Mark; Baerends, A. E.; Barkema, G. T.; Duine, R. A.

    2016-08-01

    The ground states of square-lattice two-dimensional antiferromagnets with anisotropy in an external magnetic field are determined using Monte Carlo simulations and compared to theoretical analysis. We find a phase in between the spin-flop and spiral phase that shows strong similarity to skyrmions in ferromagnetic thin films. We show that this phase arises as a result of the competition between Zeeman and Dzyaloshinskii-Moriya interaction energies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions are stabilized in finite-sized systems, even at higher temperatures. The existence of thermodynamically stable skyrmions in square-lattice antiferromagnets provides an appealing alternative over skyrmions in ferromagnets as data carriers.

  1. Dimensional Reduction in Quantum Dipolar Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Babkevich, P.; Jeong, M.; Matsumoto, Y.; Kovacevic, I.; Finco, A.; Toft-Petersen, R.; Ritter, C.; Mânsson, M.; Nakatsuji, S.; Rønnow, H. M.

    2016-05-01

    We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF4 . For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25 (1 ) . The exponents agree with the 2D X Y /h4 universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2 +1 )D . These results are in line with those found for LiErF4 which has the same crystal structure, but largely different TN, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice.

  2. Dimensional Reduction in Quantum Dipolar Antiferromagnets.

    PubMed

    Babkevich, P; Jeong, M; Matsumoto, Y; Kovacevic, I; Finco, A; Toft-Petersen, R; Ritter, C; Månsson, M; Nakatsuji, S; Rønnow, H M

    2016-05-13

    We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF_{4}. For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25(1). The exponents agree with the 2D XY/h_{4} universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2+1)D. These results are in line with those found for LiErF_{4} which has the same crystal structure, but largely different T_{N}, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice. PMID:27232040

  3. Antiferromagnetic Ising Model in Hierarchical Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Boettcher, Stefan

    2015-03-01

    The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.

  4. Heisenberg antiferromagnet on the Husimi lattice

    NASA Astrophysics Data System (ADS)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Han, X. J.; Xie, H. D.; Normand, B.; Xiang, T.

    2016-02-01

    We perform a systematic study of the antiferromagnetic Heisenberg model on the Husimi lattice using numerical tensor-network methods based on projected entangled simplex states. The nature of the ground state varies strongly with the spin quantum number S . For S =1/2 , it is an algebraic (gapless) quantum spin liquid. For S =1 , it is a gapped, nonmagnetic state with spontaneous breaking of triangle symmetry (a trimerized simplex-solid state). For S =2 , it is a simplex-solid state with a spin gap and no symmetry breaking; both integer-spin simplex-solid states are characterized by specific degeneracies in the entanglement spectrum. For S =3/2 , and indeed for all spin values S ≥5/2 , the ground states have 120∘ antiferromagnetic order. In a finite magnetic field, we find that, irrespective of the value of S , there is always a plateau in the magnetization at m =1/3 .

  5. Diffusive magnonic spin transport in antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2016-02-01

    It has been shown recently that a layer of the antiferromagnetic insulator (AFI) NiO can be used to transport spin current between a ferromagnet (FM) and a nonmagnetic metal (NM). In the experiments one uses the microwave-driven ferromagnetic resonance in a FM layer to produce a spin pumped spin current that flows through an AFI layer and reaches a NM layer where it is converted into a charge current by means of the inverse spin Hall effect. Here we present a theory for the spin transport in an AFI that relies on the spin current carried by the diffusion of thermal antiferromagnetic magnons. The theory explains quite well the measured dependence of the voltage in the NM layer on the thickness of the NiO layer.

  6. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-01

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.

  7. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator.

    PubMed

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-20

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators. PMID:27258884

  8. Order and topology in antiferromagnets with surfaces

    NASA Astrophysics Data System (ADS)

    Charilaou, Michalis; Hellman, Frances

    2014-03-01

    We show using Monte Carlo simulations and mean-field theory that the antiferromagnetic (AFM) magnetization, arising from uncompensated spins, exhibits a unique thermodynamic behavior that differs from that of ferromagnets or of the Néel vector. More importantly, the net uncompensated magnetization is lower than that of the surface due to finite size effects. This phenomenon can be is manifested in thin films but it is in fact the same even in infinite systems with free surfaces, suggesting a topological order in uncompensated antiferromagnets. Moreover, we investigate the effects of defects and roughness on the magnetization of AFM and show that with increasing roughness the magnetization decreases non-monotonically and reaches values of only a few percent. Thanks to DOE BES LBNL magnetism program and Swiss Federation for support.

  9. Itinerant antiferromagnetism of TiAl alloys

    NASA Astrophysics Data System (ADS)

    Petrişor, T.; Pop, I.; Giurgiu, A.; Farbaş, N.

    1986-06-01

    Magnetic susceptibility measurements of TiAl alloys are reported. Aluminium, by alloying, acts on the Néel temperature of pure titanium giving rise to a complicated phase diagram. A theoretical model, based on the itinerant antiferromagnetism model of chromium is proposed in order to explain the magnetic phase diagram of TiAl alloys. The experimental and theoretical magnetic phase diagram are in good agreement.

  10. Smeared spin-flop transition in random antiferromagnetic Ising chain

    SciTech Connect

    Timonin, P. N.

    2012-12-15

    At T = 0 and in a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynamics of this random AF chain can be described exactly for an arbitrary distribution P(J) of AF bonds. Moreover, the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(J) that is zero above some -J{sub 1} and behaves near it as (-J{sub 1}-J){sup {lambda}}, {lambda} > -1. In this case, the ferromagnetic phase emerges continuously in a field H > H{sub c} = 2J{sub 1}. At 0 > {lambda} > -1, it has the usual second-order anomalies near H{sub c} with the critical indices obeying the scaling relation and depending on {lambda}. At {lambda} > 0, higher-order transitions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the chains with an even number of spins, the intermediate 'bow-tie' phase with linearly modulated AF order exists between the AF and ferromagnetic phases at J{sub 1} < H < H{sub c}. Its origin can be traced to the infinite correlation length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous phases with size- and form-dependent order in a number of other systems with infinite correlation length. The possibility to observe the signs of the 'bow-tie' phase in low-T neutron diffraction experiments is discussed.

  11. Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2010-03-01

    The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).

  12. Electrodynamics of the antiferromagnetic phase in URu2Si2

    NASA Astrophysics Data System (ADS)

    Hall, Jesse S.; Movassagh, M. Rahimi; Wilson, M. N.; Luke, G. M.; Kanchanavatee, N.; Huang, K.; Janoschek, M.; Maple, M. B.; Timusk, T.

    2015-11-01

    We present data on the optical conductivity of URu2 -x(Fe,Os ) xSi2 . While the parent material URu2Si2 enters the enigmatic hidden order (HO) phase below 17.5 K, an antiferromagnetic (AFM) phase is induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM phases exhibit an identical gap structure that is characterized by a loss of conductivity below the gap energy with spectral weight transferred to a narrow frequency region just above the gap, the typical optical signature of a density wave. The AFM phase is marked by strong increases in both transition temperature and the energy of the gap associated with the transition. In the normal phase just above the transition the optical scattering rate varies as ω2. We find that in both the HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid. This indicates that the appearance of a coherent state is a necessary condition for either ordered phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven by the common physics of a nesting-induced density wave gap.

  13. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Shick, A. B.; Khmelevskyi, S.; Mryasov, O. N.; Wunderlich, J.; Jungwirth, T.

    2010-06-01

    Magnetic anisotropy phenomena in bimetallic antiferromagnets Mn2Au and MnIr are studied by first-principles density-functional theory calculations. We find strong and lattice-parameter-dependent magnetic anisotropies of the ground-state energy, chemical potential, and density of states, and attribute these anisotropies to combined effects of large moment on the Mn3d shell and large spin-orbit coupling on the 5d shell of the noble metal. Large magnitudes of the proposed effects can open a route towards spintronics in compensated antiferromagnets without involving ferromagnetic elements.

  14. Hit Optimization of 5-Substituted-N-(piperidin-4-ylmethyl)-1H-indazole-3-carboxamides: Potent Glycogen Synthase Kinase-3 (GSK-3) Inhibitors with in Vivo Activity in Model of Mood Disorders.

    PubMed

    Furlotti, Guido; Alisi, Maria Alessandra; Cazzolla, Nicola; Dragone, Patrizia; Durando, Lucia; Magarò, Gabriele; Mancini, Francesca; Mangano, Giorgina; Ombrato, Rosella; Vitiello, Marco; Armirotti, Andrea; Capurro, Valeria; Lanfranco, Massimiliano; Ottonello, Giuliana; Summa, Maria; Reggiani, Angelo

    2015-11-25

    Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3β (GSK-3β) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3β inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3β. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3β inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3β inhibitors as new tools in the development of new treatments for mood disorders. PMID:26486317

  15. Ferromagnetic response of a ``high-temperature'' quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    2014-03-01

    We study the antiferromagnetic phase of the ionic Hubbard model at finite temperature using dynamical mean-field theory. We find that the ionic potential plays a dual role in determining the antiferromagnetic order. A small ionic potential (compared to the Hubbard repulsion) increases the super-exchange coupling, thereby implying an increase of the Neel temperature of the system, which should facilitate observation of antiferromagnetic ordering experimentally. On the other hand, for large ionic potential, the antiferromagnetic ordering is killed and the system becomes a charge density wave with electron occupancies alternating between 0 and 2. This novel way of degrading antiferromagnetism leads to spin polarization of the low energy single particle density of states. The dynamic response of the system thus mimics ferromagnetic behavior, although the system is still an antiferromagnet in terms of the static spin order. Work done in collaboration with Rajdeep Sensarma and Sankar Das Sarma, and supported by NSF-JQI-PFC, AFOSR MURI, and ARO MURI.

  16. Size effects on the Néel temperature of antiferromagnetic NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rinaldi-Montes, Natalia; Gorria, Pedro; Martínez-Blanco, David; Fuertes, Antonio B.; Puente-Orench, Inés; Olivi, Luca; Blanco, Jesús A.

    2016-05-01

    Among all antiferromagnetic transition metal monoxides, NiO presents the highest Néel temperature (TN ˜ 525 K). In this work, the size-dependent reduction of TN in NiO nanoparticles with average diameters (D) ranging from 4 to 9 nm is investigated by neutron diffraction. The scaling law followed by TN(D) is in agreement with the Binder theory of critical phenomena in low-dimensional systems. X-ray absorption fine structure measurements link the decrease of TN to the occurrence of size effects (average undercoordination, bond relaxation and static disorder) in the nearest and next-nearest Ni coordination shells that hold the key for the maintenance of the antiferromagnetic order.

  17. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  18. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  19. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  20. Substitutional disorder in Sr2-yEuyB2-2xSi2+3xAl2-xN8+x (x ≃ 0.12, y ≃ 0.10).

    PubMed

    Funahashi, Shiro; Michiue, Yuichi; Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto

    2014-05-01

    A novel nitride, Sr2-yEuyB2-2xSi2+3xAl2-xN8+x (x ≃ 0.12, y ≃ 0.10) (distrontium europium diboron disilicon dialuminium octanitride), with the space group P62c, was synthesized from Sr3N2, EuN, Si3N4, AlN and BN under nitrogen gas pressure. The structure consists of a host framework with Sr/Eu atoms accommodated in the cavities. The host framework is constructed by the linkage of MN4 tetrahedra (M = Si, Al) and BN3 triangles, and contains substitutional disorder described by the alternative occupation of B2 or Si2N on the (0, 0, z) axis. The B2:Si2N ratio contained in an entire crystal is about 9:1. PMID:24816012

  1. Effect of substitution-type disorder in GaS 1- xSe x layer solid solutions on Raman scattering spectra

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Nagiyev, V. M.; Melnik, N. N.

    1984-07-01

    An experimental study has been carried out to investigate Raman scattering spectra of GaS 1- xSe x solid solutions in which a one-dimensional localization of interlayer mode due to a disorder in the layer stacking was observed.

  2. Thermodynamics of spin- 1/2 antiferromagnet-antiferromagnet-ferromagnet and ferromagnet-ferromagnet-antiferromagnet trimerized quantum Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Su, Gang; Gao, Song

    2006-04-01

    The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.

  3. Doping an antiferromagnetic insulator : A route to an antiferromagnetic metallic phase

    NASA Astrophysics Data System (ADS)

    Mahadevan, Priya; Pandey, Shishir; Sarma, D. D.

    Usually antiferromagnetism is accompanied by an insulating character of the ground state, while ferromagnetism is accompanied by metallicity. In the limit of half-filling, the Hubbard model yields an antiferromagnetic insulator as the ground state. From the Nagaoka theorem we expect ferromagnetism at any finite electron doping of this half filled state. Numerical studies on the other hand, have however shown, that at low doping concentrations one has a narrow region of an antiferromagnetic metallic phase. The question is whether this is realizable in real materials. Among the 3d transition metal oxides, this antiferromagnetic metallic phase has remained elusive as strong electron-phonon coupling results in a different phase diagram. The 5d transition metal oxides are therefore more suitable. In this work we solve a multiband Hubbard model relevant for a 5d transition metal oxide within a mean-field approach and show that the large bandwidth and the small intra-atomic Hund's exchange associated with this limit gives us a robust AFM-M ground state for 25% electron doping. The conclusions are supported by ab-initio electronic structure calculations for NaOsO3.

  4. Ferrimagnetism in a transverse Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2016-05-01

    The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.

  5. Dynamic critical curve of a synthetic antiferromagnet

    NASA Astrophysics Data System (ADS)

    Pham, Huy; Cimpoesu, Dorin; Plamadǎ, Andrei-Valentin; Stancu, Alexandru; Spinu, Leonard

    2009-11-01

    In this letter, a dynamic generalization of static critical curves (sCCs) for synthetic antiferromagnet (SAF) structures is presented, analyzing the magnetization switching of SAF elements subjected to pulsed magnetic fields. The dependence of dynamic critical curves (dCCs) on field pulse's shape and length, on damping, and on magnetostatic coupling is investigated. Comparing sCCs, which are currently used for studying the switching in toggle magnetic random access memories, with dCCs, it is shown that a consistent switching can be achieved only under specific conditions that take into account the dynamics of the systems. The study relies on the Landau-Lifshitz-Gilbert equation.

  6. Frustrated 3×3 Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Moustanis, P. N.

    2016-08-01

    The full energy spectrum and the exact thermodynamic results of the antiferromagnetic Heisenberg Hamiltonian of the 3×3 triangular and the frustrated square lattice with periodic boundary conditions and s=1/2 are obtained. To this end the method of hierarchy of algebras is employed. It was found that the ground state of the 3×3 frustrated square lattice is a Resonating Valence Bond (RVB) state. Thermodynamic properties, like the specific heat, magnetic susceptibility, the thermal average of the square of the total Sz and entropy, for these two lattices are presented.

  7. Switching of antiferromagnetic chains with magnetic pulses

    NASA Astrophysics Data System (ADS)

    Tao, Kun; Polyakov, Oleg P.; Stepanyuk, Valeri S.

    2016-04-01

    Recent experimental studies have demonstrated the possibility of information storage in short antiferromagnetic chains on an insulator substrate [S. Loth et al., Science 335, 196 (2012), 10.1126/science.1214131]. Here, using the density functional theory and atomistic spin dynamics simulations, we show that a local magnetic control of such chains with a magnetic tip and magnetic pulses can be used for fast switching of their magnetization. Furthermore, by changing the position of the tip one can engineer the magnetization dynamics of the chains.

  8. Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2015-01-01

    The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first principles. We present a unified approach to the phase stability, an estimate of exchange interactions in various magnetic phases, and transport properties including the effect of temperature which are all based on the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic decrease of the resistivity accompanying the AFM to FM phase transition which is due to the spin disorder present in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally is extended also to finite temperatures.

  9. Magnetic ordering in frustrated antiferromagnets on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    Pyrochlore antiferromagnet is one of the most studied examples of strongly-interacting systems. The conflict between the lattice geometry and the local spin correlations favored by their interactions precludes the simple Neel ordering and creates an extensive degeneracy of the classical ground state. This, in turn, renders the magnet susceptible to nominally small perturbations such as quantum fluctuations, anisotropies, and dipolar interactions. Of particular interest is the classical Heisenberg spins on the pyrochlore lattice with exchange interactions restricted to the nearest neighbors. It has been demonstrated by analytical arguments and numerical simulations that the spin system remains disordered down to the lowest temperatures. In this thesis I study how magnetic ordering is induced by residual perturbations in such a system. Apart from the theoretical interest, the work presented in this thesis is mainly motivated by experimental observations of real materials. Three mechanisms of breaking the ground-state degeneracy are considered here: (1) order by distortion, (2) further-neighbor exchange interactions, and (3) the orbital degrees of freedom. In the first part, we present a theoretical model describing the lattice distortion and incommensurate magnetic order in the compound CdCr2O 4, which belongs to a class of chromium spinels exhibiting the magnetoelastic phase transitions. The magnetic frustration is relieved through the spin-driven Jahn-Teller effect involving a phonon doublet with odd parity. The distortion stabilizes a collinear magnetic order with the propagation wavevector q = 2pi(0, 0, 1). The crystal structure becomes chiral due to the lack of inversion symmetry. The handedness is transferred to the magnetic system by the relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and q shifted to 2pi(0, delta, 1), consistent with the experiments. In the second part, we examine the effects

  10. Charge Stripes and Antiferromagnetism in Copper-Oxide Superconductors

    SciTech Connect

    Tranquada, J.M.

    1997-12-31

    Superconducting cuprate compounds are obtained by doping holes into antiferromagnetic insulators. Neutron scattering studies have provided evidence that the doped holes tend to segregate into charge stripes, which act like domain walls between antiferromagnetic regions. The interaction between the spatially segregated holes and the magnetic domains may be responsible for the strong pairing interaction found in the cuprates.

  11. Microscopic theory of dynamical matrix in itinerant model of antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Ami, Seiju; Cade, N. A.; Young, W.

    1983-02-01

    The dynamical matrix and the elastic constants are derived for an itinerant antiferromagnet. An orbital representation is used which bypasses the problem of large matrix inversion in reciprocal space. We show that exchange enhancement and antiferromagnetic ordering leads to softening of some of the elastic constants.

  12. Kinetic arrest induced antiferromagnetic order in hexagonal FeMnP{sub 0.75}Si{sub 0.25} alloy

    SciTech Connect

    Li, Guijiang Li, Wei; Schönecker, Stephan; Li, Xiaoqing; Delczeg-Czirjak, Erna K.; Kvashnin, Yaroslav O.; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2014-12-29

    The magnetic state of the FeMnP{sub 0.75}Si{sub 0.25} alloy was investigated by first principles calculations. The coexistence of ferromagnetic and antiferromagnetic phases in FeMnP{sub 0.75}Si{sub 0.25} with the same hexagonal crystal structure was revealed. It was found that kinetic arrest during the transition from the high temperature disordered paramagnetic phase to the low temperature ordered ferromagnetic phase results in the intermediate metastable and partially disordered antiferromagnetic phase. We propose that the ratio of the ferromagnetic and antiferromagnetic phases in the FeMnP{sub 0.75}Si{sub 0.25} sample can be tuned by adjusting the kinetic process of atomic diffusion. The investigations suggest that careful control of the kinetic diffusion process provides another tuning parameter to design candidate magnetocaloric materials.

  13. Unconventional resistivity at the border of metallic antiferromagnetism in NiS2

    NASA Astrophysics Data System (ADS)

    Niklowitz, P. G.; Alireza, P. L.; Steiner, M. J.; Lonzarich, G. G.; Braithwaite, D.; Knebel, G.; Flouquet, J.; Wilson, J. A.

    2008-03-01

    We report low-temperature and high-pressure measurements of the electrical resistivity ρ(T) of the antiferromagnetic compound NiS2 in its high-pressure metallic state. The form of ρ(T,p) suggests the presence of a quantum phase transition at a critical pressure pc=76±5kbar . Near pc , the temperature variation of ρ(T) is similar to that observed in NiS2-xSex near the critical composition x=1 , where metallic antiferromagnetism is suppressed at ambient pressure. In both cases, ρ(T) varies approximately as T1.5 over a wide range below 100K . This lets us assume that the high-pressure metallic phase of stoichiometric NiS2 also develops itinerant antiferromagnetism, which becomes suppressed at pc . However, on closer analysis, the resistivity exponent in NiS2 exhibits an undulating variation with temperature not seen in NiSSe (x=1) . This difference in behavior may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS2 .

  14. Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, D. L.; Xu, X. G.; Wu, Y.; Li, X. Q.; Miao, J.; Jiang, Y.

    2012-05-01

    We study dual-synthetic antiferromagnets (DSyAFs) using Co2FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices.

  15. Influence of dilution in the spin transport in the quantum anisotropic two-dimensional Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-08-01

    We study the influence of the site disorder in the long range order and in the spin transport in the two-dimensional Heisenberg antiferromagnet with ion-single anisotropy, in the square lattice in T=0 using the SU(3) Schwinger boson theory. We analyze these properties in the regime of Bose-Einstein condensation, where the bosons tz are condensed: = < tz† > = t. In particular, we discuss the influence of the site disorder in the spin transport of this model and in the critical properties, where Dc separates Néel's phase, D disordered phase, gapped phase, D >Dc, in the spin conductivity. We find that the behavior of the long-range order for D

  16. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    NASA Astrophysics Data System (ADS)

    Hills, V.; Wadley, P.; Campion, R. P.; Novak, V.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Ouladdiaf, B.; Jungwirth, T.

    2015-05-01

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, TN. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around TN. The effect of disorder-induced broadening on the shape of the peak is discussed.

  17. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    SciTech Connect

    Hills, V.; Wadley, P. Campion, R. P.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Novak, V.; Ouladdiaf, B.; Jungwirth, T.

    2015-05-07

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, T{sub N}. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around T{sub N}. The effect of disorder-induced broadening on the shape of the peak is discussed.

  18. Quantum selection of order in an XXZ antiferromagnet on a Kagome lattice.

    PubMed

    Chernyshev, A L; Zhitomirsky, M E

    2014-12-01

    Selection of the ground state of the kagome-lattice XXZ antiferromagnet by quantum fluctuations is investigated by combining nonlinear spin-wave and real-space perturbation theories. The two methods unanimously favor q=0 over sqrt[3]×sqrt[3] magnetic order in a wide range of the anisotropy parameter 0≤Δ≲0.72. Both approaches are also in accord on the magnitude of the quantum order-by-disorder effect generated by topologically nontrivial, looplike spin-flip processes. A tentative S-Δ phase diagram of the model is proposed. PMID:25526152

  19. Quantum phase diagram of a frustrated antiferromagnet on the bilayer honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Lamas, Carlos A.; Arlego, Marcelo; Brenig, Wolfram

    2016-06-01

    We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including interlayer frustration. Using a set of complementary approaches, namely, Schwinger bosons, dimer series expansion, bond operators, and exact diagonalization, we map out the quantum phase diagram. Analyzing ground-state energies and elementary excitation spectra, we find four distinct phases, corresponding to three collinear magnetic long-range ordered states, and one quantum disordered interlayer dimer phase. We detail that the latter phase is adiabatically connected to an exact singlet product ground state of the bilayer, which exists along a line of maximum interlayer frustration. The order within the remaining three phases will be clarified.

  20. Antiferromagnetic ordering in MnF(salen)

    NASA Astrophysics Data System (ADS)

    Čižmár, Erik; Risset, Olivia N.; Wang, Tong; Botko, Martin; Ahir, Akhil R.; Andrus, Matthew J.; Park, Ju-Hyun; Abboud, Khalil A.; Talham, Daniel R.; Meisel, Mark W.; Brown, Stuart E.

    2016-06-01

    Antiferromagnetic order at {{T}\\text{N}}=23 K has been identified in Mn(III)F(salen), salen  =  H14C16N2O2, an S  =  2 linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where 1H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, T 1, and in the linewidths. Low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition.

  1. Spin Transport in Ferromagnetic and Antiferromagnetic Insulators

    NASA Astrophysics Data System (ADS)

    Su, Shanshan; Yin, Gen; Liu, Yizhou; Zang, Jiadong; Barlas, Yafis; Lake, Roger

    Recently, experiments of spin pumping have been done for system with antiferromagnetic oxides (AFMOs) as a spacer between YIG and Pt. Observation of spin transport through the AFMO and the enhancement of spin pumping signal in the system due to the insertion of AFMO have been reported. In this research, we model the spin transport in Pt/YIG/Pt and Pt/YIG/AFMO/Pt heterostructures using the Landau-Lifshitz-Gilbert equations coupled with the non-equilibrium Green's function equations. We show that a pure spin current generated at the first Rashba SOC electrode is carried by magnon through YIG, which can be converted back to spin pumping signal at the second electrode. The spin dynamical details at the heterostructure can determine the transport efficiency. The effect of different magnetization orientations and finite temperatures will be addressed. This work was supported by the SHINES under Award # SC0012670.

  2. Ising antiferromagnet on the Archimedean lattices.

    PubMed

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices. PMID:26172675

  3. Phonon assisted IR spectroscopy of quantum antiferromagnets

    SciTech Connect

    Lorenzana, J.; Eder, R.; Sawatzky, G.A.

    1996-12-31

    The authors review resent theoretical results for multimagnon-phonon assisted infrared absorption in antiferromagnetic Heisenberg systems. They show spin wave theory line shapes for 2D spin 1/2 systems (like the parent insulating high-Tc cuprates) 1D spin 1/2 systems and 2D spin 1 systems (like the nickelates) and exact diagonalization results in two-dimensional spin 1/2 systems. The theoretical line shapes are compared with experiments. In the case of the cuprates they explain mid-infrared peaks observed in the insulator. In the case of the nickelates a predicted line shape is also shown to agree with the experiments. They discuss the possibility to observe this excitations in other experiments.

  4. Ising antiferromagnet on the Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  5. Antiferromagnetically Induced Photoemission Band in the Cuprates

    NASA Astrophysics Data System (ADS)

    Haas, Stephan; Moreo, Adriana; Dagotto, Elbio

    1995-05-01

    Strong antiferromagnetic correlations in models of high critical temperature (high- Tc) cuprates produce quasiparticlelike features in photoemission (PES) calculations above the Fermi momentum pF corresponding to weakly interacting electrons. This effect, discussed before by Kampf and Schrieffer [Phys. Rev. B 41, 6399 (1990)], is analyzed here using computational techniques in strong coupling. It is concluded that weight above pF should be observable in PES data for underdoped compounds, while in the overdoped regime it will be hidden in the experimental background. At optimal doping the signal is weak. The order of magnitude of our results is compatible with experimental data by Aebi et al. [Phys. Rev. Lett. 72, 2757 (1994)] for Bi2Sr2CaCu2O8.

  6. Probing the evolution of antiferromagnetism in multiferroics

    SciTech Connect

    Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C.-H.; Yang, S.; Glans, P.-A.; Valvidares, M.; Huijben, M.; Kortright, J.; Guo,, J.; Chu, Y.-H.; Ramesh, R.

    2010-06-09

    This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future applications.

  7. Dynamics of antiferromagnets driven by spin current

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Niu, Qian

    2014-02-01

    When a spin-polarized current flows through a ferromagnetic (FM) metal, angular momentum is transferred to the background magnetization via spin-transfer torques. In antiferromagnetic (AFM) materials, however, the corresponding problem is unsolved. We derive microscopically the dynamics of an AFM system driven by spin current generated by an attached FM polarizer, and find that the spin current exerts a driving force on the local staggered order parameter. The mechanism does not rely on the conservation of spin angular momentum, nor does it depend on the induced FM moments on top the AFM background. Two examples are studied: (i) A domain wall is accelerated to a terminal velocity by purely adiabatic effect where the Walker's breakdown is avoided. (ii) Spin injection modifies the AFM resonance frequency, and spin current injection triggers spin wave instability of local moments above a threshold.

