Science.gov

Sample records for substorm growth phase

  1. Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere

    NASA Technical Reports Server (NTRS)

    Koskinen, H. E. J.; Lopez, R. E.; Pellinen, R. J.; Pulkkinen, T. I.; Baker, D. N.; Bosinger, T.

    1993-01-01

    Observations made during the growth phase and the onset of a substorm on August 31, 1986 are presented. About 20 min after the epsilon parameter at the magnetopause had exceeded 10 exp 11 W, magnetic field dipolarization with an increase of energetic particle fluxes was observed by the AMPTE Charge Composition Explorer (CCE) spacecraft at the geocentric distance of 8.7 R(E) close to magnetic midnight. The event exhibited local signatures of a substorm onset at AMPTE CCE and a weak wedgelike current system in the midnight sector ionosphere, but did not lead to a full-scale substorm expansion; neither did it produce large particle injections at GEO. Only after another 20 min of continued growth phase could the entire magnetosphere-ionosphere system allow the onset of a regular substorm expansion. The initial activation is interpreted as a 'pseudobreakup'. We examine the physical conditions in the near-Earth plasma sheet and analyze the development in the ionosphere using ground-based magnetometers and electric field observations from the STARE radar.

  2. Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere

    SciTech Connect

    Koskinin, H.E.J.; Pellinen, R.J.; Pulkkinen, T.I. ); Lopez, R.E. ); Baker, D.N. ); Boesinger, T. )

    1993-04-01

    The authors present space and ground based observations made during the growth phase and the onset of a substorm on August 31, 1986. Roughly 20 minutes after the [var epsilon] parameter at the magnetopause had exceeded 10[sup 11] W, the AMPTE Charge Composition Explorer spacecraft observed an increase in energetic particle fluxes consistent with magnetic field depolarization. The craft was close to magnetic midnight at a geocentric distance of 8.7R[sub E]. The event had the initial signature of a substorm onset, but it did not lead to a full-scale substorm expansion based on several ground based observations. There were no large particle injection events at geostationary orbit. After another 20 minutes the event did enter a normal substorm expansion phase. The authors interpret the initial activation as a [open quotes]pseudobreakup[close quotes]. They correlate observations made by spacecraft in the near-Earth plasma sheet, with ground based observations of the ionospheric development from magnetometer and electric field measurements from the STARE radar. The strength and the consequences are concluded to be the main differences of pseudobreakups and ordinary breakups.

  3. Physics of Substorm Growth Phase, Onset, and Dipolarization

    SciTech Connect

    C.Z. Cheng

    2003-10-22

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  4. Magnetotail and Ionospheric Evolution during the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.

    2013-12-01

    The growth phase of geomagnetic substorms is characterized by the equatorward motion of the growth phase arc close to or even into the region of diffuse aurora characteristic for a dipolar magnetic field. The presented results use a model of current sheet thinning based on midnight magnetic flux depletion (MMFD) in the near-Earth tail which is caused by sunward convection to replenish magnetic flux that is eroded on the dayside by magnetic reconnection during periods of southward IMF. The results use a three-dimensional mesocale MHD simulation of the near-Earth tail. This paper examines the changes of the near-Earth magnetotail region mapped into the ionopshere. Of specific interest are the changes in magnetic flux, flux tube entropy, field-aligned currents, convection, and the size and location of the respective ionospheric footprints of the magnetotail structure and properties. The mapping method is based on the Tsyganenko [1996] magnetic field model combined with magnetic flux conservation. It is found that the mapped magnetotail properties move equatorward by about 2 to 3 degrees during the growth phase. The removal of magnetic flux in the near-Earth tail causes a contraction of the ionospheric footprints of this tail region such that all of the mapped magnetotail structures move equatorward. The thin current is mapped into the region where magnetic flux is strongly depleted, and in close proximity with strong and narrow region 1 and 2 sense field-aligned currents. Our ionospheric maps also show a sharp transition between the dipole and stretched magnetic field and an evolution of thinning and convergent motion of field-aligned currents in the late growth phase.

  5. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  6. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Pellinen, R. J.; Buechner, J.; Koskinen, H. E. J.; Lopez, R. E.; Dyson, R. L.; Frank, L. A.

    1992-01-01

    The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.

  7. Current carriers in the near-earth cross-tail current sheet during substorm growth phase

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Williams, D. J.; Huang, C. Y.; Frank, L. A.; Russell, C. T.

    1990-01-01

    Throughout most of the growth phase of a substorm, the cross-tail current at x about -10 Re can be supplied by the curvature drift of a bi-directional field aligned distribution of 1 keV electrons. Just prior to its local disruption after substorm onset, the cross-tail current in the now thin (about 400 km) current sheet is carried by the cross-tail serpentine motion of non-adiabatic ions (Speiser, 1965). The instability of this latter current leads to the local disruption of the near-earth current sheet.

  8. Existential variations of brightness auroral glow on a growth phase of a substorm

    NASA Astrophysics Data System (ADS)

    Borisov, G. V.; Velichko, V. A.

    1997-01-01

    In work the advanced way of processing scanning photometer data (scanogramms) is stated. Data processing of a scanning photometer by the offered (suggested) way, and also the analysis of the data published in the literature, and geomagnetic field data (magnetogramms) Yakut meridional chains and stations of a world (global) network have allowed to reveal new properties diffuse aurora brightness on a growth phase of a substorm. It is shown, that the center magnetospheric substorms with a growth phase is formed long before the moment of explosive clearing energy. By results of the analysis of photometric supervision of a background brightness in Yakutia it is found out regular latitude and longitudinal variations of brightness of a luminescence during a growth phase. To the east and to the west of the center of a substorm at all breadthes auroral zones and on equatorial border diffuse spill on a longitude of the center brightness of a background monotonously grows during all growth phase. In longitudinal sector of the future (expected) center of a substorm in the field of discrete forms of polar lights intensity of a background luminescence raises in the beginning of a growth phase with the subsequent reduction prior to the beginning of an explosive phase. At polar edge (territory) of an oval the beginning of downturn of brightness of a background in the center for ten minutes outstrips the moment of fast movement of discrete forms to equator. Feding in a background luminescence it is simultaneously observed also in a vicinity of an equatorial strip of lights, but duration of reduction of his(its) intensity at these breadthes coincides in due course the moment of the beginning of drift of discrete forms to equator prior to the beginning of an explosive phase. It has led to to a conclusion that formation of the local center of a substorm occurs not during last moment before explosion, during all growth phase. The qualitative circuit explaining found out laws is

  9. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    SciTech Connect

    Pulkkinen, T.I.; Pellinen, R.J.; Koskinen, H.E.J. ); Baker, D.N. ); Buechner, J. ); Lopez, R.E. ); Dyson, R.L.; Frank, L.A. )

    1992-12-01

    The degree of pitch angle scattering and chaotization of various particle populations in the geomagnetic tail during the substorm growth phase is studied by utilizing the Tsyganenko 1989 magnetic field model. A temporally evolving magnetic field model for the growth phase is constructed by enhancing the near-Earth currents and thinning the current sheet from the values given by the static Tsyganenko model. Changing the field geometry toward an increasingly taillike configuration leads to pitch angle scattering of particles whose Larmor radii become comparable to the field line radius of curvature. Several different cases representing substorms with varying levels of magnetic disturbance have been studied. In each case, the field development during the growth phase leads to considerable scattering of the thermal electrons relatively close to the Earth. The current sheet regions where the electron motion is chaotic are magnetically mapped to the ionosphere and compared with low-altitude measurements of electron precipitation. The chaotization of the thermal electron population occurs within a few minutes of the substorm onset, and the ionospheric mappings of the chaotic regions in the equatorial plane compare well with the region of brightening auroras. Even though the temporal evolution of the complex plasma system cannot be self-consistently described by the temporal evolution of the empirical field model, these models can provide the most accurate estimates of the field parameters for tail stability calculations.

  10. Ionospheric signature of the tail neutral line during the growth phase of a substorm

    SciTech Connect

    Moses, J.J.; Slavin, J.A.; Heelis, R.A.

    1996-03-01

    An isolated substorm occurred on October 21, 1981 at the end of a large geomagnetic storm. Observations of particles and fields were made during the presumed growth phase of this substorm by the DE 2 satellite. The ionospheric convection velocitie averaging {approximately} 500 m/s in an eastward channel flow in the premidnight sector. Despite the convection signature, geomagnetic conditions were quiet with the AL index >{minus}50 nT and very weak field-aligned current. The authors will present an in-depth study of the nightside gap region within the channel of eastward flow. They will discuss the possible effects of a neutral wind flywheel on the convection. Also, they will present a detailed analysis of the electrodynamic structures within the nightside gap which indicates a magnetospheric source. Possible ionospheric signatures of the tail neutral line are discussed. 19 refs., 8 fig.

  11. A Double-Disruption Substorm Model - The Growth Phase

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; McWilliams, K. A.; Hussey, G. C.

    2014-12-01

    sufficiently that the NSh reaches the outer radiation belt at about t=85 min, the ionospheric conductivity has grown sufficiently that the XTJ disrupted by the DZs changes its dawn-to-dusk closure by travelling through the ionosphere. This second stage of disruption is the Substorm Current Wedge (SCW). Onset follows at about t=88 min.

  12. Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Sanny, Jeff; Mcpherron, R. L.; Russell, C. T.; Baker, D. N.; Pulkkinen, T. I.; Nishida, A.

    1994-01-01

    The thinning of the near-Earth current sheet during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 magnetospheric substorm is studied. The expansion onset of the substorm occurred at 1054 UT, March 22, 1979. During the growth phase, two spacecraft, International Sun Earth Explorer (ISEE) 1 and ISEE 2, were within the current sheet approximately 13 R(sub E) from the Earth and obtained simultaneous high-resolution magnetic data at two points in the current sheet. Plasma data were also provided by the ISEE spacecraft and solar wind data by IMP 8. To facilitate the analysis, the GSM magnetic field data are transformed to a 'neutral sheet coordinate system' in which the new x axis is parallel to the average magnetic field above and below the neutral sheet and the new y axis lies in the GSM equatorial plane. A model based on the assumption that the current sheet is a time-invariant structure fails to predict neutral sheet crossing times. Consequently, the Harris sheet model, which allows one to remove the restriction of time invariancy, is used instead. It is found that during the growth phase, a model parameter corresponding to the thickness of the current sheet decreased exponentially from about 5 R(sub E) to 1 R(sub E) with a time constant of about 14 min. In addition, the ISEE 1 and ISEE 2 neutral sheet crossings after expansion onset indicate that the neutral sheet was moving upward at 7 km/s relative to the spacecraft. Since both crossings occurred in approximately 80 s, the current sheet thickness is estimated to be about 500 km. These results demonstrate that the near-Earth current sheet undergoes dramatic thinning during the substorm growth phase and expansion onset.

  13. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng

    2003-04-30

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| {approx} 9 R{sub E}) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J{sub {phi}} {approx} 10 nA/m{sup 2}) and very high plasma {beta} ({beta} {approx} 40) between 7 and 10 R{sub E}. The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J{sub {parallel}max} {approx} 3 {micro}A/m{sup 2}) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents.

  14. CURRENT SHEET THINNING AND ENTROPY CONSTRAINTS DURING THE SUBSTORM GROWTH PHASE

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hall, F., IV

    2009-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 R_E. We propose that the cause for the current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux which is eroded at the dayside as a result of dayside reconnection. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is documented by three-dimensional MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution during the substorm growth phase.

  15. Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M.

    2012-12-01

    A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.

  16. RCM-E simulation of substorm growth phase arc associated with large-scale adiabatic convection

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wolf, Richard A.; Toffoletto, Frank R.; Sazykin, Stanislav

    2013-12-01

    Substorm auroral breakup often occurs on a longitudinally elongated arc at the end of a growth phase. We present an idealized high-resolution simulation with the Rice Convection Model-Equilibrium (RCM-E) to investigate how large-scale adiabatic convection under equilibrium conditions can give rise to an auroral arc. We find that a thin arc that maps to the magnetic transition region at r ~ 8 RE emerges in the late growth phase. The simulation implies that the arc in the premidnight sector is associated with a sheet of additional region 1 sense field-aligned current (FAC) just poleward of the main region 2 FAC, while the arc in the postmidnight sector is associated with the poleward portion of the main upward region 2 FAC. Explanations for the location and the thickness of the arc are proposed, based on the simulation.

  17. Three-Dimensional MHD Simulation of Current Sheet Evolution During the Growth Phase of Magnetospheric Substorms

    NASA Astrophysics Data System (ADS)

    Hall, F.; Otto, A.

    2004-12-01

    Current sheet thinning in the near-Earth magnetotail is an important element of growth phase dynamics since it determines the conditions for substorm onset. The growth phase is initiated by the erosion of closed dayside magnetic flux. This flux is replenished by convection of closed magnetic flux from the near-Earth tail region to the dayside. However, this process of magnetic flux replenishment is subject to the entropy and mass conservation constraints imposed on the slow quasi-static convection of magnetic flux tubes from the mid- and far-tail regions, first identified by Erickson and Wolf (1980). We examine whether the depletion of flux from a finite reservoir in the near-Earth tail region leads to the observed current sheet thinning. This hypothesis is tested using a self-consistent three-dimensional MHD code which is coupled to a semi-empirical magnetic field model. The resulting system was relaxed to an equilibrium state using a modification of a `ballistic relaxation' method. We discuss the structure of the equilibrium near-Earth magnetotail. A plasma outflow is prescribed in the near-Earth magnetotail to model the depletion of the `flux reservoir' described above. The resulting evolution of the current sheet is discussed.

  18. Formation of a very thin current sheet in the near-earth magnetotail and the explosive growth phase of substorms

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Zhang, L.; Choe, G. S.; Cai, H. J.

    1995-01-01

    A magnetofricional method is used to construct two-dimensional MHD equilibria of the Earth's magnetosphere for a given distribution of entropy functions(S = pV(exp gamma), where p is the plasma pressure and V is the tube volume per unit magnetic flux. It is found that a very thin current sheet with B (sub zeta) is less than 0.5 nu T and thickness less than 1000 km can be formed in the near-earth magnetotail (x is approximately -8 to -20R(sub e) during the growth phase of substorm. The tail current sheets are found to become thinner as the entropy or the entropy gradient increases. It is suggested that the new entropy anti-diffusion instability associated with plasma transport across field lines leads to magnetic field dipolarization and accelerates the formation of thin current sheet, which may explain the observed explosive growth phase of substorms.

  19. Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking

    SciTech Connect

    Fedder, J.A.; Slinker, S.P.; Lyon, J.G.

    1995-10-01

    The authors report the first global magnetohydrodynamic (MHD) simulation of an actual magnetospheric substorm, which was recorded by the Viking spacecraft on October 19, 1986. The simulation is driven by IMP 8 solar wind parameters measured upstream of the Earth`s bow shock. The substorm, which had expansion onset at 1132 UT, was caused by a brief period of southward interplanetary magnetic field (IMF) and two weak solar wind shocks. The simulation model includes a self-consistent auroral ionospheric conductance depending directly on the MHD magnetospheric plasma parameters and magnetic field. Synthetic auroral emissions, derived from simulation results, are compared to the Viking images, which show considerable dayside activity preceding the substorm. The authors also compare model-derived synthetic AU and AL indices to geomagnetic measurements. The simulation results are seen to be in reasonable agreement with the observations throughout the growth phase and expansion onset. Moreover, the results allow the authors to form conclusions concerning which essential processes were responsible for the substorm occurrence. These results are a highly encouraging first step leading toward development of a space weather forecasting methodology based on the directly measured solar input. 19 refs., 5 figs.

  20. Self-consistent quasi-static parallel electric field associated with substorm growth phase

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Pellat, R.; Roux, A.

    2000-06-01

    A new approach is proposed to calculate the self-consistent parallel electric field associated with the response of a plasma to quasi-static electromagnetic perturbations (ωsubstorm growth phase. LC00 used an expansion in the small parameter Te/Ti (Te/Ti is typically 0.1 to 0.2 in the plasma sheet) to solve the quasi-neutrality condition (QNC). To the lowest order in Te/Ti<1, they found that the QNC implies (1) the existence of a global electrostatic potential Φ0 which strongly modifies the perpendicular transport of the plasma and (2) the parallel electric field vanishes. In the present study, we solve the QNC to the next order in Te/Ti and show that a field-aligned potential drop proportional to Te/Ti does develop. We compute explicitly this potential drop in the case of the substorm growth phase modeled as in LC00. This potential drop has been calculated analytically for two regimes of parameters, ωd<ω and ωd>ω (ωd being the bounce averaged magnetic drift frequency equal to kyvd, where ky is the wave number in the y direction and vd the bounce averaged magnetic drift velocity). The first regime (ωd<ω) corresponds to small particle

  1. Self-consistent quasi-static radial transport during the substorm growth phase

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Pellat, R.; Roux, A.

    2000-06-01

    We develop a self-consistent description of the slowly changing magnetic configuration of the near-Earth plasma sheet (NEPS) during substorm growth phase. This new approach is valid for quasi-static fluctuations ωgrowth phase, the (total) azimuthal electric field is directed eastward, close to the equator, and westward, off-equator. Thus large equatorial pitch angle particles drift tailward, whereas small pitch angle particles drift

  2. Modeling the growth phase of a substorm using the Tsyganenko model and multi-spacecraft observations: CDAW-9

    SciTech Connect

    Pulkkinen, T.I. Finnish Meteorological Inst., Helsinki ); Baker, D.N.; Fairfield, D.H. ); Pellinen, R.J. ); Murphree, J.S.; Elphinstone, R.D. ); McPherron, R.L. ); Fennell, J.F. ); Lopez, R.E. ); Nagai, T. )

    1991-11-01

    The CDAW-9 Event C focused upon the early part of 3 May 1986 when a large substorm onset occurred at 0111 UT. By modifying the Tsyganenko 1989 magnetic field model, the authors construct a model in which the near-Earth current systems are enhanced with time to describe the observed development of the tail magnetic field during the growth phase. The cross-tail current intensity and the thickness of the current sheet are determined by comparison with three spacecraft in the near-Earth tail. The location of the auroral bulge as recorded by the Viking imager is mapped to the equatorial current sheet. The degree of chaotization of the thermal electrons is estimated, and the consequences to the tail stability towards ion tearing are discussed. The authors conclude that the mapping of the brightening region in the auroral oval corresponds to the regions in the tail where the current sheet may be unstable towards ion tearing.

  3. Modeling the growth phase of a substorm using the Tsyganenko model and multi-spacecraft observations - CDAW-9

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Fairfield, D. H.; Pellinen, R. J.; Murphree, J. S.; Elphinstone, R. D.; Mcpherron, R. L.; Fennell, J. F.; Lopez, R. E.; Nagai, T.

    1991-01-01

    The CDAW-9 Event C focused upon the early part of 3 May 1986 when a large substorm onset occurred at 0111 UT. By modifying the Tsyganenko 1989 magnetic field model, a model is constructed in which the near-earth current systems are enhanced with time to describe the observed development of the tail magnetic field during the growth phase. The cross-tail current intensity and the thickness of the current sheet are determined by comparison with three spacecraft in the near-earth tail. The location of the auroral bulge as recorded by the Viking imager is mapped to the equatorial current sheet. The degree of chaotization of the thermal electrons is estimated, and the consequences to the tail stability towards on tearing are discussed. It is concluded that the mapping of the brightening region in the auroral oval corresponds to the regions in the tail where the current sheet may be unstable towards ion tearing.

  4. MHD instability with dawn-dusk symmetry in near-Earth plasma sheet during substorm growth phase*

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Raeder, J.; Hegna, C.; Sovinec, C.

    2010-12-01

    Recent global MHD simulations of March 23, 2007 THEMIS substorm event using the OpenGGCM code have confirmed the presence of both high-ky ballooning modes and zero-ky instabilities in the near-Earth plasma sheet during the substorm growth phase [Raeder et al 2010]. These results are consistent with findings from earlier analyses [Siscoe et al 2009; Zhu et al 2009]. Here ky is the azimuthal wavenumber in the dawn-dusk direction. However, the nature and role of the ky=0 mode, as well as its interaction with the high ky ballooning modes, in the process leading to the expansion onset remain unclear. In this work, we focus on the stability properties of the ky=0 mode. A re-evaluation of the tail-tearing mode criterion by Sitnov and Schindler (2009) suggested that the dipolarization front (DF) structure identified in THEMIS observations [Runov et al 2009] could be tearing-unstable. Linear calculations using the NIMROD code have found a growing tearing mode in a generalized Harris sheet with a DF-like structure, which is also a unique feature closely correlated with the appearance of zero-ky mode in the OpenGGCM simulation. The ideal-MHD energy principle analysis is used to address the question whether the ky=0 mode is an ideal or resistive MHD instability. We further compare the linear and nonlinear tail-tearing mode in NIMROD simulations with the ky=0 mode from OpenGGCM simulations. *Supported by NSF Grants AGS-0902360 and PHY-0821899. References: Raeder, J., P. Zhu, Y.-S. Ge, and G. Siscoe (2010), Tail force imbalance and ballooning instability preceding substorm onset, submitted to J. Geophys. Res. Runov, A., et al. (2009), Geophys. Res. Lett., 36, L14106. Siscoe, G.L., M.M. Kuznetsova, and J. Raeder (2009), Ann. Geophys., 27, 3141. Sitnov, M.I. and K. Schindler (2010), Geophys. Res. Lett., 37, L08102. Zhu, P., J. Raeder, K. Germaschewski, and C.C. Hegna (2009), Ann. Geophys., 27, 1129.

  5. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    SciTech Connect

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  6. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-01

    Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0-5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2-5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  7. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    DOE PAGESBeta

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less

  8. Observations of the phases of the substorm

    NASA Astrophysics Data System (ADS)

    Voronkov, I. O.; Donovan, E. F.; Samson, J. C.

    2003-02-01

    Following the database of large-scale vortices during pseudo-breakup and breakup registered by the Gillam All-Sky Imager, we selected one event (19 February 1996) for a detailed consideration. This event is a sequence of pseudo-breakup and local substorm, and breakup followed by the large substorm, which is isolated from the previous pseudo-breakup by the second growth phase. Commencement of these elements of auroral activity was clearly seen above the Churchill line of the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS; pseudo-breakup was completely covered by the field of view of the Gillam All-Sky Imager). Geotail was located at ˜19 RE in the equatorial plane of midnight sector, which, along with supporting observations from two geostationary satellites (GOES 8 and 9), allowed for a comparison of ground-based, geostationary orbit and midtail signatures. The pseudo-breakup consisted of two distinct stages: a near-exponential arc intensity growth and a poleward vortex expansion that started simultaneously with dipolarization in the inner magnetosphere. The latter corresponded to explosive onset of short-period (tens of millihertz) pulsations observed at geostationary orbit and on the ground in the vicinity of the arc. No significant disturbances poleward of the vortex were observed. Pseudo-breakup was followed by the second growth phase, which involved a significant thinning of the plasma sheet. Breakup was of a similar two-stage character as the pseudo-breakup. Full onset of the expansive phase that followed breakup was seen simultaneously by all instruments including Geotail, which detected strong perturbations in the midtail. The expansive phase onset launched the second postbreakup package of Pi2 pulsations that were of larger amplitude. Finally, during the substorm recovery phase, the poleward boundary intensifications (PBIs) were observed as long-period, on the order of 10 min, pulses of electron precipitation. PBI commencement

  9. Substorms

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-01-01

    This chapter deals with the essence of the magnetospheric substorm, the return of magnetic flux into the magnetosphere after disconnection from the solar wind magnetic field. There are three fundamental transport processes involved: (1) thinning of the tail plasma sheet and accompanying recession of the outer boundary of the dipolar magnetosphere during the growth phase, (2) flux transport along the tail toward that boundary after onset of tail reconnection, and (3) penetration of plasma and magnetic flux into the dipolar magnetosphere. The chapter then looks at corresponding processes in the Jupiter and Saturn magnetospheres and tails, which are strongly dominated by the fast planetary rotations. It elucidates some key aspects of the entry problem, albeit from a personal vantage point, and addresses the still open questions. Finally, the chapter addresses the correlation between solar wind ram pressure and auroral activity and brightness on Jupiter and Saturn.

  10. The average ionospheric electrodynamics for the different substorm phases

    SciTech Connect

    Kamide, Y.; Sun, W.; Akasofu, S.I.

    1996-01-01

    The average patterns of the electrostatic potential, current vectors, and Joule heating in the polar ionosphere, as well as the associated field-aligned currents, are determined for a quiet time, the growth phase, the expansion phase, the peak epoch, and the recovery phase of substorms. For this purpose, the Kamide-Richmond-Matsushita magnetogram-inversion algorithm is applied to a data set (for March 17, 18, and 19, 1978) from the six meridian magnetometer chains (the total number of magnetometer stations being 71) which were operated during the period of the International Magnetospheric Study (IMS). This is the first attempt at obtaining, on the basis of individual substorms, the average pattern of substorm quantitities in the polar ionosphere for the different epochs. The main results are as follows: (1) The substorm-time current patterns over the entire polar region consist of two components. The first one is related to the two-cell convection pattern, and the second one is the westward electrojet in the dark sector which is related to the wedge current. (2) Time variations of the two components for the four substorm epochs are shown to be considerably different. (3) The dependence of these differences on the ionospheric electric field and the conductivities (Hall and Pedersen) is identified. (4) It is shown that the large-scale two-cell pattern in the electric potential is dominant during the growth phase of substorms. (5) The expansion phase is characterized by the appearance of a strong westward electrojet, which is added to the two-cell pattern. (6) The large-scale potential pattern becomes complicated during the recovery phase of substorms, but the two-cell pattern appears to be relatively dominant again during their late recovery as the wedge current subsides. These and many other earlier results are consistent with the present ones, which are more quantitatively and comprehensively demonstrated in this global study. 39 refs., 9 figs., 1 tab.

  11. Magnetic signatures of precursors to substorm expansive phase onset

    SciTech Connect

    de Groot-Hedlin, C.D.; Rostoker, G. )

    1987-06-01

    The expansive phase of magnetospheric substorms involves the development of auroral loops and surges with particular emphasis on the westward travelling surge which is identified with the western edge of the substorm current wedge. The authors use as a working hypothesis the contention that the wavelike auroral structures associated with the current wedge are a manifestation of the action of a Kelvin-Helmholtz instability at the interface between the central plasma sheet (CPS) and the adjacent boundary layer plasmas in the deep magnetotail. Based on this concept, they used ground-based magnetometer data in an attempt to identify the growth of ionospheric current systems which might be associated with the growth of the Kelvin-Helmholtz instability. They have, in fact, found that the expansive phase is preceded by the growth of a weak substorm current wedge which strengthens explosively at the time of onset. They suggest that field-aligned current flows out of the ionosphere as part of a process damping a growing wave at the CPS/boundary layer interface. When the field-aligned current density exceeds {approximately} 1 {mu}A/m{sup 2}, an acceleration region at altitudes of {approximately} 1 R{sub E} is activated marking the onset of the substorm expansive phase.

  12. Particle acceleration during substorm growth and onset

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mitchell, D. G.; Huang, C. Y.; Frank, L. A.; Russell, C. T.

    1990-01-01

    ISEE-1 observations of ion and electron energization made at 11 RE during a substorm event on April 2, 1978 are presented. An analysis of the dominant cross-tail current systems in this event (Mitchell et al., 1990) has made it possible to uniquely associate particle energization processes with the development and/or disruption of the cross-tail currents. It is found that significant ion acceleration occurs as the ions participate in serpentine cross-tail motion (Speiser, 1965), establishing the dominant plasma sheet current system just prior to onset. As this current disrupts, the magnetic field configuration dipolarizes and further ion energization and the bulk of the electron energization occurs. During dipolarization energization is due primarily to the inductive electric field, including betatron and Fermi acceleration processes.

  13. Phase transition-like behavior of the magnetosphere during substorms

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Sharma, A. S.; Papadopoulos, K.; Vassiliadis, D.; Valdivia, J. A.; Klimas, A. J.; Baker, D. N.

    2000-06-01

    The behavior of substorms as sudden transitions of the magnetosphere is studied using the Bargatze et al. [1985] data set of the solar wind induced electric field vBs and the auroral electrojet index AL. The data set is divided into three subsets representing different levels of activity, and they are studied using the singular spectrum analysis. The points representing the evolution of the magnetosphere in the subspace of the eigenvectors corresponding to the three largest eigenvalues can be approximated by two-dimensional manifolds with a relative deviation of 10-20%. For the first two subsets corresponding to small and medium activity levels the manifolds have a pleated structure typical of the cusp catastrophe. The dynamics of the magnetosphere near these pleated structures resembles the hysteresis phenomenon typical of first-order phase transitions. The reconstructed manifold is similar to the ``temperature-pressure-density'' diagrams of equilibrium phase transitions. The singular spectra of vBs, AL, and combined data have the power law dependence typical of second-order phase transitions and self-organized criticality. The magnetosphere thus exhibits the signatures of both self-organization and self-organized criticality. It is concluded that the magnetospheric substorm is neither a pure catastrophe of the low-dimensional system nor a random set of avalanches of different scales described by the simple sandpile models. The substorms behave like nonequilibrium phase transitions, with features of both first- and second-order phase transitions.

  14. PC index and magnetic substorms

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Janzhura, Alexander; Sormakov, Dmitry; Podorozhkina, Nataly

    PC index is regarded as a proxy of the solar wind energy that entered into the magnetosphere as distinct from the AL and Dst indices, which are regarded as characteristics of the energy that realize in the magnetosphere in form of substorm and magnetic storms. This conclusion is based on results of analysis of relationships between the polar cap magnetic activity (PC-index) and parameters of the solar wind, on the one hand, relationships between changes of PC and development of magnetospheric substorms (AL-index) and magnetic storms (Dst-index), on the other hand. This paper describes in detail the following main results which demonstrate a strong connection between the behavior of PC and development of magnetic disturbances in the auroral zone: (1) magnetic substorms are preceded by the РС index growth (isolated and extended substorms) or long period of stationary PC (postponed substorms), (2) the substorm sudden onsets are definitely related to such PC signatures as leap and reverse, which are indicative of sharp increase of the PC growth rate, (3) substorms generally start to develop when the PC index exceeds the threshold level ~ 1.5±0.5 mV/m, irrespective of the substorm growth phase duration and type of substorm, (4) linear dependency of AL values on PC is typical of all substorm events irrespective of type and intensity of substorm.

  15. Recovery phase of magnetospheric substorms and its association with morning-sector aurora

    SciTech Connect

    Opgenoorth, H.J.; Persson, M.A.L.; Pulkkinen, T.I.; Pellinen, R.J.

    1994-03-01

    The authors report on conclusions drawn from an extensive study of ground based measurements of the recovery phase of magnetospheric substorms. Much previous work has considered this phase to simply consist of decay processes of growth phase phenomena as the magnetosphere relaxes to its quiescent state. From their studies of observational data the authors conclude that there is evidence of distinct processes within the recovery phase which are related to it alone. These include intense electrojet activity, high-energy particle precipitation, distinct large scale auroral phenomena, and possibly even expanded auroral activity.

  16. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-05-01

    The auroral motions and geomagnetic changes the characterize the substorm`s expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  17. Traveling compression region observed in the mid-tail lobes near substorm expansion phase onset

    NASA Technical Reports Server (NTRS)

    Taguchi, S.; Slavin, J. A.; Lepping, R. P.; Nose, M.

    1996-01-01

    The characteristics of traveling compression regions (TCRs) in the midtail lobes are examined. Through the use of the AL index, isolated substorm events with well developed expansion phases are selected. The TCR events which feature a field compression coincident with modified Bz variations are categorized into different types, and the magnetic variations are interpreted in terms of the relative location of the point of observation to the plasmoid at the time of release and the effects of tail flaring. In order to understand the relationship between the plasmoid release time and the substorm onset time, the time difference between the different types of TCR and the substorm onset determined by Pi 2 pulsations at mid-latitude ground stations, is examined. The results suggest that the downtail release of most of the plasmoids created earthwards of -38 earth radii occurs at almost the same distance as the substorm onset.

  18. Substorm evolution of auroral structures

    NASA Astrophysics Data System (ADS)

    Partamies, N.; Juusola, L.; Whiter, D.; Kauristie, K.

    2015-07-01

    Auroral arcs are often associated with magnetically quiet time and substorm growth phases. We have studied the evolution of auroral structures during global and local magnetic activity to investigate the occurrence rate of auroral arcs during different levels of magnetic activity. The ground-magnetic and auroral conditions are described by the magnetometer and auroral camera data from five Magnetometers — Ionospheric radars — All-sky cameras Large Experiment stations in Finnish and Swedish Lapland. We identified substorm growth, expansion, and recovery phases from the local electrojet index (IL) in 1996-2007 and analyzed the auroral structures during the different phases. Auroral structures were also analyzed during different global magnetic activity levels, as described by the planetary Kp index. The distribution of auroral structures for all substorm phases and Kp levels is of similar shape. About one third of all detected structures are auroral arcs. This suggests that auroral arcs occur in all conditions as the main element of the aurora. The most arc-dominated substorm phases occur in the premidnight sector, while the least arc-dominated substorm phases take place in the dawn sector. Arc event lifetimes and expectation times calculated for different substorm phases show that the longest arc-dominated periods are found during growth phases, while the longest arc waiting times occur during expansion phases. Most of the arc events end when arcs evolve to more complex structures. This is true for all substorm phases. Based on the number of images of auroral arcs and the durations of substorm phases, we conclude that a randomly selected auroral arc most likely belongs to a substorm expansion phase. A small time delay, of the order of a minute, is observed between the magnetic signature of the substorm onset (i.e., the beginning of the negative bay) and the auroral breakup (i.e., the growth phase arc changing into a dynamic display). The magnetic onset was

  19. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-01-01

    The auroral motions and geomagnetic changes the characterize the substorm's expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  20. Firehose instability near substorm expansion-phase onset?

    NASA Astrophysics Data System (ADS)

    Ji, S.; Wolf, R. A.

    2003-12-01

    The evolution of plasma ejected earthward from a patch of reconnection at about 25 RE is studied using a double-adiabatic-MHD simulation of a thin filament. Firehose instability occurs in the simulation after a compressional shock reflects from the near-Earth region. The tailward-propagating compressional wave, which brakes the earthward flow in the filament, is thus characterized by strong magnetic fluctuations. Within the context of the Near-Earth-Neutral-Line model of substorms, we suggest that firehose instability might cause the intense magnetic-field fluctuations that are observed in the inner plasma sheet at substorm onset. To assess the accuracy of double-adiabatic MHD, we tested it for a situation that resembles the substorm-generated filament but is simple enough to allow an exact kinetic theory solution. The test confirms that double-adiabatic MHD does a reasonable job of predicting when the firehose criterion is satisfied.

  1. Near-earth substorm onset: A coordinated study

    SciTech Connect

    Persson, M.A.L.; Opgenoorth, H.J.; Eriksson, A.I.; Dovner, P.O.; Pulkkinen, T.I.; Reeves, G.D.; Belian, R.D.; Andre, M.; Blomberg, L.G.; Erlandson, R.E.

    1994-08-15

    The authors present simultaneous satellite and ground-based measurements of a substorm. Throughout the initial substorm expansion, southward drifting arcs are observed poleward of the expanding substorm aurora, indicating two independent systems of particle precipitation. Freja passes the brightening onset arc in the topside ionosphere near the moment of the substorm onset, observing an Alfven wave, field aligned current and oxygen ion outflow. The substorm onset occurs at low magnetospheric L-shells, near the poleward edge of the region of trapped particles. The location and time for the substorm injection are confirmed by geostationary spacecraft together with magnetometers, all-sky cameras and radar on the ground. The authors believe that the substorm onset may be triggered by modification of the oxygen content of the inner magnetosphere during the growth-phase caused by ionospheric ion outflow. 15 refs., 7 figs.

  2. Phase transition-like behavior of magnetospheric substorms: Global MHD simulation results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, S. A.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2003-01-01

    Using nonlinear dynamical techniques, we statistically investigate whether the simulated substorms from global magnetohydrodynamic (MHD) models have a combination of global and multiscale features, revealed in substorm dynamics by [2000] and featured the phase transition-like behavior. We simulate seven intervals of total duration of 280 hours from the data set used in the above works [, 1985]. We analyze the input-output (vBs-pseudo AL index) system obtained from the global MHD model and compare the results to those inferred from the original set (vBs-observed AL index). The analysis of the coupled vBs-pseudo AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs-observed AL index system. Although the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum analysis (SSA) is statistically consistent between simulations and observations. The coupled vBs-pseudo AL index system also shows multiscale behavior (scale-invariant power law dependence) in SSA power spectrum. Besides, we find the critical exponent of the nonequilibrium transitions in the magnetosphere, which reflects the multiscale aspect of the substorm activity, different from power law frequency of autonomous systems. The exponent relates input and output parameters of the magnetosphere. We also discuss the limitations of the global MHD model in reproducing the multiscale behavior when compared to the real system.

  3. Phase Transition-like Behavior of Magnetospheric Substorms: Global MHD Simulation Results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M.; Sharma, A. S.; Papadopoulos, K.; Guzdar, P. N.; Goodrich, C. C.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2001-12-01

    Because of their relevance to massive global energy loading and unloading, lots of observations and studies have been made for magnetic substorm events. Using nonlinear dynamical techniques, we investigate whether the simulated substorms from global MHD models have the non-equilibrium phase transition-like features revealed by \\markcite{Sitnov et al. [2000]}. We simulated 6 intervals of total duration of 240 hours from the same data set used in Sitnov et al. [2000]. We analyzed the input-output (vBs--pseudo-AL index) system obtained from the global MHD model and compared the results to those in \\markcite{Sitnov et al. [2000, 2001]}. The analysis of the coupled vBs--pseudo-AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs--observed-AL index system from Sitnov et al. [2000]. The explanation lies in the cusp catastrophe model proposed by Lewis [1991]. Although, the comparison between observation and individual global MHD simulations may vary, the overall global transition pattern during the substorm cycle revealed by Singular Spectrum Analysis (SSA) is consistent between simulations and observations. This is an important validation of the global MHD simulations of the magnetosphere. The coupled vBs--pseudo-AL index system shows multi-scale behavior (scale-invarianet power-law dependence) in singular power spectrum. We found critical exponents of the non-equilibrium transitions in the magnetosphere, which reflect the multi-scale aspect of the substorm activity, different from power-law frequency of autonomous systems. The exponents relate input and output parameters of the magnetosphere and distinguish the second order phase transition model from the self-organized criticality model. We also discuss the limitations of the global MHD model in reproducing the multi-scale behavior when compared to the real system.

  4. Phase Transition like Behavior of Magnetospheric Substorms: Global and Multiscale Features from MHD Simulations

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, A. S.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2002-05-01

    Studies of the magnetosphere during substorms based on the observational data of the solar wind and the geomagnetic indices have shown clear features of phase transition-like behavior [Sitnov et al., 2000]. The global MHD simulations of the events in the Bargatze et al. [1985] database are used to study the non-equilibrium phase transition-like features of substorms. We simulated 7 intervals of total duration of 280 hours from the same data set used in Sitnov et al. [2000]. From the simulations the AL index is computed from the maximum of the westward Hall current and is referred to as the pseudo-AL index. We analyzed the input-output (vBs-pseudo-AL index) system obtained from the global MHD model and compare the results to those in Sitnov et al. [2000, 2001]. The analysis of the coupled vBs-pseudo-AL index system shows the first-order phase transition characterizing global beahavior, similar to the case of vBs-observed-AL index [Sitnov et al., 2000]. Although, the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum snalysis is statistically consistent between simulations and observations. The coupled vBs-pseudo-AL index system shows multi-scale behavior (scale-invariant power-law dependence) in singular power spectrum. We find critical exponents of the non-equilibrium transitions in the magnetosphere, which reflect the multi-scale aspect of the substorm activity, different from power-law frequency of autonomous systems. The exponents relate input and output parameters of the magnetosphere.

  5. A cross-field current instability for substorm expansions

    SciTech Connect

    Lui, A.T.Y. ); Chang, C.L.; Mankofsky, A. ); Wong, H.K. ); Winske, D. )

    1991-07-01

    The authors investigate a cross-field current instability (CFCI) as a candidate for current disruption during substorm expansions. The numerical solution of the linear dispersion equation indicates that (1) the proposed instability can occur at the inner edge or the midsection of the neutral sheet just prior to the substorm expansion onset although the former environment is found more favorable at the same drift speed scaled to the ion thermal speed, (2) the computed growth time is comparable to the substorm onset time, and (3) the excited waves have a mixed polarization with frequencies near the ion gyrofrequency at the inner edge and near the lower hybrid frequency in the midtail region. On the basis of this analysis, they propose a substorm development scenario in which plasma sheet thinning during the substorm growth phase leads to an enhancement in the relative drift between ions and electrons. This results in the neutral sheet being susceptible to the CHCI and initiates the diversion of the cross-tail current through the ionosphere. Whether or not a substorm current wedge is ultimately formed is regulated by the ionospheric condition. A large number of substorm features can be readily understood with the proposed scheme. These include (1) precursory activities (pseudobreakups) prior to substorm onset, (2) substorm initiation region to be spatially localized, (3) three different solar wind conditions for substorm occurence, (4) skew towards evening local times for substorm onset locations, (5) different acceleration characteristics between ions and electrons, (6) tailward spreading of current disruption region after substorm onset, and (7) local time expansion of substorm current wedge with possible discrete westward jump for the evening expansion.

  6. Auroral substorms as an electrical discharge phenomenon

    NASA Astrophysics Data System (ADS)

    Akasofu, Syun-Ichi

    2015-12-01

    During the last 50 years, we have made much progress in studying auroral substorms (consisting of the growth phase, the expansion phase, and the recovery phase). In particular, we have quantitatively learned about auroral substorms in terms of the global energy input-output relationship. (i) What powers auroral substorms? (ii) Why is there a long delay (1 h) of auroral activities after the magnetosphere is powered (growth phase)? (iii) How much energy is accumulated and unloaded during substorms? (iv) Why is the lifetime of the expansion phase so short (1h)? (v) How is the total energy input-output relationship? (vi) Where is the magnetic energy accumulated during the growth phase? On the basis of the results obtained in (i)-(vi), we have reached the following crucial question: (vii) how can the unloaded energy produce a secondary dynamo, which powers the expansion phase? Or more specifically, how can the accumulated magnetic energy get unloaded such that it generates the earthward electric fields needed to produce the expansion phase of auroral substorms? It is this dynamo and the resulting current circuit that drive a variety of explosive auroral displays as electrical discharge phenomena during the expansion phase, including the poleward advance of auroral arcs and the electrojet. This chain of processes is summarized in Section 4.2. This is the full version of work published by Akasofu (2015).

  7. The ground signatures of the expansion phase during multiple onset substorms

    NASA Technical Reports Server (NTRS)

    Pytte, T.; Mcpherron, R. L.; Kokubun, S.

    1976-01-01

    The paper examines the signatures of multiple-expansion-phase substorm onsets in night-time magnetograms as well as in recordings of auroral activity and energetic electron precipitation. Individual onsets of Pi2 magnetic pulsations observed at three widely spaced stations are used to define and time each onset accurately in order to distinguish between local variations in bay activity and fully developed substorm onsets; this method is equivalent to defining each new onset in terms of the brightening of an auroral arc and the formation of a westward-travelling surge. It is found that the formation of multiple auroral surges appears to be a fundamental feature of multiple-onset substorms, that each surge seems to be associated with a localized field-aligned current system which moves westward with the surge and perturbs the preexisting current wedge, and that this gives rise to the multiple-onset signatures observed on subauroral and low-latitude magnetograms. Since certain findings contradict existing models of multiple-onset events, an alternative model is proposed which is based on the fundamental role of surge activity and localized current wedges.

  8. Magnetospheric Substorm Electrodynamics

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1998-01-01

    It was proposed that the expansion phase of substorms results from a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind, following a greater than or equal to 30 min growth phase due to an enhancement in this electric field. The reduction in the electric field is assumed to propagate anti-sunward within the magnetosphere. Triggering by a reduction in the electric field is suggested by the observation that substorms are often triggered by northward turning of the interplanetary magnetic field (IMF). However, under the theory presented here, substorms may be triggered by anything that causes an electric field reduction such as a reduction in the magnitude of the y-component of the IMF. A reduction in the large-scale electric field disrupts both the inward motion and energization of plasma sheet particles that occurs during the growth phase. It is suggested here that this can lead to formation of the expansion-phase current wedge and active aurora. The current wedge results from the magnetic drift of ions, which has a speed proportional to particle energy, and a large azimuthal gradient in mean particle energy that is expected to develop in the vicinity of magnetic midnight during the growth phase. Current wedge formation will most likely be initiated near the radial distance (approx. 6- 10 R(sub E)) of the peak in the growth-phase plasma pressure distribution, and then propagate tailward from that region. Order-of-magnitude calculations show that the above proposal can account for the rapid development of the expansion phase relative to the growth phase, the magnitude of the reduction in the cross-tail current within the current wedge, the speeds of tailward and westward expansion of the current reduction region, the speeds of poleward and westward motion of active aurora in the ionosphere, and the magnitude of wedge field-aligned currents that connect the ionospheric region of active auroral to the divergent cross

  9. Lower thermospheric wind variations in auroral patches during the substorm recovery phase

    NASA Astrophysics Data System (ADS)

    Oyama, Shin-ichiro; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Watkins, Brenton J.; Kurihara, Junichi; Tsuda, Takuo T.; Fallen, Christopher T.

    2016-04-01

    Measurements of the lower thermospheric wind with a Fabry-Perot interferometer (FPI) at Tromsø, Norway, found the largest wind variations in a night during the appearance of auroral patches at the substorm recovery phase. Taking into account magnetospheric substorm evolution of plasma energy accumulation and release, the largest wind amplitude at the recovery phase is a fascinating result. The results are the first detailed investigation of the magnetosphere-ionosphere-thermosphere coupled system at the substorm recovery phase using comprehensive data sets of solar wind, geomagnetic field, auroral pattern, and FPI-derived wind. This study used three events in November 2010 and January 2012, particularly focusing on the wind signatures associated with the auroral morphology, and found three specific features: (1) wind fluctuations that were isolated at the edge and/or in the darker area of an auroral patch with the largest vertical amplitude up to about 20 m/s and with the longest oscillation period about 10 min, (2) when the convection electric field was smaller than 15 mV/m, and (3) wind fluctuations that were accompanied by pulsating aurora. This approach suggests that the energy dissipation to produce the wind fluctuations is localized in the auroral pattern. Effects of the altitudinal variation in the volume emission rate were investigated to evaluate the instrumental artifact due to vertical wind shear. The small electric field values suggest weak contributions of the Joule heating and Lorentz force processes in wind fluctuations. Other unknown mechanisms may play a principal role at the recovery phase.

  10. Satellite studies of magnetospheric substorms on August 15, 1968. I - State of the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1973-01-01

    The state of the magnetosphere on August 15, 1968, as defined by magnetic indices and ground magnetograms, is described. Onset times of various phases of two magnetospheric substorms are determined. These substorms occurred while the OGO 5 satellite was inbound on the midnight meridian through the cusp region of the geomagnetic tail. It is concluded that at least two worldwide substorm expansions were preceded by growth phases.

  11. Statistical characterization of the growth and spatial scales of the substorm onset arc

    NASA Astrophysics Data System (ADS)

    Kalmoni, N. M. E.; Rae, I. J.; Watt, C. E. J.; Murphy, K. R.; Forsyth, C.; Owen, C. J.

    2015-10-01

    We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700-2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross-Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross-Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.

  12. Occurrency frequency of substorm field and plasma signatures observed near-earth by ISEE-1/2

    NASA Technical Reports Server (NTRS)

    Hsu, T. S.; McPherron, R. L.

    1996-01-01

    The onset of the majority of substorms occurs when the tail field stops growing more tail-like and begins to become more dipolar. This corresponds to the onset signatures on the ground and in geosynchronous orbit. The AE indices and the IGS Pi 2 data were used to determine the major substorm onsets of 1978 and 1979. The time delay between successive substorms, the distribution of the substorm growth phase duration and the probability of tailward flows were determined as a function of spacecraft location. About a half of the substorms exhibit a plasma signature including earthward or tailward flows or plasma sheet drop out and recovery. Earthward flows are often seen at substorm onset, and almost always during substorm recovery. Tailward flows are occasionally seen at onset as the spacecraft is close enough to the neutral sheet. The experimental results are compared to predictions based on the neutral line and current sheet disruption models.

  13. MESSENGER Observations of Substorm Activity at Mercury

    NASA Astrophysics Data System (ADS)

    Sun, W. J.; Slavin, J. A.; Fu, S.; Raines, J. M.; Zong, Q. G.; Poh, G.; Jia, X.; Sundberg, T.; Gershman, D. J.; Pu, Z.; Zurbuchen, T.; Shi, Q.

