Science.gov

Sample records for substrate thermal resistance

  1. Impact of nucleation density on thermal resistance near diamond-substrate boundaries

    SciTech Connect

    Touzelbaev, M.N.; Goodson, K.E.

    1996-12-31

    Existing theory cannot account for the experimentally-observed thermal boundary resistance between deposited layers and substrates at room temperature. This is due to microstructural disorder in the deposited film within tens of nanometers of the interface. This work develops a model for the resulting thermal resistance near diamond-substrate interfaces, where the best deposition processes continue to yield high concentrations of amorphous inclusions and nanocrystalline material. The model relies on phonon transport theory and a novel subdivision of the near-interfacial region, which shows that the resistance is governed by the number of diamond nucleation sites per unit substrate area, i.e. The nucleation density. The predictions are consistent with experimental data for diamond-silicon interfaces and indicate that the resistance reaches a minimum for a nucleation density near 10{sup 10} cm{sup {minus}2}. This work facilitates the development microstructures that benefit more strongly from the excellent thermal-conduction properties of diamond.

  2. Predominance of thermal contact resistance in a silicon nanowire on a planar substrate

    NASA Astrophysics Data System (ADS)

    Chalopin, Yann; Gillet, Jean-Numa; Volz, Sebastian

    2008-06-01

    At low temperatures, thermal transport in single crystalline nanowires with sub-10-nm diameters is defined in terms of the universal quantum of conductance. In the case of a nanowire connected to plane substrates, additional conductances appear due to the contacts. We calculate the contact conductances and prove that they are much smaller than the conductance of the nanowire. The reason is that the number of excited modes per unit volume in the substrates becomes smaller than the one in the wire at low temperatures. The substrate then generates the predominant thermal resistance because its specific heat becomes smaller than the one of the wire. From these considerations, the wire-membrane and membrane-plane substrate thermal conductances can also be predicted.

  3. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    NASA Astrophysics Data System (ADS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  4. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  5. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  6. Effect of acidification and oil on the thermal resistance of Bacillus stearothermophilus spores heated in food substrate.

    PubMed

    Rodrigo, F; Rodrigo, C; Fernández, P S; Rodrigo, M; Martínez, A

    1999-11-15

    The effect of the addition of vinegar and/or oil to a food homogenate (tomato sauce, tuna and vegetables) on the thermal resistance of Bacillus stearothermophilus spores was studied. The results indicated that the food substrate without the addition of vinegar and oil and a pH value of 5.28 reduced the thermal resistance of B. stearothermophilus spores compared with that obtained in double-distilled water, (D121 = 1.41 and 3.08 min respectively). The addition of vinegar reduced the pH of the substrate (4.81) and consequently the D values were reduced (D121 = 1.28 min). The addition of soya oil and vinegar to substrate until a pH of 4.81, further reduced the thermal resistance of the spores, giving a D121 value of 0.93 min. PMID:10733251

  7. Impact of substrate and thermal boundary resistance on the performance of AlGaN/GaN HEMTs analyzed by means of electro-thermal Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    García, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Pérez, S.

    2016-06-01

    In this paper, we present results from the simulations of a submicrometer AlGaN/GaN high-electron-mobility transistor (HEMT) by using an in-house electro-thermal Monte Carlo simulator. We study the temperature distribution and the influence of heating on the transfer characteristics and the transconductance when the device is grown on different substrates (sapphire, silicon, silicon carbide and diamond). The effect of the inclusion of a thermal boundary resistance (TBR) is also investigated. It is found that, as expected, HEMTs fabricated on substrates with high thermal conductivities (diamond) exhibit lower temperatures, but the difference between hot-spot and average temperatures is higher. In addition, devices fabricated on substrates with higher thermal conductivities are more sensitive to the value of the TBR because the temperature discontinuity is greater in the TBR layer.

  8. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Sung, Dahye; Lee, Junghoon; Kim, Yonghwan; Chung, Wonsub

    2015-12-01

    A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu2O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  9. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOEpatents

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2003-05-13

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  10. Intensified magneto-resistance by rapid thermal annealing in magnetite (Fe3O4) thin film on SiO2 glass substrate

    NASA Astrophysics Data System (ADS)

    Kobori, H.; Morii, K.; Yamasaki, A.; Sugimura, A.; Taniguchi, T.; Horie, T.; Naitoh, Y.; Shimizu, T.

    2012-12-01

    We have observed large magneto-resistance (MR) intensified by rapid thermal annealing (RTA) in magnetite (Fe3O4) thin film (MTF) on SiO2 glass (a-SiO2) substrate. The MTF was produced by the RF magnetron sputtering method by using a magnetite target. The electrical resistivity (ER) of as-grown MTF (AG-MTF) showed the Mott's variable range hopping behavior, which implies that the AG-MTF is amorphous-like. Although the magneto-resistance (MR) ratio of bulk single crystal is very small except around the Verwey transition temperature (VTT), that of the AG-MTF showed moderately large below room temperature. Due to RTA of the AG-MTF by use of an IR image furnace, the MR ratio of MTFs was intensified, and especially by the annealing around the Curie temperature (585°C) of magnetite. Furthermore the ER of the rapid thermally annealed MTF (RTA-MTF) showed a slight kink at around the VTT, which indicates that the crystallinity of the RTA-MTF is higher than that of the AG-MTF The MTF produced by the RF magnetron sputtering method are composed of magnetite fine particles (MFPs). We consider that the directions of magnetic moments of MFPs in the MTF were spatially randomized by the RTA and the strong spin scattering of itinerant electrons transferring between adjacent MFPs caused the intensification of the MR ratio.

  11. The combined effect of thermal annealing of MgO substrate and Ca substitution on the surface resistance of YBa2Cu3Oz thin films

    NASA Astrophysics Data System (ADS)

    Murugesan, M.; Obara, H.; Yamasaki, H.

    2005-07-01

    Single-layer Y1-xCaxBa2Cu3Oz (YCBCO) thin films (x =0.00, 0.02, 0.05, and 0.10) grown on annealed as well as unannealed MgO substrates have been systematically investigated for their carrier concentration, critical current density Jc, and microwave surface resistance Rs. For x ⩽0.05, the grain growth follows a three-dimensional-spiral growth mechanism, while for x =0.10 we observed a mainly two-dimensional-like growth of grains. The results of Hall data reveal that the x =0.05 film is overdoped while films with x =0.02 and 0.10 are underdoped with respect to the x =0.00 film. However, the Hall mobility μH is highly enhanced for the x =0.02 film. Thermal annealing of MgO substrates prior to film deposition results to an improvement in the overall superconducting properties of the film such as suppression of normal-state resistivity, enhancement of Jc, and minimization of Rs both for pure as well as Ca-substituted films. Annealing of MgO substrates enhances the Jc value to a magnitude (i) nearly doubled for x =0.00 films and (ii) more than an order for x =0.02 films. Also it leads to a minimization of the Rs value to (i) more than half and (ii) nearly an order of magnitude higher, respectively, for x =0.00 and x =0.02 films. Furthermore, for the x =0.02 film, below 60K, we realized an enhanced Jc value in self- as well as in large-applied fields. For other than the Ca-2% substituted films, a suppression of Jc with a strong field dependency has been noticed. Furthermore, the Rs value of the x =0.02 film (0.1mΩ at 20K, 21.9GHz) was three times lower compared to that of the x =0.00 film (0.35mΩ at 20K, 21.9GHz). At 20K and 21.9GHz, the Rs value for the x =0.05 film is comparable to that of the x =0.00 film, whereas for the x =0.10 film it is twice that of x =0.00. The low normal-state resistivity, enhanced mobility, high Jc, and the minimized Rs observed for x =0.02 films firmly support the possible improvement of superconducting order parameters near the grain

  12. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  13. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Horny, Nicolas; Chirtoc, Mihai; Fleming, Austin; Hamaoui, Georges; Ban, Heng

    2016-07-01

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  14. Low thermal resistance power module assembly

    DOEpatents

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  15. Structural, compositional, thermal resistant and hydro-oleophobic properties of fluorine based block-co-polymer films on quartz substrates by wet chemical process

    NASA Astrophysics Data System (ADS)

    Phani, A. R.; Passacantando, M.; Santucci, S.

    2006-08-01

    Crack free and smooth surfaces of poly [4,5-difluoro 2,2-bis (trifluoromethyl)-(1,3 dioxole)-co-tetrafluoroethylene] (TFE-co-TFD) thin films have been deposited by wet chemical dip coating technique on polished quartz and glass slide substrates. The deposited films have been subjected to annealing at different temperatures ranging from 100 to 500 °C for 1 h in argon atmosphere. The elemental composition of the as-deposited (xerogel) thin film as well as film annealed at 400 °C was measured by X-ray photoelectron spectroscopy and observed that there was no change in the composition of the film. X-ray diffraction pattern revealed the amorphous behaviour of both as-deposited and film annealed at 400 °C. Surface morphology and elemental composition of the films have been examined by employing scanning electron microscopy attached with energy dispersive X-ray analyser, respectively. It was found that as the annealing temperature increased from 100 to 400 °C, nano-hemisphere-like structures have been grown, which in turn has shown increase in the water contact angle from 122o to 148o and oil (peanut) contact angle from 85° to 96°. No change in the water contact angle (122°) has been observed when the films deposited at room temperature were heated in air from 30 to 80 °C as well as exposed to steam for 8 days for 8 h/day indicating thermal stability of the film.

  16. Method for making high resistance chromium-free semiconductor substrate body with low resistance active semiconductor layer by surface irradiation

    SciTech Connect

    Kniepkamp, H.

    1984-10-30

    A high resistance semiconductor substrate body with a thin low resistance active semiconductor layer thereon is generated by a method including the steps of subjecting the semiconductor substrate body to neutron bombardment to a degree which produces high resistance in the semiconductor body and whereby doping substances are generated in the substrate body by the thermal neutron bombardment. A thin low resistant active semiconductor layer is then generated on the substrate body by annealing, a surface of the semiconductor substrate body up to a selected depth by laser radiation or electron radiation such that the lattice deterioration which was caused by the neutron bombardment is eliminated but the doping which was generated by the transmutation of elements during neutron bombardment remains. The annealing can be undertaken only in selected regions on the surface of the semiconductor substrate body, thereby facilitating the construction of integrated circuit components thereon.

  17. Corrosion resistant thermal barrier coating

    SciTech Connect

    Levine, S.R.; Miller, R.A.; Hodge, P.E.

    1981-03-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates. Official Gazette of the U.S. Patent and Trademark Office

  18. Modeling Thermal Contact Resistance

    NASA Technical Reports Server (NTRS)

    Kittel, Peter; Sperans, Joel (Technical Monitor)

    1994-01-01

    One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.

  19. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2013-04-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  20. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2014-03-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  1. Quantification of thermal and contact resistances of scanning thermal probes

    SciTech Connect

    Kim, Kyeongtae E-mail: meyhofer@umich.edu Jeong, Wonho; Lee, Woochul; Sadat, Seid; Thompson, Dakotah; Meyhofer, Edgar E-mail: meyhofer@umich.edu; Reddy, Pramod E-mail: meyhofer@umich.edu

    2014-11-17

    Scanning thermal probes are widely used for imaging temperature fields with nanoscale resolution, for studying near-field radiative heat transport and for locally heating samples. In all these applications, it is critical to know the thermal resistance to heat flow within the probe and the thermal contact resistance between the probe and the sample. Here, we present an approach for quantifying the aforementioned thermal resistances using picowatt resolution heat flow calorimeters. The measured contact resistance is found to be in good agreement with classical predictions for thermal contact resistance. The techniques developed here are critical for quantitatively probing heat flows at the nanoscale.

  2. Thermal Contact Resistance: Experiment Versus Theory

    NASA Astrophysics Data System (ADS)

    Dumont, L.; Moyne, C.; Degiovanni, A.

    1998-11-01

    With a knowledge of the thermal resistance value associated with an asperity, a model for the thermal contact resistance of a given interface is obtained by considering that each asperity of surfaces in contact is a flux tube. Calculation of any of the thermal conductances depends on the contact radius of each asperity. This radius increases with load, as asperities are compressed. Contact area is calculated for a plastic load. Values of thermal contact conductance (or resistance) are compared with experimental results.

  3. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  4. Temperature Dependent Thermal Conductivity and Thermal Interface Resistance of Pentacene Thin Films with Varying Morphology.

    PubMed

    Epstein, Jillian; Ong, Wee-Liat; Bettinger, Christopher J; Malen, Jonathan A

    2016-07-27

    Temperature dependent thermal conductivities and thermal interface resistances of pentacene (Pn) thin films deposited on silicon substrates and self-assembled monolayer-modified [octadecyltrichlorosilane (OTS) and (3-aminopropyl)triethoxysilane (APTES)] silicon substrates were measured using frequency domain thermoreflectance. Atomic force microscopy images were used to derive an effective film thickness for thermal transport that accounts for surface roughness. Data taken over a temperature range of 77-300 K for various morphologies and film thicknesses show that the thermal conductivity increases with increasing Pn grain size. The sum of the substrate-Pn and Pn-gold thermal interface resistances was isolated from the intrinsic thermal resistance of the Pn films and found to be independent of surface chemistry. Corresponding Kapitza lengths of approximately 150 nm are larger than the physical thicknesses of typical Pn thin films and indicate that the interfaces play a dominant role in the total thermal resistance. This study has implications for increasing the performance and effective thermal management of small molecule electronic and energy conversion devices. PMID:27391107

  5. An aluminum resist substrate for microfabrication by LIGA.

    SciTech Connect

    Kelly, James J.; Boehme, Dale R.; Hauck, Cheryl A.; Yang, Chu-Yeu Peter; Hunter, Luke L.; Griffiths, Stewart K.; McLean, Dorrance E.; Aigeldinger, Georg; Hekmaty, Michelle A.; Hachman, John T.; Losey, Matthew W.; Skala, Dawn M.; Korellis, John S.; Friedmann, Thomas Aquinas; Yang, Nancy Y. C.; Lu, Wei-Yang

    2005-04-01

    Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development, and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development, and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 {micro}m, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 {micro}m. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 {micro}m depending on the resist thickness.

  6. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect

    Wen, J.; Jordens, K.; Wilkes, G.L.

    1996-12-31

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  7. Low thermal resistance power module assembly

    DOEpatents

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2010-12-28

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  8. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  9. Thermal shock resistance ceramic insulator

    DOEpatents

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  10. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-09-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  11. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  12. Thermal sprayed zirconium coatings for corrosion resistance

    SciTech Connect

    Bamola, R.K.

    1992-01-01

    Vacuum Plasma Spraying (VPS) is conducted in inert reduced pressures. This results in higher particle velocities than in atmospheric plasma spraying. Reverse arc sputter cleaning and pre-heating of the workpiece lead to elevated substrate temperatures during deposition, allowing sintering of the coating and, thus, enhanced densities and bond strengths. Inert Environment Electric Arc Spraying (IEAS) is performed in inert gas chambers, utilizing wire as the feedstock. This leads to lower gas content in the coating, since the initial gas content in wire is lower than that of the powder feedstock used in VPS. Controlled atmosphere sprayed zirconium coatings had inferior mechanical and corrosion properties when compared with bulk zirconium. The VPS coatings displayed higher bond strengths and better cavitation erosion resistance than did the IEAS coatings. The IEAS coatings had lower gas content and showed better electrochemical and corrosion behavior. The lower gas content for IEAS was due to a lower initial gas level in the wire feedstock used in this process. Also, scanning electron microscopy revealed that larger particles result in the IEAS process. Thus, a smaller surface-area-to-volume ratio is available for gas-metal reactions to occur. Improvements in mechanical and corrosion properties for the IEAS coatings were due to elevated substrate temperatures during deposition. Compressive surface stresses induced by post-spray shot-peening enhanced corrosion and cavitation resistance of IEAS coatings. Coating porosity caused failure during immersion testing. Therefore, it was concluded that controlled environment thermal spraying of zirconium is not suitable for forming corrosion resistant coatings on steel. ZrN coatings were formed by electric arc spraying using a nitrogen shroud and post-spray nitriding. Two phases; ZrN and zirconium solid solution, exist in the as-sprayed coating. Nitriding increases the proportion of ZrN.