  8. Anomalous Magnetothermopower in a Metallic Frustrated Antiferromagnet.

    PubMed

    Arsenijević, Stevan; Ok, Jong Mok; Robinson, Peter; Ghannadzadeh, Saman; Katsnelson, Mikhail I; Kim, Jun Sung; Hussey, Nigel E

    2016-02-26

    We report the temperature T and magnetic field H dependence of the thermopower S of an itinerant triangular antiferromagnet PdCrO_{2} in high magnetic fields up to 32 T. In the paramagnetic phase, the zero-field thermopower is positive with a value typical of good metals with a high carrier density. In marked contrast to typical metals, however, S decreases rapidly with increasing magnetic field, approaching zero at the maximum field scale for T>70  K. We argue here that this profound change in the thermoelectric response derives from the strong interaction of the 4d correlated electrons of the Pd ions with the short-range spin correlations of the Cr^{3+} spins that persist beyond the Néel ordering temperature due to the combined effects of geometrical frustration and low dimensionality. PMID:26967440

  9. Anomalous Magnetothermopower in a Metallic Frustrated Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Arsenijević, Stevan; Ok, Jong Mok; Robinson, Peter; Ghannadzadeh, Saman; Katsnelson, Mikhail I.; Kim, Jun Sung; Hussey, Nigel E.

    2016-02-01

    We report the temperature T and magnetic field H dependence of the thermopower S of an itinerant triangular antiferromagnet PdCrO2 in high magnetic fields up to 32 T. In the paramagnetic phase, the zero-field thermopower is positive with a value typical of good metals with a high carrier density. In marked contrast to typical metals, however, S decreases rapidly with increasing magnetic field, approaching zero at the maximum field scale for T >70 K . We argue here that this profound change in the thermoelectric response derives from the strong interaction of the 4 d correlated electrons of the Pd ions with the short-range spin correlations of the Cr3 + spins that persist beyond the Néel ordering temperature due to the combined effects of geometrical frustration and low dimensionality.

  10. Transformation of spin current by antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.

    2016-06-01

    It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.

  11. Antiferromagnetic ordering in MnF(salen).

    PubMed

    Čižmár, Erik; Risset, Olivia N; Wang, Tong; Botko, Martin; Ahir, Akhil R; Andrus, Matthew J; Park, Ju-Hyun; Abboud, Khalil A; Talham, Daniel R; Meisel, Mark W; Brown, Stuart E

    2016-06-15

    Antiferromagnetic order at [Formula: see text] K has been identified in Mn(III)F(salen), salen  =  H14C16N2O2, an S  =  2 linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where (1)H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, T 1, and in the linewidths. Low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition. PMID:27160792

  12. Magnetoelectric effect in simple collinear antiferromagnetic spinels

    NASA Astrophysics Data System (ADS)

    Saha, Rana; Ghara, Somnath; Suard, Emmanuelle; Jang, Dong Hyun; Kim, Kee Hoon; Ter-Oganessian, N. V.; Sundaresan, A.

    2016-07-01

    We report the discovery of the linear magnetoelectric effect in a family of spinel oxides, C o3O4 and Mn B2O4 (B =Al ,Ga) with simple collinear antiferromagnetic spin structure. An external magnetic field induces a dielectric anomaly at TN, accompanied by the generation of electric polarization that varies linearly with magnetic field. Magnetization and magnetoelectric measurements on a single crystal of MnG a2O4 together with a phenomenological theory suggest that the easy axis direction is [111] with the corresponding magnetic symmetry R 3¯'m' . The proposed theoretical model of single-ion contribution of magnetic ions located in a noncentrosymmetric crystal environment stands for a generic mechanism for observing magnetoelectric effects in these and other similar materials.

  13. A nonmagnetic impurity in a 2D quantum critical antiferromagnet

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2003-03-01

    We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev

  14. Synthesis, Characterization, and Preclinical Evaluation of New Thiazolidin-4-Ones Substituted with p-Chlorophenoxy Acetic Acid and Clofibric Acid against Insulin Resistance and Metabolic Disorder

    PubMed Central

    Gowdra, Vasantharaju S.; Bansal, Punit; Nayak, Pawan G.; Manohara Reddy, Seethappa A.; Shenoy, Gautham G.; Chamallamudi, Mallikarjuna R.; Nampurath, Gopalan K.

    2014-01-01

    We synthesized twenty thiazolidin-4-one derivatives, which were then characterized by standard chromatographic and spectroscopic methods. From the in vitro glucose uptake assay, two compounds behaved as insulin sensitizers, where they enhanced glucose uptake in isolated rat diaphragm. In high-carbohydrate diet-induced insulin resistant mice, these two thiazolidin-4-ones attenuated hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and glucose intolerance. They raised the plasma leptin but did not reverse the diabetes-induced hypoadiponectinemia. Additionally, compound 3a reduced adiposity. The test compounds were also able to reverse the disturbed liver antioxidant milieu. To conclude, these two novel thiazolidin-4-ones modulated multiple mechanisms involved in metabolic disorders, reversing insulin resistance and thus preventing the development of type-2 diabetes. PMID:24995315

  15. Effect of Mn substitution on the transport properties of co-sputtered Fe{sub 3−x}Mn{sub x}Si epilayers

    SciTech Connect

    Tang, M.; Jin, C.; Bai, H. L.

    2014-11-07

    Motivated by the theoretical calculations that Fe{sub 3−x}Mn{sub x}Si can simultaneously exhibit a high spin polarization with a high Curie temperature to be applied in spintronic devices, and in order to further study the effect of Mn contents on the physical properties of Fe{sub 3−x}Mn{sub x}Si, we have investigated the effect of Mn substitution on the transport properties of epitaxial Fe{sub 3−x}Mn{sub x}Si (0≤x≤1) films systematically. The Fe{sub 3−x}Mn{sub x}Si films were epitaxially grown on MgO(001) plane with 45° rotation. The magnetization for various x shows enhanced irreversibility, implying the antiferromagnetic ordering induced by the substitution of Mn. A metal-semiconductor crossover was observed due to the enhanced disorders of interactions and the local lowering of symmetry induced by the substitution of Mn. The single-domain state in the Fe{sub 3−x}Mn{sub x}Si films leads to twofold symmetric curves of the anisotropic magnetoresistance and planar Hall resistivity.

  16. Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline TbMnO3

    NASA Astrophysics Data System (ADS)

    Chakraborty, Keka R.; Shukla, Rakesh; Kaushik, S. D.; Mukadam, M. D.; Siruguri, V.; Tyagi, A. K.; Yusuf, S. M.

    2015-10-01

    We report the magnetic properties, of nano-crystalline powders Tb1-xYxMnO3 (x = 0, 0.1, 0.2, 0.3 and 0.4), as perceived by neutron diffraction, and elucidate the effect of Tb site substitution on the magnetic structure of TbMnO3. All samples crystallized in the orthorhombic structure conforming to space group Pnma, and exhibited an incommensurate collinear antiferromagnetic ordering of the Mn ions below ˜40 K. Furthermore, at T ≤ 20 K, all these samples showed a change in magnetic structure (of Mn moments) to a spiral ordering down to 2 K, the lowest measured temperature. For the samples with x = 0, 0.1, and 0.2, a short-ranged two dimensional (2D) ordering of Tb moments was also observed at 2 K. However, for the other samples (x = 0.3 and 0.4), no magnetic ordering of Tb moments was found down to 2 K. So with Y substitution, a crossover from 2D ordering to a disordering of Tb moments was observed. The moments at the Mn site were found to be lower than the full Mn3+ (4μB) moment for all the samples below 40 K. The magnetic properties of all the samples studied by us in nano form are more pronounced than those of the reported single crystals of same compositions [V. Yu. Ivanov et al., JETP Lett. 91, 392-397 (2010)].

  17. Antiferromagnetic coupling across silicon regulated by tunneling currents

    NASA Astrophysics Data System (ADS)

    Gareev, R. R.; Schmid, M.; Vancea, J.; Back, C. H.; Schreiber, R.; Bürgler, D.; Schneider, C. M.; Stromberg, F.; Wende, H.

    2012-01-01

    We report on the enhancement of antiferromagnetic coupling in epitaxial Fe/Si/Fe structures by voltage-driven spin-polarized tunneling currents. Using the ballistic electron magnetic microscopy, we established that the hot-electron collector current reflects magnetization alignment and the magnetocurrent exceeds 200% at room temperature. The saturation magnetic field for the collector current corresponding to the parallel alignment of magnetizations rises up with the tunneling current, thus demonstrating stabilization of the antiparallel alignment and increasing antiferromagnetic coupling. We connect the enhancement of antiferromagnetic coupling with local dynamic spin torques mediated by spin-polarized tunneling electrons.

  18. Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems

    SciTech Connect

    Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.

    2012-08-15

    The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.

  19. Phenomenology of current-induced skyrmion motion in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Velkov, H.; Gomonay, O.; Beens, M.; Schwiete, G.; Brataas, A.; Sinova, J.; Duine, R. A.

    2016-07-01

    We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii–Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin–orbit coupling and spatially inhomogeneous magnetic textures in the equation for the Néel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.

  20. Giant magnetic effects and oscillations in antiferromagnetic Josephson weak links

    SciTech Connect

    Gorkov, L.; Kresin, Vladimir

    2001-04-01

    Josephson junctions with an antiferromagnetic metal as a link are described. The junction can be switched off by a relatively small magnetic field. The amplitude of the current oscillates as a function of the field.

  1. Magnetic field tuning of antiferromagnetic Yb3Pt4

    NASA Astrophysics Data System (ADS)

    Wu, L. S.; Janssen, Y.; Marques, C.; Bennett, M. C.; Kim, M. S.; Park, K.; Chi, Songxue; Lynn, J. W.; Lorusso, G.; Biasiol, G.; Aronson, M. C.

    2011-10-01

    We present measurements of the specific heat, magnetization, magnetocaloric effect, and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3Pt4, where highly localized Yb moments order at TN=2.4 K in zero field. The antiferromagnetic order was suppressed to TN→0 by applying a field of 1.85 T in the ab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN→0, the antiferromagnetic transition is increasingly influenced by a quantum critical end point, where TN ultimately vanishes in a first-order phase transition.

  2. Effect of quenched-in nonmagnetic impurities on phase transitions in a two-dimensional antiferromagnetic three-vertex Potts model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Murtazaev, A. K.; Babaev, A. B.; Ataeva, G. Ya.

    2015-07-01

    The effect of quenched-in nonmagnetic impurities on phase transitions in a two-dimensional diluted antiferromagnetic three-vertex Potts model on a triangular lattice has been investigated using the Monte Carlo method. The systems with linear dimensions L × L = N and L = 9-144 have been considered. It has been shown using the fourth-order Binder cumulant method that the introduction of a quenched-in disorder into a spin system described by the two-dimensional antiferromagnetic Potts model leads to a change from the first-order phase transition to the second-order phase transition.

  3. On the strong impact of doping in the triangular antiferromagnet CuCrO 2

    NASA Astrophysics Data System (ADS)

    Maignan, A.; Martin, C.; Frésard, R.; Eyert, V.; Guilmeau, E.; Hébert, S.; Poienar, M.; Pelloquin, D.

    2009-06-01

    Electronic band structure calculations using the augmented spherical wave method have been performed for CuCrO 2. For this antiferromagnetic ( TN=24 K) semiconductor crystallizing in the delafossite structure, it is found that the valence band maximum is mainly due to the t 2g orbitals of Cr 3+ and that spin polarization is predicted with 3 μ per Cr 3+. The structural characterizations of CuCr 1- xMg xO 2 reveal a very limited range of Mg 2+ substitution for Cr 3+ in this series. As soon as x=0.02, a maximum of 1% Cr ions are substituted by Mg site is measured in the sample. This result is also consistent with the detection of Mg spinel impurities from X-ray diffraction for x=0.01. This explains the saturation of the Mg 2+ effect upon the electrical resistivity and thermoelectric power observed for x>0.01. Such a very weak solubility limit could also be responsible for the discrepancies found in the literature. Furthermore, the measurements made under magnetic field (magnetic susceptibility, electrical resistivity and Seebeck coefficient) support that the Cr 4+ "holes", created by the Mg 2+substitution, in the matrix of high spin Cr 3+ ( S=3/2) are responsible for the transport properties of these compounds.

  4. Spectral function and photoemission spectra in antiferromagnetically correlated metals

    SciTech Connect

    Kampf, A.P.; Schrieffer, J.R. )

    1990-11-01

    Antiferromagnetic spin fluctuations in a two-dimensional metal, such as doped high-{Tc} superconductors, lead to a pseudogap in the electronic spectrum. In the spectral function weight is shifted from the single quasiparticle peak of the Fermi-liquid regime to the incoherent particle and hole backgrounds, which evolve into the upper and lower Mott-Hubbard bands of the antiferromagnetic insulator. Precursors of these split bands show up as shadow bands'' in angle-resolved photoemission spectra.

  5. From local to nonlocal Fermi liquid in doped antiferromagnets

    SciTech Connect

    Prelovsek, P. |; Jaklic, J.; Bedell, K.

    1999-07-01

    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. Results suggest that the corresponding self-energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations. {copyright} {ital 1999} {ital The American Physical Society}

  6. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism.

    PubMed

    Trugenberger, Carlo A

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension d(H)=4. The model has a geometric quantum phase transition with disorder parameter (d(H)-d(s)), where d(s) is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions. PMID:26764755

  7. Magnetic properties of a two-dimensional spin 1 easy axis Heisenberg antiferromagnet with competing interaction

    NASA Astrophysics Data System (ADS)

    Pires, Antonio; Sousa, Griffith

    2014-03-01

    The square lattice antiferromagnet with next and next nearest neighbor exchange interaction has been the subject of intense research in the last years. It can present the behavior of a frustrated system and can otherwise describe real materials. However, a large part of the work has been dedicated to spin 1/2 and done at zero temperature. A system with spin 1 is of interest because it can have a single ion anisotropy. To study these models simple approaches which yield an analytical description are very useful for practical purposes. Here we use a Modified Spin Wave theory, where corrections owing to spin wave interactions are taken into account self-consistently, to study the easy axis two dimensional spin 1 antiferromagnet with competing interaction and single ion anisotropy. We calculate the phase diagram at zero temperature, and several thermodynamic quantities such as the magnetization, the gap and the specific heat. Their relations with the temperature and anisotropy parameter are analyzed over the entire range of temperature. We have found a Neel and a collinear phase separated by a disordered phase. This disordered phase could be a candidate for a spin liquid. This work was partially supported by CNPQ, FAPEMIG and FAPEAM.

  8. Random Coulomb antiferromagnets: From diluted spin liquids to Euclidean random matrices

    NASA Astrophysics Data System (ADS)

    Rehn, J.; Sen, Arnab; Andreanov, A.; Damle, Kedar; Moessner, R.; Scardicchio, A.

    2015-08-01

    We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions which are frustrated on account of their long-range Coulomb form, i.e., J (r )˜-A lnr in d =2 and J (r )˜A /r in d =3 . This arises naturally as the T →0 limit of the emergent interactions between vacancy-induced degrees of freedom in a class of diluted Coulomb spin liquids (including the classical Heisenberg antiferromagnets in checkerboard, SCGO, and pyrochlore lattices) and presents a novel variant of a disordered long-range spin Hamiltonian. Using detailed analytical and numerical studies we establish that this model exhibits a very broad paramagnetic regime that extends to very large values of A in both d =2 and d =3 . In d =2 , using the lattice-Green-function-based finite-size regularization of the Coulomb potential (which corresponds naturally to the underlying low-temperature limit of the emergent interactions between orphans), we find evidence that freezing into a glassy state occurs only in the limit of strong coupling, A =∞ , while no such transition seems to exist in d =3 . We also demonstrate the presence and importance of screening for such a magnet. We analyze the spectrum of the Euclidean random matrices describing a Gaussian version of this problem and identify a corresponding quantum mechanical scattering problem.

  9. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  10. Room-temperature antiferromagnetic memory resistor.

    PubMed

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets. PMID:24464243

  11. Quantum Phase Transitions in Antiferromagnets and Superfluids

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2000-03-01

    A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)

  12. Room-temperature antiferromagnetic memory resistor

    NASA Astrophysics Data System (ADS)

    Marti, X.; Fina, I.; Frontera, C.; Liu, Jian; Wadley, P.; He, Q.; Paull, R. J.; Clarkson, J. D.; Kudrnovský, J.; Turek, I.; Kuneš, J.; Yi, D.; Chu, J.-H.; Nelson, C. T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, T.; Ramesh, R.

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  13. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation

    PubMed Central

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials. PMID:27099125

  14. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation.

    PubMed

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials. PMID:27099125

  15. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-04-01

    Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.

  16. Magnetostatic interactions in antiferromagnetically coupled patterned media.

    PubMed

    Deng, S; Aung, K O; Piramanayagam, S N; Sbiaa, R

    2011-03-01

    In an array of closely spaced magnetic islands as in patterned media, magnetostatic interactions play a major role in widening the switching field distribution and reducing the thermal stability. Patterned antiferromagnetically coupled (AFC) media provide interesting systems for studying the effect of magnetostatic interactions on the reversal of closely spaced AFC bits in an array, as AFC structure helps to reduce the remanent magnetization (M(r)), leading to reduced magnetostatic interactions. Here, we study the magnetic reversal of single domain-patterned AFC CoCrPt:oxide bilayer system with perpendicular magnetic anisotropy, by imaging the remanence state of the bits after the application of a magnetic field with magnetic force microscopy (MFM). The influence of magnetostatic fields from the neighboring bits on the switching field distribution (SFD) for an entity in a patterned media is studied by varying the stabilizing layer thickness of the AFC structure and bit spacing. We observe a distinct increase in stability and coercivity with an increase in stabilizing layer thickness for the 40 nm spaced bits. This demonstrates the effectiveness of the AFC structure for reducing magnetostatic interactions in patterned media, such that high thermal stability can be achieved by the reduced M(r), without writability issues. PMID:21449425

  17. Segregation of antiferromagnetism and high-temperature superconductivity in Ca1-xLaxFe2As2

    NASA Astrophysics Data System (ADS)

    Saha, Shanta R.; Drye, T.; Goh, S. K.; Klintberg, L. E.; Silver, J. M.; Grosche, F. M.; Sutherland, M.; Munsie, T. J. S.; Luke, G. M.; Pratt, D. K.; Lynn, J. W.; Paglione, J.

    2014-04-01

    We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca1-xLaxFe2As2. Using electrical transport, elastic neutron scattering, and resonant tunnel diode oscillator measurements on samples under both quasihydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) superconducting critical point. Our results indicate that the observed superconducting phase with a maximum transition temperature of Tc=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure-tuning through the AFM critical point. Thus, the superconducting phase appears to exist exclusively in juxtaposition to the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. Unlike the lower-Tc systems, in which superconductivity and magnetism usually coexist, the tendency for the highest-Tc systems to show noncoexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.

  18. Competition between ferromagnetism and antiferromagnetism in the rutile C r1 -xVxO2 system

    NASA Astrophysics Data System (ADS)

    Mustonen, Otto; Vasala, Sami; Chou, Ta-Lei; Chen, Jin-Ming; Karppinen, Maarit

    2016-01-01

    We present a comprehensive computational and experimental examination of the C r1 -xVxO2 (0 ≤x ≤0.5 ) system. The entire series crystallizes in the rutile structure, but the compounds exhibit significantly different magnetic properties depending on x . Lattice parameter a increases linearly with x , but the c parameter is slightly reduced due to vanadium-vanadium bonding. The V-for-Cr substitution creates C r3 +-V5 + pairs; this leads to competition between ferromagnetic (C r4 +-C r4 + ) and antiferromagnetic (C r3 +-C r3 + ) interactions such that the materials change from ferromagnetic to antiferromagnetic with increasing x . Weak ferromagnetic interactions arising from C r4 + are observed even in the seemingly antiferromagnetic phases with the exception of x =0.5 , which contains only C r3 + . Density functional theory calculations are performed, but they incorrectly predict the x =0.5 phase to be a half-metal. This is caused by an incorrect prediction of the oxidation states of chromium and vanadium.

  19. Synthesis and magnetic properties of centennialite: a new S = ½ Kagomé antiferromagnet and comparison with herbertsmithite and kapellasite

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Huang, Ya-Xi; Pan, Yuanming; Mi, Jin-Xiao

    2016-02-01

    Minerals of the atacamite group such as herbertsmithite and kapellasite have recently attracted enormous attention as the S = ½ Kagomé antiferromagnets for achieving the quantum spin liquid (QSL) state with diverse technological applications. Herein we report on the synthesis of the newly discovered mineral centennialite by using an unconventional "solid-state" reaction method at 463 K. Synthetic centennialite, Ca1.06Cu2.94Cl2.01(OH)5.99·0.73H2O, has been characterized by scanning electron microscopy, electron microprobe analyses, Fourier-transform infrared spectroscopy, thermogravimetric and differential scanning calorimetric analyses, single-crystal X-ray diffraction structure refinements, and magnetic susceptibility measurements. The crystal structure of centennialite is characterized by a perfect (threefold symmetry) Kagomé layer with <5 % substitution between Ca and Cu and therefore differs from those of herbertsmithite and kapellasite, in which 15-25 % mixing between similar Zn and Cu atoms dramatically affects the QSL state. Centennialite remains antiferromagnetic down to ~7 K with a moderate spin frustration (i.e., a Weiss temperature θ = -56 K and a spin frustration parameter f = 8), but exhibits a canted antiferromagnetic ordering with a ferromagnetic component at lower temperatures.

  20. Intrinsic Properties of Fe-Substituted L1(0) Magnets

    SciTech Connect

    Manchanda, P; Kumar, P; Kashyap, A; Lucis, MJ; Shield, JE; Mubarok, A; Goldstein, JI; Constantinides, S; Barmak, K; Lewis, LH; Sellmyer, DJ; Skomski, R

    2013-10-01

    First-principle supercell calculations are used to determine how 3d elemental additions, especially Fe additions, modify the magnetization, exchange and anisotropy of L1(0)-ordered ferromagnets. Calculations are performed using the VASP code and partially involve configurational averaging over site disorder. Three isostructural systems are investigated: Fe-Co-Pt, Mn-Al-Fe, and transition metal-doped Fe-Ni. In all three systems the iron strongly influences the magnetic properties of these compounds, but the specific effect depends on the host. In CoPt(Fe) iron enhances the magnetization, with subtle changes in the magnetic moments that depend on the distribution of the Fe and Co atoms. The addition of Fe to MnAl is detrimental to the magnetization, because it creates antiferromagnetic exchange interactions, but it enhances the magnetic anisotropy. The replacement of 50% of Mn by Fe in MnFeAl2 enhances the anisotropy from 1.77 to 2.5 MJ/m(3). Further, the substitution of light 3d elements such as Ti, V, Cr into L1(0)-ordered FeNi is shown to substantially reduce the magnetization.

  1. Antiferromagnet-induced perpendicular magnetic anisotropy in ferromagnetic/antiferromagnetic/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin

    2016-08-01

    This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.

  2. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  3. Superconducting phase diagram of itinerant antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rømer, A. T.; Eremin, I.; Hirschfeld, P. J.; Andersen, B. M.

    2016-05-01

    We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasiparticles of the antiferromagnetic metallic state. We find a dominant dx2-y2-wave solution in both electron- and hole-doped cases. In the quasi-spin-triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a p -wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor p -wave pairing compared to dx2-y2. The subleading pair instability is found to be in the g -wave channel, but complex admixtures of d and g are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are nonzero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations gives intraband and interband pairing gaps of dx2-y2 structure and similar gap magnitude. In conclusion, the dx2-y2 gap dominates for both hole and electron doping inside the spin-density-wave phase.

  4. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  5. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  6. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  7. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  8. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  9. Theoretical study on the anisotropic electronic structure of antiferromagnetic BaFe2As2 and Co-doped Ba(Fe 1 -xCox)2As2 as seen by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Derondeau, Gerald; Braun, Jürgen; Ebert, Hubert; Minár, Ján

    2016-04-01

    By means of one-step model calculations the strong in-plane anisotropy seen in angle-resolved photoemission of the well-known iron pnictide prototype compounds BaFe2As2 and Ba(Fe 1 -xCox)2As2 in their low-temperature antiferromagnetic phases is investigated. The fully relativistic calculations are based on the Korringa-Kohn-Rostoker-Green function approach combined with the coherent potential approximation alloy theory to account for the disorder induced by Co substitution on Fe sites in a reliable way. The results of the calculations can be compared directly to experimental spectra of detwinned single crystals. One finds very good agreement with experiment and can reveal all features of the electronic structure contributing to the in-plane anisotropy. In particular the local density approximation can capture most of the correlation effects for the investigated system without the need for more advanced techniques. In addition, the evolution of the anisotropy for increasing Co concentration x in Ba(Fe 1 -xCox)2As2 can be tracked almost continuously. The results are also used to discuss surface effects and it is possible to identify clear signatures to make conclusions about different types of surface termination.

  10. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    SciTech Connect

    Kenzelmann, M.; Cowley, R. A.; Buyers, W. J. L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl{sub 3}. Measurements over a wide range of wave-vector transfers along the chain confirm that above T{sub N} CsNiCl{sub 3} is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length {zeta} = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl{sub 3} for T {approx}< 12 K, possibly caused by multiply frustrated interchain interactions.

  11. Antiferromagnetic coupling across silicon regulated by tunneling currents

    NASA Astrophysics Data System (ADS)

    Gareev, Rashid; Schmid, Maximilian; Vancea, Johann; Back, Christian; Schreiber, Reinert; Buergler, Daniel; Stromberg, Frank; Wende, Heiko

    2012-02-01

    We present the room temperature enhancement of antiferromagnetic coupling in epitaxial Fe(3 nm)/Si(2.4 nm)/Fe(3 nm) structures by voltage-driven spin-polarized tunneling currents. Using the ballistic electron magnetic microscopy we established that the saturation field for the collector current corresponding to parallel alignment of magnetizations rises up with the tunneling current, thus demonstrating stabilization of the antiparallel alignment and increase of antiferromagnetic coupling. We connect the enhancement of antiferromagnetic coupling with local dynamic spin torques mediated by spin-polarized tunneling electrons. Finally, in the antiparallel state the spin-polarized majority (minority) electrons exert dynamic torques in the bottom (upper) iron layer and, thus, additionally stabilize magnetization alignment.

  12. Antiferromagnetic phase of the gapless semiconductor V3Al

    NASA Astrophysics Data System (ADS)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  13. Exchange-bias-like effect of an uncompensated antiferromagnet

    NASA Astrophysics Data System (ADS)

    Henne, Bastian; Ney, Verena; de Souza, Mariano; Ney, Andreas

    2016-04-01

    The exchange bias effect is usually defined as horizontal shift of the field-cooled magnetization loop when an antiferromagnet is directly coupled to a ferromagnet. Uncompensated spins at the interface between the two layers are believed to cause this phenomenon. The presence of such, on the other hand, would infer a vertical, i.e., a magnetization-like shift stemming from the antiferromagnet. Observations of this effect are sparse, especially in the absence of a ferromagnet. We present a model system based on extremely Co doped ZnO in which the uncompensated spins of antiferromagnetic Co-O-Co… configurations lead to this vertical shift and therefore to a field-resistant magnetization. A simple Stoner-Wohlfarth-like model based on configurations of different sizes is used to explain the occurrence of this exchange-bias-like shift and a narrow opening of the magnetization curves.