    2015-12-01

    MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during crossings of Mercury's magnetotail from 2011 to 2014 have been investigated for substorms. A number of events with clear Earth-like growth phase and expansion phase signatures were found. The thinning of the plasma sheet and the increase of magnetic field intensity in the lobe were observed during the growth phase and plasma sheet was observed to thicken during the expansion phase, which are similar to the observations at Earth. But the time scale of Mercury's substorm is only several minutes comparing with the several hours at Earth [Sun et al., 2015a]. Detailed analysis of magnetic field fluctuations during the substorm expansion phase have revealed low frequency plasma waves, e.g. Pi2-like pulsations. The By fluctuations accompanying substorm dipolarizations are consistent with pulses of field-aligned currents near the high latitude edge of the plasma sheet. Further study shows that they are near-circularly polarized electromagnetic waves, most likely Alfvén waves. Soon afterwards the plasma sheet thickened and MESSENGER detected a series of compressional waves. We have also discussed their possible sources [Sun et al., 2015b]. Sun, W.-J., J. A. Slavin, S. Y. Fu, et al. (2015a), MESSENGER observations of magnetospheric substorm activity in Mercury's near magnetotail. Geophys. Res. Lett., 42, 3692-3699. doi: 10.1002/2015GL064052.Sun, W.-J., J. A. Slavin, S. Y. Fu, et al. (2015b), MESSENGER observations of Alfvénic and compressional waves during Mercury's substorms. Geophys. Res. Lett., 42, in press. doi: 10.1002/ 2015GL065452.

  14. Spontaneous and trigger-associated substorms compared: Electrodynamic parameters in the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Ming; Zhang, Bei-Chen; Kamide, Y.; Wu, Zhen-Sen; Hu, Ze-Jun; Yang, Hui-Gen

    2011-01-01

    An attempt is made to study the difference, if any, between the response of the polar ionosphere to spontaneous substorms and that to trigger-associated substorms in terms of electrodynamic parameters including ionospheric current vectors, the electric potential, and the current function. The results show that, in the first approximation, the ionospheric parameters for the two types of substorms are quite similar. It is therefore conceived that spontaneous substorms are not very different from trigger-associated substorms in the development of substorm processes in the magnetosphere-ionosphere system. We demonstrate, however, that spontaneous substorms seem to have a more clearly identifiable growth phase, whereas trigger-associated substorms have a more powerful unloading process. Changes in the current intensity and the electric potential drop across the polar cap in the recovery phase are also quite different from each other. Both the current intensity and the cross-polar cap potential drop show a larger decrease in the recovery phase of trigger-associated substorms, but the potential drop decreases only slightly and the currents in the late morning sector are still strong for spontaneous substorms. We interpret these findings as an indication of the relative importance of the unloading process and the directly driven process in conjunction with the north-south polarity of the interplanetary magnetic field. There still exists a strong directly driven process in the recovery phase of spontaneous substorms. For trigger-associated substorms, however, both the directly driven process and the unloading process become weak after the peak time.

  15. Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2014-12-01

    Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.

  16. Evidence of kinetic Alfvén eigenmode in the near-Earth magnetotail during substorm expansion phase

    NASA Astrophysics Data System (ADS)

    Duan, S. P.; Dai, Lei; Wang, Chi; Liang, J.; Lui, A. T. Y.; Chen, L. J.; He, Z. H.; Zhang, Y. C.; Angelopoulos, V.

    2016-05-01

    Unipolar pulses of kinetic Alfvén waves (KAW) are first observed in the near-Earth plasma sheet (NEPS) associated with dipolarizations during substorm expansion phases. Two similar events are studied with Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations during substorms on 3 February 2008 and 7 February 2008. The unipolar pulses were located at a trough-like Alfvén speed profile in the northern plasma sheet at a distance of 10-11 RE from Earth. The dominant wave components consist of a southward δEz toward the neutral plane and a +δBy toward the dusk. The |δEz|/|δBy| ratio was in the range of a few times the local Alfvén speed, a strong indication of KAW nature. The wave Poynting flux was earthward and nearly parallel to the background magnetic field. The pulse was associated with an earthward field-aligned current carried by electrons. These observational facts strongly indicate a KAW eigenmode that is confined by the plasma sheet but propagates earthward along the field line. The KAW eigenmode was accompanied by short timescale (1 min) dipolarizations likely generated by transient magnetotail reconnection. The observed polarity of the KAW field/current is consistent with that of the Hall field/current in magnetic reconnection, supporting the scenario that the Hall fields/current propagate out from reconnection site as KAW eigenmodes. Aurora images on the footprint of THEMIS spacecraft suggest that KAW eigenmode may power aurora brightening during substorm expansion phase.

  17. Strong induction effects during the substorm on 27 August 2001

    NASA Astrophysics Data System (ADS)

    Mishin, V. V.; Mishin, V. M.; Lunyushkin, S. B.; Pu, Z.; Wang, C.

    2015-10-01

    We report on strong induction effects notably contributing to the cross polar cap potential drop and the energy balance during the growth and active phases of the substorm on 27 August 2001. The inductance of the magnetosphere is found to be crucial for the energy balance and electrical features of the magnetosphere in the course of the substorm. The inductive response to the switching on and off of the solar wind-magnetosphere generator exceeds the effect of the interplanetary magnetic field (IMF) variation. The induction effects are most apparent during the substorm expansion onset when the rapid growth of the ionospheric conductivity is accompanied by the fast release of the magnetic energy stored in the magnetotail during the growth phase. Using the magnetogram inversion technique, we estimated the magnetospheric inductance and effective ionospheric conductivity during the loading and unloading phases.

  18. Variations of the polar cap potential measured during magnetospheric substorms

    SciTech Connect

    Weimer, D.R.; Kan, J.R.; Akasofu, S.I. )

    1992-04-01

    Measurements of the polar cap potential drop and size have been obtained during magnetospheric substorms. Using double-prove electric field measurements on the DE 2 satellite, 148 measurements have been obtained at random times preceding, during, and after 64 substorms. The polar cap potentials are graphed as a function of the difference between the time of the polar cap measurement and the time of the expansion onset of the corresponding substorm. The ratios of the auroral electrojet (AE) indices and the potential are also determined. The results show that on the average the polar cap potential starts to increase at 1.5 hours before onset. However, on a case-by-case basis there are substantial variations from the average, as polar cap potentials over 1,200 kV were measured as early as 1 hour before substorm onset and values as low as 40 kV were observed during the expansion phase. The size of the polar cap ranged from 23{degree} to 38{degree} invariant latitude at the time of onset, and had an average value of 31{degree}. The AE/{Phi}{sub PC} ratio is nearly constant before and after substorms, but decreases slightly during the substorm growth phase and increases greatly during the expansion phase. This increase is most likely due to a higher conductivity and westward electric field within the electrojet during expansion, which causes AE to increase without a corresponding change in the polar cap potential.

  19. Global and local current sheet thickness estimates during the late growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, Robert L.; Huang, C. Y.; Frank, L. A.

    1992-01-01

    The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.

  20. AMPERE observations of the Birkeland currents associated with substorms and comparison with simple electrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Coxon, J. C.; Clausen, L. B. N.; Korth, H.; Anderson, B. J.

    2014-04-01

    We present observations of the global terrestrial Birkeland field-aligned current (FAC) pattern observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during a sequence of substorms. The observations show that the region 1 and 2 current systems move to lower latitudes during the substorm growth phase and retreat to higher latitudes following substorm expansion phase onset. We interpret these observations within the framework of the expanding/contracting polar cap paradigm. This links expansion of the polar cap and equatorward motion of the auroras and FAC systems to the action of magnetopause reconnection increasing the open magnetic flux content of the magnetosphere.

  1. Coupling between pre-onset flows and substorm onset waves

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Lyons, L. R.; Angelopoulos, V.; Donovan, E.; Mende, S. B.

    2015-12-01

    A critical, long-standing problem in substorm research is identification of the sequence of events leading to substorm expansion phase onset. Recent THEMIS all-sky imager (ASI) array observations have shown a repeatable pre-onset sequence, which is initiated by a poleward boundary intensification (PBI) and is followed by auroral streamers moving equatorward (earthward flow in the plasma sheet) and then by substorm onset. On the other hand, substorm onset is also preceded by azimuthally propagating waves, indicating a possible importance of wave instability for triggering substorm onset. However, it has been difficult to identify the link between fast flows and waves. We have found an isolated substorm event that was well-instrumented with the Poker Flat incoherent scatter radar (PFISR), THEMIS white-light ASI, and multi-spectral ASI, where the auroral onset occurred within the PFISR and ASI fields-of-view. This substorm onset was preceded by a PBI, and ionospheric flows propagated equatorward from the polar cap, crossed the PBI and reached the growth phase arc. This sequence provides evidence that flows from open magnetic field lines propagate across the open-closed boundary and reach the near-Earth plasma sheet prior to the onset. Quasi-stable oscillations in auroral luminosity and ionospheric density are found along the growth phase arc. These pre-onset auroral waves amplified abruptly at the onset time, soon after the equatorward flows reached the onset region. This sequence suggests a coupling process where pre-existing stable waves in the near-Earth plasma sheet interact with flows from further downtail and then evolve to onset instability.

  2. A new theory for magnetospheric substorms

    SciTech Connect

    Lyons, L.R.

    1995-10-01

    It is proposed here that the expansion phase of substorms results from a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind, following a {ge} 30-min growth phase due to an enhancement in this electric field. The reduction in the electric field is assumed to propagate antisunward within the magnetosphere. Triggering by a reduction in the electric field is suggested by the observation that substorms are often triggered by northward turnings of the interplanetary magnetic field (IMF). However, under the theory presented here, substorms may be triggered by anything that causes an electric field reduction such as a reduction in the magnitude of the y component of the IMF. A reduction in the large-scale electric field disrupts both the inward motion and energization of plasma sheet particles that occurs during the growth phase. It is suggested here that this can lead to formation of the expansion phase current wedge and active aurora. The current wedge results from the magnetic drift of ions, which has a speed proportional to particle energy, and a large azimuthal gradient in mean particle energy that is expected to develop in the vicinity of magnetic midnight during the growth phase. Current wedge formation will most likely be initiated near the radial distance ({approximately}6-10 R{sub E}) of the peak in the growth phase plasma pressure distribution, and then propagate tailward from that region. Order-of-magnitude calculations show that the above proposal can account for the rapid development of the expansion phase relative to the growth phase, the magnitude of the reduction in the cross-tail current with the current wedge, the speeds of poleward and westward motion of active aurora in the ionosphere, and the magnitude of wedge field-aligned currents that connect the ionospheric region of active auroral to the divergent cross-tail current within the magnetosphere. 77 refs., 9 figs.

  3. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    SciTech Connect

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J.

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  4. Comparison of Two Substorms Observed on August 1, 1998

    NASA Astrophysics Data System (ADS)

    Borodkova, Natalia; Parkhomov, Vladimir; Zastenker, Georgy

    Magnetospheric response to the onset and development of two successive substorms, caused by different reasons is investigated. The choice of these events was due to the successful location of satellites in different areas of near-Earth space and the presence of numerous satellite and ground based observations. First substorm initiated at 17.20 UT on August 1, 1998 was caused by spontaneous release of exceeded energy stored in the tail. The second substorm occurred at the same day at 18.30 UT, was triggered by large and sharp solar wind dynamic pressure enhancement, accompanied by fluctuations of the interplanetary magnetic field. This pres-sure enhancement, consisted of a sequence of several fast fluctuations in solar wind dynamic pressure, led to the corresponding variations of magnetic field and energetic particle fluxes at geosynchronous orbit and ground stations and auroral disturbances. It was found that corre-lation coefficients calculated between the solar wind pressure fluctuations and magnetospheric responding parameters are significantly high. It was shown that first substorm was localized in the midnight sector of the aurora, westward auroral bulge was formed during the growth phase and typical recovery phase was observed. In contrast to that the second substorm, caused by an external trigger, was characterized by dayside auroral intensification propagating to down and dusk and nightside auroral activity localized in the premidnight sector.The global modulation of magnetospheric currents by the solar wind dynamic pressure was shown for the second event.

  5. The February 24, 2010 substorm: a refined view involving a pseudobreakup/expansive phase/poleward boundary intensification sequence

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Russell, Christopher T.; Chu, Xiangning; McPherron, Robert L.

    2015-12-01

    A substorm on February 24, 2010 was chosen for study by Connors et al. (Geophys. Res. Lett. 41:4449-4455, 2014) due to simple symmetric subauroral magnetic perturbations observed in North America. It was shown that a substorm current wedge (SCW) three-dimensional current model could represent these perturbations well, gave a reasonable representation of auroral zone perturbations, and matched field-aligned currents determined in space from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project. The conclusion was that substorm onset was at approximately 4:30 UT and that the substorm current wedge (SCW) formed in the region 1 (more poleward) current system.

  6. The magnetotail and substorms. [magnetic flux transport model

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Mcpherron, R. L.

    1973-01-01

    The tail plays a very active and important role in substorms. Magmetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary flares more, the field strength in the tail increases, and the currents strengthen and move closer to the earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. The experimental evidence for these processes is discussed and a phenomenological or qualitative model of the substorm sequence is presented. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet.

  7. Superposed epoch analysis of the ionospheric convection evolution during substorms: IMF BY dependence

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Milan, S. E.; Yeoman, T. K.; Sato, N.; Yukimatu, A. S.; Wild, J. A.

    2010-10-01

    We present superposed epoch analyses of the average ionospheric convection response in the northern and southern hemispheres to magnetospheric substorms occurring under different orientations of the interplanetary magnetic field (IMF). Observations of the ionospheric convection were provided by the Super Dual Auroral Radar Network (SuperDARN) and substorms were identified using the Far Ultraviolet (FUV) instrument on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. We find that during the substorm growth phase the expected IMF BY-dependent dawn-dusk asymmetry is observed over the entire convection pattern, but that during the expansion phase this asymmetry is retained only in the polar cap and dayside auroral zone. In the nightside auroral zone the convection is reordered according to the local substorm electrodynamics with any remaining dusk-dawn asymmetry being more closely related to the magnetic local time of substorm onset, itself only weakly governed by IMF BY. Owing to the preponderance of substorms occurring just prior to magnetic midnight, the substorm-asymmetry tends to be an azimuthal extension of the dusk convection cell across the midnight sector, a manifestation of the so-called “Harang discontinuity.” This results in the northern (southern) hemisphere nightside auroral convection during substorms generally resembling the expected pattern for negative (positive) IMF BY. When the preexisting convection pattern in the northern (southern) hemisphere is driven by positive (negative) IMF BY, the nightside auroral convection changes markedly over the course of the substorm to establish this same “Harang” configuration.

  8. PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Podorozhkina, N. A.; Sormakov, D. A.; Janzhura, A. S.

    2014-08-01

    The Polar Cap (PC) index has been approved by the International Association of Geomagnetism and Aeronomy (IAGA XXII Assembly, Merida, Mexico, 2013) as a new index of magnetic activity. The PC index can be considered to be a proxy of the solar wind energy that enters the magnetosphere. This distinguishes PC from AL and Dst indices that are more related to the dissipation of energy through auroral currents or storage of energy in the ring current during magnetic substorms or storms. The association of the PC index with the direct coupling of the solar wind energy into the magnetosphere is based upon analysis of the relationship of PC with parameters in the solar wind, on the one hand, and correlation between the time series of PC and the AL index (substorm development), on the other hand. This paper (the first of a series) provides the results of statistical investigations that demonstrate a strong correlation between the behavior of PC and the development of magnetic substorms. Substorms are classified as isolated and expanded. We found that (1) substorms are preceded by growth in the RS index, (2) sudden substorm expansion onsets are related to "leap" or "reverse" signatures in the PC index which are indicative of a sharp increase in the PC growth rate, (3) substorms start to develop when PC exceeds a threshold level 1.5 ± 0.5 mV/m irrespective of the length of the substorm growth phase, and (4) there is a linear relation between the intensity of substorms and PC for all substorm events.

  9. The response of ionospheric convection in the polar cap to substorm activity

    NASA Technical Reports Server (NTRS)

    Lester, M.; Lockwood, M.; Yeoman, T. K.; Cowley, S. W. H.; Luehr, H.; Bunting, R.; Farrugia, C. J.

    1995-01-01

    We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.

  10. Substorm electrodynamics

    NASA Technical Reports Server (NTRS)

    Stern, David P.

    1990-01-01

    The present one-dimensional model analysis of substorm electrodynamics proceeds from the standard scenario in which the plasma sheet collapses into a neutral sheet, and magnetic merging occurs between the two tail lobes; plasma flows into the neutral sheet from the lobes and the sides, undergoing acceleration in the dawn-dusk direction. The process is modified by the tendency of the accelerated plasma to unbalance charge neutrality, leading to an exchange of electrons with the ionosphere in order to maintain neutrality. The cross-tail current is weakened by the diversion: this reduces the adjacent lobe-field intensity, but without notable effects apart from a slight expansion of the tail boundary.

  11. MESSENGER observations of substorm activity in Mercury's near magnetotail

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Slavin, James; Fu, Suiyan; Raines, Jim; Zong, Qiu-Gang; Yao, Zhonghua; Pu, Zuyin; Shi, Quanqi; Poh, Gangkai; Boardsen, Scott; Imber, Suzanne; Sundberg, Torbjörn; Anderson, Brian; Korth, Haje; Baker, Daniel

    2015-04-01

    MESSENGER magnetic field and plasma measurements taken during crossings of Mercury's magnetotail from 2011 to 2014 have been examined for evidence of substorm activity. A total of 32 events were found during which an Earth-like growth phase was followed by clear near-tail expansion phase signatures. During the growth phase, the lobe of the tail loads with magnetic flux while the plasma sheet thins due to the increased lobe magnetic pressure. MESSENGER is often initially in the plasma sheet and then moves into the lobe during the growth phases. The averaged time scale of the loading is around 1 min, consistent with previous observations of Mercury's Dungey cycle. The dipolarization front that marks the initiation of the substorm expansion phase is only a few seconds in duration. The spacecraft then abruptly enters the plasma sheet due to the plasma sheet expansion as reconnection-driven flow from the near-Mercury neutral line encounters the stronger magnetic fields closer to the planet. Substorm activity in the near tail of Mercury is quantitatively very similar to the Earth despite the very compressed time scale.

  12. Modulation of the substorm current wedge by bursty bulk flows: 8 September 2002—Revisited

    NASA Astrophysics Data System (ADS)

    Palin, L.; Opgenoorth, H. J.; Ågren, K.; Zivkovic, T.; Sergeev, V. A.; Kubyshkina, M. V.; Nikolaev, A.; Kauristie, K.; Kamp, M.; Amm, O.; Milan, S. E.; Imber, S. M.; Facskó, G.; Palmroth, M.; Nakamura, R.

    2016-05-01

    The ultimate formation mechanism of the substorm current wedge (SCW) remains to date unclear. In this study, we investigate its relationship to plasma flows at substorm onset and throughout the following expansion phase. We revisit the case of 8 September 2002, which has been defined as "one of the best textbook examples of a substorm" because of its excellent coverage by both spacecraft in the magnetotail and ground-based observatories. We found that a dense sequence of arrival of nightside flux transfer events (NFTEs; which can be understood as the lobe magnetic signature due to a bursty bulk flow travelling earthward in the central plasma sheet) in the near-Earth tail leads to a modulation (and further step-like builtup) of the SCW intensity during the substorm expansion phase. In addition, we found that small SCWs are created also during the growth phase of the event in association with another less intense sequence of NFTEs. The differences between the sequence of NFTEs in the growth and expansion phase are discussed. We conclude that the envelope of the magnetic disturbances which we typically refer to as an intense magnetic substorm is the result of a group or sequence of more intense and more frequent NFTEs.

  13. Substorm theories: United they stand, divided they fall

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    1995-01-01

    Consensus on the timing and mapping of substorm features has permitted a synthesis of substorm models. Within the synthesis model the mechanism for onset of substorm expansion is still unknown. Possible mechanisms are: growth of an ion tearing mode, current disruption by a cross-field current instability, and magnetosphere-ionosphere coupling. While the synthesis model is consistent with overall substorm morphology, including near-Earth onset, none of the onset theories, taken individually, appear to account for substorm expansion onset. A grand synthesis with unification of the underlying onset theories appears necessary.

  14. Fine scale structures of pulsating auroras in the early recovery phase of substorm using ground-based EMCCD camera

    NASA Astrophysics Data System (ADS)

    Nishiyama, Takanori; Sakanoi, Takeshi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Hampton, Donald; Katoh, Yuto; Asamura, Kazushi; Okano, Shoichi

    2012-10-01

    We have carried out ground-based observations, optimized to temporal and spatial characteristics of pulsating auroras (PAs) in the micro/meso scale, using an electron multiplying charge coupled device (EMCCD) camera with a wide field of view corresponding to 100 × 100 km at an altitude of 110 km and a high sampling rate up to 100 frames per second. We focus on transient PAs propagating southward around 1100 UT, in the early recovery phase of the substorm, on 4th March 2011. Three independent patches (PA1-3) each with different periods between 4 and 7 s were observed, which means that the periodicity was not explained by the electron bounce motion and strongly depended on local plasma conditions in the magnetosphere or in the ionosphere. One more insight is that only PA1 had also a sharp peak of modulations around 1.5 Hz, with a narrow frequency width of 0.30 Hz, and the strong modulations existed as a small spot in the center of PA1. We have also conducted cross spectrum analysis and have obtained coherence and phase distributions for auroral variations between 0.1 and 3.0 Hz. The results indicated that low frequency variations from 0.2 to 0.5 Hz inside PA1-3 propagated as a collective motion in well-defined directions. The estimated horizontal propagation velocities ranged from 50 to 120 km/s at the auroral altitude. The velocities are almost consistent with the Alfven speed at the magnetic equator, which suggests that compressional waves have an effect on PA via modulations of the ambient plasma environment.

  15. Role of heavy ionospheric ions in the localization of substorm disturbances on March 22, 1979: CDAW 6

    SciTech Connect

    Baker, D.N.; Fritz, T.A.; Lennartsson, W.; Wilken, B.; Kroehl, H.W.; Birn, J.

    1985-02-01

    Extensive ground-based arrays of magnetometers and numerous satellite platforms in the outer magnetosphere have established that two separate substorm expansion onsets occurred on March 22, 1979. The first of these occurred at 1055 UT and is demonstrated to be localized in the 0200--0300 LT sector. Concurrent plasma sheet ion composition measurements are used to show that the growth and expansion phase of this substorm occurred while the outer magnetosphere was composed dominantly of solar wind (H/sup +/ and He/sup + +/) plasmas. The 1055 UT substorm greatly perturbed and altered the ion composition of the plasma in the outer magnetosphere such that the second substorm expansion onset (1436 UT) occurred while the outer magnetospheric plasmas were dominantly of ionospheric (O/sup +/) origin. The 1436 UT substorm is shown to have a component of the westward electrojet localized further westward in local time relative to the first substorm. These results are a consistent, well-documented example of the possible important role of heavy ions in the localization and initiation of plasma sheet instabilities during substorms.

  16. Midday auroras and magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.

    1972-01-01

    Auroral activity in the midday sector is examined in some detail on the basis of all-sky photographs taken from Pyramida, Spitzbergen. The equatorward motion of the midday auroras observed during substorms and the subsequent poleward shift during the recovery phase are discussed.

  17. Changes in Magnetosphere-Ionosphere Coupling and FACs Associated with Substorm Onset (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, I. J.; Waters, C. L.; Anderson, B. J.; Korth, H.; Milling, D. K.; Singer, H. J.; Frey, H. U.

    2013-12-01

    Field aligned currents (FACs) are crucial for the communication of information between the ionosphere and magnetosphere. Utilising in-situ observations from the Iridium constellation and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) we provide detailed observations of the FAC topology through the substorm growth and expansion phases. In particular, for an isolated substorm on 16 February 2010 we demonstrate a clear and localized reduction in the FACs at least 6 minutes prior to auroral onset. A new auroral arc forms in the region of reduced FAC on closed field lines and initially expands azimuthally in wave like fashion. This newly formed arc continues to brighten and expands poleward signifying the start of the substorm expansion phase. We argue that the change in FACs observed prior to onset is the result of a change in the magnetosphere-ionosphere (M-I) coupling in a region local to the subsequent auroral onset. Such a change implies an important role for M-I coupling in destabilising the near-Earth tail during magnetospheric substorms and perhaps more importantly in selecting the location in the ionosphere where auroral onset begins. Further, we provide, a comprehensive in-situ two-dimensional view of the FAC topology associated with the substorm current wedge and westward traveling surge during the substorm expansion phase. We demonstrate that these current structures, when integrated with latitude to produce a net FAC as a function of MLT, have the same structure as the equivalent line current system comprising the SCW. Moreover, regions of upward FAC are associated with discrete auroral forms during the substorm expansion phase.

  18. A missing variable in the data-based substorm studies

    NASA Astrophysics Data System (ADS)

    Sergeev, Viktor; Angelopoulos, Vassilis; Sormakov, Dmitry

    Nowadays the quantitative characterization of the magnetospheric activity is predominantly based on the amplitude of auroral zone magnetic perturbations (e.g., AL index value). This approach ignores the long-established fact that ground magnetic perturbations are basically formed by the Hall currents (Fukushima theorem), which depend critically on the Hall conductivity and, therefore, are sensitive to the plasma sheet electron parameters (Te and Ne, which also control the production of energetic electrons by their field-aligned acceleration). Observational confirmation of such influence is difficult because of many complicating factors, main of which are the inhomogeneity of Te, Ne parameters in the magnetotail and, especially, the reconnection-induced production of low-density and high-temperature electrons during substorms in the magnetotail. In this study, based on long-term monitoring of plasma sheet electrons by THEMIS spacecraft, we (a) demonstrate a strong variation of auroral zone currents (by an order of magnitude depending on the plasma sheet Te/Ne value) under the conditions of the substorm growth phase (when substorm-related acceleration is weak), (b) compare the average behaviors of Te, Ne during substorms under very large (very small) Te/Ne conditions and (c) briefly discuss a number of ’phantom problems’ which arise due to the ignorance of this dependence (incl. the problem of pseudobreakups, etc).

  19. Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.

  20. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  1. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  2. Observational evidence for an inside-out substorm onset scenario

    SciTech Connect

    Henderson, Michael G

    2008-01-01

    We present observations which provide strong support for a substorm onset scenario in which a localized inner magnetospheric instability developed first and was later followed by the development of a Near Earth Neutral Line (NENL) farther down-tail. Specifically, we find that the onset began as a localized brightening of an intensified growth phase arc which developed as a periodic series of arc-aligned (i.e. azimuthally arrayed) bright spots. As the disturbance grew, it evolved into vortical structures that propagated poleward and eventually morphed into an east-west aligned arc system at the poleward edge of the auroral substorm bulge. The auroral intensification shows an exponential growth with an estimated e-folding time of around 188 seconds (linear growth rate, {gamma} of 5.33 x 10{sup -3} s{sup -1}). During the initial breakup, no obvious distortions of auroral forms to the north were observed. However, during the expansion phase, intensifications of the poleward boundary of the expanding bulge were observed together with the equatorward ejection of auroral streamers into the bulge. A strong particle injection was observed at geosynchronous orbit, but was delayed by several minutes relative to onsel. Ground magnetometer data also shows a two phase development of mid-latitude positive H-bays, with a quasi-linear increase in H between the onset and the injection. We conclude that this event provides strong evidence in favor of the so-called 'inside-out' substorm onset scenario in which the near Earth region activates first followed at a later time by the formation of a near-to-mid tail substorm X-line. The ballooning instability is discussed as a likely mechanism for the initial onset.

  3. Electron precipitation patterns and substorm morphology.

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Burch, J. L.

    1973-01-01

    Statistical analysis of data from the auroral particles experiment aboard OGO 4, performed in a statistical framework interpretable in terms of magnetospheric substorm morphology, both spatial and temporal. Patterns of low-energy electron precipitation observed by polar satellites are examined as functions of substorm phase. The implications of the precipitation boundaries identifiable at the low-latitude edge of polar cusp electron precipitation and at the poleward edge of precipitation in the premidnight sector are discussed.

  4. Observations in the vicinity of substorm onset: Implications for the substrom process

    NASA Technical Reports Server (NTRS)

    Elphinstone, R. D.; Hearn, D. J.; Cogger, L. L.; Murphree, J. S.; Singer, H.; Sergeev, V.; Mursula, K.; Klumpar, D. M.; Reeves, G. D.; Johnson, M.

    1995-01-01

    Multi-instrument data sets from the ground and satellites at both low and high altitude have provided new results concerning substorm onset and its source region in the magnetosphere. Twenty-six out of 37 substorm onset events showed evidence of azimuthally spaced auroral forms (AAFs) prior to the explosive poleward motion associated with optical substorm onset. AAFs can span 8 hours of local time prior to onset and generally propagate eastward in the morning sector. Onset itself is, however, more localized spanning only about 1 hour local time. AAF onset occur during time periods when the solar wind pressure is relatively high. AAFs brighten in conjunction with substorm onset leading to the conclusion that they are a growth phase activity casually related to substorm onset. Precursor activity associated with these AAFs is also seen near geosynchronous orbit altitude and examples show the relationship between the various instrumental definitions of substorm onset. The implied mode number (30 to 135) derived from this work is inconsistent with cavity mode resonances but is consistent with a modified flute/ballooning instability which requires azimuthal pressure gradients. The extended source region and the distance to the open-closed field line region constrain reconnection theory and local mechanisms for substorm onset. It is demonstrated that multiple onset substorms can exist for which localized dipolarizations and the Pi 2 occur simultaneously with tail stretching existing elsewhere. These pseudobreakups can be initiated by auroral streamers which originate at the most poleward set of arc systems and drift to the more equatorward main UV oval. Observations are presented of these AAFs in conjunction with low- and high-altitutde particle and magnetic field data. These place the activations at the interface between dipolar and taillike field lines probably near the peak in the cross-tail current. These onsets are put in the context of a new scenario for substorm

  5. Substorm currents in the equatorial magnetotail

    SciTech Connect

    Iijima, T.; Watanabe, M.; Potemra, T.A.; Zanetti, L.J.; Kan, J.R.; Akasofu, S.I.

    1993-10-01

    The authors have determined characteristics of magnetospheric equatorial currents during substorms from the vector magnetic field data acquired with the GOES 5 and GOES 6 satellites, separated about 1.9 hours in MLT in geosynchronous orbit. These data have been used to determine the local time (azimuthal) and radial variation of the equatorial current. The divergence of the equatorial current was computed from these variations, and systems of field-aligned currents were deduced. During the growth phase to the maximum phase of the taillike reconfiguration of the near-Earth magnetic field, a positive divergence (away from the equatorial plane) of the westward equatorial current occurs in the late evening to premidnight MLT sector, and a negative divergence (away from the equatorial plane) occurs in the late evening to premidnight MLT sector, and a negative divergence (away from the equatorial plane) occurs in the premidnight to early morning MLT sector. This flow direction pattern is the same as that of the region 2 field-aligned current system. The authors have also determined the presence of a radial current that flows toward the earth in the late evening to premidnight sector and flows away from the Earth in the midnight to morning sector. The intensity of the radial currents increases before the expansion phase. Consequently, the patterns of field-aligned currents associated with various substorm phases are the superposition of currents driven by multiple sources with different temporal variations. They have identified at least three different but related sources of field-aligned currents during the growth and expansion phases. These sources are related to the divergence of the westward flowing equatorial current and to distributions of pressure and magnetic field gradients that evolve in the magnetotail. When combined, these complicated systems support the basic region 1 to region 2 field-aligned current flow pattern. 22 refs., 12 figs., 1 tab.

  6. Sources and Transport of Plasma Sheet Ions During Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Raeder, J.; Walker, R. J.; Frank, L. A.; Paterson, W. R.

    1998-01-01

    This study investigates the sources and transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that took place on November 24, 1996. The sources and acceleration mechanisms of ions observed at Geotail were determined by calculating the trajectories of thousands of ions backward in time. We found that during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and were already in the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase more plasma mantle ions reached the Geotail location. Indeed, during the expansion phase more than 90% of the ions were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the energy gained was achieved by non-adiabatic acceleration during the ions' crossing of the equatorial current sheet just prior to the detection of the ions.

  7. From space weather toward space climate time scales: Substorm analysis from 1993 to 2008

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Mursula, K.; Partamies, N.; Slavin, J. A.

    2011-05-01

    Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993-2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (Rss), substorm duration (Tss), and peak amplitude (Ass) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (∣Ass,decl∣ = 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years (∣Ass,acs∣ = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration, which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-to-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.

  8. Dynamics of the inner magnetosphere near times of substorm onsets

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Burke, W. J.; Basinska, E. M.; Erickson, G. M.; Hughes, W. J.; Singer, H. J.; Yahnin, A. G.; Hardy, D. A.; Mozer, F. S.

    1996-04-01

    in both directions is weak (negative feedback?). ``Explosive-growth-phase'' signatures occur after onset, early in the substorm expansion phase. Heated electrons arrive at the spacecraft while convection is earthward, during or at the end of electromagnetic energy flow away from the ionosphere.

  9. A mechanism for magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Erickson, G. M.; Heinemann, M.

    1994-01-01

    Energy-principle analysis performed on two-dimensional, self-consistent solutions for magnetospheric convection indicates that the magnetosphere is unstable to isobaric (yet still frozen-in) fluctuations of plasma-sheet flux tubes. Normally, pdV work associated with compression maintains stability of the inward/outward oscillating normal mode. However, if Earth's ionosphere can provide sufficient mass flux, isobaric expansion of flux tubes can occur. The growth of a field-aligned potential drop in the near-Earth, midnight portion of the plasma sheet, associated with upward field-aligned currents responsible for the Harang discontinuity, redistributes plasma along field lines in a manner that destabilizes the normal mode. The growth of this unstable mode results in an out-of-equilibrium situation near the inner edge. When this occurs over a downtail extent comparable to the half-thickness of the plasma sheet, collapse ensues and forces thinning of the plasma sheet whereby conditions favorable to reconnection occur. This scenario for substorm onset is consistent with observed upward fluxes of ions, parallel potential drops, and observations of substorm onset. These observations include near Earth onset, pseudobreakups, the substorm current wedge, and local variations of plasma-sheet thickness.

  10. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution

    SciTech Connect

    Anderson, P.C.; Baker, D.N. ); Hanson, W.B.; Heelis, R.A. ); Frank, L.A.; Craven, J.D. )

    1993-04-01

    The authors conduct a study of subauroral ion drifts (SAID), to examine their correlation with magnetic storms. By a SAID one means a latitudinally narrow band of westward drifting ions located on the equatorial side of the auroral oval in the evening ionosphere. They look at the relationship of SAID to various stages in the development of a substorm. Data comes from DE 1, which provided auroral images, DE 2 which measured ionospheric parameters by means of magnetometers, an ion drift meter, a low altitude plasma instrument, and a retarding potential analyzer, and measurements of particle injection made by instruments at geosynchronous orbit. Analysis of the data showed very low ion drifts or field aligned currents in regions equatorward of the auroral oval before or after substorms. After substorm onset ion drifts and field aligned currents were observed extending well equatorward of the oval. There was no clear drift spike in these observations suggesting a SAID. They never saw a SAID occuring within 30 minutes of substorm onset. In almost all observations of a SAID which could be correlated with the recovery phase of the substorm, the SAID was initiated in the recovery phase. The authors then propose a model to explain the SAID which draws upon a decrease in the conductivity in the E and F regions between the band of electron precipitation in the oval and the equatorward band of ion precipitation. Several factors play into this decrease, but its occurance allows the growth of large electric fields which can drive the plasma drift as the equatorward extent of the substorm expansion shrinks in the recovery phase.

  11. New perspectives on substorm injections

    SciTech Connect

    Reeves, G.D.

    1998-12-01

    There has been significant progress in understanding substorm injections since the Third International Conference on Substorms in 1996. Progress has come from a combination of new theories, quantitative modeling, and observations--particularly multi-satellite observations. There is now mounting evidence that fast convective flows are the mechanism that directly couples substorm processes in the mid tail, where reconnection occurs, with substorm processes the inner magnetosphere where Pi2 pulsations, auroral breakups, and substorm injections occur. This paper presents evidence that those flows combined with an earthward-propagating compressional wave are responsible for substorm injections and discusses how that model can account for various substorm injection signatures.

  12. The response of the near earth magnetotail to substorm activity

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; McPherron, R. L.; Thompson, S.; Khurana, K. K.; Weygand, J. M.; Balogh, Andrew

    2005-01-01

    The large scale structure of the current sheet in the terrestrial magnetotail is often represented as the superposition of a constant northward-oriented magnetic field component (B(sub z)) and a component along the Earth-Sun direction (B(sub x)) that varies with distance from the center of the sheet (z(sub o) in GSM) as in a Hams neutral sheet. The latter implies that B(sub x) = B(sub Lx) tanh((z - z(sub o))/h) where B(sub Lx) is the magnitude of the B(sub x) component in the northern lobe. Correspondingly, the cross-tail current should be approximated by J(sub y) = (B(sub Lx)/h) sech(sup 2)((z - z(sub o))/h). Using data from the fluxgate magnetometer (FGM) on the Cluster I1 spacecraft tetrad, we have used measured fields and currents to ask if this model represents the large-scale properties of the system. During very quiet crossings of the plasmasheet, we find that the model gives a reasonable estimate of the trend of the average current and field distributions, but during disturbed intervals, the best fit fails to represent the data. If, however, the parameters z(sub o) and h of the model are taken as variable functions of time, the fits can be reasonably good. The temporal variation of the fit parameter h that characterizes the thickness of the current sheet can be interpreted in terms of thinning during the growth phase of a substorm and thickening following the expansion phase. Ground signatures that give insight into the local time of substorm onset can be used to interpret the response of the plasmasheet to substorm related changes of the global system. During a substorm, the field magnitude in the central plasmasheet fluctuates at the period of Pi2 pulsations.

  13. Temporal and spatial dynamics of the regions 1 and 2 Birkeland currents during substorms

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Baker, J. B. H.; Ruohoniemi, J. M.; Milan, S. E.; Coxon, J. C.; Wing, S.; Ohtani, S.; Anderson, B. J.

    2013-06-01

    We use current density data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to identify the location of maximum region 1 current at all magnetic local times (MLTs). We term this location the R1 oval. Comparing the R1 oval location with particle precipitation boundaries identified in DMSP data, we find that the R1 oval is located on average within 1° of particle signatures associated with the open/closed field line boundary (OCB) across dayside and nightside MLTs. We hence conclude that the R1 oval can be used as a proxy for the location of the OCB. Studying the amount of magnetic flux enclosed by the R1 oval during the substorm cycle, we find that the R1 oval flux is well organized by it: during the growth phase the R1 oval location moves equatorward as the amount of magnetic flux increases whereas after substorm expansion phase onset significant flux closure occurs as the R1 current location retreats to higher latitudes. For about 15 min after expansion phase onset, the amount of open magnetic flux continues to increase indicating that dayside reconnection dominates over nightside reconnection. In the current density data, we find evidence of the substorm current wedge and also show that the dayside R1 currents are stronger than their nightside counterpart during the substorm growth phase, whereas after expansion phase onset, the nightside R1 currents dominate. Our observations of the current distribution and OCB movement during the substorm cycle are in excellent agreement with the expanding/contracting polar cap paradigm.

  14. Magnetic field fluctuations during substorms

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1971-01-01

    Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.

  15. Bursty reconnection modulating the substorm current wedge, a substorm case study re-analysed by ECLAT tools.

    NASA Astrophysics Data System (ADS)

    Opgenoorth, Hermann; Palin, Laurianne; Ågren, Karin; Zivkovic, Tatjana; Facsko, Gabor; Sergeev, Victor; Kubyshkina, Marina; Nikolaev, Alexander; Milan, Steve; Imber, Suzanne; Kauristie, Kirsti; Palmroth, Minna; van de Kamp, Max; Nakamura, Rumi; Boakes, Peter

    2015-04-01

    Multi-instrumental data mining and interpretation can be tedious and complicated. In this context, the ECLAT (European Cluster Assimilation Technology) project was created to « provide a novel and unique data base and tools for space scientists, by providing an upgrade of the European Space Agency's Cluster Active Archive (CAA). » How can this new tool help the space plasma physics community? Here we demonstrate the power of coordinated global and meso-scale ground-based data to put satellite data into the proper context. We re-analyse a well-isolated substorm with a strong growth phase, which starts right overhead the Scandinavian network of instruments on 8 September 2002. This event was previously studied in detail by Sergeev et al (2005), based on a THEMIS-like configuration near-midnight using a unique radial constellation of LANL (~6.6Re), Geotail and Polar (~9Re), and Cluster (~16Re). In this new study we add detailed IMAGE spacecraft and ground-based network data. Magnetospheric models are specially adapted using solar wind conditions and in-situ observations. Simulation results are compared to the in-situ observations and discussed. We show how - both before and after substorm onset - bursty reconnection in the tail modulates the localised field aligned current flow associated with the substorm current wedge.

  16. Energy dissipation in substorms

    NASA Technical Reports Server (NTRS)

    Weiss, Loretta A.; Reiff, P. H.; Moses, J. J.; Heelis, R. A.; Moore, B. D.

    1992-01-01

    The energy dissipated by substorms manifested in several ways is discussed: the Joule dissipation in the ionosphere; the energization of the ring current by the injection of plasma sheet particles; auroral election and ion acceleration; plasmoid ejection; and plasma sheet ion heating during the recovery phase. For each of these energy dissipation mechanisms, a 'rule of thumb' formula is given, and a typical dissipation rate and total energy expenditure is estimated. The total energy dissipated as Joule heat (approximately) 2 x 10(exp 15) is found about twice the ring current injection term, and may be even larger if small scale effects are included. The energy expended in auroral electron precipitation, on the other hand, is smaller than the Joule heating by a factor of five. The energy expended in refilling and heating the plasma sheets is estimated to be approximately 5 x 10(exp 14)J, while the energy lost due to plasmoid ejection is between (approximately) (10 exp 13)(exp 14)J.

  17. Integrated Observations of ICME - Driven Substorm - Storm Evolution on 7 August 1998: Traditional and Non-Traditional Aspects.

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.; Torbert, R. B.

    2015-12-01

    The aim of this study is to obtain an integrated view of substorm-storm evolution in relation to well-defined interplanetary (IP) conditions, and to identify traditional and non-traditional aspects of the DP1 and DP2 current systems during substorm activity. Specifically, we report a case study of substorm/storm evolution driven by an ICME from ground observations around the oval in relation to geoeffective IP parameters (Kan-Lee electric field, E-KL, and dynamic pressure, Pdyn), geomagnetic indices (AL, SYM-H and PCN) and satellite observations (from DMSP F13 and F14, Geotail, and GOES spacecraft). A sudden enhancement of E-KL at a southward turning of the IMF led to an initial transient phase (PCN-enhancement) followed by a persistent stage of solar wind-magnetosphere-ionosphere coupling. The persistent phase terminated abruptly at a steep E-KL reduction when the ICME magnetic field turned north after a 3-hour-long interval of enhanced E-KL. The persistent phase consisted of (i) a 45-min-long substorm growth phase (DP2 current) followed by (ii) a classical substorm onset (DP1 current) in the 0100 - 0300 MLT sector, (ii) a 30-min-long expansion phase, maximizing in the same sector, and (iii) a phase lasting for 1.5 hr of 10-15 min-long DP1 events in the 2100 - 2300 and 0400 - 0600 MLT sectors. In the morning sector the expansion phase was characterized by Ps6 pulsations and omega bands. The SYM-H evolution reached the level of a major storm after a 2.5-hour-long interval of E-KL ˜5 mV/m and elevated Pdyn in the substorm expansion phase. Magetosphere - Ionosphere (M - I) coupling during a localized electrojet event at 0500 MLT in the late stage of the substorm expansion is studied by ground - satellite conjunction data (Iceland - Geotail). The DP1 and DP2 components of geomagnetic activity are discussed in relation to M - I current systems and substorm current wedge morphology.

  18. On the relationship between the energetic particle flux morphology and the change in the magnetic field magnitude during substorms

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Lui, A. T. Y.; Sibeck, D. G.; Takahashi, K.; Mcentire, R. W.

    1989-01-01

    The relationship between the morphology of energetic particle substorm injections and the change in the magnetic field magnitude over the course of the event is examined. Using the statistical relationships between the magnetic field during the growth phase and the change in the field magnitude during substorms calculated by Lopez et al. (1988), a limited number of dispersionless ion injections observed by AMPTE CCE are selected. It is argued that this limited set is representative of a large set of events and that the conclusions drawn from examining those events are valid for substorms in general in the inner magnetosphere. It is demonstrated that in an event when CCE directly observed the disruption of the current sheet, the particle and field data show that the region of particle acceleration was highly turbulent and was temporally, and perhaps spatially, limited and that the high fluxes of energetic particles are qualitatively associated with intense inductive electric fields.

  19. Energy Coupling Between the Ionosphere and Inner Magnetosphere Related to Substorm Onset

    NASA Technical Reports Server (NTRS)

    Maynard, Nelson C.

    1999-01-01

    The investigation of substorm effects in the inner magnetosphere with CRRES data looked in detail at over 50 substorms relative to signatures of onset and early expansion phases. The accomplishments of the project are: Determined perpendicular Poynting flux at CRRES in the inner magnetosphere at substorm onset, including primary direction is azimuthal, not radial, indicating a local source, no obvious signal from the magnetotail to trigger onset, strongly supports substorm onset location near the inner edge of the plasma sheet and process is local and a strong function of Magnetosphere-ionosphere (MI) coupling. We also developed near geosynchronous onset (NGO) model for substorm onset and expansion.

  20. Electron precipitation pattern and substorm morphology

    NASA Technical Reports Server (NTRS)

    Hoffman, R. A.; Burch, J. L.

    1972-01-01

    Patterns of the precipitation of low energy electrons observed by polar satellites were examined as functions of substorm phase. Precipitation boundaries are generally identifiable at the low latitude edge of polar cusp electron precipitation and at the poleward edge of precipitation in the premidnight sector. Both of these boundaries move equatorward when the interplanetary magnetic field turns southward.

  1. Theory for substorms triggered by sudden reductions in convection

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1996-01-01

    Many substorm expansions are triggered by interplanetary magnetic field changes that reduce magnetospheric convection. This suggests that expansion onsets are a result of a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind. Such a reduction disrupts the inward motion and energization of plasma sheet particles that occur during the growth phase. It is proposed that the resulting magnetic drift of particles and a large dawn to dusk gradient in the ion energies leads to a longitudinally localized reduction in the plasma pressure, and thus, to the current wedge formation. This theory accounts for the rapid development of the expansion phase relative to growth phase, the magnitude of the wedge currents, the speeds of tailward and westward expansion of the current reduction region in the equatorial plane, and the speeds of the poleward and westward motion of active aurora in the ionosphere.

  2. Energy storage and dissipation in the magnetotail during substorms. 1. Particle simulations

    SciTech Connect

    Winglee, R.M. ); Steinolfson, R.S. )

    1993-05-01

    The authors present a simulation study of the particle dynamics in the magnetotail during the development of substorms. They look at how energy flows into the magnetotail under external magnetospheric conditions, and study the energy storage and dissipation in the magnetic field, and the role of particle dynamics in this process. They consider two primary external influences in their model. First is the pressure exerted by the magnetospheric boundary layer, on the nightside magnetopause. This pressure is expected to grow in response to solar wind penetration into the magnetosphere when the interplanetary magnetic field becomes southward in the initial phases of substorm growth. Second is the dawn to dusk electric field. This field is expected to grow as the current sheet thins and energy stored in the magnetic field rises. The authors argue that the simultaneous increase in both the magnetic pressure and electric field can better model magnetotail response. One sees strong earthward flows in conjunction with increased energy storage in the tail, and at substorm onset one sees the ejection of plasmoids in a tailward direction with increased particle heating. The clumping of particles in the current sheet due to the opposing effects of the magnetic pressure and electric field could be responsible for substorm onset, rather than instabilities such as the tearing mode.

  3. Multiradar observations of substorm-driven ULF waves

    NASA Astrophysics Data System (ADS)

    James, M. K.; Yeoman, T. K.; Mager, P. N.; Klimushkin, D. Yu.

    2016-06-01

    A recent statistical study of ULF waves driven by substorm-injected particles observed using Super Dual Auroral Radar Network (SuperDARN) found that the phase characteristics of these waves varied depending on where the wave was observed relative to the substorm. Typically, positive azimuthal wave numbers, m, were observed in waves generated to the east of the substorms and negative m to the west. The magnitude of m typically increased with the azimuthal separation between the wave observation and the substorm location. The energies estimated for the driving particles for these 83 wave events were found to be highest when the waves were observed closer to the substorm and lowest farther away. Each of the 83 events studied by James et al. (2013) involved just a single wave observation per substorm. Here a study of three individual substorm events are presented, with associated observations of multiple ULF waves using various different SuperDARN radars. We demonstrate that a single substorm is capable of driving a number of wave events characterized by different azimuthal scale lengths and wave periods, associated with different energies, W, in the driving particle population. We find that similar trends in m and W exist for multiple wave events with a single substorm as was seen in the single wave events of James et al. (2013). The variety of wave periods present on similar L shells in this study may also be evidence for the detection of both poloidal Alfvén and drift compressional mode waves driven by substorm-injected particles.

  4. Substorm electric fields at nightside low latitude

    NASA Astrophysics Data System (ADS)

    Hashimoto, K. K.; Kikuchi, T.; Tomizawa, I.; Nagatsuma, T.

    2014-12-01

    The convection electric field penetrates from the polar ionosphere to low latitude and drives the DP2 currents in the global ionosphere with an intensified equatorial electrojet (EEJ). The electric field often reverses its direction, that is, the overshielding occurs and causes the equatorial counterelectrojet (CEJ) during storm and substorms. In this paper we report that the overshielding electric field is detected by the HF Doppler sounders at low latitude on the nightside. We analyzed the Doppler frequency of the HF radio signals propagated over 120 km in Japan at frequencies of 5 and 8 MHz and compared with the equatorial EEJ/CEJ during the substorm expansion phase. We found that the overshielding electric field reaches around 2 mV/m during major substorms (AL <-1800 nT). Taking the geometrical attenuation into account, we estimate the equatorial electric field to be about 1.5 mV/m. We also found that the correlation coefficient was 0.94 between the overshielding electric field and eastward equatorial electrojet at YAP on the night side. The electric field drives the eastward electrojets in the equatorial ionosphere on the night side. It is to be noted that the overshielding electric field is observed on the nightside at low latitude during the major substorms, while the convection electric field is dominant during smaller size substorms, as the CEJ flows on the dayside. These results suggest that the overshielding electric field associated with the Region-2 field-aligned currents becomes dominant during substorms at low latitude on the nightside as well as on the dayside.