  13. Thermal contact resistance across a copper-silicon interface

    SciTech Connect

    Khounsary, A.M.; Chojnowski, D.; Assoufid, L.; Worek, W.M.

    1997-10-01

    The issue of thermal contact resistance across metallic interfaces has been investigated for many situations over the past several decades. The application in the present case is contact cooling of high heat load optical substrates. High heat load x-ray mirrors and other optical components used at the Advanced Photon Source (APS) are either internally cooled or contact cooled. In the internally cooled mirrors, a coolant flows through passages configured in the optical substrate. In the contact-cooled case, cooling is provided by placing cooling plates in contact with the mirror to extract the heat. Here, an experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  14. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    PubMed

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-01

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials. PMID:26266456

  15. Apparatus for thermally evolving chemical analytes from a removable substrate

    DOEpatents

    Linker, Kevin L.; Hannum, David W.

    2003-06-03

    Method and apparatus suited to convenient field use for heating a porous metallic substrate swiped on the surface of an article possibly bearing residue of contraband or other target chemical substances. The preferred embodiment of the device includes means for holding the swiped substrate between electrodes bearing opposite electrical charges, thereby completing an electrical circuit in which current can flow through the porous metallic substrate. Resistance causes the substrate to heat, thus driving adherent target chemicals, if present, into a space from which they are carried via gas flow into a detector such as a portable IMS for analysis.

  16. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    SciTech Connect

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-11

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  17. Thermal contact resistance across a copper-silicon interface.

    SciTech Connect

    Khounsary, A.; Chojnowski, D.; Assoufid, L.; Worek, W.M.

    1997-10-27

    An experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include iridium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance, Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the iridium foil, and then the silver foil.

  18. Thermal contact resistance across a copper-silicon interface

    NASA Astrophysics Data System (ADS)

    Khounsary, Ali M.; Chojnowski, David; Assoufid, Lahsen; Worek, William M.

    1997-12-01

    An experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  19. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  20. Smoother Turbine Blades Resist Thermal Shock Better

    NASA Technical Reports Server (NTRS)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  1. Evaluation of thermal barrier coating systems on novel substrates

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Wright, I. G.; Brindley, W. J.

    2000-06-01

    Testing was conducted on both plasma-sprayed (PS) and electron beam-physical vapor deposited (EB-PVD) Y2O3-stabilized ZrO2 (YSZ) thermal barrier coatings (TBCs) applied directly to oxidation-resistant substrates such as β-NiAl, oxide-dispersed FeCrAl, and NiCr. On an alloy that forms a very adherent alumina scale, β-NiAl+Zr, the coating lifetime of YSZ in furnace cyclic tests was 6 or more times longer than on state-of-the-art, YSZ coatings on single-crystal Ni-base superalloys with MCrAlY or Pt aluminide bond coats. Coatings on FeCrAl alloys appear to be a viable option for applications such as the external skin of the X-33, single stage to orbit, reusable launch vehicle. Model chromia-forming bond coat compositions also show promise for power generation applications at temperatures where hot corrosion may be a major problem. In general, while this work examined unique materials systems, many of the same fundamental failure mechanisms observed in conventional TBCs were observed.

  2. Analysis on partial thermal resistances of packaged SiC schottky barrier diodes at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kim, Taehwa; Funaki, Tsuyoshi

    2016-04-01

    This paper investigates the temperature dependence of partial thermal resistances of a packaged SiC schottky barrier diode (SBD) for high temperature applications. Transient thermal resistances of the packaged SiC SBD were measured and characterized in temperature range from 27 to 275 °C. The partial thermal resistances were extracted and analyzed using the cumulative and differential thermal structure functions. The extracted partial thermal resistances were compared to the results from the finite difference thermal model, and both results were in good agreement. The temperature dependence of the partial thermal resistance of the SiC device and the Si3N4 substrate contributes to the overall thermal characteristics variation of the packaged SiC SBD.

  3. Resistive substrate heater for film processing by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rousseau, B.; De Barros, D.; La Manna, J.; Weiss, F.; Duneau, G.; Odier, P.; De Sousa Meneses, D.; Auger, Y.; Melin, P.; Echegut, P.

    2004-09-01

    We describe a simple and inexpensive resistive heater usable in the spray pyrolysis process. It is based on a resistively heated ceramic plate. By using such a heater substrate temperatures exceeding 900 °C are easily achieved on the substrate. The heater consists of a ceramic plate enclosed in a stainless steel box. A refractory wire woven in a regular frame inside the ceramic provides an excellent heating uniformity over the entire surface. Performances and parameters of the system are given. We apply this device to the preparation of thick films of HTc oxides such as (Hg,Re)Ba2Ca2Cu3O8+δ.

  4. Developing a dissimilar metal foil-to-substrate resistance welding process.

    SciTech Connect

    Knorovsky, Gerald Albert

    2010-10-01

    Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

  5. Development of a platinum resistance thermometer on the silicon substrate for phase change studies

    NASA Astrophysics Data System (ADS)

    Cai, Qingjun; Chen, Ya-Chi; Tsai, Chialun; DeNatale, Jeffrey F.

    2012-08-01

    Resistance temperature detectors are commonly used measurement sensors in heat transfer studies. In many resistance temperature detectors, the platinum resistance thermometer (PRT) is chemically stable, has a wide temperature measurement range and possesses high measurement accuracy. In phase change studies of carbon nanotubes, bi-porous structures for microelectronic thermal management, 100 nm thick PRTs are developed on silicon substrates with 10 nm titanium adhesive to achieve precise and interface-free temperature measurements. After an annealing at 375 °C, the PRT samples are calibrated at a temperature range from 20 to 180 °C. Measurement hysteresis of temperature appears in thermal cycles. Electrical resistance tends to become low during all heating periods, which establishes the maximum measurement deviation of 10 °C. Experimental results from two different thin-film PRTs indicate that accurate and repeatable temperature measurements can be achieved by either reducing heating speed or using data in the cooling period.

  6. Thermal interaction between WC-Co coating and steel substrate in process of HVOF spraying

    SciTech Connect

    Guilemany, J.M.; Sobolev, V.V.; Nutting, J.; Dong, Z.; Calero, J.A. . Metalurgia Fisica-Ciencia de Materials)

    1994-10-01

    The WC-Co powders can be used to produce good adhesive and wear resistant HVOF thermal spray coatings on steel and light alloys substrates. In order to understand the properties of this kind of coating, the phases which are present in the coatings and structure changes during post heat treatments have been investigated. Although the coating properties depend very much on the structure developed in the substrate-coating interfacial region it has not been yet investigated in detail. The present study is devoted to the experimental and theoretical analysis of this interfacial region. The structure characterization has been performed mainly through the use of transmission electron microscopy. To provide a theoretical investigation a realistic prediction model of the process has been developed and on its base the mathematical simulation of the substrate-coating thermal interaction has been undertaken.

  7. Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mir Mohammad; Park, Saungeun; Huang, Yu; Akinwande, Deji; Yao, Zhen; Murthy, Jayathi; Shi, Li

    2016-06-01

    A triple-scan scanning thermal microscopy (SThM) method and a zero-heat flux laser-heated SThM technique are investigated for quantitative thermal imaging of flexible graphene devices. A similar local tip-sample thermal resistance is observed on both the graphene and metal areas of the sample, and is attributed to the presence of a polymer residue layer on the sample surface and a liquid meniscus at the tip-sample junction. In addition, it is found that the tip-sample thermal resistance is insensitive to the temperature until it begins to increase as the temperature increases to 80 °C and exhibits an abrupt increase at 110 °C because of evaporation of the liquid meniscus at the tip-sample junction. Moreover, the variation in the tip-sample thermal resistance due to surface roughness is within the experimental tolerance except at areas with roughness height exceeding tens of nanometers. Because of the low thermal conductivity of the flexible polyimide substrate, the SThM measurements have found that the temperature rise in flexible graphene devices is more than one order of magnitude higher than those reported for graphene devices fabricated on a silicon substrate with comparable dimensions and power density. Unlike a graphene device on a silicon substrate where the majority of the electrical heating in the graphene device is conducted vertically through the thin silicon dioxide dielectric layer to the high-thermal conductivity silicon substrate, lateral heat spreading is important in the flexible graphene devices, as shown by the observed decrease in the average temperature rise normalized by the power density with decreasing graphene channel length from about 30 μm to 10 μm. However, it is shown by numerical heat transfer analysis that this trend is mainly caused by the size scaling of the thermal spreading resistance of the polymer substrate instead of lateral heat spreading by the graphene. In addition, thermoelectric effects are found to be negligible

  8. Corrosion-resistant ceramic thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Levine, S. R.; Miller, R. A.

    1980-01-01

    Two-layer thermal barrier coating, consisting of metal-CrA1Y bond coating and calcium silicate ceramic outer layer, greatly improves resistance of turbine parts to hot corrosion from fuel and air impurities. Both layers can be plasma sprayed, and ceramic layer may be polished to reduce frictional losses. Ceramic provides thermal barrier, so parts operate cooler metal temperatures, coolant flow can be reduced, or gas temperatures increased. Lower grade fuels also can be used.

  9. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  10. Heat resistant substrates and battery separators made therefrom

    NASA Technical Reports Server (NTRS)

    Langer, Alois (Inventor); Scala, Luciano C. (Inventor); Ruffing, Charles R. (Inventor)

    1976-01-01

    A flexible substrate having a caustic resistant support and at least one membrane comprising a solid polymeric matrix containing a network of interconnected pores and interdispersed inorganic filler particles with a ratio of filler: polymer in the polymeric matrix of between about 1:1 to 5:1, is made by coating at least one side of the support with a filler:coating formulation mixture of inorganic filler particles and a caustic resistant, water insoluble polymer dissolved in an organic solvent, and removing the solvent from the mixture to provide a porous network within the polymeric matrix.

  11. Thermal shock resistance of silicon oxynitride

    NASA Technical Reports Server (NTRS)

    Glandus, J. C.; Boch, P.

    1981-01-01

    The thermal shock resistance of Si2N2O refractory material was studied. The thermal expansion coeff. is 3.55x10 to the -6th power at 20 to 800 C and 2.86x10 to the -6th power m/m/deg at 20 to 200 C. The breaking loads are high at high stress. Young's modulus E and the shear modulus G decrease linearly with increasing porosity. For dense material E sub o approx. = 216,500 N/mm2 and G approx = 90,600 N/mm2. The Vickers hardness of the dense material is comparable to that of sapphire. The results on thermal shock show that R, the breaking load, stays constant for T T sub c, the first cracks appear and R decreases sharply for T=T sub c. As the severity of the thermal shock is increased at T T sub c, a small no. of new, large-size cracks appears. The shock's cumulative effect is negligible, and repeated shocks do not change the cracks. The low values of the thermal expansion coefficient and Young's modulus and the high tension breaking load are considered. Sintered Si2N2O with 5% MgO shows excellent cracking resistance under thermal shock.

  12. Method for applying photographic resists to otherwise incompatible substrates

    NASA Technical Reports Server (NTRS)

    Fuhr, W. (Inventor)

    1981-01-01

    A method for applying photographic resists to otherwise incompatible substrates, such as a baking enamel paint surface, is described wherein the uncured enamel paint surface is coated with a non-curing lacquer which is, in turn, coated with a partially cured lacquer. The non-curing lacquer adheres to the enamel and a photo resist material satisfactorily adheres to the partially cured lacquer. Once normal photo etching techniques are employed the lacquer coats can be easily removed from the enamel leaving the photo etched image. In the case of edge lighted instrument panels, a coat of uncured enamel is placed over the cured enamel followed by the lacquer coats and the photo resists which is exposed and developed. Once the etched uncured enamel is cured, the lacquer coats are removed leaving an etched panel.

  13. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage. PMID:22097561

  14. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  15. Substrate Recognition and Modification by the Nosiheptide Resistance Methyltransferase

    PubMed Central

    Chen, Dongrong; Murchie, Alastair I. H.

    2015-01-01

    Background The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR) confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2ʹO-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR) in complex with the cofactor S-Adenosyl-L-methionine (SAM) are available, the principles behind NHR substrate recognition and catalysis remain unclear. Methodology/Principal Findings We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA) and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066) and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5ʹ) to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation. Conclusion/Significance Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2’ hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an

  16. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Imide-linked perfluoroalkylene ether polymers, that were developed for the high temperature fuel tank sealant application, are discussed. Modifications of polymer structure and properties were realized through use of a new aromatic dianhydride intermediate containing an ether-linked perfluoroalkylene segment. Tests of thermal, oxidative and hydrolytic stability, fuel resistance, and adhesion are discussed along with tensile strength and elongation results. Efforts to effect a low temperature condensation of amic acid prepolymer to form imide links inside are described.

  17. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  18. Thermal engineering of non-local resistance in lateral spin valves

    SciTech Connect

    Kasai, S. Takahashi, Y. K.; Hirayama, S.; Mitani, S.; Hono, K.; Adachi, H.; Ieda, J.; Maekawa, S.

    2014-04-21

    We study the non-local spin transport in Permalloy/Cu lateral spin valves (LSVs) fabricated on thermally oxidized Si and MgO substrates. While these LSVs show the same magnitude of spin signals, significant substrate dependence of the baseline resistance was observed. The baseline resistance shows much weaker dependence on the inter-electrode distance than that of the spin transport observed in the Cu wires. A simple analysis of voltage-current characteristics in the baseline resistance indicates the observed result can be explained by a combination of the Peltier and Seebeck effects at the injector and detector junctions, suggesting the usage of high thermal conductivity substrate (or under-layer) is effective to reduce the baseline resistance.

  19. Low-thermal expansion material for telescope mirror substrate application

    NASA Astrophysics Data System (ADS)

    Nakajima, Kousuke; Kawasaki, Nobuo; Nakajima, Toshihide

    2004-09-01

    The material property and processability of the low thermal expansion glass-ceramics product by Ohara Inc. called CLEARCERAM-Z were studied for telescope mirror substrate application. For material property, numbers of the key properties for the application, such as Coefficient of Thermal Expansion (CTE) characteristic in wide temperature range, Stress Birefringence and Mechanical strengths were intensively investigated focusing on the blank uniformity. The mean CTE of +0.15x10-7/degree C in wide temperature range (-50 to +150degree C) with the standard deviation (Std.) of 0.03x10-7/degree C and Young"s Modulus & Poisson Ratio data with the coefficient of variation less than 1% were obtained for the blanks with the size up to Dia.670mm. The maximum Stress Birefringence was 3nm/cm within a 400mm square blank. For processability, the surface finish data of AFM Rms 0.15nm, the Power Spectral Density profile in the same level of low expansion amorphous glass and three dimensional structured samples were demonstrated. The comparison of the obtained data with known blanks specification for past and future telescope projects revealed that CLEARCERAM-Z has capability to meet material property requirements for telescope mirror substrate application in the size up to Dia.670mm. Also for the precision metrology to support the material technology, CTE measurement system developed at OHARA was described.

  20. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    SciTech Connect

    Akulinkin, Alexandr Shugurov, Artur Sergeev, Viktor; Panin, Alexey; Cheng, C.-H.

    2015-10-27

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  1. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    NASA Astrophysics Data System (ADS)

    Akulinkin, Alexandr; Shugurov, Artur; Panin, Alexey; Sergeev, Viktor; Cheng, C.-H.

    2015-10-01

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  2. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2012-06-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale. PMID:23005105

  3. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature

    SciTech Connect

    Belkerk, B. E.; Bensalem, S.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.; Al Brithen, H.