  14. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  15. Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets

    NASA Astrophysics Data System (ADS)

    Varma, C. M.; Zhu, Lijun; Schröder, Almut

    2015-10-01

    We reexamine the experimental results for the magnetic response function χ''(q ,E ,T ) for q around the antiferromagnetic vectors Q , in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based superconductor and on a heavy-fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic antiferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and temporal topological defects. The theory predicts a χ''(q ,E ,T ) (i) which is a separable function of (q -Q ) and of (E ,T ) , (ii) at criticality, the energy-dependent part is ∝tanh(E /2 T ) below a cutoff energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent z is ∞ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the T lnT dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.

  16. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    NASA Astrophysics Data System (ADS)

    Qin, Yanqi; Normand, Bruce; Sandvik, Anders; Meng, Zi Yang

    We investigate the quantum phase transition in an S=1/2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By means of quantum Monte Carlo simulations and finite-size scaling analyses, we get high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the ordered Neel phase. This transition breaks O(N) symmetry with N=3 in D=3+1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization, ms, and the Neel temperature, TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects close to the quantum critical point. These logarithmic scaling forms have not previously identified or verified by unbiased numerical methods and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3. Ref.: arXiv:1506.06073

  17. NMR Characterization of Sulphur Substitution Effects in the KxFe2−ySe2−zSz High-Tc Superconductor

    SciTech Connect

    Petrovic C.; Torchetti, D.A.; Imai, T.; Lei, H.C.

    2012-04-17

    We present a {sup 77}Se NMR study of the effect of S substitution in the high-T{sub c} superconductor K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} in a temperature range up to 250 K. We examine two S concentrations, with z = 0.8 (T{sub c} {approx} 26 K) and z = 1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K{sub x}Fe{sub 2}Se{sub 2} sample due to local disorder in the Se environment. Our Knight shift {sup 77}K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c} in 1/T{sub 1}T, as seen in FeSe.

  18. Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings

    NASA Astrophysics Data System (ADS)

    Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo

    2015-08-01

    We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.

  19. Thermal Generation of Spin Current in an Antiferromagnet.

    PubMed

    Seki, S; Ideue, T; Kubota, M; Kozuka, Y; Takagi, R; Nakamura, M; Kaneko, Y; Kawasaki, M; Tokura, Y

    2015-12-31

    The longitudinal spin Seebeck effect has been investigated for a uniaxial antiferromagnetic insulator Cr(2)O(3), characterized by a spin-flop transition under magnetic field along the c axis. We have found that a temperature gradient applied normal to the Cr(2)O(3)/Pt interface induces inverse spin Hall voltage of spin-current origin in Pt, whose magnitude turns out to be always proportional to magnetization in Cr(2)O(3). The possible contribution of the anomalous Nernst effect is confirmed to be negligibly small. The above results establish that an antiferromagnetic spin wave can be an effective carrier of spin current. PMID:26765011

  20. Quantification of quantum discord in a antiferromagnetic Heisenberg compound

    SciTech Connect

    Singh, H. Chakraborty, T. Mitra, C.

    2014-04-24

    An experimental quantification of concurrence and quantum discord from heat capacity (C{sub p}) measurement performed over a solid state system has been reported. In this work, thermodynamic measurements were performed on copper nitrate (CN, Cu(NO{sub 3}){sub 2}⋅2.5H{sub 2}O) single crystals which is an alternating antiferromagnet Heisenberg spin 1/2 system. CN being a weak dimerized antiferromagnet is an ideal system to investigate correlations between spins. The theoretical expressions were used to obtain concurrence and quantum discord curves as a function of temperature from heat capacity data of a real macroscopic system, CN.

  1. Ferro- and antiferro-magnetism in (Np, Pu)BC

    NASA Astrophysics Data System (ADS)

    Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  2. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Frustration and multicriticality in the antiferromagnetic spin-1 chain

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Shashi, Aditya; Nevidomskyy, Andriy H.

    2014-12-01

    The antiferromagnetic spin-1 chain has a venerable history and has been thought to be well understood. Here, we show that inclusion of both next-nearest-neighbor (α ) and biquadratic (β ) interactions results in a rich phase diagram with a multicritical point that has not been observed before. We study the problem using a combination of the density matrix renormalization group (DMRG), an analytic variational matrix product state wave function, and conformal field theory. For negative β <β* , we establish the existence of a spontaneously dimerized phase, separated from the Haldane phase by the critical line αc(β ) of second-order phase transitions. In the opposite regime, β >β* , the transition from the Haldane phase becomes first order into the next-nearest-neighbor (NNN) AKLT phase. Based on the field theoretical arguments and DMRG calculations, we find that these two regimes are separated by a multicritical point (β*,α*) of a different universality class, described by the level-4 SU(2) Wess-Zumino-Witten conformal theory. From the DMRG calculations, we estimate this multicritical point to lie in the range -0.2 <β*<-0.15 and 0.47 <α*<0.53 . We further find that the dimerized and NNN-AKLT phases are separated from each other by a line of first-order phase transitions that terminates at the multicritical point. We establish that transitions out of the Haldane phase into the dimer or NNN-AKLT phases are topological in nature and occur either with or without closing of the bulk gap, respectively. We also study short-range incommensurate-to-commensurate transitions in the resulting phase diagram. Inside the Haldane phase, we show the existence of two incommensurate crossovers: the Lifshitz transition and the disorder transition of the first kind, marking incommensurate correlations in momentum and real space, respectively. Notably, these crossover lines stretch across the entire (β ,α ) phase diagram, merging into a single incommensurate

  4. DMRG Study of the S >= 1 quantum Heisenberg Antiferromagnet on a Kagome-like lattice without loops

    NASA Astrophysics Data System (ADS)

    Lamberty, R. Zach; Changlani, Hitesh J.; Henley, Christopher L.

    2013-03-01

    The Kagome quantum Heisenberg antiferromagnet, for spin up to S = 1 and perhaps S = 3 / 2 , is a prime candidate to realize a quantum spin liquid or valence bond crystal state, but theoretical or computational studies for S > 1 / 2 are difficult and few. We consider instead the same interactions and S >= 1 on the Husimi Cactus, a graph of corner sharing triangles whose centers are vertices of a Bethe lattice, using a DMRG procedure tailored for tree graphs. Since both lattices are locally identical, properties of the Kagome antiferromagnet dominated by nearest-neighbor spin correlations should also be exhibited on the Cactus, whereas loop-dependent effects will be absent on the loopless Cactus. Our study focuses on the possible transition(s) that must occur with increasing S for the Cactus antiferromagnet. (It has a disordered valence bond state at S = 1 / 2 but a 3-sublattice coplanar ordered state in the large S limit). We also investigate the phase diagram of the S = 1 quantum XXZ model with on-site anisotropy, which we expect to have three-sublattice and valence-bond-crystal phases similar to the kagome case. This work is supported by the National Science Foundation through a Graduate Research Fellowship to R. Zach Lamberty, as well as grant DMR-

  5. NMR Investigation of an Itinerant Weakly Antiferromagnetism in Metallic Thiospinels CoCo 2S 4 and (Co 1- xCu x)Co 2S 4

    NASA Astrophysics Data System (ADS)

    Sugita, Hiroshi; Wada, Shinji; Yamada, Yoshihiro; Miyatani, Kazuo; Tanaka, Toshiro

    1998-04-01

    Nuclear magnetic resonance of 59Co in a metallic thiospinel compound CoCo2S4 was carried out at 75 MHz in a temperature range between 1.4 and 260 K to study the properties of the low frequency spin dynamics at the tetrahedral A and the octahedral B sites. From the combination of the 59Co Knight shift, spin-lattice relaxation rate and susceptibility measurements, it is concluded that the stoichiometric CoCo2S4 belongs to a group of weakly antiferromagnetic metals with the Néel temperature of ≃55 K. The magnetic properties of Cu substituted compounds (Co1-xCux)Co2S4 were also studied. The results exhibited that the light substitution lowers the Néel temperature and the heavy substitution leads the compound to a nearly Pauli paramagnetic metal.

  6. μ SR insight into the impurity problem in quantum kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gomilšek, M.; Klanjšek, M.; Pregelj, M.; Luetkens, H.; Li, Y.; Zhang, Q. M.; Zorko, A.

    2016-07-01

    Impurities, which are unavoidable in real materials, may play an important role in the magnetism of frustrated spin systems with a spin-liquid ground state. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu3(OH) 6SO4 (Zn-brochantite) by means of muon spin spectroscopy. We show that muons dominantly couple to impurities, originating from Cu-Zn intersite disorder, and that the impurity spins are highly correlated with the kagome spins, allowing us to probe the host kagome physics via a Kondo-like effect. The low-temperature plateau in the impurity susceptibility suggests that the kagome spin-liquid ground state is gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and a nontrivial field dependence.

  7. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Dun, Zhiling; Li, Xiang; Freitas, Rafael; Arrighi, Everton; Cruz, Clarina; Lee, Minseong; Choi, Eun Sang; Cao, Huibo; Silverstein, Harlyn; Wiebe, Chris; Chen, Jinguang; Zhou, Haidong

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests ``Order by Disorder''(ObD) physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R = Er, Yb, X = Sn, Ti, Ge) compounds through the enlarged XY type exchange interaction J+/- under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study [Wong et al., Phys. Rev. B 88, 144402, (2013)].

  8. Antiferromagnetic order in the pyrochlores R2Ge2O7 (R =Er ,Yb )

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Li, X.; Freitas, R. S.; Arrighi, E.; Dela Cruz, C. R.; Lee, M.; Choi, E. S.; Cao, H. B.; Silverstein, H. J.; Wiebe, C. R.; Cheng, J. G.; Zhou, H. D.

    2015-10-01

    Elastic neutron scattering, ac susceptibility, and specific heat experiments on the pyrochlores Er2Ge2O7 and Yb2Ge2O7 show that both systems are antiferromagnetically ordered in the Γ5 manifold. The ground state is a ψ3 phase for the Er sample and a ψ2 or ψ3 phase for the Yb sample, which suggests "Order by Disorder" physics. Furthermore, we unify the various magnetic ground states of all known R2X2O7 (R =Er , Yb; X =Sn , Ti, Ge) compounds through the enlarged X Y -type exchange interaction J± under chemical pressure. The mechanism for this evolution is discussed in terms of the phase diagram proposed in the theoretical study by Wong et al. [Phys. Rev. B 88, 144402 (2013), 10.1103/PhysRevB.88.144402].

  9. Anomalous Curie Response of Impurities in Quantum-Critical Spin-1/2 Heisenberg Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Höglund, Kaj H.; Sandvik, Anders W.

    2007-07-01

    We consider a magnetic impurity in two different S=1/2 Heisenberg bilayer antiferromagnets at their respective critical interlayer couplings separating Néel and disordered ground states. We calculate the impurity susceptibility using a quantum Monte Carlo method. With intralayer couplings in only one of the layers (Kondo lattice), we observe an anomalous Curie constant C*, as predicted on the basis of field-theoretical work [S. Sachdev , Science 286, 2479 (1999)SCIEAS0036-807510.1126/science.286.5449.2479]. The value C*=0.262±0.002 is larger than the normal Curie constant C=S(S+1)/3. Our low-temperature results for a symmetric bilayer are consistent with a universal C*.

  10. On the ground state of antiferromagnets at zero temperature

    NASA Astrophysics Data System (ADS)

    Mayer, I.; Angelov, S. A.

    1984-02-01

    The wave function describing a perfect antiferromagnetic ordering of spins at 0 K (the singlet projection of the Néel function) was proved to be not an eigenfunction of the exchange Hamiltonian: the long-range order is reduced as to permit a higher correlation between the nearest-neighbour spins.

  11. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  12. Antiferromagnetism in Pr3In: Singlet/triplet physics withfrustration

    SciTech Connect

    Christianson, A.D.; Lawrence, J.M.; Zarestky, J.L.; Suzuki, H.; Thompson, J.D.; Hundley, M.F.; Sarrao, J.L.; Booth, C.H.; Antonio, D.; Cornelius, A.L.

    2004-11-18

    We present neutron diffraction, magnetic susceptibility and specific heat data for a single-crystal sample of the cubic (Cu{sub 3}Au structure) compound Pr{sub 3}In. This compound is believed to have a singlet ({Lambda}{sub 1}) groundstate and a low-lying triplet ({Lambda}{sub 4}) excited state. In addition, nearest-neighbor antiferromagnetic interactions are frustrated in this structure. Antiferromagnetic order occurs below T{sub N} = 12K with propagation vector (0, 0, 0.5 {center_dot}{delta}) where {delta} {approx} 1/12. The neutron diffraction results can be approximated with the following model: ferromagnetic sheets from each of the three Pr sites alternate in sign along the propagation direction with a twelve-unit-cell square-wave modulation. The three moments of the unit cell of 1 {micro}{sub B} magnitude are aligned so as to sum to zero as expected for nearest-neighbor antiferromagnetic interactions on a triangle. The magnetic susceptibility indicates that in addition to the antiferromagnetic transition at 12K, there is a transition near 70K below which there is a small (0.005 {micro}{sub B}) ferromagnetic moment. There is considerable field and sample dependence to these transitions. The specific heat data show almost no anomaly at T{sub N} = 12K. This may be a consequence of the induced moment in the {Lambda}{sub 1} singlet, but may also be a sample-dependent effect.

  13. Proximity-induced magnetism in transition-metal substituted graphene

    SciTech Connect

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.

  14. Understanding Magnetic Trimer Interactions in (Cr,Mn)-Substituted Graphene

    NASA Astrophysics Data System (ADS)

    Haraldsen, Jason T.; Crook, Charles B.; Houchins, Gregory; Zhu, Jian-Xin; Constantin, Costel; Balatsky, Alexander V.

    We investigate the magnetic interactions within a graphene superlattice produced by three directly substituted transition-metal atoms (specifically chromium and manganese). Using a first principles approach, we calculate the electronic and magnetic properties for this system assuming an equilateral trimer configuration with varying atomic separations. Through an examination of the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, we find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, we use magnetization mapping to show that the substituted atoms induce an overall magnetic moment in the graphene lattice, which may help guide the discussion on spintronic graphene. JTH, CBC, GH, and AVB acknowledge support from the Institute for Materials Science via the United States Basic Energy Sciences (E304).

  15. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  16. Competition between antiferromagnetic order and spin-liquid behavior in the two-dimensional periodic Anderson model at half filling

    SciTech Connect

    Vekic, M.; Cannon, J.W.; Scalapino, D.J.; Scalettar, R.T.; Sugar, R.L. Physics Department, Centenary College, 2911 Centenary Boulevard, Shreveport, Louisiana 71104 Department of Physics, University of California, Santa Barbara, California 93106 )

    1995-03-20

    We study the two-dimensional periodic Anderson model at half filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.

  17. Managing Substitute Teaching.

    ERIC Educational Resources Information Center

    Jones, Kevin R.

    1999-01-01

    This news brief presents information on managing substitute teaching. The information is based on issues discussed at a summit meeting which included public school administrators and personnel directors from around the nation. The main topics of concern focused around four core components related to the management of substitute teaching:…

  18. Antiferromagnetism and Kondo screening on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Fu; Hong-Shuai, Tao; Guo, Wen-Xiang; Liu, Wu-Ming

    2015-05-01

    Magnetic adatoms in the honeycomb lattice have received tremendous attention due to the interplay between Ruderman-Kittel-Kasuya-Yosida interaction and Kondo coupling leading to very rich physics. Here we study the competition between the antiferromagnetism and Kondo screening of local moments by the conduction electrons on the honeycomb lattice using the determinant quantum Monte Carlo method. While changing the interband hybridization V, we systematically investigate the antiferromagnetic-order state and the Kondo singlet state transition, which is characterized by the behavior of the local moment, antiferromagnetic structure factor, and the short range spin-spin correlation. The evolution of the single particle spectrum are also calculated as a function of hybridization V, we find that the system presents a small gap in the antiferromagnetic-order region and a large gap in the Kondo singlet region in the Fermi level. We also find that the localized and itinerant electrons coupling leads to the midgap states in the conduction band in the Fermi level at very small V. Moreover, the formation of antiferromagnetic order and Kondo singlet are studied as on-site interaction U or temperature T increasing, we have derived the phase diagrams at on-site interaction U (or temperature T) and hybridization V plane. Project supported by the National Key Basic Research Special Foundation of China (Grants Nos. 2011CB921502 and 2012CB821305), the National Natural Science Foundation of China (Grants Nos. 61227902, 61378017, and 11434015), the State Key Laboratory for Quantum Optics and Quantum Optical Devices, China (Grant No. KF201403).

  19. Sequential write-read operations in FeRh antiferromagnetic memory

    NASA Astrophysics Data System (ADS)

    Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo

    2015-09-01

    B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the Néel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-orderd FeRh thin films by a magnetic field and electric current only, which open a realistic pathway towards operational antiferromagnetic memory devices.

  20. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing

    PubMed Central

    Higuchi, Takuya; Kuwata-Gonokami, Makoto

    2016-01-01

    The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337

  1. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing.

    PubMed

    Higuchi, Takuya; Kuwata-Gonokami, Makoto

    2016-01-01

    The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337

  2. Nonmagnetic Impurity Effect on Magnetic Phase Transitions in an Isosceles Triangular Lattice Ising Chain Antiferromagnet CoNb2O6

    NASA Astrophysics Data System (ADS)

    Nakajima, Taro; Mitsuda, Setsuo; Okano, Hidekazu; Inomoto, Yu; Kobayashi, Satoru; Prokes, Karel; Gerischer, Sebastian; Smeibidl, Peter

    2014-09-01

    We have investigated nonmagnetic impurity effect on the H||c-T magnetic phase diagram of an isosceles triangular lattice Ising antiferromagnet CoNb2O6, by means of neutron diffraction measurements using single crystals of Co1-xMgxNb2O6 with x = 0, 0.004, and 0.008. We have found that the commensurate antiferromagnetic (AF) ground state disappears by substituting only 0.8% of nonmagnetic Mg2+ ions for the magnetic Co2+ ions. On the other hand, the phase boundaries between the other phases, namely the field-induced ferrimagnetic phase, thermally-induced incommensurate (IC) magnetic phase and the paramagnetic phase, are hardly affected by the small amount of nonmagnetic substitution. We have also performed Monte Carlo simulations for the isosceles triangular lattice Ising model to understand the extremely high sensitivity to the nonmagnetic substitution. Consequently, we have revealed that the disappearance of the AF phase is not because the small amount of nonmagnetic impurities destabilize the AF phase, but because the phase transition from the IC phase to the AF phase is strongly suppressed by a pinning effect due to the impurities.

  3. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  4. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  5. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  6. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  7. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  8. Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7.

    PubMed

    Gaultois, Michael W; Barton, Phillip T; Birkel, Christina S; Misch, Lauren M; Rodriguez, Efrain E; Stucky, Galen D; Seshadri, Ram

    2013-05-01

    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron x-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K, as seen both in the susceptibility and in the specific heat, and there is a corresponding change in the electrical resistivity. The onset of a second antiferromagnetic ordering transition seen below 5 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd-site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi(3+) ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested. PMID:23587787

  9. Sugar substitutes during pregnancy

    PubMed Central

    Pope, Eliza; Koren, Gideon; Bozzo, Pina

    2014-01-01

    Abstract Question I have a pregnant patient who regularly consumes sugar substitutes and she asked me if continuing their use would affect her pregnancy or child. What should I tell her, and are there certain options that are better for use during pregnancy? Answer Although more research is required to fully determine the effects of in utero exposure to sugar substitutes, the available data do not suggest adverse effects in pregnancy. However, it is recommended that sugar substitutes be consumed in moderate amounts, adhering to the acceptable daily intake standards set by regulatory agencies. PMID:25392440

  10. Tuning of magnetic ordering by Y substitution onto Tb site in the nanocrystalline TbMnO{sub 3}

    SciTech Connect

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Shukla, Rakesh; Tyagi, A. K.; Kaushik, S. D.; Siruguri, V.

    2015-10-28

    We report the magnetic properties, of nano-crystalline powders Tb{sub 1−x}Y{sub x}MnO{sub 3} (x = 0, 0.1, 0.2, 0.3 and 0.4), as perceived by neutron diffraction, and elucidate the effect of Tb site substitution on the magnetic structure of TbMnO{sub 3}. All samples crystallized in the orthorhombic structure conforming to space group Pnma, and exhibited an incommensurate collinear antiferromagnetic ordering of the Mn ions below ∼40 K. Furthermore, at T ≤ 20 K, all these samples showed a change in magnetic structure (of Mn moments) to a spiral ordering down to 2 K, the lowest measured temperature. For the samples with x = 0, 0.1, and 0.2, a short-ranged two dimensional (2D) ordering of Tb moments was also observed at 2 K. However, for the other samples (x = 0.3 and 0.4), no magnetic ordering of Tb moments was found down to 2 K. So with Y substitution, a crossover from 2D ordering to a disordering of Tb moments was observed. The moments at the Mn site were found to be lower than the full Mn{sup 3+} (4μ{sub B}) moment for all the samples below 40 K. The magnetic properties of all the samples studied by us in nano form are more pronounced than those of the reported single crystals of same compositions [V. Yu. Ivanov et al., JETP Lett. 91, 392–397 (2010)].

  11. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2

    DOE PAGESBeta

    Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2more » at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.« less

  12. Ferro- and antiferro-magnetism in (Np, Pu)BC

    SciTech Connect

    Klimczuk, T.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Wastin, F.; Falmbigl, M.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of (Np,Pu)BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T{sub N} = 44 K, whereas ferromagnetic ordering was found for NpBC below T{sub C} = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  13. Room-temperature antiferromagnetism in CuMnAs

    NASA Astrophysics Data System (ADS)

    Máca, F.; Mašek, J.; Stelmakhovych, O.; Martí, X.; Reichlová, H.; Uhlířová, K.; Beran, P.; Wadley, P.; Novák, V.; Jungwirth, T.

    2012-04-01

    We report on an experimental and theoretical study of CuMn-V compounds. In agreement with previous works we find low-temperature antiferromagnetism with Néel temperature of 50 K in the cubic half-Heusler CuMnSb. We demonstrate that the orthorhombic CuMnAs is a room-temperature antiferromagnet. Our results are based on X-ray diffraction, magnetization, transport, and differential thermal analysis measurements, and on density-functional theory calculations of the magnetic structure of CuMn-V compounds. In the discussion part of the paper we make a prediction, based on our density-functional theory calculations, that the electronic structure of CuMn-V compounds makes a transition from a semimetal to a semiconductor upon introducing the lighter group-V elements.

  14. Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices

    SciTech Connect

    Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.

    2007-08-01

    In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.

  15. Resonating Valence Bond states for low dimensional S=1 antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai

    2014-03-01

    We study S = 1 spin liquid states in low dimensions. We show that the resonating-valence-bond (RVB) picture of S = 1 / 2 spin liquid state can be generalized to S = 1 case. For S = 1 system, a many-body singlet (with even site number) can be decomposed into superposition of products of two-body singlets. In other words, the product states of two-body singlets, called the singlet pair states (SPSs), are over complete to span the Hilbert space of many-body singlets. Furthermore, we generalized fermionic representation and the corresponding mean field theory and Gutzwiller projected stats to S = 1 models. We applied our theory to study 1D anti-ferromagnetic bilinear-biquadratic model and show that both the ground states (including the phase transition point) and the excited states can be understood excellently well within the framework. Our method can be applied to 2D S = 1 antiferromagnets.

  16. Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice

    PubMed Central

    Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming

    2014-01-01

    Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369

  17. Observation of superficial antiferromagnetism in Co3O4 polycrystals

    NASA Astrophysics Data System (ADS)

    von Dreifus, Driele; Chaves Pereira, Ernesto; Aparecido de Oliveira, Adilson Jesus

    2015-11-01

    We report on a systematic study about the magnetic properties of Co3O4 polycrystals with large size distribution (100-1200 nm) and the crystallite size of 68(4) nm on average. An antiferromagnetic transition at T N = 32 K, extensively reported in the literature for Co3O4, was observed. Furthermore, another transition at T t = 14 K, which is suppressed for H ≥ 35 kOe, was also identified. An increase in the magnetic susceptibility, as well as irreversibility between zero field cooled and field cooled data below T t were observed. The non-detection of a coercive field below T t, and the fact that T t and T N are independent from the driven frequencies in ac magnetic measurements as a function of temperature, confirm that both peaks are associated to antiferromagnetic transitions.

  18. Dilution effects in spin 7/2 systems. The case of the antiferromagnet GdRhIn5

    NASA Astrophysics Data System (ADS)

    Lora-Serrano, R.; Garcia, D. J.; Betancourth, D.; Amaral, R. P.; Camilo, N. S.; Estévez-Rams, E.; Ortellado G. Z., L. A.; Pagliuso, P. G.

    2016-05-01

    We report the structural and magnetic characterization of La-substituted Gd1-x Lax RhIn5(x ≤ 0.50) antiferromagnetic (AFM) compounds. The magnetic responses of pure GdRhIn5 are well described by a S=7/2 Heisenberg model. When Gd3+ ions are substituted by La3+, the maximum of the susceptibility and the inflection point of the magnetic specific heat are systematically shifted to lower temperatures accompanied by a broadening of the transition. The data is qualitatively explained by a phenomenological model which incorporates a distribution of magnetic regions with different transition temperatures (TN). The universal behaviour of the low temperature specific heat is found for La (vacancies) concentrations below x=0.40 which is consistent with spin wave excitations. For x=0.5 this universal behaviour is lost. The sharp second order transition of GdRhIn5 is destroyed, as seen in the specific heat data, contrary to what is expected for a Heisenberg model. The results are discussed in the context of the magnetic behaviour observed for the La-substituted (Ce,Tb,Nd)RhIn5 compounds.

  19. Singular field response and singular screening of vacancies in antiferromagnets.

    PubMed

    Wollny, Alexander; Andrade, Eric C; Vojta, Matthias

    2012-10-26

    For isolated vacancies in ordered local-moment antiferromagnets we show that the magnetic-field linear-response limit is generically singular: The magnetic moment associated with a vacancy in zero field is different from that in a finite field h in the limit h→0(+). The origin is a universal and singular screening cloud, which moreover leads to perfect screening as h→0(+) for magnets which display spin-flop bulk states in the weak-field limit. PMID:23215218

  20. Drone-fermions in the two-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Krivenko, S.; Khaliullin, G.

    1995-02-01

    Two different representations of spins - via the conventional fermions, or via the Mattis drone-fermions - are compared considering the planar antiferromagnetic Heisenberg model as an example. Mean-field spin correlation functions calculated for the uniform and flux RVB states show that the drone-fermion approach has an advantage in giving the lower energy and the enhanced AF correlations, because of the absence of unphysical spinless states in this representation.

  1. Quantum Optomechanics of a Bose-Einstein Antiferromagnet

    SciTech Connect

    Jing, H.; Goldbaum, D. S.; Buchmann, L.; Meystre, P.

    2011-06-03

    We investigate the cavity optomechanical properties of an antiferromagnetic Bose-Einstein condensate, where the role of the mechanical element is played by spin-wave excitations. We show how this system can be described by a single rotor that can be prepared deep in the quantum regime under realizable experimental conditions. This system provides a bottom-up realization of dispersive rotational optomechanics, and opens the door to the direct observation of quantum spin fluctuations.