  5. "Old" tail lobes provide significant additional substorm power

    NASA Astrophysics Data System (ADS)

    Mishin, V.; Mishin, V. V.; Karavaev, Y.

    2012-12-01

    In each polar cap (PC) we mark out "old PC" observed during quiet time before the event under consideration, and "new PC" that emerges during rounding the old one and expanding the PC total area. Old and new PCs correspond in the magnetosphere to the old and new tail lobes, respectively. The new lobe variable magnetic flux Ψ1 is usually assumed to be active, i.e. it provides transport of the electromagnetic energy flux (Poynting flux) ɛ' from solar wind into the magnetosphere. The old lobe magnetic flux Ψ2 is usually supposed to be passive, i.e. it remains constant during the disturbance and does not participate in the transporting process which would mean the old PC electric field absolute screening from the convection electric field created by the magnetopause reconnection. In fact, screening is observed, but it is far from absolute. We suggest a model of screening and determine its quantitative characteristics in the selected superstorm. The coefficient of a screening is the β = Ψ2/Ψ02, where Ψ02 = const is open magnetic flux through the old PC measured prior to the substorm, and Ψ2 is variable magnetic flux during the substorm. We consider three various regimes of disturbance. In each, the coefficient β decreased during the loading phase and increased at the unloading phase, but the rates and amplitudes of variations exhibited a strong dependence on the regime. We interpreted decrease in β as a result of involving the old PC magnetic flux Ψ2, which was considered to be constant earlier, to the ' transport process of the Poynting flux from the solar wind into the magnetosphere. A weakening of the transport process at the subsequent unloading phase creates increase in β. Estimates showed that coefficient β during each regime and the computed Poynting flux varied manifolds. In general, unlike the existing substorm conception, the new scenario describes an unknown earlier tail lobe activation process during a substorm growth phase that effectively

  6. Current sheet thinning, reconnection onset, and auroral morphology during geomagnetic substorms

    NASA Astrophysics Data System (ADS)

    Otto, A.; Hsieh, M. S.

    2015-12-01

    Geomagnetic substorms represent a fundamental energy release mechanism for the terrestrial magnetosphere. Specifically, the evolution of thin currents sheets during the substorm growth phase plays a key role for substorms because such current sheets present a much lower threshold for the onset of tearing modes and magnetic reconnection than the usually thick magnetotail current sheet. Here we examine and compare two basic processes for current sheet thinning in the Earth's magnetotail: Current sheet thinning (1) through closed magnetic flux depletion (MFD) in the near Earth magnetotail caused by divergent flux transport to replace closed flux on the dayside and (2) through accumulation of open flux magnetic flux in the tail lobes also caused by dayside reconnection. Both processes are expected to operate during any period of enhanced dayside reconnection. It is demonstrated that closed magnetic flux depletion (MFD) in the near Earth magnetotail and the increase of open lobe magnetic flux can lead to the evolution of two separate thin current sheets in the near Earth and the mid tail regions of the magnetosphere. While the auroral morphology associated with MFD and near Earth current sheet formation is well consistent with typical substorm growth observation, midtail current sheet formation through lobe flux increase shows only a minor influence on the auroral ionosphere. We discuss the physics of the dual current sheet formation and local and auroral properties of magnetic reconnection in either current sheet. It is suggested that only reconnection onset in the near Earth current sheet may be consistent with substorm expansion because the flux tube entropy depletion of mid tail reconnection appears insufficient to cause geosynchronous particle injection and dipolarization. Therefore reconnection in the mid tail current sheet is more likely associated with bursty bulk flows or dipolarization fronts which stop short of geosynchronous distances.

  7. Response of northern winter polar cap to auroral substorms

    NASA Astrophysics Data System (ADS)

    Liou, Kan; Sotirelis, Thomas

    2016-05-01

    The three-phase substorm sequence has been generally accepted and is often tied to the Dungey cycle. Although previous studies have mostly agreed on the increase and decrease in the polar cap area during an episode of substorm, there are disparate views on when the polar cap starts to contract relative to substorm onset. Here we address this conflict using high-resolution (~1-3 min) snapshot global auroral images from the ultraviolet imager on board the Polar spacecraft. On the basis of 28 auroral substorm events, all observed in the Northern Hemispheric winter, it is found that the polar cap inflated prior to onset in all events and it attained the largest area ~6 min prior to the substorm expansion phase onset, while the dayside polar cap area remained steady around the onset. The onset of nightside polar cap deflation is found to be attributed to intensifications of aurora on the poleward edge of the nightside oval, mostly in the midnight sector. Although this result supports the loading-unloading and reconnection substorm models, it is not clear if the initial polar cap deflation and the substorm expansion are parts of the same process.

  8. A magnetospheric substorm observed at Sanae, Antarctica

    SciTech Connect

    Gledhill, J.A.; Dore, I.S.; Haggard, R. ); Goertz, C.K. ); Hughes, W.J. ); Scourfield, M.W.J.; Wakerley, P.A.; Walker, A.D.M. ); Smits, D.P.; Sutcliffe, P.R. ); Stoker, P.H. )

    1987-03-01

    A magnetospheric substorm that occurred at Sanae, Antarctica, on July 27, 1979, was observed by a variety of techniques. A synthesis of the observations is presented, and an attempt made to deduce details of the behavior of the magnetosphere-ionosphere system during the event. While there was some evidence of a growth phase, it was inconclusive. At the onset there was a rapid change in the tail field, which assumed a more dipolar form, accompanied by Pi 2 oscillations and the precipitation of 6-keV electrons, with brightening of the auroral arc, auroral-type sporadic E ionization, and riometer absorption. A positive spike was observed in the D magnetic component, instead of the expected negative one. There was no evidence of the usual westward traveling surge at the beginning of the expansion phase during which the precipitation region, auroral arc, and electrojet moved rapidly poleward, though it may have occurred outside the field of view from Sanae. The H{beta} emission increased by a factor of less than 2, whereas the oxygen and nitrogen emissions monitored increased by 3-4. During the recovery phase, phenomena were consistent with a return of the tail field to an elongated form; a very high ratio of 557.7-nm/630-nm emissions, exceeding 10, was observed; and the electrojet lagged noticeably behind the photon emission regions.

  9. Boundary layer dynamics in the description of magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Rostoker, G.; Frank, L. A.; Huang, C. Y.; Mitchell, D. G.

    1988-01-01

    This paper presents an analysis of eleven magnetospheric substorm events for which good-quality ground-based magnetometer data and ISEE satellite data were both available. It is shown that the magnetotail particle and field observations associated with a substorm expansive phase can be explained through the spatial movement of the boundary layers and central plasma sheet in the magnetotail. The sweeping of these regions past the satellite, even in the absence of temporal variations within the various regions, can lead to a set of plasma flow observations typical of what is observed in the magnetotail during substorm activity.

  10. Substorm statistics: Occurrences and amplitudes

    SciTech Connect

    Borovsky, J.E.; Nemzek, R.J.

    1994-05-01

    The occurrences and amplitudes of substorms are statistically investigated with the use of three data sets: the AL index, the Los Alamos 3-satellite geosynchronous energetic-electron measurements, and the GOES-5 and -6 geosynchronous magnetic-field measurements. The investigation utilizes {approximately} 13,800 substorms in AL, {approximately} 1400 substorms in the energetic-electron flux, and {approximately} 100 substorms in the magnetic field. The rate of occurrence of substorms is determined as a function of the time of day, the time of year, the amount of magnetotail bending, the orientation of the geomagnetic dipole, the toward/away configuration of the IMF, and the parameters of the solar wind. The relative roles of dayside reconnection and viscous coupling in the production of substorms are assessed. Three amplitudes are defined for a substorms: the jump in the AL index, the peak of the >30-keV integral electron flux at geosynchronous orbit near midnight, and the angle of rotation of the geosynchronous magnetic field near midnight. The substorm amplitudes are statistically analyzed, the amplitude measurements are cross correlated with each other, and the substorm amplitudes are determined as functions of the solar-wind parameters. Periodically occurring and randomly occurring substorms are analyzed separately. The energetic-particle-flux amplitudes are consistent with unloading and the AL amplitudes are consistent with direct driving plus unloading.

  11. The Origin of the Near-Earth Plasma Population During a Substorm on November 24, 1996

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had already entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft. Distribution functions computed at the ion sources indicate that ionospheric ions reaching Geotail during the expansion phase were significantly heated. Plasma mantle source distributions indicated the presence of a high-latitude reconnection region that allowed ion entry into the magnetosphere when the IMF was northward. These ions reached Geotail during the expansion phase. Ions from the traditional plasma mantle had access to the spacecraft throughout the substorm.

  12. From Space Weather Toward Space Climate Time Scales: Substorm Analysis from 1993 to 2008

    NASA Technical Reports Server (NTRS)

    Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Partamies, N.; Slavin, J. A.

    2011-01-01

    Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993- 2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (R(sub ss)), substorm duration (T(sub ss)), and peak amplitude (A(sub ss)) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (absolute value of A(sub ss,decl)) - 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years ((absolute value of A(sub ss,asc) = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration. which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-Io-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.

  13. Thermospheric density perturbations in response to substorms

    NASA Astrophysics Data System (ADS)

    Clausen, L. B. N.; Milan, S. E.; Grocott, A.

    2014-06-01

    We use 5 years (2001-2005) of CHAMP (Challenging Minisatellite Payload) satellite data to study average spatial and temporal mass density perturbations caused by magnetospheric substorms in the thermosphere. Using statistics from 2306 substorms to construct superposed epoch time series, we find that the largest average increase in mass density of about 6% occurs about 90 min after substorm expansion phase onset about 3 h of magnetic local time east of the onset region. Averaged over the entire polar auroral region, a mass density increase of about 4% is observed. Using a simple model to estimate the mass density increase at the satellite altitude, we find that an energy deposition rate of 30 GW applied for half an hour predominantly at an altitude of 110 km is able to produce mass density enhancements of the same magnitude. When taking into account previous work that has shown that 80% of the total energy input is due to Joule heating, i.e., enhanced electric fields, whereas 20% is due to precipitation of mainly electrons, our results suggest that the average substorm deposits about 6 GW in the polar thermosphere through particle precipitation. Our result is in good agreement with simultaneous measurements of the NOAA Polar-orbiting Operational Environmental Satellite (POES) Hemispheric Power Index; however, it is about 1 order of magnitude less than reported previously.

  14. Are steady magnetospheric convection events prolonged substorms?

    NASA Astrophysics Data System (ADS)

    Walach, M.-T.; Milan, S. E.

    2015-03-01

    Magnetospheric modes, including substorms, sawtooth events, and steady magnetospheric convection events, have in the past been described as different responses of the magnetosphere to coupling with the solar wind. Using previously determined event lists for sawtooth events, steady magnetospheric convection events, and substorms, we produce a statistical study of these event types to examine their similarities and behavior in terms of solar wind parameters, auroral brightness, open magnetospheric flux, and geomagnetic indices. A superposed epoch analysis shows that individual sawteeth show the same signatures as substorms but occur during more extreme cases of solar wind driving as well as geomagnetic activity. We also explore the limitations of current methods of identifying steady magnetospheric convection events and explain why some of those events are flagged inappropriately. We show that 58% of the steady magnetospheric convection events considered, as identified by criteria defined in previous studies are part of a prolonged version of substorms due to continued dayside driving during expansion phase. The remaining 42% are episodes of enhanced magnetospheric convection, occurring after extended periods of dayside driving.

  15. Longitudinal structure of substorm injections at synchronous orbit

    SciTech Connect

    Arnoldy, R.L.; Moore, T.E.

    1983-08-01

    From multiple-spacecraft measurements it is shown that the synchronous orbit manifestation of a substorm, i.e., plasma injection and magnetic field reconfiguration to dipolar, has an onset which expands both eastward and westward from a relatively narrow sector near midnight. For low-to-moderate geomagnetic activity the earliest onset sector at synchronous orbit is about 3 hours wide, skewed toward the evening side of midnight. Using the extensive International Magnetospheric Study ground magnetometer network beneath the satellites, it is found that simultaneous westward motion of electrojet intensification is seen in the ground data over a large longitudinal range than the magnetospheric signatures. This might be explained in terms of distortion of the nightside magnetic field at synchronous orbit. Plasma that might be explained in terms of distortion of the nightside magnetic field at synchronous orbit. Plasma that has already been injected near midnight at synchronous altitude undergoes no further change as a result of the westward and eastward motion of the borders of the plasma. This suggest that the expansion does not represent new substorm activation. One can intepret these results in terms of an injection front wedge which makes hot plasma accessible to the inner magnetosphere and which spatially expands or propagates with time. The origin of plasma behind the front is not addressed. Detailed pitch angle data do, however, show that strong precipitation would be expected from the front for about the first 10 min after the front passes over an observer. Finally, as a result of longitudinal expansion of plasma injections from midnight toward evening or morning and the continuation or even enhancement of field inflation in the evening or morning sectors, growth and expansive phase substorm signatures can occur simultaneously.

  16. Magnetic substorms and northward IMF turning

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Podorozhkina, Nataly

    To determine the relation of the northward IMF turnings to substorm sudden onsets, we separated all events with sharp northward IMF turnings observed in years of solar maximum (1999-2002) and solar minimum (2007-2008). The events (N=261) have been classified in 5 groups in accordance with average magnetic activity in auroral zone (low, moderate or high levels of AL index) at unchanged or slightly changed PC index and with dynamics of PC (steady distinct growth or distinct decline) at arbitrary values of AL index. Statistical analysis of relationships between the IMF turning and changes of PC and AL indices has been fulfilled separately for each of 5 classes. Results of the analysis showed that, irrespective of geophysical conditions and solar activity epoch, the magnetic activity in the polar caps and in the auroral zone demonstrate no response to the sudden northward IMF turning, if the moment of northward turning is taken as a key date. Sharp increases of magnetic disturbance in the auroral zone are observed only under conditions of the growing PC index and statistically they are related to moment of the PC index exceeding the threshold level (~1.5 mV/m), not to northward turnings timed, as a rule, after the moment of sudden onset. Magnetic disturbances observed in these cases in the auroral zone (magnetic substorms) are guided by behavior of the PC index, like to ordinary magnetic substorms or substorms developed under conditions of the prolonged northward IMF impact on the magnetosphere. The evident inconsistency between the sharp IMF changes measured outside of the magnetosphere and behavior of the ground-based PC index, the latter determining the substorm development, provides an additional argument in favor of the PC index as a ground-based proxy of the solar wind energy that entered into magnetosphere.

  17. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  18. The signatures of kinetic ballooning instability during substorms

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Fang; Cheng, Chio-Zong

    2016-04-01

    We use the observations of THEMIS spacecraft, THEMIS Ground-Based Observatories and FORMOSAT-2/ISUAL satellite to investigate the behavior of wave-like brightness structure on the substorm auroral arcs associated with disturbances in the ionosphere and in the near-Earth plasma sheet. The results indicate that the exponential growth of the westward electrojet current is correlated with the exponential growth of the arc intensity which may support the theory of Cowling channel effect. We also find that the azimuthal mode number values of the wave-like substorm arcs are found to decrease with increasing geomagnetic latitude of the substorm auroral arc location. It is suggest that the azimuthal mode number is likely related to the ion gyroradius and azimuthal wave number. We also show that the azimuthal mode number of the substorm onset arc wave-like structure is similar to that of the disturbances in the plasma sheet. We discuss the role of the kinetic ballooning instability as a plausible candidate for substorm mechanism in understanding qualitatively the analysis results of these simultaneous observations of the ionospheric and magnetospheric substorm phenomena.

  19. Modeling of intermediate phase growth

    SciTech Connect

    Umantsev, A.

    2007-01-15

    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

  20. Superposed epoch analysis of the ionospheric convection evolution during substorms: onset latitude dependence

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Wild, J. A.; Milan, S. E.; Yeoman, T. K.

    2008-12-01

    Using data from the Super Dual Auroral Radar Network (SuperDARN) we investigate the ionospheric convection response to magnetospheric substorms. Substorms were identified using the Far Ultraviolet (FUV) instrument on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, and were then grouped according to the magnetic latitude of their onset. A superposed epoch analysis of the ionospheric convection patterns for each latitude group was then performed using radar data for the interval 60 minutes before onset to 90 minutes after. It is found that lower latitude onset substorms are associated with generally more enhanced convection than the higher latitude substorms, although they suffer from the most significant localised suppression of the flow in the midnight sector during the expansion phase. On the other hand, the higher-latitude events are associated with a significant and rapid increase in the nightside convection following substorm onset. These results suggest differences in the electrodynamics associated with substorms occurring at different latitudes.

  1. Tail reconnection triggering substorm onset.

    PubMed

    Angelopoulos, Vassilis; McFadden, James P; Larson, Davin; Carlson, Charles W; Mende, Stephen B; Frey, Harald; Phan, Tai; Sibeck, David G; Glassmeier, Karl-Heinz; Auster, Uli; Donovan, Eric; Mann, Ian R; Rae, I Jonathan; Russell, Christopher T; Runov, Andrei; Zhou, Xu-Zhi; Kepko, Larry

    2008-08-15

    Magnetospheric substorms explosively release solar wind energy previously stored in Earth's magnetotail, encompassing the entire magnetosphere and producing spectacular auroral displays. It has been unclear whether a substorm is triggered by a disruption of the electrical current flowing across the near-Earth magnetotail, at approximately 10 R(E) (R(E): Earth radius, or 6374 kilometers), or by the process of magnetic reconnection typically seen farther out in the magnetotail, at approximately 20 to 30 R(E). We report on simultaneous measurements in the magnetotail at multiple distances, at the time of substorm onset. Reconnection was observed at 20 R(E), at least 1.5 minutes before auroral intensification, at least 2 minutes before substorm expansion, and about 3 minutes before near-Earth current disruption. These results demonstrate that substorms are likely initiated by tail reconnection. PMID:18653845

  2. A New Paradigm for Multi-Scale Geospace Dynamics Inspired by Recent Observations of the Substorm

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2014-12-01

    Ground-based observations of the spatio-temporal evolution of the aurora and related processes have played a critical role in the dramatic advances in substorm research that have unfolded over the THEMIS era. For example, with its unique combination of extent of coverage, and time and space resolution, THEMIS-ASI has shown dynamics unfolding rapidly across surprisingly large distances. Its image sequences show the substorm as part of a system-level dynamic that connects the inner magnetosphere to the distant tail, and perhaps even the dayside. Together with simultaneous observations by the THEMIS spacecraft, the auroral images have also transformed our understanding of magnetic mapping during the growth phase. In this talk I will review some true science highlights that have been enabled by ground-based observations since the launch of THEMIS. I will also highlight how these ground-based observations fall short of capturing key aspects of the dynamics around expansion phase onset. This creates difficulties, for example, in understanding why, how and where dispersionless injections begin. I finish with a discussion of how ground-based observations targeting the substorm have impacted geospace research in general.

  3. Localized activation of the distant tail neutral line just prior to substorm onsets

    NASA Astrophysics Data System (ADS)

    Watanabe, Masakazu; Pinnock, Michael; Rodger, Alan S.; Sato, Natsuo; Yamagishi, Hisao; Sessai Yukimatu, A.; Greenwald, Raymond A.; Villain, Jean-Paul; Hairston, Marc R.

    1998-08-01

    We have found flow burst features in the nightside ionosphere that are thought to be the ionospheric signature of distant tail reconnection. These are observed to form just prior to substorm onsets. Simultaneous observations by the Goose Bay-Stokkseyri dual HF radars and DMSP satellites provide the data. Our conclusions are based on equatorward flow bursts on the nightside during two isolated substorms that followed a long period of magnetospheric inactivity associated with a northward interplanetary magnetic field. Both flow bursts start ~60 min after the growth phase onset and last ~10-20 min until the expansion phase onset, migrating equatorward with time. Simultaneous DMSP observations of precipitating particles show that the flow burst occurs at the polar cap boundary, suggesting that the equatorward migration corresponds to the expansion of the polar cap during the growth phase. For one event, the reconnection electric field at 400 km altitude was 14 mV/m and its longitudinal scale was 290 km, which is equivalent to a reconnection voltage of 4.1 kV. For the other event, these values were 11 mV/m (reconnection electric field), 380 km (longitudinal scale), and 4.0 kV (reconnection voltage). In addition to the reconnection signatures, we discuss implications for substorm dynamics during the final stage of the substorm growth phase. The morphology indicates that the distant tail neutral line is activated ~1 hour after the growth phase onset and at the same time the nightside separatrix starts to move equatorward much faster than during the preceding early and middle growth phases. The 1-hour time lag would correspond to the timescale on which slow rarefaction waves from both northern and southern tail lobes converge in the equatorial magnetotail. The fast-moving separatrix on the nightside implies a rapid change of magnetotail configuration resulting from nonlinear enhancement and/or earthward movement of the cross-tail current for the last 10-20 min prior to the

  4. Storm/substorm signatures in the outer belt

    SciTech Connect

    Korth, A.; Friedel, R.H.W.; Mouikis, C.; Fennell, J.F.

    1998-12-01

    The response of the ring current region is compared for periods of storm and substorm activity, with an attempt to isolate the contributions of both processes. The authors investigate CRRES particle data in an overview format that allows the display of long-term variations of the outer radiation belt. They compare the evolution of the ring current population to indicators of storm (Dst) and substorm (AE) activity and examine compositional changes. Substorm activity leads to the intensification of the ring current at higher L (L {approximately} 6) and lower ring current energies compared to storms (L {approximately} 4). The O{sup +}/H{sup +} ratio during substorms remains low, near 10%, but is much enhanced during storms (can exceed 100%). They conclude that repeated substorms with an AE {approximately} 900 nT lead to a {Delta}Dst of {approximately} 30 nT, but do not contribute to Dst during storm main phase as substorm injections do not form a symmetric ring current during such disturbed times.

  5. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution

    NASA Technical Reports Server (NTRS)

    Anderson, P. C.; Hanson, W. B.; Heelis, R. A.; Craven, J. D.; Baker, D. N.; Frank, L. A.

    1993-01-01

    The temporal relationship between subauroral ion drifts (SAIDs) and the phases of an auroral substorm is examined on the basis of multisatellite data. The time of expansive phase onset is identified and the time at which recovery begins is estimated. SAIDs are found to typically occur well after substorm onset (more than 30 min), during the substorm recovery phase. Substantial westward ion drifts and field-aligned currents are observed well equatorward of the auroral oval during the expansion phase of a substorm, but the drifts lack the narrow spike signature associated with SAIDs. A phenomenological model of SAID production that qualitatively agrees with the observed ionospheric signatures and substorm temporal relationship is proposed.

  6. Onset of magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Bogott, F.

    1972-01-01

    An examination of the onset of magnetospheric substorms is made by using ATS 5 energetic particles, conjugate balloon X rays and electric fields, all-sky camera photographs, and auroral-zone magnetograms. It is shown that plasma injection to ATS distances, conjugate 1- to 10-keV auroral particle precipitation, energetic electron precipitation, and enhancements of westward magnetospheric electric-field component all occur with the star of slowly developing negative magnetic bays. No trapped or precipitating energetic-particle features are seen at ATS 5 when later sharp negative magnetic-bay onsets occur at Churchill or Great Whale River.

  7. Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation

    NASA Astrophysics Data System (ADS)

    Connors, M.; Russell, C. T.; Angelopoulos, V.

    2011-03-01

    At approximately 08:25 UT on 5 April 2010, a CME-driven shock compressed Earth's magnetosphere and applied about 15 nT of southward IMF for nearly an hour. A substorm growth phase and localized dipolarization at 08:47 UT were followed by large dipolarizations at 09:03 UT and 09:08 UT, observed by GOES West (11) in the midnight sector, and by three THEMIS spacecraft near X=-11, Y=-2 RE. A large electric field at the THEMIS spacecraft indicates so much flux transfer to the inner magnetosphere that "overdipolarization" took place at GOES 11. This transfer is consistent with the ground and space magnetic signature of the substorm current wedge. Significant particle injections were also observed. The ensemble of extreme geophysical conditions, never previously observed, is consistent with the Near-Earth Neutral Line interpretation of substorms, and subjected the Galaxy 15 geosynchronous satellite to space weather conditions which appear to have induced a major operational anomaly.

  8. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    NASA Technical Reports Server (NTRS)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  9. A Perfect Substorm: ICME-driven Magnetic Activity Catches Galaxy 15 in the Wrong Place at the Wrong Time

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Russell, C. T.; Angelopoulos, V.; Singer, H. J.; Glassmeier, K.

    2010-12-01

    At approximately 0825 UT on April 5, 2010, an ICME-driven shock encountered Earth's magnetosphere. The IMF, slightly southward since 0805 UT, turned more so, to an average value close to -15 nT, which was maintained for nearly an hour under high dynamic pressure conditions. Following a substorm growth phase, dipolarizations were observed at 0847 and 0903 UT by GOES West (11) in the midnight sector, at 0903 UT by three THEMIS spacecraft near X=-11, Y=-2 RE, and at about 0900 by GOES 14 near 2 MLT. Electron injections began at 0903 UT at the THEMIS spacecraft, while GOES 11 detected an increase in flux of energetic protons. A major dipolarization event at 0909 UT was observed at all of these spacecraft, and transferred magnetic flux from the vicinity of THEMIS to the inner magnetosphere, resulting in "overdipolarization" in the midnight sector. Extreme currents, more than 3 MA crossing the midnight sector, are inferred from ground magnetic perturbations of over 2000 nT, indicating this was an unusually strong substorm. Flux transfer associated with large electric fields observed at THEMIS (EY of 80 mV/m) is consistent with this increase in inner magnetospheric magnetic field. A second increase in ca. 1 MeV proton flux at this time led to a factor of over 10000 overall increase of this flux in the event. When the effects of this substorm reached synchronous orbit, the Galaxy 15 satellite was in eclipse when photoemission is not available to counter charging by the potentially high fluxes of energetic magnetospheric electrons that can occur during substorms. Galaxy 15 experienced a severe operational anomaly shortly after leaving eclipse and appears to have simply been at the wrong place at the wrong time when the “perfect” substorm occurred.

  10. Propagating substorm injection fronts

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Arnoldy, R. L.; Feynman, J.; Hardy, D. A.

    1981-01-01

    It is argued that a series of two-satellite observations leads to a clarification of substorm plasma injection, in which boundary motion plays a major role. Emphasis is put on a type of event characterized by abrupt, dispersionless changes in electron intensity and a coincident perturbation that consists of both a field magnitude increase and a small rotation toward more dipolar orientation. Comparing plasma observations at two points, it is found that in active, preinjection conditions the two most important features of the plasma sheet are: (1) the low-energy convection boundary for near-zero energy particles, determined by the magnitude of the large-scale convection electric field; and (2) the precipitation-flow boundary layer between the hot plasma sheet and the atmospherically contaminated inner plasma sheet.

  11. Relationship between auroral substorms and the occurrence of terrestrial kilometric radiation

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Alexander, J. K.

    1977-01-01

    The correlation between magnetospheric substorms as inferred from the AE(11) index and the occurrence of terrestrial kilometric radiation (TKR) is examined. It is found that AE and TKR are well correlated when observations are made from above the 15-03 hr local time zone and are rather poorly correlated over the 03-15 hr zone. High-resolution dynamic spectra obtained during periods of isolated substorms indicate that low-intensity, high-frequency TKR commences at about the same time as the substorm phase. The substorm expansion phase corresponds to a rapid intensification and bandwidth increase of TKR. When combined with previous results, these new observations imply that many TKR events begin at low altitudes and high frequencies (about 400-500 kHz) and spread to higher altitudes and lower frequencies as the substorm expands.

  12. Magnetospheric substorms in the distant magnetotail observed by Imp 3.

    NASA Technical Reports Server (NTRS)

    Meng, C. I.; Akasofu, S.; Kawasaki, K.; Hones, E. W., Jr.

    1971-01-01

    Study of variations of the magnetic field and plasma sheet in the distant magnetotail (20 to 40 earth radii) during magnetospheric substorms on the basis of the Imp 3 magnetic-field and particle data. Depending on the locations of the satellite with respect to the boundary of the plasma sheet, the variations differ greatly. However, the present results and the results of other workers give a clear indication of an increase of the magnitude of the field outside the plasma sheet and of the simultaneous ?thinning' of the plasma sheet during an early phase of substorms. At about the maximum epoch or during the recovery phase of substorms, the plasma sheet expands and appears to be inflated to at least the presubstorm level. Furthermore, a large excessive flux of the magnetic (approximately equal to Z component) field, as compared with the flux of the original dipole field, appears across the neutral sheet.

  13. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  14. Kinetic Ballooning Instability as a Substorm Onset Mechanism

    SciTech Connect

    C.Z.Cheng

    1999-10-01

    A new scenario of substorm onset and current disruption and the corresponding physical processes are presented based on the AMPTE/CCE spacecraft observation and a kinetic ballooning instability theory. During the growth phase of substorms the plasma beta is larger than unity (20 greater than or equal to beta greater than or equal to 1). Toward the end of the late growth phase the plasma beta increases from 20 to greater than or equal to 50 in approximately 3 minutes and a low-frequency instability with a wave period of 50 - 75 sec is excited and grows exponentially to a large amplitude at the current disruption onset. At the onset, higher-frequency instabilities are excited so that the plasma and electromagnetic field form a turbulent state. Plasma transport takes place to modify the ambient pressure profile so that the ambient magnetic field recovers from a tail-like geometry to a dipole-like geometry. A kinetic ballooning instability (KBI) theory is proposed to explain the low-frequency instability (frequency and growth rate) and its observed high beta threshold (beta subscript c is greater than or equal to 50). Based on the ideal-MHD theory beta subscript c, superscript MHD approximately equals 1 and the ballooning modes are predicted to be unstable during the growth phase, which is inconsistent with observation that no appreciable magnetic field fluctuation is observed. The enhancement beta subscript c over beta subscript c, superscript MHD is due to the kinetic effects of trapped electrons and finite ion-Larmor radii which provide a large stabilizing effect by producing a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension. As a result, beta subscript c is greatly increased over beta subscript c, superscript MHD by a factor proportional to the ratio of the total electron density to the untrapped electron density (n subscript e divided by n subscript eu) which is greater than or equal to

  15. The effect of magnetic substorms on near-ground atmospheric current

    NASA Astrophysics Data System (ADS)

    Belova, E.; Kirkwood, S.; Tammet, H.

    2000-12-01

    Ionosphere-magnetosphere disturbances at high latitudes, e.g. magnetic substorms, are accompanied by energetic particle precipitation and strong variations of the ionospheric electric fields and currents. These might reasonably be expected to modify the local atmospheric electric circuit. We have analysed air-earth vertical currents (AECs) measured by a long wire antenna at Esrange, northern Sweden during 35 geomagnetic substorms. Using superposed epoch analysis we compare the air-earth current variations during the 3 h before and after the time of the magnetic X-component minimum with those for corresponding local times on 35 days without substorms. After elimination of the average daily variation we can conclude that the effect of substorms on AEC is small but distinguishable. It is speculated that the AEC increases observed during about 2 h prior to the geomagnetic X-component minimum, are due to enhancement of the ionospheric electric field. During the subsequent 2 h of the substorm recovery phase, the difference between substorm and quiet atmospheric currents decreases. The amplitude of this substorm variation of AEC is estimated to be less than 50% of the amplitude of the diurnal variation in AEC during the same time interval. The statistical significance of this result was confirmed using the Van der Waerden X-test. This method was further used to show that the average air-earth current and its fluctuations increase during late expansion and early recovery phases of substorms.

  16. Thin current sheets in the magnetotail during substorms: CDAW 6 revisited

    SciTech Connect

    Pulkkinen, T.I.; Baker, D.N.; Mitchell, D.G.

    1994-04-01

    The global magnetic field configuration during the growth phase of the CDAW 6 substorm is modeled using data from two suitably located spacecraft and temporally evolving variations of the Ysyganenko magnetic field model. These results are compared with a local calculation of the current sheet location and thickness carried out by McPherron et al. and Sanney et al. Both models suggest that during the growth phase the current sheet rotated away from its nominal location, and simultaneously thinned strongly. The locations and thicknesses obtained from the two models are in good agreement. The global model suggests that the peak current density is {approximately}120 nA/m{sup 2}, and that the cross-tail current almost doubled its intensity during this very strong growth phase. The global model predicts a field configuration that is sufficiently stretched to scatter thermal electrons, which may be conducive to the onset of ion tearing in the tail. The electron plasma data further support this scenario, as the anisotropy present in the low-energy electrons disappears close to the substorm onset. The electron contribution to the intensifying current in this case is of the order of 10% before the isotropization of the distribution. 23 refs., 6 figs.

  17. Thin current sheets in the magnetotail during substorms: CDAW 6 revisited

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, R. L.; Huang, C. Y.; Frank, L. A.

    1994-01-01

    The global magnetic field configuration during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 substorm (March 22, 1979, 1054 UT) is modeled using data from two suitably located spacecraft and temporally evolving variations of the Tsyganenko magnetic field model. These results are compared with a local calculation of the current sheet location and thickness carried out by McPherron et al. (1987) and Sanny et al. (this issue). Both models suggest that during the growth phase the current sheet rotated away from its nominal location, and simultaneously thinned strongly. The locations and thickness obtained from the two models are in good agreement. The global model suggests that the peak current density is approximately 120 nA/sq m and that the cross-tail current almost doubled its intensity during this very strong growth phase. The global model predicts a field configuration that is sufficiently stretched to scatter thermal electrons, which may be conducive to the onset of ion tearing in the tail. The electron plasma data further support this scenario, as the anisotropy present in the low-energy electrons disappears close to the substorm onset. The electron contribution to the intensifying current in this case is of the order of 10% before the isotropization of the distribution.

  18. Rapid control of phase growth by nanoparticles

    PubMed Central

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Konishi, Hiromi; Jin, Song; Li, Xiao-Chun

    2014-01-01

    Effective control of phase growth under harsh conditions (such as high temperature, highly conductive liquids or high growth rate), where surfactants are unstable or ineffective, is still a long-standing challenge. Here we show a general approach for rapid control of diffusional growth through nanoparticle self-assembly on the fast-growing phase during cooling. After phase nucleation, the nanoparticles spontaneously assemble, within a few milliseconds, as a thin coating on the growing phase to block/limit diffusion, resulting in a uniformly dispersed phase orders of magnitude smaller than samples without nanoparticles. The effectiveness of this approach is demonstrated in both inorganic (immiscible alloy and eutectic alloy) and organic materials. Our approach overcomes the microstructure refinement limit set by the fast phase growth during cooling and breaks the inherent limitations of surfactants for growth control. Considering the growing availability of numerous types and sizes of nanoparticles, the nanoparticle-enabled growth control will find broad applications. PMID:24809454

  19. OpenGGCM Simulation of Ballooning and Axial MHD Mode at Substorm Onset (Invited)

    NASA Astrophysics Data System (ADS)

    Raeder, J.; Zhu, P.; Ge, Y.; Siscoe, G. L.

    2010-12-01

    It is generally accepted that magnetic reconnection is the main mechanism that dissipates power during a substorm. It is less clear, however, whether the beginning of magnetic reconnection in the magnetotail also signifies the onset of the substorm expansion phase itself, i.e., whether the "outside-in" scenario applies, or if a different process happens first closer to Earth that triggers the reconnection onset in the magnetotail, i.e., the "inside-out" scenario. Global MHD simulations have generally supported the "outside-in" scenario. However, ideal MHD instabilities that could possibly trigger tail reconnection may have been missed due to coarse numerical resolution or due to other numerical effects. Here, we present results from an OpenGGCM simulation of the March 23, 2007 substorm that clearly shows growth of the ballooning mode as suggested by our earlier analysis (Zhu et al., 2009), as well as growth of an ideal-like instability that is purely axial and was previously reported by Siscoe et al. (2009). Both instabilities occur simultaneously and are immediately followed by reconnection onset. The simulations results are in accordance with recent Geotail observations of ballooning with a wavelength of approximately 0.5 RE, and the time scales agree with that of the explosive growth phase. The exact relation between the three instabilities, i.e., ballooning, the axial mode, and tearing, is not entirely clear yet; however, having demonstrated that the OpenGGCM reproduces all of them, they can now be analyzed in more detail. Furthermore, we present the expected auroral signature of these processes, which will allow for a more detailed comparison of the simulation results with ground based imagers.

  20. Phase-Field Simulations of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2010-07-01

    This course gives an elementary introduction to the phase-field method and to its applications for the modeling of crystal growth. Two different interpretations of the phase-field variable are given and discussed. It can be seen as a physical order parameter that characterizes a phase transition, or as a smoothed indicator function that tracks domain boundaries. Elementary phase-field models for solidification and epitaxial growth are presented and are applied to the dendritic growth of a pure substance and the step-flow growth on a vicinal surface.

  1. Relationship between wave-like auroral arcs and Pi2 pulsations in plasma sheet during substorms

    NASA Astrophysics Data System (ADS)

    Chang, T. F.; Cheng, C. Z.

    2014-12-01

    The observations of substorm onset phenomena in the magnetosphere and ionosphere are examined to investigate their correlation and to understand the substorm onset mechanism. In particular, we examine the Pi2 wave structure, propagation, frequency in the magnetosphere observed by the THEMIS satellites in the near-Earth plasma sheet and the structure and propagation of the substorm auroral onset arcs. The azimuthal mode number values of the wave-like substorm arcs are found to be in the range of ~ 100 - 260 and decrease with increasing geomagnetic latitude of the substorm auroral arc location. The wave-like arc brightness structures on the substorm auroral arcs tend to move azimuthally westward, but with a few exceptions of eastward movement, during tens of seconds prior to the substorm onset. The movement of the wave-like arc brightness structure is linearly correlated with the phase velocity of the Pi2 δBy pulsations in the near-Earth plasma sheet region. The result suggests that the Pi2 transverse δBy disturbances are related to the intensifying wave-like substorm onset arcs. One plausible explanation of the observations is the kinetic ballooning instability, which has high azimuthal mode number due to the ion gyro-radius effect and finite parallel electric field that accelerates electrons into the ionosphere to produce the wave-like arc structure.

  2. Solar cycle dependence of substorm occurrence and duration: Implications for onset

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning; McPherron, Robert L.; Hsu, Tung-Shin; Angelopoulos, Vassilis

    2015-04-01

    Magnetospheric substorms represent a major energy release process in Earth's magnetosphere. Their duration and intensity are coupled to solar wind input, but the precise way the solar wind energy is stored and then released is a matter of considerable debate. Part of the observational difficulty has been the gaps in the auroral electrojet index traditionally used to study substorm properties. In this study, we created a midlatitude positive bay (MPB) index to measure the strength of the substorm current wedge. Because this index is based on midlatitude magnetometer data that are available continuously over several decades, we can assemble a database of substorm onsets lasting 31 years (1982-2012). We confirmed that the MPB onsets have a good agreement (±2 min) with auroral onsets as determined by optical means on board the IMAGE mission and that the MPB signature of substorms is robust and independent of the stations' position relative to ionospheric currents. Using the MPB onset, expansion, and recovery as a proxy of the respective substorm quantities, we found that the solar cycle variation of substorm occurrence depends on solar wind conditions and has a most probable value of 80 min. In contrast, the durations of substorm expansion and recovery phases do not change with the solar cycle. This suggests that the frequency of energy unloading in the magnetosphere is controlled by solar wind conditions through dayside reconnection, but the unloading process related to flux pileup in the near-Earth region is controlled by the magnetosphere and independent of external driving.

  3. Substorm Evolution in the Near-Earth Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    2004-01-01

    This grant represented one-year, phase-out funding for the project of the same name (NAG5-9110 to Boston University) to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. We report here on two accomplishments: (1) Completion of an examination of plasma velocity signature at times of local onsets in the current disruption (CD) region. (2) Initial investigation into quantification of near-Earth flux-tube contents of injected plasma at times of substorm injections.

  4. Substorms - Future of magnetospheric substorm-storm research

    SciTech Connect

    Akasofu, S.I. )

    1989-04-01

    Seven approaches and/or areas of magnetospheric substorm and storm science which should be emphasized in future research are briefly discussed. They are: the combining of groups of researchers who study magnetic storms and substorms in terms of magnetic reconnection with those that do not, the possible use of a magnetosphere-ionosphere coupling model to merge the groups, the development of improved input-output relationships, the complementing of satellite and ground-based observations, the need for global imaging of the magnetosphere, the complementing of observations with computer simulations, and the need to study the causes of changes in the north-south component of the IMF. 36 refs.

  5. Superposed epoch analysis of the ionospheric convection evolution during substorms: onset latitude dependence

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Wild, J. A.; Milan, S. E.; Yeoman, T. K.

    2009-02-01

    Using data from the Super Dual Auroral Radar Network (SuperDARN) we investigate the ionospheric convection response to magnetospheric substorms. Substorms were identified using the Far Ultraviolet (FUV) instrument on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, and were then binned according to the magnetic latitude of their onset. A superposed epoch analysis of the ionospheric convection patterns for each onset-latitude bin was then performed using radar data for the interval 60 min before onset to 90 min after. It is found that lower onset-latitude substorms are associated with generally more enhanced convection than the higher latitude substorms, although they suffer from a significant localised reduction of the flow in the midnight sector during the expansion phase. Higher-latitude substorms are associated with a significant and rapid increase in the nightside convection following substorm onset, with all onset-latitude bins showing an enhancement over onset values by ~60 min into the expansion phase. A rudimentary inspection of the concurrent auroral evolution suggests that the duration of the flow reduction following substorm onset is dependent on the strength and duration of the expansion phase aurora and its associated conductivity enhancement.

  6. Proton aurora and substorm intensifications

    NASA Technical Reports Server (NTRS)

    Samson, J. C.; Xu, B.; Lyons, L. R.; Newell, P. T.; Creutzberg, F.

    1993-01-01

    Ground based measurements from the CANOPUS array of meridian scanning photometers and precipitating ion and electron data from the DMSP F9 satellite show that the electron arc which brightens to initiate substorm intensifications is formed within a region of intense proton precipitation that is well equatorward (approximately four to six degrees) of the nightside open-closed field line boundary. The precipitating protons are from a population that is energized via earthward convection from the magnetotail into the dipolar region of the magnetosphere and may play an important role in the formation of the electron arcs leading to substorm intensifications on dipole-like field lines.

  7. Organization of the magnetosphere during substorms

    NASA Astrophysics Data System (ADS)

    Živković, T.; Rypdal, K.

    2012-05-01

    The change in degree of organization of the magnetosphere during substorms is investigated by analyzing various geomagnetic indices, as well as interplanetary magnetic field z-component and solar wind velocity x-component. We conclude that the magnetosphere self-organizes globally during substorms, but neither the magnetosphere nor the solar wind become more predictable in the course of a substorm. This conclusion is based on analysis of substorms in the period from 2000 to 2002. A minimal dynamic-stochastic model of the driven magnetosphere that reproduces many statistical features of substorm indices is discussed.

  8. Magnetospheric Substorms and Tail Dynamics

    NASA Technical Reports Server (NTRS)

    Hughes, W. Jeffrey

    1998-01-01

    This grant funded several studies of magnetospheric substorms and their effect on the dynamics of the earth's geomagnetic tail. We completed an extensive study of plasmoids, plasma/magnetic field structures that travel rapidly down the tail, using data from the ISEE 3 and IMP 8 spacecraft. This study formed the PhD thesis of Mark Moldwin. We found that magnetically plasmoids are better described as flux-ropes (twisted magnetic flux tubes) rather than plasma bubbles, as had been generally regarded up to that point (Moldwin and Hughes, 1990; 1991). We published several examples of plasmoids observed first in the near tail by IMP 8 and later in the distant tail by ISEE 3, confirming their velocities down tail. We showed how the passage of plasmoids distorts the plasma sheet. We completed the first extensive statistical survey of plasmoids that showed how plasmoids evolve as they move down tail from their formation around 30 RE to ISEE 3 apogee at 240 RE. We established a one-to-one correspondence between the observation of plasmoids in the distant tail and substorm onsets at earth or in the near tail. And we showed that there is a class of plasmoid-like structures that move slowly earthward, especially following weak substorms during northward IMF. Collectively this work constituted the most extensive study of plasmoids prior to the work that has now been done with the GEOTAIL spacecraft. Following our work on plasmoids, we turned our attention to signatures of substorm onset observed in the inner magnetosphere near geosynchronous orbit, especially signatures observed by the CRRES satellite. Using data from the magnetometer, electric field probe, plasma wave instrument, and low energy plasma instrument on CRRES we were able to better document substorm onsets in the inner magnetosphere than had been possible previously. Detailed calculation of the Poynting flux showed energy exchange between the magnetosphere and ionosphere, and a short burst of tailward convective

  9. Phase growth in bistable systems with impurities.

    PubMed

    Echeverria, C; Tucci, K; Cosenza, M G

    2008-01-01

    A system of coupled chaotic bistable maps on a lattice with randomly distributed impurities is investigated as a model for studying the phenomenon of phase growth in nonuniform media. The statistical properties of the system are characterized by means of the average size of spatial domains of equivalent spin variables that define the phases. It is found that the rate at which phase domains grow becomes smaller when impurities are present and that the average size of the resulting domains in the inhomogeneous state of the system decreases when the density of impurities is increased. The phase diagram showing regions where homogeneous, heterogeneous, and chessboard patterns occur on the space of parameters of the system is obtained. A critical boundary that separates the regime of slow growth of domains from the regime of fast growth in the heterogeneous region of the phase diagram is calculated. The transition between these two growth regimes is explained in terms of the stability properties of the local phase configurations. Our results show that the inclusion of spatial inhomogeneities can be used as a control mechanism for the size and growth velocity of phase domains forming in spatiotemporal systems. PMID:18351923

  10. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  11. The spatio-temporal characteristics of ULF waves driven by substorm injected particles

    NASA Astrophysics Data System (ADS)

    James, M. K.; Yeoman, T. K.; Mager, P. N.; Klimushkin, D. Yu.

    2013-04-01

    A previous case study observed a ULF wave with an eastward and equatorward phase propagation (an azimuthal wave number m, of ˜13) generated during the expansion phase of a substorm. The eastward phase propagation of the wave suggested that eastward drifting energetic electrons injected during the substorm were responsible for driving that particular wave. In this study, a population of 83 similar ULF wave events also associated with substorm-injected particles have been identified using multiple Super Dual Auroral Radar Network radars in Europe and North America between June 2000 and September 2005. The wave events identified in this study exhibit azimuthal wave numbers ranging in magnitude from 2 to 92, where the direction of propagation depends on the relative positions of the substorm onsets and the wave observations. We suggest that azimuthally drifting energetic particles associated with the substorms are responsible for driving the waves. Both westward drifting ions and eastward drifting electrons are implicated with energies ranging from ˜1 to 70 keV. A clear dependence of the particle energy on the azimuthal separation of the wave observations and the substorm onset is seen, with higher energy particles (leading to lower m-number waves) being involved at smaller azimuthal separations.

  12. The Spatio-temporal Characteristics of ULF Waves Driven by Substorm Injected Particles

    NASA Astrophysics Data System (ADS)

    James, M. K.; Yeoman, T. K.; Klimushkin, D. Y.; Mager, P. N.

    2012-12-01

    A previous case study [Yeoman et al.,2010] observed a ULF wave with an eastward and equatorward phase propagation (an azimuthal wave number m, of ~13) generated during the expansion phase of a substorm. The eastward phase propagation of the wave suggested that eastward drifting energetic electrons injected during the substorm were responsible for driving that particular wave. In this study a population of 84 similar ULF wave events also associated with substorm-injected particles have been identified using multiple SuperDARN radars in Europe and North America between June 2000 and September 2005. The wave events identified in this study exhibit azimuthal wave numbers ranging in magnitude from 2 to 92, where the direction of propagation depends on the relative positions of the substorm onsets and the wave observations. We suggest that azimuthally drifting energetic particles associated with the substorms are responsible for driving the waves, as suggested in Yeoman et al. [2010]. Both westward drifting ions and eastward drifting electrons are implicated with energies ranging from ~1 to 70 keV. A clear dependence of the particle energy on the azimuthal separation of the wave observations and the substorm onset is seen, with higher energy particles (leading to lower m-number waves) being involved at smaller azimuthal separations.

  13. Current understanding of magnetic storms: Storm-substorm relationships

    SciTech Connect

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-08-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the {ital Dst} variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of

  14. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  15. Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm

    SciTech Connect

    Chen, C.; Wolf, R.A.; Harel, M.; Karty, J.L.