    2014-12-01

    In this paper, we report on investigation concerning the substrate-dependent thermal conductivity (k) of Aluminum Nitride (AlN) thin-films processed at low temperature by reactive magnetron sputtering. The thermal conductivity of AlN films grown at low temperature (<200 °C) on single-crystal silicon (Si) and amorphous silicon nitride (SiN) with thicknesses ranging from 100 nm to 4000 nm was measured with the transient hot-strip technique. The k values for AlN films on SiN were found significantly lower than those on Silicon consistently with their microstructures revealed by X-ray diffraction, high resolution scanning electron microscopy, and transmission electron microscopy. The change in k was due to the thermal boundary resistance found to be equal to 10 × 10{sup −9} Km{sup 2}W{sup −1} on SiN against 3.5 × 10{sup −9} Km{sup 2}W{sup −1} on Si. However, the intrinsic thermal conductivity was determined with a value as high as 200 Wm{sup −1}K{sup −1} whatever the substrate.

  4. Thermal stability studies of plasma sprayed yttrium oxide coatings deposited on pure tantalum substrate

    NASA Astrophysics Data System (ADS)

    Nagaraj, A.; Anupama, P.; Mukherjee, Jaya; Sreekumar, K. P.; Satpute, R. U.; Padmanabhan, P. V. A.; Gantayet, L. M.

    2010-02-01

    Plasma sprayed Yttrium oxide is used for coating of crucibles and moulds that are used at high temperature to handle highly reactive molten metals like uranium, titanium, chromium, and beryllium. The alloy bond layer is severely attacked by the molten metal. This commonly used layer contributes to the impurity addition to the pure liquid metal. Yttrium oxide was deposited on tantalum substrates (25 mm × 10mm × 1mm thk and 40 mm × 8mm × 1mm thk) by atmospheric plasma spray technique with out any bond coat using optimized coating parameters. Resistance to thermal shock was evaluated by subjecting the coated specimens, to controlled heating and cooling cycles between 300K to 1600K in an induction furnace in argon atmosphere having <= 0.1ppm of oxygen. The experiments were designed to examine the sample tokens by both destructive and non-destructive techniques, after a predetermined number of thermal cycles. The results upto 24 thermal cycles of 25 mm × 10mm × 1mm thk coupons and upto 6 cycles of 40 mm × 8mm × 1mm thk coupons are discussed. The coatings produced with the optimized parameters were found to exhibit excellent thermal shock resistance.

  5. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  6. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  7. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  8. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  9. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  10. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  11. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  12. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  13. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  14. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  15. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  16. Characterization and thermal shock behavior of Y2O3 films deposited on freestanding CVD diamond substrates

    NASA Astrophysics Data System (ADS)

    Hua, Chenyi; Guo, Jianchao; Liu, Jinglong; Yan, Xiongbo; Zhao, Yun; Chen, Liangxian; Wei, Junjun; Hei, Lifu; Li, Chengming

    2016-07-01

    Y2O3 anti-reflection films were deposited on freestanding CVD diamond substrates by radio frequency magnetron sputtering. The thermal shock resistance and oxidation resistance of Y2O3/diamond/Y2O3 samples at 727 °C and 800 °C in atmospheric air were investigated. No delamination of the Y2O3 films occurred after thermal shock, thereby demonstrating extreme adhesion to freestanding diamond substrates. After thermal shock, Y atoms in the films were almost fully oxidized. Moreover, the majority of monoclinic phase in the Y2O3 films transformed into cubic phase, crystallinity was enhanced, and the average grain size significantly increased. The maximum transmittance in the 8-12 μm long-wave IR range of the Y2O3/diamond/Y2O3 samples increased from 81.3% ± 0.3% to 84.7% ± 0.2% and 83.6% ± 0.4%. These findings indicated that the Y2O3 anti-reflection films displayed good resistance to thermal shock and provided sufficient protection for diamond substrates against elevated temperature oxidation.

  17. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  18. Improvement of thermal contact resistance by carbon nanotubes and nanofibers

    NASA Technical Reports Server (NTRS)

    Chuang, Helen F.; Cooper, Sarah M.; Meyyappan, M.; Cruden, Brett A.

    2004-01-01

    Interfacial thermal resistance results of various nanotube and nanofiber coatings, prepared by chemical vapor deposition (CVD) methods, are reported at relatively low clamping pressures. The five types of samples examined include multi-walled and single-walled nanotubes growth by CVD, multi-walled nanotubes grown by plasma enhanced CVD (PECVD) and carbon nanofibers of differing aspect ratio grown by PECVD. Of the samples examined, only high aspect ratio nanofibers and thermally grown multi-walled nanotubes show an improvement in thermal contact resistance. The improvement is approximately a 60% lower thermal resistance than a bare Si-Cu interface and is comparable to that attained by commercially available thermal interface materials.

  19. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  20. Development of a protective decorative fire resistant low smoke emitting, thermally stable coating material

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of suitable electrocoatings and subsequent application to nonconductive substrates are discussed. Substrates investigated were plastics or resin-treated materials such as FX-resin (phenolic-type resin) impregnated fiberglass mat, polyphenylene sulfide, polyether sulfone and polyimide-impregnated unidirectional fiberglass. Efforts were aimed at formulating a fire-resistant, low smoke emitting, thermally stable, easily cleaned coating material. The coating is to be used for covering substrate panels, such as aluminum, silicate foam, polymeric structural entities, etc., all of which are applied in the aircraft cabin interior and thus subject to the spillages, scuffing, spotting and the general contaminants which prevail in aircraft passenger compartments.

  1. A Method for testing the integrated thermal resistance of thermoelectric modules

    NASA Astrophysics Data System (ADS)

    Gao, Junling; Du, Qungui; Chen, Min

    2013-11-01

    The integrated thermal resistance (ITR) of thermoelectric modules (TEMs) is an important parameter that represents the thermal-conduction of ceramic substrates, copper conducting strips, and welding material used in the TEM as well as the thermal contact resistances between different materials. In this study, an accurate and practical test method is proposed for the ITR of TEMs according to thermoelectric heat transfer theory and the equivalent characteristics of heat flux through the cold and hot sides of TEMs in an open-circuit situation. By using such measurements and comparisons, it is verified that the measured ITR value in our mode is accurate and reliable. In particular this method accurately predicts the actual operating conditions of TEMs, in which TEMs are under certain mechanical pressure. It effectively solves the problem of thermal resistance extraction from operating TEMs and is of great significance in their analysis and optimization.

  2. A method for testing the integrated thermal resistance of thermoelectric modules.

    PubMed

    Gao, Junling; Du, Qungui; Chen, Min

    2013-11-01

    The integrated thermal resistance (ITR) of thermoelectric modules (TEMs) is an important parameter that represents the thermal-conduction of ceramic substrates, copper conducting strips, and welding material used in the TEM as well as the thermal contact resistances between different materials. In this study, an accurate and practical test method is proposed for the ITR of TEMs according to thermoelectric heat transfer theory and the equivalent characteristics of heat flux through the cold and hot sides of TEMs in an open-circuit situation. By using such measurements and comparisons, it is verified that the measured ITR value in our mode is accurate and reliable. In particular this method accurately predicts the actual operating conditions of TEMs, in which TEMs are under certain mechanical pressure. It effectively solves the problem of thermal resistance extraction from operating TEMs and is of great significance in their analysis and optimization. PMID:24289427

  3. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps.

    PubMed

    Tegos, George P; Hamblin, Michael R

    2006-01-01

    Antimicrobial photodynamic therapy (PDT) combines a nontoxic photoactivatable dye, or photosensitizer (PS), with harmless visible light to generate singlet oxygen and free radicals that kill microbial cells. Although the light can be focused on the diseased area, the best selectivity is achieved by choosing a PS that binds and penetrates microbial cells. Cationic phenothiazinium dyes, such as methylene blue and toluidine blue O, have been studied for many years and are the only PSs used clinically for antimicrobial PDT. Multidrug resistance pumps (MDRs) are membrane-localized proteins that pump drugs out of cells and have been identified for a wide range of organisms. We asked whether phenothiazinium salts with structures that are amphipathic cations could potentially be substrates of MDRs. We used MDR-deficient mutants of Staphylococcus aureus (NorA), Escherichia coli (TolC), and Pseudomonas aeruginosa (MexAB) and found 2 to 4 logs more killing than seen with wild-type strains by use of three different phenothiazinium PSs and red light. Mutants that overexpress MDRs were protected from killing compared to the wild type. Effective antimicrobial PSs of different chemical structures showed no difference in light-mediated killing depending on MDR phenotype. Differences in uptake of phenothiazinium PS by the cells depending on level of MDR expression were found. We propose that specific MDR inhibitors could be used in combination with phenothiazinium salts to enhance their photodestructive efficiency. PMID:16377686

  4. Thermal resistance at a liquid-solid interface dependent on the ratio of thermal oscillation frequencies

    NASA Astrophysics Data System (ADS)

    Kim, BoHung

    2012-12-01

    Non-equilibrium molecular dynamics simulations of atomic-scale thermal resistance at a solid-liquid interface are theoretically investigated with a simple modal analysis of a one-dimensional lattice system. In the modal analysis, the solid-liquid intermolecular interaction strength between is taken into account as the stiffness constant between the solid and liquid molecular masses, and plays a key role in understanding the interfacial thermal resistance. The results show that the interfacial thermal resistance is proportional to the 4th power of the ratio of the thermal oscillation frequencies for the solid and liquid molecules, which provides a better physical description for the interfacial thermal resistance.

  5. Thermal resistances of solder-boss/potting compound combinations

    NASA Technical Reports Server (NTRS)

    Veilleux, E. D.

    1968-01-01

    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound.

  6. The thermal resistance of flat powder-filled evacuated panels

    SciTech Connect

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.

    1989-01-01

    The need to develop high thermal resistance insulations that do not use chlorofluorocarbons has resulted in renewed interest in evacuated powder-filled panel insulations. Evacuated panels containing small diameter milled perlite or silica particles have been studied using a linear heat flow measurement technique. Thermal resistivities (R-value for one-inch of thickness) as high as 19.3 ft/sup 2//center dot/h/center dot//degree/F/Btu-in. have been observed for silica panels. Thermal measurements completed for a commercially produced evacuated panel containing perlite have shown thermal resistivities from 9.0 to 18.1 ft/sup 2//center dot/h/center dot//degree/F/Btu-in. Thermal resistance measurements have been repeated to determine changes in thermal performance with time (aging). 8 refs., 7 figs., 3 tabs.

  7. Investigation of thermal spray coatings on austenitic stainless steel substrate to enhance corrosion protection

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel M.

    The research is aimed to evaluate thermal spray coatings to address material issues in supercritical and ultra-supercritical Rankine cycles. The primary purpose of the research is to test, evaluate, and eventually implement a coating to improve corrosion resistance and increase efficiency of coal fired power plants. The research is performed as part of a comprehensive project to evaluate the ability of titanium, titanium carbide, or titanium diboride powders to provide fireside corrosion resistance in supercritical and ultra-supercritical steam boilers, specifically, coal driven boilers in Illinois that must utilize high sulfur and high chlorine content coal. [1] The powder coatings that were tested are nano-sized titanium carbide (TiC) and titanium di-boride (TiB2) powders that were synthesized by a patented process at Southern Illinois University. The powders were then sent to Gas Technology Institute in Chicago to coat steel coupons by HVOF (High Velocity Oxy-Fuel) thermal spray technique. The powders were coated on an austenitic 304H stainless steel substrate which is commonly found in high temperature boilers, pipelines, and heat exchangers. The samples then went through various tests for various lengths of time under subcritical, supercritical, and ultra-supercritical conditions. The samples were examined using a scanning electron microscope and x-ray diffraction techniques to study microstructural changes and then determined which coating performed best.

  8. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin

    NASA Astrophysics Data System (ADS)

    Fan, J.; Chen, Y. S.

    2002-07-01

    Thermal manikins are necessary instruments for measuring the thermal insulation and moisture vapour resistance of clothing systems, which are important parameters relevant to clothing thermal comfort. Although many thermal manikins have been developed since the first example in the 1940s, simulation of human perspiration in thermal manikins remains a challenge. This paper reports on a novel perspiring fabric thermal manikin, which simulates gaseous perspiration by moisture transfer through a `skin' made of a breathable fabric. The manikin has been used to measure the thermal insulation and moisture vapour resistances of clothing ensembles, and demonstrated high accuracy and reproducibility.

  9. Thermal expansion compatibility of ceramic chip capacitors mounted on alumina substrates.

    NASA Technical Reports Server (NTRS)

    Allen, R. V.; Caruso, S. V.; Wilson, L. K.; Kinser, D. L.

    1972-01-01

    The thermal expansion coefficients of a representative sample of BaTiO3 and TiO2 ceramic chip capacitors and alumina substrates have been examined. These data have revealed large potential mechanical stresses under thermal cycling. A mathematical analysis of a composite model of the capacitor to predict the thermal expansion and modulus of elasticity and an analysis of the capacitor-substrate system to predict the magnitude of thermally induced stresses have been conducted. In all cases studied, thermally induced stresses great enough to cause capacitor body rupture or termination failure was predicted.

  10. Experimental and numerical study of the effective thermal conductivity of silica nanocomposites with thermal boundary resistance

    SciTech Connect

    Kothari, Rushabh M; Dinwiddie, Ralph Barton; Wang, Hsin

    2013-01-01

    The thermal interface resistance at the macro scale is mainly described by the physical gap between two interfaces and constriction resistance due to this gap. The small gaps between the two material faces makes up the majority of thermal interface resistance at the macro scale. So, most of the studies have been focused on characterizing effect of surface geometry and material properties to thermal interface resistance. This resistance is more widely known as thermal contact resistance, represented with Rc. There are various models to predict thermal contact resistance at macro scale. These models predict thermal resistance Rc for given two materials by utilizing their bulk thermomechanical properties. Although, Rc represents thermal resistance accurately for macro size contacts between two metals, it is not suitable to describe interface resistance of particles in modern TIMs, aka particulate composites. The particles inside recently available TIMs are micron size and with effort to further increase surface area this particle size is approaching nano scale. At this small scale, Rc does not accurately predict thermal interface, as it is very difficult to characterize the surface topography. The thermal discontinuity at perfectly bonded interface of two dissimilar materials is termed as thermal boundary resistance (Rb) or Kapitza resistance. The macroscopic assumptions that thermal discontinuity only exists due to gaps and surface geometry leads to substantial error in determining interface thermal properties at micron and nano scale. The phenomenon of thermal boundary resistance is an inherent material property and arises due to fundamental mechanism of thermal transport. For metal-matrix particulate composites, Rb plays more important role than Rc. The free flowing nature of the polymer would eliminate most of the gaps between the two materials at their interface. This means almost all of the thermal resistance at particle/matrix interface would occur due to Rb

  11. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  12. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  13. Silicon based substrate with environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Narottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  14. Silicon based substrate with environmental/ thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Nanottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  15. Tensile adhesion testing of thermal spray coatings on flat substrates

    SciTech Connect

    Leigh, S.H.; Berndt, C.C.; Wu, C.L.; Nakamura, T.

    1994-12-31

    The standard tensile adhesion test (TAT), ASTM C633, has been modified to perform multiple tests on flat and wide substrates. The TAT geometry which specifies a 25.4 mm (1 in.) diameter cylindrical substrate has been employed as the pull-off bar. Two renditions of this test were implemented and the Weibull moduli and characteristics tresses for both test methods obtained. The modified TAT, termed as the single bar (SB) method, yields a higher Weibull modulus and characteristic strength than the other method which is termed as the double bar (DB) method. It is expected that the different test results between the two methods arise from different stress distributions near the interface of the coating and substrate. Finite element analysis was used to obtain the stress distribution near the interface of the coating and substrate, and the relationship between the adhesion strength of the SB and DB methods were derived.

  16. Silicon based substrate with calcium aluminosilicate/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  17. Study of Substrate Preheating on Flattening Behavior of Thermal-Sprayed Copper Particles

    NASA Astrophysics Data System (ADS)

    Yang, K.; Fukumoto, M.; Yasui, T.; Yamada, M.