  2. Substitution of anticonvulsant drugs

    PubMed Central

    Steinhoff, Bernhard J; Runge, Uwe; Witte, Otto W; Stefan, Hermann; Hufnagel, Andreas; Mayer, Thomas; Krämer, Günter

    2009-01-01

    Changing from branded drugs to generic alternatives, or between different generic formulations, is common practice aiming at reducing health care costs. It has been suggested that antiepileptic drugs (AEDs) should be exempt from substitution because of the potential negative consequences of adverse events and breakthrough seizures. Controlled data are lacking on the risk of substitution. However, retrospective data from large medical claims databases suggest that switching might be associated with increased use of AED and non-AED medications, and health care resources (including hospitalization). In addition, some anecdotal evidence from patients and health care providers’ surveys suggest a potentially negative impact of substitution. Well-controlled data are needed to assess the real risk associated with substitution, allowing health care professionals involved in the care of patients with epilepsy to make informed decisions. This paper reviews currently available literature, based on which the authors suggest that the decision to substitute should be made on an individual basis by the physician and an informed patient. Unendorsed or undisclosed substitution at the pharmacy level should be discouraged. PMID:19707254

  3. Novel current driven domain wall dynamics in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun

    It was reported that the domain walls in nanowires can be moved efficiently by electrical currents by a new type of torque, chiral spin torque (CST), the combination of spin Hall effect and Dzyaloshinskii-Moriya interaction. Recently we domonstrated that ns-long current pulses can move domain walls at extraordinarily high speeds (up to ~750 m s -1) in synthetic antiferromagnetic (SAF) nanowires that have almost zero net magnetization, which is much more efficient compared with similar nanowires in which the sub-layers are coupled ferromagnetically (SF). This high speed is found to be due to a new type of powerful torque, exchange coupling torque (ECT) that is directly proportional to the strength of the antiferromagnetic exchange coupling between the two sub-layers, showing that the ECT is effective only in SAF not in SF. Moreover, it is found that the dependence of the wall velocity on the magnetic field applied along the nanowire is non-monotonic. Most recently we predict an Walker-breakdown-like domain wall precession in SAF nanowires in the presence of in-plane field based on the model we develop, and this extraordinary precession has been observed. In this talk I will discuss this in details by showing a unique characteristics of SAF sublayers' DW boost-and-drag mechanism along with CST and ECT. Novel current driven domain wall dynamics in synthetic antiferromagnets.

  4. Revealing the properties of Mn2Au for antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Barthem, V. M. T. S.; Colin, C. V.; Mayaffre, H.; Julien, M.-H.; Givord, D.

    2013-12-01

    The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 μB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far.

  5. Revealing the properties of Mn2Au for antiferromagnetic spintronics.

    PubMed

    Barthem, V M T S; Colin, C V; Mayaffre, H; Julien, M-H; Givord, D

    2013-01-01

    The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 μB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far. PMID:24327004

  6. Electric-field induced ferromagnetic phase in paraelectric antiferromagnets

    NASA Astrophysics Data System (ADS)

    Glinchuk, Maya D.; Eliseev, Eugene A.; Gu, Yijia; Chen, Long-Qing; Gopalan, Venkatraman; Morozovska, Anna N.

    2014-01-01

    The phase diagram of a quantum paraelectric antiferromagnet EuTiO3 under an external electric field is calculated using Landau-Ginzburg-Devonshire theory. The application of an electric field E in the absence of strain leads to the appearance of a ferromagnetic (FM) phase due to the magnetoelectric (ME) coupling. At an electric field greater than a critical field, Ecr, the antiferromagnetic (AFM) phase disappears for all considered temperatures, and FM becomes the only stable magnetic phase. The calculated value of the critical field is close to the values reported recently by Ryan et al. [Nat. Commun. 4, 1334 (2013), 10.1038/ncomms2329] for EuTiO3 film under a compressive strain. The FM phase can also be induced by an E-field in other paraelectric antiferromagnetic oxides with a positive AFM-type ME coupling coefficient and a negative FM-type ME coupling coefficient. The results show the possibility of controlling multiferroicity, including the FM and AFM phases, with help of an electric field application.

  7. Electrical manipulation of a ferromagnet by an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.

    Several recent studies of antiferromagnetic (AFM) spintronics have focused on transmission and detection of spin-currents in AFMs. Efficient spin transmission through AFMs was inferred from experiments in FM/AFM/NM (normal metal) structures. Measurements in FM/AFM bilayers have demonstrated that a metallic AFM can also act as an efficient ISHE detector of the spin-current, with spin-Hall angles comparable to heavy NMs. Here we demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. We use an all-electrical excitation and detection technique of ferromagnetic resonance in a NiFe/IrMn bilayer. We observe antidamping-like spin torque acting on the NiFe generated by the in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to strong spin-orbit coupling, the AFM order in IrMn governs the observed phenomenon.

  8. Spin pumping and spin-transfer torques in antiferromagnet

    NASA Astrophysics Data System (ADS)

    Niu, Qian

    2015-03-01

    Spin pumping and spin-transfer torques are key elements of coupled dynamics of magnetization and conduction electron spin, which have been widely studied in various ferromagnetic materials. Recent progress in spintronics suggests that a spin current can significantly affects the behavior of an antiferromagnetic material, and the electron motion become adiabatic when the staggered field varies sufficiently slowly. However, pumping from antiferromagnets and its relation to current-induced torques is yet unclear. In a recent study, we have solved this puzzle analytically by calculating how electrons scatter off a normal metal-antiferromagnetic interface. The pumped spin and staggered spin currents are derived in terms of the staggered field, the magnetization, and their rates of change. We find that for both compensated and uncompensated interfaces, spin pumping is of a similar magnitude as in ferromagnets; the direction of spin pumping is controlled by the polarization of the driving microwave. Via the Onsager reciprocity relations, the current-induced torques are also derived, the salient feature of which is illustrated by a terahertz nano-oscillator. In collaboration with Ran Cheng, Jiang Xiao, and A. Brataas.

  9. Coexistence of superconductivity, ferromagnetism and antiferromagnetism in iron pnictides

    NASA Astrophysics Data System (ADS)

    Gill, Raminder

    2016-05-01

    Coexistence of Superconductivity and magnetism have always been the fascinating area of interest for condensed-matter physicists. A variety of systems, such as cuprates, heavy fermions, and iron pnictides showed superconductivity in a narrow region near the border to antiferromagnetism (AFM)as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetism (FM) has seen in URhGe, UGe2, ErRh4B4 and many compounds. Here, we present a third situation where superconductivity coexists with FM and AFM. The recent experimental finding of interplay of ferromagnetism,antiferromagnetism and superconductivity in EuFe2(As1-xPx)2 impressed us to discuss this problem in detail. Ironpnictides are high Tc magnetic superconductors and could be very useful in finding many new superconductorswith high Tc probably near to room temperature. In this paper, we have theoretically calculated the superconducting order parameter of EuFe2(As1-xPx)2 where magnetic ordering is due to Eu+ moments and superconductivity is due to Fe3+ moments. The Eu ions order antiferromagnetically for x≤0.13, while a crossover is observed for x≥0.22 whereupon the Eu ions order ferromagnetically.

  10. Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Chung, Sung Gong

    2012-11-01

    A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ and magnetic field B. To demonstrate its accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first seven lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2- and 4-spin correlation functions are calculated, and the results are compared with those obtained by bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ space is determined by Roomany--Wyld renormalization group (RG) finite size scaling. The results are in good agreement with those obtained by the level-spectroscopy method.

  11. Ca2O3Fe2.6S2: an antiferromagnetic Mott insulator at proximity to bad metal

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Wu, Xiaozhi; Li, Dandan; Jin, Shifeng; Chen, Xiao; Zhang, Tao; Lin, Zhiping; Shen, Shijie; Yuan, Duanduan; Chen, Xiaolong

    2016-04-01

    We report here the first layered iron oxychalcogenide Ca2O3Fe2.6S2 that contains both planar [Ca2FeO2]2+ and [Fe2OS2]2- layers with the shortest Fe-Fe bond length. This compound is a narrow band gap (~0.073 eV) Mott insulator. The observed antiferromagnetic (AFM) transition at 77 K is due to the ordered Fe vacancies, which can be suppressed by partial substitution of Se for S. We show that the vacancy-free phase Ca2O3Fe3S2 may become a metal with moderate electron correlation comparable to the parent compound LaOFeAs of corresponding superconductors. Our results imply that iron oxychalcogenide can be converted from an AFM Mott insulator into a bad metal like iron pnictides through Fe-Fe bond length shrinking.

  12. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  13. Spin-orbit torques in ferromagnets and antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gao, Huawei

    Spintronics is a sub-field of condensed matter physics which explores the physics of electrons involving both their charge and spin, with an emphasis on the active manipulation of the spin degree of freedom in solid state systems. In spin-based memory and storage devices, information ( 0 or 1) is stored based on the magnetization orientation in ferromagnets or layered magnetic structures. We study the utilization of spin-orbit torques in ferromagnets and antiferromagnets as an effective ways of magnetization switching in these nonvolatile memory devices. The method we use is linear response theory and numerical simulation. Our results show that the spin-orbit torques are effective approaches of manipulating magnetization in both ferromagnets and antiferromagnets, which can be used in the future memory device applications. In ferromagnets, we start from a simple two dimensional electron gas ferromagnetic model with Rashba spin-orbit coupling to study the different components of spin-orbit torques and the parameter dependence. The results show the existence of these torques. Then, we study these torques in a realistic material, GaMnAs, with a complex band structure. We confirm that these torques have the same parameter dependence in GaMnAs and the simple two dimensional model. The complex band structure changes the magnitudes of the effective fields and shows more features in the results which unveils the competition between band structure and spin-orbit coupling. In antiferromagnets, by studying the spin-orbit torques in the two dimensional antiferromagneic model and the realistic material Mn2Au, we predict that a lateral electric current in antiferromagnets can induce non-equilibrium Neel-order fields, i.e., fields whose sign alternates between the spin sub lattices, which can trigger ultrafast spin-axis reorientation. Due to the two dimensional nature, the spin-orbit torques can have large magnitudes if we tune the Fermi energy to a certain level. We then extend

  14. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

    DOE PAGESBeta

    B. A. Frandsen; Liu, L.; Cheung, S. C.; Guguchia, Z.; Khasanov, R.; Morenzoni, E.; Munsie, T. J.S.; Hallas, A. M.; Wilson, M. N.; Cai, Y.; et al

    2016-08-17

    RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phasemore » separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.« less

  15. Local moments and suppression of antiferromagnetism in correlated Zr4Fe4Si7

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Pezzoli, M. E.; Garlea, V. O.; Smith, G. J.; Grose, J. E.; Misuraca, J. C.; Kotliar, G.; Aronson, M. C.

    2013-08-01

    We report magnetic, transport, and neutron diffraction measurements as well as a doping study of the V-phase compound Zr4Fe4Si7. This compound exhibits collinear antiferromagnetic order below TN=98±1 K with a staggered moment of 0.57(3)μB/Fe as T→ 0. The magnetic order can be quenched with Co substitution to the Fe site, but even then a 1.5μB/Fe paramagnetic moment remains. The resistivity and heat capacity of Zr4Fe4Si7 are Fermi-liquid-like below 16 and 7 K, respectively, and reveal correlations on the scale of those observed in superconducting Fe pnictides and chalcogenides. Electronic structure calculations overestimate the ordered moment, suggesting the importance of dynamical effects. The existence of magnetic order, electronic correlations, and spin fluctuations make Zr4Fe4Si7 distinct from the majority of Fe-Si compounds, fostering comparison instead with the parent compounds of Fe-based superconductors.

  16. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

    PubMed Central

    Frandsen, Benjamin A.; Liu, Lian; Cheung, Sky C.; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio; Munsie, Timothy J. S.; Hallas, Alannah M.; Wilson, Murray N.; Cai, Yipeng; Luke, Graeme M.; Chen, Bijuan; Li, Wenmin; Jin, Changqing; Ding, Cui; Guo, Shengli; Ning, Fanlong; Ito, Takashi U.; Higemoto, Wataru; Billinge, Simon J. L.; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J.

    2016-01-01

    RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition. PMID:27531192

  17. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning.

    PubMed

    Frandsen, Benjamin A; Liu, Lian; Cheung, Sky C; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio; Munsie, Timothy J S; Hallas, Alannah M; Wilson, Murray N; Cai, Yipeng; Luke, Graeme M; Chen, Bijuan; Li, Wenmin; Jin, Changqing; Ding, Cui; Guo, Shengli; Ning, Fanlong; Ito, Takashi U; Higemoto, Wataru; Billinge, Simon J L; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J

    2016-01-01

    RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition. PMID:27531192

  18. NMR characterization of sulphur substitution effects in the KxFe2-ySe2-xSz high-Tc superconductor

    SciTech Connect

    Torchetti, D. A.; Imai, T.; Lei, H. C.; Petrovic, C.

    2012-04-17

    We present a 77Se NMR study of the effect of S substitution in the high-Tc superconductor KxFe2-ySe2-zSz in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the KxFe2Se2 sample due to local disorder in the Se environment. Our Knight shift 77K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near Tc in 1/T1T, as seen in FeSe.

  19. NMR characterization of sulphur substitution effects in the KxFe2-ySe2-zSz high-Tc superconductor

    SciTech Connect

    Torchetti, D. A.; Imai, T.; Lei, H. C.; Petrovic, C.

    2012-04-17

    We present a⁷⁷ Se NMR study of the effect of S substitution in the high-Tc superconductor KxFe2-ySe2-zSz in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the KxFe₂Se₂ sample due to local disorder in the Se environment. Our Knight shift ⁷⁷K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near Tc in 1/T₁T, as seen in FeSe.

  20. NaCaCo2F7: A single-crystal high-temperature pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Krizan, J. W.; Cava, R. J.

    2014-06-01

    We report the magnetic characterization of the frustrated transition metal pyrochlore NaCaCo2F7. This material has high spin Co2+ in CoF6 octahedra in a pyrochlore lattice and disordered nonmagnetic Na and Ca on the large-atom sites in the structure. Large crystals grown by the floating zone method were studied. The magnetic susceptibility is isotropic; the Co moment is larger than the spin-only value; and in spite of the large Curie Weiss theta (-140 K), freezing of the spin system, as characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until around 2.4 K. This yields a frustration index of f=-θCW/Tf≈56, an indication that the system is highly frustrated. The observed entropy loss at the freezing transition is low, indicating that magnetic entropy remains present in the system at 0.6 K. The compound may be the realization of a frustrated pyrochlore antiferromagnet with weak bond disorder. The high magnetic interaction strength, strong frustration, and the availability of large single crystals makes NaCaCo2F7 an interesting alternative to rare earth oxide pyrochlores for the study of geometric magnetic frustration in pyrochlore lattices.

  1. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  2. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  3. Hedgehog Excitations and their Superconducting Cores in the Antiferromagnetic State of SO(5) Materials

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.

    1998-03-01

    Zhang's SO(5) approach to the physics of high-temperature superconducting materials(S.-C. Zhang, Science 275), 1089 (1997). contains the possibility that the antiferromagnetic state should support novel excitations that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region(P. M. Goldbart, Antiferromagnetic hedgehogs with superconducting cores); cond- mat/9711088 (UIUC Preprint P-97-10-030-iii).. Neither singular nor topologically stable, in contrast with their hedgehog cousins in pure antiferromagnetism, these excitations are what hedgehogs become when antiferromagnetic order is permitted to `` escape'' toward superconductivity---a central element in Zhang's approach. We describe the structure of antiferromagnetic hedgehog excitations with superconducting cores within the context of Zhang's approach to high-temperature superconducting materials, and touch upon a number of the experimental implications that these excitations engender.

  4. Effect of cation substitution on the magnetic and magnetotransport properties of epitaxial Fe3-xVxO4 films

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Liu, Jie; Zheng, Dongxing; Tang, Min; Li, Peng; Bai, Haili

    2015-03-01

    The effect of cation on the structure, magnetic and magnetotransport properties of epitaxial Fe3-xVxO4 (0 ≤ x ≤ 0.6) films fabricated by reactive cosputtering was investigated systematically. Four kinds of cations (Fe2+, Fe3+, V2+ and V3+) exist in the Fe3-xVxO4 films. The Fe3-xVxO4 films reveal semiconducting property and increased resistivity with increasing V content. The systematic change of the decreased saturation magnetization and enhanced exchange bias is closely related to the spin canting and antiferromagnetic coupling, which is caused by the V substitution on B sites. The presents of V2+ (3d3) enlarge the anisotropy, and further increase the coercivity. With the combined effects of the larger anisotropy, spin canting and enhanced antiferromagnetic coupling caused by V substitution, the Fe3-xVxO4 films exhibit enhanced four-fold symmetric anisotropic magnetoresistance.

  5. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  6. [Delegation yes, substitution no!].

    PubMed

    Schroeder, A

    2014-08-01

    The aging of society leads on the one hand to increasing case numbers and on the other hand to a reduction in the number of physicians available for patient treatment. The delegation and substitution of medical duties as a tried and tested method is increasingly being recommended in order to compensate for the lack of physicians. The Berufsverband der Deutschen Urologen (BDU, Professional Association of German Urologists) supports the guiding principle of the Bundesärztekammer (Federal Medical Council) of "delegation yes, substitution no" and rejects a substitution of medical duties by non-medical academic health personnel. Against the background of the demographic changes, the increasing need for treatment and the current deficiency of junior physicians, a more extensive inclusion of well-qualified and experienced non-medical personnel by the delegation of medically responsible duties (medical scope of practice) can be an appropriate measure to maintain a good medical service in practices, hospitals and nursing homes. PMID:25047595

  7. [Substitution therapy with diamorphine].

    PubMed

    Roy, Mandy; Bleich, Stefan; Hillemacher, Thomas

    2016-03-01

    After a long lead time the substitution with diamorphine was taken into the German catalogue of statutory health insurance in 2010. Currently about 570 patients are treated this way in 9 ambulances in Germany. The study phase as well as the clinical practice are showing the success of this therapy concerning physical and mental health of patients and their circumstances of social life. Thereby substitution with diamorphine is underlying very strict admission criteria regarding patients on the one hand and particular organizational requirements of the medical institution on the other hand. This article explains these criteria in detail as well as neurobiological information and clinical workflow is presented. Improvement of mandatory requirements could lead to a better reaching of patients who benefit from substitution with diamorphine. PMID:27029045

  8. Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF

    NASA Technical Reports Server (NTRS)

    Obrien, K. C.

    1973-01-01

    The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.

  9. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V

    2012-12-11

    Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications. PMID:22996352

  10. [Guidelines for substitution treatments in prison populations].

    PubMed

    Michel, L; Maguet, O

    2005-01-01

    drug addicts for heroin of 160,000). There are however considerable variations (from 0 to 16.2%) of the proportion of substituted of one establishment for the other according to the type of prison, of its size, its localization and the type of medical device present. If a consensus exists for methadone (daily delivery with sanitary control), the organization of the care relating to the buprenorphine is extremely variable from one establishment to another, often putting in difficulty as well the medical teams as the prisoners. One recommendation is essential: the formulation of an individualized therapeutic project. Thirteen other recommendations are made in the following fields: renewal of substitution treatments, initiation of substitution treatments, urinary controls, methods of prescription, methods of delivery, co-prescriptions, global care, confidentiality, files, exits and transfers, extractions, formation, accompaniment of the teams. These recommendations being formulated, many medical concerns remain present and several questions open. The report of joint mission IGAS/IGSJ of June 2001 on the health of the prisoners underlines the principal persistent gaps: hygiene and public health, treatment of the mental disorders, the follow-up of the sexual delinquents, handling ageing, handicap and the end of lifetime. In the same way, the difficulties listed in prison environment concerning substitution are only the exacerbation of those existing outside: the misuses and traffics are common in free environment, risk reduction in prison, as outside, handle with obstacles related to the penalization of the drug use and can hardly evolve except questioning the law of 1970. The prison practice opens also questions: that of the "duration" of the substitution, frequently posed by the prisoners; concern to see the prison becoming a privileged place of access to the care, combining sanction and care whereas the law of 1970 allows the alternative (care or sanction); that of the

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  12. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  13. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  14. Cyclic period-3 window in antiferromagnetic potts and Ising models on recursive lattices

    NASA Astrophysics Data System (ADS)

    Ananikian, N. S.; Ananikyan, L. N.; Chakhmakhchyan, L. A.

    2011-09-01

    The magnetic properties of the antiferromagnetic Potts model with two-site interaction and the antiferromagnetic Ising model with three-site interaction on recursive lattices have been studied. A cyclic period-3 window has been revealed by the recurrence relation method in the antiferromagnetic Q-state Potts model on the Bethe lattice (at Q < 2) and in the antiferromagnetic Ising model with three-site interaction on the Husimi cactus. The Lyapunov exponents have been calculated, modulated phases and a chaotic regime in the cyclic period-3 window have been found for one-dimensional rational mappings determined the properties of these systems.

  15. Detection of Antiferromagnetic Correlations in the Fermi-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hulet, Randall

    2014-05-01

    The Hubbard model, consisting of a cubic lattice with on-site interactions and kinetic energy arising from tunneling to nearest neighbors is a ``standard model'' of strongly correlated many-body physics, and it may also contain the essential ingredients of high-temperature superconductivity. While the Hamiltonian has only two terms it cannot be numerically solved for arbitrary density of spin-1/2 fermions due to exponential growth in the basis size. At a density of one spin-1/2 particle per site, however, the Hubbard model is known to exhibit antiferromagnetism at temperatures below the Néel temperature TN, a property shared by most of the undoped parent compounds of high-Tc superconductors. The realization of antiferromagnetism in a 3D optical lattice with atomic fermions has been impeded by the inability to attain sufficiently low temperatures. We have developed a method to perform evaporative cooling in a 3D cubic lattice by compensating the confinement envelope of the infrared optical lattice beams with blue-detuned laser beams. Evaporation can be controlled by the intensity of these non-retroreflected compensating beams. We observe significantly lower temperatures of a two-spin component gas of 6Li atoms in the lattice using this method. The cooling enables us to detect the development of short-range antiferromagnetic correlations using spin-sensitive Bragg scattering of light. Comparison with quantum Monte Carlo constrains the temperature in the lattice to 2-3 TN. We will discuss the prospects of attaining even lower temperatures with this method. Supported by DARPA/ARO, ONR, and NSF.

  16. How to move domain walls in an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon

    Domain walls (DWs) in an easy-axis antiferromagnet can be driven by several stimuli: a charge current (in conducting antiferromagnets), a magnon current, and a temperature gradient. In this talk, we discuss the dynamics of a DW induced by two latter external perturbations, which are applicable in both metallic and insulating antiferromagnets. First of all, we study the Brownian dynamics of a DW subjected to a temperature gradient. To this end, we derive the Langevin equation for the DW's center of mass with the aid of the fluctuation-dissipation theorem. A DW behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of DWs, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a DW. We briefly address other mechanisms of thermally driven DW motion. Secondly, we analyze the dynamics of a DW driven by circularly polarized magnons. Magnons passing through a DW reverse their spin upon transmission, thereby transferring two quanta of angular momentum to the DW and causing it to precess. A precessing DW partially reflects magnons back to the source. The reflection of magnons creates a previously identified reactive force. We point out a second mechanism of propulsion of the DW, which we term redshift: magnons passing through a precessing DW reduce their linear momentum and transfer the decrease to the DW. We solve the equations of motion for magnons in the background of a uniformly precessing DW with the aid of supersymmetric quantum mechanics and compute the net force and torque applied by magnons to the DW. The theory agrees well with micromagnetic simulations. This work has been supported in part by the ARO, the U.S. DOE-BES, and the U.S. NSF grants.

  17. Control of the third dimension in copper-based square-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Goddard, Paul A.; Singleton, John; Franke, Isabel; Möller, Johannes S.; Lancaster, Tom; Steele, Andrew J.; Topping, Craig V.; Blundell, Stephen J.; Pratt, Francis L.; Baines, C.; Bendix, Jesper; McDonald, Ross D.; Brambleby, Jamie; Lees, Martin R.; Lapidus, Saul H.; Stephens, Peter W.; Twamley, Brendan W.; Conner, Marianne M.; Funk, Kylee; Corbey, Jordan F.; Tran, Hope E.; Schlueter, J. A.; Manson, Jamie L.

    2016-03-01

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu (HF2) (pyz) 2] ClO4 [pyz = pyrazine], [Cu L2(pyz) 2] (ClO4)2 [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz)2] 2 + nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 Å, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed- and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymer Cu(pyz) 2(ClO4)2 . We find that, within the limits of the experimental error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz) 2(ClO4)2 , the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. We discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S =1 /2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.

  18. On magnetic ordering in heavily sodium substituted hole doped lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Sethulakshmi, N.; Unnimaya, A. N.; Al-Omari, I. A.; Al-Harthi, Salim; Sagar, S.; Thomas, Senoy; Srinivasan, G.; Anantharaman, M. R.

    2015-10-01

    Mixed valence manganite system with monovalent sodium substituted lanthanum manganites form the basis of the present work. Lanthanum manganites belonging to the series La1-xNaxMnO3 with x=0.5-0.9 were synthesized using modified citrate gel method. Variation of lattice parameters and unit cell volume with Na concentration were analyzed and the magnetization measurements indicated ferromagnetic ordering in all samples at room temperature. Low temperature magnetization behavior indicated that all samples exhibit antiferromagnetism along with ferromagnetism and it has also been observed that antiferromagnetic ordering dominates ferromagnetic ordering as concentration is increased. Evidence for such a magnetic inhomogeneity in these samples has been confirmed from the variation in Mn3+/Mn4+ ion ratio from X-ray Photoelectron Spectroscopy and from the absorption peak studies using Ferromagnetic Resonance Spectroscopy.

  19. Dynamical Structure Factors of quasi-one-dimensional antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel

    2007-03-01

    For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.

  20. Giant magnetocaloric effect in antiferromagnetic DyVO4 compound

    NASA Astrophysics Data System (ADS)

    Midya, A.; Khan, N.; Bhoi, D.; Mandal, P.

    2014-09-01

    We have investigated the magnetic and magnetocaloric properties of DyVO4 by magnetization and heat capacity measurements. χ(T) shows antiferromagnetic to paramagnetic transition at TNDy~3.5 K. The compound undergoes a metamagnetic transition and exhibits a huge entropy change. The maximum values of magnetic entropy change (ΔSM), adiabatic temperature change (ΔTad) and refrigerant capacity (RC) reach 26 J kg-1 K-1, 17 K, and 526 J kg-1, respectively for a field change of 0-8 T. Moreover, the material is highly insulating and exhibits no thermal and field hysteresis, satisfying the necessary conditions for a good magnetic refrigerant material.

  1. Emergence of frustrated antiferromagnet in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Rhim, Jun Won; Archer, Alexander C.; Jain, Jainendra K.; Park, Kwon; Condensed Matter Theory Collaboration

    2014-03-01

    We investigate the spin structure of the triangular composite fermion crystals (CFCs) in the lowest Landau level (LLL). In contrast to the usual Hund's rule, our Monte-Carlo (MC) calculation finds the spin exchange energy to be antiferromagnetic in certain parameter regimes in the vicinity of ν = 1 / 5 . For further physical intuition, we develop an effective two-body potential between composite fermions in the crystal phase, which provides a reasonable account of the MC results. We discuss the experimental feasibility of this physics.

  2. Antiferromagnetic structure in tetragonal CuMnAs thin films.

    PubMed

    Wadley, P; Hills, V; Shahedkhah, M R; Edmonds, K W; Campion, R P; Novák, V; Ouladdiaf, B; Khalyavin, D; Langridge, S; Saidl, V; Nemec, P; Rushforth, A W; Gallagher, B L; Dhesi, S S; Maccherozzi, F; Železný, J; Jungwirth, T

    2015-01-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978

  3. Antiferromagnetic structure in tetragonal CuMnAs thin films

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.