    1982-08-01

    Using substorm currents derived from the Rice computer simulation of the substorm event of September 19, 1976, we have computed theoretical magnetograms as a function of universal time for various stations. A theoretical Dst has also been computed. Our computed magnetograms were obtained by integrating the Biot-Savart law over a maze of approximately 2700 wires and bands that carry the ring currents, the Birkeland currents, and the horizontal ionospheric currents. Ground currents and dynamo currents were neglected. Computed contributions to the magnetic field perturbation from eleven different kinds of currents are displayed (e.g., ring currents, northern hemisphere Birkeland currents). First, overall agreement of theory and data is generally satisfactory, especially for stations at high and mid-magnetic latitudes. Second, model results suggest that the ground magnetic field perturbations arise from very complicated combinations of different kinds of currents and that the magnetic field disturbances due to different but related currents often cancel each other, despite the fact that complicated inhomogeneous conductivities in our model prevent rigorous application of Fukushima's theorem. Third, both the theoretical and observed Dst decrease during the expansion phase of the substorm, but data indicate that Dst relaxes back toward its initial value within about an hour after the peak of the substorm. Fourth, the dawn-dusk asymmetry in the horizontal component of magnetic field disturbance at low latitudes in a substorm is essentially due to a net downward Birkeland current at noon, net upward current at midnight, and generally antisunward flowing electrojets; it is not due to a physical partial ring current injected into the duskside of the inner magnetosphere.

  16. Time development of high-altitude auroral acceleration region plasma, potentials, and field-aligned current systems observed by Cluster during a substorm

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.

    2013-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated

  17. Dynamics of the 1054 UT March 22, 1979, substorm event - CDAW 6. [Coordinated Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Manka, R. H.

    1985-01-01

    The Coordinated Data Analysis Workshop (CDAW 6) has the primary objective to trace the flow of energy from the solar wind through the magnetosphere to its ultimate dissipation in the ionosphere. An essential role in this energy transfer is played by magnetospheric substorms, however, details are not yet completely understood. The International Magnetospheric Study (IMS) has provided an ideal data base for the study conducted by CDAW 6. The present investigation is concerned with the 1054 UT March 22, 1979, substorm event, which had been selected for detailed examination in connection with the studies performed by the CDAW 6. The observations of this substorm are discussed, taking into account solar wind conditions, ground magnetic activity on March 22, 1979, observations at synchronous orbit, observations in the near geomagnetic tail, and the onset of the 1054 UT expansion phase. Substorm development and magnetospheric dynamics are discussed on the basis of a synthesis of the observations.

  18. Substorms observations over Apatity during geomagnetic storms in the period 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Werner, Rolf; Despirak, Irina; Kozelov, Boris

    2016-07-01

    In this work we studied substorms, generated during enhanced geomagnetic activity in the period 2012 - 2016. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were judged by the 1-min sampled OMNI data base. Substorm onset and further development were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the study were substorms occurred during geomagnetic storms. The so-called "St. Patrick's day 2015 event" (17-21 March 2015), the events on 17-18 March 2013 and 7-17 March 2012 (a chain of events generated four consecutive storms) which were among the events of strongest geomagnetic activity during the current solar cycle 24, were part of the storms under consideration. The behavior of the substorms developed during different phases of the geomagnetic storms was discussed.

  19. Magnetotail Plasma Signatures of Pseudobreakups and Substorms

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M. J.; Parks, G. K.; Chen, L. J.; Germany, G. A.; Spann, J. F.; Lin, R. P.

    1999-01-01

    Using Polar/UVI global images, we have identified a period of successive minor auroral activations during which WIND was making a perigee pass through the near-Earth magnetotail. On the basis of images, these auroral brightenings are interpreted to be pseudobreakups due to the lack of significant global expansion. Large magnetic by the WIND spacecraft show a nearly one-to-one correspondence auroral intensifications. During intervals of large field auroral brightenings, energized ions have an Earthward velocity energized electrons generally remain isotropic. Closer inspection ion distribution functions indicate that the high velocity moments are not due to convective flows. Rather, the plasma is composed of a component and a stagnate cold component. We also trace the observed by WIND backwards in time to determine the source regions for the particles. Based upon these observations, we find that to zeroth order there is no difference in the behavior of the plasma during as compared to substorm expansive phase events.

  20. Grain nucleation and growth during phase transformations.

    PubMed

    Offerman, S E; van Dijk, N H; Sietsma, J; Grigull, S; Lauridsen, E M; Margulies, L; Poulsen, H F; Rekveldt, M Th; van der Zwaag, S

    2002-11-01

    The mechanical properties of polycrystalline materials are largely determined by the kinetics of the phase transformations during the production process. Progress in x-ray diffraction instrumentation at synchrotron sources has created an opportunity to study the transformation kinetics at the level of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties. PMID:12411699

  1. Association of plasma sheet variations with auroral changes during substorms

    SciTech Connect

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.

    1988-01-01

    Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with plasma measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the plasma sheet boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.

  2. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  3. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  4. Sambo-Geos: on three-dimensional substorm dynamics - a case study for 4 March 1979

    SciTech Connect

    Lazutin, L.L.; Khrushchinskii, A.A.; Glassmeier, K.; Gustafsson, G.; Kangas, J.

    1985-01-01

    Ground-based, balloon, and Geos-2 observations of the magnetospheric substorm of Mar. 4, 1979 are examined. It is shown that the substorm can be described by a four-phase scheme, with the active phase divided into two parts: an active-convective phase and a classical active phase. The breakup is shown to take place at closed rather than tailward stretched magnetic field lines. Radial particle movement is described in terms of the dynamic shell splitting effect; it corresponds to structural changes in the magnetosphere and may explain the northward expansion of the westward traveling surge. 7 references.

  5. The role of substorms in the formation of the ring current

    SciTech Connect

    Rostoker, G.

    1996-07-01

    It has long been recognized that the formation of the terrestrial ring current is accompanied by strong substorm expansive phase activity in the auroral oval. While large amplitude substorm activity seems to be a prerequisite for ring current formation to take place, it has long been puzzling as to why some large amplitude substorm activity in the auroral oval is not associated with significant ring current development. In this paper I shall outline the basis for the renovated boundary layer dynamics model of magnetospheric substorms showing how the onset of the substorm expansive phase can be associated with a sudden decrease in shielding space charge in the region of the near-Earth plasma sheet threaded by Region 2 field-aligned currents. I shall suggest that an episode of sufficiently large southward IMF lasting over a sufficiently lengthy period of time can lead to a sequence of substorm expansive phases, each one being initiated closer to the Earth than the previous one. Each expansive phase is attributed to a sudden decrease in radially localized cross-tail current (viz. a decrease in shielding space charge) and with each onset the inner edge of the plasma sheet moves inward. The inductive electric field associated with each crosstail current decrease is responsible for the acceleration of already energetic particles to energies of significance for ring current formation. Only when the inner edge of the crosstail current is sufficiently close to the Earth do the acceleration processes associated with substorm onset produce a long lived ring current. {copyright} {ital 1996 American Institute of Physics.}

  6. Relationship between wave-like auroral arcs and Pi2 disturbances in plasma sheet prior to substorm onset

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Fang; Cheng, Chio-Zong

    2015-10-01

    Wave-like substorm arc features in the aurora and Pi2 magnetic disturbances observed in the near-Earth plasma sheet are frequently, and sometimes simultaneously, observed around the substorm onset time. We perform statistical analyses of the THEMIS ASI auroral observations that show wave-like bright spot structure along the arc prior to substorm onset. The azimuthal mode number values of the wave-like substorm arcs are found to be in the range of ~100-240 and decrease with increasing geomagnetic latitude of the substorm auroral arc location. We suggest that the azimuthal mode number is likely related to the ion gyroradius and azimuthal wave number. We also perform correlation study of the pre-onset wave-like substorm arc features and Pi2 magnetic disturbances for substorm dipolarization events observed by THEMIS satellites during 2008-2009. The wave-like arc brightness structures on the substorm auroral arcs tend to move azimuthally westward, but with a few exceptions of eastward movement, during tens of seconds prior to the substorm onset. The movement of the wave-like arc brightness structure is linearly correlated with the phase velocity of the Pi2 δ B y disturbances in the near-Earth plasma sheet region. The result suggests that the Pi2 transverse δ B y disturbances are related to the intensifying wave-like substorm onset arcs. One plausible explanation of the observations is the kinetic ballooning instability, which has high azimuthal mode number due to the ion gyroradius effect and finite parallel electric field that accelerates electrons into the ionosphere to produce the wave-like arc structure.

  7. Effect of magnetic storms and substorms on GPS slips at high latitudes

    NASA Astrophysics Data System (ADS)

    Zakharov, V. I.; Yasyukevich, Yu. V.; Titova, M. A.

    2016-01-01

    The dynamics of slips in navigation signal parameters of GPS from 2010 to 2014 is considered for the stations of the IGS and CHAIN networks located in the Arctic region. On the basis of almost continuous (more than 8 million hours) observations at around 200 receiving stations, we investigate the probability of "instrumental" loss of phase and pseudo-range as well as short-term variations in the high rate of change of the total electron content (TEC) in different geomagnetic conditions. Quantitative estimates for the impact of geomagnetic disturbances on the slips of these parameters are given. The slip probabilities for TEC are significantly (100-200 times) higher than those of purely instrumental slips and grow during geomagnetic storms and substorms. The growth of instrumental slips may be caused by the increased absorption that occurs during geomagnetic storms, among other reasons, and is an indicator of auroral intrusions of highenergy particles.

  8. Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.

    1990-01-01

    During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.

  9. Factors influencing the intensity of magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Baker, D. N.

    1993-01-01

    A definition of the substorm is presented, and it is shown that the typical isolated substorm is produced by the superposition of effects of processes directly driven by the solar wind through dayside reconnection and those driven by unloading through nighttime reconnection. The single factor that determines whether a substorm will occur or not is the clock angle of the interplanetary magnetic field (IMF) around the earth-sun line. Only when this field points south of the GSM equatorial plane do the auroral electrojet indices depart from their quiet values. For a given clock angle, the level of activity increases with the IMF strength and solar wind velocity.

  10. Extremely Intense Magnetospheric Substorms : External Triggering? Preconditioning?

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Echer, Ezequiel; Hajra, Rajkumar

    2016-07-01

    We study particularly intense substorms using a variety of near-Earth spacecraft data and ground observations. We will relate the solar cycle dependences of events, determine whether the supersubstorms are externally or internally triggered, and their relationship to other factors such as magnetospheric preconditioning. If time permits, we will explore the details of the events and whether they are similar to regular (Akasofu, 1964) substorms or not. These intense substorms are an important feature of space weather since they may be responsible for power outages.

  11. Does the ballooning instability trigger substorms in the near-Earth magnetotail?

    NASA Technical Reports Server (NTRS)

    Ohtani, Shin-Ichi; Tamao, Tsutomu

    1993-01-01

    The stability of the near-Earth magnetotail against ballooning (or configurational) instability is examined in the framework of the MHD approximation. It is emphasized that a change in plasma pressure induced by a meriodional electric field drift delta u(sub n) is an important factor that determines the stability. We have to consider two ways in which plasma pressure changes, that is, a convective change -delta u(sub n) grad(P(sub 0)), where P(sub 0) is background plasma pressure, and plasma expansion/compression -P(sub 0) dive (delta u(sub n)). Since delta u(sub n) is perpendicular to the magnetic field and its magnitude is inversely proportional to the magnetic field strength, delta u(sub n) diverges/converges in usual tail magnetic field configurations. For the instability, the convective change must overwhelm the effects of the plasma expansion/compression. However, near the equator in the near-Earth tail, the latter may overcompensate for the former. We describe the ballooning instability in terms of a coupling between the Alfven and slow magnetosonic waves in an inhomogeneous plasma and derive instability conditions. The result shows that the excessive curvature stabilizes, rather than destabilizes, perturbations. It is also found that the field-aligned flow stabilizes perturbations, as well as the field-aligned current. We infer that under quiet conditions, the plasma pressure gradient in the near-Earth tail is not sharp enough to trigger the instability. The plasma sheet is expected to become more stable during the substorm growth phase because of an increase in the field line curvature associated with the plasma sheet thinning. In the region closer to the Earth, including the ring current, the plasma pressure gradient may be localized in a limited range of the radial distance during the growth phase. However, recently reported plasma and magnetic field parameters before substorm onsets do not provide very convincing evidence that the ballooning instability

  12. A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by AMPERE during substorms

    NASA Astrophysics Data System (ADS)

    Coxon, J. C.; Milan, S. E.; Clausen, L. B. N.; Anderson, B. J.; Korth, H.

    2014-12-01

    We perform a superposed epoch analysis of the evolution of the Birkeland currents (field-aligned currents) observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during substorms. The study is composed of 2900 substorms provided by the SuperMAG experiment. We find that the current ovals expand and contract over the course of a substorm cycle and that currents increase in magnitude approaching substorm onset and are further enhanced in the expansion phase. Subsequently, we categorize the substorms by their onset latitude, a proxy for the amount of open magnetic flux in the magnetosphere, and find that Birkeland currents are significantly higher throughout the epoch for low-latitude substorms. Our results agree with previous studies which indicate that substorms are more intense and close more open magnetic flux when the amount of open flux is larger at onset. We place these findings in the context of previous work linking dayside and nightside reconnection rate to Birkeland current strengths and locations.

  13. Substorms and magnetospheric energy transfer processes

    NASA Technical Reports Server (NTRS)

    Swift, D. W.

    1980-01-01

    Evidence is presented which suggests a direct process for the conversion of solar wind energy into the various manifestations of the auroral substorm. This is in contrast to the widely accepted premise that solar wind energy is accumulated in the magnetosphere and then released by an instability process occurring in the magnetotail. It is shown that much of the plasma sheet behavior associated with auroral substorms can be interpreted in terms of single-particle models and simple variations of the cross-tail electric field intensity which does not invoke release of stored magnetic energy. It is also pointed out that the major entry of substorm energy into the magnetosphere occurs through the boundaries of the lobes of the magnetotail. This paper is not intended to be a complete theory of the magnetospheric substorm - rather the intention of this paper is to point out directions of research deserving of more attention.

  14. Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm

    NASA Astrophysics Data System (ADS)

    Ieda, A.; Nishimura, Y.; Miyashita, Y.; Angelopoulos, V.; Runov, A.; Nagai, T.; Frey, H. U.; Fairfield, D. H.; Slavin, J. A.; Vanhamäki, H.; Uchino, H.; Fujii, R.; Miyoshi, Y.; Machida, S.

    2016-05-01

    Auroral stepwise poleward expansions were clarified by investigating a multiple-onset substorm that occurred on 27 February 2009. Five successive auroral brightenings were identified in all-sky images, occurring at approximately 10 min intervals. The first brightening was a faint precursor. The second brightening had a wide longitude; thus, it represented the Akasofu substorm onset. Other brightenings expanded poleward; thus, they were interpreted to be auroral breakups. These breakups occurred stepwise; that is, later breakups were initiated at higher latitudes. Corresponding reconnection signatures were studied using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations between 8 and 24 RE down the magnetotail. The Akasofu substorm onset was not accompanied by a clear reconnection signature in the tail. In contrast, the three subsequent auroral breakups occurred simultaneously (within a few minutes) with three successive fast flows at 24 RE; thus, these were interpreted to be associated with impulsive reconnection episodes. These three fast flows consisted of a tailward flow and two subsequent earthward flows. The flow reversal at the second breakup indicated that a tailward retreat of the near-Earth reconnection site occurred during the substorm expansion phase. In addition, the earthward flow at the third breakup was consistent with the classic tailward retreat near the end of the expansion phase; therefore, the tailward retreat is likely to have occurred in a stepwise manner. We interpreted the stepwise characteristics of the tailward retreat and poleward expansion to be potentially associated by a stepwise magnetic flux pileup.

  15. Magnetospheric substorms - A newly emerging model

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A surge of progress in magnetospheric substorm studies is expected by the following three recent developments: (1) the finding of the solar wind-magnetosphere energy coupling function epsilon, (2) the determination of the Pedersen current distribution over the entire polar region, and (3) a new understanding of the auroral potential structure. In this paper, the significance of the three developments and the newly emerging model of magnetospheric substorms is described.

  16. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  17. Magnetospheric substorms - A newly emerging model

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1981-10-01

    A surge of progress in magnetospheric substorm studies is expected by the following three recent developments: (1) the finding of the solar wind-magnetosphere energy coupling function epsilon, (2) the determination of the Pedersen current distribution over the entire polar region, and (3) a new understanding of the auroral potential structure. In this paper, the significance of the three developments and the newly emerging model of magnetospheric substorms is described.

  18. Substorm classification with the WINDMI model

    NASA Astrophysics Data System (ADS)

    Horton, W.; Weigel, R. S.; Vassiliadis, D.; Doxas, I.

    The results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types of vx Bs -AL waveforms characterizing substorms. Type I and III substorms are given by the internally-triggered WINDMI model. The analysis reveals an additional type of event, called a type II substorm, that requires an external trigger as in the northward turning of the IMF model of Lyons (1995). We show that incorporating an external trigger, initiated by a fast northward turning of the IMF, into WINDMI, a low-dimensional model of substorms, yields improved predictions of substorm evolution in terms of the AL index. Intrinsic database uncertainties in the timing between the ground-based AL electrojet signal and the arrival time at the magnetopause of the IMF data measured by spacecraft in the solar wind prevent a sharp division between type I and II events. However, within these timing limitations we find that the fraction of events is roughly 40% type I, 40% type II, and 20% type III.

  19. Satellite studies of magnetospheric substorms on August 15, 1968. IX - Phenomenological model for substorms.

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Russell, C. T.; Aubry, M. P.

    1973-01-01

    Observations made during three substorms on August 15, 1968, are shown to be consistent with current theoretical ideas about the cause of substorms. The phenomenological model described in several preceding papers is further expanded. This model follows closely the theoretical ideas presented more quantitatively in recent papers by Coronti and Kennel (1972 and 1973).

  20. Studies of the substorm on March 12, 1991: 1. Structure of substorm activity and auroral ions

    NASA Astrophysics Data System (ADS)

    Lazutin, L. L.; Kozelova, T. V.; Meredith, N. P.; Danielides, M.; Kozelov, B. V.; Jussila, J.; Korth, A.

    2007-02-01

    The substorm on March 12, 1991 is studied using the data of ground-based network of magnetometers, all-sky cameras and TV recordings of aurora, and measurements of particle fluxes and magnetic field onboard a satellite in the equatorial plane. The structure of substorm activity and the dynamics of auroral ions of the central plasma sheet (CPS) and energetic quasi-trapped ions related to the substorm are considered in the first part. It is shown that several sharp changes in the fluxes and pitch-angle distribution of the ions which form the substorm ion injection precede a dipolarization of the magnetic field and increases of energetic electrons, and coincide with the activation of aurora registered 20° eastward from the satellite. A conclusion is drawn about different mechanisms of the substorm acceleration (injection) of electrons and ions.

  1. Response of plasmaspheric configuration to substorms revealed by Chang’e 3

    PubMed Central

    He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M.; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan

    2016-01-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang’e 3 mission provides a global and instantaneous meridian view (side view) of the Earth’s plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20–22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region. PMID:27576944

  2. Ground-based studies of ionospheric convection associated with substorm expansion

    NASA Technical Reports Server (NTRS)

    Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.

    1994-01-01

    The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.

  3. Response of plasmaspheric configuration to substorms revealed by Chang'e 3.

    PubMed

    He, Han; Shen, Chao; Wang, Huaning; Zhang, Xiaoxin; Chen, Bo; Yan, Jun; Zou, Yongliao; Jorgensen, Anders M; He, Fei; Yan, Yan; Zhu, Xiaoshuai; Huang, Ya; Xu, Ronglan

    2016-01-01

    The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang'e 3 mission provides a global and instantaneous meridian view (side view) of the Earth's plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20-22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region. PMID:27576944

  4. Ground-based studies of ionospheric convection associated with substorm expansion

    SciTech Connect

    Kamide, Y. |; Richmond, A.D.; Emery, B.A.; Hutchins, C.F.; Ahn, B.H. |; Beaujardiere, O. de la; Foster, J.C.; Heelis, R.A.; Kroehl, H.W.; Rich, F.J.

    1994-10-01

    The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. For this purpose, an updated version of the assimilative mapping of ionospheric electrodynamics technique has been used. These global patterns are unobtainable from any single data set. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE 2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively. 40 refs., 12 figs., 1 tab.

  5. Ground-based studies of ionospheric convection associated with substorm expansion

    SciTech Connect

    Kamide, Y.; Richmond, A.D.; Emery, B.A.; Hutchins, C.F.; Ahn, B.H.

    1994-10-01

    The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. For this purpose, an updated version of the assimilative mapping of ionospheric electrodynamics technique has been used. These global patterns are unobtainable from any single data set. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in genernal, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE 2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the epansion and maximum phases of the substorm show the first clear evidence of the coezistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward LMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement respectively.

  6. The "Alfvénic surge" at substorm onset/expansion and the formation of "Inverted Vs": Cluster and IMAGE observations

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Frey, H. U.; Fillingim, M. O.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F. S.

    2016-05-01

    From multipoint, in situ observations and imaging, we reveal the injection-powered, Alfvénic nature of auroral acceleration during onset and expansion of a substorm. It is shown how Alfvénic variations over time dissipate to form large-scale, inverted-V structures characteristic of quasistatic aurora. This characterization is made possible through the fortuitous occurrence of a substorm onset and expansion phase on field lines traversed by Cluster in the high-altitude acceleration region. Substorm onset was preceded by the occurrence of multiple poleward boundary intensifications (PBIs) and subsequent development/progression of a streamer toward the growth phase arc indicating that this is of the PBI-/streamer-triggered class of substorms. Onset on Cluster is marked by the injection of hot, dense magnetospheric plasma in a region tied to one of the preexisting PBI current systems. This was accompanied by a surge of Alfvénic activity and enhanced inverted-V acceleration, as the PBI current system intensified and striated to dispersive scale Alfvén waves. The growth of Alfvén wave activity was significant (up to a factor of 300 increase in magnetic field power spectral density at frequencies 20 mHz ≲f≲ few hertz) and coincided with moderate growth (factor 3-5) in the background PBI current. This sequence is indicative of a cascade process whereby small-scale/dispersive Alfvén waves are generated from large-scale Alfvén waves or current destabilization. It also demonstrates that the initial PBIs and their subsequent evolution are an intrinsic part of the global auroral substorm response to injection and accompanying wave energy input from the magnetotail. Alfvénic activity persisted poleward of the PBI currents composing a broad Alfvén wave-dominated region extending to the polar cap edge. These waves have transverse scales ranging from a few tens of kilometers to below the ion gyroradius and are associated with large electric fields (up to 200 mV/m) and

  7. Description of substorms in the tail incorporating boundary layer and neutral line effects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Nishida, A.

    1988-01-01

    A description of the substorm expansion phase that includes the formation of a neutral line in the relatively near-earth portion of the tail plasma sheet and phenomena observed in the plasma sheet boundary layer (PSBL) is proposed. Specifically, it is proposed that substorm onset results from the formation of a neutral line within the preexisting source region for the PSBL. The source region is presumably the tail current sheet, which is suggested to extend well earthward of 80 earth radii. Both before and after the neutral line forms, auroral field-aligned currents and large ion flows remain confined to the PSBL earthward of the source region.

  8. Variation of The Magnetotail Electric Fields During Magnetospheric Substorms

    NASA Astrophysics Data System (ADS)

    Pudovkin, M.; Zaitseva, S.; Nakamura, R.

    The behaviour of the midtail electric fields during two magnetospheric substorms on November, 22, 1995, is investigated. The magnetospheric electric field is supposed to consist of two components: a potential electric field penetrating into the magneto- sphere from the solar wind, and an inductive electric field associated with variation of the geomagnetic field. The first component is supposed to be proportional (with some time delay) to the Y -component of the solar wind electric field, and the second one is estimated from the time derivative of the tail lobe magnetic flux. The latter is obtained by converting total pressure to lobe magnetic field by assuming pressure balance be- tween lobe and plasma sheet (Nakamura et al., 1999). The Y -component of the total electric field is calculated from GEOTAIL spacecraft data as Ey = -[v × B]y. Analysis of experimental data shows that the inductive electric field (Ec) is "switched on" in the magnetotail practically simultaneously with the intensification of the IMF southern component. At the preliminary phase of the substorm, the Ec field within the plasmasheet is directed from dusk to dawn compensating the potential field Ep, so that the total field Ey is rather small there (Semenov and Sergeev, 1981). With the beginning of the active phase, the Ec changes its sign, and adding to the Ep, provides a rapid increase of the dawn­dusk Ey field. As the intensity of Ep during the active phase of the substorm is less than the intensity of the induced field, Ey is determined during this period by the latter mainly and does not correlate with the Esw field. However, the intensity of the potential electric field at this time may be obtained from the data on the velocity of the auroral arc motion (Pudovkin et al., 1992). So, judging by the dynamics of aurorae at the Poker Flat (Alaska) station, Ep field in the inner magnetosphere (X -10 RE) amounts the value of 0.7 mV/m, and it varies in proportion to Esw with the time delay of

  9. Substorm associated micropulsations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1981-01-01

    The state of the art of observations of substorm associated waves in GEO is reviewed and research directions are indicated. Data were taken from fluxgate magnetometers on board the ATS 1 and 6 spacecraft in GEO. Mixed mode Pc 4 and 5 waves, with the largest amplitude of magnetic pulsations observed at GEO, have been found to display a quasi-sinusoidal waveform with amplitudes from 10-30 gamma and a period of 50-200 sec. The wave spectra confined the excited frequencies to a narrow band, and possible generating mechanisms for the Pc 4 and 5 waves are discussed. Pc 1 and 2 magnetic pulsations are the most common in GEO, with Pc 1 occurring every third day, particularly in the afternoon to dusk sector and during major substorm expansion onset. Pi 2 outbursts are observed in the majority of substorms passing through the midnight sector and have been correlated with changes in field aligned currents.

  10. Postmidnight chorus - A substorm phenomenon. [outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.

    1974-01-01

    The ELF emissions were detected in the midnight sector of the magnetosphere in conjunction with magnetospheric substorms. The emissions were observed at local midnight and early morning hours and are accordingly called 'post-midnight chorus.' The characteristics of these emissions such as their frequency time structure, emission frequency with respect to the local equatorial electron gyrofrequency, intensity-time variation, and the average intensity were investigated. The occurrence of the chorus in the nightside magnetosphere was investigated as a function of local time, L shell, magnetic latitude, and substorm activity, and the results of this analysis are presented. Specific features of postmidnight chorus are discussed in the context of possible wave-particle interactions occurring during magnetospheric substorms.

  11. Composite imaging of convective flows and auroral forms during a substorm cycle

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Butler, T.; Zettergren, M. D.; Nicolls, M. J.; Heinselman, C. J.

    2009-12-01

    Measurements obtained with the electronically steerable Poker Flat Incoherent Scatter Radar (PFISR) and a collocated all-sky camera have been used to construct composite images of ionospheric convective flows and auroral forms associated with an isolated substorm on 26 March 2008. The radar was configured to cycle through a 5x5 grid of beam positions. A statistical inversion of line-of-sight velocities was used to construct images of the overlying flow field at 30-km spatial resolution and 1-min time resolution over a 100x100-km field. The flow fields were co-registered with all-sky images recorded at 20-s cadence. Analysis of the composite images has revealed several interesting contrasts between growth-, expansion-, and recover-phase morphology. These include, (1) anti-correlation between ion velocity (electric field) and luminosity (plasma density, hence, conductance) in space and time during growth- and expansion-phases; identical velocities inside and outside the aurora during recovery phase, (2) large tangential velocity directed along auroral boundaries during all phases (consistent with electric field directed into the aurora), irrespective of the orientation of the arc boundary, and (3) large relative drift (~2 km/s) between aurora forms and convective flows during the recovery phase; little or no proper motion during growth phase. The results are interpreted with respect to electrodynamic models of auroral M-I coupling. Composite image showing convective flows (arrows), ion temperature at 200 km (contours), and auroral forms at onset of a pseudo-breakup event.

  12. Pi2 pulsations and substorm onsets: A review

    NASA Astrophysics Data System (ADS)

    Olson, John V.

    1999-08-01

    Pi2 pulsations have been the subject of continuous study since they were recognized to be an integral part of the magnetospheric substorm. With the advent of arrays of ground instruments the nature of the Pi2 has begun to be understood. As adopted by the 13th General Assembly of the International Union of Geodesy and Geophysics in 1963, Pi2 is a designation that includes impulsive pulsations in the period range from 40 to 150 s. The Pi2 signal encompasses a class of pulsations that represents two fundamental processes. The first process is the sudden generation of field-aligned currents in association with the disruption of cross-tail currents in the plasma sheet and their subsequent effects on the ionosphere. The ionosphere appears to be something more than a passive load for this electrodynamic impulse. It responds, sending currents back into a magnetosphere whose topology is changing and, perhaps producing the feedback necessary to cause the explosive growth of the substorm current system. Oscillations of these currents are detected across the nightside of the Earth at onset as the midlatitude and high-latitude portions of Pi2. The second process is the impulse response of the inner magnetosphere to the compressional waves that are generated at substorm onset. Traveling inward, they stimulate field line resonances and surface waves at the plasmapause and excite global oscillations in the inner magnetosphere. The two processes produce wave modes that couple and cross-couple threading energy into the inner magnetosphere and ultimately to the ground. The purpose of this review is to construct a phenomenological overview of the Pi2.

  13. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  14. Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Clauer, C. R.; Deshpande, K.; Lessard, M. R.; Weatherwax, A. T.; Bust, G. S.; Crowley, G.; Humphreys, T. E.

    2014-07-01

    Plasma instability in the ionosphere is often observed as disturbances and distortions of the amplitude and phase of the radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to the solar wind and magnetospheric dynamics, produces very dynamic and short-lived Global Positioning System (GPS) scintillations, making it challenging to characterize them. It is observed that scintillations in the high-latitude ionosphere occur frequently during geomagnetic storms and substorms. In addition, it is well known that Ultra Low Frequency (ULF) pulsations (Pi2 and Pi1B) are closely associated with substorm activity. This study reports simultaneous observations of Pi2 and Pi1B pulsations and GPS phase scintillations during a substorm using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. The magnetic field and GPS data from the instruments appear to be associated in terms of their temporal and spectral features. Moreover, the scintillation events were observed near the auroral latitudes where Pi1B pulsations are commonly detected. The temporal, spectral and spatial association between the scintillation and geomagnetic pulsation events suggests that the magnetic field perturbations and enhanced electric fields caused by substorm currents could contribute to the creation of plasma instability in the high-latitude ionosphere, leading to GPS scintillations.

  15. Fast ionospheric feedback instability and substorm onset

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Grieger, John; Song, Yan

    1992-01-01

    A study suggesting that the Alfven resonator can play an important role in modifying the ionosphere on the time and space scales required to play a significant role in substorm formation is presented. Although the effect of magnetosphere-ionosphere coupling on the onset of substorms has been studied, the effects due to gradients of the Alfven speed along auroral field line were neglected. The large increase of the Alfven speed with altitude above the ionosphere creates an effective resonant cavity, which can lead to fluctuations in the electric and magnetic fields as well as in particle fluxes in the range 0.1 to 1 Hz. Such fluctuations can be observed from the ground as PiB pulsations associated with substorm onset. These fluctuations can be excited by a fast feedback instability, which can grow on time scales much less than the Alfven travel time between the ionosphere and the plasma sheet. The instability enhances the value of both the Pedersen and Hall conductivity, and may play a role in preparing the ionosphere for substorm onset.

  16. Substorm current wedge composition by wedgelets

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Angelopoulos, V.; Chu, Xiangning; Zhou, Xu-Zhi; Yue, Chao

    2015-03-01

    Understanding how a substorm current wedge (SCW) is formed is crucial to comprehending the substorm phenomenon. One SCW formation scenario suggests that the substorm time magnetosphere is coupled to the ionosphere via "wedgelets," small building blocks of an SCW. Wedgelets are field-aligned currents (FACs) carried by elemental flux transport units known as dipolarizing flux bundles (DFBs). A DFB is a magnetotail flux tube with magnetic field stronger than that of the ambient plasma. Its leading edge, known as a "dipolarization front" or "reconnection front," is a product of near-Earth reconnection. Dipolarizing flux bundles, and thus wedgelets, are localized—each is only <3 RE wide. How these localized wedgelets combine to become large-scale (several hours of magnetic local time) region-1-sense SCW FACs is unclear. To determine how this occurs, we investigated wedgelets statistically using Time History of Events and Macroscale Interactions during Substorms (THEMIS) data. The results show wedgelet asymmetries: in the dawn (dusk) sector of the magnetotail, a wedgelet has more FAC toward (away from) the Earth than away from (toward) the Earth, so the net FAC is toward (away from) the Earth. The combined effect of many wedgelets is therefore the same as that of large-scale region-1-sense SCW, supporting the idea that they comprise the SCW.

  17. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  18. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    NASA Astrophysics Data System (ADS)

    Grocott, A.; Lester, M.; Parkinson, M. L.; Yeoman, T. K.; Dyson, P. L.; Devlin, J. C.; Frey, H. U.

    2006-12-01

    At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV) instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER) moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003). At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a way which has

  19. Formation of the stable auroral arc that intensifies at substorm onset

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Samson, J. C.

    1993-01-01

    In a companion paper, we present observational evidence that the stable, growth-phase auroral arc that intensifies at substorm expansion phase onset often forms on magnetic field lines that map to within approximately 1 to 2 R(sub e) of synchronous. The equatorial plasma pressure is 1 to 10 nPa in this region, which can give a cross-tail current greater than 0.1 A/m. In this paper, we propose that the arc is formed by a perpendicular magnetospheric-current divergence that results from a strong dawn-to-dusk directed pressure gradient in the vicinity of magnetic midnight. We estimate that the current divergence is sufficiently strong that a is greater than 1 kV field-aligned potential drop is required to maintain ionospheric-current continuity. We suggest that the azimuthal pressure gradient results from proton drifts in the vicinity of synchronous orbit that are directed nearly parallel to the cross-tail electric field.

  20. Suprathermal O(+) and H(+) ion behavior during the March 22, 1979 (CDAW 6), substorms

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Scholer, M.; Hovestadt, D.; Klecker, B.

    1985-01-01

    The present investigation has the objective to report on the behavior of energetic (approximately 130 keV) O(+) ions in the earth's plasma sheet, taking into account observations by the ISEE 1 spacecraft during a magnetically active time interval encompassing two major substorms on March 22, 1979. Attention is also given to suprathermal H(+) and He(++) ions. ISEE 1 plasma sheet observations of the proton and alpha particle phase space densities as a function of energy per charge during the time interval 0933-1000 UT on March 22, 1979 are considered along with the proton phase space density versus energy in the energy interval approximately 10 to 70 keV for the selected time periods 0933-1000 UT (presubstorm) and 1230-1243 UT (recovery phase) during the 1055 substorm on March 22, 1979. A table listing the proton energy density for presubstorm and recovery periods is also provided.

  1. Kinematics of Phase Boundary Growth. Directional Solidification

    NASA Astrophysics Data System (ADS)

    Radev, Krassimir B.

    2010-01-01

    This report aims to give consideration to the time-space evolution of the phase boundary by making use of the kinematic condition on the interface, representing the balance of the mass fluxes through the movable growing boundary, as well as the Gibbs-Thompson condition of the local phase equilibrium. The analysis has shown the determinative role of a dimensionles parameter—combination of only physical properties of the system—on the evolution of surface fluctuations.

  2. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  3. Multipoint observations of a small substorm

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Anderson, B. J.; Newell, P. T.; Mcentire, R. W.; Luehr, H.

    1990-01-01

    Results are presented of multipoint observations of a small substorm which occurred at about 0110 UT on April 25, 1985, carried out by AMPTE CCE, AMPTE IRM, DMSP F6, and DMSP F7, as well as by ground auroral stations and midlatitude stations. These data yield information on the latitudinal extent of the polar cap and provide visual identification of substorm aurorae, magnetic perturbations produced directly beneath aurorae, and the situ magnetic field. In addition, they provide magnetic-particle observations of the disruption of the cross-tail current sheet and observations concerning the spatial expansion of the current disruption region. Evidence is presented that the current sheet disruption observed by CCE in the neutral sheet was located on field lines which mapped to the westward traveling surge observed directly overhead of the ground station at Syowa.

  4. Low energy particle signature of substorm dipolarization

    SciTech Connect

    Liu, C.; Perez, J.D. ); Moore, T.E.; Chappell, C.R. )

    1994-02-01

    The low energy particle signature of substorm dipolarization is exhibited through a case study of RIMS data on DE-1 at [approximately]2100 MLT, ILAT = 59[degrees][approximately]65[degrees], L = 3.8 [approximately] 5.4 R[sub E], and geocentric distances 2.6[approximately]2.9 R[sub E]. A strong cross-field-line, poleward outflow that lasts for a few minutes with a velocity that reaches at least 50 km/s is correlated with substorm activity evidenced in the AE index and the MAG-1 data. All the major species (H[sup +], He[sup +], O[sup +]) are observed to have the same bulk velocity. The parallel velocities are strongly correlated with the perpendicular velocities. The parallel acceleration is shown to result from the centrifugal force of the ExB drift induced by the dipolarizing perturbation of the magnetic field. 9 refs., 4 figs.

  5. IMF effect on the polar cap contraction and expansion during a period of substorms

    NASA Astrophysics Data System (ADS)

    Aikio, A. T.; Pitkänen, T.; Honkonen, I.; Palmroth, M.; Amm, O.

    2013-06-01

    The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase. In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.

  6. A boundary layer model for magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, Gordon; Eastman, Tim

    1987-01-01

    An alternative framework for understanding magnetospheric substorm activity is presented. It is argued that observations of magnetic field and plasma flow variations in the magnetotail can be explained in terms of the passage of the plasma sheet boundary layer over the satellite detecting the tail signatures. It is shown that field-aligned currents and particle acceleration processes on magnetic field lines threading the ionospheric Harang discontinuity lead to the distinctive particle and field signatures observed in the magnetotail during substorms. It is demonstrated that edge effects of field-aligned currents associated with the westward traveling surge can lead to the negative B(z) perturbations observed in the tail that are presently attributed to observations made on the anti-earthward side of a near-earth neutral line. Finally, it is shown that the model can provide a physical explanation of both the driven system and the loading-unloading system whose combined effects provide the observed substorm perturbation pattern in the magnetosphere and ionosphere.

  7. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  8. Dynamics of the outer radiation belts in relation to polar substorms and hot plasma injections at geostationary altitude

    NASA Technical Reports Server (NTRS)

    Sauvaud, J. A.; Winckler, J. R.

    1981-01-01

    Geostationary satellite and ground measurements of dynamic variations of the outer radiation belts and their relations with the development of auroral structures during magnetospheric substorms are analyzed. A comparison of measurements of the H or X geomagnetic field components made by seven auroral stations with ATS-6 low-energy and high-energy particle measurements during the multiple-onset substorm of Aug. 16, 1974 is presented which demonstrates that while the decrease in energetic particle fluxed ends only at the time of a strong substorm onset, rapid motions of the outer radiation belts may occur during the flux decrease. All-sky photographs of auroral phenomena taken at Fort Yukon and College, Alaska are then compared with ATS-1 energetic particle flux measurements in order to demonstrate the relation between flux decreases and increases and distinct substorm phases. Results support the hypothesis of a magnetospheric substorm precursor which appears to be an instability growing at the inner boundary of the plasma layer and approaching the earth, and underline the importance of current and magnetic field variations in charged particle dynamics.

  9. The equatorial electrojet during geomagnetic storms and substorms

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.

    2015-03-01

    The climatology of the equatorial electrojet during periods of enhanced geomagnetic activity is examined using long-term records of ground-based magnetometers in the Indian and Peruvian regions. Equatorial electrojet perturbations due to geomagnetic storms and substorms are evaluated using the disturbance storm time (Dst) index and auroral electrojet (AE) index, respectively. The response of the equatorial electrojet to rapid changes in the AE index indicates effects of both prompt penetration electric field and disturbance dynamo electric field, consistent with previous studies based on F region equatorial vertical plasma drift measurements at Jicamarca. The average response of the equatorial electrojet to geomagnetic storms (Dst<-50 nT) reveals persistent disturbances during the recovery phase, which can last for approximately 24 h after the Dst index reaches its minimum value. This "after-storm" effect is found to depend on the magnitude of the storm, solar EUV activity, season, and longitude.

  10. High temperature growth of Ag phases on Ge(111)

    SciTech Connect

    Mullet, Cory H.; Chiang, Shirley

    2013-03-15

    The growth of the (3 Multiplication-Sign 1) and ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phases of Ag on Ge(111) on substrates at temperatures from 540 to 660 Degree-Sign C is characterized with low energy electron microscopy (LEEM) and low energy electron diffraction (LEED). From 540 Degree-Sign C to the Ag desorption temperature of 575 Degree-Sign C, LEEM images show that growth of the (3 Multiplication-Sign 1) phase begins at step edges. Upon completion of the (3 Multiplication-Sign 1) phase, the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase is observed with a dendritic growth morphology that is not much affected by steps. For sufficiently high deposition rates, Ag accumulates on the sample above the desorption temperature. From 575 to 640 Degree-Sign C, the growth proceeded in a manner similar to that at lower temperatures, with growth of the (3 Multiplication-Sign 1) phase to completion, followed by growth of the ({radical}3 Multiplication-Sign {radical}3)R30 Degree-Sign phase. Increasing the substrate temperature to 660 Degree-Sign C resulted in only (3 Multiplication-Sign 1) growth. In addition, for samples with Ag coverage less than 0.375ML, LEEM and LEED images were used to follow a reversible phase transformation near 575 Degree-Sign C, between a mixed high coverage phase of [(4 Multiplication-Sign 4) + (3 Multiplication-Sign 1)] and the high temperature, lower coverage (3 Multiplication-Sign 1) phase.

  11. Substorm-associated radar auroral surges

    SciTech Connect

    Freeman, M.P.; Southwood, D.J. ); Lester, M.; Yeoman, T.K. ); Reeves, G.D. )

    1992-08-01

    The authors report a recurrent convection signature observed in the E region ionosphere within {approximately}2 hours of the dusk meridian by the SABRE radar facility. In a typical event, the irregularity drift speed in the SABRE field of view is seen to increase from about 300 m s{sup {minus}1} to of the order of 1 km s{sup {minus}1} in the space of about 10 min. The speed subsequently remains at the enhanced level for 10 min or longer before declining as rapidly as its onset. The total event duration ranges between 30 min and 1 hour. As the irregularity drift speed increases the direction of the drift velocity changes, rotating poleward. At the same time, the radar backscatter power decreases. The onset of the drift speed enhancement crosses the SABRE field of view as a front moving from east to west. Detailed study of individual events indicates that the events are associated with increases in the {vert bar}AL{vert bar} index and with the injection of energetic particles into geosynchronous orbit. The authors thus suggest that the events are a part of the magnetospheric response to the onset of a geomagnetic substorm. However, while each event appears to be associated with a substorm onset, not every substorm onset is associated with an event, at least not at SABRE. They estimate the speed at which the substorm-initiated ionospheric flow enhancement moves from the nightside to be 1-4 km s{sup {minus}1}, a figure that is consistent with the rate at which the drift velocity front crosses the SABRE field of view. Although the front is associated with a rotation in the drift velocity, they see little evidence of strong vertical vorticity as the front passes. However, shears in the flow do develop subsequently which seem likely to correspond to field-aligned current. Although associated with substorm onset, they argue that these events are distinct from westward traveling surges and appear to differ from the midlatitude phenomenon known as subauroral ion drifts.

  12. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  13. Magnetic effects of the substorm current wedge in a “spread-out wire” model and their comparison with ground, geosynchronous, and tail lobe data

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Tsyganenko, N. A.; Smirnov, M. V.; Nikolaev, A. V.; Singer, H. J.; Baumjohann, W.

    2011-07-01

    Although the substorm current wedge (SCW) is recognized as a basic 3-D current system of the substorm expansion phase, its existing models still do not extend beyond a cartoon-like sketch, and very little is known of how well they reproduce magnetic variations observed in the magnetosphere during substorms. A lack of a realistic quantitative SCW model hampers testing model predictions against large sets of spacecraft data. This paper (1) presents a computationally efficient and flexible model with a realistic geometry of field-aligned currents, conveniently parameterized by the SCW strength, longitudinal width, and position, all derived from ground-based midlatitude magnetic variations; and (2) tests the model against INTERMAGNET network observations during substorms and compares its predictions with space magnetometer data. The testing demonstrated significant and systematic discrepancies between the observed and predicted magnetic variations, depending on spacecraft location, concurrent magnetotail configuration, and substorm phase. In particular, we found that the net SCW current derived from the midlatitude field variations corresponds to only a relatively small and variable fraction of the distant 3-D substorm current, inferred from spacecraft data in the lobe and at geosynchronous distance. The discrepancy can be partly attributed to additional region 2 polarity field-aligned currents in the same longitudinal sector, associated with azimuthal diversion of the earthward plasma flow when it encounters the region of strong quasi-dipolar field in the inner magnetosphere.

  14. Dynamics of the 1054 UT March 22, 1979, substorm event: CDAW 6

    SciTech Connect

    McPherron, R.L.; Manka, R.H.

    1985-02-01

    The physical processes involved in the transfer of energy from the solar wind to the magnetosphere, and release associated with substorms, have been examined in a sequence of Coordinated Data Analysis Workshops (CDAW 6). Magnetic storms of March 22 and 31, 1979, were chosen to study the problem, using a data base from 13 spacecraft and about 130 ground-based magnetometers. This paper describes the March 22 storm, in particular the large, isolated substorm at 1054 UT which followed an interval of magnetic calm. We summarize the observations in the solar wind, in various regions of the magnetosphre, and at the ground, synthesizing these observations into a description of the substorn development. We then give our interpretation of these observations and test their consistency with the reconnection model. The substorm appears to have been generated by a southward turning of the interplanetary magnetic field associated with a current sheet crossing. Models of ionospheric currents derived from ground data show the substorm had three phases of development. During the first phase, a two-celled convection current system developed in the polar cap as synchronous spacecraft on the nightside recorded an increasingly tailike field and the ISEE measurements show that the near-earth plasma sheet thinned. In the second phase, possibly triggered by sudden changes in the solar wind, a one-celled current system was added to the first, enhancing the westward electrojet. During this phase the synchronous orbit field became more dipolar, and the plasma sheet magnetic field turned strongly southward as rapid tailward flow developed soon after expansion onset, suggesting that a neutral line formed in the near-earth plasma sheet with subsequent plasmoid ejection.

  15. A Phase-Field Model for Grain Growth

    SciTech Connect

    Chen, L.Q.; Fan, D.N.; Tikare, V.

    1998-12-23

    A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.

  16. Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations

    SciTech Connect

    Steinolfson, R.S. ); Winglee, R.M. )

    1993-05-01

    The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models.

  17. Dynamic Particle Growth Testing - Phase I Studies

    SciTech Connect

    Hu, M.Z-C.

    2001-05-17

    There is clearly a great need to understand the processes of crystallization and solid scale formation that led to the shutdown of 2H evaporator operation at the Savannah River Site (SRS) and could possibly cause similar problems in the future in other evaporators. Waste streams from SRS operations that enter the evaporators generally contain alkaline, sodium nitrate/nitrite-based solutions with various changing concentrations of silicates and aluminates. It has been determined. that the silicates and aluminates served as precursor reactants for forming unwanted minerals during solution evaporation, upon transport, or upon storage. Mineral forms of the Zeolite Linde A group--sodalites and cancrinite--along with gibbsite, have often been identified as contributing to deposit (scale) formation on surfaces of the 2H evaporator as well as to the formation of solid plugs in the gravity drain line and lift line. Meanwhile, solids (amorphous or crystalline minerals) are believed, without direct evidence, to form in the bulk solutions in the evaporator. In addition, the position of deposits in the 2H evaporator suggests that scale formation depends on the interplay of heat and mass transfer, hydrodynamics, and reaction mechanisms and kinetics. The origin of solid scale formation on walls could be due to heterogeneous nucleation and/or to homogeneous nucleation followed by cluster/particle deposition. Preliminary laboratory tests at the Savannah River Technology Center (SRTC) with standing metal coupons seem to support the latter mechanism for initial deposition; that is, the solid particles form in the bulk solution first and then deposit on the metal surfaces. Further buildup of deposits may involve both mechanisms: deposition and crystal growth. Therefore, there may be a direct linkage between the solid particle growth in bulk solution and the scale buildup on the wall surfaces. On the other hand, even if scale formation is due solely to a heterogeneous mechanism

  18. Phase-field model of island growth in epitaxy

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Mei; Liu, Bang-Gui

    2004-02-01

    Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests.

  19. Phase-field model of island growth in epitaxy.

    PubMed

    Yu, Yan-Mei; Liu, Bang-Gui

    2004-02-01

    Nucleation and growth of islands in epitaxy is simulated using a continuum phase-field model. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests. PMID:14995452

  20. Does a "substorm precursor" exist in the polar cap?

    NASA Astrophysics Data System (ADS)

    Nosikova, Nataliya; Lorentzen, Dag; Yagova, Nadezda; Baddeley, Lisa; Pilipenko, Vyacheslav; Kozyreva, Olga

    2015-04-01

    An isolated auroral substorm, which occurs without external triggering, can develop as a result of inner instabilities in the geomagnetic tail. The comparative analysis of presubstorm variations of the geomagnetic field and particle flux in the geomagnetic tail along with geomagnetic and auroral disturbances in the polar caps is of key importance for the discrimination between direct triggering and intra-magnetospheric processes in a substorm onset. In the present study we compare the auroral disturbances and geomagnetic pulsations in the frequency range 1-5 mHz (Pc5/Pi3) at nighttime high latitudes during both quiet geomagnetic intervals preceding isolated substorms and non-substorm intervals. Superposed epoch analysis is applied to reveal pre-substorm variations ("substorm precursors"). The data from IMAGE magnetometer network, the Meridian Scanning photometer (Svalbard), and particle flux measured by GEOTAIL, has been used. The effect of presubstorm activation (Yagova, 2000) is reproduced during the solar minimum conditions. References Yagova N., V. Pilipenko, A. Rodger, V. Papitashvili, J. Watermann, Long period ULF activity at the polar cap preceding substorm, in: Proc. 5th International Conference on Substorms, St. Peterburg, Russia (ESA SP-443), 603-606, 2000.