    2010-12-01

    In this study, the effect of substrate preheating on flattening behavior of thermal-sprayed particles was systematically investigated. A part of mirror-polished AISI304 substrates were preheated to 573 and 773 K for 10 min, and then exposed to an air atmosphere for different durations of up to 48 h, respectively. Contact angle of water droplet was measured on the substrate under designated conditions. It was found that the contact angle increased gradually with the increase of substrate duration after preheating. Moreover, smaller contact angle was maintained on the substrate with higher preheating temperature. Commercially available Cu powders were thermally sprayed onto the substrates with the same thermal treatment history as contact angle measurement using atmospheric plasma-spray technique. The splat shape had a transitional changing tendency from a splash splat to a disk one on the substrate with a short duration after preheating, while reappearance of splash splat with the increase of duration was confirmed. In general, wetting of substrate surface by molten particles may dominate the flattening behavior of thermal-sprayed particles. The occurrence of desorption of adsorbed gas/condensation caused by substrate preheating likely provides good wetting. On the other hand, the poor wetting may be attributed to the re-adsorption of gas/condensation on the substrate surface with the increase of duration. In addition, the shear adhesion strength of coating fabricated on blasted AISI304 substrate was enhanced on the once-heated substrate, but weakened with the increase of duration. The changing tendency of the coating adhesion strength and the wetting of substrate by droplet corresponded quite well with each other.

  18. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate.

    PubMed

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei

    2016-05-21

    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ∼mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m(-1) K(-1), 359 W m(-1) K(-1), 273 W m(-1) K(-1) and 33.5 W m(-1) K(-1), respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp(2) domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the

  19. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei

    2016-05-01

    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ~mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m-1 K-1, 359 W m-1 K-1, 273 W m-1 K-1 and 33.5 W m-1 K-1, respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp2 domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the other three. This

  20. An efficient numerical technique for calculating thermal spreading resistance

    NASA Technical Reports Server (NTRS)

    Gale, E. H., Jr.

    1973-01-01

    The results of a thermal spreading resistance data generation technique study are reported. The method developed is discussed in detail, illustrative examples given, and the resulting computer program is included.

  1. Thermal contact resistance in solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Dillig, Marius; Biedermann, Thomas; Karl, Jürgen

    2015-12-01

    For detailed thermal modelling of SOFC stacks, in particular research of improved thermal management, start-up and shut-down processes, thermal contact resistances (TCR) are required input parameters. These parameters are difficult to access analytically and strongly depend on temperature, geometry and material properties of the contact. Therefore, this work presents an experimental study of thermal contact resistance between different components of one SOFC stack repeating unit at varying temperatures up to typical operating temperatures (800 °C). Heat transfer rates are obtained for full repeating units, cell only, contact mesh only and sealing set-ups. Thermal interface resistances between interconnector and Ni-mesh, Ni-mesh and anode, cathode and interconnector as well as between interconnector and sealing are computed based on the measured data and provide information for numerical SOFC stack modelling.

  2. Improvement of thermal contact resistance by carbon nanotubes and nanofibers.

    PubMed

    Chuang, Helen F; Cooper, Sarah M; Meyyappan, M; Cruden, Brett A

    2004-11-01

    Interfacial thermal resistance results of various nanotube and nanofiber coatings, prepared by chemical vapor deposition (CVD) methods, are reported at relatively low clamping pressures. The five types of samples examined include multi-walled and single-walled nanotubes growth by CVD, multi-walled nanotubes grown by plasma enhanced CVD (PECVD) and carbon nanofibers of differing aspect ratio grown by PECVD. Of the samples examined, only high aspect ratio nanofibers and thermally grown multi-walled nanotubes show an improvement in thermal contact resistance. The improvement is approximately a 60% lower thermal resistance than a bare Si-Cu interface and is comparable to that attained by commercially available thermal interface materials. PMID:15656186

  3. Thermal resistance of ultra-small-diameter disk microlasers

    SciTech Connect

    Zhukov, A. E. Kryzhanovskaya, N. V.; Maximov, M. V.; Lipovskii, A. A.; Savelyev, A. V.; Shostak, I. I.; Moiseev, E. I.; Kudashova, Yu. V.; Kulagina, M. M.; Troshkov, S. I.

    2015-05-15

    The thermal resistance of AlGaAs/GaAs microlasers of the suspended-disk type with a diameter of 1.7–4 μm and InAs/InGaAs quantum dots in the active region is inversely proportional to the squared diameter of the microdisk. The proportionality factor is 3.2 × 10{sup −3} (K cm{sup 2})/W, and the thermal resistance is 120–20°C/mW.

  4. Thermal contact resistance in a non-ideal joint

    NASA Technical Reports Server (NTRS)

    Roca, R. T.; Mikic, B. B.

    1973-01-01

    Analysis has been conducted to determine thermal contact resistance at interface of two heat conductors and effect of roughness of mating surfaces on pressure distribution. Investigation reveals how heat transfer resistance may be decreased or increased by changing surface properties of particular interface being considered.

  5. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Bao, Hua; Hu, Ming

    2015-03-01

    Silicene, the silicon-based counterpart of graphene, has received exceptional attention from a wide community of scientists and engineers in addition to graphene, due to its unique and fascinating physical and chemical properties. Recently, the thermal transport of the atomic thin Si layer, critical to various applications in nanoelectronics, has been studied; however, to date, the substrate effect has not been investigated. In this paper, we present our nonequilibrium molecular dynamics studies on the phonon transport of silicene supported on different substrates. A counter-intuitive phenomenon, in which the thermal conductivity of silicene can be either enhanced or suppressed by changing the surface crystal plane of the substrate, has been observed. This phenomenon is fundamentally different from the general understanding of supported graphene, a representative two-dimensional material, in which the substrate always has a negative effect on the phonon transport of graphene. By performing phonon polarization and spectral energy density analysis, we explain the underlying physics of the new phenomenon in terms of the different impacts on the dominant phonons in the thermal transport of silicene induced by the substrate: the dramatic increase in the thermal conductivity of silicene supported on the 6H-SiC substrate is due to the augmented lifetime of the majority of the acoustic phonons, while the significant decrease in the thermal conductivity of silicene supported on the 3C-SiC substrate results from the reduction in the lifetime of almost the entire phonon spectrum. Our results suggest that, by choosing different substrates, the thermal conductivity of silicene can be largely tuned, which paves the way for manipulating the thermal transport properties of silicene for future emerging applications.

  6. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1972-01-01

    Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.

  7. Solution-processed indium-tin-oxide nanoparticle transparent conductors on flexible glass substrate with high optical transmittance and high thermal stability

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Jei; Kim, Sun-Woo; In Han, Jeong

    2014-08-01

    In this study, solution-processed transparent conductors on flexible glass substrate were investigated using indium-tin-oxide (ITO) nanoparticle (NP) ink. The ITO-NP conductors were well fabricated on the flexible glass substrate with neither distortion nor deformation. Optical transmittances of the ITO-NP conductors on flexible glass substrate were enhanced to more than 91% that is higher than those on rigid glass substrate owing to decreased thickness. As well, the ITO-NP conductors on flexible glass substrate heat-treated at 500 and 600 °C showed good thermal stabilities of electrical and optical properties. In case of bending characteristics of samples heat-treated at 500 and 600 °C, the change in resistance was slight within 14%, which is smaller than those of conventional TCOs on flexible films. Based on the results, we propose that the solution-processed ITO-NP conductors are suitable for TCOs on flexible glass substrates.

  8. Significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Gaugler, R. E.

    1980-01-01

    The importance of thermal contact resistance between layers in heat transfer through two layer, plasma sprayed, thermal barrier coatings applied to turbine vanes was investigated. Results obtained with a system of NiCrAlY bond and yttria stabilized zirconia ceramic show that thermal contact resistance between layers is negligible. These results also verified other studies which showed that thermal contact resistance is negligible for a different coating system of NiCr bond calcia stabilized zirconia ceramic. The zirconia stabilized ceramic thermal conductivity data scatter presented in the literature is ?20 to -10 percent about a curve fit of the data. More accurate predictions of heat transfer and metal wall temperatures are obtained when the thermal conductivity values are used at the ?20 percent level.

  9. Impact of substrate surface scratches on the laser damage resistance of multilayer coatings

    SciTech Connect

    Qiu, S; Wolfe, J; Monterrosa, A; Teslich, N; Feit, M; Pistor, T; Stolz, C

    2010-11-03

    Substrate scratches can limit the laser resistance of multilayer mirror coatings on high-peak-power laser systems. To date, the mechanism by which substrate surface defects affect the performance of coating layers under high power laser irradiation is not well defined. In this study, we combine experimental approaches with theoretical simulations to delineate the correlation between laser damage resistance of coating layers and the physical properties of the substrate surface defects including scratches. A focused ion beam technique is used to reveal the morphological evolution of coating layers on surface scratches. Preliminary results show that coating layers initially follow the trench morphology on the substrate surface, and as the thickness increases, gradually overcoat voids and planarize the surface. Simulations of the electrical-field distribution of the defective layers using the finite-difference time-domain (FDTD) method show that field intensification exists mostly near the top surface region of the coating near convex focusing structures. The light intensification could be responsible for the reduced damage threshold. Damage testing under 1064 nm, 3 ns laser irradiation over coating layers on substrates with designed scratches show that damage probability and threshold of the multilayer depend on substrate scratch density and width. Our preliminary results show that damage occurs on the region of the coating where substrate scratches reside and etching of the substrate before coating does not seem to improve the laser damage resistance.

  10. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2002-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  11. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2000-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  12. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  13. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    SciTech Connect

    Asubar, Joel T. Yatabe, Zenji; Hashizume, Tamotsu

    2014-08-04

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8 K-mm/W at ambient temperature of ∼350 K and power dissipation of ∼9 W/mm. This value compares well to 4.1 K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  14. Pattern transfer from the e-beam resist, over the nanoimprint resist and to the final silicon substrate

    NASA Astrophysics Data System (ADS)

    He, Jian; Howitz, S.; Richter, K.; Bartha, J. W.; Moench, J. I.

    2012-03-01

    We developed Fluor-based RIE processes to fabricate nanoimprint template in silicon and to transfer patterns from the imprint resist to the silicon substrate. The etched silicon patterns have slightly tapered and smooth sidewalls. The sidewall angle can be controlled between 85° and 90° by varying the ratio of the used gas. The dimension of the etched structures is identical with the patterns in the resist. We demonstrated line structures in silicon substrate down to 50 nm. The etching rate is over 100 nm per minute and the maximal achieved aspect ratio is more than 10.

  15. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.

    PubMed

    Zolotavin, Pavlo; Alabastri, Alessandro; Nordlander, Peter; Natelson, Douglas

    2016-07-26

    Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illumination-conditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal-substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies. PMID:27355238

  16. Research of surface activating influence on formation of adhesion between gas-thermal coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Klimenov, V.; Zaitsev, K.

    2015-09-01

    Estimation of influence of physical and thermal activating on adhesion between steel substrates and thermal coatings has been performed. The substrates with surfaces obtained by and ultrasonic surface plastic deformation were used. To evaluate physical activating, preheating of the substrates to 600°C was performed. To evaluate the effect of thermal activating, the substrate surfaces after interfacial detachment were examined. Bonded areas on the substrate surfaces were measured by means of optical profilometry. The experiments have shown that surface physical activating is the main factor in formation of the adhesive bond between the coating and the substrate processed with the proposed methods.

  17. Vendor Capability for Low Thermal Expansion Mask Substrates for EUV Lithography

    SciTech Connect

    Blaedel, K L; Taylor, J S; Hector, S D; Yan, P Y; Ramamoorthy, A; Brooker, P D

    2002-04-12

    Development of manufacturing infrastructure is required to ensure a commercial source of mask substrates for the timely introduction of EUVL. Improvements to the low thermal expansion materials that compose the substrate have been made, but need to be scaled to production quantities. We have been evaluating three challenging substrate characteristics to determine the state of the infrastructure for the finishing of substrates. First, surface roughness is on track and little risk is associated with achieving the roughness requirement as an independent specification. Second, with new flatness-measuring equipment just coming on line, the vendors are poised for improvement toward the SEMI P37 flatness specification. Third, significant acceleration is needed in the reduction of defect levels on substrates. The lack of high-sensitivity defect metrology at the vendors' sites is limiting progress in developing substrates for EWL.

  18. Arrayed SU-8 polymer thermal actuators with inherent real-time feedback for actively modifying MEMS’ substrate warpage

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Xiao, Dingbang; Chen, Zhihua; Wu, Xuezhong

    2016-09-01

    This paper describes the design, fabrication and characterization of a batch-fabricated micro-thermal actuators array with inherent real-time self-feedback, which can be used to actively modify micro-electro-mechanical systems’ (MEMS’) substrate warpage. Arrayed polymer thermal actuators utilize SU-8 polymer (a thick negative photoresist) as a functional material with integrated Ti/Al film-heaters as a microscale heat source. The electro-thermo-mechanical response of a micro-fabricated actuator was measured. The resistance of the Al/Ti film resistor varies obviously with ambient temperature, which can be used as inherent feedback for observing real-time displacement of activated SU-8 bumps (0.43 μm Ω‑1). Due to the high thermal expansion coefficient, SU-8 bumps tend to have relatively large deflection at low driving voltage and are very easily integrated with MEMS devices. Experimental results indicated that the proposed SU-8 polymer thermal actuators (array) are able to achieve accurate rectification of MEMS’ substrate warpage, which might find potential applications for solving stress-induced problems in MEMS.

  19. Thermal resistance of Saccharomyces yeast ascospores in beers.

    PubMed

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-01

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. PMID:25996521

  20. Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators

    SciTech Connect

    Hsueh, Chun-Hway; Luttrell, Claire Roberta; Cui, Tianhong

    2006-01-01

    Thermal stress-induced damage in multilayered films formed on substrates and cantilever beams is a major reliability issue for the fabrication and applications of micro sensors and actuators. Using closed-form predictive solutions for thermal stresses in multilayered systems, specific results are calculated for the thermal stresses in PZT/Pt/Ti/SiO2/Si3N4/SiO2 film layers on Si substrates and PZT/Pt/Ti/SiO2 film layers on Si3N4 cantilever beams. When the thickness of the film layer is negligible compared to the substrate, thermal stresses in each film layer are controlled by the thermomechanical mismatch between the individual film layer and the substrate, and the modification of thermal stresses in each film layer by the presence of other film layers is insignificant. On the other hand, when the thickness of the film layer is not negligible compared to the cantilever beam, thermal stresses in each film layer can be controlled by adjusting the properties and thickness of each layer. The closed-form solutions provide guidelines for designing multilayered systems with improved reliability.

  1. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  2. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    NASA Astrophysics Data System (ADS)

    Shao, Cheng; Bao, Hua

    2016-06-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  3. Thermal conductivities of sub-micron Bi2Te3 films sputtered on anisotropic substrates

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Wu, Ping; Zhang, Shiping; Pei, Yili; Yang, Fan; Wang, Li

    2016-07-01

    Approximately 450 nm thick Bi2Te3 films were deposited on flat Al2O3 substrate and nanochannel alumina (NCA) templates with different pore diameters through radio-frequency magnetron sputtering. The structure and morphology of Bi2Te3 films were investigated by x-ray diffraction and field-emission scanning electron microscopy. Moreover, the thermal conductivities of the films deposited on anisotropic substrates were evaluated by micro-Raman method combined with numerical simulation and optimization conducted by COMSOL Multiphysics. The thermal conductivities of Bi2Te3 films deposited on NCA templates with discontinuous Φ20 and Φ100 nm pores and flat Al2O3 substrate were 0.80, 0.99 and 1.54 Wm‑1 K‑1, respectively. The lower thermal conductivities of Bi2Te3 films deposited on NCA templates are attributed to much smaller grain size, bottom porous layers, and rougher surfaces through analysis.

  4. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  5. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, Santosh Y.

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  6. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  7. Thermal and radiation resistance of stabilized LDPE

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Henderson, D.; Kappel, W.; Mariş, D. A.; Mariş, M.