    2015-11-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

  4. Excitations in a Four-Leg Antiferromagnetic Heisenberg Spin Tube,

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael; Fernandez-Baca, Jaime A

    2008-01-01

    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S 1=2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

  5. Excitations in a four-leg antiferromagnetic Heisenberg spin tube

    SciTech Connect

    Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael

    2008-01-01

    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu$_2$Cl$_{4}\\cdot$ D$_8$C$_4$SO$_2$. Contrary to previously conjectured models that relied on bond-alternating nearest neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a $S=1/2$ 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.

  6. Antiferromagnetic structure in tetragonal CuMnAs thin films

    PubMed Central

    Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.

    2015-01-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978

  7. Angle-dependent loop shifts in antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2016-08-01

    Experimentally hysteresis loop shifts have been widely observed in antiferromagnetic (AF) nanoparticles. Here numerical investigations show that this effect is dependent on the angle between the easy axis of the AF spins and the applied magnetic field in uncompensated nanoparticles. In contrast, the loop shifts disappear in compensated nanoparticles. The results suggest that the uncompensated spins and field directions are essential ingredients to generate loop shifts in AF nanoparticle systems. The present study hints at a possible way to optimize the magnetic performance of AF nanostructures.

  8. Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units

    NASA Astrophysics Data System (ADS)

    Morales, R.; Kovylina, M.; Schuller, Ivan K.; Labarta, A.; Batlle, X.

    2014-01-01

    The pursuit of higher densities in binary storage media is facing serious operating limitations. In order to overcome these constraints, several multistate techniques have been investigated as alternatives. Here, we report on an approach to define multistate switching memory units based on magnetic nanostructures exhibiting exchange bias. Writing and reading conditions were studied in patterned antiferromagnetic/ferromagnetic thin films. We establish the necessary and sufficient requirements for this multidigit memory concept that might open up new possibilities for the exploration and design of suitable room temperature spintronic devices.

  9. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices

    SciTech Connect

    Takamura, Y.; Biegalski, M.B.; Christen, H.M.

    2009-10-22

    Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.

  10. Spin torques between ferromagnetic and compensated antiferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Prakia, Khartik; Haney, Paul

    2014-03-01

    The current induced torques between a ferromagnetic layer and a compensated antiferromagnetic layer of various symmetries are considered. The general conditions under which these current induced torques can stabilize the out-of-plane configuration of the ferromagnet are provided, along with numerical results for specific models. The effects of phase breaking scattering and their experimental implications are also discussed. Adrian Popescu acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193.

  11. No cheap substitutes.

    PubMed

    Griffiths, Peter

    2016-06-15

    The Nuffield Trust report on reshaping the healthcare workforce was published last month. Its conclusions were widely reported as a recommendation to 'train up' nurses as a solution to junior doctor shortages, with support workers, in turn, substituting for registered nurses. PMID:27305238

  12. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  13. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  14. Thermal expansion measurements on Fe substituted URu2Si2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Wolowiec, Christian; Jeon, Inho; Pouse, Naveen; Kanchanavatee, Noravee; Huang, Kevin; Maple, M. Brian; Dapron, Tyler; Williamsen, Mark; Snow, David; Martien, Dinesh; Spagna, Stefano

    The search for the order parameter of the hidden order (HO) phase in URu2Si2 has attracted an enormous amount of attention for the past three decades. The small antiferromagnetic moment of only ~0.03 μB/U found in the HO phase is too small to account for the entropy of ~0.2Rln(2) derived from the second order mean field BCS-like specific heat anomaly associated with the HO transition that occurs below To = 17.5 K. A first order transition from the HO phase to a large moment antiferromagnetic (LMAFM) phase occurs under pressure. We have recently demonstrated that tuning URu2Si2B>by substitution of Fe for Ru reproduces the temperature vs applied pressure phase diagram.and offers an opportunity to study the HO and LMAFM phases at atmospheric pressure. Motivated by this observation, we performed thermal expansion measurements on URu2-xFexSi2 single crystals for various values of x in both the HO and LMAFM regions of the phase diagram. Interesting preliminary results have emerged from these studies that shed light on the LMAFM phase and its relationship with the elusive HO phase. Research in UCSD is supported by US DOE BES under Grant No. DE-FG02-04-ER46105 (materials synthesis and characterization) and US NSF under Grant No. DMR-1206553 (low temperature measurements).

  15. Combined effects of transition metal (Ni and Rh) substitution and annealing/quenching on the physical properties of CaFe2As2

    SciTech Connect

    Ran, S; Bud'ko, S L; Straszheim, W E; Canfield, P C

    2014-08-01

    We performed systematic studies of the combined effects of annealing/quenching temperature (TA/Q) and T=Ni, Rh substitution (x) on the physical properties of Ca(Fe1-xTx)2As2. We constructed two-dimensional, TA/Q-x phase diagrams for the low-temperature states for both substitutions to map out the relations between ground states and compared them with that of Co substitution. Ni substitution, which brings one more extra electron per substituted atom and suppresses the c-lattice parameter at roughly the same rate as Co substitution, leads to a similar parameter range of antiferromagnetic/orthorhombic phase space in the TA/Q-x space as that found for Co substitution, but the parameter range for superconductivity has been shrunk (roughly by a factor of 2). This result is similar to what is found when Co- and Ni-substituted BaFe2As2 are compared. On the other hand, Rh substitution, which brings the same amount of extra electrons as does Co substitution, but suppresses the c-lattice parameter more rapidly, has a different phase diagram. The collapsed tetragonal phase exists much more pervasively, to the exclusion of the normal, paramagnetic, tetragonal phase. The range of antiferromagnetic/orthorhombic phase space is noticeably reduced, and the superconducting region is substantially suppressed, essentially truncated by the collapsed tetragonal phase. In addition, we found that whereas for Co substitution there was no difference between phase diagrams for samples annealed for 1 or 7 days, for Ni and Rh substitutions a second, reversible effect of annealing was revealed by 7-day anneals.

  16. Magnetism of ordered and disordered Ni2MnAl full Heusler compounds

    NASA Astrophysics Data System (ADS)

    Simon, E.; Vida, J. Gy.; Khmelevskyi, S.; Szunyogh, L.

    2015-08-01

    Based on ab initio calculations and Monte Carlo simulations, we present a systematic study of the magnetic ground state and finite temperature magnetism of ordered and disordered Ni2MnAl full Heusler compounds. By increasing the degree of the long-range chemical disorder between the Mn and Al sublattices, the magnetic order progressively changes from the ferromagnetic state in the ordered L 21 phase toward a fully compensated antiferromagnetic state in the disordered B 2 phase and we also conclude that the Ni atoms exhibit induced moments. We determine the Mn-Mn interactions by using the magnetic force theorem and find dominating, but rather weak ferromagnetic couplings in the ordered L 21 phase. We used a recently proposed renormalization technique to include the weak Ni moments into the spin model, which indeed remarkably increased the nearest-neighbor Mn-Mn interaction. In accordance with the total energy calculations, in the disordered compounds, strong antiferromagnetic site-antisite Mn-Mn interactions appear. Determining the spin-spin correlation functions from Monte Carlo simulations, we conclude that above the transition temperature, short-range antiferromagnetic correlations prevail between the Mn atoms. In view of the potential application of disordered Ni2MnAl as a room temperature antiferromagnet, we calculate the magnetic anisotropy energies of tetragonally distorted samples in the B 2 phase and find that they are smaller by two orders in magnitude than in the frustrated antiferromagnet IrMn3.

  17. Novel dynamic scaling regime in hole-doped 2-dimensional antiferromagnet La2CuO4

    NASA Astrophysics Data System (ADS)

    Bao, Wei

    2003-11-01

    Only 3% hole doping by Li is sufficient to suppress the long-range 3-dimensional (3D) antiferromagnetic order in La_2CuO_4. The spin dynamics of such a 2D spin liquid state at T≪ J was investigated with measurements of the dynamic magnetic structure factor S(ω,q), using cold neutron spectroscopy, for single crystalline La_2Cu_1-xLi_xO4 (x =0.04, 0.06 and 0.1). S(ω,q) peaks sharply at (π,π) for all of these samples[1]. A phase crossover from the quantum critical (QC) ω/T scaling at high temperatures to a novel low temperature regime characterized by a constant energy scale is observed for the first time[2]. The observed crossover possibly corresponds to the theoretically expected crossover from the QC to the quantum disordered regime of the 2D Heisenberg antiferromagnetic spin liquid[3]. Possible role played by doped holes in modifying spin fluctuation spectrum will be discussed. [1] W. Bao et al., Phys. Rev. Lett. 84, 3978 (2000) [2] W. Bao et al., cond-mat/0307605; accepted by Phys. Rev. Lett. [3] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 1999

  18. Chromium Substitution Effect on the Magnetic Structure of Iron Oxides

    NASA Astrophysics Data System (ADS)

    Osman Murat, Ozkendir

    2012-05-01

    The local magnetic and electronic structures of chromium substituted iron oxide polycrystalline samples are investigated via Fe L-edge x-ray absorption near-edge structural and magnetic circular dichroism measurements. A strong dependence of atomic magnetic levels on the applied external magnetic field is observed. The magnetic behavior of Cr-doped iron oxides are determined to be dominantly governed by the d—d hybridization between Fe and Cr valence levels. In addition, the formation of CrO2 and Cr2O3 chromium oxide clusters in the sample are observed to determine the magnetic ordering, i.e. anti-ferromagnetic or ferromagnetic with the changing external magnetic fields. The results highly agree with the previous studies.

  19. Spin transport in antiferromagnetic insulator detected by spin pumping

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Li, Yi; Bailey, William

    Spin transport in antiferromagnetic insulators has drawn attention recently. Prior work has been done on the spin diffusion length of different antiferromagnetic materials via inverse spin hall effect. In this work, we measure the spin pumping of Py/Cu/CoO to characterize the absorption of spin current in the CoO layer. The series of Py/Cu/CoO (t) with changing the thickness of CoO layer indicates that there is a Gilbert damping enhancement of 0.001 in saturation at about 2 nm at room temperature. The spin mixing conductance obtained from this experimental series and from Py (t)/Cu/CoO series is 2.4 nm-2 and 3.2 nm-2 , respectively. We also measured the spin pumping of the Py/Cu/CoO sample at low temperatures. The Gilbert damping exhibits a positive peak at about 280 K, which is close to the Néel temperature of CoO. Our work shows a finite spin mixing conductance in Py/Cu/CoO and the spin diffusion length of CoO is quite small at room temperature. We also find that its Gilbert damping reaches its maximum value at Néel temperature.

  20. Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.

  1. Antiferromagnetic ground state in NpCoGe

    NASA Astrophysics Data System (ADS)

    Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.

    2014-03-01

    NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.

  2. Dynamical current-induced ferromagnetic and antiferromagnetic resonances

    NASA Astrophysics Data System (ADS)

    Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.

    2015-12-01

    We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.

  3. Raman scattering in a two-layer antiferromagnet

    NASA Astrophysics Data System (ADS)

    Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.

    1996-08-01

    Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O6+x. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling J2 for the Raman spectra in A1g and B1g scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero J2 gives rise to a finite signal in A1g scattering geometry. Both in this approximation and at resonance the intensity in the A1g channel has a peak at small transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and Sr2CuO2Cl2 compounds and argue that the large value of J2 suggested in a number of recent studies is incompatible with Raman experiments in A1g geometry.

  4. Electrical control of antiferromagnetic metal up to 15 nm

    NASA Astrophysics Data System (ADS)

    Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng

    2016-08-01

    Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.

  5. Antiferromagnetic order in MnO spherical nanoparticles

    SciTech Connect

    Wang, Cuihuan; Baker, Sheila N; Lumsden, Mark D; Nagler, Stephen E; Heller, William T; Baker, Gary A; Deen, P P; Cranswick, Lachlan M.D.; Su, Y.; Christianson, Andrew D

    2011-01-01

    We have performed unpolarized and polarized neutron diffraction experiments on monodisperse 8- and 13-nm antiferromagnetic MnO nanoparticles. For the 8-nm sample, the antiferromagnetic transition temperature T{sub N} (114 K) is suppressed compared to that in the bulk material (119 K), while for the 13-nm sample T{sub N} (120 K) is comparable to that in the bulk. The neutron diffraction data of the nanoparticles is well described using the bulk MnO magnetic structure but with a substantially reduced average magnetic moment of 4.2 {+-} 0.3 {micro}{sub B}/Mn for the 8-nm sample and 3.9 {+-} 0.2 {micro}{sub B}/Mn for the 13-nm sample. An analysis of the polarized neutron data on both samples shows that in an individual MnO nanoparticle about 80% of Mn ions order. These results can be explained by a structure in which the monodisperse nanoparticles studied here have a core that behaves similar to the bulk with a surface layer which does not contribute significantly to the magnetic order.

  6. Theory of the spin Seebeck effect in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2016-01-01

    The spin Seebeck effect (SSE) consists in the generation of a spin current by a temperature gradient applied in a magnetic film. The SSE is usually detected by an electric voltage generated in a metallic layer in contact with the magnetic film resulting from the conversion of the spin current into charge current by means of the inverse spin Hall effect. The SSE has been widely studied in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and metals with large spin-orbit coupling such as platinum. Recently the SSE has been observed in bilayers made of the antiferromagnet Mn F2 and Pt, revealing dependences of the SSE voltage on temperature and field very different from the ones observed in YIG/Pt. Here we present a theory for the SSE in structures with an antiferromagnetic insulator (AFI) in contact with a normal metal (NM) that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the AFI/NM bilayer. The theory explains quite well the measured dependences of the SSE voltage on the sample temperature and on the applied magnetic field in Mn F2/Pt .

  7. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    PubMed Central

    Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution. PMID:26221056

  8. Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets.

    PubMed

    Varma, C M

    2015-10-30

    Quasi-two-dimensional itinerant fermions in the antiferromagnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to TlnT. It is shown, here, that a generic model of itinerant anti-ferromagnet can be canonically transformed so that its critical fluctuations around the AFM-vector Q can be obtained from the fluctuations in the long wavelength limit of a dissipative quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been evaluated recently, and in a large regime of parameters, they are determined, not by renormalized spin fluctuations, but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a spatial correlation length which is proportional to the logarithm of the temporal correlation length, i.e., for some purposes, the effective dynamic exponent z=∞. The time dependence gives ω/T scaling at criticality. The observed resistivity and entropy then follow. Several predictions to test the theory are also given. PMID:26565482

  9. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    NASA Astrophysics Data System (ADS)

    Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.

    2015-07-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution.

  10. Fractional excitations in the square lattice quantum antiferromagnet

    PubMed Central

    Christensen, N. B.; Nilsen, G. J.; Tregenna-Piggott, P.; Perring, T. G.; Enderle, M.; McMorrow, D. F.; Ivanov, D. A.; Rønnow, H. M.

    2014-01-01

    Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration. PMID:25729400

  11. Large magnetoresistance in the antiferromagnetic semimetal NdSb

    NASA Astrophysics Data System (ADS)

    Wakeham, N.; Bauer, E. D.; Neupane, M.; Ronning, F.

    2016-05-01

    There has been considerable interest in topological semimetals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semimetals such as Cd3As2 . However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rocksalt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific-heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic ground state and, in analogy with the lanthanum monopnictides, is expected to be a topologically nontrivial semimetal. We show that NdSb has an XMR of ˜104% , even within the antiferromagnetic state, illustrating that XMR can occur independently of the absence of time-reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers the promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Néel temperature there is a first-order transition, consistent with evidence from previous neutron scattering work.

  12. Spin Seebeck effect through antiferromagnetic NiO

    NASA Astrophysics Data System (ADS)

    Prakash, Arati; Brangham, Jack; Yang, Fengyuan; Heremans, Joseph P.

    2016-07-01

    We report temperature-dependent spin Seebeck measurements on Pt/YIG bilayers and Pt/NiO/YIG trilayers, where YIG (yttrium iron garnet, Y3F e5O12 ) is an insulating ferrimagnet and NiO is an antiferromagnet at low temperatures. The thickness of the NiO layer is varied from 0 to 10 nm. In the Pt/YIG bilayers, the temperature gradient applied to the YIG stimulates dynamic spin injection into the Pt, which generates an inverse spin Hall voltage in the Pt. The presence of a NiO layer dampens the spin injection exponentially with a decay length of 2 ± 0.6 nm at 180 K. The decay length increases with temperature and shows a maximum of 5.5 ± 0.8 nm at 360 K. The temperature dependence of the amplitude of the spin Seebeck signal without NiO shows a broad maximum of 6.5 ± 0.5 μV/K at 20 K. In the presence of NiO, the maximum shifts sharply to higher temperatures, likely correlated to the increase in decay length. This implies that NiO is most transparent to magnon propagation near the paramagnet-antiferromagnet transition. We do not see the enhancement in spin current driven into Pt reported in other papers when 1-2 nm NiO layers are sandwiched between Pt and YIG.

  13. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    SciTech Connect

    Olejnik, K.; Wadley, P.; Haigh, J.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S.; van der Laan, G.; Arenholz, E.

    2009-11-05

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.

  14. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    SciTech Connect

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-24

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  15. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    NASA Astrophysics Data System (ADS)

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-01

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  16. Magnetic Diffuse Scattering in the Frustrated Kagome Antiferromagnet YBaCo4O7

    NASA Astrophysics Data System (ADS)

    Manuel, Pascal; Chapon, Laurent; Radaelli, Paolo; Mitchell, John; Zheng, Hong

    2008-03-01

    Cobalt oxides of composition RBaCo4O7 (R=Y, Tb-Lu) crystallize with a lattice structure topologically related to that of the pyrochlore. Considering only the magnetic transition metal sublattice, R-114 appears as Kagome sheets linked by triangular layers and is therefore expected to provide a new materials class for exploring geometric magnetic frustration. We have recently shown that stoichiometric R-114 compound orders antiferromagnetically into a long-range ordered (LRO) structure with features common to the √3 *√3 negative chirality spin arrangements often found in Kagome net systems. In contrast, small excesses of O added to the system, as little as 0.1, destroys this LRO state. To explore the nature of the frustrated magnetism in this novel system, we have measured magnetic diffuse scattering on YBaCo4O7 and YBaCo4O7.1 single crystals at the ISIS facility. Large maps of reciprocal space in several planes have been recorded showing a very structured diffuse scattering. The data compared to models obtained by the Monte-Carlo method using the metropolis algorithm, reveal the exact nature of the disordered ground state in this new class of frustrated magnets.

  17. Clinical applications of skin substitutes.

    PubMed

    Nyame, Theodore T; Chiang, H Abraham; Orgill, Dennis P

    2014-08-01

    A unique understanding of the components of mammalian skin has led to the development of numerous skin substitutes. These skin substitutes attempt to compensate for functional and physiologic deficits present in damaged tissue. Skin substitutes, when appropriately applied in optimized settings, offer a promising solution to difficult wound management. The body of literature on skin substitutes increases as the understanding of tissue engineering and molecular biology expands. Given the high cost of these products, future randomized large prospective studies are needed to guide the clinical applications of skin substitutes. PMID:25085091

  18. Multiferroic approach for Cr,Mn,Fe,Co,Ni,Cu substituted BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    Multiferroic magnetoelectric (ME) at room temperature is significant for new design nano-scale spintronic devices. We have given a comparative study to report multiferroicity in BaTM0.01Ti0.99O3 [TM = Cr,Mn,Fe,Co,Ni,Cu (1 mol% each) substituted BaTiO3 (BTO)] nanoparticles. The TM ions influenced both nano-size and lattice distortion of Ti–O6 octahedra to the BTO. X ray diffraction study indicates that the dopant TM could influence lattice constants, distortion, tetragonal splitting of diffraction peaks (002/200) as well as peak shifting of diffraction angle in the BTO lattice. This can induce lattice strain which responsible to oxygen defects formation to mediate ferromagnetism. Also, the lattice strain effect could responsible to reduce the depolarization field of ferroelectricity and provide piezoelectric and magnetostrictive strains to enhance ME coupling. The size of BTO nanoparticles is varied in 13–51 nm with TM doping. The room temperature magnetic measurement indicates antiferromagnetic exchange interactions in BTO lattice with TM ions. The zero-field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. It also confirms that the substitution of Cr, Fe and Co into BTO could induce strong antiferromagnetic behavior. However, the substitutions of Mn, Ni and Cu have weak antiferromagnetic character. The temperature dependent dielectric measurements indicates polarization enhancement that influenced with both nano-size as well TM ions and exhibits ferroelectric phase transition with relaxor-like characteristics. Dynamic ME coupling is investigated, and the longitudinal ME voltage coefficient, α ME is equivalent to linear ME coupling coefficient, α (={\\varepsilon }{{o}}{\\varepsilon }{{r}}{α }{{ME}}) is also calculated.

  19. Mechanism of Basal-Plane Antiferromagnetism in the Spin-Orbit Driven Iridate Ba2IrO4

    NASA Astrophysics Data System (ADS)

    Katukuri, Vamshi M.; Yushankhai, Viktor; Siurakshina, Liudmila; van den Brink, Jeroen; Hozoi, Liviu; Rousochatzakis, Ioannis

    2014-04-01

    By ab initio many-body quantum chemistry calculations, we determine the strength of the symmetric anisotropy in the 5d5 j≈1/2 layered material Ba2IrO4. While the calculated anisotropic couplings come out in the range of a few meV, orders of magnitude stronger than in analogous 3d transition-metal compounds, the Heisenberg superexchange still defines the largest energy scale. The ab initio results reveal that individual layers of Ba2IrO4 provide a close realization of the quantum spin-1/2 Heisenberg-compass model on the square lattice. We show that the experimentally observed basal-plane antiferromagnetism can be accounted for by including additional interlayer interactions and the associated order-by-disorder quantum-mechanical effects, in analogy to undoped layered cuprates.

  20. Methodologies in creating skin substitutes.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-09-01

    The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results. PMID:27154041

  1. 40 CFR 721.10034 - Substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted pyridine coupled with... Specific Chemical Substances § 721.10034 Substituted pyridine coupled with diazotized substituted... as substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

  2. 40 CFR 721.10034 - Substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted pyridine coupled with... Specific Chemical Substances § 721.10034 Substituted pyridine coupled with diazotized substituted... as substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

  3. Magnetization dynamics in exchange coupled antiferromagnet spin superfluids

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Barlas, Yafis; Yin, Gen; Zang, Jiadong; Lake, Roger

    Antiferromagnets (AFMs) are commonly used as the exchange bias layer in magnetic recording and spintronic devices. Recently, several studies on the spin transfer torque and spin pumping in AFMs reveal much more interesting physics in AFMs. Properties of AFMs such as the ultrafast switching within picoseconds and spin superfluidity demonstrate the potential to build AFM based spintronic devices. Here, we study the magnetization dynamics in an exchange coupled AFM systems. Beginning from the Landau-Lifshitz-Gilbert equation, we derive a Josephson-like equation for the exchange coupled system. We investigate the detailed magnetization dynamics by employing spin injection and spin pumping theory. We also propose a geometry that could be used to measure this magnetization dynamics. This work was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #SC0012670.

  4. Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.

    PubMed

    Greif, Daniel; Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Esslinger, Tilman

    2015-12-31

    We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We also investigate the formation and redistribution time of spin correlations by dynamically changing the lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed. PMID:26764974

  5. Band gaps of two-dimensional antiferromagnetic photonic crystal

    NASA Astrophysics Data System (ADS)

    Song, Yu-Ling; Ta, Jin-Xing; Wang, Xuan-Zhang

    2011-07-01

    In an external magnetic field, the band structure of a two-dimensional photonic crystal (PC) composed of parallel antiferromagnetic cylinders in a background dielectric is investigated with a Green's function method. The cylinders with two resonant frequencies form a square lattice and are characterized by a magnetic permeability tensor. In our numerical calculation, we find that this method allows fast convergence and is available in both the resonant and non-resonant frequency ranges. In the non-resonant range, the PC is similar in band structure to an ordinary dielectric PC. Two electromagnetic band gaps, however, appear in the resonant frequency region, and their frequency positions and widths are governed by the external field. The dependence of the electromagnetic gaps on the cylinder radius also is discussed.

  6. A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2015-11-01

    The phase diagrams and the temperature dependences of magnetizations in a transverse Ising nanowire with an antiferromagnetic spin configuration are investigated by the use of the effective-field theory with correlations (EFT) and the core-shell concept. Many characteristic and unexpected behaviors are found for them, especially for thermal variation of total magnetization mT. The reentrant phenomenon induced by a transverse field in the core, the appearance of a compensation point, the non-monotonic variation with a compensation point, the reentrant phenomena with a compensation point and the existence of both a broad maximum and a compensation point have been found in the thermal variations of mT.

  7. Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho.

    PubMed

    Rettig, L; Dornes, C; Thielemann-Kühn, N; Pontius, N; Zabel, H; Schlagel, D L; Lograsso, T A; Chollet, M; Robert, A; Sikorski, M; Song, S; Glownia, J M; Schüßler-Langeheine, C; Johnson, S L; Staub, U

    2016-06-24

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L_{3} absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak. PMID:27391747

  8. Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho

    NASA Astrophysics Data System (ADS)

    Rettig, L.; Dornes, C.; Thielemann-Kühn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; Song, S.; Glownia, J. M.; Schüßler-Langeheine, C.; Johnson, S. L.; Staub, U.

    2016-06-01

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E 1 , 2 p →5 d ) or quadrupole (E 2 , 2 p →4 f ) transition allows us to selectively and independently study the spin dynamics of the itinerant 5 d and localized 4 f electronic subsystems via the suppression of the magnetic (2 1 3 -τ ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4 f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4 f -5 d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.

  9. Strong spin Hall effect in the antiferromagnet PtMn

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.

    2016-06-01

    Effectively manipulating magnetism in ferromagnet (FM) thin-film nanostructures with an in-plane current has become feasible since the determination of a "giant" spin Hall effect (SHE) in certain heavy metal/FM systems. Recently, both theoretical and experimental reports indicate that metallic antiferromagnet materials can have both a large anomalous Hall effect and a strong SHE. Here we report a systematic study of the SHE in PtMn with several PtMn/FM systems. By using interface engineering to reduce the "spin memory loss" we obtain, in the best instance, a spin-torque efficiency ξDLPtMn≡TintθSHPtMn≃0.24 , where Tint is the effective interface spin transparency. This is more than twice the previously reported spin-torque efficiency for PtMn. We also find that the apparent spin diffusion length in PtMn is surprisingly long, λsPtMn≈2.3 nm .

  10. Antiferromagnetic superconducting state in the electron-doped cuprates?

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Markiewicz, Robert S.; Bansil, Arun

    2006-03-01

    Recent angle-resolved photoemission (ARPES) studies of the electron-doped cuprate Nd2-xCexCuO4 (NCCO)[1] have been interpreted in terms of a uniform antiferromagnetic (AF) metal, with doping into the upper magnetic band and gap collapse close to optimal doping[2]. An open question is whether the system remains uniform in the simultaneous presence of AF and (d- wave) superconducting (SC) order. Here, we explore the properties of a uniform AF-SC model for NCCO, to ascertain to what extent we can explain anomalous features, such as the nonmonotonic angle dependence of the superconducting gap[3]. Work supported by the USDOE. [1] N.P. Armitage, et al., PRL 87, 147003 (2002). [2] C. Kusko, et al., PRB66, 140513 (2002); A.-M.S. Tremblay, et al., cond-mat/0511334. [3] H. Matsui, et al., PRL 95, 017003 (2005).