  1. Substorm Bulge/Surge Controlled by Polar Cap Flow Channels

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Nishimura, T.; Zou, Y.; Gallardo-Lacourt, B.; Donovan, E.; Shiokawa, K.; Nicolls, M. J.; Chen, S.; Ruohoniemi, J. M.; Nishitani, N.; McWilliams, K. A.

    2015-12-01

    Previous studies have provided evidence that localized channels of enhanced polar cap flow drive plasma sheet/auroral oval flow channels, auroral poleward boundary intensifications and streamers, and substorm onset. Evidence has also indicated that a persistence of such flow channels after substorm onset may enhance post-onset auroral poleward expansion and activity. Here, we combine auroral imager and radar observations to show evidence that polar-cap flow channels can directly feed the substorm bulge westward motion, i.e., the westward traveling surge, and its poleward expansion well into the pre-existing polar cap. By taking advantage of the capability of tracing polar cap arcs and patches over long distances with red line imaging, we are able to trace flow features that strongly affect the substorm bulge across the polar cap for up to ~1-1.5 hr prior to their impacting and affecting the substorm bulge.

  2. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-07-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age-velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  3. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-04-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age velocity dispersion relation of the Solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models the outward migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  4. Quantifying the spatio-temporal correlation during a substorm using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    NASA Astrophysics Data System (ADS)

    Dods, J.; Chapman, S. C.; Gjerloev, J. W.; Barnes, R. J.

    2014-12-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of observed qualitative auroral features and signatures seen in ground based magnetometers. The detailed evolution of a given substorm is captured by typically ~100 ground based magnetometer observations and this work seeks to synthesise all these observations in a quantitative manner. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere.

  5. Growth phase-dependent composition of the Helicobacter pylori exoproteome.

    PubMed

    Snider, Christina A; Voss, Bradley J; McDonald, W Hayes; Cover, Timothy L

    2016-01-01

    Helicobacter pylori colonizes the human stomach and is associated with an increased risk of gastric cancer and peptic ulcer disease. Analysis of H. pylori protein secretion is complicated by the occurrence of bacterial autolysis. In this study, we analyzed the exoproteome of H. pylori at multiple phases of bacterial growth and identified 74 proteins that are selectively released into the extracellular space. These include proteins known to cause alterations in host cells, antigenic proteins, and additional proteins that have not yet been studied in any detail. The composition of the H. pylori exoproteome is dependent on the phase of bacterial growth. For example, the proportional abundance of the vacuolating toxin VacA in culture supernatant is higher during late growth phases than early growth phases, whereas the proportional abundance of many other proteins is higher during early growth phases. We detected marked variation in the subcellular localization of putative secreted proteins within soluble and membrane fractions derived from intact bacteria. By providing a comprehensive view of the H. pylori exoproteome, these results provide new insights into the array of secreted H. pylori proteins that may cause alterations in the gastric environment. PMID:26363098

  6. Substorm probabilities are best predicted from solar wind speed

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Gjerloev, J. W.; Sotirelis, T.; Wing, S.; Mitchell, E. J.

    2016-08-01

    Most measures of magnetospheric activity - including auroral power (AP), magnetotail stretching, and ring current intensity - are best predicted by solar wind-magnetosphere coupling functions which approximate the frontside magnetopause merging rate. However radiation belt fluxes are best predicted by a simpler function, namely the solar wind speed, v. Since most theories of how these high energy electrons arise are associated with repeated rapid dipolarizations such as associated with substorms, this apparent discrepancy could be reconciled under the hypothesis that the frequency of substorms tracks v rather than the merging rate - despite the necessity of magnetotail flux loading prior to substorms. Here we investigate this conjecture about v and substorm probability. Specifically, a continuous list of substorm onsets compiled from SuperMAG covering January 1, 1997 through December 31, 2007 are studied. The continuity of SuperMAG data and near continuity of solar wind measurements minimize selection bias. In fact v is a much better predictor of onset probability than is the overall merging rate, with substorm odds rising sharply with v. Some loading by merging is necessary, and frontside merging does increase substorm probability, but nearly as strongly as does v taken alone. Likewise, the effects of dynamic pressure, p, are smaller than simply v taken by itself. Changes in the solar wind matter, albeit modestly. For a given level of v (or Bz), a change in v (or Bz) will increase the odds of a substorm for at least 2 h following the change. A decrease in driving elevates substorm probabilities to a greater extent than does an increase, partially supporting external triggering. Yet current v is the best single predictor of subsequently observing a substorm. These results explain why geomagnetically quiet years and active years are better characterized by low or high v (respectively) than by the distribution of merging estimators. It appears that the flow of energy

  7. Magnetotail Current Sheet Thinning and Magnetic Reconnection Dynamics in Global Modeling of Substorms

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.

    2008-01-01

    Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated

  8. The Four-Part Field-Aligned Current System in the Ionosphere at Substorm Onset

    NASA Astrophysics Data System (ADS)

    McWilliams, K. A.; Sofko, G. J.; Bristow, W. A.; Hussey, G. C.

    2015-12-01

    lines in the convection pattern have a strong vorticity near the convection reversal. By Faraday's Law of Induction there is a decrease in magnetic flux density on the poleward side of the convection reversal, and an increase on the equatorward side. We address this issue for two different time intervals, namely the late growth phase and then the substorm onset.

  9. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  10. Interball substorm observations: Christmas for space scientists

    NASA Technical Reports Server (NTRS)

    Sandahl, Ingrid; Pulkkinen, Tuija; Budnik, Elena Yu.; Dubinin, Edouard M.; Eklund, Ulrik; Hughes, Terence J.; Kokubun, Susumu; Koskinen, Hannu; Kudela, Karel; Lepping, Ronald P.; Lin, Robert P.; Lui, Anthony T. Y.; Lutsenko, Volt; Mostroem, Arne; Nozdrachev, Michail; Pissarenko, Novomir, F.; Prokhorenko, Victoria; Sauvaud, Jean-Andre; Yermolaev, Yuri I.; Zakharov, Alexander V.

    1996-01-01

    Observational results from the Interball Tail Probe spacecraft are presented. One of the main objectives of the Interball project is to study the dynamic processes in the magnetosphere. Three events observed by the spacecraft's instruments are investigated: a pseudobreakup during which earthward streaming ions were observed in the vicinity of a thin current sheet; a substorm in which the magnetic signatures in the lobe and on the ground were preceeded by northward re-orientation of the interplanetary magnetic field Bz component; and a magnetic storm at the beginning of which extreme deformation of the magnetotail was observed.

  11. Energetic Electron Populations in the Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This report summarizes the scientific work performed by the Aerospace Corporation under NASA Grant NAG5-10278, 'Energetic Electron Populations in the Magnetosphere during Geomagnetic Storms and Subsisting.' The period of performance for the Grant was March 1, 2001 to February 28, 2002. The following is a summary of the Statement of Work for this Grant. Use data from the PIXIE instrument on the Polar spacecraft from September 1998 onward to derive the statistical relationship between particle precipitation patterns and various geomagnetic activity indices. We are particularly interested in the occurrence of substorms during storm main phase and the efficacy of storms and substorms in injecting ring-current particles. We will compare stormtime simulations of the diffuse aurora using the models of Chen and Schulz with stormtime PIXIE measurements.

  12. A current disruption mechanism in the neutral sheet for triggering substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1989-01-01

    Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to

  13. A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii.

    PubMed

    McMahon, Clive R; Buscot, Marie-Jeanne; Wiggins, Natasha L; Collier, Neil; Maindonald, John H; McCallum, Hamish I; Bowman, David M J S

    2011-01-01

    Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth rates often differ over an animal's lifetime a single curve may not accurately capture the growth. Broken-stick models constrained to pass through a common point have been proposed to describe the different growth phases, but these are often unsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single, converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinear function (SJ2P), tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanian pademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth--joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate that male pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wild pademelons for life history studies but given the high variability of the data used to parametrise the second growth phase of the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection of longitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth over the lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates from commonly used wildlife management practices to provide crucial insights into the demographic behaviour of animal populations. PMID:22022369

  14. Numerical modeling of the ionospheric effects of substorms

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.

    2008-12-01

    The investigations of the substorm are carried out already many years. In spite of that, the single-valued answers on many questions which arise at the researchers of the substorm till now are not given. To such questions it is possible to concern the questions about the mechanism of occurrence of the substorm and on the influence of the substorm on the Earth's ionosphere. At modeling of the ionospheric effects of substorms it is important to know the following. How does the potential drop through polar caps change at initial stages of the substorm development - stepwise or smoothly? What is the duration of these changes? What and how does occur with the potential drop in the further during development of the substorm down to its termination? How does the time course of intensity of the field aligned currents of the first zone change before the substorm beginning, during substorm and after its termination? Is there a time delay of changes of the field aligned currents of the second zone relative to changes of the field aligned currents of the first zone or potential drop through polar caps? If the delay exists, what is it? How does the high-energy particle precipitation in the auroral zones and polar caps change during the substorm? Is it necessary to set at the modeling of the substorm effects the Substorm Current Wedge? If it is necessary, how make it correctly? On these questions we do not have the single-valued answers. But we shall like very strongly for them to have. We have carried out the modeling researches of the substorm influence on the ionosphere in various statements of the problem. The investigations were spent on the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere, added by the new block of calculation of electric fields in the Earth's ionosphere. In our investigations we have given the particular attention: to electrodynamics of the ionosphere; to changes of the global distributions of foF2, TEC and ion composition of

  15. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  16. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  17. Various phase-field approximations for Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Rätz, Andreas; Voigt, Axel

    2004-05-01

    We present diffuse interface approximations for a step flow model in epitaxial growth. In this model, the motion of step edges of discrete atomic layers is determined by the time evolution of an introduced phase-field variable. In order to incorporate the attachment-detachment kinetics at step edges into the phase-field model a degenerate mobility-function is established. The model is used to simulate the evolution of a step train.

  18. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

    PubMed Central

    Rolfe, Matthew D.; Rice, Christopher J.; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D. S.; Alston, Mark; Stringer, Michael F.; Betts, Roy P.; Baranyi, József; Peck, Michael W.

    2012-01-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments. PMID:22139505

  19. Dynamics of the AMPERE Region 1 Birkeland current oval during storms, substorms and steady magnetospheric convection

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Clausen, L.; Ruohoniemi, J. M.; Milan, S. E.; Kissinger, J.; Anderson, B. J.; Wing, S.

    2012-12-01

    Using radial current densities provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) we employ a fitting scheme to identify the location of the maximum Region 1 field-aligned (Birkeland) current at all magnetic local times. We call this parameter the "R1 oval" and we investigate its behavior during various modes of magnetospheric activity such as storms, substorms and steady magnetospheric convection (SMCs). Results show the following: (1) during substorms the radius of the R1 oval undergoes a cyclic inflation and contraction which matches the standard paradigm for substorm growth (loading) and expansion (unloading); (2) during SMCs the R1 oval is relatively steady consistent with balanced dayside and nightside reconnection during these events; and (3) during magnetic storms the size of the R1 oval is strongly correlated with the strength of the ring current specified by the Sym-H index. We also examine the behavior of the R1 oval in the northern and southern hemispheres simultaneously as a function of season in an effort to understand the role that internal magnetosphere-ionosphere coupling influences may play in modulating the response of the magnetosphere during these various types of events.

  20. Growth Phase dependent gene regulation in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bordetellae are Gram negative bacterial respiratory pathogens. Bordetella pertussis, the causative agent of whooping cough, is a human-restricted variant of Bordetella bronchiseptica, which infects a broad range of mammals causing chronic and often asymptomatic infections. Growth phase dependent gen...

  1. Diffusion-controlled grain growth in two-phase solids

    SciTech Connect

    Fan, D.; Chen, L.Q.

    1997-08-01

    Microstructural evolution and the kinetics of grain growth in volume-conserved two-phase solids were investigated using two-dimensional (2-D) computer simulations based on a diffuse-interface field model. In this model, a two-phase microstructure is described by non-conserved field variables which represent crystallographic orientations of grains in each phase and by a conserved composition field variable which distinguishes the compositional difference between the two phases. The temporal and spatial evolution of these field variables were obtained through a numerical solution to the time-dependent Ginzburg-Landau (TDGL) equations. The effect of the ratios of grain boundary energies to interfacial energy on the microstructure features was systematically studied. It was found that grain growth in a volume-conserved two-phase solid is controlled by long-range diffusion and follows the power growth law, R{sup m} {minus} R{sup m}{sub o} = kt with m = 3 in the scaling regime for all cases studied, including the microstructures containing only quadrijunctions. The effects of volume fractions and initial microstructures are discussed.

  2. SuperDARN Observations of Pi2 Electric Field Pulsations during THEMIS Substorms

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Ruohoniemi, J. M.; Frissell, N. A.; Greenwald, R. A.; Rae, I. J.; Kale, Z. C.; Kepko, L.; Lester, M.; Grocott, A.; Yeoman, T. K.; Milan, S. E.

    2008-12-01

    The NASA THEMIS mission is focused on resolving the time sequence of events that occur in the magnetotail during the onset of the expansion phase of magnetospheric substorms. In support of THEMIS mission goals, the SuperDARN community is using a special camping-beam mode during THEMIS conjunctions over North America to maximize the temporal resolution of measurements of ionospheric convection during THEMIS substorm events. The SuperDARN THEMIS mode provides 8-second resolution on a single camping beam while simultaneously marching through each beam of the normal 2-minute scan. In this paper, we present SuperDARN measurements of ULF waves identified on SuperDARN camping beams during the onsets of several THEMIS substorms. These events clearly demonstrate the gains in temporal resolution that can be achieved using the THEMIS camping-beam mode. The characteristics of the Pi2 oscillations measured by the SuperDARN radars are found to be very similar to those seen by nearby ground-based magnetometers.

  3. Thermal catastrophe in the plasma sheet boundary layer. [in substorm models

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.; Goertz, Christoph K.; Grossmann, William

    1986-01-01

    This letter presents a first step towards a substorm model including particle heating and transport in the plasma sheet boundary layer (PSBL). The heating mechanism discussed is resonant absorption of Alfven waves. For some assumed MHD perturbation incident from the tail lobes onto the plasma sheet, the local heating rate in the PSBL has the form of a resonance function of the one-fluid plasma temperature. Balancing the local heating by convective transport of the heated plasma toward the central plasma sheet, an 'equation of state" is found for the steady-state PSBL whose solution has the form of a mathematical catastrophe: at a critical value of a parameter containing the incident power flux, the local density, and the convection velocity, the equilibrium temperature jumps discontinuously. Associating this temperature increase with the abrupt onset of the substorm expansion phase, the catastrophe model indicates at least three ways in which the onset may be triggered. Several other consequences related to substorm dynamics are suggested by the simple catastrophe model.

  4. A binary phase field crystal study for liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  5. Kinetic Ballooning Instability for Substorm Onset and Current Disruption Observed by AMPTE/CCE

    SciTech Connect

    Cheng, C.Z.; Lui, A.T.Y., PPPL

    1998-05-01

    A new scenario of AMPTE/CCE observation of substorm onset and current disruption and the corresponding physical processes is presented. Toward the end of late growth phase plasma beta increases to greater than or equal to 50 and a low-frequency instability with a wave period of 50-75 seconds is excited and grows exponentially to a large amplitude at the onset of current disruption. At the current disruption onset, higher-frequency instabilities are excited so that the plasma and electromagnetic magnetic field form a turbulent state. Plasma transport takes place to modify the ambient plasma pressure and velocity profiles so that the ambient magnetic field recovers from a tail-like geometry to a more dipole-like geometry. To understand the excitation of the low-frequency global instability, a new theory of kinetic ballooning instability (KBI) is proposed to explain the high critical beta threshold (the high critical beta threshold is greater than or equal to 50) of the low-frequency global instability observed by the AMPTE/CCE. The stabilization is mainly due to kinetic effects of trapped electrons and finite ion Larmor radii which give rise to a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension to the ballooning mode. As a result, the high critical beta threshold for excitation of KBI is greatly increased over the ideal-MHD ballooning instability threshold by greater than or equal to O(10 exp 2). The wave-ion magnetic drift resonance effect produces a perturbed resonant ion velocity distribution with a duskward velocity roughly equal to the average ion magnetic (gradient B and curvature) drift velocity. Higher-frequency instabilities such as cross-field current instability (CCI) can be excited by the additional velocity space free energy associated with the positive slope in the perturbed resonant ion velocity distribution in the current disruption phase.

  6. Comparison of substorms near two solar cycle maxima: (1999-2000 and 2012-2013)

    NASA Astrophysics Data System (ADS)

    Despirak, I.; Lubchich, A.; Kleimenova, N.

    2016-05-01

    We present the comparative analysis of the substorm behavior during two solar cycle maxima. The substorms, observed during the large solar cycle maximum (1999- 2000, with Wp> 100) and during the last maximum (2012-2013 with Wp~60), were studied. The considered substorms were divided into 3 types according to auroral oval dynamic. First type - substorms which are observed only at auroral latitudes ("usual" substorms); second type - substorms which propagate from auroral latitudes (<70?) to polar geomagnetic latitudes (>70°) ("expanded" substorms, according to expanded oval); third type - substorms which are observed only at latitudes above ~70° in the absence of simultaneous geomagnetic disturbances below 70° ("polar" substorms, according to contracted oval). Over 1700 substorm events have been analyzed. The following substorm characteristics have been studied: (i) the seasonal variations, (ii) the latitudinal range of the occurrence, (iii) solar wind and IMF parameters before substorm onset, (iiii) PC-index before substorm onset. Thus, the difference between two solar activity maxima could be seen in the difference of substorm behavior in these periods as well.

  7. SAPS onset timing during substorms and the westward traveling surge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny, V.

    2016-07-01

    We present multispacecraft observations in the magnetosphere and conjugate ionosphere of the onset time of subauroral polarization streams (SAPS) and tens of keV ring current injections on the duskside in three individual substorms. This is probably the first unequivocal determination of the substorm SAPS onset timing. The time lag between the SAPS and substorm onsets is much shorter than the gradient-curvature drift time of ˜10 keV ions in the plasmasphere. It seemingly depends on the propagation time of substorm-injected plasma from the dipolarization onset region to the plasmasphere, as well as on the SAPS position. These observations suggest that fast onset SAPS and ring current injections are causally related to the two-loop system of the westward traveling surge.

  8. Two substorm intensifications compared: Onset, expansion, and global consequences

    SciTech Connect

    Pulkkinen, T.I.; Baker, D.N.; Opgenoorth, H.J.; Sigwarth, J.B. Opgenoorth, H.J. Greenwald, R. Friis-Christensen, E. Mukai, T. Nakamura, R. Singer, H. Reeves, G.D. Lester, M.

    1998-01-01

    We present observations of two sequential substorm onsets on May 15, 1996. The first event occurred during persistently negative IMF B{sub Z}, whereas the second expansion followed a northward turning of the interplanetary magnetic field (IMF). While the first onset remained localized, the second event led to a major reconfiguration of the magnetotail. The two very different events are contrasted, and it is suggested that the IMF direction controls the evolution of the expansion phase after the initial onset. Magnetic field modeling and field-aligned mappings are used to find the high-altitude source region of the auroral features and currents giving rise to ground magnetic disturbances: It is shown that the auroral brightening is related to processes near the inner edge of the plasma sheet but that the initial field-aligned currents couple to the midtail region. Ground magnetograms show an abrupt, large-scale weakening of the electrojet during the recovery phase. This event is followed by eastward drifting omega bands in a double-oval configuration. During that period, the Geotail plasma data show oscillations at {lt}100km/s amplitude. We argue that both these features are connected with the global tail evolution as the neutral line ceases to be active and reforms in the distant tail. {copyright} 1998 American Geophysical Union

  9. A phase-field model of island growth in epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    2004-03-01

    A phase-field model was proposed to simulate nucleation and growth of islands in epitaxy. In addition to local density of adatoms, a local phase-field variable, varying in the real space, is introduced to describe the epitaxial islands. Evolution of this phase field is determined by a time-dependent Ginzburg-Landau-like equation coupled to a diffusive transport equation of adatoms. When applied to nucleation and growth of islands in the submonolayer regime, this model reproduces both the scaling laws of island density and experimental size and spatial distributions of islands. For island growth in the multilayer regime, this phase-field model reproduces mound structures consistent with experimental images concerned. Accurate coarsening and roughening exponents of the mounds are obtained in this model. Compared with atomic models and mean-field models, this model can provide a fine visualized morphology of islands at large space and time scales of practical engineering interests. Reference: Yan-Mei Yu and Bang-Gui Liu, Phys Rev E (accepted Dec 2003).

  10. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    SciTech Connect

    Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )

    1992-10-20

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.

  11. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  12. Multipoint observations of a small substorm

    SciTech Connect

    Lopez, R.E. Applied Research Corp., Landover, MD ); Luehr, H. ); Anderson, B.J.; Newell, P.T.; McEntire, R.W. )

    1990-11-01

    In this paper the authors present multipoint observations of a small substorm which occurred just after 0110 UT on April 25, 1985. The observations were made by spacecraft (AMPTE CCE, AMPTE IRM, DMSP F6, and DMSP F7), ground auroral stations (EISCAT magnetometer cross, Syowa, Narssarssuaq, Great Whale River, and Fort Churchill), and mid-latitude stations (Furstenfeldbruck, Toledo, and Argentine Island). These data provide them with a broad range of observations, including the latitudinal extent of the polar cap, visual identification of substorm aurorae and the magnetic perturbations produced directly beneath them, in situ magnetic field and energetic particle observations of the disruption of the cross-tail current sheet, and observations concerning the spatial expansion of the current disruption region from two radially aligned spacecraft. The DMSP data indicate that the event took place during a period when the polar cap was relatively contracted, yet the disruption of the current sheet was observed by CCE at 8.56 R{sub E}. They have been able to infer a considerable amount of detail concerning the structure and westward expansion of the auroral features associated with the event, and they show that those auroral surges were located more than 10{degree} equatorward of the boundary between open and closed field lines. Moreover, they present evidence that the current sheet disruption observed by CCE in the neutral sheet was located on field lines which mapped to the westward traveling surge observed directly overhead of the ground station at Syowa. Furthermore, the observations strongly imply that disruption of the cross-tail current began in the near-Earth region and that it had a component of expansion which was radially antisunward.

  13. Substorm-induced energetic electron precipitation: Morphology and prediction

    NASA Astrophysics Data System (ADS)

    Beharrell, M. J.; Honary, F.; Rodger, C. J.; Clilverd, M. A.

    2015-04-01

    The injection, and subsequent precipitation, of 20 to 300 keV electrons during substorms is modeled using parameters of a typical substorm found in the literature. When combined with onset timing from, for example, the SuperMAG substorm database, or the Minimal Substorm Model, it may be used to calculate substorm contributions to energetic electron precipitation in atmospheric chemistry and climate models. Here the results are compared to ground-based data from the Imaging Riometer for Ionospheric Studies riometer in Kilpisjärvi, Finland, and the narrowband subionospheric VLF receiver at Sodankylä, Finland. Qualitatively, the model reproduces the observations well when only onset timing from the SuperMAG network of magnetometers is used as an input and is capable of reproducing all four categories of substorm associated riometer spike events. The results suggest that the different types of spike event are the same phenomena observed at different locations, with each type emerging from the model results at a different local time, relative to the center of the injection region. The model's ability to reproduce the morphology of spike events more accurately than previous models is attributed to the injection of energetic electrons being concentrated specifically in the regions undergoing dipolarization, instead of uniformly across a single-injection region.

  14. Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

    NASA Astrophysics Data System (ADS)

    Armour, Neil Alexander

    Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.

  15. Magnetic Reconnection in the Earth Magnetotail and Auroral Substorms

    NASA Astrophysics Data System (ADS)

    Basu, B.; Coppi, B.

    2014-10-01

    By now it is well-accepted that magnetic reconnection is responsible for the generation of accelerated particle populations in space, such as that proposed to occur in the Earth's magnetotail and generate auroral substorms. In fact, reconnection is the most probable process to explain the observed high-energy particle populations at the edge of the Heliosphere. On the other hand, the theory of this process remains in need of further attention. Since the late sixties, it has been known that departures from Maxwellian distributions for the background plasmas, such as anisotropic electron temperatures, have an important effect on the growth rate of modes producing reconnection. However, the significant effect of transverse (to the field) electron temperature gradients has yet to be included in the theory. The relationship, between the theory of reconnecting modes emerging from plane one-dimensional neutral sheets and modes emerging from cylindrical and axisymmetric toroidal laboratory plasmas, is discussed. In the latter case, a wealth of relevant experimental observations is available. Sponsored in part by the US DOE.

  16. Elements of M-I Coupling in Repetitive Substorm Activity Driven by Interplanetary CMEs

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.

    2014-12-01

    By means of case studies we explore key elements of the magnetosphere-ionosphere current system associated with repetitive substorm activity during persistent strong forcing by ICMEs. Our approach consists of a combination of the magnetospheric and ionospheric perspectives on the substorm activity. The first aspect is the near-Earth plasma sheet with its repetitive excitations of the substorm current wedge, as monitored by spacecraft GOES-10 when it traversed the 2100-0300 MLT sector, and its coupling to the westward auroral electrojet (WEJ) centered near midnight during the stable interplanetary (IP) conditions. The second aspect is the excitation of Bostrom type II currents maximizing at dusk and dawn and their associated ionospheric Pedersen current closure giving rise to EEJ (WEJ) events at dusk (dawn). As documented in our study, this aspect is related to the braking phase of Earthward-moving dipolarization fronts-bursty bulk flows. We follow the magnetospheric flow/field events from spacecraft Geotail in the midtail (X = - 11 Re) lobe to geostationary altitude at pre-dawn MLTs (GOES 10). The associated M-I coupling is obtained from ground-satellite conjunctions across the double auroral oval configuration along the meridian at dusk. By this technique we distinguish between ionospheric manifestations in three latitude regimes: (i) auroral oval south, (ii) auroral oval north, and (iii) polar cap. Regime (iii) is characterized by events of enhanced antisunward convection near the polar cap boundary (flow channel events) and in the central polar cap (PCN-index events). The repetitive substorm activity is discussed in the context of the level of IP driving as given by the geoeffective IP electric field (E_KL), magnetotail reconnection (inferred from the PCN-index and spacecraft Wind at X = - 77 Re) and the storm SYM-H index. We distinguish between different variants of the repetitive substorm activity, giving rise to electrojet (AL)-plasma convection (PCN) events

  17. Statistical Relation of Dynamic Sar Arc Characteristics To Substorms and Storms

    NASA Astrophysics Data System (ADS)

    Ievenko, I. B.; Alexeyev, V. N.

    It is known that mid-latitude red arcs (SAR arcs) are related to magnetic storms de- fined by variations of the Dst index. By using data of spectrophotometric observations at the Yakutsk meridian (Maimaga st. CGMC: 57 N; 200 E) we have shown that the occurence and/or brightness of SAR arc take place during the substorm expan- sion phase (Geomagnetism and Aeronomy, V.39, N.6,P.697, 1999). Here we use of SAR arc 700 hours registration data in 1989-2000 and carry out the correlation cou- pling analysis of 630 nm emission intensity in an arc (Im) and the velocity of the arc equatorward movement (Vm) with magnetic indices AL, Dst and ASYH. The follow- ing peculiarities of influence of the substorm and storm to the SAR arc dynamics are revealed: 1) The SAR arc intensity during the weak magnetic storm of Dst-50 nT is defined by the auroral index AL with a correlation coefficient R=-0.45-0.55. The significant rela- tion of arc intensity to Dst is not but it is essential with ASYH-index. It is assumed that the AL-dependence of Im is most likely caused by the considerable contribution of the asymmetric ring currrent arising during a substorm to the SAR arc generation. 2) In the samplings of data for the moderate storms of -50Dst-120 nT the statistically significant dependence (R=-0.5-0.7) of arc luminosity on the ring currrent intensity appears, that is in agreement with early results. In this case, the significant relation of Im to AL remains constant. 3) The velocity of SAR arc equatorward movement is of the significant dependence only on AL-index with R-0.5, that can be indicative of a conditionallity of this phenomenon by penetration of the non- stationary convection electric field to plasmasphere latitudes during a substorm. 4) The latitudinal distribu- tion of SAR arc intensity maximum location by the number of observation hours at the Yakutsk meridian is close to the normal one with a median at c=55 N (L=3) and it is of a half-width 6. It is supported that this

  18. Phase field model for growth of adatom islands

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Mei; Liu, Bang-Gui

    2005-03-01

    We developed a phase-field model for epitaxial growth of 2D/3D adatom islands and self-organized formation of regular nanostripes. A local phase-field variable is introduced to describe adatom islands. The evolution of this phase field is determined by a time-dependent equation coupled to a diffusive transport equation of local adatom density. The limited interlayer diffusion and atomic detachment at steps are included in the model. Applied to real submonolayer epitaxial systems, we reproduce not only the scaling law of the island density but also the experimental size and spatial distribution of the islands. With large coverages of adatoms we obtain not only the 3D mounding islands but also their coarsening and roughening exponents. We explored the self-organized formation of regular arrays of Fe nanostripes on W(110) by the hybrid growth of islands and step flows during the post-deposition annealing. Compared with atomic models and mean-field models, this phase-field model can not only span larger space and time scales while containing the elemental atomic kinetic of epitaxy, but also provide a fine visualized morphology of epitaxial features in 2+1 dimensions. Y. M. Yu and B.-G. Liu, Phys. Rev. E 69, 021601 (2004); Phys. Rev. B 70, 051444 (2004).

  19. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  20. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  1. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGESBeta

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  2. Satellite measurements through the center of a substorm surge

    SciTech Connect

    Weimer, D.R.; Craven, J.D.; Frank, L.A.; Hanson, W.B.; Maynard, N.C.; Hoffman, R.A.; Slavin, J.A.

    1994-12-01

    Measurements have been made of electric and magnetic fields, plasma drifts, and electron precipitation within a surge at the westward, leading edge of the auroral {open_quotes}bulge{close_quotes} at the peak of the substorm expansion phase. The trajectory of the DE 2 satellite over the auroral emissions is determined from nearly simultaneous observations with the imager on the DE 1 satellite at a higher altitude. The electric field and plasma drift measurements have enabled the authors to deduce the basic configuration of the ionospheric electric potential, or plasma convection, around the surge. The electric potential shows that the bulge is associated with a protrusion of the dawn convection cell into the dusk cell, poleward of the {open_quotes}Harang discontinuity.{close_quotes} This protrusion contains a westward electric field that strongly enhances the westward electrojet current by the creation of a {open_quotes}Cowling channel.{close_quotes} This westward electric field, and the associated Cowling current, appear to terminate within the surge, which contains an intense, upward field-aligned current. The magnetic field measurements show that the region containing this field-aligned current is shaped more like a cylinder rather than a long sheet. The total current is found to exceed one-half million amperes. 34 refs., 11 figs.

  3. Satellite measurements through the center of a substorm surge

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Craven, J. D.; Frank, L. A.; Hanson, W. B.; Maynard, N. C.; Hoffman, R. A.; Slavin, J. A.

    1994-01-01

    Measurements have been made of electric and magnetic fields, plasma drifts, and electron precipatation within a surge at the westward, leading edge of the auroral 'bulge' at the peak of the substorm expansion phase. The trajectroy of the Dynamics Explorer 2 (DE 2) satellite over the auroral emissions is determined from nearly simultaneous observations with the imager on the DE 1 satellite at a higher altitude. The electric field and plasma drift measurements have enabled us to deduce the basic configuration of the ionospheric electric potential, or plasma convection, around the surge. The electric potential shows that the bulge is associated with a protrusion of the dawn convection cell into the dusk cell, poleward of the 'Harang discontinity.' This protrusion conains a westward electric field that strongly enhances the westard electrojet current by the creation of a "Cowling channel.' This westward electric field, and the associated Cowling current, appear to terminate within the surge, which contains an intense, upward field-aligned current. The magneitc field measurements show that the region containing this field-aligned current is shaped more like a cylinger rather than a long sheet. The total is found to exceed one-half million amperes.

  4. Estimation of electric fields and currents from International Magnetospheric Study magnetometer data for the CDAW 6 intervals: Implications for substorm dynamics

    SciTech Connect

    Kamide, Y.; Baumjohann, W.

    1985-02-01

    Using a recently developed numerical scheme combined with International Magnetospheric Study magnetometer data and the Rice University Ionospheric conductivity model as input, the global distribution of the key ionospheric parameters is estimated for the Coordinated Data Analysis Workshop (CDAW) 6 intervals. These outputs include ionospheric electric fields and currents, field-aligned currents and Joule heat production rate at high latitudes, and are compiled in the form of a color movie film, which demonstrates dynamics of substorm changes of the three-dimensional current system as well as of the associated potential pattern. The present paper gives, on the basis of the space-time distribution of the key parameters, the substorm time frame that can be referenced to in terms of the substorm phases when discussing some other magnetospheric and ionospheric records. The distinction between ''substorm expansion'' and ''enhanced convection'' current systems is presented on the basis of the conventional equivalent current and potential patterns and ''true'' ionospheric currents. Although the auroral electrojets flow rather contiguously throughout the dark sector, there are several separate source regions of Joule heating from the electrojet currents. This indicates that the relative importance of the ionospheric conductivity and the electric field in the ionospheric currents varies considerably depending upon latitude and local time. A possible difference in the generation mechanisms of isolated and continuous substorm activity is also discussed to some extent in the light of the two CDAW 6 intervals.

  5. Growth and form of spherulites: A phase field study.

    NASA Astrophysics Data System (ADS)

    Granasy, Laszlo

    2006-03-01

    Polycrystalline patterns termed spherulites are present in a broad variety of systems including metal alloys, polymers, minerals, and have biological relevance as well (see e.g. semi-crystalline amyloid spherulites and spherultic kidney stones). The fact that similar polycrystalline patterns are observed in systems of very different nature suggests that a minimal model based on coarse-grained fields, which neglects the details of molecular interactions, might be appropriate. Although such a field-theoretic approach disregards most of the molecular scale details of formation, some features such as crystal symmetries can be incorporated via the anisotropies of the model parameters. The rationale for developing such coarse-grained models is the current inability of fully molecular models to address the formation of large scale morphologies. A phase field theory of polycrystalline growth, we developed recently, is applied for describing spherulitic solidification in two and three dimensions. Our model consists of several mechanisms for nucleating new grains at the perimeter of the crystallites, including homogeneous (trapping of orientational disorder and branching in certain crystallographic directions) and heterogeneous (particle-induced nucleation) processes. It will be shown that the diversity of spherulitic growth morphologies arises from a competition between the ordering effect of discrete local crystallographic symmetries and the randomization of the local crystallographic orientation that accompanies crystal grain nucleation at the growth front. This randomization in the crystal orientation accounts for the isotropy of spherulitic growth at large length-scales and long times. We find the entire range of observed spherulite morphologies can be reproduced by this generalized phase field model of polycrystalline growth.

  6. Correlative comparison of geomagnetic storms and auroral substorms using geomagnetic indeces. Master's thesis

    SciTech Connect

    Cade, W.B.

    1993-06-01

    Partial contents include the following: (1) Geomagnetic storm and substorm processes; (2) Magnetospheric structure; (3) Substorm processes; (4) Data description; (5) Geomagnetic indices; and (6) Data period and data sets.

  7. Extraordinary growth phases of nanobacteria isolated from mammalian blood

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Pelttari, Alpo; Kajander, E. Olavi

    1997-07-01

    Nanobacteria, novel sterile-filterable coccoid bacteria inhabiting mammalian blood and blood products, have different growth phases depending on the culture conditions. These minute organisms produce biogenic apatite as a part of their envelope. This becomes thicker as the cultures age, rendering them visible in microscopy and resistant to harsh conditions. Mineral deposits were not formed without live nanobacteria. Apatite formation was faster and more voluminous in serum-free (SF) medium, and within a week, several micrometer thick `castles' formed around each nanobacteria. These formations were firmly attached to the culture plates. Nanobacteria multiplied inside these thick layers by turning into D-shaped forms 2 - 3 micrometers in size. After a longer culture period, tens of them could be observed inside a common stony shelter. The apatite shelters had a hollow interior compartment occupied by the organisms as evidenced by SEM and TEM. Supplementing the culture medium with a milk growth-factor product, caused the castles to grow bigger by budding. These formations finally lost their mineral layer, and released typical small coccoid nanobacteria. When SF cultures were supplemented with sterile serum, mobile D-shaped nanobacteria together with small `elementary particles' 50 - 100 nm in size were found. Negative results in standard sterility testing, positivity in immunofluorescence staining and ELISA tests with nanobacteria-specific monoclonal antibodies, and 98% identity of 16S rRNA gene sequences proved that all of these unique creates are nanobacterial growth phases.

  8. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  9. PC index as a proxy of the solar wind energy that entered into the magnetosphere: 2. Relation to the interplanetary electric field E KL before substorm onset

    NASA Astrophysics Data System (ADS)

    Troshichev, OA; Sormakov, DA

    2015-10-01

    This paper (the second of a series) presents the results of statistical investigation of relationship between the interplanetary electric field E KL and the Polar Cap (PC) index in case of magnetic substorms (1998-2001), which have been analyzed in Troshichev et al. (J. Geophys. Res. Space Physics, 119, 2014). The PC index is directly related to the E KL field variations on interval preceding the substorm sudden onset (SO): correlation R > 0.5 is typical of more than 90 % of isolated substorms, 80 % of expanded substorms, and 99 % of events with coordinated E KL and PC jumps. The low or negative correlation observing in ~10 % of examined substorms suggests that the solar wind flow measured by the Advanced Composition Explorer (ACE) spacecraft in the Lagrange point L1 did not encounter the magnetosphere in these cases. Examination of the delay times Δ T in the response of PC index to E KL variations provides the following results: (1) delay times do not depend on separate solar wind parameters, such as solar wind speed V X and interplanetary magnetic field (IMF) B Z component, contrary to general conviction, (2) the Δ T value is best controlled by the E KL field growth rate (d E KL/dt), (3) the lower Δ T limit (5-7 min is attained under conditions of the higher E KL growth rate, and (4) the PC index provides the possibility to verify the solar wind flow transportation time from ACE position (where the solar wind speed is estimated) to magnetosphere. These results, in combination with data testifying that the substorm onsets are related to the PC precursors, demonstrate that the PC index is an adequate ground-based indicator of the solar wind energy incoming into the magnetosphere.

  10. Alloy Phase Diagrams for III-P Semiconductor Crystal Growth

    NASA Astrophysics Data System (ADS)

    Gennett, Adam

    Bulk crystals of III-V ternary and quaternary semiconductors with tunable band gaps and lattice constants are attractive for numerous electronic and optoelectronic applications. In particular, the ternary GaxIn 1-xP has a band gap range of 1.351 - 2.261 eV, which corresponds to wavelengths in the near infrared to green range of the electromagnetic spectrum, and lattice constant ranging of 5.4512 - 5.8688 A. This makes it attractive for applications such as a high energy junction in multi-junction photovoltaics, terahetrtz emission, and as a substrate for yellow, amber, orange, and red AlGaInP LEDs. However, bulk growth of GaxIn1-xP ternary III-V semiconductor crystals using elemental Ga-In-P melts or pseudo-binary GaP-InP melts is significantly challenging due to the high vapor pressure of phosphorus at the typical growth temperatures, the large variation in the lattice constant of the constituent binaries, and the slow growth rates necessary in order to avoid the formation of cracks, dislocations, and multiphase inhomogeneities. Lowering the growth temperature is desirable such that the vapor pressure of phosphorus can be more easily managed. Low growth temperatures can be achieved by using gallium or indium rich solutions, as is currently used for liquid phase epitaxy. However, this approach is less attractive for growing bulk crystals due to numerous experimental difficulties such as high segregation of gallium in indium as well as sticking of the growth solution to the crucible wall and to the grown crystal, making crystal extraction without causing damage challenging. The objective of this research is to establish the conditions required for the growth of uniform composition bulk crystals of GaxIn 1-xP at any desired composition from a stoichiometric GaxIn 1-xPySb1-y quaternary melt, as well as conditions for compositional grading from a binary III-V material seed. Due to large number of conditions of melt composition and temperature that are possible, trial

  11. Field-aligned fluxes of energetic electrons related to the onset of magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Kremser, G.; Korth, A.; Ullaland, S. L.; Roux, A.; Perraut, S.; Pedersen, A.; Schmidt, R.; Tanskanen, P.

    1987-08-01

    Observations of bidirectional field-aligned fluxes of energetic electrons (16 to 80 keV) at magnetic substorm onset are discussed. The electron fluxes appear 4 min after the onset of the expansion phase, last 1.5 min, and are associated with strong spatial gradients of the ion intensity. The observations are interpreted in terms of a model in which a surface wave develops at the transition from dipolelike to taillike geomagnetic fieldlines. The surface wave couples into kinetic Alfven waves that propagate along the fieldlines, are reflected at the ionosphere, and interact with mirrored electrons on their way back towards the equatorial plane.

  12. Solar Wind-Magnetosphere Coupling During an Isolated Substorm Event: A Multispacecraft ISTP Study

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Turner, N. E.; Singer, H. J.; Frank, L. A.; Sigwarth, J. B.; Scudder, J.; Anderson, R.; Kokubun, S.; Mukai, T.; Nakamura, R.; Blake, J. B.; Russell, C. T.; Kawano, H.; Mozer, F.; Slavin, J. A.

    1997-01-01

    Multispacecraft data from the upstream solar wind, polar cusp, and inner magnetotail are used to show that the polar ionosphere responds within a few minutes to a southward IMF turning, whereas the inner tail signatures are visible within ten min from the southward turning. Comparison of two subsequent substorm onsets, one during southward and the other during northward IMF, demonstrates the dependence of the expansion phase characteristics on the external driving conditions. Both onsets are shown to have initiated in the midtail, with signatures in the inner tail and auroral oval following a few minutes later.

  13. On the poleward expansion of the outer radiation belt during substorms

    NASA Astrophysics Data System (ADS)

    Lazutin, Leonid

    Poleward expansions of the outer radiation belt are examined using measurements of the low altitude satellites. Such behavior of the radiation belt boundary indicates on the effect of hyper-dipolarization, the poleward expansion of the nightime quasitrapping region. It is shown that such shifts are created by substorm activity, leading to the so called polar cap substorms. High latitude bursts of the energetic electrons might be generated during polar cap substorms similarly as in regular auroral substorms.

  14. Characterization of secondary phases in modified vertical bridgman growth czt

    SciTech Connect

    Duff, Martine

    2009-07-10

    CdZnTe or 'CZT' crystals are highly suitable for use as a room temperature based spectrometer for the detection and characterization of gamma radiation. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. For example, various structural heterogeneities within the CZT crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SP) can have a negative impact on the detector performance. In this study, a CZT material was grown by the modified vertical Bridgman growth (MVB) method with zone leveled growth without excess Te in the melt. Visual observations of material from the growth of this material revealed significant voids and SP. Three samples from this material was analyzed using various analytical techniques to evaluate its electrical properties, purity and detector performance as radiation spectrometers and to determine the morphology, dimension and elemental/structural composition of one of the SP in this material. This material was found to have a high resistivity but poor radiation spectrometer performance. It had SP that were rich in polycrystalline aluminum oxide (Al{sub 2}O{sub 3}), metallic Te and polycrystalline CdZnTe and 15 to 50 {micro}m in diameter. Bulk elemental analyses of sister material from elsewhere in the boule did not contain high levels of Al so there is considerable elemental impurity heterogeneity within the boule from this growth.

  15. Phase-field study of spacing evolution during transient growth

    NASA Astrophysics Data System (ADS)

    Gurevich, Sebastian; Amoorezaei, Morteza; Provatas, Nikolas

    2010-11-01

    The primary spacing of a dendritic array grown under transient growth conditions displays a distribution of wavelengths. The average primary spacing is shown, both experimentally and numerically, to evolve between characteristic incubation periods during which the distribution of wavelengths remains essentially stable. Our primary spacing results display a gradual transition period from one spacing range to another, consistent with the fact that the abrupt doubling of spacing predicted by Warren and Langer for an idealized periodic array affects different wavelengths of the distribution at different times. This transition is shown to depend on the rate of change in growth speed using phase-field simulations of directional solidification where the pulling speed is ramped at different rates. In particular, for high rates of change of the pulling speed we observe temporary marginally stable array configurations separated by relatively short lived transitions, while for lower rates of change of the pulling speed the distinction between incubation and transition periods disappears.

  16. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  17. Solar wind and substorm excitation of the wavy current sheet

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Lester, M.; Fear, R. C.; Lucek, E.; Dandouras, I.; Fazakerley, A. N.; Singer, H.; Yeoman, T. K.

    2009-06-01

    Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the -YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.

  18. Association of Energetic Neutral Atom Bursts and Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Kepko, L.; Henderson, M. G.; Spence, H. E.; Reeves, G. D.; Sigwarth, J. B.; Frank, L. A.

    2000-01-01

    In this paper we present evidence that short-lived bursts of energetic neutral atoms (ENAs) observed with the Comprehensive Energetic Particle and Pitch Angle Distribution/Imaging Proton Spectrometer (CEPPAD/IPS) instrument on the Polar spacecraft are signatures of substorms. The IPS was designed primarily to measure ions in situ, with energies between 17.5 and 1500 keV. However, it has also proven to be a very capable ENA imager in the range 17.5 keV to a couple hundred keV. It was expected that some ENA signatures of the storm time ring current would be observed. Interestingly, IPS also routinely measures weaker, shorter-lived, and more spatially confined bursts of ENAs with duration from a few tens of minutes to a few hours and appearing once or twice a day. One of these bursts was quickly associated with magnetospheric and auroral substorm activity and has been reported in the literature [Henderson et al., 19971. In this paper we characterize ENA bursts observed from Polar and establish statistically their association with classic substorm signatures (global auroral onsets, electron and ion injections, AL drops, and Pi2 onsets). We conclude that -90% of the observed ENA bursts are associated with classic substorms and thus represent a new type of substorm signature.

  19. Phase-Field Modeling of Elasticity, Plasticity, and Phase Segregation in Binary Heteroepitaxial Film Growth

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Elder, Ken; Provatas, Nikolas

    2004-03-01

    A continuum phase field model, adapted from the Phase Field Crystals (PFC) model [1], is applied to the study of strained binary heteroepitaxial systems, with emphasis given to the investigation of 2-D species segregation during liquid phase film growth. In addition to (1) phase segregation, it is shown that this model is capable of incorporating (2) surface morphological evolution and (3) defect nucleation and propagation, as well as the interactions of these three phenomena, over all primary epitaxial growth regimes. Additional highlights of the model include consideration of composition-dependent elastic moduli, differing species mobilities, and mass transport within the bulk film. The spatial nature of the phase segregation and its interaction with film surface morphology and defect nucleation are investigated as functions of various material and process parameters. In particular, the interaction between film surface morphology and compositional segregation is investigated, with attention given to its influence on the asymmetry observed in critical thickness between compressive and tensile strains. [1] K.R. Elder, M. Katakowski, M. Haataja, and M. Grant, Physical Review Letters 88, 245701 (2002).

  20. Relative timing of substorm features in MHD simulations

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1992-01-01

    An investigation of the temporal sequence of substorm phenomena based on three dimensional MHD (magnetohydrodynamic) simulations of magnetic reconnection and plasmoid formation is presented. The investigation utilizes a spatially localized resistivity model which leads to a significantly faster evolution than found in previous investigations. The analysis of the results concentrates on substorm features that have received considerable attention in the past. The formation of magnetic neutral lines, the occurrence of fast flows directed both earthward and tailward, and the magnetic field changes leading to the formation of the substorm current wedge, and to the depolarization of the magnetic field earthward of the reconnection region and its dependence on the spatial distribution of resistivity, are discussed. These phenomena are seen as an integral part of the nonlinear evolution of the three dimensional tearing instability.

  1. Intensity variation of ELF hiss and chorus during isolated substorms

    NASA Technical Reports Server (NTRS)

    Thorne, R. M.; Fiske, K. F.; Church, S. R.; Smith, E. J.

    1974-01-01

    Electromagnetic ELF emissions (100-1000 Hz) observed on the polar-orbiting OGO-6 satellite within three hours of the dawn-dusk meridian consistently exhibit a predictable response to isolated substorm activity. Near dawn, the emissions intensify during the substorm and then subside following the magnetic activity; the waves are most intense at L greater than 4, exhibit considerable structure and have been primarily identified as chorus. At dusk the response is entirely different; the wave intensity falls to background levels during substorm activity but subsequently intensifies, usually reaching levels well in excess of that before the disturbance. The emissions near dusk extend to low L, are relatively featureless, and have been identified as plasmaspheric hiss. These features are interpreted in terms of changes in the drift orbits of outer-zone electrons which cyclotron resonate with ELF waves.

  2. Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Yang, Tao; Du, Xiu-Juan

    2012-11-01

    We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.

  3. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    PubMed Central

    Chu, Dominique; Barnes, David J.

    2016-01-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter. PMID:27125900

  4. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    NASA Astrophysics Data System (ADS)

    Chu, Dominique; Barnes, David J.