    2010-03-01

    The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to γ-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.

  8. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  9. Casimir-Polder force for a polarizable molecule near a dielectric substrate out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2015-05-01

    We demonstrate that the Casimir-Polder force for a molecule near the surface of a real dielectric substrate out of thermal equilibrium displays distinctive behaviors as compared to that at thermal equilibrium. In particular, when the molecule-substrate separation is much less than the molecular transition wavelength, the CP force in the high-temperature limit can be dramatically manipulated by varying the relative magnitude of the temperatures of the substrate and the environment so that the attractive-to-repulsive transition can occur beyond a certain threshold temperature of either the substrate or the environment depending on which one is higher for molecules both in the ground and excited states. More remarkably, when the separation is comparable to the wavelength, such transitions which are impossible at thermal equilibrium may happen for longitudinally polarizable molecules with a small permittivity, while for isotropically polarizable ones the transitions can even occur at room temperature for some dielectric substrates such as sapphire and graphite which is much lower than the temperature for the transition to take place in the thermal equilibrium case, thus making the experimental demonstration of such force transitions easier.

  10. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao; Chen, Zhi-zhan

    2016-06-01

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρc) is 1.97 × 10-3 Ω.cm2, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA, which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.

  11. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance.

    PubMed

    Kesarwani, Meenu; Huber, Erika; Kincaid, Zachary; Evelyn, Chris R; Biesiada, Jacek; Rance, Mark; Thapa, Mahendra B; Shah, Neil P; Meller, Jarek; Zheng, Yi; Azam, Mohammad

    2015-01-01

    Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site. PMID:26419724

  12. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance

    PubMed Central

    Kesarwani, Meenu; Huber, Erika; Kincaid, Zachary; Evelyn, Chris R.; Biesiada, Jacek; Rance, Mark; Thapa, Mahendra B.; Shah, Neil P.; Meller, Jarek; Zheng, Yi; Azam, Mohammad

    2015-01-01

    Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site. PMID:26419724

  13. Influence of a hot and humid environment on thermal transport across the interface between a Ag thin-film line and a substrate

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Noguchi, Kyohei; Saka, Masumi

    2016-04-01

    To evaluate the reliability of Ag thin-film lines for a wide range of applications in electronic devices, knowledge of the thermal transport across the interface between the line and the underlying substrate is of great importance. This is because such thermal transport significantly affects the temperature distribution in the line, the electrical performance of the line and the service life of the device the line is installed on. In this work, we examine the influence of a hot and humid environment on the thermal transport across the interface between a Ag thin-film line and a substrate. By performing a series of current-stressing experiments using the four-point probe method at atmospheric conditions (296 K and 30 RH%) on a Ag thin-film line for different durations of exposure to a hot and humid environment (323 K and 90 RH%), the electrical resistivity was found to increase with the exposure duration. Such an increase is believed to be the result of a decrease in the interfacial thermal conductance, which indicates less thermal transport from the line to the substrate. Moreover, by observing the surface morphology changes in the line and conducting a one-dimensional electro-thermal analysis, such variations can be attributed to the generation and growth of voids within the line, which hinder heat transfer from the line to the substrate through the interface.

  14. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  15. Ambient cure polyimide foams. [thermal resistant foams

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R.; Hamermesh, C. L. (Inventor)

    1978-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, (pyromellitic dianhydride) with an aromatic polyisocyanate, (polymethylene polyphenylisocyanate), in the presence of an inorganic acid and furfuryl alcohol. Usable acids include dilute sulfuric acid, dilute nitric acid, hydrochloric acid, polyphosphoric acid, and phosphoric acid, with the latter being preferred. The dianhydride and the isocyanate in about equimolar proportions constitute about 50% of the reaction mixture, the rest being made up with the acid and the alcohol in a ratio of about 1:10. An exothermic reaction between the acid and the alcohol provides the heat necessary for the other components to polymerize without recourse to external heat sources. The mixture can be sprayed on any surface to form polymeric foam in locations where the application of heat is not practical or possible, for instance, between walls or on mine tunnel surfaces.

  16. Thermophysical properties of thermal sprayed coatings on carbon steel substrates by photothermal radiometry

    SciTech Connect

    Garcia, J.A.; Mandelis, A.; Farahbakhsh, B.; Lebowitz, C.; Harris, I.

    1999-09-01

    Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermal physical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.

  17. Thermal resistance of ridge-waveguide lasers mounted upside down

    SciTech Connect

    Amann, M.

    1987-01-05

    The heat dissipation in upside down mounted ridge-waveguide lasers equipped with a double-channel structure is analyzed by a simplified device model. Assuming an isothermal active region, the thermal resistance is obtained by means of conformal mapping. A comparison to published experimental results shows good agreement.

  18. 49 CFR Appendix D to Part 178 - Thermal Resistance Test

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... thermal resistance capabilities of a compressed oxygen generator and the outer packaging for a cylinder of compressed oxygen or other oxidizing gas and an oxygen generator. When exposed to a temperature of 205 °C... temperature of 93 °C (199 °F) and the oxygen generator must not actuate. 2. Apparatus. 2.1Test Oven. The...

  19. Thermal resistance of superinsulation/foam composite panels

    SciTech Connect

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-05-01

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, normalizing for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  20. Thermal resistance of composite panels containing superinsulation and urethane foam

    SciTech Connect

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-09-01

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, adjusting for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  1. Modeling of nonlinear thermal resistance in FinFETs

    NASA Astrophysics Data System (ADS)

    Krishna Kompala, Bala; Kushwaha, Pragya; Agarwal, Harshit; Khandelwal, Sourabh; Duarte, Juan-Pablo; Hu, Chenming; Singh Chauhan, Yogesh

    2016-04-01

    In this paper, self-consistent three-dimensional (3D) device simulations for exact analysis of thermal transport in FinFETs are performed. We analyze the temperature rise in FinFET devices with the variation in the number of fins (N fin), shape of fins and fin pitch (F pitch). We investigate that the thermal resistance R th has nonlinear dependency on N fin and F pitch. We formulate a model for thermal resistance behavior correctly with N fin and F pitch variation. The proposed formulation is implemented in industry standard Berkeley short-channel independent gate FET model for common multi-gate transistors (BSIM-CMG) and validated with both experimental data and TCAD simulations.

  2. Ceramic thermal barrier coatings with improved corrosion resistance

    SciTech Connect

    Prater, J.T.; Courtright, E.L.

    1987-02-01

    A method for limiting the ingress of corrosive species into physical vapor deposited zirconia thermal barrier coatings by inserting dense ceramic sealing layers into the usual columnar (segmented) ceramic microstructure has been examined. The concept was evaluated by sputtering a series of ZrO/sub 2/-2OY/sub 2/O/sub 3/ deposits onto In792 substrates coated with a CoCrAlY bondlayer.

  3. Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance.

    PubMed

    Bodzenta, J; Juszczyk, J; Chirtoc, M

    2013-09-01

    Resistive thermal probes used in scanning thermal microscopy provide high spatial resolution of measurement accompanied with high sensitivity to temperature changes. At the same time their sensitivity to variations of thermal conductivity of a sample is relatively low. In typical dc operation mode the static resistance of the thermal probe is measured. It is shown both analytically and experimentally that the sensitivity of measurement can be improved by a factor of three by measuring the dynamic resistance of a dc biased probe superimposed with small ac current. The dynamic resistance can be treated as a complex value. Its amplitude represents the slope of the static voltage-current U-I characteristic for a given I while its phase describes the delay between the measured ac voltage and applied ac current component in the probe. The phase signal also reveals dependence on the sample thermal conductivity. Signal changes are relatively small but very repeatable. In contrast, the difference between dynamic and static resistance has higher sensitivity (the same maximum value as that of the 2nd and 3rd harmonics), and also much higher amplitude than higher harmonics. The proposed dc + ac excitation scheme combines the benefits of dc excitation (mechanical stability of probe-sample contact, average temperature control) with those of ac excitation (base-line stability, rejection of ambient temperature influence, high sensitivity, lock-in signal processing), when the experimental conditions prohibit large ac excitation. PMID:24089831

  4. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  5. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  6. Toward the design of mutation-resistant enzyme inhibitors: Further evaluation of the substrate envelope hypothesis

    PubMed Central

    Kairys, Visvaldas; Gilson, Michael K.; Lather, Viney; Schiffer, Celia A.; Fernandes, Miguel X.

    2010-01-01

    Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for HIV protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (≥6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope Vout, is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold for the other targets if more extensive mutation data sets were available. It is concluded that the substrate envelope concept offers a promising and easily implemented computational tool for the design of drugs that will tend to resist mutations. Software implementing these calculations is provided with the supplemental material. PMID:19703025

  7. Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis.

    PubMed

    Kairys, Visvaldas; Gilson, Michael K; Lather, Viney; Schiffer, Celia A; Fernandes, Miguel X

    2009-09-01

    Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold for the other targets, if more extensive mutation data sets were available. It is concluded that the substrate envelope concept offers a promising and easily implemented computational tool for the design of drugs that will tend to resist mutations. Software implementing these calculations is provided with the 'Supporting Information'. PMID:19703025

  8. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis.

    PubMed

    Chellappan, Sripriya; Kiran Kumar Reddy, G S; Ali, Akbar; Nalam, Madhavi N L; Anjum, Saima Ghafoor; Cao, Hong; Kairys, Visvaldas; Fernandes, Miguel X; Altman, Michael D; Tidor, Bruce; Rana, Tariq M; Schiffer, Celia A; Gilson, Michael K

    2007-05-01

    There is a clinical need for HIV protease inhibitors that can evade resistance mutations. One possible approach to designing such inhibitors relies upon the crystallographic observation that the substrates of HIV protease occupy a rather constant region within the binding site. In particular, it has been hypothesized that inhibitors which lie within this region will tend to resist clinically relevant mutations. The present study offers the first prospective evaluation of this hypothesis, via computational design of inhibitors predicted to conform to the substrate envelope, followed by synthesis and evaluation against wild-type and mutant proteases, as well as structural studies of complexes of the designed inhibitors with HIV protease. The results support the utility of the substrate envelope hypothesis as a guide to the design of robust protease inhibitors. PMID:17539822

  9. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  10. Surface thermal stability of free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Okada, Shunsuke; Miyake, Hideto; Hiramatsu, Kazumasa; Miyagawa, Reina; Eryu, Osamu; Hashizume, Tamotsu

    2016-01-01

    The thermal stability of GaN surfaces was investigated with respect to homo-epitaxy on free-standing GaN substrates. Morphologies and etching rates of the GaN surfaces for free-standing polar (0001), nonpolar (10\\bar{1}0), and semipolar (20\\bar{2}1) and (20\\bar{2}\\bar{1}) planes were studied before and after thermal cleaning. In the case of the polar (0001) plane, polishing scratches disappeared after thermal cleaning at temperatures above 1000 °C. The surface morphology depended on not only the cleaning temperature, but also the substrate off-angle. The surface after thermal cleaning became rough for the substrate with off-angle less than 0.05°. In the case of nonpolar and semipolar planes after thermal cleaning, surface morphologies and etching rates were strongly dependent on the planes. A flat surface was maintained at cleaning temperatures up to 1100 °C for the (10\\bar{1}0) plane, but the surface of the (20\\bar{2}1) plane became rough with increasing cleaning temperature.

  11. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.

    PubMed

    Burg, Brian R; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-01

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm(2) K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings. PMID:26724058

  12. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-01

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm2 K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.

  13. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    SciTech Connect

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-15

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.

  14. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-04-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  15. Thermal Resistance Measurements for Flexible Straps at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Nellis, G. F.; Lachner, B. F.; Lokken, O. D.; Stahl, B. L.; Crawford, L. D.

    2004-06-01

    An experimental test facility is described that is capable of accurately measuring the total thermal resistance of a flexible strap and decomposing this total resistance into components that correspond to heat transfer through each bolted interface and heat transfer by conduction through the strap. The experimental procedure, data reduction technique, and an estimate of the uncertainty in the measurements are described. The thermal resistance values of conductive straps fabricated by joining many, thin copper laminations were measured. A test matrix was used to investigate several potentially important factors, including: total strap thickness, individual foil thickness, metal foil alloy, interface clamping force, interface surface finish, and the presence of indium foil in the interface. Each test was run at nominal temperatures of 35 K, 60 K, 77 K, and 110 K. The results of the testing indicate that the two most important factors that determine the thermal resistance of the flexible strap are its thickness and the presence of indium in the interface. Clamping force and surface finish are also found to be important, although less so when indium is used in the interface.

  16. Numerical simulation for thermal shock resistance of thermal protection materials considering different operating environments.

    PubMed

    Li, Weiguo; Li, Dingyu; Wang, Ruzhuan; Fang, Daining

    2013-01-01

    Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs), which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR) of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2), a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions. PMID:23983628

  17. The influence of thermophysical properties of an anisotropic heat-element substrate on the value of thermal emf in the stationary thermal mode

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Popov, P. A.; Reznikov, B. I.; Sakharov, V. A.

    2016-05-01

    Thermal and thermoelectric processes in anisotropic heat elements located on substrates made of different materials have been numerically simulated. It is shown that, when an invariable heat flux passes through a heat element, the thermophysical properties of the substrate and heat transfer coefficient at its rear surface affect significantly the temperature distribution and the value of generated thermal emf.

  18. Substrate effect on thermal stability of superconductor thin films in the peritectic melting.

    PubMed

    Chen, Y Y; Fang, T F; Yan, S B; Yao, X; Tao, B W

    2012-05-31

    Systematic experiments were performed by in situ observation of the YBa(2)Cu(3)O(z) (Y123 or YBCO) melting. Remarkably, the superheating phenomenon was identified to exist in all commonly used YBCO thin films, that is, films deposited on MgO, LaAlO(3) (LAO), and SrTiO(3) (STO) substrates, suggesting a universal superheating mode of the YBCO film. Distinctively, YBCO/LAO films were found to possess the highest level of superheating, over 100 K, mainly attributed to the lattice match effect of LAO substrate, that is, its superior lattice fit with Y123 delaying the Y123 dissolving and inferior lattice matching with Y(2)BaCuO(5) (Y211) delaying the Y211 nucleation. Moreover, strong dependence of the thermal stability on the substrate material for Y123 films was also found to be associated with the substrate wettability by the liquid and the potential element doping from the substrate. Most importantly, the understanding of the superheating behavior is widely valid for more film/substrate constructions that have the same nature as the YBCO film/substrate. PMID:22540312

  19. Thermal resistance of perlite-based evacuated insulations for refrigerators

    SciTech Connect

    Yarbrough, D.W.; Graves, R.S.; Weaver, F.J.; McElroy, D.L.

    1986-09-01

    The thermal resistances of two side panels which were cut from imported refrigerators and of a single, newly manufactured evacuated packet were measured using a linear heat flow technique. The panels were composites of foamed-in-place urethane surrounding perlite-filled evacuated packets. One panel contained an apparently punctured packet and was found to have a thermal resistance at 300 K in the range 0.617 to 0.950 m/sup 2/ x K/W for 2.54 cm (3.5 to 5.4 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in.). A second apparently undamaged packet had thermal resistances in the range 1.66 to 2.45 m/sup 2/ x K/W for 2.54 cm (9.4 to 13.9 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in.). The internal pressure of the undamaged packet was calculated to be in the range 100 to 1000 Pa by comparing packet thermal properties with apparent thermal conductivities, k/sub a/, obtained as a function of pressure for the perlite removed from the damaged packet. The thermal resistance for the single evacuated packet was determined by framing the packet with polyisocyanurate of known k/sub a/ and measuring heat flow across the assembly. This yielded a thermal resistance of 18.1 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in. The k/sub a/ values of two domestic perlites and the perlite removed from the punctured refrigerator packet were measured at 300 K and pressures from atmospheric down to about 5 Pa using a radial heat flow technique. Near 1 atm the k/sub a/ of fine domestic perlite at a density of 246 kg/m/sup 3/ was 5% above that of the foreign perlite at 225 kg/m/sup 3/, but the domestic product had a k/sub a/ up to 45% greater than that of the foreign product under vacuum. The mean particle diameter of the imported perlite was near 13 ..mu..m, while the mean particle diameter of the domestic product was near 21 ..mu..m.