  11. Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator.

    PubMed

    Lin, Weiwei; Chen, Kai; Zhang, Shufeng; Chien, C L

    2016-05-01

    We report a large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet (AF)/yttrium iron garnet (YIG), where a thin AF insulating layer of NiO or CoO can enhance the spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM/AF/YIG, with a pronounced maximum near the Néel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM=3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results. PMID:27203336

  12. Impurity effects in highly frustrated diamond-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon

    2011-08-01

    We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  13. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zaletel, Michael P.; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R.

    2016-05-01

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  14. Helimagnons in a chiral ground state of the pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.

    2013-02-01

    The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems.

  15. Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile

    2012-02-01

    We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  16. Antiferromagnetic Critical Fluctuations in BaFe$_2$As$_2$

    SciTech Connect

    Wilson, Stephen D; Yamani, Z.; Rotundu, C. R.; Freelon, B.; Valdivia, P. N.; Bourret-Courchesne, E. D.; Lynn, J W; Chi, Songxue; Hong, Tao; Birgeneau, R. J.

    2010-01-01

    Magnetic correlations near the magnetostructural phase transition in the bilayer iron-pnictide parent compound, BaFe{sub 2}As{sub 2}, are measured. In close proximity to the antiferromagnetic phase transition in BaFe{sub 2}As{sub 2}, a crossover to three-dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about T{sub N}. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe{sub 2}As{sub 2} and their evolution near the anticipated crossover to three-dimensional critical behavior and long-range order are discussed.

  17. Spontaneous Pattern Formation in an Antiferromagnetic Quantum Gas

    SciTech Connect

    Kronjaeger, Jochen; Bongs, Kai; Becker, Christoph; Soltan-Panahi, Parvis; Sengstock, Klaus

    2010-08-27

    In this Letter we report on the spontaneous formation of surprisingly regular periodic magnetic patterns in an antiferromagnetic Bose-Einstein condensate (BEC). The structures evolve within a quasi-one-dimensional BEC of {sup 87}Rb atoms on length scales of a millimeter with typical periodicities of 20...30 {mu}m, given by the spin healing length. We observe two sets of characteristic patterns which can be controlled by an external magnetic field. We identify these patterns as linearly unstable modes within a mean-field approach and calculate their mode structure as well as time and energy scales, which we find to be in good agreement with observations. These investigations open new prospects for controlled studies of symmetry breaking and complex quantum magnetism in bulk BEC.

  18. Nanoscale Magnetic Structure of Ferromagnet/Antiferromagnet Manganite Multilayers

    SciTech Connect

    Niebieskikwiat, D.; Hueso, L. E.; Borchers, J. A.; Mathur, N. D.; Salamon, M. B.

    2007-12-14

    We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/Pr{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0{<=}t{sub A}{<=}7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to ferromagnetic (FM) inclusions within the AFM matrix is maximized at t{sub A}{approx}3 nm. This enhancement of FM moment occurs at the matching between layer thickness and cluster size, implying the possibility of tuning phase separation by imposing appropriate geometrical constraints which favor the accommodation of FM nanoclusters within the ''non-FM'' material.

  19. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041

  20. Enhanced Antiferromagnetic Exchange between Magnetic Impurities in a Superconducting Host

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Glazman, L. I.; Demler, E. A.; Lukin, M. D.; Sau, J. D.

    2014-08-01

    It is generally believed that superconductivity only weakly affects the indirect exchange between magnetic impurities. If the distance r between impurities is smaller than the superconducting coherence length (r≲ξ), this exchange is thought to be dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, identical to the those in a normal metallic host. This perception is based on a perturbative treatment of the exchange interaction. Here, we provide a nonperturbative analysis and demonstrate that the presence of Yu-Shiba-Rusinov bound states induces a strong 1/r2 antiferromagnetic interaction that can dominate over conventional RKKY even at distances significantly smaller than the coherence length (r≪ξ). Experimental signatures, implications, and applications are discussed.

  1. Barlowite as a canted antiferromagnet: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Salvat-Pujol, Francesc; Gati, Elena; Hoang, Nguyen Hieu; Wolf, Bernd; Lang, Michael; Schlueter, John A.; Valentí, Roser

    2015-09-01

    We investigate the structural, electronic, and magnetic properties of the newly synthesized mineral barlowite Cu4(OH) 6FBr which contains Cu2 + ions in a perfect kagome arrangement. In contrast to the spin-liquid candidate herbertsmithite ZnCu3(OH)6Cl 2, kagome layers in barlowite are perfectly aligned due to the different bonding environments adopted by F- and Br- compared to Cl-. With the synthesis of this material we unveil a design strategy for layered kagome systems with possible exotic magnetic states. Density functional theory calculations and effective model considerations for Cu4(OH) 6FBr , which has a Cu2 + site coupling the kagome layers, predict a three-dimensional network of exchange couplings, which together with a substantial Dzyaloshinskii-Moriya coupling lead to canted antiferromagnetic ordering of this compound in excellent agreement with magnetic susceptibility measurements on single crystals yielding TN=15 K .

  2. Spin waves in antiferromagnetically coupled bimetallic oxalates.

    PubMed

    Reis, Peter L; Fishman, Randy S

    2009-01-01

    Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242

  3. Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States

    NASA Astrophysics Data System (ADS)

    Michaud, Frédéric; Vernay, François; Manmana, Salvatore R.; Mila, Frédéric

    2012-03-01

    We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1·Si)(Si·Si+1)+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.

  4. Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator

    NASA Astrophysics Data System (ADS)

    Lin, Weiwei; Chen, Kai; Zhang, Shufeng; Chien, C. L.

    2016-05-01

    We report a large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet (AF)/yttrium iron garnet (YIG), where a thin AF insulating layer of NiO or CoO can enhance the spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM /AF /YIG , with a pronounced maximum near the Néel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM /YIG interface for NM =3 d , 4 d , and 5 d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.

  5. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  6. Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets

    DOE PAGESBeta

    Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.

    2015-01-01

    Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion formore » individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.« less

  7. Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets

    SciTech Connect

    Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.

    2015-01-01

    Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.

  8. Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hou, Zhuofei; Landau, D. P.; Stocks, G. M.; Brown, G.

    2015-02-01

    Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L ⩽40 at a temperature below the Néel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the x y direction, which are compared to the "infinite" system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S (q ,ω ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST(q ,ω ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q -space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST(q ,ω ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.

  9. XMCD studies of antiferromagnetically coupled Co/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Baruth, A.; Keavney, D. J.

    2005-03-01

    Previous results on multilayered structures of [Pt(5å)/Co(4å)]3/NiO(tNiOå) /[Co(4å)/Pt(5å)]3 show exchange coupling between the two Co/Pt layers as well as exchange bias between the Co and NiO below 200K [1]. The exchange coupling is explained through the canting of AFM NiO spins which were theoretically predicted [2] and seen using X-ray Magnetic Circular Dichroism [3]. Using XMCD we have studied the element specific magnetization of Co and NiO as functions of field and temperature (above and below the blocking temperature, 200K) in two samples with 11å and 12å NiO. At these thicknesses of NiO, both sets of Co/Pt multilayers couple antiferromagnetically, but the coupling strength for the 12å NiO sample is approximately half that of the 11å. Element specific hysteresis loops showed identical behavior for both Co and Ni implying that the AFM NiO spins at the interface cant in the direction of the Co magnetization. Photoemission electron microscope images on a virgin sample at room temperature revealed the exact correlation between FM domains in the Co and NiO layers in the strongest antiferromagnetically coupled sample. We plan to measure the AFM domain structure of NiO using Magnetic Linear Dichroism. [1] Phys. Rev. Lett. 91, 037207 (2003) [2] Phys. Rev. Lett. 92, 219703 (2004) [3] Z.Y. Liu et. al. Phys Rev B (accepted) Funded by NSF MRSEC

  10. Raman scattering in a two-layer antiferromagnet

    SciTech Connect

    Morr, D.K.; Chubukov, A.V. |; Kampf, A.P.; Blumberg, G. |

    1996-08-01

    Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa{sub 2}Cu{sub 3}O{sub 6+{ital x}}. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling {ital J}{sub 2} for the Raman spectra in {ital A}{sub 1{ital g}} and {ital B}{sub 1{ital g}} scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero {ital J}{sub 2} gives rise to a finite signal in {ital A}{sub 1{ital g}} scattering geometry. Both in this approximation and at resonance the intensity in the {ital A}{sub 1{ital g}} channel has a peak at {ital small} transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa{sub 2}Cu{sub 3}O{sub 6.1} and Sr{sub 2}CuO{sub 2}Cl{sub 2} compounds and argue that the large value of {ital J}{sub 2} suggested in a number of recent studies is incompatible with Raman experiments in {ital A}{sub 1{ital g}} geometry. {copyright} {ital 1996 The American Physical Society.}

  11. Polyimides comprising substituted benzidines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1991-01-01

    A new class of polyimides and copolyimides made from substituted benzidines and aromatic dianhydrides and other aromatic diamines. The polyimides obtained with said diamines are distinguished by excellent thermal, excellent solubility, excellent electrical properties such as very low dielectric constants, excellent clarity and mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular or gas separation, as fibers in molecular composites, as high tensile strength, high compression strength fibers, as film castable coatings, or as fabric components.

  12. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Current work sponsored by the grant at Southwest Texas State University is directed toward the synthesis and characterization of: (1) N-alkylated polyamides derived from o-fluorinated diacids; (2) highly fluorinated polyethers; (3) polyesters derived from 2-hydroxy-2-propyl substituted arenes and/or 2,5-difluoroterephthalic acid; and (4) silicon-containing fluoropolymers. Work during the period from 1 July to 31 Dec. 1993 focused primarily on items 3 and 4 and on the development of a phosphorus containing modification of '12F-PEK.'

  13. Disordered spinor Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub

    2011-01-01

    We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.

  14. Effect of antiferromagnetic layer thickness on exchange bias, training effect, and magnetotransport properties in ferromagnetic/antiferromagnetic antidot arrays

    SciTech Connect

    Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.

    2014-04-07

    The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.

  15. Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Panda, Chandrakanta; Kar, Manoranjan

    2015-04-01

    Polycrystalline Bi1-xLaxFe1-xTixO3 (x = 0.000-0.250) ceramics were synthesized by the tartaric acid modified sol-gel technique. It was observed that the co-substitution of La and Ti at Bi and Fe sites in BiFeO3 suppresses the impurity phase formation which is a common problem in the bismuth ferrite ceramics. The quantitative crystallographic phase analysis of x-ray diffraction pattern by employing Rietveld technique was performed with the help of FULLPROF program which suggests the existence of compositional driven crystal structure transition from rhombohedral (space group R3c) to the orthorhombic (space group Pbnm) symmetry. The oxygen octahedral tilt angle was found to be ˜13.82° for BiFeO3 (space group R3c) and decreases with the increase in co-substitution percentage. The structural transition breaks the spin cycloid structure in co-substituted BiFeO3 nanocrystallites and leads to canting of the antiferromagnetic spin structure. Hence, the remnant magnetization increases up to 10% of co-substitution and becomes 22 times that of BiFeO3. However, it decreases for higher co-substitution percentage due to significant contribution from the collinear antiferromagnetic ordering in the orthorhombic crystal symmetry. The dielectric constant attains a maximum for 10% of co-substitution.

  16. Borate substituted ettringites

    SciTech Connect

    Csetenyi, L.J.; Glasser, F.P.

    1993-12-31

    The setting of cement is adversely affected by soluble borates. To reduce interference, the extent to which borate can be insolubilized has been investigated. One specific mechanism of insolubilization is by inclusion into ettringite. Ettringite, Ca{sub 6}Al{sub 2}(SO{sub 4}){sub 3}(OH){sub 12}{center_dot}26H{sub 2}O, is a normal and stable constituent of Portland cement. It has an open but non-zeolitic framework. Borate can substitute partially or fully for sulfate. Formation conditions, solubility and stability of borate ettringites, Ca{sub 6}Al{sub 2}(BO{sub 4}){sub 2-4}(OH,O){sub 12}{center_dot}26H{sub 2}O, are characterized using XRD, IR, DTA, and SEM. The potential durability of borate ettringites in a repository environment have been assessed by exposing it to Na-sulfate and Na-carbonate attack at different concentrations. Ion exchange occurs; back substitution of borate by sulfate is incomplete; high carbonate concentrations can, however, decompose borate ettringite. On heat treatment up to 85{degrees}C the crystalline morphology and the OH arrangement of the structure are altered, but the X-ray powder pattern, and hence its structural framework are largely unaffected. It is concluded that ettringite has potential to reduce the solubility of borate.

  17. Effect of U substitution on the magnetism in the geometrically frustrated antiferromagnet YMn2 studied through TDPAC spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.

    2015-04-01

    Temperature dependence of hyperfine fields for 111Cd in (Y 1-x U x)Mn 2 alloys have been studied by perturbed angular correlation spectroscopy. Single phase alloys having C-15 cubic structure synthesized for x < 0.1 show contraction of the unit cell. The magnetic hyperfine field as well as the transition temperature show steep decline with increasing U content, while the quadrupole interaction frequency show the opposite behavior. As an important feature our results reveal that doping U in YMn 2 changes the nature of the magnetic phase transition from first to second order.

  18. Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction

    SciTech Connect

    Lees, Benjamin

    2014-09-15

    We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.

  19. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems.

    PubMed

    Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-26

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202

  20. Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bandiera, S.; Sousa, R. C.; Auffret, S.; Rodmacq, B.; Dieny, B.

    2012-08-01

    Synthetic antiferromagnets are of great interest as reference layers in magnetic tunnel junctions since they allow decreasing the dipolar coupling between the two magnetic electrodes and exhibit larger pinning fields than single reference layers. In this letter, we investigate the effect of the insertion of an ultrathin Pt layer in contact with the Ru spacer in synthetic antiferromagnets with perpendicular magnetic anisotropy. Surprisingly, for Ru thickness below 0.75 nm, the antiferromagnetic coupling amplitude through Ru first increases upon Pt insertion up to a critical Pt thickness (˜0.25 nm) above which coupling decreases. In addition, the corresponding increase of perpendicular magnetic anisotropy enhances the thermal stability of the structure.

  1. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  2. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  3. Trifluoromethyl-substituted tetrathiafulvalenes

    PubMed Central

    Jeannin, Olivier; Barrière, Frédéric

    2015-01-01

    Summary A series of tetrathiafulvalenes functionalized with one or two trifluoromethyl electron-withdrawing groups (EWG) is obtained by phosphite coupling involving CF3-substituted 1,3-dithiole-2-one derivatives. The relative effects of the EWG such as CF3, CO2Me and CN on the TTF core were investigated from a combination of structural, electrochemical, spectrochemical and theoretical investigations. Electrochemical data confirm the good correlations between the first oxidation potential of the TTF derivatives and the σmeta Hammet parameter, thus in the order CO2Me < CF3 < CN, indicating that, in any case, the mesomeric effect of the substituents is limited. Besides, crystal structure determinations show that the deformation of the unsymmetrically substituted dithiole rings, when bearing one, or two different EWG, and attributed to the mesomeric effect of ester or nitrile groups, is not notably modified or counter-balanced by the introduction of a neighboring trifluoromethyl group. DFT calculations confirm these observations and also show that the low energy HOMO–LUMO absorption band found in nitrile or ester-substituted TTFs is not found in TTF-CF3, where, as in TTF itself, the low energy absorption band is essentially attributable to a HOMO→LUMO + 1 transition. Despite relatively high oxidation potentials, these donor molecules with CF3 EWG can be involved in charge transfer complexes or cation radical salts, as reported here for the CF3-subsituted EDT-TTF donor molecule. A neutral charge transfer complex with TCNQ, (EDT-TTF-CF3)2(TCNQ) was isolated and characterized through alternated stacks of EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4 − anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)+• radical cations are associated two-by-two into centrosymmetric dyads with a strong pairing of the radical species in a singlet

  4. Trifluoromethyl-substituted tetrathiafulvalenes.

    PubMed

    Jeannin, Olivier; Barrière, Frédéric; Fourmigué, Marc

    2015-01-01

    A series of tetrathiafulvalenes functionalized with one or two trifluoromethyl electron-withdrawing groups (EWG) is obtained by phosphite coupling involving CF3-substituted 1,3-dithiole-2-one derivatives. The relative effects of the EWG such as CF3, CO2Me and CN on the TTF core were investigated from a combination of structural, electrochemical, spectrochemical and theoretical investigations. Electrochemical data confirm the good correlations between the first oxidation potential of the TTF derivatives and the σmeta Hammet parameter, thus in the order CO2Me < CF3 < CN, indicating that, in any case, the mesomeric effect of the substituents is limited. Besides, crystal structure determinations show that the deformation of the unsymmetrically substituted dithiole rings, when bearing one, or two different EWG, and attributed to the mesomeric effect of ester or nitrile groups, is not notably modified or counter-balanced by the introduction of a neighboring trifluoromethyl group. DFT calculations confirm these observations and also show that the low energy HOMO-LUMO absorption band found in nitrile or ester-substituted TTFs is not found in TTF-CF3, where, as in TTF itself, the low energy absorption band is essentially attributable to a HOMO→LUMO + 1 transition. Despite relatively high oxidation potentials, these donor molecules with CF3 EWG can be involved in charge transfer complexes or cation radical salts, as reported here for the CF3-subsituted EDT-TTF donor molecule. A neutral charge transfer complex with TCNQ, (EDT-TTF-CF3)2(TCNQ) was isolated and characterized through alternated stacks of EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4 (-) anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)(+•) radical cations are associated two-by-two into centrosymmetric dyads with a strong pairing of the radical species in a singlet state

  5. Proximity-induced magnetism in transition-metal substituted graphene

    DOE PAGESBeta

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less

  6. Can Vanadium Be Substituted into LiFePO4

    SciTech Connect

    Omenya F.; Nam K.; Chernova N.A.; Upreti S.; Zavalij P.Y.; Nam K.-W.; Yang X.-Q.; Whittingham M.S.

    2011-11-08

    Vanadium is shown to substitute for iron in the olivine LiFePO{sub 4} up to at least 10 mol %, when the synthesis is carried out at 550 C. In the solid solution LiFe{sub 1-3y/2}V{sub y}PO{sub 4}, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter increases slightly. However, when the synthesis is performed at 650 C, a NASICON phase, Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}, is also formed, showing that solid solution is a function of the synthesis temperature. X-ray absorption near-edge structure indicates vanadium is in the 3+ oxidation state and in an octahedral environment. Magnetic studies reveal a shift of the antiferromagnetic ordering transition toward lower temperatures with increasing vanadium substitution, confirming solid solution formation. The addition of vanadium enhances the electrochemical performance of the materials especially at high current densities.

  7. Mechanism of spin current transfer through antiferromagnetic dielectrics

    NASA Astrophysics Data System (ADS)

    Tyberkevych, Vasyl

    The mechanisms of spin current (SC) transfer are well-studied in both metallic systems, where SC is carried mostly by spin-polarized electrons, and in ferromagnetic (FM) dielectrics, where propagating spin waves (magnons) are responsible for the spin transfer. The possibility of SC transfer through antiferromagnetic dielectrics (AFMD) is much less investigated, although recent experimental studies by H. Wang et al. [H. Wang et al., Phys. Rev. Lett. 113, 097202 (2014)] demonstrated extraordinary high efficiency of SC transfer in tri-layer FM-AFMD-Platinum (YIG-NiO-Pt) systems measured by the inverse spin Hall effect (ISHE). Perhaps the most unexpected result of these studies was that, with the increase of the thickness of the AFMD layer, the ISHE voltage, first, increased, and, then, exponentially decayed with the characteristic decay length of λ ~ 10 nm. Moreover, the excitation frequency, equal to the ferromagnetic resonance (FMR) frequency of the YIG layer, was rather low compared to the frequencies of the antiferromagnetic resonance in the AFMD, which rules out the eigenmodes of the AFMD layer as potential carriers of the spin current. Here we propose a possible mechanism of SC transfer through the AFMD with a biaxial anisotropy, which explains all previous experimental findings and opens a new way of manipulating spin currents using anisotropic AFMD materials. We show, that spin current can be carried by evanescent AFMD modes non-resonantly excited at the FM-AFMD interface. The decay length of the evanescent modes is defined by the AFMD anisotropy and determines the SC penetration depth into the AFMD. Furthermore, the anisotropy of the AFMD leads to the coupling between the spin subsystem and the crystal lattice of the AFMD, which makes possible exchange of angular momentum between these subsystems. We demonstrate that, under certain realistic conditions, the angular momentum flows from the lattice to the spin subsystem, in which case the AFMD layer acts as a

  8. Experimental investigation of two-dimensional antiferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Woodward, Frank Matthew

    Quantum fluctuations have a profound effect on the bulk properties of magnetic systems, particularly in low spatial dimension. For example, 1D chains with half integral spins have a gapless excitation spectrum while whole integer spin chains have a (Haldane) gap. The quantum critical behavior of the S = 1/2 2D system is thought to be the origin of high TC superconductivity. Molecular magnets are engineered materials where spin, interaction strength, or dimensionality can be tuned for experimental exploration of magnetism. A conscious effort was made to pick chemical motifs known to generate a quasi two dimensional Heisenberg system and attempt to exploit these motifs by designing classes of compounds based upon them. Creating many similar systems and observing changes in magnetism as a result in changes of chemical structure provides for the development of a phenomenological model of magnetostructural correlations which can then be verified by calculation. This dissertation discusses two distinct classes of antiferromagnetic systems, each based upon entirely different chemical motifs, both exhibiting the desired two dimensional Heisenberg antiferromagnetic behavior. One class is based upon copper tetrabromide: (5gammaAP)2CuBr4 where 5gammaAP = 2-amino-5-gamma-pyridinium with gamma = chloro, bromo, or methyl substituents. These materials are shown, by bulk magnetization and calorimetry studies to possess an exchange strength on the order of J ≈ -7 to -9 K and ordering temperatures in the range of TN ≈ 3.5 to 5 K. In the ordered state, these materials are shown to possesses a weak 3D exchange interaction, and exhibit a spin-flop transition to long range order in the magnetism. The other class under investigation is based upon copper pyrazine: Cu(pz) 2(ClO4)2, Cu(pz)2(BF6) 2, and [Cu(pz)2(NO3)](PF6). By bulk magnetic measurements of powder and single crystal samples they are shown to be a very good approximation of the 2D QHAF model. The two dimensional magnetic

  9. Antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes.

    PubMed

    Ruiz-Gómez, Sandra; Ranchal, Rocío; Abuín, Manuel; Aragón, Ana María; Velasco, Víctor; Marín, Pilar; Mascaraque, Arantzazu; Pérez, Lucas

    2016-03-01

    The capability of synthesizing Fe-based antiferromagnetic metal alloys would fuel the use of electrodeposition in the design of new magnetic devices such as high-aspect-ratio spin valves or new nanostructured hard magnetic composites. Here we report the synthesis of high quality antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes. We have found that in order to grow homogeneous FeMn films it is necessary to incorporate a large concentration of NH4Cl as an additive in the electrolyte. The study of the structure and magnetic properties shows that films with composition close to Fe50Mn50 are homogeneous antiferromagnetic alloys. We have established a parameter window for the synthesis of FeMn alloys that show antiferromagnetism at room temperature. PMID:26925594

  10. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Novák, V.; Campion, R. P.; Rinaldi, C.; Martí, X.; Reichlová, H.; Železný, J.; Gazquez, J.; Roldan, M. A.; Varela, M.; Khalyavin, D.; Langridge, S.; Kriegner, D.; Máca, F.; Mašek, J.; Bertacco, R.; Holý, V.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Foxon, C. T.; Wunderlich, J.; Jungwirth, T.

    2013-08-01

    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

  11. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-01

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  12. Evidence of exchange bias effect originating from the interaction between antiferromagnetic core and spin glass shell

    NASA Astrophysics Data System (ADS)

    Zhang, X. K.; Tang, S. L.; Xu, L. Q.; Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.

    2014-07-01

    Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn3O6-x nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn3O6-x nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.

  13. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs.

    PubMed

    Wadley, P; Novák, V; Campion, R P; Rinaldi, C; Martí, X; Reichlová, H; Zelezný, J; Gazquez, J; Roldan, M A; Varela, M; Khalyavin, D; Langridge, S; Kriegner, D; Máca, F; Mašek, J; Bertacco, R; Holý, V; Rushforth, A W; Edmonds, K W; Gallagher, B L; Foxon, C T; Wunderlich, J; Jungwirth, T

    2013-01-01

    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics. PMID:23959149

  14. Evidence of exchange bias effect originating from the interaction between antiferromagnetic core and spin glass shell

    SciTech Connect

    Zhang, X. K. Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.; Tang, S. L.; Xu, L. Q.

    2014-07-14

    Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn{sub 3}O{sub 6−x} nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn{sub 3}O{sub 6−x} nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.

  15. Thickness-dependent cooperative aging in polycrystalline films of antiferromagnet CoO

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Cheng, Xiang; Boettcher, Stefan; Urazhdin, Sergei; Novozhilova, Lydia

    2016-07-01

    We demonstrate that thin polycrystalline films of antiferromagnet CoO, in bilayers with ferromagnetic Permalloy, exhibit slow power-law aging of their magnetization state. The aging characteristics are remarkably similar to those previously observed in thin epitaxial Fe50Mn50 films, indicating that these behaviors are likely generic to ferromagnet/antiferromagnet bilayers. In very thin films, aging is observed over a wide temperature range. In thicker CoO, aging effects become reduced at low temperatures. Aging entirely disappears for large CoO thicknesses. We also investigate the dependence of aging characteristics on temperature and magnetic history. Analysis shows that the observed behaviors are inconsistent with the Neel-Arrhenius model of thermal activation, and are instead indicative of cooperative aging of the antiferromagnet. Our results provide new insights into the mechanisms controlling the stationary states and dynamics of ferromagnet/antiferromagnet bilayers, and potentially other frustrated magnetic systems.

  16. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  17. Ba{sub 1-x}K{sub x}Mn{sub 2}As{sub 2}: An Antiferromagnetic Local-Moment Metal

    SciTech Connect

    Pandey, Abhishek; Dhaka, Rajendra; Lamsal, J.: Lee, Yongbin; Anand, V.K.; Kreyssig, Andreas; McQueeney, Robert; Goldman, Alan; Harmon, Bruce; Kaminski, Adam; Johnston, David

    2012-02-23

    The compound BaMn{sub 2}As{sub 2} with the tetragonal ThCr{sub 2}Si{sub 2} structure is a local-moment antiferromagnetic insulator with a Néel temperature T{sub N}=625  K and a large ordered moment μ=3.9μ{sub B}/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T{sub N} and large μ. Ba{sub 1-x}K{sub x}Mn{sub 2}As{sub 2} is thus the first metallic ThCr{sub 2}Si{sub 2}-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba{sub 1-x}K{sub x}Mn{sub 2}As{sub 2} class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T{sub c} superconductivity.

  18. Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2

    SciTech Connect

    Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.

    2015-06-08

    We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2 at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.