    2016-04-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter.

  5. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate.

    PubMed

    Chu, Dominique; Barnes, David J

    2016-01-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter. PMID:27125900

  6. Indium growth and island height control on silicon submonolayer phases

    NASA Astrophysics Data System (ADS)

    Chen, Jizhou

    The quantum size effects (QSE) make it possible to control the dimensions of self-assembled nanostructures. An important goal in present day surface science is to grow uniform sized self-assembled nanostructures. One system which has displayed a number of interesting surface structures is Pb/In grown on a Si(111) substrate. The first part of the thesis discussed Pb islands grown on the anisotropic Si(111)-In(4x1) substrate. In addition to a preferred height of 4 monolayers due to QSE, these islands grow as nanowires with a preferred width of 660nm due to strain driven growth from the anisotropic substrate. Islands grown on the In(4x1) substrate also retain their preferred height to room temperature in contrast to previously observed critical temperatures of 250 K or less for islands grown on other substrates. Then In islands were grown on Si(111)-Pb-alpha-sqrt3 x sqrt3 substrate. The In islands in face-centered cubic (FCC) structure were found to have a preferred height of 4 monolayers due to QSE. With further depositions, an FCC to body-centered tetragonal(BCT) structure transition is observed. The In bct islands was found to have unexpected fast growth rate compared to FCC structure, which indicate the extra high mobility of In atoms. In the last part In islands were grown on varies of In phases at low temperature. Conversion between submonolayer In phases are observed. Due to the highly mobility of In atoms, the QSE effects observed on the Pb alpha phase is not observed.

  7. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  8. Behavior of outer radiation zone and a new model of magnetospheric substorm.

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Laval, G.; Pellat, R.

    1972-01-01

    This paper presents particle data obtained from synchronous altitudes and attempts to evaluate the origin and nature of particle flux variations observed during substorms. The correlated particle intensities, time variations, and energy spectrums are compared between the equatorial and auroral zones. The correlated particle and field observations during substorms are tied together and a model of magnetospheric substorms is derived. Among the features predicted by the model is the poleward expansion of visual auroras observed at the onset of magnetospheric substorms. The model also explains how substorms are triggered in a few minutes time scale during sudden commencements.

  9. Substorm simulation: Formation of westward traveling surge

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Tanaka, T.

    2015-12-01

    Auroral substorm expansion is characterized by initial brightening of aurora, followed by a bulge expanding in all directions, and a westward traveling surge (WTS). On the basis of the result obtained by a global magnetohydrodynamic simulation, we propose a scenario for the onset and the subsequent formation of WTS. (1) Near-Earth neutral line releases magnetic tension in the near-Earth plasma sheet to compress plasma and accelerate it earthward. (2) Earthward, perpendicular flow is converted to parallel flow in the near-Earth tail region. (3) Plasma moves earthward parallel to a field line. The plasma pressure is additionally enhanced at off-equator with an expanding slow-mode variation. (4) Flow vorticities coexist near the off-equatorial high-pressure region. Resultant field-aligned current (FAC) is connected to the ionosphere, which may manifest initial brightening. (5) Due to continued earthward flow, the high-plasma pressure region continues to expand to the east and west. (6) The ionospheric conductivity continues to increase in the upward FAC region, and the conductivity gradient becomes steeper. (7) The convergence of the Hall current gives rise to divergent electric field near the steep gradient of the conductivity. (8) Due to the divergent electric field, magnetospheric plasma moves counterclockwise at low altitude (in the Northern Hemisphere). (9) The additional flow vorticity generates a localized upward FAC at low altitudes, which may manifest WTS, and redistributes the ionospheric current and conductivity. Thus, WTS may be maintained in a self-consistent manner, and be a natural consequence of the overflow of the Hall current.

  10. Ionospheric Irregularities at High Latitudes During Geomagnetic Storms and Substorms: Simultaneous Observations of Magnetic Field Perturbations and GPS Scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Deshpande, K.; Clauer, C. R.; Bust, G. S.; Crowley, G.; Humphreys, T. E.; Kim, L.; Lessard, M.; Weatherwax, A. T.; Zachariah, T. P.

    2012-12-01

    Plasma instability in the ionosphere is often observed as disturbance and distortion of the amplitude and phase of radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to solar wind and magnetospheric dynamics, produce very dynamic and short-lived GPS scintillations, making it challenging to characterize them. This study reports simultaneous observations of geomagnetic pulsations and GPS signal scintillations during geomagnetic storms and substorms using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. A statistical investigation of the AAL-PIP data recorded from January through May 2012 is presented to study local time distribution of scintillation events and a correlation between GPS scintillation and magnetic field perturbations. This report discusses a possible connection between magnetic field perturbations associated with the ionospheric currents and the creation of plasma instability by examining relative contribution of storm/substorm activity to ionospheric irregularities.

  11. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  12. M-I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Farrugia, C. J.; Denig, W. F.

    2014-04-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) "snapshot" satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the cross

  13. Suprathermal O/sup +/ and H/sup +/ ion behavior during the March 22, 1979 (CDAW 6), substorms

    SciTech Connect

    Ipavich, F.M.; Galvin, A.B.; Scholer, M.; Gloeckler, G.; Hovestadt, D.; Klecker, B.

    1985-02-01

    We present measurements of energetic (approx.130 keV) O/sup +/ ions in the earth's magnetosphere during the two Coordinated Data Analysis Workshop 6 substorms on March 22, 1979. The behavior of thermal and suprathermal H/sup +/ (10--130 keV) and suprathermal He/sup + +/ (30--130 keV/e) ions is also discussed. The observations were made with the University of Maryland/Max-Planck-Institut ultralow energy charge analyzer (ULECA) sensor on ISEE 1 at geocentric distances approx.16 to 7 R/sub E/ in the earth's magnetotail. Approximately 15 min before the 1054 UT onset of the first substorm, energetic O/sup +/ ions are observed streaming tailward. H/sup +/ and He/sup + +/ ions at all energies were generally streaming tailward from approx.1059 to 1115 UT, consistent with the presence of a near-earth neutral line during this interval. From 1117 to 1124 UT the H/sup +/ and He/sup + +/ ions were observed flowing earthward, suggesting that at approx.1117 UT the neutral line retreated tailward. A brief interval in the southern tail lobe, from approx.1124 to 1126 UT, was highlighted by an intense O/sup +/ beam streaming tailward; the O/sup +//H/sup +/ ratio at 130 keV was 7 +- 2. This suggests that high energy O/sup +/ ions may be accelerated directly out of the ionosphere. The recovery phase of the first substorm began a few minutes later and was characterized by large intensities of nearly isotropic suprathermal ions. The O/sup +//H/sup +/ differential intensity ratio at 130 keV was quite large (approx.1) during the recovery phase of both substorms.

  14. A statistical relationship between the geosynchronous magnetic field and substorm electrojet magnitude

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.; Von Rosenvinge, Tycho

    1993-01-01

    The relationship between the geosynchronous magnetic field variations during substorms measured by GOES 5 and the auroral electroject as measured by AE and Poste de la Baleine is examined. It is found that the more taillike the field prior to the local onset, the greater the dipolarization of the field during the substorm. The greater the deviation of the field from a dipolar configuration, the larger the change in AE during the event. It is inferred that stronger cross-tail currents prior to the substorm are associated with larger substorm-associated westward electrojets and thus more intense substorms. Since the westward electroject is the ionospheric leg of the substorm current wedge, it is inferred that the substorm-associated westward electrojet is drawn from the near-earth region. Most of the current diversion is found to occur in the near-earth magnetotail.

  15. A two-phase mixture model of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Ozturk, Deniz; Burcin Unlu, M.; Yonucu, Sirin; Cetiner, Ugur

    2012-02-01

    Interactions with biological environment surrounding a growing tumor have major influence on tumor invasion. By recognizing that mechanical behavior of tumor cells could be described by biophysical laws, the research on physical oncology aims to investigate the inner workings of cancer invasion. In this study, we introduce a mathematical model of avascular tumor growth using the continuum theory of mixtures. Mechanical behavior of the tumor and physical interactions between the tumor and host tissue are represented by biophysically founded relationships. In this model, a solid tumor is embedded in inviscid interstitial fluid. The tumor has viscous mechanical properties. Interstitial fluid exhibits properties of flow through porous medium. Associated with the mixture saturation constraint, we introduce a Lagrange multiplier which represents hydrostatic pressure of the interstitial fluid. We solved the equations using Finite Element Method in two-dimensions. As a result, we have introduced a two-phase mixture model of avascular tumor growth that provided a flexible mathematical framework to include cells' response to mechanical aspects of the tumor microenvironment. The model could be extended to capture tumor-ECM interactions which would have profound influence on tumor invasion.

  16. Rapid enhancement of energetic oxygen ions in the inner magnetosphere during substorms

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.

    2014-12-01

    Satellite observations show that energetic (>100 keV) O+ ions are rapidly increased in the inner magnetosphere during substorms. The ultimate source of O+ ions is the Earth's ionosphere, so that O+ ions must be accelerated from ~eV to 100s keV somewhere in the magnetosphere. A fundamental question still arise regarding why O+ ions are accelerated and transported to the inner magnetosphere. We simulated substorms under two different solar wind conditions by using the global MHD simulation developed by Tanaka et al. (2010, JGR). The solar wind speed is set to be 372 km/s for Case I, and 500 km/s for Case II. In both cases, the MHD simulation result shows that the dawn to dusk electric field is enhanced in the night side tail region at >7 Re just after the substorm onset. In particular, the electric field in the inner region (~7 Re) is highly enhanced by the tension force because of relatively strong magnetic field together with curved field lines. The strongest electric field takes place near the region where the plasma pressure is high. We performed test particle simulation under the electric and magnetic fields for Cases I and II. O+ ions are released from two planes located at ±2 Re in the Z direction in the tail region. O+ ions released at the two planes represent outflowing stream of O+ ions escaping from the Earth. The distribution function at the planes is assumed to be drifting Kappa distribution with temperature of 10 eV, the density of 105 m-3, and the parallel velocity given by the MHD simulation. In total, around a billion of particles are traced. Each test particle carries the real number of particles in accordance with the Liouville theorem. After tracing particles, we reconstructed 6-dimensional phase space density of O+ ions. We obtained the following results. (1) Just after substorm onset, the differential flux of O+ ions is almost simultaneously enhanced in the region where the electric field is strong. (2) The kinetic energy increases rapidly to

  17. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect

    Kim, Chang-Yong; Oh, Hee-bong; Ryu, Hyukhyun; Yun, Jondo; Lee, Won-Jae

    2014-09-01

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  18. Distinct Magnetospheric Responses to Southward IMF in Two Substorms

    NASA Technical Reports Server (NTRS)

    El-Alaoui, Mostafa; Ashour-Abdalla, M.; Richard, R. L.; Frank, L. A.; Paterson, W. R.; Sigwarth, J. B.

    2003-01-01

    Solar wind plasma parameters and the Interplanetary Magnetic Field (IMF) observed by the WIND spacecraft upstream of the bow shock were used as input to magnetohydrodynamic (MHD) simulations of two substorm events. The power deposited into the ionosphere due to electron precipitation was calculated both from VIS observations and from the simulations.

  19. Identification of substorm precursor and expansion onsets by applying Singular Spectrum Transformation to ground-magnetometer data

    NASA Astrophysics Data System (ADS)

    Tokunaga, T.; Nakamura, K.; Higuchi, T.; Yoshikawa, A.; Uozumi, T.; Morioka, A.; Yumoto, K.

    2009-12-01

    Until now, several substorm studies have discussed that about substorm precursors, which are observed in the auroral region and preceded to onset of substorm expansion phase by 1-3 minutes. Kepko et al., [2004] indicated that high-latitude magnetogram shows a very small negative deflection in the H-component before auroral arc brightening. Morioka et al. [2008] reported the dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to high-altitude AKR breakup, the quasi-DC component begins a negative exclusion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR. These observations suggest that the precursor signature on the H-comp. of geomagnetic filed observed in the auroral region reflects the gradual enhancement of parallel electric filed before expansion onset and it plays an essential role to drive a subsequent enhancement of the upward FAC. Therefore, it is important to elucidate spatio-temporal evolutions of the substorm precursors to understand the onset mechanism associated with the rapid development of the M-I coupling via FAC. In most cases, it is difficult to determine the accurate timing because substorm precursor has a gradual onset. In this paper, we will present a new algorithm based on Singular Spectrum Analysis (SSA), described in the next paragraph, for determining the onset times of substorm precursors and expansion phase. SSA has been developed and applied in the field of geophysics. Ide and Inoue [2005] demonstrated the effectiveness of a SSA based change-point detection method, which is called Singular Spectrum Transformation (SST), to detect a structure change of various types of time series. Since this approach is completely data adaptive, it is probably a powerful method for our aim: to detect a small and irregular perturbation such as substorm precursors on the geomagnetic data observed in the auroral region. We have applied SST for a substorm event occurred on

  20. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  1. Classification of Initial conditions required for Substorm prediction.

    NASA Astrophysics Data System (ADS)

    Patra, S.; Spencer, E. A.

    2014-12-01

    We investigate different classes of substorms that occur as a result of various drivers such as the conditions in the solar wind and the internal state of the magnetosphere ionosphere system during the geomagnetic activity. In performing our study, we develop and use our low order physics based nonlinear model of the magnetosphere called WINDMI to establish the global energy exchange between the solar wind, magnetosphere and ionosphere by constraining the model results to satellite and ground measurements. On the other hand, we make quantitative and qualitative comparisons between our low order model with available MHD, multi-fluid and ring current simulations in terms of the energy transfer between the geomagnetic tail, plasma sheet, field aligned currents, ionospheric currents and ring current, during isolated substorms, storm time substorms, and sawtooth events. We use high resolution solar wind data from the ACE satellite, measurements from the CLUSTER and THEMIS missions satellites, and ground based magnetometer measurements from SUPERMAG and WDC Kyoto, to further develop our low order physics based model. Finally, we attempt to answer the following questions: 1) What conditions in the solar wind influence the type of substorm event. This includes the IMF strength and orientation, the particle densities, velocities and temperatures, and the timing of changes such as shocks, southward turnings or northward turnings of the IMF. 2) What is the state of the magnetosphere ionosphere system before an event begins. These are the steady state conditions prior to an event, if they exist, which produce the satellite and ground based measurements matched to the WINDMI model. 3) How does the prior state of the magnetosphere influence the transition into a particular mode of behavior under solar wind forcing. 4) Is it possible to classify the states of the magnetosphere into distinct categories depending on pre-conditioning, and solar wind forcing conditions? 5) Can we

  2. Force Balance and Substorm Effects in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.

    1997-01-01

    A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.

  3. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora

    NASA Astrophysics Data System (ADS)

    Meeren, Christer; Oksavik, Kjellmar; Lorentzen, Dag A.; Rietveld, Michael T.; Clausen, Lasse B. N.

    2015-12-01

    In this paper we study how GPS, GLONASS, and Galileo navigation signals are compromised by strong irregularities causing severe phase scintillation (σϕ>1) in the nightside high-latitude ionosphere during a substorm on 3 November 2013. Substorm onset and a later intensification coincided with polar cap patches entering the auroral oval to become auroral blobs. Using Global Navigation Satellite Systems (GNSS) receivers and optical data, we show severe scintillation driven by intense auroral emissions in the line of sight between the receiver and the satellites. During substorm expansion, the area of scintillation followed the intense poleward edge of the auroral oval. The intense auroral emissions were colocated with polar cap patches (blobs). The patches did not contain strong irregularities, neither before entering the auroral oval nor after the aurora had faded. Signals from all three GNSS constellations were similarly affected by the irregularities. Furthermore, two receivers spaced around 120km apart reported highly different scintillation impacts, with strong scintillation on half of the satellites in one receiver and no scintillation in the other. This shows that areas of severe irregularities in the nightside ionosphere can be highly localized. Amplitude scintillations were low throughout the entire interval.

  4. Association of an auroral surge with plasma sheet recovery and the retreat of the substorm neutral line

    SciTech Connect

    Hones, E.W. ); Elphinstone, R.; Murphree, J.S. . Dept. of Physics); Galvin, A.B. . Dept. of Space Physics); Heinemann, N.C. . Dept. of Physics); Parks, G.K. ); Rich, F.J. (Air Force Geophysics Lab., Hanscom AFB, MA

    1990-01-01

    One of the periods being studied in the PROMIS CDAW (CDAW-9) workshops is the interval 0000-1200 UT on May 3, 1986, designated Event 9C.'' A well-defined substorm, starting at 0919 UT, was imaged by both DE 1 over the southern hemisphere and Viking over the northern hemisphere. The images from Viking, at 80-second time resolution, showed a surge-like feature forming at about 0952 UT at the poleward edge of the late evening sector of the oval. The feature remained relatively stationary until about 1000 UT when it seemed to start advancing westward. ISEE 1 and 2 were closely conjugate to the surge as mapped from both the DMSP and Viking images. We conclude that the plasma sheet recovery was occasioned by the arrival at ISEE 1,2 of a westward traveling wave of plasma sheet thickening, the wave itself being formed by westward progression of the substorm neutral line's tailward retreat. The westward traveling surge was the auroral manifestation of this nonuniform retreat of the neutral line. We suggest that the upward field aligned current measured by DMSP F7 above the surge head was driven by plasma velocity shear in the plasma sheet at the duskward kink'' in the retreating neutral line. By analogy with this observation we propose that the westward traveling surges and the current wedge field aligned currents that characterize the expanding auroral bulge during substorm expansive phase are manifestations of (and are driven by) velocity shear in the plasma sheet near the ends of the extending substorm neutral line.

  5. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  6. MESSENGER observations of Alfvénic and compressional waves during Mercury's substorms

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Slavin, James A.; Fu, Suiyan; Raines, Jim M.; Sundberg, Torbjörn; Zong, Qiu-Gang; Jia, Xianzhe; Shi, Quanqi; Shen, Xiaochen; Poh, Gangkai; Pu, Zuyin; Zurbuchen, Thomas H.

    2015-08-01

    MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic field measurements during the substorm expansion phase in Mercury's magnetotail have been examined for evidence of low-frequency plasma waves, e.g., Pi2-like pulsations. It has been revealed that the By fluctuations accompanying substorm dipolarizations are consistent with pulses of field-aligned currents near the high-latitude edge of the plasma sheet. Detailed analysis of the By fluctuations reveals that they are near circularly polarized electromagnetic waves, most likely Alfvén waves. Soon afterward the plasma sheet thickened and MESSENGER detected a series of compressional waves. These Alfvénic and compressional waves have similar durations (10-20 s), suggesting that they may arise from the same source. Drawing on Pi2 pulsation models developed for Earth, we suggest that the Alfvénic and compressional waves reported here at Mercury may be generated by the quasi-periodic sunward flow bursts in Mercury's plasma sheet. But because they are observed during the period with rapid magnetic field reconfiguration, we cannot fully exclude the possibility of standing Alfvén wave.

  7. Geotail Measurements Compared with the Motions of High-Latitude Auroral Boundaries during Two Substorms

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.; Weimer, D. R.; Reeves, G. D.; Luhr, H.

    1997-01-01

    Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.

  8. Spatial-temporal dynamics of auroras during the magnetic storm main phase

    NASA Astrophysics Data System (ADS)

    Kornilova, T. A.; Kornilov, I. A.

    2009-12-01

    The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.

  9. Growth kinetics in a phase field model with continuous symmetry

    NASA Astrophysics Data System (ADS)

    Marini Bettolo Marconi, Umberto; Crisanti, Andrea

    1996-07-01

    We discuss the static and kinetic properties of a Ginzburg-Landau spherically symmetric O(N) model recently introduced [U. Marini Bettolo Marconi and A. Crisanti, Phys. Rev. Lett. 75, 2168 (1995)] in order to generalize the so-called phase field model of Langer [Rev. Mod. Phys. 52, 1 (1980); Science 243, 1150 (1989)]. The Hamiltonian contains two O(N) invariant fields φ and U bilinearly coupled. The order parameter field φ evolves according to a nonconserved dynamics, whereas the diffusive field U follows a conserved dynamics. In the limit N-->∞ we obtain an exact solution, which displays an interesting kinetic behavior characterized by three different growth regimes. In the early regime the system displays normal scaling and the average domain size grows as t1/2; in the intermediate regime one observes a finite wave-vector instability, which is related to the Mullins-Sekerka instability; finally, in the late stage the structure function has a multiscaling behavior, while the domain size grows as t1/4.

  10. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  11. Statistical comparison of inter-substorm timings in global magnetohydrodynamics (MHD) and observations

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Morley, S.; Ozturk, D. S.

    2015-12-01

    Magnetospheric substorms are events in which energy stored in the magnetotail is released into the auroral zone and into the downstream solar wind. Because of the complex, nonlinear, and possibly chaotic nature of the substorm energy release mechanism, it may be extremely difficult to forecast individual substorms in the near term. However, the inter-substorm timing (the amount of time elapsed between substorms) can be reproduced in a statistical sense, as was demonstrated by Freeman and Morley (2004) using their Minimal Substorm Model (MSM), a simple solar-wind driven model with the only free parameter being a recurrence time. The goal of the present work is to reproduce the observed distribution of inter-substorm timings with a global MHD model. The period of 1-31 January 2005 was simulated using the Space Weather Modeling Framework (SWMF), driven by solar wind observations. Substorms were identified in the model output by synthesizing surface magnetometer data and by looking for tailward-moving plasmoids. Substorms identified in the MHD model are then compared with observational data from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, Los Alamos National Laboratory (LANL) geostationary satellite energetic particle data, and surface magnetometer data. For each dataset (MHD model and observations), we calculate the substorm occurrence rate, and for the MHD model we additionally calculate the timing error of the substorm onsets relative to the observed substorms. Finally, we calculate distribution functions for the inter-substorm timings in both the observations and the model. The results of this analysis will guide improvements to the MHD-based substorm model, including the use of Hall MHD and embedded particle in cell (EPIC), leading to a better reproduction of the observed inter-substorm timings and an improved understanding of the underlying physical processes. ReferencesM. P. Freeman and S. K. Morley. A minimal substorm model that

  12. Intermediate-m ULF waves generated by substorm injection: a case study

    NASA Astrophysics Data System (ADS)

    Yeoman, T. K.; Klimushkin, D. Yu.; Mager, P. N.

    2010-08-01

    A case study of SuperDARN observations of Pc5 Alfvén ULF wave activity generated in the immediate aftermath of a modest-intensity substorm expansion phase onset is presented. Observations from the Hankasalmi radar reveal that the wave had a period of 580 s and was characterized by an intermediate azimuthal wave number (m=13), with an eastwards phase propagation. It had a significant poloidal component and a rapid equatorward phase propagation (~62° per degree of latitude). The total equatorward phase variation over the wave signatures visible in the radar field-of-view exceeded the 180° associated with field line resonances. The wave activity is interpreted as being stimulated by recently-injected energetic particles. Specifically the wave is thought to arise from an eastward drifting cloud of energetic electrons in a similar fashion to recent theoretical suggestions (Mager and Klimushkin, 2008; Zolotukhina et al., 2008; Mager et al., 2009). The azimuthal wave number m is determined by the wave eigenfrequency and the drift velocity of the source particle population. To create such an intermediate-m wave, the injected particles must have rather high energies for a given L-shell, in comparison to previous observations of wave events with equatorward polarization. The wave period is somewhat longer than previous observations of equatorward-propagating events. This may well be a consequence of the wave occurring very shortly after the substorm expansion, on stretched near-midnight field lines characterised by longer eigenfrequencies than those involved in previous observations.

  13. ATS-5 observations of plasma sheet particles before the expansion-phase onset, appendix C.. [plasma-particle interactions, magnetic storms and auroras

    NASA Technical Reports Server (NTRS)

    Fujii, K.; Nishida, A.; Sharp, R. D.; Shelley, E. G.

    1975-01-01

    Behavior of the plasma sheet around its earthward edge during substorms was studied by using high resolution (every 2.6 sec) measurements of proton and electron fluxes by ATS-5. In the injection region near midnight the flux increase at the expansion-phase onset is shown to lag behind the onset of the low-latitude positive bay by several minutes. Depending upon the case, before the above increase (1) the flux stays at a constant level, (2) it gradually increases for some tens of minutes, or (3) it briefly drops to a low level. Difference in the position of the satellite relative to the earthward edge and to the high-latitude boundary of the plasma sheet is suggested as a cause of the above difference in flux variations during the growth phase of substorms. Magnetograms and tables (data) are shown.

  14. Substorm triggering by poleward boundary intensification and related equatorward propagation

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Frey, H. U.; Angelopoulos, V.; Nishimura, Y.

    2011-04-01

    Recently, a revised auroral substorm onset sequence has been proposed, in which onset is preceded by a poleward boundary intensification (PBI) and subsequent equatorward propagation of N-S-aligned auroral features to breakup arc latitudes. We reanalyzed 20 randomly selected samples of the Nishimura et al. (2010) 251-event database and show in greater detail to what degree the observed features in this subset of events are consistent with the proposed scenario. To assess the sensitivity of space-based imagers for seeing this scenario, we calibrated the absolute responsivity of the THEMIS ground-based imagers. We also show that although not suitable for studies from apogee, IMAGE/FUV imagers can also observe a consistent scenario from a lower altitude. We conclude that in some cases PBIs and subsequent plasma flows can be effective in providing a trigger if the inner magnetosphere is ready to produce a substorm.

  15. Coordinated observations of the magnetosphere - The development of a substorm.

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Sharp, R. D.; Shelley, E. G.; Haerendel, G.; Hones, E. W.

    1972-01-01

    Coordinated observations of a substorm are reported by using data from all-sky camera (ASCA) stations near the northern conjugate of the ATS 5 geostationary satellite, plasma and magnetic-field experiments on the ATS 5 satellite, Vela 5B at 18 earth radii in the magnetotail, the Heos 1 interplanetary probe, and ground-based magnetograms. The substorm event occurred after a very quiet day and was preceded by a development period during which the interplanetary field turned southward and the plasma energy density increased near the earth on the nightside. This period was also evidenced by a depression of the midlatitude H component of the geomagnetic field at the earth's surface. The auroral breakup was preceded by the appearance of quiet arcs, the leveling off of the plasma energy density increase at ATS, and the disappearance of the tail plasma at 18 earth radii.

  16. Theoretical magnetograms based on quantitative simulation of a magnetospheric substorm

    NASA Technical Reports Server (NTRS)

    Chen, C.-K.; Wolf, R. A.; Karty, J. L.; Harel, M.

    1982-01-01

    Substorm currents derived from the Rice University computer simulation of the September 19, 1976 substorm event are used to compute theoretical magnetograms as a function of universal time for various stations, integrating the Biot-Savart law over a maze of about 2700 wires and bands that carry the ring, Birkeland and horizontal ionospheric currents. A comparison of theoretical results with corresponding observations leads to a claim of general agreement, especially for stations at high and middle magnetic latitudes. Model results suggest that the ground magnetic field perturbations arise from complicated combinations of different kinds of currents, and that magnetic field disturbances due to different but related currents cancel each other out despite the inapplicability of Fukushima's (1973) theorem. It is also found that the dawn-dusk asymmetry in the horizontal magnetic field disturbance component at low latitudes is due to a net downward Birkeland current at noon, a net upward current at midnight, and, generally, antisunward-flowing electrojets.

  17. On the dynamical development of the downward field-aligned current in the substorm current wedge

    SciTech Connect

    Pellinen, R.J.; Pulkkinen, T.I.; Huuskonen, A.

    1995-08-01

    We report observations of a substorm event on March 4, 1979, onset at 2236 UT, which confirm the participation of the upward accelerated ionospheric electrons in the substorm current wedge current during the first few minutes after the substorm onset. The slow ions do not contribute much to the downward current immediately after the substorm onset, whereas the precipitating magnetospheric electrons quickly set up the upward current. A scanning photometer was centrally placed at the center of the downward current during the event. The observations suggest that the current was mainly caused by cold ionospheric electrons. 27 refs., 8 figs.

  18. EEJ and EIA variations during modeling substorms with different onset moments

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Klimenko, M. V.

    2015-11-01

    This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.

  19. Spectacular ionospheric flow structures associated with substorm auroral onset

    NASA Astrophysics Data System (ADS)

    Gallardo-Lacourt, B. I.; Nishimura, Y.; Lyons, L. R.; Zou, Y.; Angelopoulos, V.; Donovan, E.; Mende, S. B.; Ruohoniemi, J.; McWilliams, K. A.; Nishitani, N.

    2013-12-01

    Auroral observations have shown that brightening at substorm auroral onset consists of azimuthally propagating beads forming along a pre-existing arc. However, the ionospheric flow structure related to this wavy auroral structure has not been previously identified. We present 2-d line-of-sight flow observations and auroral images from the SuperDARN radars and the THEMIS ground-based all-sky-imager array to investigate the ionospheric flow pattern associated with the onset. We have selected events where SuperDARN was operating in the THEMIS mode, which provides measurements along the northward looking radar beam that have time resolution (6 s) comparable to the high time resolution of the imagers and gives us a unique tool to detect properties of flows associated with the substorm onset instability. We find very fast flows (~1000 m/s) that initiated simultaneously with the onset arc beads propagating across the THEMIS-mode beam meridian. The flows show oscillations at ~9 mHz, which corresponds to the periodicity of the auroral beads propagating across the radar beam. 2-d radar measurements also show a wavy pattern in the azimuthal direction with a wavelength of ~74 km, which is close to the azimuthal separation of individual beads, although this determination is limited by the 2 minute radar scan period. These strong correlations (in time and space) between auroral beading and the fast ionospheric flows suggest that these spectacular flows are an important feature of the substorm onset instability within the inner plasma sheet. Also, a clockwise flow shear was observed in association with individual auroral beads, suggesting that such flow shear is a feature of the unstable substorm onset waves.

  20. The Differences in Onset Time of Conjugate Substorms

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Zesta, E.; McPherron, R. L.; Hsu, T. S.

    2014-12-01

    The auroral electrojet (AE) index is traditionally calculated from 13 ground magnetometer stations located around the typical northern auroral oval location. Similar coverage in the Southern Hemisphere index (SAE) does not exist, so the AE calculation has only been performed using Northern Hemisphere data. In the present study, we use seven southern auroral region ground magnetometers as well as their conjugate Northern Hemisphere data to calculate conjugate AE indices for 274 days covering all four seasons. With this dataset over 1200 substorm onsets have been identified in the SAE index using the technique of Hsu et al. [2012]. A comparison of the SAE index with the world data center standard AE index shows that the substorm onsets do not always occur at the same time with differences on the order of several minutes. In this study we examine the differences in the onset time and the reason for those differences using our conjugate AE indices and using pairs of conjugate ground magnetometer stations. Specifically, we used the pair of stations at West Antarctica Ice Sheet Divide and Sanikiluaq, Canada and Syowa, Antarctica and Tjörnes, Iceland. The largest differences in onset time appear to be related to the IMF Bz and magnetic field line length. Differences on the order of minutes for the onset time of conjugate substorms have serious implications for substorm theories. The problem is that waves from a current disruption region to the mid tail, or flows from the mid tail to the current disruption region take the same amount of time (~2 minutes), which makes it difficult to decide where the onset disturbance is initiated, particularly when onset indicators have differences on the order of minutes.

  1. Calibrating a Magnetotail Model for Storm/Substorm Forecasting

    NASA Astrophysics Data System (ADS)

    Horton, W.; Siebert, S.; Mithaiwala, M.; Doxas, I.

    2003-12-01

    The physics network model called WINDMI for the solar WIND driven Magnetosphere-Ionosphere weather system is calibrated on substorm databases [1] using a genetic algorithm. We report on the use of the network as a digital filter to classify the substorms into three types; a process traditionally performed individual inspection. We then turn to using the filter on the seven Geospace Environmental Modeling (GEM) Storms designated for community wide study. These storms cover periods of days and contain many substorms. First the WINDMI model is run with the 14 parameters set from the study based on the Blanchard-McPherron database of 117 isolated substorms with 80% of the data having the AL below -500nT. In contrast, the GEM storms have long periods with AL in the range of -1000nT. The prediction error measured with the average-relative variance (ARV) is of approximately unity. Reapplying the genetic algorithm the parameters shift such that the one long storm has an ARV=0.59. Physics modifications of the basic WINDMI model including the injection of sheet plasma into the ring current are being evaluated in terms of their impact on the ARV and comparisons with non-physics based signal processing prediction filters. Ensembles of initial conditions are run with 700MHz G3 CPU run times of order 17 sec per orbit per day of real data. The AMD AthlonXP 1700+ processor takes 5sec per orbit per day. The IBM SP-2 speed will be reported. With such speeds it is possible to run balls of initial conditions. Substrom Classification with the WINDMI Model, W. Horton, R.S. Weigel, D. Vassiliadis, and I. Doxas, Nonlinear Processes in Geophysics, 1-9, 2003. This work was supported by the National Science Foundation Grant ATM-0229863.

  2. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  3. Indium Growth and Island Height Control on Si Submonolayer Phases

    SciTech Connect

    Chen, Jizhou

    2009-01-01

    ) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In g(s) curve there

  4. Microarray and functional analysis of growth-phase dependent gene regulation in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth-phase dependent gene regulation has recently been demonstrated to occur in B. pertussis, with many transcripts, including known virulence factors, significantly decreasing during the transition from logarithmic to stationary-phase growth. Given that B. pertussis is thought to have derived fro...

  5. Problems with mapping the auroral oval and magnetospheric substorms

    NASA Astrophysics Data System (ADS)

    Antonova, E. E.; Vorobjev, V. G.; Kirpichev, I. P.; Yagodkina, O. I.; Stepanova, M. V.

    2015-10-01

    Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.

  6. Substorm Current Wedge as a Combined Effect of Wedgelets

    NASA Astrophysics Data System (ADS)

    Liu, J.; Angelopoulos, V.

    2014-12-01

    Understanding how the substorm current wedge (SCW) is formed is crucial to solving the substorm mystery. One recent idea on the SCW formation is the "wedgelets" picture, which proposes that dipolarizing flux bundles (DFBs) are the building elements of an SCW. (A DFB is a ~1-3 RE wide flux tube with stronger magnetic field than the ambient plasma in the magnetotail; its leading edge is known as a "dipolarization front", or "reconnection front", the product of near-Earth reconnection). Although each DFB carries field-aligned currents (FACs) in similar configuration to an SCW, it is unclear how the DFBs combine to become the large-scale (several magnetic local times wide) region-1-sense (towards Earth at the dawn sector of the magnetotail and away from Earth at the dusk sector) FACs of the SCW. To answer this question, we investigate the FACs of DFBs statistically using THEMIS data. Our results suggest that at the dawn (dusk) sector of the magnetotail, a DFB has more FAC towards (away from) Earth than away from (towards) Earth, so that the net FAC is towards (away from) Earth. The combined effect of many DFBs is therefore the same as the large-scale region-1-sense SCW, supporting the idea that "wedgelets" comprise the large scale substorm current wedge.

  7. Observations of the Ionospheric Response to a Weak Substorm Onset

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Gjerloev, J. W.; Ohtani, S.; Nikoukar, R.; Forte, B.

    2015-12-01

    We present observations of substorm onset at Tromsø, Norway. This event was unusually well observed by ground magnetometers, incoherent scatter radar, satellites, an allsky camera and a scintillation monitor in the vicinity of the onset location. At onset, ground magnetometer observations indicate the formation of a westward electrojet above Tromsø and, at the same location, allsky camera images show an arc brightening and moving poleward. Satellite observations are consistent with an onset location at Tromsø, followed by a westward surge of dipolarization. Two features of the ionospheric response are observed by the incoherent scatter radar at Tromsø: 1) At onset, ion drift velocities reduce sharply from 100-400 m/s to roughly zero, consistent with a field-aligned potential drop shielding the ionosphere from magnetospheric convection. 2) There is a two-stage enhancement of the westward electrojet, with each stage directly preceded by an increase of ionization. Both these features are consistent with the theory that the inner magnetosphere acts neither as a current nor a voltage generator during substorm onset. Figure shows EISCAT observations of line-of-sight ion drifts, electron and ion temperatures. There is a transition from ExB drift, indicated by a decrease in ion velocity in panel (a), to electron precipitation indicated by increased electron temperatures in panel (b). Substorm onset occurs at the transition time, around 20:02:30 UT.

  8. The triggering of local substorm activity by HF SURA heater

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Parrot, Michel; Kovalev, Victor; Plastinin, Yuri; Kuznetsov, Vladimir; Vladimir Frolov, S.

    The results of analysis of helio-geophisical conditions of experiments 2007-2012 on local modification of ionosphere by powerful HF radio waves of SURA facility are presented. All experiment were conducted at sector of local time of Harang discontinuity for most probable influence of powerful HF pumping during the heater functioning on activation of natural processes at subauroral ionosphere - magnetosphere region. The peculiarity of these experiments was that all of these were executed with use of operative frequency, which was higher than upper hybrid frequency for background plasma of F2-layer maximum. It was obtained that, at least, in two experiments the observed substorm activity in zone northern SURA heater could be stimulated by its functionment.In the present study the ray tracing analysis clearly shows that ionosphere density decreasing (from DEMETER and IONEX data) at higher than SURA latitudes can redirect and refocused transmitter beam power in northward structure away from the beam center by refraction. By this way we have chance to participate by means of radiated SURA HF power in subauroral and auroral processes It is shown that results of groundbased, International Space Station and satellite DEMETER measurements as in vicinity a SURA location and in magnetic conjugated region support the conclusion (output) about reasons and possibility of substorm localization by action of SURA heater. The possible mechanisms of the local substorm activation are discussed.

  9. Energy flux in the Earth's magnetosphere: Storm substorm relationship

    NASA Astrophysics Data System (ADS)

    Alexeev, Igor I.

    2003-04-01

    Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways.

  10. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  11. A nonthermal ion layer with high anisotropies at the plasmasheet boundary during substorm recovery

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1981-01-01

    The energy spectra and anisotropies of protons and alpha particles are investigated at the plasmasheet boundary during the recovery phase of geomagnetic substorms using the Max Planck Institut/University of Maryland sensor system on the ISEE-1 satellite. The observations are found to reveal the presence of a thin nonthermal layer of approximately 60 keV/charge protons and alpha particles at the plasmasheet boundary, the particles streaming highly collimated in earthward direction. It is pointed out that the alpha particle layer is confined within the proton layer. It is thought that the principal features of the layers can be explained in terms of an acceleration model proposed by Speiser (1965) for the environment of a magnetic neutral line.

  12. Observations of a nonthermal ion layer at the plasma sheet boundary during substorm recovery

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1980-01-01

    Measurements of the energy and angular distributions of energetic protons and alpha particles (not less than 30 keV/charge) in the geomagnetic tail are presented. The measurements were made during the recovery phase of a geomagnetic substorm on Apr. 19, 1978, with the Max-Planck-Institut/University of Maryland sensor system on the Isee 1 satellite. The measurements were also correlated with plasma observations made by the LASL/MPE instrument on Isee 1. The data reveal the presence of a thin nonthermal layer of protons and alpha particles at the plasma sheet boundary. The particles have their maximum flux at 60 keV/charge and are streaming highly collimated in the earthward direction. The alpha particle layer is confined within the proton layer. Many aspects of the observations are in agreement with an acceleration model near the neutral line proposed by Jaeger and Speiser (1974)

  13. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  14. Inertial magnetic field reconnection and magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Cross, M. A.

    1973-01-01

    We describe and calculate the growth rate of a magnetohydrodynamic neutral-sheet instability due to electron-inertia terms in the infinite-conductivity Ohm's law. The results are compared with an approximate Vlasov-equation calculation, and are shown to be particularly germane to the geomagnetic-tail instability.

  15. Random and periodic substorms and their origins in the solar wind

    SciTech Connect

    Borovsky, J.E.; Belian, R.D.; Nemzek, R.J.; Smith, C.W.

    1994-05-01

    Substorms occur (recur) in two fashions: periodically with time or randomly in time. A statistical analysis of the time intervals {Delta}t between subsequent substorm onsets clearly shows these two types of substorms. When substorms are recurring periodically, the period is 3.1 {plus_minus} 1.2 hours, and the distribution of periods is gaussian. When substorms are occurring randomly, the time intervals {Delta}t between successive substorm onsets are distributed according to the exponential distribution exp({minus}{delta}t//5 hours), with a 5-hour mean interval between random onsets. With the use of the Los Alamos geosynchronous energetic-particle dam and the OMNI solar-wind data, it is shown that periodic substorms are associated with time intervals when the average value of the IMF is southward for extended periods of time and it is shown that randomly occurring substorms are statistically correlated with randomly occurring northward-to-southward reversals of the 1-hour-averaged values of the IMF B{sub z}.

  16. Aurora and substorm triggering by high-power radio emission of SURA facility

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Kuznetsov, Vladimir; Kovalev, Victor; Karabadzhak, Georgy; Plastinin, Yuri; Frolov, Vladimir; Parrot, Michel; Ruzhina, Tatiana

    2013-04-01

    We present the results of the experiments on modification of the ionosphere by high-power high-frequency (HF) waves from the SURA heating facility. It is important to notice that from among all of 15 our experiments spent to 2007-2012 with ionosphere modulated heating only in two of them very similar disturbances in a magnetic field are registered which can be interpreted as a signature of man-induced substorms by SURA heater. The effects of modification were observed on board the International Space Station (ISS), DEMETER satellite and groundbased observatories. For all Sura-ISS experiments the HF ordinary waves are used had the frequency more than plasma frequency at F2 max. As results the radiated powerful waves illuminate the full volume of ionosphere inside the FOV for antenna (36° in meridian plane) of SURA facility. The first complex experiment on modification of the ionosphere by high-power radio emission from the SURA heating facility was carried out on October 2, 2007 at 18:40 - 19:00 UT. The ISS observations with an optical TV camera have provided more than 1000 images of a bright local glow, which appeared within the field of view of the camera as the Space Station was passing over the location of the active SURA facility. The brightness of the glow reached tens of kiloRayleighs. The compact bright aurora appeared Northeast of the heating facility (200 - 300 km) and was moving Eastward in the image plane. Making use of GPS and DEMETER satellite data, that reveal the plasmapause position close to SURA latitude during the first SURA experiment (02.10.2007), and geomagnetic data, defining the time of beginning of a regenerative phase of a geomagnetic storm, leads to conclusion that these conditions promoted the substorm triggering in the first SURA experiment with the advent of the bright local aurora registered on the Russian Segment 0f ISS at the moment of artificial substorm activation. In second experiment of 25.10.2010 almost identically to the first

  17. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-01

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the "adiabat shaping" mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  18. DMSP F7 observations of a substorm field-aligned current

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Spence, H. E.; Meng, C.-I.

    1991-01-01

    Observations are described of a substorm field-aligned current (FAC) system traversed by the DMSP F7 spacecraft just after 0300 UT on April 25, 1985. It is shown that the substorm FAC portion of the current system was located equatorward of the boundary between open and closed field lines. The equatorward boundary of the substorm FAC into the magnetotail was mapped using the Tsyganenko (1987) model, showing that the boundary corresponds to 6.9 earth radii. The result is consistent with the suggestion of Akasofu (1972) and Lopez and Lui (1990) that the region of substorm initiation lies relatively close to the earth and the concept that an essential feature of substorms is the disruption and diversion of the near-earth current sheet.

  19. Electric and magnetic field observations during a substorm on February 24, 1970

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Akasofu, S.-I.

    1974-01-01

    Description of a series of electric field measurements obtained from the Injun 5 satellite and simultaneous magnetic disturbances observed in the interplanetary medium and on the ground during a magnetic substorm. The substorm analyzed took place on Feb. 24, 1970. Prior to the onset of the substorm, a greatly enhanced antisunward plasma flow was observed over the polar cap. The enhanced plasma flow occurred about 30 minutes after a switch in the direction of the interplanetary magnetic field from northward to southward. The electric fields across the polar cap immediately before and during the substorm were essentially unchanged, and it is thus indicated that an enhancement in the ionospheric conductivity rather than the electric field must be responsible for the large increase in the auroral electrojet current during the substorm.

  20. Electric and magnetic field observations during a substorm of 24 February 1970

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Akasofu, S. I.

    1974-01-01

    A series of electric field measurements is reported which was obtained from the Injun 5 satellite along with a simultaneous magnetic disturbance observed in the interplanetary medium and on the ground during a magnetic substorm. The substorm analyzed took place on February 24, 1970. Prior to the onset of the substorm a greatly enhanced anti-sunward plasma flow was observed over the polar cap. The enhanced plasma flow occurred about 30 minutes after a switch in the direction of the interplanetary magnetic field from northward to southward. The electric fields across the polar cap immediately before and during the substorm were essentially unchanged indicating that an enhancement in the ionospheric conductivity rather than the electric field must be responsible for the large increase in the auroral electrojet current during the substorm.

  1. 2-D Convection and Electrodynamic Features of Substorms Revealed by Multiple Radar Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Zou, S.

    2010-12-01

    Substorms are one of the fundamental elements of geomagnetic activity, which involve complex magnetosphere-ionosphere coupling processes. In this work, we aim to better understand the evolution of high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasis on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom ISR, have been utilized. Observations from these radars, together with those from complementary instruments, including satellites and other ground-based instruments, have enabled fundamental new understanding of the ionospheric electrodynamic properties associated with substorms. In this presentation, I focus on electrodynamics near the nightside Harang reversal region. Observations from the SuperDARN and the PFISR radars revealed that auroral activity at substorm onset is located near the center of the Harang reversal, which represents a key feature of magnetospheric and ionospheric convection and is part of the Region 2 system. The observations also show nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. By synthesizing these observations, a 2-D comprehensive view of the nightside ionospheric electrodynamical features, including electrical equipotentials, flows and FACs, and their evolution associated with substorms has been constructed, which has revealed a strong coupling between the substorm and the Region 2 current systems. This study sheds new light on substorm-related magnetosphere-ionosphere coupling and

  2. Evolution of high latitude ionospheric convection associated with substorms: Multiple radar observations

    NASA Astrophysics Data System (ADS)

    Zou, Shasha

    The work presented in this dissertation concerns evolution of the high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasize on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom incoherent-scatter radar (ISR), have been utilized. Observations from those radars, together with those from complementary instruments, including satellites and other ground-based instruments, have revealed fundamental new understand of the ionospheric electrodynamic properties associated with substorms. By using the SuperDARN and the PFISR radars, we found that the auroral activity at substorm onset is located in the center of the Harang reversal, which represents a key region in the magnetospheric and ionospheric convection and is part of the Region 2 system. We have also shown that nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. These observations demonstrate a strong coupling between the Region 2 system and the substorm dynamics. This study sheds new light on the substorm-related magnetosphere-ionosphere coupling and contributes to the building of a holistic picture of the substorm dynamics. The third radar has been used to study the dayside ionospheric convection response to the external soar wind and IMF driving and its role in substorm dynamics. The results have been applied to study substorm triggering and in the future could be used to study the relation between the external driving and the formation of the Harang reversal.

  3. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    PubMed Central

    Pothier, N M; Weimer, D R; Moore, W B

    2015-01-01

    We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet. Key Points Show quantitative maps of ground geomagnetic perturbations due to substorms Three vector components mapped as function of time during onset and recovery Compare/contrast results for different tilt angle and sign of IMF Y-component PMID:26167445

  4. Special features of a substorm during high solar wind dynamic pressure

    SciTech Connect

    Lui, A.T.Y.; Ohtani, S.; Newell, P.T.

    1995-10-01

    A substorm on July 24, 1986, exhibiting a rather unusual auroral morphology is analyzed with data from spacecraft (Viking; DMSP F6 and F7; GOES 5 and 6; three LANL geosynchronous satellites; CCE; and IMP 8). This substorm occurred during high solar wind dynamic pressure (>5 nPa). Several notable features for this substorm are: (1) the substorm onset activity was preceded by prominent auroral activations in the morning sector with spatial separations between adjacent bright regions ranging from {approximately}160 to 640 km, and their intensity was modulated at {approximately}3.2-min intervals; (2) the initial substorm activity was concentrated in the morning sector, followed by a sudden activation in the dusk sector, leaving the midnight sector relatively undisturbed, in sharp contrast to the traditional substorm development; (3) while a substorm injection was observed at a geocentric distance of {approximately}8.4 R{sub E} by CCE in association with the substorm onset, particle injections (detectable with three LANL geosynchronous satellites) and dipolarization signatures (detectable by the two GOES satellites) were not observed until subsequent intensifications; (4) timing subsequent substorm intensifications from injections at the geosynchronous altitude differed from timing intensifications based on Viking auroral images by as much as {approximately}3 min; (5) the polar cap boundary was at a significantly higher latitude than the poleward boundary delineated by detectable auroral luminosity in the auroral oval. Detailed timing analysis suggests the substorm onset to be associated with southward interplanetary magnetic field (IMF), possibly with the crossing of an IMF sector boundary (interplanetary current sheet). The dimming of auroral luminosity in the midnight region was associated with a sudden northward turning of the IMF during high solar wind dynamic pressure condition. 36 refs., 14 figs.

  5. Condensed phase conversion and growth of nanorods instead of from vapor

    SciTech Connect

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  6. Electrodynamic parameters in the nighttime sector during auroral substorms

    SciTech Connect

    Fujii, R.; Hoffman, A.; Anderson, P.C.

    1994-04-01

    The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each vector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are associated with narrow, intense antisunward convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron precipitation and aurora appearing in this western and poleward portion of the bulge. 44 refs., 14 figs., 2 tabs.