  20. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions.

    PubMed

    Shaina, P R; George, Lijin; Yadav, Vani; Jaiswal, Manu

    2016-03-01

    The temperature-dependent thermal expansion coefficient of graphene is estimated for as-grown chemical vapor deposited graphene using temperature-dependent Raman spectroscopy. For as-grown graphene on copper, the extent of thermal expansion mismatch between substrate and the graphene layer is significant across the entire measured temperature interval, T  =  90-300 K. This mismatch induces lattice strain in graphene. However, graphene grown on copper substrates has a unique morphology in the form of quasi-periodic nanoripples. This crucially influences the profile of the strain in the graphene membrane, which is uniaxial. An estimate of the thermal expansion coefficient of grapheme α(T) is obtained after consideration of this strain profile and after incorporating temperature-dependent Grüneisen parameter corrections. The value of α(T), is found to be negative (average value, -3.75  ×  10(-6) K(-1)) for the entire temperature range and it approaches close to zero for T  <  150 K. For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate. PMID:26823443

  1. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions

    NASA Astrophysics Data System (ADS)

    Shaina, P. R.; George, Lijin; Yadav, Vani; Jaiswal, Manu

    2016-03-01

    The temperature-dependent thermal expansion coefficient of graphene is estimated for as-grown chemical vapor deposited graphene using temperature-dependent Raman spectroscopy. For as-grown graphene on copper, the extent of thermal expansion mismatch between substrate and the graphene layer is significant across the entire measured temperature interval, T  =  90-300 K. This mismatch induces lattice strain in graphene. However, graphene grown on copper substrates has a unique morphology in the form of quasi-periodic nanoripples. This crucially influences the profile of the strain in the graphene membrane, which is uniaxial. An estimate of the thermal expansion coefficient of graphene α (T) is obtained after consideration of this strain profile and after incorporating temperature-dependent Grüneisen parameter corrections. The value of α (T) , is found to be negative (average value, -3.75  ×  10-6 K-1) for the entire temperature range and it approaches close to zero for T  <  150 K. For graphene wet-transferred to three kinds of substrates: copper, poly-dimethylsiloxane, and SiO2/Si, the Raman shifts can largely be modeled with lattice expansion and anharmonic contributions, and the data suggests limited interfacial interaction with the substrate.

  2. Thermal resistance technique for measuring the thermal conductivity of thin microporous membranes

    NASA Astrophysics Data System (ADS)

    García-Payo, M. C.; Izquierdo-Gil, M. A.

    2004-11-01

    The thermal resistance technique for measurement of the thermal conductivity of microporous thin membranes is described. A modified and enhanced Lees' disc apparatus was used. Several samples of membranes were held between a hot copper plate and a cold copper base, and the temperature differences between them were measured using thermocouples under steady-state conditions. The accuracy and reliability of the results were checked by means of a comparative test on a standard bad conductor. A dependence of the thermal resistance on the thickness of the samples was observed. The thermal conductivity of the membrane was deduced from a linear fit of the thermal resistance versus the number of membranes. Better results were obtained when the air layer effect was considered in the linear fit. Several models found in the literature and based on empirical correlations or on theoretical structure models (such as Maxwell's, Fricke's or Misra's models) were tested in order to calculate the effective thermal conductivity of the membrane. These values were compared with the experimental ones and they showed a better agreement than the parallel model commonly used in the literature for the membranes studied in this work.

  3. Development of conformation independent computational models for the early recognition of breast cancer resistance protein substrates.

    PubMed

    Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Talevi, Alan; Bruno-Blanch, Luis E

    2013-01-01

    ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively. PMID:23984415

  4. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  5. Thermal shock and erosion resistant tantalum carbide ceramic material

    NASA Technical Reports Server (NTRS)

    Honeycutt, L., III; Manning, C. R. (Inventor)

    1978-01-01

    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.

  6. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  7. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  8. Reduced electrical resistivity in TiO2:Nb/ZnO:Ga film by thermal annealing

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuji; Funaki, Shuhei; Ichiyanagi, Seiji; Kikuchi, Hiroki; Inoue, Sota

    2014-01-01

    Layered films consisting of transparent conducting oxides, Ga-doped ZnO (GZO) and Nb-doped TiO2 (TNO), were fabricated on glass substrates and their electrical properties were investigated. As-deposited TNO/GZO films showed the mean resistivity of TNO and GZO films. Thermal annealing reduced the resistivity of these films; however, TNO/GZO films exhibited the lowest value among them. The carrier concentration and Hall mobility of TNO/GZO films increased with the reduction in electrical resistivity. The thickness dependence, annealing temperature dependence, and crystalline orientation of the TNO and GZO layers in TNO/GZO films indicated that the improvement of the electrical properties of the GZO underlayer contributed to the resistivity reduction behavior of TNO/GZO films induced by thermal annealing.

  9. Very high residual resistivity ratios of heteroepitaxial superconducting niobium films on MgO substrates

    SciTech Connect

    Krishnan, Mahadevan; Valderrama, E.; Bures, B.; Wilson-Elliott, K.; Zhao, Xin; Phillips, H. Larry; Valente, Anne-Marie; Spradlin, Joshua K.; Reece, Charles E.; Seo, Kang

    2011-11-01

    We report residual resistivity ratio (RRR) values (up to RRR-541) measured in thin film Nb grown on MgO crystal substrates, using a vacuum arc discharge, whose 60?160 eV Nb ions drive heteroepitaxial crystal growth. The RRR depends strongly upon substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that, as the crystal structure of the Nb film becomes more ordered, RRR increases, consistent with fewer defects or impurities in the lattice and hence longer electron mean free path. A transition from Nb(110) to purely Nb(100) crystal orientation on the MgO(100) lattice occurs at higher temperature.

  10. Method for thermally spraying crack-free mullite coatings on ceramic-based substrates

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Heidorn, Raymond W. (Inventor)

    2001-01-01

    A process for depositing a mullite coating on a silicon-based material, such as those used to form articles exposed to high temperatures and including the hostile thermal environment of a gas turbine engine. The process is generally to thermally spray a mullite powder to form a mullite layer on a substrate, in which the thermal spraying process is performed so that the mullite powder absorbs a sufficient low level of energy from the thermal source to prevent evaporation of silica from the mullite powder. Processing includes deposition parameter adjustments or annealing to maintain or reestablish phase equilibrium in the mullite layer, so that through-thickness cracks in the mullite layer are avoided.

  11. Method for thermally spraying crack-free mullite coatings on ceramic-based substrates

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Heidorn, Raymond W. (Inventor)

    2000-01-01

    A process for depositing a mullite coating on a silicon-based material, such as those used to form articles exposed to high temperatures and including the hostile thermal environment of a gas turbine engine. The process is generally to thermally spray a mullite powder to form a mullite layer on a substrate, in which the thermal spraying process is performed so that the mullite powder absorbs a sufficient low level of energy from the thermal source to prevent evaporation of silica from the mullite powder. Processing includes deposition parameter adjustments or annealing to maintain or reestablish phase equilibrium in the mullite layer, so that through-thickness cracks in the mullite layer are avoided.

  12. Thermally-driven structural changes of graphene oxide multilayer films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Lazauskas, A.; Baltrusaitis, J.; Grigaliūnas, V.; Guobienė, A.; Prosyčevas, I.; Narmontas, P.; Abakevičienė, B.; Tamulevičius, S.

    2014-11-01

    Graphene oxide (GO) has been recognized as an important intermediate compound for a potential low-cost large-scale graphene-like film fabrication. In this work, graphene oxide multilayer films deposited on glass substrate were reduced using different thermal reduction methods, including low-temperature annealing, flame-induced and laser reduction, and the corresponding surface morphology and structural properties were investigated. These graphene oxide thermal reduction methods strongly affected surface morphology and differently facilitated structural and chemical transformations of graphene oxide. As evidenced by Raman measurements, thermal annealing and laser reduction of graphene oxide produced more ordered graphene-like structure multilayer films. However, surface morphological differences were observed and attributed to the different de-oxidation mechanisms of GO. This Letter provides an important systematic comparison between the GO reduction methods and thermally-driven structural changes they provide to the reduced GO multilayer films obtained.

  13. Thermal rectification and negative differential thermal resistance in a driven two segment classical Heisenberg chain.

    PubMed

    Bagchi, Debarshee

    2013-12-11

    Using computer simulation we investigate thermal transport in a two segment classical Heisenberg spin chain with nearest neighbor interaction and in the presence of an external magnetic field. The system is thermally driven by heat baths attached at the two ends and transport properties are studied using energy conserving dynamics. We demonstrate that by properly tuning the parameters thermal rectification can be achieved-the system behaves as a good conductor of heat along one direction but becomes a bad conductor when the thermal gradient is reversed, and crucially depends on nonlinearity and spatial asymmetry. Moreover, suitable tuning of the system parameters gives rise to the counterintuitive and technologically important feature known as negative differential thermal resistance (NDTR). We find that the crucial factor responsible for the emergence of NDTR is a suitable mechanism for impeding the current in the bulk of the system. PMID:24195913

  14. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  15. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2007-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  16. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2004-01-01

    A thermal barrier coating composition comprising a base oxide, a primary stabilizer oxide, and at least one dopant oxide is disclosed. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. The base oxide is selected from the group consisting of zirconia and hafnia and combinations thereof. The primary stabilizing oxide is selected from the group consisting of yttria, dysprosia, erbia and combinations thereof. The dopant or group A and group B cluster-promoting oxide dopants are selected from the group consisting of rare earth metal oxides, transitional metal oxides, alkaline earth metal oxides and combinations thereof. The dopant or dopants preferably have ionic radii different from those of the primary stabilizer and/or the base oxides.

  17. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2006-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  18. Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Luo, W.; Selvadurai, U.; Tillmann, W.

    2016-01-01

    The wear resistance of thermal spray coatings mainly depends on coating properties such as the microstructure, hardness, and porosity, as well as on the residual stress in the coating. The residual stress is induced by a variety of influences e.g., temperature gradients, difference of the thermal expansion coefficient of the coating/substrate materials, and the geometry of the components. To investigate the residual stress, the impulse excitation technique was employed to measure the Young's and shear moduli. The residual stress was determined by the hole-drilling method and x-ray diffraction. Pin-on-Disk and Pin-on-Tube tests were used to investigate the wear behavior. After the wear tests, the wear volume was measured by means of a 3D-profilometer. The results show that the value of the residual stress can be modified by varying the coating thickness and the substrate geometry. The compressive stress in the HVOF-sprayed WC-Co coatings has a significant positive influence on the wear resistance whereas the tensile stress has a negative effect.

  19. Roll-to-roll printed resistive WORM memory on a flexible substrate.

    PubMed

    Leppäniemi, Jaakko; Mattila, Tomi; Kololuoma, Terho; Suhonen, Mika; Alastalo, Ari

    2012-08-01

    The fabrication process and the operation characteristics of a fully roll-to-roll printed resistive write-once-read-many memory on a flexible substrate are presented. The low-voltage (<10 V) write operation of the memories from a high resistivity '0' state to a low resistivity '1' state is based on the rapid electrical sintering of bits containing silver nanoparticles. The bit ink is formulated by mixing two commercially available silver nanoparticle inks in order to tune the initial square resistance of the bits and to create a self-organized network of percolating paths. The electrical performance of the memories, including read and write characteristics, is described and the long-term stability of the less stable '0' state is studied in different environmental conditions. The memories can find use in low-cost mass printing applications. PMID:22782128

  20. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  1. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    SciTech Connect

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H. Wu, G. H.; Zhang, H. G.

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  2. Erosion Resistance of High Velocity Oxy-Fuel WC-Co-Cr Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Imeson, Chris

    Thermal spray coatings have been incorporated in oil and gas extraction efforts for many years. Recently, High Velocity Oxy-Fuel (HVOF) has become increasingly incorporated where erosive environments are present. This study investigates the microstructural and mechanical properties of HVOF WC-Co-Cr coatings deposited at SharkSkin Coatings ltd. The deposited coatings exhibited a low porosity with high adhesion strength, hardness, and superior erosion resistance. In this study, a recirculating solid particle erosion testing machine was designed and fabricated to simulate an erosive environment on a laboratory scale. This study was also aimed at improving microstructures and mechanical properties of the coatings by modifying the two coating deposition parameters e.g. standoff and pre-cycle heating. It was determined that pre-spray substrate heating negatively affected the coatings microstructures e.g. porosity, while reducing the stand-off distance positively influenced the coating microstructures and mechanical properties, e.g. erosion resistance.

  3. Nonvolatile resistive switching memory properties of thermally annealed titania precursor/polyelectrolyte multilayers.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Shin, Hyunjung; Kim, Sanghyo; Cho, Jinhan

    2009-10-01

    We describe a novel and versatile approach for preparing resistive switching memory devices based on transition metal oxides. A titania precursor and poly(allyamine hydrochloride) (PAH) layers were deposited alternately onto platinum (Pt)-coated silicon substrates using electrostatic interactions. The multilayers were then converted to TiO2 nanocomposite (TiO2 NC) films after thermal annealing. A top electrode was coated on the TiO2 NC films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (approximately 0.4 VRESET and 1.3 VSET), which is comparable to that observed in conventional devices fabricated by sputtering or metal organic chemical vapor deposition processes. The reported approach offers new opportunities for preparing inorganic material-based resistive switching memory devices with tailored electronic properties, allowing facile solution processing. PMID:19725555

  4. Fabrication of Al2O3/glass/Cf Composite Substrate with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Liu, G. S.; Ouyang, X. Q.; Wang, Y. D.; Zhang, D.

    2016-02-01

    In this paper, carbon fiber with high thermal conductivity was introduced into the alumina-based composites. To avoid oriented alignment of carbon fibers (Cf) and carbothermal reactions during the sintering process, the Al2O3/glass/Cf substrate was hot-pressed under a segmental-pressure procedure at 1123 K. Experimental results show that carbon fibers randomly distribute and form a bridging structure in the matrix. The three-dimensional network of Cf in Al2O3/glass/Cf substrate brings excellent heat conducting performance due to the heat conduction by electrons. The thermal conductivity of Al2O3/30%glass/30%Cf is as high as 28.98 W mK-1, which is 4.56 times larger than that of Al2O3/30%glass.

  5. Rapid thermal processing of Czochralski silicon substrates: Defects, denuded zones, and minority carrier lifetime

    NASA Technical Reports Server (NTRS)

    Rozgonyi, G. S.; Yang, D. K.; Cao, Y. H.; Radzimski, Z.

    1986-01-01

    Rapid thermal processing (RTP) of Czochralski (Cz) silicon substrates is discussed with its attendant effects on defects, denuded zones, and minority carrier lifetime. Preferential chemical etching and X-ray topography was used to delineate defects which were subsequently correlated with minority carrier lifetime; determined by a pulse metallo-organic decompositon (MOD) test device. The X-ray delineation of grown-in defects was enhanced by a lithium decoration procedure. Results, thus far, show excellent correlation between process-induced defects.

  6. Impact of thermal expansion of substrates on phase transition temperature of VO2 films

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Zaghrioui, Mustapha; Matsushima, Masaaki; Funakubo, Hiroshi; Okimura, Kunio

    2014-09-01

    Non-epitaxial, (010)M1-oriented VO2 thin films were grown on various substrates [amorphous SiO2, Si (001), Al2O3 (0001), and CaF2 (001)] with Pt (111)/SiO2 buffer layers. Phase transition from MoO2-type monoclinic to rutile-type tetragonal structures of these VO2 layers was investigated with temperature-controlled micro-Raman spectroscopy. It was confirmed that substrates with larger thermal expansion coefficient cause larger out-of-plane lattice spacings of both Pt and VO2, and thus lower transition temperatures of VO2 films, as a result of higher in-plane shrinkage during cooling from the deposition temperature. The transition temperatures and aM1/2 lengths, estimated from bM1 lengths, of present samples were compared with previous reports in a strain—temperature phase diagram. The present results fit with previous reports better by assuming that in-plane lattice aspect ratio of VO2 films is not clamped by the substrates but is flexible during the temperature change. Thermal expansion of substrates is an essential parameter to be taken into account when one considers device application of the phase transition properties of VO2 films, especially thick or non-epitaxial.