  19. Substitution treatment for opioid addicts in Germany

    PubMed Central

    Michels, Ingo Ilja; Stöver, Heino; Gerlach, Ralf

    2007-01-01

    treatment spanning 20 years has meanwhile accumulated a wealth of experience, e.g. in the development of research on health care services, guidelines and the implementation of quality assurance measures. Implementing substitution treatment with concomitant effects and treatment elements such as drug history-taking, dosage setting, co-use of other psychoactive substances (alcohol, benzodiazepines, cocaine), management of 'difficult patient populations', and integration into the social environment has been arranged successfully. Also psychosocial counseling programmes adjuvant to substitution treatment have been established and, in the framework of a pilot project on heroin-based treatment, standardised manuals were developed. Research on allocating opioid users to the 'right' form of therapy at the 'right' point in time is still a challenge, though the pilot project 'heroin-based treatment' brought experience with patients who do not benefit from methadone treatment. There is also expertise in the treatment of specific co-morbidity such as HIV/AIDS, hepatitis and psychiatric disorders. The promotion and involvement of self-help groups plays an important part in the process of successful substitution treatment. PMID:17270059

  20. On the exchange bias in single and polycrystalline ferro/antiferromagnetic bilayers

    SciTech Connect

    Li, Zhanjie; Zhang, Shufeng

    2001-06-01

    By incorporating a random interfacial exchange interaction into the Landau{endash}Lifshitz{endash}Gilbert equation, a unified picture of exchange bias for single crystals, textured crystals, twin structures, and polycrystals of antiferromagnets is presented. It is found that the lateral interaction in the antiferromagnet is a key element governing the exchange bias and magnetization reversal of the ferromagnet. {copyright} 2001 American Institute of Physics.

  1. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  2. Spin-transfer torques in antiferromagnetic textures: Efficiency and quantification method

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo

    2016-08-01

    We formulate a theory of spin-transfer torques in textured antiferromagnets, which covers the small to large limits of the exchange coupling energy relative to the kinetic energy of the intersublattice electron dynamics. Our theory suggests a natural definition of the efficiency of spin-transfer torques in antiferromagnets in terms of well-defined material parameters, revealing that the charge current couples predominantly to the antiferromagnetic order parameter and the sublattice-canting moment in, respectively, the limits of large and small exchange coupling. The effects can be quantified by analyzing the antiferromagnetic spin-wave dispersions in the presence of charge current: in the limit of large exchange coupling the spin-wave Doppler shift always occurs, whereas, in the opposite limit, the only spin-wave modes to react to the charge current are ones that carry a pronounced sublattice-canting moment. The findings offer a framework for understanding and designing spin-transfer torques in antiferromagnets belonging to different classes of sublattice structures such as, e.g., bipartite and layered antiferromagnets.

  3. No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor.

    PubMed

    Bozovic, I; Logvenov, G; Verhoeven, M A J; Caputo, P; Goldobin, E; Geballe, T H

    2003-04-24

    There is still no universally accepted theory of high-temperature superconductivity. Most models assume that doping creates 'holes' in the valence band of an insulating, antiferromagnetic 'parent' compound, and that antiferromagnetism and high-temperature superconductivity are intimately related. If their respective energies are nearly equal, strong antiferromagnetic fluctuations (temporally and spatially restricted antiferromagnetic domains) would be expected in the superconductive phase, and superconducting fluctuations would be expected in the antiferromagnetic phase; the two states should 'mix' over an extended length scale. Here we report that one-unit-cell-thick antiferromagnetic La2CuO4 barrier layers remain highly insulating and completely block a supercurrent; the characteristic decay length is 1 A, indicating that the two phases do not mix. We likewise found that isolated one-unit-cell-thick layers of La1.85Sr0.15CuO4 remain superconducting. The latter further implies that, on doping, new electronic states are created near the middle of the bandgap. These two findings are in conflict with most proposed models, with a few notable exceptions that include postulated spin-charge separation. PMID:12712200

  4. All-Electric Access to the Magnetic-Field-Invariant Magnetization of Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Kosub, Tobias; Kopte, Martin; Radu, Florin; Schmidt, Oliver G.; Makarov, Denys

    2015-08-01

    The rich physics of thin film antiferromagnets can be harnessed for prospective spintronic devices given that all-electric assessment of the tiny uncompensated magnetic moment is achieved. On the example of magnetoelectric antiferromagnetic Cr2O3 , we prove that spinning-current anomalous Hall magnetometry serves as an all-electric method to probe the field-invariant uncompensated magnetization of antiferromagnets. We obtain direct access to the surface magnetization of magnetoelectric antiferromagnets providing a read-out method for ferromagnet-free magnetoelectric memory. Owing to the great sensitivity, the technique bears a strong potential to address the physics of antiferromagnets. Exemplarily, we apply the method to access the criticality of the magnetic transition for an antiferromagnetic thin film. We reveal the presence of field-invariant uncompensated magnetization even in 6-nm-thin IrMn films and clearly distinguish two contributions, of which only the minor one is involved in interfacial magnetic coupling. This approach is likely to advance the fundamental understanding of the anomalous Hall and magnetic proximity effects.

  5. Even-odd effect in short antiferromagnetic Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Machens, A.; Konstantinidis, N. P.; Waldmann, O.; Schneider, I.; Eggert, S.

    2013-04-01

    Motivated by recent experiments on chemically synthesized magnetic molecular chains, we investigate the lowest-lying energy band of short spin-s antiferromagnetic Heisenberg chains focusing on effects of open boundaries. By numerical diagonalization we find that the Landé pattern in the energy levels, i.e., E(S)∝S(S+1) for total spin S, known from, e.g., ring-shaped nanomagnets, can be recovered in odd-membered chains, while strong deviations are found for the lowest excitations in chains with an even number of sites. This particular even-odd effect in the short Heisenberg chains cannot be explained by simple effective Hamiltonians and symmetry arguments. We go beyond these approaches, taking into account quantum fluctuations by means of a path-integral description and the valence bond basis, but the resulting quantum edge-spin picture which is known to work well for long chains does not agree with the numerical results for short chains and cannot explain the even-odd effect. Instead, by analyzing also the classical chain model, we show that spatial fluctuations dominate the physical behavior in short chains, with length N≲eπs, for any spin s. Such short chains are found to display a unique behavior, which is not related to the thermodynamic limit and cannot be described well by theories developed for this regime.

  6. Photo-induced Spin Angular Momentum Transfer into Antiferromagnetic Insulator

    NASA Astrophysics Data System (ADS)

    Fang, Fan; Fan, Yichun; Ma, Xin; Zhu, J.; Li, Q.; Ma, T. P.; Wu, Y. Z.; Chen, Z. H.; Zhao, H. B.; Luepke, Gunter; College of William and Mary Team; Department of Physics, Fudan University Team; Department of Optical Science and Engineering, Fudan University Team

    2014-03-01

    Spin angular momentum transfer into antiferromagnetic(AFM) insulator is observed in single crystalline Fe/CoO/MgO(001) heterostructure by time-resolved magneto-optical Kerr effect (TR-MOKE). The transfer process is mediated by the Heisenberg exchange coupling between Fe and CoO spins. Below the Neel temperature(TN) of CoO, the fact that effective Gilbert damping parameter α is independent of external magnetic field and it is enhanced with respect to the intrinsic damping in Fe/MgO, indicates that the damping process involves both the intrinsic spin relaxation and the transfer of Fe spin angular momentum to CoO spins via FM-AFM exchange coupling and then into the lattice by spin-orbit coupling. The work at the College of William and Mary was sponsored by the Office of Naval Research. The work at Department of Physics, Fudan, was supported by NSFC. The work at Department of Optical Science and Engineering, Fudan was supported by NSFC and NCET.

  7. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices

    NASA Astrophysics Data System (ADS)

    Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.

    2016-04-01

    Despite their inherently non-equilibrium nature, living systems can self-organize in highly ordered collective states that share striking similarities with the thermodynamic equilibrium phases of conventional condensed-matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies, microbial suspensions and tissues to the coherent macro-scale dynamics in schools of fish and flocks of birds. Yet, the generic mathematical principles that govern the emergence of structure in such artificial and biological systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct patterns characterized by ferro- and antiferromagnetic order. The coupling between adjacent vortices can be controlled by tuning the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents, reminiscent of those in quantum systems. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.

  8. Antiferromagnetic topological superconductor and electrically controllable Majorana fermions.

    PubMed

    Ezawa, Motohiko

    2015-02-01

    We investigate the realization of a topological superconductor in a generic bucked honeycomb system equipped with four types of mass-generating terms, where the superconductor gap is introduced by attaching the honeycomb system to an s-wave superconductor. Constructing the topological phase diagram, we show that Majorana modes are formed in the phase boundary. In particular, we analyze the honeycomb system with antiferromagnetic order in the presence of perpendicular electric field E(z). It becomes topological for |E(z)|>E(z)(cr) and trivial for |E(z)|

  9. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE PAGESBeta

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  10. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    PubMed Central

    Gu, Mingqiang; Rondinelli, James M.

    2016-01-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices. PMID:27126354

  11. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan

    2016-08-01

    A magnetic skyrmion is a topological magnetization structure with a nanometric size and a well-defined swirling spin distribution, which is anticipated to be an essential building block for novel skyrmion-based device applications. We study the motion of magnetic skyrmions in multilayer synthetic antiferromagnetic (SAF) racetracks as well as in conventional monolayer ferromagnetic (FM) racetracks at finite temperature. There is an odd-even effect of the constituent FM layer number on the skyrmion Hall effect (SkHE). Namely, due to the suppression of the SkHE, the magnetic skyrmion has no transverse motion in multilayer SAF racetracks packed with even FM layers. It is shown that a moving magnetic skyrmion is stable even at room temperature (T =300 K) in a bilayer SAF racetrack but it is destructed at T =100 K in a monolayer FM racetrack. Our results indicate that the SAF structures are reliable and promising candidates for future applications in skyrmion electronics and skyrmion spintronics.

  12. Itinerant and localized magnetization dynamics in antiferromagnetic Ho

    DOE PAGESBeta

    Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; et al

    2016-06-21

    Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flipmore » process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less

  13. Kinetically inhibited order in a diamond-lattice antiferromagnet.

    PubMed

    MacDougall, Gregory J; Gout, Delphine; Zarestky, Jerel L; Ehlers, Georg; Podlesnyak, Andrey; McGuire, Michael A; Mandrus, David; Nagler, Stephen E

    2011-09-20

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl(2)O(4), a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T(∗) = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T(∗) had previously been associated with the onset of glassy behavior. Our new results suggest instead that T(∗) signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials. PMID:21896723

  14. Antiferromagnetic Ordering of Mn(III)F(salen)

    NASA Astrophysics Data System (ADS)

    Meisel, M. W.; Wang, Tong; Brown, S. E.; Botko, M.; Čižmár, E.; Risset, O. N.; Talham, D. R.

    2014-03-01

    Due to a report suggesting Mn(III)F(salen), salen = H14C16N2O2, is an S = 2 Haldane system with J /kB = 50 K and no long-range order down to 2 K based on standard magnetometry studies,[2] specific heat and NMR measurements were performed. Using small single crystals, specific heat studies revealed the presence of an anomaly near 23 K, and this response was robust in fields up to 9 T. The 1H NMR results performed on a single crystal in 1 T revealed a sharp transition characteristic of antiferromagnetic ordering at 22.5 K. Measuring the magnetic response of the same single crystal in a commercial magnetometer reveals the presence of a subtle feature, near 23 K, that is not resolved with as-grown, randomlly oriented microcrystalline samples. These findings provide insight into the results obtained in torque magnetometry, EPR, and neutron scattering data.[3] Supported by NSF via DMR-1202033 (MWM), DMR-1105531 (SEB), DMR-1005581 (DRT), and DMR-1157490 (NHMFL), by the Slovak Agency for Research and Development via APVV-0132-11 (EČ), and by the Fulbright Commission of the Slovak Republic (MWM).

  15. Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles

    PubMed Central

    Vasilakaki, Marianna; Trohidou, Kalliopi N.; Nogués, Josep

    2015-01-01

    Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, HC, and loop shift, Hex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while HC and Hex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing Hex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications. PMID:25872473

  16. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  17. Distinct magnetic phase transition at the surface of an antiferromagnet.

    PubMed

    Langridge, S; Watson, G M; Gibbs, D; Betouras, J J; Gidopoulos, N I; Pollmann, F; Long, M W; Vettier, C; Lander, G H

    2014-04-25

    In the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic scattering, we have observed the near-surface behavior of uranium dioxide. UO2 is a noncollinear, triple-q, antiferromagnet with the U ions on a face-centered cubic lattice. Theoretical investigations establish that at the surface the energy increase-due to the lost bonds-is reduced when the spins near the surface rotate, gradually losing their component normal to the surface. At the surface the lowest-energy spin configuration has a double-q (planar) structure. With increasing temperature, thermal fluctuations saturate the in-plane crystal field anisotropy at the surface, leading to soft excitations that have ferromagnetic XY character and are decoupled from the bulk. The structure factor of a finite two-dimensional XY model fits the experimental data well for several orders of magnitude of the scattered intensity. Our results support a distinct magnetic transition at the surface in the Kosterlitz-Thouless universality class. PMID:24815664

  18. Jamming Behavior of Domain Walls in an Antiferromagnetic Film

    NASA Astrophysics Data System (ADS)

    Sinha, Sunil

    2014-03-01

    Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.

  19. Critical frontier of the triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.

    2004-03-01

    We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.

  20. Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    SciTech Connect

    MacDougall, Gregory J; Gout, Delphine J; Zarestky, Jerel L; Ehlers, Georg; Podlesnyak, Andrey A; McGuire, Michael A; Mandrus, David; Nagler, Stephen E

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

  1. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.

  2. Reflective optical bi-stability of antiferromagnetic films

    NASA Astrophysics Data System (ADS)

    Bai, J.; Fu, S. F.; Zhou, S.; Wang, X. Z.

    2011-10-01

    We investigate one magnetically nonlinear response of antiferromagnetic (AF) films to incident electromagnetic waves, or the reflective optical bi-stability (ROB). Such geometry is used, where the AF anisotropy axis and external static magnetic field both are parallel to the film surfaces and normal to the incident plane. For TE incident waves with the electric component transverse to the incident plane, the ROB of the AF film with the absorption is calculated, but the case of TM incident waves is neglected since no magnetic nonlinearity is induced in this geometry. The bi-stability is completely different in the two resonant-frequency vicinities. Two kinds of bi-stability are found in the higher vicinity, and their features versus incident power are opposite. We also find that there are critical incident angle and critical film thickness for the existence of bi-stability. The bi-stability disappears when the film thickness or incident angle exceeds its critical value. Because the properties of bi-stable reflection sensitively depend on the external field and the incident angle, this bi-stability can be easily modulated by means of changing these quantities.

  3. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices

    PubMed Central

    Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.

    2016-01-01

    Despite their inherent non-equilibrium nature1, living systems can self-organize in highly ordered collective states2,3 that share striking similarities with the thermodynamic equilibrium phases4,5 of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies6,7, microbial suspensions8,9 and tissues10 to the coherent macro-scale dynamics in schools of fish11 and flocks of birds12. Yet, the generic mathematical principles that govern the emergence of structure in such artificial13 and biological6–9,14 systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: Through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling through changes of the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents15,16, reminiscent of those in quantum systems17–19. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems. PMID:27213004

  4. Kinetically inhibited order in a diamond-lattice antiferromagnet

    PubMed Central

    MacDougall, Gregory J.; Gout, Delphine; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.

    2011-01-01

    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T∗ = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T∗ had previously been associated with the onset of glassy behavior. Our new results suggest instead that T∗ signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials. PMID:21896723

  5. Kondo bahavior in antiferromagnetic NpPdSn

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Prokes, K.; Griveau, J.-C.; Jardin, R.; Colineau, E.; Caciuffo, R.; Eloirdi, R.; Gofryk, K.

    Actinide-based intermetallics show a large variety of exotic physical phenomena mainly coming from 5f hybridization with both on-site and neighboring ligand states. Depending on the strength of these process unusual behaviors such as long-range magnetic order, Kondo effect, heavy-fermion ground state, valence fluctuations, and/or superconductivity have been observed. Here we report results of our extensive studies on NpPdSn. The compound crystalizes in hexagonal ZrNiAl-type of crystal structure and is studied by means of x-ray and neutron diffraction, magnetization, heat capacity, electrical resistivity, and thermoelectric power measurements, performed over a wide range of temperatures and applied magnetic fields. All the results revealed Kondo lattice behavior and antiferromagnetic ordering below 19 K. NpPdSn can be classified as a moderately enhanced heavy-fermion system, one of very few known amidst Np-based intermetallics. Work at Idaho National Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  6. The Spin-flop Transition in Antiferromagnetic Superlattices

    NASA Astrophysics Data System (ADS)

    Te Velthuis, S. G. E.; Jiang, J. S.; Bader, S. D.; Felcher, G. P.

    2002-03-01

    An antiferromagnetically (AF) coupled Fe/Cr(211) superlattice with uniaxial magnetic anisotropy has been used to study the spin-flop transition in an AF with a finite number of layers. It has been predicted that, at a field a lower than the bulk spin-flop field, a domain wall is created at the surface and rapidly propagates toward the center of the sublattice^1. We present extensive polarized neutron reflectivity measurements that give the evolution of the magnetic configuration during the spin-flop transition and prove directly the existence of such a state, in which the superlattice splits in two anti-phase, AF domains. Magneto-optic Kerr measurements with the field tilted from the easy axis show that the spin-flop is stable over a finite angular region. In contrast to the situation for a bulk AF, the first-order nature of the spin-flop transition is preserved off-axis, but we report that the detailed character of the transition is altered. ^1R.W. Wang, D.L. Mills, Eric E. Fullerton, J.E. Mattson, and S.D. Bader, Phys. Rev. Lett. 72 (1994) 920.

  7. Structural and magnetic properties of transition metal substituted BaFe2As2 compounds studied by x-ray and neutron scattering

    SciTech Connect

    Kim, Min Gyu

    2012-01-01

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both x-ray and neutron scattering techniques on different transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  8. Magnons and fractons in the diluted antiferromagnet MnxZn1-xF2

    NASA Astrophysics Data System (ADS)

    Uemura, Y. J.; Birgeneau, R. J.

    1987-11-01

    We report high-resolution inelastic-neutron-scattering studies of the spin dynamics in the diluted near-Heisenberg antiferromagnet MnxZn1-xF2 with x=0.75 and 0.50. The x=0.75 experiments reproduce previous results by Coombs et al. [J. Phys. C 9, 2167 (1976)], albeit with much higher resolution. In that case the excitations may be described as spin waves which broaden progressively as the wave vector approaches the zone-boundary value qZB. However, even at qZB the excitation is underdamped. More interesting behavior is observed in the x=0.50 sample. At long wavelengths, the response function S(q,ω) is dominated by a sharp spin-wave peak; however, there is a weak ω-3 tail extending to high energies. With increasing wave vector the sharp peak diminishes in intensity while a broad overdamped component, which is well described by a damped-harmonic-oscillator (DHO) function, grows in intensity. The crossover from a dominant spin wave to a dominant DHO response occurs for q~0.3qZB. In energy space, this phenomenon manifests itself as a crossover from propagating low-energy spin waves to localized high-energy excitations. An independent measurement of elastic diffuse magnetic scattering from the x=0.50 sample yields the percolation correlation length ξp associated with the dilution as ξ-1p=0.3qZB. This demonstrates that the crossover in the dynamics occurs at the length scale characteristic of the static geometrical disorder. The results are thence related to the magnon-fracton crossover predicted by recent theories for percolation networks.

  9. Bipolar disorder

    MedlinePlus

    Manic depression; Bipolar affective disorder; Mood disorder - bipolar; Manic depressive disorder ... happiness and high activity or energy (mania) or depression and low activity or energy (depression). The following ...

  10. Antiferromagnetic Kondo lattice in the layered compounds Re2NiGa9Ge2 (Re =Ce, Pr, Sm)

    NASA Astrophysics Data System (ADS)

    Zhu, Yanglin; Liu, Jinyu; Hu, Jin; Adams, Daniel; Spinu, Leonard; Mao, Zhiqiang

    Intermetallic compounds containing rare-earth/actinide elements with 4f/5f electrons have formed a special family of strongly correlated materials, i.e. heavy fermion systems. We have recently found a new layered rare earth intermetallic system showing moderate heavy fermion behavior: Re2NiGa9Ge2 (Re =Ce, Sm, Pr). The Re =Ce and Sm members were previously synthesized, while their electronic properties have not been reported. We have recently grown single crystals of Re2NiGa9Ge2 (Re =Ce, Sm, Pr) and characterized their electronic and magnetic properties. We find all these materials are antiferromagnetic, with TN = 2.5 K, 5 K, 3.4 K respectively for Re =Ce, Pr and Sm. Moreover, they also exhibit large values of electronic specific coefficient: γ ~ 101 mJ mol-Ce-1 K-2 for Re =Ce, 368 mJ mol-Pr-1 K-2 for Re =Pr, and 196.4 mJ mol-Sm-1 K-2 for Re =Sm, indicating enhanced Kondo effect and the presence of AFM Kondo lattice. Our findings suggest that Re2NiGa9Ge2 (Re =Ce, Pr, Sm) could be interesting candidate materials for exploring novel exotic properties of correlated electrons through external parameter tuning such as chemical substitution and pressure.

  11. Proximity of Antiferromagnetism and d-wave superconductivity in κ-BEDT-TTF: A V-CPT study

    NASA Astrophysics Data System (ADS)

    Sahebsara, Peyman; Senechal, David

    2005-03-01

    The organic conductors κ-(BEDT-TTF)2X (X=Cu(NCS)2, Cu[N(CN)2]Br and Cu[N(CN)2]Cl) have attracted attention because the superconducting phase exists in the vicinity of an antiferromagntic insulating phase [1]. The salts with the first two substitutions are superconductors with critical temperature near 10K. The third one is a commensurate insulator, which transits to a superconducting phase at ambient pressure. We use the 2D, half-filled Hubbard model on a triangular lattice to describe these compounds. The ground state antiferromagnetism and superconductivity is investigated using variational cluster perturbation theory (V-CPT) [2-3]. The on-site repulsion U and the diagonal hopping t' are varied and a phase diagram of the κ-family of BEDT is obtained. [1] H. Kino and H. Fukuyama, J. Phys. Soc. Jpn. 65 (1996) 2158. [2] M. Potthoff, M. Aichorn and C. Dahnken, Phys. Rev. Lett. 91 (2003) 206402. [3] D. Senechal and A.-M. S. Tremblay, cond-mat/0410162

  12. Antiferromagnetic metallic state: A transport and thermodynamic study of Ca3(Ru1-xCrx)2O7*

    NASA Astrophysics Data System (ADS)

    Durairaj, V.; Chikara, S.; Cao, G.; Schlottmann, P.

    2007-03-01

    Among the variety of exciting physical properties, a signature feature of the bilayered Ca3Ru2O7 is the antiferromagnetic metallic (AFM) state that lies between a Neel temperature, TN=56 K and a Mott-like transition (MIT), TMI=48 K. The results of our recent thermodynamic and transport study of single crystal Ca3(Ru1-xCrx)2O7 (0<=x<=0.20) reveal that the temperature regime for the AFM state is significantly broadened with TMI and TN being pushed to lower and higher temperatures, respectively, as Cr doping (x) increases. In addition, the magnetic easy axis for magnetization moves gradually away from a-axis to b-axis as x increases and at x=0.20, the magnetic anisotropy in the basal plane diminishes. This reduced spin polarization along the easy axis is promptly reflected in the less pronounced negative magnetoresistance as x increases. Furthermore, the DC current--voltage characteristics show the S-shaped negative differential resistivity for x<=0.17. As seen in the pure compound, observed non-ohmic behavior is restricted to the AF nonmetallic region. All results are presented along with comparisons drawn from related systems such as perovskite CaRu1-xCrxO3 where highly anisotropic magnetism is induced by Cr substitution. * This work was supported by NSF grants DMR-0240813 and DMR-0552267.

  13. Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5

    SciTech Connect

    Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet; Tian, Wei; Ni, N; Cava, R J; McQueeney, Robert J; Goldman, Alan I; Kreyssig, Andreas

    2014-09-01

    Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of the Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.

  14. Raman scattering study on the hidden order and antiferromagnetic phases in URu2-xFexSi2

    NASA Astrophysics Data System (ADS)

    Kung, Hsiang-Hsi; Ran, Sheng; Kanchanavatee, Noravee; Lee, Alexander; Krapivin, Viktor; Haule, Kristjan; Maple, M. Brian; Blumberg, Girsh

    The heavy fermion compound URu2Si2 possesses an unusual ground state known as the ``hidden order'' (HO) phase below T = 17 . 5 K, which evolves into an large moment antiferromagnetic (LMAFM) phase under pressure. A recent Raman scattering study shows that an A2 g symmetry (D4 h) in-gap mode emerges in the HO phase, characterizing the excitation from a chirality density wave. Here, we report Raman scattering results for single crystal URu2-xFexSi2 with x <= 0 . 2 , where the Fe substitution acts as chemical pressure, shifting the system's ground state from HO to LMAFM. We found that the A2 g mode softens with doping, vanishes at the HO and LMAFM phase boundary, then re-emerges and hardens with doping in the LMAFM phase. The relations between the A2 g mode energy and the strength of the HO/LMAFM order parameters will be discussed in this talk. GB and HHK acknowledge support from DOE BES Award DE-SC0005463. AL and VK acknowledge NSF Award DMR-1104884. KH acknowledges NSF Award DMR-1405303. MBM, SR and NK acknowledge DOE BES Award DE-FG02-04ER46105 and NSF Award DMR 1206553.

  15. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  18. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Jaya, S. Mathi

    2015-06-01

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  19. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    SciTech Connect

    Jaiganesh, G. Jaya, S. Mathi

    2015-06-24

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  20. Magnetostructural correlations in the antiferromagnetic Co{sub 2-x} Cu{sub x}(OH)AsO{sub 4} (x=0 and 0.3) phases

    SciTech Connect

    Pedro, I. de; Rojo, J.M.; Arriortua, M.I.

    2011-08-15

    The Co{sub 2-x}Cu{sub x}(OH)AsO{sub 4} (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) A, b=8.559(2) A, c=6.039(1) A and a=8.316(1) A, b=8.523(2) A, c=6.047(1) A for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O{sub 5}-trigonal bipyramid dimers and M(2)O{sub 6}-octahedral chains (M=Co and Cu) are present. Co{sub 2}(OH)AsO{sub 4} shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co{sup 2+} is partially substituted by Cu{sup 2+}ions, Co{sub 1.7}Cu{sub 0.3}(OH)AsO{sub 4}, the ferromagnetic component observed in Co{sub 2}(OH)AsO{sub 4} disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This {lambda}-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx{sup 2}-y{sup 2} orbital and the absence of overlap between neighbour ions. - Graphical abstract: Schematic drawing of the Co{sub 2-x}Cu{sub x}(OH)AsO{sub 4} (x=0 and 0.3) crystal structure view along the |0 1 0| direction. Polyhedra are occupied by the M(II) ions (M=Co and Cu) and the AsO{sub 4} groups are represented by tetrahedra. Open circles correspond to the oxygen atoms, and small circles show the hydrogen atoms. Highlights: > Synthesis of a new adamite-type compound, Co{sub 1.7}Cu{sub 0.3}(OH)AsO{sub 4}. > Single crystal structure

  1. Bipolar disorder

    MedlinePlus

    Manic depression; Bipolar affective disorder; Mood disorder - bipolar; Manic depressive disorder ... Bipolar disorder affects men and women equally. It most often starts between ages 15 and 25. The exact ...

  2. Cyclothymic disorder

    MedlinePlus

    ... mental disorder. It is a mild form of bipolar disorder (manic depressive illness), in which a person has ... causes of cyclothymic disorder are unknown. Major depression, bipolar disorder, and cyclothymia often occur together in families. This ...

  3. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  4. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... as substituted phenyl azo substituted phenyl esters (PMNs P-95-655, P-95-782 and P-95-871)...