  7. Observations of magnetic field dipolarization during auroral substorm onset

    NASA Astrophysics Data System (ADS)

    Frank, L. A.; Paterson, W. R.; Sigwarth, J. B.; Kokubun, S.

    2000-07-01

    The dynamical behavior of plasmas and magnetic fields in the vicinity of the equatorial crossing of magnetic field lines threading the onset auroral arc is examined for two substorms on November 26, 1997. The locations of the initial brightenings of the auroral arcs were determined with the cameras for visible and far-ultraviolet wavelengths on board the Polar spacecraft. The equatorial positions of the field lines were in the range of radial distances of 8-12RE as computed with models of Earth's global magnetic field. The radial distance of the Geotail spacecraft was 14 RE at a position in the premidnight sector that was 2RE below the current sheet. This spacecraft was embedded in a low-β plasma that was located adjacent to the central hot plasma sheet. For the first substorm, with onset at 1310 UT, no substantial effect was observed in the plasmas and magnetic fields, although the Geotail spacecraft was located only about 2 hours in magnetic local time from the field lines threading the onset auroral arc. For the second substorm onset, at 1354 UT, the spacecraft was positioned within tens of minutes in local time of the position of the magnetic field lines threading the onset auroral arc. This fortuitous spacecraft position in the relatively quiescent plasma and magnetic fields adjacent to the central plasma sheet and within several Earth radii of the position of the onset mechanism allowed determination of the beginning time of the dipolarization of the magnetic fields. This time was simultaneous with the onset brightening of the auroral arc within the approximately 1-min time resolution of the auroral images. The simultaneity of the initial brightening of the auroral arc and of the initiation of the dipolarization of the magnetic field, presumably due to diversion of current from the equatorial current sheet to the ionosphere, provides an important guideline for global dynamical MHD models of Earth's magnetosphere.

  8. The reason for magnetospheric substorms and solar flares

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1983-01-01

    It has been proposed that magnetospheric substorms and solar flares are a result of the same mechanism. It is suggested that this mechanism is connected with the escape, or attempted escape, of energized plasma from a region of closed magnetic field lines bounded by a magnetic bottle. In the case of the earth, it must be plasma that is able to maintain a discrete auroral arc, and it is proposed that the cross-tail current connected to the arc is filamentary in nature to provide the field-aligned current sheet above the arc.

  9. A modeling of magnetic field variations during magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Corrick, G. K.

    1980-01-01

    Magnetic field variations in the noon-midnight plane during the magnetospheric substorm are studied in terms of changes of three current systems: the dynamo-driven current on the magnetopause, the cross-tail current and the field-aligned current-auroral electrojet system. The field-aligned current is assumed to be generated as a result of interruption and subsequent diversion of the cross-tail current to the ionosphere. It is concluded that the available observations are consistent with a large increase of the three currents.

  10. Simultaneous observation of the poleward expansion of substorm electrojet activity and the tailward expansion of current sheet disruption in the near-earth magnetotail

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Koskinen, H. E. J.; Pulkkinen, T. I.; Bosinger, T.; Mcentire, R. W.; Potemra, T. A.

    1993-01-01

    A substorm that occurred on 7 June 1985 at 2209 UT for which simultaneous measurements from ground stations and CCE are available is considered. The event occurred during a close conjunction between CCE, the EISCAT magnetometer cross, and the STARE radar, allowing a detailed comparison of satellite and ground-based data. Two discrete activations took place during the first few minutes of this substorm: the expansion phase onset at 2209 UT and an intensification at 2212 UT, corresponding to a poleward expansion of activity. The energetic particle data indicate that the active region of the magnetotail during the 2212 UT intensification was located tailward of the active region at 2209 UT. This is direct evidence for a correspondence between tailward expansion of localized activity in the near-earth magnetotail (current disruption and particle energization) and poleward expansion of activity (electrojet formation) in the ionosphere.

  11. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    NASA Astrophysics Data System (ADS)

    Dong, X. L.; Xing, H.; Chen, C. L.; Wang, J. Y.; Jin, K. X.

    2015-10-01

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models.

  12. Field-aligned currents associated with substorms in the vicinity of synchronous orbit. 2. GOES 2 and GOES 3 observations

    SciTech Connect

    Nagai, T. )

    1987-03-01

    Substorm-associated field-aligned currents have been studied using magnetic field observations at synchronous orbit and on the ground. The GOES 2 and GOES 3 satellite pair, separated in local time by about 2 hours, clearly demonstrates local time dependence of field-aligned current signatures at synchronous orbit. The author has made comparisons between magnetic disturbances at synchronous orbit and ground mid-latitude magnetic disturbances. In the morning region and the evening region, D perturbations at two locations have the same sign, indicating that major field-aligned currents are those flowing into (out of) the ionosphere located on L shells greater than the spacecraft L shell in the morning (evening) region. However, the D perturbations at synchronous orbit are more transient than those on the ground in the same local time meridian. Near midnight an opposite sense for the sign of D between synchronous orbit and the ground is frequently observed. In such a case the D perturbation is always negative at synchronous orbit, while the ground D perturbation is positive. The author proposes that the downward current sheet extending from the morningside overlaps the upward current sheet extending from the eveningside in the center of the current system. In this model the double field-aligned current sheets are formed in association with the onset of a substorm expansion phase near the midnight meridian, and the meridian for the major field-aligned currents flowing into the ionosphere shifts progressively eastward in the morning region and the meridian for the major field-aligned currents flowing out of the ionosphere shifts progressively westward in the evening region as substorms progress.

  13. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase.

    PubMed

    Taoka, Azuma; Eguchi, Yukako; Mise, Shingo; Oestreicher, Zachery; Uno, Fumio; Fukumori, Yoshihiro

    2014-09-01

    Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization. PMID:25048532

  14. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  15. Tyrosine requirement during the rapid catch-up growth phase of recovery from severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirement for aromatic amino acids, during the rapid catch-up in weight phase of recovery from severe childhood under nutrition (SCU) is not clearly established. As a first step, the present study aimed to estimate the tyrosine requirement of children with SCU during the catch-up growth phase ...

  16. Ultrastructure of Pseudomonas saccharophila at early and late log phase of growth.

    NASA Technical Reports Server (NTRS)

    Young, H. L.; Chao, F.-C.; Turnbill, C.; Philpott, D. E.

    1972-01-01

    Description of the fine structure of Pseudomonas saccarophila at the early log phase and the late log phase of growth, such as shown by electron microscopy with the aid of various techniques of preparation. The observations reported suggested that, under the experimental conditions applied, P. saccharophila multiplies by the method of constrictive division.

  17. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  18. Electric field variations during substorms: OGO-6 measurements

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1972-01-01

    The OGO-6 electric field measurements make it clear that the general pattern of high latitude electric fields in magnetic time-invariant latitude coordinates is not highly variable and that when unusual variations, or field distributions, occur they are relatively isolated in time and spatial extent. Thus, electric field changes on a global scale cannot, in general, be evoked as a direct cause of substorms. Polar traverses along the 18(h) to 6(h) magnetic time meridian show that the sum of potential drops across the evening auroral belt and morning auroral belt approximately equals the potential drop across the polar cap. The integrated polar cap potential drop ranges from 20 to 100 keV and values in the center of this range are most common under conditions of moderate magnetic disturbance. Roughly near 18(h) magnetic local time, a latitudinally narrow strip at the transition between auroral belt and polar cap fields exhibits unusually large field fluctuations immediately following the sudden onset of a negative bay at later magnetic local times. It appears likely that this spatially isolated correlation is related to an effect rather than a cause of substorm enhancement.

  19. The large-scale current system during auroral substorms

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Hoffman, R. A.

    2014-06-01

    We present an empirical model of the equivalent current system in the ionosphere during the peak of a classical bulge-type auroral substorm. This model is derived from measurements made by ~110 ground magnetometer stations during 116 substorms. The data are temporally and spatially organized using global auroral images obtained by the Polar Visible Imaging System Earth Camera. The empirical equivalent current system displays three key features: a poleward shift of the westward electrojet connecting the postmidnight and premidnight components; a polar cap swirl; and significantly different magnitudes of the postmidnight and premidnight westward electrojets. This leads us to propose a two-wedge current system linking the ionosphere to the magnetosphere. The bulge current wedge is located in the premidnight region just equatorward of the open-closed field line boundary while another three-dimensional current system is located in the postmidnight region well within the auroral oval. We use Biot and Savart calculations and Tsyganenko mapping and show that this new model is a likely solution for the large-scale current system.

  20. Analysis of a Prototypical Substorm with Conjugate Ground Magnetic Data

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Engebretson, M. J.; Chu, X.; Gjerloev, J. W.; Angelopoulos, V.; McPherron, R. L.; Weatherwax, A. T.

    2015-12-01

    The substorm at about 5 UT on February 26, 2008 (Angelopoulos et al., Science, 2008) has been taken as prototypical of reconnection in the Near-Earth Neutral Line model. Further examination by Pu et al. (JGR, 2010) showed that the event was preceded an hour earlier by one with very similar signatures. Traditional use of AE-related indices suggests that the first event was smaller in terms of electric currents than the second. More detailed examination of ground magnetic data shows that it was in fact comparable: in addition, the second event was considerably further to the west. We present results from Automated Meridian Modeling showing that a simple electrojet model with only three parameters (electrojet borders and current) matches data well with approximately 0.2 MA cross-meridian current in both subevents. There was also good conjugacy between hemispheres for both, as indicated by Antarctic magnetometers and inversion based on them. SuperMag data gives dense enough magnetometer coverage that the layout of the substorm current wedge, with auroral zone westward electrojet and subauroral perturbations mainly due to field-aligned current, can be determined. The quantitative data from the ground provides a context in which flows, magnetic fields, and other parameters at the THEMIS constellation and other conjugate spacecraft may be interpreted.

  1. Role of inductive electric fields in substorm development

    NASA Technical Reports Server (NTRS)

    Heikkila, Walter J.

    1992-01-01

    A study discussing and investigating the role of inductive electric fields in substorm development is presented. It is common to use the scalar potential phi to calculate the electrostatic field E(sup ES)-(inverted Delta)(phi). However, vector potential A has not been extensively used to analyze results by the relation for the inductive electric field E(sup IND)-delta A/delta t. Because of the weak dependence in distance (1/r) these potentials show the effect of distant sources, unlike MHD (Magnetohydrodynamic) theory which is strictly local. The two can be separated by the choice of the Coulomb (transverse) gauge. It is proper to consider that the plasma polarizes to counteract the activation of the inductive electric field; this is a matter of cause and effect. However, such polarization produces a curl free electrostatic field and thus cannot alter the electromotive force due to induction. This idea has some interesting consequences for plasma physics, including violations of MHD theory, creation of the substorm current diversion, and a fresh look at dayside merging via plasma transfer events.

  2. A new model for auroral breakup during substorms

    SciTech Connect

    Rothwell, P.L.; Block, L.P.; Falthammar, C.G.; Silevitch, M.B.

    1989-04-01

    A model for substorm breakup is developed, based on the relaxation of stretched (closed) dipolar field lines, and the formation of an incipient current wedge within a single arc structure. It is argued that the establishment of a coupled current structure within a single arc leads to a quasi-stable system; i.e., the pre-breakup regime. Perturbation of the pre-breakup structure leads to an instability criterion. It is found, consistent with observations, that narrower auroral arcs at lower L shells undergo the most explosive poleward expansion. According to this model, the precise location at which breakup occurs depends on the O/sup +/ density in the plasma sheet, the level of magnetic activity (K/sub p/), and the intensity of the substorm westward electrojet in the ionosphere. An enhancement of any of these features will cause breakup to occur at lower L shells. Comparison of our model with the Heppner-Maynard polar-cap potential model indicates that breakup is restricted to the west of the Harang discontinuity consistent with recent observations from the Viking satellite.

  3. Substorm Evolution in the Near-Earth Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    2003-01-01

    The goal of this project is to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. This project is part of an ongoing investigation involving this PI, Nelson Maynard (Mission Research Corporation), and William Burke (AFRL) toward an empirical understanding of the onset and evolution of substorms. The first year began with dissemination of our CRRES findings, which included an invited presentation and major publication. The Geotail investigation began with a partial survey of onset signature types at distances X less than 15 R(sub E) for the first five months (March-July 1995) of the Geotail near-Earth mission. During the second year, Geotail data from March 1995 to present were plotted. Various signatures at local onset were catalogued for the period through 1997. During this past year we performed a survey of current-disruption-like (CD-like) signatures at distances X less than or equal to 14 R(sub E) for the three years 1995-1997.

  4. Selective growth of single phase VO{sub 2}(A, B, and M) polymorph thin films

    SciTech Connect

    Srivastava, Amar; Saha, Surajit; Rotella, Helene; Pal, Banabir; Kalon, Gopinadhan; Mathew, Sinu; Motapothula, Mallikarjuna; Dykas, Michal; Yang, Ping; Okunishi, Eiji; Sarma, D. D.; Venkatesan, T.

    2015-02-01

    We demonstrate the growth of high quality single phase films of VO{sub 2}(A, B, and M) on SrTiO{sub 3} substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO{sub 2} and their electronic properties are investigated. VO{sub 2}(A) phase is insulating VO{sub 2}(B) phase is semi-metallic, and VO{sub 2}(M) phase exhibits a metal-insulator transition, corroborated by photo-electron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero)structures promising new device functionalities.

  5. Ribosomal crystallography: from crystal growth to initial phasing

    NASA Astrophysics Data System (ADS)

    Thygesen, J.; Krumbholz, S.; Levin, I.; Zaytzev-Bashan, A.; Harms, J.; Bartels, H.; Schlünzen, F.; Hansen, H. A. S.; Bennett, W. S.; Volkmann, N.; Agmon, I.; Eisenstein, M.; Dribin, A.; Maltz, E.; Sagi, I.; Morlang, S.; Fua, M.; Franceschi, F.; Weinstein, S.; Böddeker, N.; Sharon, R.; Anagnostopoulos, K.; Peretz, M.; Geva, M.; Berkovitch-Yellin, Z.; Yonath, A.

    1996-10-01

    Preliminary phases were determined by the application of the isomorphous replacement method at low and intermediate resolution for structure factor amplitudes collected from crystals of large and small ribosomal subunits from halophilic and thermophilic bacteria. Derivatization was performed with dense heavy atom clusters, either by soaking or by specific covalent binding prior to the crystallization. The resulting initial electron density maps contain features comparable in size to those expected for the corresponding particles. The packing arrangements of these maps have been compared with motifs observed by electron microscopy in positively stained thin sections of embedded three-dimensional crystals, as well as with phase sets obtained by ab-initio computations. Aimed at higher resolution phasing, procedures are being developed for multi-site binding of relatively small dense metal clusters at selected locations. Potential sites are being inserted either by mutagenesis or by chemical modifications to facilitate cluster binding to the large halophilic and the small thermophilic ribosomal subunits which yield crystals diffracting to the highest resolution obtained so far for ribosomes, 2.9 and 7.3 Å, respectively. For this purpose the surfaces of these ribosomal particles have been characterized and conditions for quantitative reversible detachment of selected ribosomal proteins have been found. The corresponding genes are being cloned, sequenced, mutated to introduce the reactive side-groups (mainly cysteines) and overexpressed. To assist the interpretation of the anticipated electron density maps, sub-ribosomal stable complexes were isolated from H50S. One of these complexes is composed of two proteins and the other is made of a stretch of the rRNA and a protein. For exploiting the exposed parts of the surface of these complexes for heavy atom binding and for attempting the determination of their three-dimensional structure, their components are being produced

  6. Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    NASA Astrophysics Data System (ADS)

    Pothier, N. M.; Weimer, D. R.; Moore, W. B.

    2015-02-01

    We have produced the first series of spherical harmonic, numerical maps of the time-dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998-2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet.

  7. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Jong Ho Shin

    2008-05-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  8. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test. PMID:26868257

  9. Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour‐phase PAH

    PubMed Central

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Microbial contaminant degradation may either result in the utilization of the compound for growth or act as a protective mechanism against its toxicity. Bioavailability of contaminants for nutrition and toxicity has opposite consequences which may have resulted in quite different bacterial adaptation mechanisms; these may particularly interfere when a growth substrate causes toxicity at high bioavailability. Recently, it has been demonstrated that a high bioavailability of vapour‐phase naphthalene (NAPH) leads to chemotactic movement of NAPH‐degrading Pseudomonas putida (NAH7) G7 away from the NAPH source. To investigate the balance of toxic defence and substrate utilization, we tested the influence of the cell density on surface‐associated growth of strain PpG7 at different positions in vapour‐phase NAPH gradients. Controlled microcosm experiments revealed that high cell densities increased growth rates close (< 2 cm) to the NAPH source, whereas competition for NAPH decreased the growth rates at larger distances despite the high gas phase diffusivity of NAPH. At larger distance, less microbial biomass was likewise sustained by the vapour‐phase NAPH. Such varying growth kinetics is explained by a combination of bioavailability restrictions and NAPH‐based inhibition. To account for this balance, a novel, integrated ‘Best Equation’ describing microbial growth influenced by substrate availability and inhibition is presented. PMID:21951380

  10. Growth potential of exponential- and stationary-phase Salmonella Typhimurium during sausage fermentation.

    PubMed

    Birk, T; Henriksen, S; Müller, K; Hansen, T B; Aabo, S

    2016-11-01

    Raw meat for sausage production can be contaminated with Salmonella. For technical reasons, meat is often frozen prior to mincing but it is unknown how growth of Salmonella in meat prior to freezing affects its growth potential during sausage fermentation. We investigated survival of exponential- and stationary-phase Salmonella Typhimurium (DT12 and DTU292) during freezing at -18°C and their subsequent growth potential during 72h sausage fermentation at 25°C. After 0, 7 and >35d of frozen storage, sausage batters were prepared with NaCl (3%) and NaNO2 (0, 100ppm) and fermented with and without starter culture. With no starter culture, both strains grew in both growth phases. In general, a functional starter culture abolished S. Typhimurium growth independent of growth phase and we concluded that ensuring correct fermentation is important for sausage safety. However, despite efficient fermentation, sporadic growth of exponential-phase cells of S. Typhimurium was observed drawing attention to the handling and storage of sausage meat. PMID:27423056

  11. Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Isomura, Masao; Kanai, Mikuri

    2015-04-01

    We have investigated the solid phase crystallization (SPC) of amorphous germanium (a-Ge) precursors on single crystalline silicon (c-Si) substrates as seed layers and successfully obtained the epitaxial growth of Ge. The n-type (100) Si substrate is most suitable for preferential growth following the substrate orientation, because the velocity of preferential growth is higher than those on the other substrates and preferential growth is completed before random nucleation. The impurity contamination in the a-Ge precursors probably enhances random nucleation. The epitaxial growth is disturbed by the impurity contamination at a relatively high SPC temperature in the intrinsic and p-type Si substrates with the (100) orientation and the n-type and intrinsic Si substrates with the (111) orientation, because the lower velocity of preferential growth allows random crystallization. Almost no epitaxial growth is observed on the p-type (111) Si substrates even when low-impurity a-Ge precursors are used.

  12. Liquid Phase Growth of YBa2Cu3O7-x at Low Temperatures Using KOHFLUX

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuji; Funaki, Shuhei; Nakayama, Fumiya; Okunishi, Ryota; Miyachi, Yugo

    Molten KOH method, which was reported for the growth of YBa2Cu4O8 (Y124) crystal, was applied to synthesize and grow YBa2Cu3O7-x (Y123) crystal. Y123 phase was synthesized by controlling growth temperature and oxygen partial pressure. The shape of synthesized grains was cubic-like, indicating that they grew by the transportation of solute through liquid phase. Using KOH flux method, substitution of rare-earth elements for Y in Y123 phase was easily obtained. Liquid phase epitaxy of Y123 film on a single crystalline substrate was achieved by slow cooling flux method but not by top-seeded solution growth yet.

  13. Defect-phase-dynamics approach to statistical domain-growth problem of clock models

    NASA Technical Reports Server (NTRS)

    Kawasaki, K.

    1985-01-01

    The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.

  14. Relating thin current sheet formation and tail reconnection to substorm development

    SciTech Connect

    Birn, J.; Schindler, K.

    2002-01-01

    Observations and simulations have demonstrated the important role of thin current sheet formation and magnetic reconnection in the course of substorms. We discuss new results on the formation of thin current sheets, obtained both within MHD and kinetic theory. They demonstrate when kinetic effects become important and indicate the possibility of a catastrophic onset of substorm dynamics and the potential association with arc brightening. MHD simulations show the role of reconnection in the buildup of the substorm current wedge and the influence of the underlying configuration on the quasi-static and dynamic evolution.

  15. Equatorward shift of the cleft during magnetospheric substorms as observed by Isis 1

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.; Winningham, J. D.; Heikkila , W. J.

    1973-01-01

    Isis 1 satellite observations of the cleft position during magnetospheric substorms show that the cleft shifts equatorward as the interplanetary B sub z component turns southward and substorm activity increases and that it shifts back toward higher latitudes as substorm activity subsides and B sub z returns northward. Also, unusually low latitudes for the cleft (less than 70 deg invariant latitude) were found during geomagnetic storms with significant Dst values and large negative B sub z values. Significant shifts occur in the cleft location with no accompanying effect seen in the AE index; however, B sub z is observed to be southward during these periods.

  16. Growth resumption from stationary phase reveals memory in Escherichia coli cultures

    PubMed Central

    Jõers, Arvi; Tenson, Tanel

    2016-01-01

    Frequent changes in nutrient availability often result in repeated cycles of bacterial growth and dormancy. The timing of growth resumption can differ among isogenic cells and delayed growth resumption can lead to antibiotic tolerant persisters. Here we describe a correlation between the timing of entry into stationary phase and resuming growth in the next period of cell proliferation. E. coli cells can follow a last in first out rule: the last ones to shut down their metabolism in the beginning of stationary phase are the first to recover in response to nutrients. This memory effect can last for several days in stationary phase and is not influenced by environmental changes. We observe that the speed and heterogeneity of growth resumption depends on the carbon source. A good carbon source (glucose) can promote rapid growth resumption even at low concentrations, and is seen to act more like a signal than a growth substrate. Heterogeneous growth resumption can protect the population from adverse effect of stress, investigated here using heat-shock, because the stress-resilient dormant cells are always present. PMID:27048851

  17. Growth resumption from stationary phase reveals memory in Escherichia coli cultures.

    PubMed

    Jõers, Arvi; Tenson, Tanel

    2016-01-01

    Frequent changes in nutrient availability often result in repeated cycles of bacterial growth and dormancy. The timing of growth resumption can differ among isogenic cells and delayed growth resumption can lead to antibiotic tolerant persisters. Here we describe a correlation between the timing of entry into stationary phase and resuming growth in the next period of cell proliferation. E. coli cells can follow a last in first out rule: the last ones to shut down their metabolism in the beginning of stationary phase are the first to recover in response to nutrients. This memory effect can last for several days in stationary phase and is not influenced by environmental changes. We observe that the speed and heterogeneity of growth resumption depends on the carbon source. A good carbon source (glucose) can promote rapid growth resumption even at low concentrations, and is seen to act more like a signal than a growth substrate. Heterogeneous growth resumption can protect the population from adverse effect of stress, investigated here using heat-shock, because the stress-resilient dormant cells are always present. PMID:27048851

  18. Pyroxene whiskers and platelets in interplanetary dust - Evidence of vapour phase growth

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.; Veblen, D. R.

    1983-01-01

    Enstatite crystals with whisker and platelet morphologies have been observed within chondritic porous micrometeorites. Samples of such crystals collected from the stratosphere are described. The samples display unique crystal morphologies and microstructures, such as axial screw dislocations, that strongly suggest that they are primary vapor phase condensates which could have formed either in the solar nebula or in presolar environments. The relationship between the crystal polymorphism and the thermal conditions of growth is discussed, adopting the view that protoenstatite and orthoenstatite are the stable high and low temperature forms, respectively. The kinetic aspects and mechanisms of whisker and platelet growth are considered, and the nature of the likely growth medium for the crystals is addressed. It is concluded that growth from a relatively low-pressure vapor phase is the most likely mode of growth.

  19. Growth of R-123 Phase Single Crystal Whiskers

    NASA Astrophysics Data System (ADS)

    Nagao, Masanori; Sato, Mitsunori; Tachiki, Yukitake; Miyagawa, Kinya; Tanaka, Masaki; Maeda, Hiroshi; Yun, Kyung Sung; Takano, Yoshihiko; Hatano, Takeshi

    2004-03-01

    Single-crystal whiskers of R1Ba2Cu3Ox (R-123, R = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu) phase have been successfully grown by the Te- and Ca-doping method. The whiskers were grown from precursor pellets at just below their partial melting (peritectic) temperatures. The nominal composition of the R-123 whiskers is R1+uBa2+vCawCu3Ox (u+v+w=0, w>0) with R and/or Ba sites being substituted by Ca. However, the amount of Te was less than the analytical limit. The critical temperatures of the R-123 whiskers were around 80 K, and among these whiskers those with larger R ionic radii such as Dy, Gd, Eu and Sm require post-annealing in an oxygen atmosphere.

  20. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    NASA Astrophysics Data System (ADS)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  1. Growth method for chalcongenide phase-change nanostructures

    NASA Technical Reports Server (NTRS)

    Yu, Bin (Inventor); Sun, Xuhui (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    A method for growth of an alloy for use in a nanostructure, to provide a resulting nanostructure compound including at least one of Ge.sub.xTe.sub.y, In.sub.xSb.sub.y, In.sub.xSe.sub.y, Sb.sub.xTe.sub.y, Ga.sub.xSb.sub.y, Ge.sub.xSb.sub.y,Te.sub.z, In.sub.xSb.sub.yTe.sub.z, Ga.sub.xSe.sub.yTe.sub.z, Sn.sub.xSb.sub.yTe.sub.z, In.sub.xSb.sub.yGe.sub.z, Ge.sub.wSn.sub.xSb.sub.yTe.sub.z, Ge.sub.wSb.sub.xSe.sub.yTe.sub.z, and Te.sub.wGe.sub.xSb.sub.yS.sub.z, where w, x, y and z are numbers consistent with oxidization states (2, 3, 4, 5, 6) of the corresponding elements. The melt temperatures for some of the resulting compounds are in a range 330-420.degree. C., or even lower with some compounds.

  2. Observations of a High-Latitude Stable Electron Auroral Emission at Approximately 16 MLT During a Large Substorm

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Dombeck, J.; Preiwisch, A.; Thaller, S.; Vo, P.; Wilson, L. B., III; Wygant, J.; Mende, S. B.; Frey, H. U.; Ilie, R.; Lu, G.

    2011-01-01

    During an interval when the interplanetary magnetic field was large and primarily duskward and southward, a stable region of auroral emission was observed on 17 August 2001 by IMAGE at 16 magnetic local time, poleward of the main aurora, for 1 h, from before the onset of a large substorm through the recovery phase. In a region where ions showed the energy dispersion expected for the cusp, strong field \\aligned currents and Poynting flux were observed by Polar (at 1.8 RE in the Southern Hemisphere) as it transited field lines mapping to the auroral spot in the Northern Hemisphere. The data are consistent with the hypothesis that the long \\lasting electron auroral spot maps to the magnetopause region where reconnection was occurring. Under the assumption of conjugacy between the Northern and Southern hemispheres on these field lines, the Polar data suggest that the electrons on these field lines were accelerated by Alfven waves and/or a quasi \\static electric field, primarily at altitudes below a few RE since the in situ Poynting flux (mapped to 100 km) is comparable to the energy flux of the emission while the mapped in situ electron energy flux is much smaller. This event provides the first example of an emission due to electrons accelerated at low altitudes at the foot point of a region of quasi \\steady dayside reconnection. Cluster data in the magnetotail indicate that the Poynting flux from the reconnection region during this substorm is large enough to account for the observed nightside aurora.

  3. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.

  4. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    SciTech Connect

    Jamshidian, M.; Rabczuk, T.

    2014-03-15

    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  5. Electrodynamic parameters in the nighttime sector during auroral substorms

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.

    1994-01-01

    The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each sector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. The downward net current is distributed over wide longitudinal regions from the eastern bulge to the east of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are assoc iated with narrow, intense antisunwqard convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron

  6. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    PubMed

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. PMID:25281688

  7. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    SciTech Connect

    Biswas, Abir; Brooks, Scott C; Miller, Carrie L; Mosher, Jennifer J; Yin, Xiangping Lisa; Drake, Meghan M

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24h before sampling (late addition) resulted in {approx}2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to {approx}3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  8. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    SciTech Connect

    Biswas, Abir; Brooks, Scott C; Miller, Carrie L; Mosher, Jennifer J; Yin, Xiangping Lisa; Drake, Meghan M

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg NOM to growing cultures 24 h before sampling (late addition) resulted in ~2 greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid-and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3 more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  9. Coupled peritectic growth of the {alpha}- and {gamma}-phases in binary titanium aluminides

    SciTech Connect

    Meissen, F.; Busse, P.; Laakmann, J.

    1996-12-31

    Coupled growth during three phase equilibrium solidification is well known from directionally solidified eutectic systems, and was recently generated in monotectic systems. Several theories predict a stationary peritectic reaction and coupled growth of the properitectic and the peritectic phases therefore should be possible. In spite of these theories coupled growth has not been observed up to now. The TiAl system was selected for further investigation on this topic because of its technical relevance and the fact that it meets the condition mentioned for coupled growth. In a Bridgman laboratory furnace, TiAl with 53.4 at.% Al was directionally solidified with solidification rates v between 0.025 mm/min and 0.1 mm/min and a temperature gradient up to 20 K/mm. The resulting microstructures, analyzed using optical and scanning microscopy with EDX and WDX, consist of two phases parallel to the growth direction. At v = 0.05 to 0.1 mm/min, the alloy solidifies as properitectical {alpha}, which subsequently eutectoidally transforms to a substructure of {alpha}{sub 2}-Ti{sub 3}Al and {gamma}-TiAl, and peritectic {gamma}. The lamellar {alpha}{sub 2}/{gamma}-substructure is oriented parallel to the growth direction. The experimental results were compared with the existing theoretical models of a stationary peritectic reaction and the possibility of metastable eutectic growth was discussed.

  10. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE PAGESBeta

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F.; Hilton, David J.

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  11. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide.

    PubMed

    Brady, Nathaniel F; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P; Haglund, Richard F; Hilton, David J

    2016-03-31

    We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of [Formula: see text] ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state. PMID:26932975

  12. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F., Jr.; Hilton, David J.

    2016-03-01

    We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5+/- 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  13. On the correlation between the fast solar wind flow changes and substorm occurrence

    NASA Astrophysics Data System (ADS)

    Semenov, V. S.; Kubyshkina, D. I.; Kubyshkina, M. V.; Kubyshkin, I. V.; Partamies, N.

    2015-07-01

    There is a point of view that solar wind factors, which break the magnetotail symmetry, are more effective in triggering the magnetospheric substorm. To clarify the question we use a database of substorm onsets and found the evident dependence of the substorm probability on the solar wind flow direction jumps (asymmetric factor), while distribution of the substorm occurrence on the solar wind number density jumps (symmetric factor) is homogeneous. The theoretical interpretation is based on the extension of the existing symmetric Kan model for a bent current sheet. Allowing the model tilt angle to vary in time, we found that the induced electric field penetrates to the central region of the bent current sheet. If the solar wind direction jump increases the bending, then induced electric field thins the current sheet and thus stimulates the reconnection. In the opposite case the current sheet thickens. We claim that this effect is sufficient (provides twice or more thinning of the current sheet in 10 min).

  14. Explosive magnetic reconnection - Puzzle to be solved as the energy supply process for magnetospheric substorms?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed.

  15. Electric currents of a substorm current wedge on 24 February 2010

    NASA Astrophysics Data System (ADS)

    Connors, Martin; McPherron, Robert L.; Anderson, Brian J.; Korth, Haje; Russell, Christopher T.; Chu, Xiangning

    2014-07-01

    The three-dimensional "substorm current wedge" (SCW) was postulated by McPherron et al. (1973) to explain substorm magnetic perturbations. The origin and coherence as a physical system of this important paradigm of modern space physics remained unclear, however, with progress hindered by gross undersampling, and uniqueness problems in data inversion. Complementing AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) space-derived radial electric currents with ground magnetic data allowing us to determine currents from the ionosphere up, we overcome problems of uniqueness identified by Fukushima (1969, 1994). For a substorm on 24 February 2010, we quantify SCW development consistently from ground and space data. Its westward electrojet carries 0.5 MA in the more poleward part of the auroral oval, in Region 1 (R1) sense spanning midnight. The evening sector electrojet also feeds into its upward current. We thus validate the SCW concept and obtain parameters needed for quantitative study of substorms.

  16. The Relationship Between Magnetotail Dynamics and Substorm Onset Longitudes Determined from Spacecraft Images

    NASA Technical Reports Server (NTRS)

    Ieda, A.; Fairfield, D. H.; Mukai, T.; Saito, Y.

    1999-01-01

    Geotail plasma and magnetic field observations of plasmoids between 25 and 30 Re have been compared to Polar UVI observations of auroral brightenings. Plasmoids almost always corresponded to brightenings but the brightenings were sometimes weak and spatially limited and did not always grow to a global substorm. Even a case where a plasmoid event occurred with fast post-plasmoid flow corresponded to a weak brightening but no substorm. Some brightenings did not correspond to plasmoids, but these events were observed away from the longitude of Geotail. The plasmoids are observed 0-2 min after the brightenings in most cases. It seems likely that formation of a near-Earth neutral line causes each brightening in the polar ionosphere, but these formations do not have a one-to-one relationship with a substorm onset. What causes development of the full, large-scale substorm remains an open question.

  17. Recent Themis and Coordinated GBO Measurements of Substorm Expansion Onset: Do We Finally Have an Answer?

    NASA Technical Reports Server (NTRS)

    Kepko, Larry

    2011-01-01

    For nearly 30 years an often-times heated debate has engaged the substorm community: Do substorms begin with the formation of a new reconnection site in the midtail plasmasheet (the Near-Earth Neutral Line model) or do they begin near the transition region between stretched tail and dipolar field lines (the Current Disruption model). The THEMIS mission, with a coordinated suite of five in-situ spacecraft and ground observatories. has greatly extended our understanding of how substorms initiate and evolve. But have the new data resolved the fundamental question? In this talk I review the last few year's of substorm research, with an emphasis of how the THEMIS data have revolutionized our understanding.

  18. The physics of plasma injection events. [during magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Kaye, S. M.; Southwood, D. J.

    1980-01-01

    In this paper, plasma injection is defined as an increase of particle flux in a detector of finite bandwidth. Injection can result from dynamic processes or from spacecraft penetration of a quasi-static spatial structure produced by a steady magnetospheric convection pattern. ATS-5 particle spectrograms are found to provide examples of plasma injection events of both sorts. Dynamic injection occurs both with and without local magnetic signatures. For events not associated with clear local magnetic signatures, convection theory with a steady or a time-varying uniform electric field can account for the energy dispersion of injected particles with energy less than 50 keV. The paper concludes with a discussion of the way in which the convection boundaries are related to the substorm injection boundary of Mauk and McIlwain. Several alternative expressions for the local time and K(p) dependence of the injection boundary are given.

  19. Electric field evidence for tailward flow at substorm onset

    NASA Technical Reports Server (NTRS)

    Nishida, A.; Tulunay, Y. K.; Mozer, F. S.; Cattell, C. A.; Hones, E. W., Jr.; Birn, J.

    1983-01-01

    Electric field observations made near the neutral sheet of the magnetotail provide additional support for the view that reconnection occurs in the near-earth region of the tail. Southward turnings of the magnetic field that start at, or shortly after, substorm onsets are accompanied by enhancements in the dawn-to-dusk electric field, resulting in a tailward E x B drift velocity. Both the magnetic and the electric fields in the tailward-flowing plasma are nonuniform and vary with inferred spatial scales of several earth radii in the events examined in this paper. These nonuniformities may be the consequence of the tearing-mode process. The E x B flow was also towards the neutral sheet and away from midnight in the events studied.

  20. Quantitative simulation of a magnetospheric substorm. II - Comparison with observations

    NASA Technical Reports Server (NTRS)

    Harel, M.; Wolf, R. A.; Spiro, R. W.; Reiff, P. H.; Chen, C.-K.; Burke, W. J.; Rich, F. J.; Smiddy, M.

    1981-01-01

    Results of the computer simulation of the behavior of the inner magnetosphere during the substorm-type event of September 19, 1976, are discussed. The computed electric fields are found to compare satisfactorily with electric fields measured from S3-2, although there are detailed differences. The three general features on which the model and observations are in good agreement are (1) the magnitude and direction of the high-latitude electric field, (2) the degree to which the low-latitude ionosphere is shielded from the high-latitude convection electric field, and (3) the fact that the poleward electric field on the duskside is significantly larger, on the average, than the equatorward electric field on the dawnside. Simple formulas are presented that give rough estimates of global Joule heating rates from observable parameters.

  1. Substorm onset identification using neural networks and Pi2 pulsations

    NASA Astrophysics Data System (ADS)

    Sutcliffe, P. R.

    1997-10-01

    The pattern recognition capabilities of artificial neural networks (ANNs) have for the first time been used to identify Pi2 pulsations in magnetometer data, which in turn serve as indicators of substorm onsets and intensifications. The pulsation spectrum was used as input to the ANN and the network was trained to give an output of +1 for Pi2 signatures and -1 for non-Pi2 signatures. In order to evaluate the degree of success of the neural-network procedure for identifying Pi2 pulsations, the ANN was used to scan a number of data sets and the results compared with visual identification of Pi2 signatures. The ANN performed extremely well with a success rate of approximately 90% for Pi2 identification and a timing accuracy generally within 1 min compared to visual identification. A number of potential applications of the neural-network Pi2 scanning procedure are discussed.

  2. Anthropogenic trigger of substorms and energetic particles precipitations

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.; Ruzhin, Yu. Ya.

    2014-12-01

    The high-frequency (HF) emission in near-Earth space from various powerful transmitters (radio communications, radars, broadcasting, universal time and navigation stations, etc.) form an integral part of the modern world that it cannot do without. In particular, special-purpose research facilities equipped with powerful HF transmitters are used successfully for plasma experiments and local modification of the ionosphere. In this work, we are using the results of a complex space-ground experiment to show that exposure of the subauroral region to HF emission can not only cause local changes in the ionosphere, but can also trigger processes in the magnetosphere-ionosphere system that result in intensive substorm activity (precipitations of high-energy particles, aurorae, significant variations in the ionospheric parameters and, as a consequence, in radio propagation conditions).

  3. Substorm warnings - An ISEE-3 real time data system

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Baker, D.

    1979-01-01

    The use of solar wind measurements made by ISEE-3 in its halo orbit around the L1 libration point to predict the onsets of magnetospheric substorms and geomagnetic storms is discussed. Consideration is given to the limitations on the predictive ability of the satellite measurements set by the bulk solar wind velocity, the elliptical orbit of the satellite and the correlation lengths of the magnetic field and the solar wind plasma. The ISEE-3 real-time data system is presented, with attention given to the ground receiving stations, the NASCOM communications system, the Multisatellite Operations Control Center and Information Processing Division at the Goddard Space Flight Center, the link between Goddard and the NOAA Space Environmental Services Center, and the NOAA Space Environment Laboratory data acquisition and display data system, which includes displays allowing storm forecasts. It is noted that the entire system should be operational by March, 1980.

  4. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  5. Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field

    NASA Astrophysics Data System (ADS)

    Dost, Sadik; Lent, Brian; Sheibani, Hamdi; Liu, Yongcai

    2004-05-01

    This review article presents recent developments in Liquid Phase Electroepitaxial (LPEE) growth of bulk single crystals of alloy semiconductors under an applied static magnetic field. The growth rate in LPEE is proportional to the applied electric current. However, at higher electric current levels the growth becomes unstable due to the strong convection occurring in the liquid zone. In order to address this problem, a significant body of research has been performed in recent years to suppress and control the natural convection for the purpose of prolonging the growth process to grow larger crystals. LPEE growth experiments show that the growth rate under an applied static magnetic field is also proportional and increases with the field intensity level. The modeling of LPEE growth under magnetic field was also the subject of interest. Two-dimensional mathematical models developed for the LPEE growth process predicted that the natural convection in the liquid zone would be suppressed almost completely with increasing the magnetic field level. However, experiments and also three-dimensional models have shown that there is an optimum magnetic field level below which the growth process is stable and the convection in the liquid zone is suppressed, but above such a field level the convective flow becomes very strong and leads to unstable growth with unstable interfaces. To cite this article: S. Dost et al., C. R. Mecanique 332 (2004).

  6. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  7. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  8. A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.

    1990-01-01

    A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.

  9. Phase selective growth and characterization of vanadium dioxide films on silicon substrates

    SciTech Connect

    Watanabe, Tomo; Okimura, Kunio; Hajiri, Tetsuya; Kimura, Shin-ichi; Sakai, Joe

    2013-04-28

    We report on selective growth of VO{sub 2} films with M1, M2, and intermediate T phases on silicon (Si) substrates by using inductively coupled plasma (ICP)-assisted sputtering (ICPS) under particular conditions. The film composed of M2 phase was proved to be under strong in-plane compressive stress, which is consistent with stress-induced M2 phase. Crystalline structural phase transition (SPT) properties of these films were demonstrated together with infrared light transmittance as a measure of insulator-metal transition (IMT) against temperature. Characteristic correlations between SPT and IMT for films with M2 and intermediate-T phases were reported. Ultraviolet photoelectron spectroscopy measurements probed an energy gap of the film in the M2 phase at around 0.4 eV from the Fermi level indicating the presence of a Mott gap.

  10. Scaling theory of two-phase dendritic growth in undercooled ternary melts.

    PubMed

    Akamatsu, Silvère; Bottin-Rousseau, Sabine; Faivre, Gabriel; Brener, Efim A

    2014-03-14

    Two-phase dendrites are needlelike crystals with a eutectic internal structure growing during solidification of ternary alloys. We present a scaling theory of these objects based on Ivantsov's theory of dendritic growth and the Jackson-Hunt theory of eutectic growth. The additional introduction of the relationship ρ∼λ (ρ: dendrite tip radius; λ: eutectic interphase spacing) suggested by recent experimental results [S. Akamatsu et al., Phys. Rev. Lett. 104, 056101 (2010)] leads to a complete solution of theselection problem and to the scaling rule ρ∼λ -1/2 (v: dendrite tip growth rate). PMID:24679305

  11. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings. PMID:26274192

  12. Two-dimensional liquid crystalline growth within a phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  13. Growth of different phases of yttrium manganese oxide thin films by pulsed laser deposition

    SciTech Connect

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2012-06-05

    Various phases of yttrium manganese oxide (YMO) thin films have been synthesized on different substrates from a single target of h-YMnO{sub 3}. It is observed that the phase stability and crystallinity of YMO thin films depend on the substrate used and oxygen partial pressure (OPP). (110) oriented and polycrystalline growth of h-YMnO{sub 3} are observed on the Al{sub 2}O{sub 3} (0001) and NGO (110) substrates respectively, when grown in OPP {approx_equal} 10{sup -6} Torr. While for similar OPP value, growth of mixed phases (h-YMnO{sub 3} and o-YMn{sub 2}O{sub 5}) is observed on Si (001) substrate. Oriented growth of O-YMn{sub 2}O{sub 5} phase film on Si (001) substrate is observed first time, when deposited at OPP value of 225 and 350 mTorr. +3 and mixed oxidation states (+3 and +4) of Mn were confirmed by x-ray photoelectron spectroscopy in pure YMnO{sub 3} phase and YMn{sub 2}O{sub 5} phase respectively.

  14. A Model for Rapid Tin Whisker Growth on the Surface of ErSn3 Phase

    NASA Astrophysics Data System (ADS)

    Hao, Hu; Xu, Guangchen; Song, Yonglun; Shi, Yaowu; Guo, Fu

    2012-02-01

    Spontaneous growth of tin whiskers on the finish of leadframes is an extremely slow process under moderate temperature conditions. It therefore becomes difficult to track the continuous growth of tin whiskers and to vary the experimental conditions to determine their root causes. Accordingly, the fundamental growth behaviors of tin whiskers are still not fully understood. In this study, rapid tin whisker growth was achieved by adding 1 wt.% Er to Sn-3.8Ag-0.7Cu solder alloy. The results showed unique tin whisker morphology with nonconstant cross-section. An explanation is proposed by adding kinetic energy to the conventional energy balance equation. In addition, a double compressive stress zone is proposed to demonstrate the driving force for tin whisker growth in rare-earth-bearing phases.

  15. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  16. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    SciTech Connect

    Richter, Wolfgang

    2007-06-14

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ('alchemy') because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  17. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation

    NASA Astrophysics Data System (ADS)

    Sekhon, M.; Lent, B.; Dost, S.

    2016-03-01

    The effect of accelerated crucible rotation technique (ACRT) on liquid phase diffusion (LPD) growth of SixGe1-x crystal has been investigated numerically. Transient, axisymmetric simulations have been carried out for triangular and trapezoidal ACRT cycles. Natural convection driven flow in the early growth hours is found to be modified by the ACRT induced Ekman flow. Results also reveal that a substantial mixing in the solution can be induced by the application of ACRT in the later hours of growth which is otherwise a diffusion dominated growth period for LPD growth technique. A comparison is drawn to the cases of stationary crucible and crucible rotating at a constant speed examined previously for this growth system by Sekhon and Dost (J. Cryst. Growth 430 (2015) 63). It is found that a superior interface flattening effect and radial compositional uniformity along the growth interface can be accomplished by employing ACRT at 12 rpm than that which could be achieved by using steady crucible rotation at 25 rpm, owing to the higher time averaged growth velocity achieved in the former case. Furthermore, minor differences are also predicted in the results obtained for trapezoidal and triangular ACRT cycles.

  18. Growth-Phase-Dependent Expression of Virulence Factors in an M1T1 Clinical Isolate of Streptococcus pyogenes

    PubMed Central

    Unnikrishnan, Meera; Cohen, Jonathan; Sriskandan, Shiranee

    1999-01-01

    The effect of growth phase on expression of virulence-associated factors was studied by Northern hybridization in an M1T1 clinical isolate of Streptococcus pyogenes. Expression of M protein, C5a peptidase, and capsule was maximal in the exponential phase of growth, while streptococcal pyrogenic exotoxins A and B and mitogenic factor were maximally expressed in later phases of growth. PMID:10496938

  19. Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes.

    PubMed

    Unnikrishnan, M; Cohen, J; Sriskandan, S

    1999-10-01

    The effect of growth phase on expression of virulence-associated factors was studied by Northern hybridization in an M1T1 clinical isolate of Streptococcus pyogenes. Expression of M protein, C5a peptidase, and capsule was maximal in the exponential phase of growth, while streptococcal pyrogenic exotoxins A and B and mitogenic factor were maximally expressed in later phases of growth. PMID:10496938

  20. Effect of second phase precipitation on limiting grain growth in alloy 718

    SciTech Connect

    Muralidharan, G.; Thompson, R.G.

    1997-04-01

    Significant work has been performed in the past to understand the role of second phase precipitates on limiting grain growth in alloys. However, there still exist some questions regarding the dependence of the limiting grain size on the volume fraction of the second phase, and on the spatial distribution of the precipitates relative to the grain boundaries. One major aspect of the disagreement has been the functional dependence of the limiting grain size on the volume fraction of the second phase. This aspect has been studied for Inconel 718.

  1. TEM Study of the Growth Mechanism, Phase Transformation, and Core/shell Structure of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Wong, Tai Lun

    In this thesis, the fabrication and characterization of one-dimensional nanostructures have been studied systematically to understand the growth mechanism and structure transformation of one-dimensional nanostructures. The growth behavior of the ultrathin ZnSe nanowires with diameter less than 60 nm was found to be different from classical vapor-liquid-solid (VLS) process. The growth rate increases when the diameter of nanowires decreases, in contrast to the classical VLS process in which the growth rate increases with the diameter. The nucleation, initial growth, growth rates, defects, interface structures and growth direction of the nanowires were investigated by high resolution transmission electron microscopy (HRTEM). We found the structure and growth direction of ultra-thin nanowires are highly sensitive to growth temperatures and diameters of nanowires. At a low growth temperature (380°C), the growth direction for most nanowires is along <111>. Planar defects were found throughout the nanowires. At a high growth temperature (530°C), uniform nanowires with diameters around 10nm were grown along <110> and <112> directions, and the nanowires with diameters larger than 20nm were mainly grown along <111> direction. The possible growth mechanism of ultrathin nanowires was proposed by combining the solid catalytic growth with the interface diffusion theory, in order to explain how the growth temperature and the size of the catalysts influent the morphology, growth direction and growth rate of ultrathin nanowires. Structural and phase transformation of a nickel coated Si nanowire to NiSi2/SiC core-shell nanowire heterostructures has been investigated by the in-situ Transmission Electron Microscope (TEM). The phase transformation is a single-site nucleation process and therefore a single crystalline NiSi2 core resulted in the core-shell nanowire heterostructures. The transformation of the Si nanowire to NiSi2/SiC core-shell nanowire heterostructures was extremely

  2. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  3. Studies of proteinograms in dermatophytes by disc electrophoresis. 1. Protein bands in relation to growth phase

    NASA Technical Reports Server (NTRS)

    Danev, P.; Friedrich, E.; Balabanov, V.

    1983-01-01

    Homogenates were prepared from various growth phases of Microsporum gypseum grown on different amino acids as the nitrogen source. When analyzed on 7.5% polyacrylamide disc gels, the water-soluble proteins in these homogenates gave essentially identical banding patterns.