  7. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    NASA Astrophysics Data System (ADS)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  8. Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates.

    PubMed

    Pec, Martina K; Aguirre, Amable; Fernández, Javier J; Souto, Maria L; Dorta, Javier F; Villar, Jesús

    2002-11-01

    We had shown previously that the novel, marine, anticancer compound dehydrothyrsiferol (DHT) does not modulate P-glycoprotein (P-gp) dependent drug efflux. Many chemotherapeutics with clinical impact are substrates for the structurally distant related membrane transport protein MRP1 (multidrug resistance-associated protein 1). Thus, we were interested in analysing the behaviour of DHT and control compounds in specific drug transport of MRP1 overexpressing cells. We established a fluorescence based drug efflux system for specific, functional detection of interference of a test compound in MRP1 mediated drug extrusion. Briefly, MRP1 overexpressing HL60/Adr cells were incubated to uptake and then efflux fluorescent 5(6)-carboxyfluorescein diacetate (CFDA), rhodamine 123 (Rh123), or 3,3-diethylocarbocyanine iodide (DiOC2), respectively. Changes in cell fluorescence intensity after coincubation with the compound of interest were determined by flow cytometry. MRP1 mediated efflux of CFDA was analysed in the presence of DHT, the known substrates genistein, probenecid, and the specific inhibitor MK-571. To exclude unknown P-gp related interference in drug transport, efflux of the fluorescent P-gp substrate DiOC2 and specific inhibition by cyclosporin A (CsA) were analysed. Cytotoxicity of DHT in resistant HL60/Adr cells was found to be even superior to that in the parental HL60 leukaemia cell line. Consequently, DHT did not interfere in MRP1 mediated drug transport. In contrast to DiOC2, rhodamine 123 was not specifically effluxed by P-gp but also by MRP1. Therefore, we propose the MRP1 specific CFDA efflux model as a screening and/or excluding system for MRP1 substrates. Together with previous data our results suggest DHT to be an interesting candidate for further investigation directed towards a drug development regimen. PMID:12373300

  9. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    NASA Astrophysics Data System (ADS)

    Kany, A. M. I.; El-Gohary, M. I.; Kamal, S. M.

    1994-07-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barries of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure.

  10. A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism

    PubMed Central

    Nijhuis, Monique; van Maarseveen, Noortje M; Lastere, Stephane; Schipper, Pauline; Coakley, Eoin; Glass, Bärbel; Rovenska, Mirka; de Jong, Dorien; Chappey, Colombe; Goedegebuure, Irma W; Heilek-Snyder, Gabrielle; Dulude, Dominic; Cammack, Nick; Brakier-Gingras, Lea; Konvalinka, Jan; Parkin, Neil; Kräusslich, Hans-Georg; Brun-Vezinet, Francoise; Boucher, Charles A. B

    2007-01-01

    Background HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors. Methods and Findings We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with

  11. Thermal resistance at a solid/superfluid helium interface

    NASA Astrophysics Data System (ADS)

    Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay

    2016-05-01

    Kapitza in 1941 discovered that heat flowing across a solid in contact with superfluid helium (<2 K) encounters a strong thermal resistance at the interface. Khalatnikov demonstrated theoretically that this constitutes a general phenomenon related to all interfaces at all temperatures, given the dependence of heat transmission on the acoustic impedance (sound velocity × density) of each medium. For the solid/superfluid interface, the measured transmission of heat is almost one hundred times stronger than the Khalatnikov prediction. This discrepancy could be intuitively attributed to diffuse scattering of phonons at the interface but, despite several attempts, a detailed quantitative comparison between theoretical and experimental findings to explain the occurrence of scattering and its contribution to heat transmission had been lacking. Here we show that when the thermal wavelength λ of phonons of the less dense medium (liquid 4He) becomes comparable to the r.m.s. surface roughness σ, the heat flux crossing the interface is amplified; in particular when σ ~ 0.33λ, a spatial resonant mechanism occurs, as proposed by Adamenko and Fuks. We used a silicon single crystal whose surface roughness was controlled and characterized. The thermal boundary resistance measurements were performed from 0.4 to 2 K at different superfluid pressures ranging from saturated vapour pressure (SVP) to above 4He solidification, to eliminate all hypothetical artefact mechanisms. Our results demonstrate the physical conditions necessary for resonant phonon scattering to occur at all interfaces, and therefore constitute a benchmark in the design of nanoscale devices for heat monitoring.

  12. Laser-resistance sensitivity to substrate pit size of multilayer coatings

    PubMed Central

    Chai, Yingjie; Zhu, Meiping; Wang, Hu; Xing, Huanbin; Cui, Yun; Sun, Jian; Yi, Kui; Shao, Jianda

    2016-01-01

    Nanosecond laser-resistance to dielectric multilayer coatings on substrate pits was examined with respect to the electric-field (E-field) enhancement and mechanical properties. The laser-induced damage sensitivity to the shape of the substrate pits has not been directly investigated through experiments, thus preventing clear understanding of the damage mechanism of substrate pits. We performed a systematic and comparative study to reveal the effects of the E-field distributions and localized stress concentration on the damage behaviour of coatings on substrates with pits. To obtain reliable results, substrate pits with different geometries were fabricated using a 520-nm femtosecond laser-processing platform. By using the finite element method, the E-field distribution and localized stress of the pitted region were well simulated. The 1064-nm damage morphologies of the coated pit were directly compared with simulated E-field intensity profiles and stress distributions. To enable further understanding, a simplified geometrical model was established, and the damage mechanism was introduced. PMID:27252016

  13. Laser-resistance sensitivity to substrate pit size of multilayer coatings.

    PubMed

    Chai, Yingjie; Zhu, Meiping; Wang, Hu; Xing, Huanbin; Cui, Yun; Sun, Jian; Yi, Kui; Shao, Jianda

    2016-01-01

    Nanosecond laser-resistance to dielectric multilayer coatings on substrate pits was examined with respect to the electric-field (E-field) enhancement and mechanical properties. The laser-induced damage sensitivity to the shape of the substrate pits has not been directly investigated through experiments, thus preventing clear understanding of the damage mechanism of substrate pits. We performed a systematic and comparative study to reveal the effects of the E-field distributions and localized stress concentration on the damage behaviour of coatings on substrates with pits. To obtain reliable results, substrate pits with different geometries were fabricated using a 520-nm femtosecond laser-processing platform. By using the finite element method, the E-field distribution and localized stress of the pitted region were well simulated. The 1064-nm damage morphologies of the coated pit were directly compared with simulated E-field intensity profiles and stress distributions. To enable further understanding, a simplified geometrical model was established, and the damage mechanism was introduced. PMID:27252016

  14. Laser-resistance sensitivity to substrate pit size of multilayer coatings

    NASA Astrophysics Data System (ADS)

    Chai, Yingjie; Zhu, Meiping; Wang, Hu; Xing, Huanbin; Cui, Yun; Sun, Jian; Yi, Kui; Shao, Jianda

    2016-06-01

    Nanosecond laser-resistance to dielectric multilayer coatings on substrate pits was examined with respect to the electric-field (E-field) enhancement and mechanical properties. The laser-induced damage sensitivity to the shape of the substrate pits has not been directly investigated through experiments, thus preventing clear understanding of the damage mechanism of substrate pits. We performed a systematic and comparative study to reveal the effects of the E-field distributions and localized stress concentration on the damage behaviour of coatings on substrates with pits. To obtain reliable results, substrate pits with different geometries were fabricated using a 520-nm femtosecond laser-processing platform. By using the finite element method, the E-field distribution and localized stress of the pitted region were well simulated. The 1064-nm damage morphologies of the coated pit were directly compared with simulated E-field intensity profiles and stress distributions. To enable further understanding, a simplified geometrical model was established, and the damage mechanism was introduced.

  15. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  16. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  17. Vacuum thermal switch made of phase transition materials considering thin film and substrate effects

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Basu, Soumyadipta; Wang, Liping

    2015-06-01

    In the present study, we theoretically demonstrate a vacuum thermal switch based on near-field thermal radiation between phase transition materials, i.e., vanadium dioxide (VO2), whose phase changes from insulator to metal at 341 K. Strong coupling of surface phonon polaritons between two insulating VO2 plates significantly enhances the near-field heat flux, which on the other hand is greatly reduced when the VO2 emitter becomes metallic, resulting in strong thermal switching effect. Fluctuational electrodynamics incorporated with anisotropic wave propagation predicts more than 80% heat transfer reduction at sub-30-nm vacuum gaps and 50% at vacuum gap of 1 μm. Furthermore, the penetration depth inside the uniaxial VO2 insulator is studied at the vacuum gap of 50 nm, suggesting the possible impact of reduced VO2 thickness on the near-field thermal radiation with thin-film structures. By replacing the bulk VO2 receiver with a thin film of several tens of nanometers, the switching effect is further improved over a broad range of vacuum gaps from 10 nm to 1 μm. Finally, the effect of SiO2 substrate for the thin-film emitter or receiver is also considered to provide insights for future experimental demonstrations. By controlling heat flow with near-field radiative transport, the proposed vacuum thermal switch would find practical applications for energy dissipation in microelectronic devices and for the realization of thermal circuits.

  18. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    NASA Technical Reports Server (NTRS)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  19. Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles

    NASA Astrophysics Data System (ADS)

    Fukumoto, M.; Nagai, H.; Yasui, T.

    2006-12-01

    The authors have confirmed that in the thermal spraying of practical powder materials, the splat shape changes with increasing substrate temperature to a circular disk shape from a fringe shape with splashing at a critical substrate temperature, T t. The increase of the substrate temperature may accompany a kind of essential change on the substrate surface, because the effect is maintained until the substrate is cooled down to room temperature. However, the nature of the substrate surface change due to the heating has not been clearly understood yet. In this study, AISI 304 stainless steel was used as a substrate material, and the substrate was heated in an air at mosphere or laser treated as a pretreatment. Substrate surface topography in nanometer scale was analyzed precisely by atomic force microscope (AFM). The relationship between surface topography in nanometer scale and splat morphology was discussed. Moreover, to evaluate the effect of chemical composition of the substrate surface, gold was coated onto the substrate surface by physical vapor deposition (PVD) after the heat treatment. The effect of adsorbate/condensate on the substrate surface on the flattening behavior of thermal sprayed particles was also verified.

  20. Thermal fatigue resistance of cobalt-modified UDIMET 700

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.

    1982-01-01

    The determination of comparative thermal fatigue resistances of five cobalt composition modifications of UDIMET 700 from fluidized bed tests is described. Cobalt compositional levels of 0.1, 4.3, 8.6, 12.8, 17.0 percent were being investigated in both the bare and coated (NiCrAlY overlay) conditions. Triplicate tests of each variation including duplicate tests of three control alloys are under investigation. Fluidized beds were maintained at 550 and 1850 F for the first 5500 cycles at which time the hot bed was increased to 1922 F. Immersion time in each bed is always 3 minutes. Upon the completion of 10,000 cycles, it appears that the 8.6 percent cobalt level gives the best thermal fatigue life. Considerable deformation of the test bars was observed.

  1. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    NASA Astrophysics Data System (ADS)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  2. Optical device with low electrical and thermal resistance Bragg reflectors

    SciTech Connect

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  3. Optical device with low electrical and thermal resistance bragg reflectors

    SciTech Connect

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  4. Highly defective oxides as sinter resistant thermal barrier coating

    DOEpatents

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  5. Surface preparation and thermal spray in a single step: The PROTAL process—Example of application for an aluminum-base substrate

    NASA Astrophysics Data System (ADS)

    Coddet, C.; Montavon, G.; Ayrault-Costil, S.; Freneaux, O.; Rigolet, F.; Barbezat, G.; Folio, F.; Diard, A.; Wazen, P.

    1999-06-01

    Thermal spray techniques can fulfill numerous industrial applications. Coatings are thus applied to resist wear and corrosion or to modify the surface characteristics of the substrate (e.g., thermal conductivity/thermal insulation). However, many of these applications remain inhibited by some deposit characteristics, such as a limited coating adhesion or pores or by industrial costs because several nonsynchronized and sequential steps (that is, degreasing, sand blasting, and spraying) are needed to manufacture a deposit. The PROTAL process was designed to reduce the aforementioned difficulties by implementing simultaneously a Q-switched laser and a thermal spray torch. The laser irradiation is primarily aimed to eliminate the contamination films and oxide layers, to generate a surface state enhancing the deposit adhesion, and to limit the contamination of the deposited layers by condensed vapors. From PROTAL arises the possibility to reduce, indeed suppress, the preliminary steps of degreasing and grit blasting. In this study, the benefits of the PROTAL process were investigated, comparing adhesion of different atmospheric plasma spray coatings (e.g., metallic and ceramic coatings) on an aluminum-base substrate. Substrates were coated rough from the machine shop, for example, manipulated barehanded and without any prior surface preparation. Results obtained this way were compared with those obtained using a classical procedure; that is, degreasing and grit blasting prior to the coating deposition.

  6. Soil thermal resistivity and thermal stability measuring instrument. Volume 1. Determination of soil thermal stability and other soil thermal properties. Final report

    SciTech Connect

    Boggs, S.A.; Radhakrishna, H.S.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: (1) development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; (2) recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and (3) development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. This volume discussed methods for determining the thermal properties of soils. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  7. The Mixed Processing Models Development Of Thermal Fracture And Laser Ablation On Glass Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Wu, Wen-Hong; Tseng, Shih-Feng; Hwang, Chi-Hung

    2011-01-01

    As the industries of cell phone and LCD TV were vigorously flourishing and the manufacturing requirements for LCD glass substrate were getting higher, the thermal fracture cutting technology (TFCT) has progressively become the main technology for LCD glass substrate cutting. Due to using laser as the heat source, the TFCT has many advantages, such as uniform heating, small heat effect zone, and high cutting speed, smooth cutting surface and low residual stress, etc. Moreover, a general laser ablation processing or traditional diamond wheel cutting does not have the last two advantages. The article presents a mixed processing of glass substrate, which consists of TFCT and laser ablation mechanisms, and how to enhance the cutting speed with little ablation laser energy. In this study, a 10W Nd:YAG laser and a 40W CO2 laser are used as the heat source of TFCT and laser ablation processing, respectively. The result indicates that the speed of the mixed processing is more than twice the speed of TFCT. Furthermore, after the mixed processing, the residual stresses in the glass substrates are also smaller.

  8. Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing

    NASA Astrophysics Data System (ADS)

    Tial, Mai Kai Suan; Irie, Hiromitsu; Maruyama, Yuji; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo

    2016-07-01

    In this work, the fundamentals of planar-type Ar inductively coupled thermal plasmas (ICTPs) with oxygen molecular gas on a substrate have been studied. Previously, aiming at large-area material processing, we developed a planar-type ICTP torch with a rectangular quartz vessel instead of a conventional cylindrical tube. For the adoption of such planar-type ICTP to material processing, it is necessary to sustain the ICTP with molecular gases on a substrate stably and uniformly. To determine the uniformity of the ICTP formed on the substrate, spectroscopic observation was carried out at 3 mm above the substrate. Results showed that the radiation intensities of specified O atomic lines were almost uniformly detected along the surface of the substrate. This means that excited O atoms, which are important radicals for thermal plasma oxidation, are present in the planar-type ICTP uniformly on the substrate.

  9. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  10. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates.