  5. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  6. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    SciTech Connect

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-15

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  7. Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Nsofini, J.

    2015-05-01

    In recent years, studies on cyclic molecular nanomagnets have captivated the attention of researchers. These magnets are finite in size and contain very large spins. They are interesting because they possess macroscopic quantum tunneling of Néel vectors. For antiferromagnetic molecular nanomagnets with finite number of even-numbered coupled spins, tunneling involves two classical localized Néel ground states separated by a magnetic energy barrier. The question is: can such phenomena be observed in nanomagnets with odd number of magnetic ions? The answer is not directly obvious because cyclic chains with odd-numbered coupled spins are frustrated as one cannot obtain a perfect Néel order. These frustrated spins can indeed be observed experimentally, so they are of interest. In this letter, we theoretically investigate macroscopic quantum tunneling in this odd spin system with arbitrary spins s, in the presence of a magnetic field applied along the plane of the magnet. In contrast to systems with an even-numbered coupled spins, the ground state of the cyclic odd-spin system contains a topological soliton due to spin frustration. Thus, the classical ground state is 2N-fold degenerate as the soliton can be placed anywhere along the ring with total S_z=+/- s . Small quantum fluctuations delocalize the soliton with a formation of an energy band. We obtain this energy band using degenerate perturbation theory at order 2s. We show that the soliton ground state is chiral for half-odd integer spins and non-chiral for integer spins. From the structure of the energy band we infer that as the value of the spin increases the inelastic polarized neutron-scattering intensity may increase or decrease depending on the strengths of the parameters of the Hamiltonian.

  8. Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.

    2015-08-01

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.

  9. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    SciTech Connect

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TN in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.

  10. Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets

    DOE PAGESBeta

    Johnston, David C.

    2015-02-27

    In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TNmore » in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.« less

  11. Nematic antiferromagnetic states in bulk FeSe

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Lu, Zhong-Yi; Xiang, Tao

    2016-05-01

    The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.

  12. Low frequency spin dynamics in a quantum Hall canted antiferromagnet

    NASA Astrophysics Data System (ADS)

    Muraki, Koji

    2007-03-01

    In quantum Hall (QH) systems, Coulomb interactions combined with the macroscopic degeneracy of Landau levels (LLs) drive the electron system into strongly correlated phases as illustrated by the series of fractional QH effects and may also lead to various forms of broken symmetry dictated by the LL filing factor ν. When two layers of such electron systems are closely separated by a thin tunnel barrier, the addition of interlayer interactions and the layer degree of freedom brings about even richer electronic phases, opening up possibilities for different classes of symmetry breaking. In particular, at total filling factor νT = 2, where the two of the four lowest LLs split by the Zeeman and interlayer tunnel couplings are occupied, the competing degrees of freedom due to the layer and spin are predicted to lead to rich magnetic phases. Here we present results of resistively detected nuclear spin relaxation measurements in closely separated electron systems that reveal strong low-frequency spin fluctuations in the QH regime at νT = 2 [1]. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 mK. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode (i.e., a Goldstone mode) and is a hallmark of the theoretically predicted canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with broken planar spin rotational symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit. [1] N. Kumada, K. Muraki, and Y. Hirayama, Science 313, 329 (2006).

  13. Pressure-induced amorphization of antiferromagnetic FePO 4

    NASA Astrophysics Data System (ADS)

    Pasternak, M. P.; Rozenberg, G. Kh.; Milner, A. P.; Amanowicz, M.; Brister, K. E.; Taylor, R. D.

    1998-03-01

    In this paper we describe for the first time an unusual phenomenon, occurring in FePO 4 ( TN=25 K), where pressure drives the crystalline low-pressure phase (I) into two, coexisting antiferromagnetic states; one amorphous designated as IIa, the other crystalline (IIb) with an enhanced coordination number. This is unlike the case of berlinite (AlPO 4), which completely amorphizes above 15 GPa. Measurements were carried out with Mössbauer Spectroscopy (MS) and X-ray diffraction (XRD) at CHESS, over the pressure range 0-30 GPa. XRD shows that the double transformation starts at ˜2 GPa reaching saturation at 7 GPa. MS, however, show that the FePO 4-I phase coexists to the highest pressure, indicating possible formation of clusters with sizes undetected by XRD. The abundance of the FePO 4 IIa and IIb phases are about equal. Both XRD and the new TN (=60 K) value obtained by MS, show that the FePO 4-IIa phase is isostructural to CrVO 4. No change is observed in the relative abundance of the three phases at P>7 GPa in which the I-phase constitutes about 10% of the total. The TN value of the FePO 4-II phases increases with increasing pressure, from 50 K at 2.5 GPa to 65 at 25 GPa. The pressure transitions at room temperature are not reversible; after pressure release to ambient value, the FePO 4-I is completely restored only after heat treatment in air at T=700°C.

  14. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  15. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  16. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    NASA Astrophysics Data System (ADS)

    Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.

    2016-06-01

    Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.

  17. Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems

    PubMed Central

    Li, Q.; Liang, J. H.; Luo, Y. M.; Ding, Z.; Gu, T.; Hu, Z.; Hua, C. Y.; Lin, H.-J.; Pi, T. W.; Kang, S. P.; Won, C.; Wu, Y. Z.

    2016-01-01

    Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices. PMID:26932164

  18. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    PubMed Central

    Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.

    2016-01-01

    Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II–VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets. PMID:27279433

  19. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe.

    PubMed

    Kriegner, D; Výborný, K; Olejník, K; Reichlová, H; Novák, V; Marti, X; Gazquez, J; Saidl, V; Němec, P; Volobuev, V V; Springholz, G; Holý, V; Jungwirth, T

    2016-01-01

    Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets. PMID:27279433

  20. Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge

    NASA Astrophysics Data System (ADS)

    Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru

    2016-06-01

    The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.

  1. Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems.

    PubMed

    Li, Q; Liang, J H; Luo, Y M; Ding, Z; Gu, T; Hu, Z; Hua, C Y; Lin, H-J; Pi, T W; Kang, S P; Won, C; Wu, Y Z

    2016-01-01

    Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices. PMID:26932164

  2. Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems

    NASA Astrophysics Data System (ADS)

    Li, Q.; Liang, J. H.; Luo, Y. M.; Ding, Z.; Gu, T.; Hu, Z.; Hua, C. Y.; Lin, H.-J.; Pi, T. W.; Kang, S. P.; Won, C.; Wu, Y. Z.

    2016-03-01

    Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices.

  3. Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn2As2

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Johnston, D. C.

    2016-07-01

    We report magnetic susceptibility χ , isothermal magnetization M , heat capacity Cp, and electrical resistivity ρ measurements on undoped EuMn2As2 and K-doped Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 single crystals with the trigonal CaAl2Si2 -type structure as a function of temperature T and magnetic field H . EuMn2As2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu+2 spins S =7/2 at TN 1=15 K from Cp(T ) and χ (T ) data with a likely spin-reorientation transition at TN 2=5.0 K. The Mn+23 d5 spins-5/2 exhibit AFM ordering at TN=142 K from all three types of measurements. The M (H ) isotherm and χ (T ) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu0.96K0.04Mn2As2 is sufficient to induce a metallic ground state. Evidence is found for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn2As2 versus both T and H . For metallic Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 , an anomalous S-shape T dependence of ρ related to the Mn magnetism is found. Upon cooling from 200 K, ρ exhibits a strong negative curvature, reaches maximum positive slope at the Mn TN≈150 K, and then continues to decrease but more slowly below TN. This suggests that dynamic short-range AFM order of the Mn spins above the Mn TN strongly suppresses the resistivity, contrary to the conventional decrease of ρ that is only observed upon cooling below TN of an antiferromagnet.

  4. [Pregnancy and thyroid disorders].

    PubMed

    Bricaire, L; Groussin, L

    2015-03-01

    Thyroid disorders are frequent among women, with a few specificities during pregnancy. Recent guidelines from the Endocrine Society concerning the management of thyroid disorders during pregnancy have been published, one year after the guidelines published by the American Thyroid Association. Iodine deficiency in France can increase the development of thyroid disorders during pregnancy. Hypothyroidism during pregnancy must be correctly substituted to avoid fetal complications. Maternal hyperthyroidism should be explored and monitored following a specific defined modality to discuss the necessity of a treatment and to prevent maternal and fetal complications. In case of thyroid nodes or cancer, the follow-up will not differ from non-pregnant women. However in most of cases, involvement of a multidisciplinay team might be necessary. PMID:25194220

  5. Autism spectrum disorder

    MedlinePlus

    Autism; Autistic disorder; Asperger syndrome; Childhood disintegrative disorder; Pervasive developmental disorder ... to be regarded as separate disorders: Autistic disorder Asperger syndrome Childhood disintegrative disorder Pervasive developmental disorder

  6. Percolation analysis of a disordered spinor Bose gas

    NASA Astrophysics Data System (ADS)

    Nabi, Sk Noor; Basu, Saurabh

    2016-06-01

    We study the effects of an on-site disorder potential in a gas of spinor (spin-1) ultracold atoms loaded in an optical lattice corresponding to both ferromagnetic and antiferromagnetic spin-dependent interactions. Starting with a disordered spinor Bose–Hubbard model (SBHM) on a two-dimensional square lattice, we observe the appearance of a Bose glass phase using the fraction of the lattice sites having finite superfluid order parameter and non integer local densities as an indicator. A precise distinction between three different types of phases namely, superfluid, Mott insulator and Bose glass is done via a percolation analysis thereby demonstrating that a reliable enumeration of phases is possible at particular values of the parameters of the SBHM. Finally, we present the phase diagram based on the above information for both antiferromagnetic and ferromagnetic interactions.

  7. Hubbard one-particle Green function in the antiferromagnetic phase

    NASA Astrophysics Data System (ADS)

    Polatsek, G.; Becker, K. W.

    1997-01-01

    An analytic approach is presented of electronic one-particle spectra of the one-band Hubbard model at half filling in the antiferromagnetic phase. Starting from the strong-coupling regime U>>:t, a projection technique is used to set up self-consistent coupled equations for the electron Green function, which are valid down to values U~t. The self-consistent equation for the hole propagator is a direct generalization of the one found from the t-J model. This gives further support to the ``string'' picture, where propagation of holes creates strings of overturned spins with which the holes interact. In the present work hopping of holes (or electrons) with up spin on the down sublattice is also taken into acount, as well as transitions between the lower and upper Hubbard bands. These are shown to change significantly the incoherent part of the t-J model spectra, by smearing out the shake-off peaks, reminiscent of higher bound string states due to multispin scattering. Coherent (quasiparticle) peaks exist at the band edges, on both sides of the insulating gap. We show that with decreasing U the quasiparticle concept loses its meaning for wave vectors at the center of the magnetic Brillouin zone (MBZ). For large values of U the dispersion of the quasiparticle is found to scale with its band width, which is of order J. Extrema are always found at k=(π/2,π/2). The weight of the quasiparticle at this k value decreases logarithmically with increasing U. In the strong-coupling limit the spectrum tends to be symmetric, i.e., to become an even function of the frequency around the chemical potential, for any wave vector. For small values of U the dispersion at the edge of the MBZ flattens away, as expected when approaching the noninteracting limit. The spectral function in this regime, for wave vectors away from the edge of the MBZ, is concentrated mainly on one side of the chemical potential.

  8. Antiferromagnetic ordering in NdAuGe compound

    SciTech Connect

    Bashir, A. K. H.; Tchoula Tchokonté, M. B.; Snyman, J. L.; Sondezi, B. M.; Strydom, A. M.

    2014-05-07

    The compound NdAuGe was investigated by means of electrical resistivity, ρ(T), magnetic susceptibility, χ(T), magnetization, σ(μ{sub 0}H), and specific heat, C{sub p}(T), measurements. Powder X-ray diffraction studies confirm a hexagonal LiGaGe-type structure with space group P6{sub 3}mc (No. 186). ρ(T) data show normal metallic behaviour and a tendency toward saturation at higher temperatures. The low temperature ρ(T) data indicate a phase transition around 3.8 K. The low field dc χ(T) data show an antiferromagnetic anomaly associated with a Néel temperature at T{sub N} = 3.7 K close to the phase transition observed in ρ(T) results. At higher temperatures, χ(T) follows the paramagnetic Curie-Weiss behaviour with an effective magnetic moment μ{sub eff}=3.546(4) μ{sub B} and a paramagnetic Weiss temperature of θ{sub p}=−6.1(4) K. The value obtained for μ{sub eff} is close to the value of 3.62 μ{sub B} expected for the free Nd{sup 3+}-ion. σ(μ{sub 0}H) shows a linear behaviour with applied field up to 3 T with an evidence of metamagnetic behaviour above 3 T. C{sub p}(T) confirms the magnetic phase transition at T{sub N} = 3.4 K. The 4f-electron specific heat indicates a Schottky-type anomaly around 16.5 K with energy splitting Δ{sub 1}=25.8(4) K and Δ{sub 2}=50.7(4) K of the Nd{sup 3+} (J = 9/2) multiplet, that are associated with, respectively, the first and second excited states of the Nd{sup 3+}-ion.

  9. Anomalous net magnetization in collinear antiferromagnets with uncompensated surfaces

    NASA Astrophysics Data System (ADS)

    Hellman, Frances

    2015-03-01

    Like ferromagnets (FM), antiferromagnets (AFM) exhibit spontaneous long-range spin order below a transition temperature. The traditional FM order parameter is the spontaneous magnetization, while that of a simple AFM is the staggered magnetization, sometimes called the Neel vector N. The net magnetization M of a perfect AFM is (seemingly) zero at all temperatures T; however, defects such as vacancies, grain boundaries, and even surfaces create an M(T) which has a non-trivial relationship to the staggered magnetization N(T), even in ideal systems. As a specific example, we consider AFM CoO, which consists of AFM-coupled FM (111) planes; (111)-oriented epitaxial films with an odd number of planes will exhibit non-zero M due to uncompensated surfaces. These uncompensated surfaces were used to produce an artificially-structured FM semiconductor using epitaxial layers of AFM CoO with a doped semiconductor Al:ZnO (AZO). Both M(T) and the anomalous Hall effect show oscillatory behavior with thickness of either CoO (odd vs even numbers of planes) or AZO (~1 nm RKKY-like oscillations related to the AZO Fermi wavevector due to electron-induced coupling between Co moments at its two CoO surfaces). Mean field theory and Monte Carlo simulations show that M(T) of collinear AFM such as CoO with uncompensated surfaces exhibits T-dependence unlike that of N(T), of the absolute value of its individual layers, or m(T) of any single atomic plane including the uncompensated surface, due to incomplete cancellations of different planes. This phenomenon is valid even in the limit of semi-infinite systems; it is a topological state due to the presence of a free surface. Modifications of surface exchange coupling (leading to ordinary or extraordinary transitions), due to electron correlations in these Mott insulators, changes in crystal fields, spin-orbit coupling, or an incomplete (rough) surface, result in compensation points and highly non-Brillouin-like M(T). Work supported by the U

  10. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-01

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction’s perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule’s magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs’ electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ˜50% of the interatomic exchange coupling for the FM electrodes.

  11. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes. PMID:26159362

  12. Electric Field Control of the Resistance of Multiferroic Tunnel Junctions with Magnetoelectric Antiferromagnetic Barriers

    NASA Astrophysics Data System (ADS)

    Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.

    2016-06-01

    Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.

  13. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Železný, J.; Gao, H.; Výborný, K.; Zemen, J.; Mašek, J.; Manchon, Aurélien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-10-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  14. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature

    NASA Astrophysics Data System (ADS)

    Barker, Joseph; Tretiakov, Oleg A.

    2016-04-01

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects.

  15. Dynamic selective switching in antiferromagnetically-coupled bilayers close to the spin reorientation transition

    SciTech Connect

    Fernández-Pacheco, A. Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.

    2014-09-01

    We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.

  16. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature.

    PubMed

    Barker, Joseph; Tretiakov, Oleg A

    2016-04-01

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects. PMID:27104724

  17. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn

    NASA Astrophysics Data System (ADS)

    Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.

    2015-12-01

    We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study, we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac current in a NiFe/IrMn bilayer. At room temperature, we observe antidampinglike spin torque acting on the NiFe ferromagnet, generated by an in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to the strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.

  18. Complex antiferromagnetic order in the Cd6 R approximants to the i- R-Cd quasicrystals

    NASA Astrophysics Data System (ADS)

    Kreyssig, A.; Beutier, G.; Hoffmann, J.-U.; Kong, T.; Kim, M. G.; Tucker, G. S.; Ueland, B. G.; Hiroto, T.; Liu, D.; Yamada, T.; Boissieu, M. De; Tamura, R.; Bud'Ko, S. L.; Canfield, P. C.; Goldman, A. I.

    2014-03-01

    The observation of antiferromagnetic order in the Cd6 R (R = rare earths) approximants to the recently discovered related i- R-Cd quasicrystals provides new and exciting opportunities to unravel the nature of magnetism in these materials. We present single-crystal studies employing x-ray and neutron scattering that revealed complex antiferromagnetism in the Cd6 R approximants. Resolution-limited magnetic Bragg peaks have been observed at lattice points forbidden by the center-symmetry and at incommensurate positions demonstrating long-range antiferromagnetic correlations between the R moments. The work at the Ames Laboratory was supported by US DOE, Office of Basic Energy Sciences, DMSE, contract DE-AC02-07CH11358. Work at the Tokyo University of Science was supported by KAKENHI (Grant No. 20045017).

  19. Antiferromagnetic fluctuations in a quasi-two-dimensional organic superconductor detected by Raman spectroscopy.

    SciTech Connect

    Drichko, Natalia; Hackl, Rudi; Schlueter, John A.

    2015-10-15

    Using Raman scattering, the quasi-two-dimensional organic superconductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br (T-c = 11.8 K) and the related antiferromagnet kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl are studied. Raman scattering provides unique spectroscopic information about magnetic degrees of freedom that has been otherwise unavailable on such organic conductors. Below T = 200 K a broad band at about 500 cm(-1) develops in both compounds. We identify this band with two-magnon excitation. The position and the temperature dependence of the spectral weight are similar in the antiferromagnet and in the metallic Fermi liquid. We conclude that antiferromagnetic correlations are similarly present in the magnetic insulator and the Fermi-liquid state of the superconductor.

  20. Field-driven successive phase transitions in the quasi-two-dimensional frustrated antiferromagnet Ba2CoTeO6 and highly degenerate classical ground states

    NASA Astrophysics Data System (ADS)

    Chanlert, Purintorn; Kurita, Nobuyuki; Tanaka, Hidekazu; Goto, Daiki; Matsuo, Akira; Kindo, Koichi

    2016-03-01

    We report the results of magnetization and specific heat measurements of Ba2CoTeO6 composed of two subsystems A and B, which are magnetically described as an S =1 /2 triangular-lattice Heisenberg-like antiferromagnet and a J1-J2 honeycomb-lattice Ising-like antiferromagnet, respectively. These two subsystems were found to be approximately decoupled. Ba2CoTeO6 undergoes magnetic phase transitions at TN 1=12.0 K and TN 2=3.0 K, which can be interpreted as the orderings of subsystems B and A, respectively. Subsystem A exhibits a magnetization plateau at one-third of the saturation magnetization for the magnetic field H perpendicular to the c axis owing to the quantum order-by-disorder, whereas for H ∥c , subsystem B shows three-step metamagnetic transitions with magnetization plateaus at zero, one-third, and one-half of the saturation magnetization. The analysis of the magnetization process for subsystem B shows that the classical ground states at these plateaus are infinitely degenerate within the Ising model.

  1. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.

    PubMed

    Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya

    2015-11-12

    In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields. PMID:26524519

  2. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    NASA Astrophysics Data System (ADS)

    Yang, Song; Bayat, Abolfazl; Bose, Sougato

    2010-08-01

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even when time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.

  3. Magnetic Phase Transition of the Mixed Antiferromagnets Ni1-xMxCl2·2H2O (M=Co, Mn)

    NASA Astrophysics Data System (ADS)

    Hamasaki, T.; Zenmyo, K.; Kubo, H.

    2012-12-01

    Mixed antiferromagnets Ni1-xMxCl2·2H2O (M=Co, Mn) were prepared. The crystal structure of NiCl2-2H2O is a little different from that of CoCl2·2H2O and MnCl2·2H2O. In order to examine how Co or Mn spins in NiCl2·2H2O crystal structure behave, we determined precisely the phase transition temperatures by measuring the specific heats and have obtained the concentration dependence of the phase transition temperature. Substitution of Co for Ni increases a little the transition temperature and contrary to this the substitution of Mn decreases the transition temperature rapidly. The results are discussed on the basis of molecular field theory. In the case of M=Co, the concentration dependence of the phase transition temperature is well explained by molecular field theory. But, in the case of M=Mn, the molecular field theory cannot explain it sufficiently. Thus Mn spins in NiCl2·2H2O crystal show the peculiar behavior. We suppose that this may be attributed to a kind of the instability of Mn spins.

  4. Bipolar Disorder

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Bipolar Disorder KidsHealth > For Teens > Bipolar Disorder Print A A ... Bipolar Disorder en español Trastorno bipolar What Is Bipolar Disorder? Bipolar disorders are one of several medical conditions ...

  5. Antiferromagnetism and superconductivity in oxygen-deficient YBa2Cu3O(x)

    NASA Technical Reports Server (NTRS)

    Brewer, J. H.; Carolan, J. F.; Chaklader, A. C. D.; Hardy, W. N.; Ansaldo, E. J.

    1988-01-01

    Positive-muon spin-rotation and -relaxation measurements of the oxygen-deficient perovskite YBa2Cu3O(x) have revealed local antiferromagnetic order for x = 6.0-6.4 with a Neel temperature TN that decreases rapidly with increasing oxygen content x. For slowly annealed samples with x = 6.35-6.5 the superconducting transition temperature Tc increases smoothly with x from 25 K at x = 6.348 to 60 K at x = 6.507. Two such samples with x = 6.348 and x = 6.400 appear to 'switch' from superconductivity to antiferromagnetic order at lower temperatures.

  6. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3

    NASA Astrophysics Data System (ADS)

    Sürgers, Christoph; Kittler, Wolfram; Wolf, Thomas; Löhneysen, Hilbert v.

    2016-05-01

    Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrstalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.

  7. Lifetimes of antiferromagnetic magnons in two and three dimensions: experiment, theory, and numerics.

    PubMed

    Bayrakci, S P; Tennant, D A; Leininger, Ph; Keller, T; Gibson, M C R; Wilson, S D; Birgeneau, R J; Keimer, B

    2013-07-01

    A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb(2)MnF(4) and MnF(2), over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wave vector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data. Comprehensive understanding of magnon lifetimes in simple antiferromagnets provides a solid foundation for current research on more complex magnets. PMID:23863025

  8. Temperature-dependent terahertz magnetic dipole radiation from antiferromagnetic GdFeO{sub 3} ceramics

    SciTech Connect

    Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji

    2013-11-18

    Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.

  9. Magnetotransport study of the pressure-induced antiferromagnetic phase in FeSe

    NASA Astrophysics Data System (ADS)

    Terashima, Taichi; Kikugawa, Naoki; Kasahara, Shigeru; Watashige, Tatsuya; Matsuda, Yuji; Shibauchi, Takasada; Uji, Shinya

    2016-05-01

    The resistivity ρ and Hall resistivity ρH are measured on FeSe at pressures up to P =28.3 kbar in magnetic fields up to B =14.5 T. The ρ (B ) and ρH(B ) curves are analyzed with multicarrier models to estimate the carrier density and mobility as a function of P and temperature (T ≤110 K). It is shown that the pressure-induced antiferromagnetic transition is accompanied by an abrupt reduction of the carrier density and scattering. This indicates that the electronic structure is reconstructed significantly by the antiferromagnetic order.

  10. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  11. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    DOE PAGESBeta

    Folven, Eric; Linder, J.; Gomonay, O. V.; Scholl, Andreas; Doran, A.; Young, A. T.; Retterer, Scott T.; Malik, V. K.; Tybell, Thomas; Takamura, Yayoi; et al

    2015-09-14

    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.

  12. Disappearance of antiferromagnetic spin excitations in overdoped La2-xSrxCuO4.

    PubMed

    Wakimoto, S; Yamada, K; Tranquada, J M; Frost, C D; Birgeneau, R J; Zhang, H

    2007-06-15

    Magnetic excitations for energies up to approximately 100 meV are studied for overdoped La(2-x)Sr(x)CuO(4) with x=0.25 and 0.30, using time-of-flight neutron spectroscopy. Comparison of spectra integrated over the width of an antiferromagnetic Brillouin zone demonstrates that the magnetic scattering at intermediate energies, 20 antiferromagnetic bubbles. PMID:17677985

  13. Induced antiferromagnetism in Mn doped BaMgF{sub 4}

    SciTech Connect

    Manikandan, M. Muthukumaran, A. Venkateswaran, C.

    2014-04-24

    Pure and Mn doped BaMgF{sub 4} samples have been synthesized by the hydrothermal method. X-ray diffraction (XRD) pattern of both the samples reveal the formation of pure BaMgF{sub 4} phase. High resolution scanning electron micrographs (HRSEM) show rectangular shape particles. At room temperature, the undoped BaMgF{sub 4} shows diamagnetic behavior where as the 5% Mn doped BaMgF{sub 4} exhibits antiferromagnetic hysteresis loop. The possible reason for room temperature antiferromagnetism and the role of dopant ion have been investigated.

  14. Parasitic small-moment antiferromagnetism and nonlinear coupling of hidden order and antiferromagnetism in URu2Si2 observed by Larmor diffraction.

    PubMed

    Niklowitz, P G; Pfleiderer, C; Keller, T; Vojta, M; Huang, Y-K; Mydosh, J A

    2010-03-12

    We report for the first time simultaneous microscopic measurements of the lattice constants, the distribution of the lattice constants, and the antiferromagnetic moment in high-purity URu(2)Si(2), combining Larmor and conventional neutron diffraction at low temperatures and pressures up to 18 kbar. Our data demonstrate quantitatively that the small moment in the hidden order (HO) of URu(2)Si(2) is purely parasitic. The excellent experimental conditions we achieve allow us to resolve that the transition line between HO and large-moment antiferromagnetism (LMAF), which stabilizes under pressure, is intrinsically first order and ends in a bicritical point. Therefore, the HO and LMAF must have different symmetry, which supports exotic scenarios of the HO such as orbital currents, helicity order, or multipolar order. PMID:20366444

  15. Substitution of Mn for Mg in MgB_2*

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Michael D.; Johnston, David C.; Miller, Lance L.; Hill, Julienne M.

    2002-03-01

    The study of solid solutions in which the Mg in MgB2 is partially replaced by magnetic 3d or 4f atoms can potentially reveal important information on the superconducting state of MgB_2. As an end-member of the hypothetical Mg_1-xMn_xB2 system, MnB2 is isostructural with MgB2 and is an antiferromagnet below TN = 760 K which becomes canted at 157 K. A previous study by Moritomo et al.[1] examined the structure and properties of multi-phase samples with 0.01<= x<= 0.15. We attempted to obtain single-phase samples with x<= 0.25 by reacting the constituent elements in sealed Ta tubes and/or using prereacted MnBx synthesized using an arc furnace. The results of x-ray diffraction and magnetization measurements on those samples will be presented. * Supported by the USDOE under contract no. W-7405-Eng-82. [1] "Mn-substitution effects on MgB2 superconductor", Y.Moritomo et al. J. Phys. Soc. Japan b70, 1889 (2001).; “Effects of transition metal doping in MgB2 superconductor", Y. Moritomo at al. arXiv:cond-mat/0104568.

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  18. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  19. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  20. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...