  4. Growth Kinetics of Intracellular RNA/Protein Droplets: Signature of a Liquid-Liquid Phase Transition?

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.

    2015-03-01

    Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.

  5. Phase-field simulation of gas bubble growth and flow in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Sun, Ying

    2005-11-01

    A diffuse interface model has been developed for gas bubble growth and dynamics in a supersaturated liquid. The liquid becomes supersaturated in the gas species because of a drop in the pressure or temperature. The bubbles grow by gas diffusion in the liquid towards the bubble interfaces. During bubble growth, flows are induced by the large density contrast between the phases. The bubbles coarsen due to surface tension effects. The process widely exists in biological systems, materials processing, oil recovery, and other applications. The flows in the gas and liquid phases are solved using a diffuse interface model for two-phase flows with surface tension, phase change, and density and viscosity differences between the phases. This diffuse-interface model for flow is coupled with a phase-field equation for calculating the interface motion, and a species conservation equation for the gas transport. The model is validated for a single bubble growing inside a semi-infinite liquid, and convergence of the results with respect to the interface width is demonstrated. Large-scale numerical simulations for multiple bubbles inside a Hele-Shaw cell reveal the presence of complex interface dynamics and flows. The bubble dynamics, including coarsening and coalescence, are investigated as a function of the initial gas concentration, surface tension, and the density and viscosity contrasts between the phases.

  6. Effect of growth phase and acid shock on Helicobacter pylori cagA expression.

    PubMed Central

    Karita, M; Tummuru, M K; Wirth, H P; Blaser, M J

    1996-01-01

    Helicobacter pylori strains possessing cagA are associated with peptic ulceration. To understand the regulation of expression of cagA, picB, associated with interleukin-8 induction, and ureA, encoding the small urease subunit, we created gene fusions of cagA, ureA, and picB of strain 3401, using a promoterless reporter (xylE). Expression of XylE after growth in broth culture revealed that basal levels of expression of cagA and urea in H. pylori were substantially greater than for picB. For cagA expression in stationary-phase cells, brief exposure to acid pH caused a significant increase in xylE expression compared with neutral pH. In contrast, expression of xylE in urea or picB decreased after parallel exposure to acid pH (pH 7 > 6 > 5 > 4), regardless of the growth phase. Expression of the CagA protein varied with growth phase and pH exposure in parallel with the observed transcriptional variation. The concentration of CagA in a cell membrane-enriched fraction after growth at pH 6 was significantly higher than after growth at pH 5 or 7. We conclude that the promoterless reporter xylE is useful for studying the regulation of gene expression in H. pylori and that regulation of CagA production occurs mainly at the transcriptional level. PMID:8890198

  7. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces

    NASA Astrophysics Data System (ADS)

    Clark, Daniel S.; Tabak, Max

    2005-11-01

    The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, Phys. Rev. E 71, 055302(R) (2005)]. The spherical case is more relevant to, e.g., inertial confinement fusion or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results. The model predictions are verified by comparison with numerical hydrodynamics simulations.

  8. Growth of AlN layer on patterned sapphire substrate by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Gang Seok; Lee, Chanmi; Jeon, Hunsoo; Lee, Chanbin; Bae, Sung Geun; Ahn, Hyung Soo; Yang, Min; Yi, Sam Nyung; Yu, Young Moon; Lee, Jae Hak; Honda, Yoshio; Sawaki, Nobuhiko; Kim, Suck-Whan

    2016-05-01

    Even though a patterned sapphire substrate (PSS) has been used for the growth of a high-quality epilayer because of its many advantages, it has not been successfully used to grow an AlN epilayer for ultraviolet (UV) light-emitting diodes (LEDs) on a PSS up to now. We report the growth of a high-quality AlN epilayer on a PSS, as a substrate for the manufacture of UV LEDs, by hydride vapor phase epitaxy (HVPE). The X-ray diffraction (XRD) peaks for the AlN epilayer grown on the PSS indicate that crystalline AlN with a wurtzite structure was grown successfully on the PSS. Furthermore, HVPE combining both in situ HVPE technology and liquid-phase epitaxy (LPE) using a mixed source is proposed as a novel method for the growth of a flat AlN epilayer on a PSS.

  9. Grain growth in U-7Mo alloy: A combined first-principles and phase field study

    NASA Astrophysics Data System (ADS)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; O'Hare, Edward; Yacout, Abdellatif M.; Hofman, Gerard; Anitescu, Mihai

    2016-05-01

    Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in U-Mo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects of annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments.

  10. Substorms observations during two geomagnetically active periods in March 2012 and March 2015

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Despirak, I.; Kozelov, B.

    2016-05-01

    In this work two events of strong geomagnetic activity were examined: the period 7-17 March 2012, which is one of the most disturbed periods during the ascending phase of Solar Cycle 24, and the severe geomagnetic storm on 17-20 March 2015. During the first period four consecutive magnetic storms occurred on 7, 9, 12, and 15 March. These storms were caused by Sheath, MC and HSS, and the detailed scenarios for the storms were different. The second event is a storm of fourth level with Kp = 8, the strongest one during the last four years, the so-called "St. Patrick's Day 2015 Event". A geomagnetic storm of such intensity was observed in September 2011. Our analysis was based on the 10-s sampled IMAGE magnetometers data, the 1-min sampled OMNI solar wind and interplanetary magnetic field (IMF) data and observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity. The particularities in the behaviours of substorms connected with different storms during these two interesting strongly disturbed periods are discussed.

  11. TWINS and IBEX Observations of shock-associated Storms and Substorms

    NASA Astrophysics Data System (ADS)

    Valek, P. W.; McComas, D. J.; Dayeh, M. A.; Goldstein, J.; Ogasawara, K.

    2014-12-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) and Interstellar Boundary EXplorer (IBEX) missions provide a unique set of Energetic Neutral Atom (ENA) images of the magnetosphere. The TWINS mission has two spacecraft flown in Molniya orbits (inclination of 63.4, apogees of ~ 7.2 Re). Instruments aboard each spacecraft measure ENAs in the energy range from 1 to 100 keV / amu, and provide composition measurements for energies <~ 32 keV. The phasing of the two TWINS spacecraft allows for near continuous observations of the inner magnetosphere with high temporal (~ 1 min) and spatial (~0.1 Re) resolution. The IBEX mission is equipped with two sensitive ENA cameras designed to observe the interactions between our heliosphere and the interstellar medium. However, its vantage point from outside the magnetosphere (apogee ~ 40 Re in the ecliptic plane) also provides a unique 'outside in' view of the magnetosphere. IBEX images ENAs in the energy range of ~0.4 - 6 keV along a broad cut of the magnetosphere along the GSE-Z direction. The complementary ENA observations from TWINS and IBEX provide a global perspective of the dynamics of the magnetosphere. We present these observations of the global magnetospheric ENA response to shock-associated storms and substorms.

  12. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  13. Multi-point Observations and Modeling of Particle Injections During Substorms

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Woodroffe, J. R.; Jordanova, V.; Harris, C.

    2015-12-01

    Dispersionless and dispersed particle injections associated with substorms have been studied for many years based on observations acquired primarily at geosynchronous orbit. A general picture that has emerged is that particles are energized and rapidly transported/organized behind an "injection boundary" that penetrates closer to Earth in some magnetic local time sector (e.g. the so-called double-spiral injection boundary model). While this picture provides a very good description of injections at geosynchronous orbit, with the launch of the Van Allen Probes mission, we are now able to explore the evolution of injection signatures well inside of geosynchronous orbit at multiple locations as well. We find that the injection boundary model also appears to reproduce a number of complicated types of dispersion patterns observed in the Van Allen Probes particle data. The dispersion patterns are found to depend dramatically on orbital configuration and timing of onset relative to the phasing of the spacecraft in their orbits. In addition to observational results, we present results of simulated dispersion patterns obtained from the injection boundary model using guiding center particle tracing in two different field configurations: 1) a simplistic dipole magnetic field with Volland-Stern electric field, and 2) RAM/SCB running in the Space Weather Modeling Framework.

  14. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  15. Event study combining magnetospheric and ionospheric perspectives of the substorm current wedge modeling

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Nikolaev, A. V.; Kubyshkina, M. V.; Tsyganenko, N. A.; Singer, H. J.; Rodriguez, J. V.; Angelopoulos, V.; Nakamura, R.; Milan, S. E.; Coxon, J. C.; Anderson, B. J.; Korth, H.

    2014-12-01

    Unprecedented spacecraft and instrumental coverage and the isolated nature and distinct step-like development of a substorm on 17 March 2010 has allowed validation of the two-loop substorm current wedge model (SCW2L). We find a close spatiotemporal relationship of the SCW with many other essential signatures of substorm activity in the magnetotail and demonstrate its azimuthally localized structure and stepwise expansion in the magnetotail. We confirm that ground SCW diagnostics makes it possible to reconstruct and organize the azimuthal spatiotemporal substorm development pattern with accuracy better than 1 h magnetic local time (MLT) in the case of medium-scale substorm. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)-based study of global field-aligned current distribution indicates that (a) the SCW-related field-aligned current system consists of simultaneously activated R1- and R2-type currents, (b) their net currents have a R1-sense, and (c) locations of net current peaks are consistent with the SCW edge locations inferred from midlatitude variations. Thanks to good azimuthal coverage of four GOES and three Time History of Events and Macroscale Interactions during Substorms spacecraft, we evaluated the intensities of the SCW R1- and R2-like current loops (using the SCW2L model) obtained from combined magnetospheric and ground midlatitude magnetic observations and found the net currents consistent (within a factor of 2) with the AMPERE-based estimate. We also ran an adaptive magnetospheric model and show that SCW2L model outperforms it in predicting the magnetic configuration changes during substorm dipolarizations.

  16. Effects of a "day-time" substorm on the ionosphere and radio propagation

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskiy, Donat; MacDougall, John, , Dr; Kalishin, Aleksei

    Experimental studies were carried out using data from the Tromso ionosonde, the CUTLASS radar, the IMAGE system of magnetometers, the Finnish riometer chain, and oblique ionospheric sounding on a Murmansk - St. Petersburg path. An example of a day-time substorm with amplitude of about 200 nT for October 25, 2003 from 13:00 to 18:00 UT is described. During the substorm there was a southward movement of the region of particle precipitation causing a band of the irregularities to move to latitudes 62 - 64o. The velocity of displacement southward is about 15o per hour. Oblique ionograms on the Murmansk - St. Petersburg radio path showed diffuse traces caused by scatter due to the spread F, or by refraction from ionospheric gradients. Based on this, and a number of other substorm studies, the following conclusions are: 1) During an intensive substorm, precipitation regions with ionospheric irregularities are displaced to 62 - 64o maqgnetc latitude. 2) Increased absorption during the substorm most likely does not affect the amplitude of obliquely propagating signals. Blocking the F2-reflections by intense sporadic Es-layers with high conductivity plays rather a more important part. 3) The usual mechanism of radio propagation along the great circle arc is sometimes changed from reflections via the F2- and E-layers simultaneously to only the reflection via Es-layer. 4) Lateral oblique signal propagation is not observed for every substorm. It is possible if the path midpoint is located near the precipitation region where there are irregularities which are quickly displaced, during the substorm, from high latitudes to lower.

  17. Modeling the Auroral Precipitation Budget Using the SuperMAG SME Index and Substorm Onset Times

    NASA Astrophysics Data System (ADS)

    Mitchell, E. J.; Newell, P. T.; Gjerloev, J. W.

    2012-12-01

    A precipitation model is introduced, which includes substorm cycle information and the SuperMAG SME (generalized AE) index. 22 years of particle precipitation data from the Defense Meteorological Satellite Program (DMSP) are separated by type (diffuse, monoenergetic, broadband, and ion aurora), magnetic latitude, and magnetic local time. Each bin of data is subjected to multiple linear regression analysis using the SuperMAG SME index (1-minute cadence), the time from the last substorm onset in seconds, and the time to the next substorm onset in seconds. Comparison of the multiple linear regression (MLR) auroral precipitation maps and Polar Ultraviolet Imager images show the MLR auroral precipitation maps capture the brightening and dimming of the nightside aurora but not the morphology of the auroral movement. Thus, this preliminary empirical model with the SuperMAG SME index allows the space weather community access to 25+ years of continuous high-cadence nightside auroral power. Analysis also indicates time dependence in the auroral oval for the dayside diffuse and ion aurora as well as the nightside ion aurora. Some parts of the dayside auroral oval precipitating energy flux depend on the time since the last substorm onset, declining with time. Some parts of the nightside ion auroral oval depend on the time until the next substorm onset, experiencing a decline in precipitating energy flux prior to substorm onset. Ion aurora brightenings, some of which do not correlate with substorm onset, originate in this region of time dependence. The effect of time dependence on the ion auroral brightenings and their correlation to pseudo-breakups is discussed.

  18. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    SciTech Connect

    Ashour-Abdalla, Maha

    2011-01-04

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R{sub E} to 23 R{sub E} in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R{sub E} and x = -15 R{sub E}. In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x {approx}-10 R{sub E}) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  19. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy.

    PubMed

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively. PMID:27575207

  20. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  1. Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    NASA Astrophysics Data System (ADS)

    Kelka, Ulrich; Koehn, Daniel; Beaudoin, Nicolas

    2015-09-01

    In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation in rocks. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration.

  2. Grain Growth and Phase Stability of Nanocrystalline Cubic Zirconia under Ion Irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chongmin; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J

    2010-01-01

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized cubic zirconia (NSZ) are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that the grain growth is not thermally activated and irradiation-induced grain growth is the dominating mechanism. While the cubic structure is retained and no new phases are identified after the high-dose irradiations, oxygen reduction in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. The loss of oxygen suggests a significant increase of oxygen vacancies in nanocrystalline zirconia under ion irradiation. The oxygen deficiency may be essential in stabilizing the cubic phase to larger grain sizes.

  3. Theory and modeling of microstructural evolution in polycrystalline materials: Solute segregation, grain growth and phase transformations

    NASA Astrophysics Data System (ADS)

    Ma, Ning

    2005-11-01

    To accurately predict microstructure evolution and, hence, to synthesis metal and ceramic alloys with desirable properties involves many fundamental as well as practical issues. In the present study, novel theoretical and phase field approaches have been developed to address some of these issues including solute drag and segregation transition at grain boundaries and dislocations, grain growth in systems of anisotropic boundary properties, and precipitate microstructure development in polycrystalline materials. The segregation model has allowed for the prediction of a first-order segregation transition, which could be related to the sharp transition of solute concentration of grain boundary as a function of temperature. The incorporating of interfacial energy and mobility as functions of misorientation and inclination in the phase field model has allowed for the study of concurrent grain growth and texture evolution. The simulation results were analyzed using the concept of local grain boundary energy density, which simplified significantly the development of governing equations for texture controlled grain growth in Ti-6Al-4V. Quantitative phase field modeling techniques have been developed by incorporating thermodynamic and diffusivity databases. The models have been validated against DICTRA simulations in simple 1D problems and applied to simulate realistic microstructural evolutions in Ti-6Al-4V, including grain boundary a and globular a growth and sideplate development under both isothermal aging and continuous cooling conditions. The simulation predictions agree well with experimental observations.

  4. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang Yanwen; Jiang Weilin; Wang Chongmin; Edmondson, Philip D.; Zhu Zihua; Gao Fei; Namavar, Fereydoon; Lian Jie; Weber, William J.

    2010-11-01

    Grain growth, oxygen stoichiometry, and phase stability of nanostructurally stabilized cubic zirconia (NSZ) are investigated under 2 MeV Au-ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with irradiation dose to {approx}30 nm at {approx}35 dpa. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that the grain growth is not thermally activated and irradiation-induced grain growth is the dominating mechanism. While the cubic structure is retained and no new phases are identified after the high-dose irradiations, oxygen reduction in the irradiated NSZ films is detected. The ratio of O to Zr decreases from {approx}2.0 for the as-deposited films to {approx}1.65 after irradiation to {approx}35 dpa. The loss of oxygen suggests a significant increase in oxygen vacancies in nanocrystalline zirconia under ion irradiation. The oxygen deficiency may be essential in stabilizing the cubic phase to larger grain sizes.

  5. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii

    PubMed Central

    Jensen, Sara Munk; Neesgaard, Vinnie Lund; Skjoldbjerg, Sandra Landbo Nedergaard; Brandl, Martin; Ejsing, Christer S.; Treusch, Alexander H.

    2015-01-01

    The functionality of the plasma membrane is essential for all organisms. Adaption to high growth temperatures imposes challenges and Bacteria, Eukarya, and Archaea have developed several mechanisms to cope with these. Hyperthermophilic archaea have earlier been shown to synthesize tetraether membrane lipids with an increased number of cyclopentane moieties at higher growth temperatures. Here we used shotgun lipidomics to study this effect as well as the influence of growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii for the first time. Both species were cultivated at three different temperatures, with samples withdrawn during lag, exponential, and stationary phases. Three abundant tetraether lipid classes and one diether lipid class were monitored. Beside the expected increase in the number of cyclopentane moieties with higher temperature in both archaea, we observed previously unreported changes in the average cyclization of the membrane lipids throughout growth. The average number of cyclopentane moieties showed a significant dip in exponential phase, an observation that might help to resolve the currently debated biosynthesis pathway of tetraether lipids. PMID:26308060

  6. Growth Phase-Dependent Response of Helicobacter pylori to Iron Starvation

    PubMed Central

    Merrell, D. Scott; Thompson, Lucinda J.; Kim, Charles C.; Mitchell, Hazel; Tompkins, Lucy S.; Lee, Adrian; Falkow, Stanley

    2003-01-01

    Iron is an essential nutrient that is often found in extremely limited available quantities within eukaryotic hosts. Because of this, many pathogenic bacteria have developed regulated networks of genes important for iron uptake and storage. In addition, it has been shown that many bacteria use available iron concentrations as a signal to regulate virulence gene expression. We have utilized DNA microarray technology to identify genes of the human pathogen Helicobacter pylori that are differentially regulated on a growth-inhibiting shift to iron starvation conditions. In addition, the growth phase-dependent expression of these genes was investigated by examining both exponential and stationary growth phase cultures. We identified known iron-regulated genes, as well as a number of genes whose regulation by iron concentration was not previously appreciated. Included in the list of regulated factors were the known virulence genes cagA, vacA, and napA. We examined the effect of iron starvation on the motility of H. pylori and found that exponential- and stationary-phase cultures responded differently to the stress. We further found that while growing cells are rapidly killed by iron starvation, stationary-phase cells show a remarkable ability to survive iron depletion. Finally, bioinformatic analysis of the predicted promoter regions of the differentially regulated genes led to identification of several putative Fur boxes, suggesting a direct role for Fur in iron-dependent regulation of these genes. PMID:14573673

  7. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  8. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-04-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  9. An observational study regarding the rate of growth in vertical and radial growth phase superficial spreading melanomas

    PubMed Central

    Betti, Roberto; Agape, Elena; Vergani, Raffaella; Moneghini, Laura; Cerri, Amilcare

    2016-01-01

    The natural history of superficial spreading melanomas (SSMs) involves the progression from a radial growth phase (RGP) to a vertical growth phase (VGP). Currently, a patient's history represents the only method to estimate the rate of tumor growth. The present study aimed to verify whether the estimated rate of growth (ROG) of SSMs with a RGP or VGP exhibited any differences, and to evaluate the possible implications for the most important prognostic determinants. ROG was quantified as the ratio between Breslow's thickness in millimeters (mm) and the time of tumor growth in months, defined as the time between the date that the patient had first noticed the lesion in which melanoma subsequently developed and the date on which the patient first felt this lesion changed. A total of 105 patients (58 male and 47 female) were studied. Of these, 66 had VGP-SSMs, whilst 39 had RGP-only SSMs (RGP-SSMs). No significant differences in age and gender were observed between these groups. The mean Breslow's thickness in patients with VGP-SSMs was significantly greater than in patients with RGP-SSMs (0.78±0.68 vs. 0.48±0.22 mm, P=0.0096). Similarly, the ROG was observed to be higher in VGP-SSM vs. RGP-SSM patients (0.13±0.16 vs. 0.065±0.09 mm/month, P=0.0244). In patients with VGP-SSMs, Breslow's thickness and ROG were significantly higher for tumors with a mitotic rate of ≥1 mitosis/mm2 compared with those with <1 mitosis/mm2 (1.15±0.96 vs. 0.56±0.30 mm, P=0.0005; and 0.188±0.20 vs. 0.09±0.12 mm/month, P=0.0228, respectively). According to these results, two subsets of SSMs exist: The first is characterized by the presence of mitosis and a higher ROG, while the second exhibits a more indolent behavior and is characterized by an RGP only. Given the differences in the Breslow's thickness and ROG, clinicians must be aware of the possible diagnostic delay in these subsets of melanoma that, differently from true nodular melanomas, generally fulfill the classical ABCD

  10. Kinetics modeling and growth of Si layers by Liquid Phase Epitaxy Driven by Solvent Evaporation (LPESE)

    NASA Astrophysics Data System (ADS)

    Giraud, S.; Duffar, T.; Pihan, E.; Fave, A.

    2015-12-01

    Crystalline Si thin films on low-cost substrates are expected to be an alternative to bulk Si for PV applications. Liquid Phase Epitaxy (LPE) is one of the most suitable techniques for the growth of high quality Si layers since LPE is performed under almost equilibrium conditions. We investigated a growth technology which allows growing Si epitaxial thin films in steady temperature conditions through the control of solvent evaporation from a metallic solution saturated with silicon: Liquid Phase Epitaxy by Solvent Evaporation (LPESE). An analytical model aiming to predict solvent evaporation and Si crystallization rate is described and discussed for three solvents (Sn, In and Cu). Growth experiments are implemented in order to check the validity of the model. Experimental set up and growth procedure are presented. Si thin films were grown from Sn-Si and In-Si solution at temperatures between 900 and 1200 °C under high vacuum. The predicted solvent evaporation rate and Si growth rate are in agreement with the experimental measurements.

  11. Acceleration and Deceleration Phase Nonlinear Rayleigh-Taylor Growth at Spherical Interfaces

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2005-10-01

    The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, Phys. Rev. E 71, 055302(R) (2005).]. The spherical case is more relevant to, e.g., Inertial Confinement Fusion (ICF) or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results, and the model predictions are verified by comparison with numerical hydrodynamics simulations. The new nonlinear growth rates are also incorporated into a Haan-type saturation model to give improved predictions of multi-mode saturated growth for ICF capsules.

  12. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  13. Direct observations of sigma phase growth and dissolution in 2205 duplex stainless steel

    SciTech Connect

    Palmer, T.A.; Elmer, J.W.; Babu, S.S.; Specht, E.D.

    2007-10-10

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  14. Direct Observations of Sigma Phase Growth and Dissolution in 2205 Duplex Stainless Steel

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S; Specht, E

    2005-06-14

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  15. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  16. Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles

    PubMed Central

    Gray, Erin M.; Díaz-Vázquez, Gladys; Veatch, Sarah L.

    2015-01-01

    Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane

  17. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  18. Demonstrating the Temperature Gradient Impact on Grain Growth in UO2 Using the Phase Field Method

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; Xianming Bai; Paul C Millett

    2014-01-01

    Grain boundaries (GBs) are driven to migrate up a temperature gradient. In this work, we use a phase field (PF) model to investigate the impact of temperature gradients on normal grain growth. GB motion in 2D UO2 polycrystals is predicted under increasing temperature gradients. We find that the temperature gradient does not significantly impact the average grain growth behavior, because the curvature driving force is dominant. However, it does cause significant local migration of the individual grains. In addition, the change in the GB mobility due to the temperature gradient results in larger grains in the hot portion of the polycrystal.

  19. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    NASA Astrophysics Data System (ADS)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  20. Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochen; Zhang, Hongzhou; Xu, Jun; Zhao, Qing; Wang, Rongming; Yu, Dapeng

    2004-03-01

    ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.

  1. Reconnection in substorms and solar flares: analogies and differences

    SciTech Connect

    Birn, Joachim

    2008-01-01

    Magnetic reconnection is the crucial process in the release of magnetic energy associated with magnetospheric substorms and with solar flares. On the basis of three-dimensional resistive MHD simulations we investigate similarities and differences between the two scenarios. We address in particular mechanisms that lead to the onset of reconnection and on energy release, transport, and conversion mechanisms. Analogous processes might exist in the motion of field line footpoints on the sun and in magnetic flux addition to the magnetotail. In both cases such processes might lead to a loss of neighboring equilibrium, characterized by the formation of very thin embedded current sheet, which acts as trigger for reconnection. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer associated with reconnection. The dominant transfer of released magnetic energy occurs to electromagnetic energy (Poynting) flux and to thermal energy transport as enthalpy flux. The former dominates in low-beta, specifically initially force-free current sheets expected for the solar corona, while the latter dominates in high-beta current sheets, such as the magnetotail. In both cases the outflow from the reconnection site becomes bursty, i.e. spatially and temporally localized, yet carrying most of the outflow energy. Hence an analogy might exist between bursty bulk flows (BBFs) in the magnetotail and pulses of Poynting flux in solar flares.

  2. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  3. Modeling Substorm Injections with a Simple Magnetotail model

    NASA Astrophysics Data System (ADS)

    Kabin, Konstantin; Spanswick, Emma; Donovan, Eric; Kalugin, German

    2016-07-01

    Magnetotail dipolarizations, often associated with substorms, produce significant energetic particle enhancements in the night-time magnetosphere. We developed a simple yet self-consistent model for the electric and magnetic fields during dipolarizations, which is based on our earlier work (Kabin et al., JGR 2010). This model is very flexible and is particularly well suited for describing transition from the dipole-like to tail-like magnetic fields. We perform test particle simulations in the electric and magnetic fields specified by the model and find substantial energization of both electron and protons associated with the motion of this transition region. This energy gain is sufficient to explain many features of Dispersionless Injections. The energization of the particles is caused by betatron acceleration due to both the local increases in the magnetotail field strength during a dipolarization and to the particles drift closer to the Earth. In some cases the energy of an electron was found to increase by a factor of 25 or more. Our results are particularly well suited for comparison with riometer observations which often show clear signatures of Dispersionless Injections.

  4. Global Remote Sensing of Precipitating Electron Energies: A Comparison of Substorms and Pressure Pulse Related Intensifications

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M. J.; Germany, G. A.; Spann, J. F.

    2000-01-01

    The Polar Ultraviolet Imager (UVI) observes aurora responses to incident solar wind pressure pulses and interplanetary shocks such its those associated with coronal mass ejections. Previous observations have demonstrated that the arrival of it pressure pulse at the front of the magnetosphere results in highly disturbed geomagnetic conditions and a substantial increase in both dayside and nightside aurora precipitations. Our observations show it simultaneous brightening over bread areas of the dayside and nightside auroral in response to a pressure pulse, indicating that more magnetospheric regions participate as sources for auroral precipitation than during isolate substorm. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated event to those during isolated substorms. We estimate the characteristic energies of incident auroral electrons using Polar UVI images and compare the precipitation energies during pressure pulse associated events to those during isolated auroral substorms. Electron precipitation during substorms has characteristic energies greater than 10 KeV and is structured both in local time and in magnetic latitude. For auroral intensifications following the arrival of'a pressure pulse or interplanetary shock. Electron precipitation is less spatially structured and has greater flux of lower characteristic energy electrons (Echar less than 7 KeV) than during isolated substorm onsets. These observations quantify the differences between global and local auroral precipitation processes and will provide a valuable experimental check for models of sudden storm commencements and magnetospheric response to perturbations in the solar wind.

  5. Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, D. L.; Anderson, P. C.

    2005-01-01

    We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.

  6. Substorm related CNA near equatorward boundary of the auroral oval in relation to interplanetary conditions

    NASA Astrophysics Data System (ADS)

    Behera, Jayanta K.; Sinha, Ashwini K.; Singh, Anand K.; Vichare, Geeta; Dhar, Ajay; Labde, Sachin; Jeeva, K.

    2015-07-01

    Cosmic noise absorption (CNA) at high latitudes is a typical manifestation of enhanced precipitation of energetic charged particles during the course of a magnetospheric substorm. Present analysis demonstrates the energetic particles precipitate to the high latitude ionosphere during substorms, affecting upper and lower regions of the ionosphere simultaneously. Previous studies have reported that intense and short-lived CNA events associated with substorms are mostly observed in the midnight sector of the auroral oval. In the current study, we have examined such type of CNA events predominantly occurring during 0000-0600 UT (2300-0500 MLT) at an Indian Antarctic station Maitri (corrected geomagnetic (CGM) coordinates 62.59°S, 53.59°E), which is located at the equatorward edge of the auroral oval. Absorption events related to isolated substorm and storm-time substorms exhibit distinct features in terms of their intensity and extent in latitude and longitude. Our study suggests that the maximum intensity of CNAs depends on the interplanetary conditions, such as, the solar wind speed, southward component of IMF Bz, and duskward component of IEF Ey. Moreover, the role of duskward component of IEF Ey is more noteworthy than other interplanetary parameters.

  7. GEOTAIL and POLAR Observations of Auroral Kilometric Radiation and Terrestrial Low Frequency Bursts and their Relationship to Energetic Particles, Auroras, and Other Substorm Phenomena

    NASA Technical Reports Server (NTRS)

    Anderson, R . R.; Gurnett, D. A.; Frank, L. A.; Thomsen, Michelle F.; Parks, G. K.; Brittnacher, M. J.; Spann, James F., Jr.; Imhoff, W. L.; Mobilia, J. H.

    1999-01-01

    Terrestrial low frequency (LF) bursts are plasma wave phenomena that appear to be a part of the low frequency end of the auroral kilometric radiation (AKR) spectrum and are observed during strong substorms, GEOTAIL and POLAR plasma wave observations from within the magnetosphere show that the AKR increases in intensity and its lower frequency limits decrease when LF bursts are observed. The first is expected as it is shows substorm onset and the latter indicates that the AKR source region is expanding to higher altitudes. Images from the POLAR VIS Earth Camera operating in the far-UV range and the POLAR UVI experiment usually feature an auroral brightening and an expansion of the aurora to higher latitudes at the time of the LF bursts. Enhanced fluxes of X-rays from precipitating electrons have also been observed by POLAR PIXIE. High resolution ground Abstract: magnetometer data from the CANOPUS and IMAGE networks show that the LF bursts occur when the expansive phase onset signatures are most intense. The ground magnetometer data and the CANOPUS meridian scanning photometer data sometimes show that during the LF burst events the expansive phase onset starts at unusually low latitudes and moves poleward. Large injections of energetic protons and electrons have also been detected by the GOES and LANL geosynchronous satellites during LF burst events. While most of the auroral brightenings and energetic particle injections associated with the LF bursts occur near local midnight, several have been observed as early as mid-afternoon. From these various measurements, we are achieving a better understanding of the plasma and particle motions during substorms that are associated with the generation and propagation of terrestrial LF bursts

  8. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    NASA Astrophysics Data System (ADS)

    Sakane, S.; Takaki, T.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated.

  9. Growth and phase velocity of self-modulated beam-driven plasma waves

    SciTech Connect

    Benedetti, Carlo; Esarey, Eric; Gruener, Florian; Leemans, Wim

    2011-09-20

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly-coupled regime, dephasing is reached in a homogeneous plasma in less than four e-foldings, independent of beam-plasma parameters.

  10. Effect of cloud microphysics on particle growth under mixed phase conditions

    NASA Astrophysics Data System (ADS)

    Pfitzenmaier, Lukas; Dufournet, Yann; Unal, Christine; Russchenberg, Herman; Myagkov, Alexander; Seifert, Patric

    2015-04-01

    Mixed phase clouds contain both ice particles and super-cooled cloud water droplets in the same volume of air. Currently, one of the main challenges is to observe and understand how ice particles grow by interacting with liquid water within the mixed-phase clouds. In the mid latitudes this process is one of the most efficient processes for precipitation formation. It is particularly important to understand under which conditions growth processes are most efficient within such clouds. The observation of microphysical cloud properties from the ground is one possible approach to study the liquid-ice interaction that play a role on the ice crystal growth processes. The study presented here is based on a ground-based multi-sensor technique. Dataset of this study was taken during the ACCEPT campaign (Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques) at Cabauw The Netherlands, autumn 2014. Measurements with the Transportable Atmospheric RAdar (TARA), S-band precipitation radar profiler, from the Delft Technical University, and Ka-band cloud radar systems were performed in cooperation with the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. All the radar systems had full Doppler capabilities. In addition , TARA and one of the Ka-band radar systems had full polarimetric capabilities as well, in order to get information of the ice phase within mixed-phase cloud systems. Lidar, microwave radiometer and radiosonde measurements were combined to describe the liquid phase within such clouds. So a whole characterisation of microphysical processes within mixed-phase cloud systems could be done. This study shows how such a combination of instruments is used to: - Detect the liquid layer within the ice clouds - Describe the microphysical conditions for ice particle growth within mixed phase clouds based on cloud hydrometeor shape, size, number concentration obtained from measurements The project aims to observe

  11. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  12. Nucleation and growth of dense phase in compressed MgB2

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Bevan, A. I.; Abell, J. S.

    2006-06-01

    We report nucleation and growth of dense MgB2 phase in two advanced methods for compacting MgB2 powder: hot isostatic pressing (HIP) and resistive sintering (RS). Both methods produce a compact with nearly theoretical mass density and high critical current density: up to 8 . 105 A/cm2 at 20 K. A liquid phase is responsible for the propagation of dense MgB2. The additions of Mg and Ni are beneficial for rapid formation of dense compact. The process of compacting is further improved by introducing single crystal-dense MgB2 seeds.

  13. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; McEntire, R. W.; Iijima, T.

    1992-12-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  14. Growth and phase velocity of self-modulated beam-driven plasma waves.

    PubMed

    Schroeder, C B; Benedetti, C; Esarey, E; Grüner, F J; Leemans, W P

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters. PMID:22107202

  15. Growth and Phase Velocity of Self-Modulated Beam-Driven Plasma Waves

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.; Gruener, F. J.

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters.

  16. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    NASA Astrophysics Data System (ADS)

    Dorogov, M. V.; Priezzheva, A. N.; Vlassov, S.; Kink, I.; Shulga, E.; Dorogin, L. M.; Lõhmus, R.; Tyurkov, M. N.; Vikarchuk, A. A.; Romanov, A. E.

    2015-08-01

    We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu2O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  17. Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations

    NASA Astrophysics Data System (ADS)

    Dods, J.; Chapman, S. C.; Gjerloev, J. W.

    2015-09-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of the observed qualitative auroral features seen in ground-based magnetometers. This paper focuses on the quantitative characterization of substorm dynamics captured by ground-based magnetometer stations. We present the first analysis of substorms using dynamical networks obtained from the full available set of ground-based magnetometer observations in the Northern Hemisphere. The stations are connected in the network when the correlation between the vector magnetometer time series from pairs of stations within a running time window exceeds a threshold. Dimensionless parameters can then be obtained that characterize the network and by extension, the spatiotemporal dynamics of the substorm under observation. We analyze four isolated substorm test cases as well as a steady magnetic convection (SMC) event and a day in which no substorms occur. These test case substorms are found to give a consistent characteristic network response at onset in terms of their spatial correlation. Such responses are differentiable from responses to the SMC event and nonsubstorm times. We present a method to optimize network parametrization with respect to the different individual station responses, the spatial inhomogeneity of stations in the Northern Hemisphere, and the choice of correlation window sizes. Our results suggest that dynamical network analysis has potential to quantitatively categorize substorms.

  18. An integrated model for predictive microbiology and simultaneous determination of lag phase duration and exponential growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The development of the mathematical model was based on the fundamental phenomenon of microbial growth, which is normally a three-stage process that includes lag, exponential, and stationary phases...

  19. Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation.

    PubMed

    Zhang, Xuezhi; Amendola, Pasquale; Hewson, John C; Sommerfeld, Milton; Hu, Qiang

    2012-07-01

    The effects of changes in cellular characteristics and dissolved organic matter (DOM) on dissolved air flotation (DAF) harvesting of Chlorella zofingiensis at the different growth phases were studied. Harvesting efficiency increased with Al(3+) dosage and reached more than 90%, regardless of growth phases. In the absence of DOM, the ratio of Al(3+) dosage to surface functional group concentration determined the harvesting efficiency. DOM in the culture medium competed with algal cell surface functional groups for Al(3+), and more Al(3+) was required for cultures with DOM than for DOM-free cultures to achieve the same harvesting efficiency. As the culture aged, the increase of Al(3+) dosage due to increased DOM was less than the decrease of Al(3+) dosage associated with reduced cell surface functional groups, resulting in overall reduced demand for Al(3+). The interdependency of Al(3+) dosage and harvesting efficiency on concentrations of cell surface functional groups and DOM was successfully modeled. PMID:22541950

  20. Substrate orientation dependence on the solid phase epitaxial growth rate of Ge

    NASA Astrophysics Data System (ADS)

    Darby, B. L.; Yates, B. R.; Martin-Bragado, I.; Gomez-Selles, J. L.; Elliman, R. G.; Jones, K. S.

    2013-01-01

    The solid phase epitaxial growth process has been studied at 330 °C by transmission electron microscopy for Ge wafers polished at 10°-15° increments from the [001] to [011] orientations. The velocity showed a strong dependence on substrate orientation with the [001] direction displaying a velocity 16 times greater than the [111] direction. A lattice kinetic Monte Carlo model was used to simulate solid phase epitaxial growth (SPEG) rates at different orientations, and simulations compared well with experimental results. Cross sectional transmission electron microscopy and plan view transmission electron microscopy revealed stacking fault and twin defect formation in the [111] orientation where all other orientations showed only hairpin dislocations. The twin defects formed from Ge SPEG were comparatively less dense than what has previously been reported for Si, which gave rise to higher normalized velocities and a constant [111] SPEG velocity for Ge.

  1. A phase-field/Monte-Carlo model describing organic crystal growth from solution. Investigation of the diffusion-influenced growth of hydroquinone crystals

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Yürüdü, C.; Ulrich, J.; Emmerich, H.

    2009-08-01

    In this paper work we present a phase-field/Monte-Carlo hybrid algorithm for the simulation of solutal growth of organic crystals. The algorithm is subsequently used for an investigation of diffusion effects on the growth mechanisms. This method combines a two-scale phase-field model of the liquid phase epitaxial growth and a Monte-Carlo algorithm of the 2D nucleation and thus is faster than previous purely Monte Carlo simulations of crystal growth. The inclusion of supersaturation and diffusion in the method allows the study of crystal growth under various growth conditions. Parameters used in the hybrid algorithm are bound to the energetic parameters of crystal faces, which can be estimated from a detailed study of the actual crystal structure based on a connected nets analysis, which allows the prediction of the shape and morphology of real crystals. The study of the diffusion effect is carried out based on an example of a hydroquinone crystal, which grows from the water solution at various supersaturations. The dependencies of the growth rate and the nucleation rate on the supersaturation indicate the change of the growth mechanism from spiral growth to 2D nucleation. The difference in the growth rate for various faces is in agreement with the crystal morphologies derived from the attachment energy method and observed experimentally. The main result of the simulation is the evaluation of engineering limits for choosing appropriate external process conditions.

  2. Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods

    PubMed Central

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and

  3. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    PubMed

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and

  4. CDAW 7 revisited - Further evidence for the creation of a near-earth substorm neutral line. [Coordinated Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Kettmann, G.; Fritz, T. A.; Hones, E. W., Jr.

    1990-01-01

    Eastman et al. (1988) have interpreted the CDAW 7 substorm of April 24, 1979, previously taken as unambiguously supporting the near-earth neutral line model of magnetospheric substorms, in terms of spatial movements of a preexisting plasma-sheet boundary layer (PSBL) and its associated current sheets across the observing ISEE 1 and 2 spacercraft. It is presently noted that, by contrast, a reinvestigation of ISEE 1 and 2 energetic particle measurements around substorm onset on short time-scales shows the observed flux pattern to require the formation of a particle source eastward of the ISEE spacecraft, well within the plasma sheet, associated with the substorm onset. Strong flows were absent prior to substorm onset, indicating the temporal nature of the event, as opposed to an encounter with a preexisting PSBL containing large flows.

  5. Growth of vertical-cavity surface emitting lasers by metalorganic vapor phase epitaxy

    SciTech Connect

    Hou, H.Q.; Hammons, B.E.; Crawford, M.H.; Lear, K.L.; Choquette, K.D.

    1996-10-01

    We present growth and characterization of visible and near-infrared vertical-cavity surface emitting lasers (VCSELs) grown by metalorganic vapor phase epitaxy. Discussions on the growth issue of VCSEL materials include growth rate and composition control using an {ital in}{ital situ} normal-incidence reflectometer, comprehensive p- and n-type doping study in AlGaAs by CCl{sub 4} and Si{sub 2}H{sub 6} over the entire composition range, and optimization of ultra-high material uniformity. We also demonstrate our recent achievements of all-AlGaAs VCSELs which include the first room-temperature continuous- wave demonstration of 700-nm red VCSELs and high-efficiency and low- threshold voltage 850-nm VCSELs.

  6. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Narayanan, S.; Pandey, R. K.

    1992-01-01

    Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19O(x) and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the LPE experiments. The temperature regime of 850 to 830 C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100 percent reflectivity in infrared regions at liquid nitrogen temperature.

  7. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  8. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression.

    PubMed Central

    Dorman, C J; Barr, G C; Bhriain, N N; Higgins, C F

    1988-01-01

    We show that several interacting environmental factors influence the topology of intracellular DNA. Negative supercoiling of DNA in vivo is increased by anaerobic growth and is also influenced by growth phase. The tonB promoter of Escherichia coli and Salmonella typhimurium was found to be highly sensitive to changes in DNA supercoiling. Expression was increased by novobiocin, an inhibitor of DNA gyrase, and was decreased by factors which increase DNA superhelicity. Expression of the plasmid-encoded tonB gene was enhanced by gamma delta insertions in cis in a distance- and orientation-independent fashion. Both the res site and the TnpR protein of gamma delta, which is known to function as a type I topoisomerase, were required for this activation. tonB expression increased during the growth cycle and was reduced by anaerobiosis. There was excellent correlation between tonB expression from a plasmid and the level of supercoiling of that plasmid under a wide range of conditions. The chromosomal tonB gene was regulated in a manner identical to that of the plasmid-encoded gene. Thus, the physiological regulation of tonB expression in response to anaerobiosis and growth phase appears to be mediated by environmentally induced changes in DNA superhelicity. Images PMID:2836373

  9. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  10. Convection dynamics and driving mechanism of a small substorm during dominantly IMF By+, Bz+ conditions

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Sofko, G. J.; Donovan, E. F.; Watanabe, M.; Greenwald, R. A.

    2004-04-01

    Ground-based optical, magnetic and radar measurements detected a small substorm on October 9, 2000. Solar wind observations on GEOTAIL revealed a prolonged dominant Bz+ and steady By+ interplanetary magnetic field (IMF) prior to the substorm onset, except for a southward excursion at 0645-0655 UT, and a ``square-wave'' IMF Bx-By structure at 0727-0735 UT. We find that the IMF southward excursion led to the dayside convection enhancement and energy transport into the magnetosphere. When the dayside convection decreased, two pseudobreakups occurred as the consequence of the release of magnetospheric energy into the ionosphere. The substorm onset was associated with the IMF Bx-By structure in ``directly driven'' fashion. There was also a Stage-2 expansion which was internally driven within the magnetotail.

  11. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  12. Observations of plasma sheet expansion at substorm onset, R = 15 to 22 Re

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Huang, C. Y.

    1992-01-01

    We have used a large number of auroral magnetograms to identify four isolated substorms and estimate their onset times. At the onsets, ISEE-1 was in the vicinity of magnetic midnight at radial distances of 15.6 to 21.8 Re and very near the outer boundary of the plasma sheet. We find that, for each event, the plasma sheet expanded, and the magnetic field dipolarized at the inferred onset time. Our most definitive event occurred while ISEE was at a geocentric radial distance of 21.8 Re. This result conflicts with previous understanding, though further verification of the result is required. Our observations show very similar characteristics to those observed at synchronous orbit, and they are consistent with an extension of a portion of the substorm current wedge to the radial distance of the satellite. If this explanation is correct, ISEE must have been within the longitude range of the substorm current wedge at the onsets.

  13. Energy supply processes for magnetospheric substorms and solar flares - Tippy bucket model or pitcher model?

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-01-01

    In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called 'tippy-bucket model', which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the 'pitcher model' in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.

  14. INTERNAL VS EXTERNAL SUBSTORM TRIGGERS: TRANSFER ENTROPY AS A MEASURE OF CAUSALITY

    NASA Astrophysics Data System (ADS)

    Snider, R.; Johnson, J.; Wing, S.; Echim, M.

    2009-12-01

    We examine the expanded substorm dataset compiled by Frey [J. Geophys. Res., 109, A10304, 2004] to evaluate the question of internal vs external triggering of substorms [see Hsu and McPherron, J. Geophys. Res., 107, 1398, 2002; Morley and Freeman, Geophys. Res. Lett., 34, L08104, 2006] using transfer entropy as a measure of causality. Transfer entropy is particularly useful to identify causal relationships in data sets because: (a) it is highly directional, (b) it includes higher order, nonlinear correlations, and (c) it can distinguish between variables that are correlated because of a common driver and variables that are causally correlated. We discuss how these properties of transfer entropy are useful for analysis of space data sets, and we examine the extent to which solar wind fluctuations are causally related to substorm onset.

  15. Recent THEMIS and Coordinated GBO Measurements of Substorm Expansion Onset: Do We Finally Have an Answer?

    NASA Technical Reports Server (NTRS)

    Kepko, L.

    2011-01-01

    For nearly 30 years an often-times heated debate has engaged the substorm community: Do substorms begin with the formation of a new reconnection site in the midtail plasma sheet (the Near-Earth Neutral Line model) or do they begin near the transition region between stretched tail and dipolar field lines (the Current Disruption model). The THEMIS mission, with a coordinated suite of five in-situ spacecraft and ground observatories, has greatly extended our understanding of how substorms initiate and evolve. But have the new data resolved the fundamental question? In this talk I review the last few year's of sub storm research, with an emphasis of how the THEMIS data have revolutionized our understanding.

  16. Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field

    NASA Astrophysics Data System (ADS)

    Sheibani, Hamdi

    2002-01-01

    Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques

  17. Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980-85): evidence of longitudinal anomaly

    NASA Astrophysics Data System (ADS)

    Hajkowicz, L. A.

    1996-09-01

    The equatorial ionospheric response to 228 isolated, rapid-onset auroral substorms (as defined from the auroral electrojet index AE) was found from enhancements of the virtual (minimum) height of the F-region (h(') F) in the declining phase of a solar cycle (1980-85). The responses, found for three longitudinal sectors at the equator: Africa (Ouagadougou and Dakar), Asia (Manila) and America (Huancayo), were compared with the response close to the auroral source region at Yakutsk (northern Siberia). The auroral substorm onsets were centered at 17 and 15 UT at sunspot maximum (1980-82) and minimum (1983-85), preceding by 3-5 h the period of post-sunset height rise in the African sector whereas other sectors were in the early afternoon (Huancayo) and morning (Manila). The African response, particularly at Ouagadougou, was distinctly different from other sectors. In the sunspot maximum years (1980-81) the auroral surges were followed after about 3 h by a sharp depression (h(') F<0) in the post-sunset height rise, with a period of little or no response (h(') F=0) in 1982. A response polarity reversal (h(') F>0) was noted in this sector for sunspot minimum (1983-85) when large h(') F enhancements were observed at the sunset region. The responses in the Asian and American sector were positive except for a case in Huancayo when response was negative, following an auroral surge before the sunset at this station. It appears that the aurorally generated large-scale travelling ionospheric disturbances (LSTIDs), which first cause positive height enhancements in a sub-auroral location (Yakutsk), subsequently affect the unstable post-sunset ionosphere in the equatorial Africa.

  18. Statistical analysis of dayside equatorial ionospheric electric fields and electrojet currents produced by magnetospheric substorms during sawtooth events

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2012-02-01

    Substorms cause significant disturbances in the ionosphere. However, it has not been well understood how the electric field and electrojet in the dayside equatorial ionosphere respond to substorm onset. Previous studies found that the equatorial electric field, after substorm onset, could be eastward or westward. Because the onset of isolated substorms is often related to a northward turning of the interplanetary magnetic field (IMF), the measured total electric field is determined by contributions from both IMF northward turning and substorm onset and is not necessarily the signature of the onset. In order to exclude the effect of IMF northward turning, we analyze the variations of ionospheric electric field and electrojet during storm time substorms when the IMF remains stable. Thus, the ionospheric variations can be identified to be caused solely by substorms. The electric field data are measured by the Jicamarca radar, and the electrojet is derived from magnetometers at Jicamarca and Piura. It is found that substorm onset induces an eastward electric field and electrojet in the dayside equatorial ionosphere when the IMF remains continuously southward across the onset. The equatorial electrojet starts to increase at the onset, reaches a maximum value ˜30 min after the onset, and then decreases to the pre-onset value ˜60 min after the onset. Westward electric field and counter-electrojet occur only if the substorm onset is associated with a northward turning of the IMF. It is concluded that the effect of substorm onset on the dayside equatorial ionosphere, without involvement of IMF reorientations, is an enhanced eastward electric field.

  19. Transcriptional Characterization of Salmonella TAl00 in Growth and Stationary Phase: Mutagenesis of MX in Both Types of Cells

    EPA Science Inventory

    The Salmonella (Ames) mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed ...

  20. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the s