    PubMed

    Xu, Ligang; Geng, Zhi; He, Junhui; Zhou, Gang

    2014-06-25

    In this study, we developed a simple and versatile strategy to fabricate hierarchically structured lotus-leaf-like superhydrophobic thin films. The thin films are broadband antireflective, and the average transmittance of coated glass substrates reached greater than 95% in the wavelength range of 530-1340 nm, in contrast to 92.0% for bare glass substrate. The thin film surface shows a static water contact angle of 162° and a sliding angle less than 4°. Moreover, the thin film is thermally stable up to 300 °C, and shows remarkable stability against strong acid, strong alkali, water drop impact, and sand impact abrasion, while retaining its superhydrophobicity. Further, the thin film can pass the 3H pencil hardness test. The current approach may open a new avenue to a variety of practical applications, including windshields, eyeglasses, windows of high rise buildings and solar cells, etc. PMID:24848810

  11. Graphite having improved thermal stress resistance and method of preparation

    DOEpatents

    Kennedy, Charles R.

    1980-01-01

    An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

  12. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    NASA Astrophysics Data System (ADS)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  13. Characterization of the mechanical and thermal interface of copper films on carbon substrates modified by boron based interlayers.

    PubMed

    Schäfer, D; Eisenmenger-Sittner, C; Chirtoc, Mihai; Kijamnajsuk, P; Kornfeind, N; Hutter, H; Neubauer, E; Kitzmantel, M

    2011-03-15

    The manipulation of mechanical and thermal interfaces is essential for the design of modern composites. Amongst these are copper carbon composites which can exhibit excellent heat conductivities if the Cu/C interface is affected by a suitable interlayer to minimize the Thermal Contact Resistance (TCR) and to maximize the adhesion strength between Cu and C.In this paper we report on the effect of boron based interlayers on wetting, mechanical adhesion and on the TCR of Cu coatings deposited on glassy carbon substrates by magnetron sputtering. The interlayers were 5 nm thick and consisted of pure B and B with additions of the carbide forming metals Mo, Ti and Cr in the range of 5 at.% relative to B. The interlayers were deposited by RF magnetron sputtering from either a pure B target or from a composite target. The interlayer composition was checked by Auger Electron Spectroscopy and found to be homogenous within the whole film.The system C-substrate/interlayer/Cu coating was characterized in as deposited samples and samples heat treated for 30 min at 800 °C under High Vacuum (HV), which mimics typical hot pressing parameters during composite formation. Material transport during heat treatment was investigated by Secondary Ion Mass Spectroscopy (SIMS). The de-wetting and hole formation in the Cu coating upon heat treatment were studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The adhesion of the Cu coating was evaluated by mechanical pull-off testing. The TCR was assessed by infrared photothermal radiometry (PTR). A correlation between the adhesion strength and the value of the TCR which was measured by PTR was determined for as deposited as well as for heat treated samples. PMID:22241938

  14. Characterization of the mechanical and thermal interface of copper films on carbon substrates modified by boron based interlayers

    PubMed Central

    Schäfer, D.; Eisenmenger-Sittner, C.; Chirtoc, Mihai; Kijamnajsuk, P.; Kornfeind, N.; Hutter, H.; Neubauer, E.; Kitzmantel, M.

    2011-01-01

    The manipulation of mechanical and thermal interfaces is essential for the design of modern composites. Amongst these are copper carbon composites which can exhibit excellent heat conductivities if the Cu/C interface is affected by a suitable interlayer to minimize the Thermal Contact Resistance (TCR) and to maximize the adhesion strength between Cu and C. In this paper we report on the effect of boron based interlayers on wetting, mechanical adhesion and on the TCR of Cu coatings deposited on glassy carbon substrates by magnetron sputtering. The interlayers were 5 nm thick and consisted of pure B and B with additions of the carbide forming metals Mo, Ti and Cr in the range of 5 at.% relative to B. The interlayers were deposited by RF magnetron sputtering from either a pure B target or from a composite target. The interlayer composition was checked by Auger Electron Spectroscopy and found to be homogenous within the whole film. The system C-substrate/interlayer/Cu coating was characterized in as deposited samples and samples heat treated for 30 min at 800 °C under High Vacuum (HV), which mimics typical hot pressing parameters during composite formation. Material transport during heat treatment was investigated by Secondary Ion Mass Spectroscopy (SIMS). The de-wetting and hole formation in the Cu coating upon heat treatment were studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The adhesion of the Cu coating was evaluated by mechanical pull-off testing. The TCR was assessed by infrared photothermal radiometry (PTR). A correlation between the adhesion strength and the value of the TCR which was measured by PTR was determined for as deposited as well as for heat treated samples. PMID:22241938

  15. Multiferroic YCrO3 thin films grown on glass substrate: Resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Son, Jong Yeog

    2016-01-01

    Polycrystalline YCrO3 thin films were deposited on (111) Pt/Ta/glass substrates by pulsed laser deposition. The YCrO3 thin films exhibited good ferroelectric properties with remnant polarization of about 5 µC/cm2. Large leakage current was observed by I- V curve and ferroelectric hysteresis loop. The YCrO3 resistive random access memory (RRAM) capacitor showed unipolar switching behaviors with SET and RESET voltages higher than those of general NiO RRAM capacitors. [Figure not available: see fulltext.

  16. Anomalous thermally induced pinning of a liquid drop on a solid substrate.

    PubMed

    Mettu, Srinivas; Kanungo, Mandakini; Law, Kock-Yee

    2013-08-27

    The effect of substrate temperature on the wetting and spreading behavior of a UV ink monomer has been studied as a surrogate for the ink on four different substrates: DTC (digital top coat)-coated BOPP (biaxial oriented polypropylene), Flexo-coated BOPP, DTC-coated SGE (semigloss elite) paper, and Flexo-coated SGE paper. Results show that the dynamic contact angles of the monomer decrease exponentially over time after contacting the surface, and the rate of spreading is consistently higher at 95 °C than at 22 °C. This observation indicates that spreading is controlled by the viscosity of the monomer as it decreases with temperature. An anomalous temperature effect is observed for the static contact angle on the DTC-coated BOPP substrate. The static contact angle at 95 °C is significantly larger than that at 22 °C (52° versus 30°). This is counterintuitive, as the surface tension of the monomer is shown to decease with increasing temperature. Microscopy (SEM and AFM) studies suggest that there is little interaction between the DTC coating solution and the BOPP substrate during the fast-drying coating process. This results in a smooth coated surface and, more importantly, voids between the BOPP nanofibers underneath the DTC coating. As the DTC-BOPP substrate is heated to 95 °C, fiber expansions occur. Microscopy results show that nanosized protrusions are formed on the DTC surface. We attribute it to fiber expansions in the vertical direction. Fiber expansions in the lateral direction causes little surface morphology change as the expanded materials only fill the voids laterally between the nanofiber network. We suggest that the protrusions on the surface create strong resistance to the wetting process and pin the monomer drop into a metastable wetting state. This interpretation is supported by the sliding angle and sessile drop height experiments. PMID:23899384

  17. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  18. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Feng, Haitao; Lin, Feng; Wang, Yabin; Wang, Liping; Dong, Yaping; Li, Wu

    2016-08-01

    The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 106 Ω cm-2) and excellent corrosion protection efficiency (99.94%).

  19. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOEpatents

    Hasz, Wayne Charles; Borom, Marcus Preston

    2002-01-01

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  20. Analysis of Parameter Estimation Possibilities of the Thermal Contact Resistance Using the Laser Flash Method with Two-Layer Specimens

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Woodbury, Keith A.; Woolley, Jonathan; Gróf, Gyula

    2013-10-01

    The paper presents a curve-fitting-based calculation of the thermal contact resistance and other parameters (absorbed energy and material properties) from laser flash measurements considering a two-layer specimen (aluminum substrate and stainless-steel film). Sensitivity analysis of different cases was used to examine the sensitivities of the unknown parameters: thermal contact resistance, absorbed energy, specific heat of the film, and thermal conductivity of the film. A nonlinear curve-fitting method was applied to perform the estimation of the unknown parameters using simulated measurements generated by the solution of the direct problem. An extensive analysis was performed to examine which parameters might be estimated simultaneously with the contact resistance for different noise levels of the simulated measurement. It was concluded that in the noiseless case all four unknown parameters can be estimated simultaneously with high accuracy. The noise has a significant effect on the accuracy of the parameter estimation, but even when a reasonable noise level is present, it is still possible to accurately estimate one or two parameters together with the thermal contact resistance.

  1. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  2. Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate

    NASA Astrophysics Data System (ADS)

    Li, Man; Zhang, Jingchao; Hu, Xuejiao; Yue, Yanan

    2015-05-01

    The effect of interatomic interaction between graphene and 4H-SiC on their interfacial thermal transport is investigated by empirical molecular dynamics simulation. Two magnitudes of interfacial thermal conductance (ITC) improvement are observed for graphene/4H-SiC interface interacting through covalent bonds than through van der Waals interaction, which can be explained by the bond strength and the number of covalent bonds. Besides, it is found that the ITC of covalent graphene/C-terminated SiC is larger than that Si-terminated SiC, which is due to the stronger bond strength of C-C than that of C-Si. The effect of crystallinity of the substrate is studied, and the result shows that the ITC of graphene/a-SiC is higher than that of graphene/c-SiC. These results are crucial to the understanding of thermal transport across graphene interfaces, which are useful for thermal design in graphene-based transistors.

  3. Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Dai, Ming-jiang; Zhang, Zhi-hui

    2013-04-01

    In this study, the selective laser surface melting and laser surface alloying technologies were adopted to improve the thermal fatigue resistance of medium carbon hot-work die steel (H13) by a CO2 laser. Two kinds of mixed chromium (Cr) and nickel (Ni) powders were used as the laser alloying materials, and the effects of the mixing ratio on the thermal fatigue resistance were investigated thoroughly. Some important results such as cross-sectional morphology, phases, hardness and thermal fatigue behavior were analyzed and evaluated. It indicates that the laser surface alloying technique using mixed powder with ratio of 75%Cr-25%Ni can considerably enhance the thermal fatigue resistance of the H13 steel. The laser alloyed zone has excellent properties such as preventing crack initiation and oxidation corrosion compared with original H13. Thermal cracking and oxidation corrosion that occurred at substrate surface can be surrounded and intercepted by a gridded laser strengthened structure. Therefore, the naturally developed cracks could be effectively prevented. Theses results and analysis show that laser surface technique can be positively used to improve surface mechanical properties of H13 dies.

  4. Effect of headgroup-substrate interactions on the thermal behavior of long-chain amphiphiles

    NASA Astrophysics Data System (ADS)

    Singla, Saranshu; Zhu, He; Dhinojwala, Ali

    The structure of amphiphilic molecules at liquid/solid and solid/solid interfaces is relevant in understanding lubrication, colloid stabilization, chromatography, and nucleation. Here, we characterize the interfacial structures of long chain amphiphilic molecules with different head groups (OH, COOH, NH2) using interface-sensitive sum frequency generation (SFG) spectroscopy. The behavior of these self-assembled monolayers (SAMs) on sapphire substrate is recorded in situ as a function of temperature (above and below bulk Tm) using SFG. Previous studies using synchrotron X-ray reflectivity and SFG show that the melting point of an ordered hexadecanol monolayer is around 30°C above its bulk Tm. The thermal stability of the monolayer is explained due to strong hydrogen bonding interactions between the head-group and the sapphire substrate. The strength of these hydrogen-bonding interactions between substrate and different head groups is calculated using the Badger-Bauer equation. Below Tm, the ordered monolayer influenced the structure of the interfacial crystalline layer, and the transition from monolayer to the bulk crystalline phases. The results with different head groups will be presented.

  5. Response of wetland herbaceous communities to gradients of light and substrate following disturbance by thermal pollution

    USGS Publications Warehouse

    Dunn, Christopher P.; Scott, Michael L.

    1987-01-01

    The influence of thermal disturbance and site characteristics on distribution of herbs was studied in portions of a 3020 ha wetland in the southeastern USA. Presence-absence of 52 species in 130 0.25 m2 plots was determined from four sites with different disturbance histories and from an undisturbed site. Data from the four disturbed sites were ordinated by detrended correspondence analysis. Differences in species composition among sites (coarse scale) were associated with water depth, light, and substrate type. Within a site (at a fine scale), correlation of environmental variables with ordination scores at a chronically disturbed site was weakly correlated with light (r=0.50). At two sites with episodic disturbance, species composition correlated significantly and positively with substrate and water depth. At a recovering site, vegetation patterns were moderately correlated with water depth (r=−0.52). Species richness was correlated with substrate type along the disturbance gradient. Our results are consistent the intermediate disturbance hypothesis and the subsidy-stress gradient concept.

  6. Wear resistance of composite coatings produced by thermal spraying

    SciTech Connect

    Klinskaya, N.A.

    1995-12-31

    Injection of refractory additions (carbides, borides, oxides etc.) into self-fluxing alloys is a well-known technique for their hardening. Nevertheless the matter of influence of refractory components on the structure and characteristics of composite coatings is not studied well enough. This paper presents the results of investigations of gas thermal coatings (plasma and detonation ones) on the base of stellite with refractory components in the form of borides such as CrB{sub 2}, TiB{sub 2}, (TiCr)B{sub 2}. This study is concerned with the influence of refractory additions (carbides, borides, oxides) on the wear resistance sprayed coatings based on self-fluxing alloys NiCrBSi and CoCrBSi.

  7. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  8. The impact of substrate properties on the electromigration resistance of sputter-deposited Cu thin films

    NASA Astrophysics Data System (ADS)

    Bittner, A.; Pagel, N.; Seidel, H.; Schmid, U.

    2011-06-01

    Copper (Cu) is commonly used as metallization for a wide range of microelectronic devices. Typically, organic circuit boards as well as ceramic and glass-ceramic substrates use galvanic deposited Cu films for this purpose. However, due to a thickness of several microns the lateral resolution in the μm-region being required e.g. for novel high frequency applications can not be guaranteed when applying this technology. Hence, sputter deposition is envisaged for the realization of Cu thin films on glass, LTCC (low temperature co-fired ceramics) and alumina substrates. The reliability of 300 nm thick Cu thin films is investigated under accelerated aging conditions, utilizing a test structure which consists of 20 parallel lines stressed with current densities up to 1•10+6 A•cm-2 at temperatures between T= 100°C and 200°C. To detect the degradation via the temporal characteristics of the current signal a constant voltage is applied according to the overall resistance of the test structure. Knowing the mean time to failure (MTF) and the activation energy at elevated temperatures conclusions on the migration mechanism can be drawn. Whereas on LTCC substrates the activation energy of Ea~ 0.75 eV is similar to other face centered cubic metals such as silver, the higher activation energies of about Ea~ 1 eV on glass and alumina indicate a suppression of back diffusion especially at enhanced temperature levels. Therefore, the overall electromigration resistance is lower compared to Ag. This effect is predominantly caused by a stable oxide layer being formed at high temperatures acting as passivation layer.

  9. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation.

    PubMed

    Temuujin, Jadambaa; Minjigmaa, Amgalan; Rickard, William; Lee, Melissa; Williams, Iestyn; van Riessen, Arie

    2010-08-15

    Class F fly ash based Na-geopolymer formulations have been applied as fire resistant coatings on steel. The main variables for the coating formulations were Si: Al molar and water: cement weight ratios. We have determined that the adhesive strength of the coatings strongly depend on geopolymer composition. The ease with which geopolymer can be applied onto metal surfaces and the resultant thickness depend on the water content of the formulation. Adhesive strengths of greater than 3.5 MPa have been achieved on mild steel surfaces for compositions with Si:Al of 3.5. Microstructure evolution and thermal properties of the optimised coating formulations show that they have very promising fire resistant characteristics. PMID:20488615

  10. Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Iida, Tsutomu; Sekiguchi, Takeshi; Taguchi, Yutaka; Hirayama, Naomi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-10-01

    A variety of thermal interface materials (TIMs) were investigated to find a suitable TIM for improving the performance of thermoelectric power generators (TEGs) operating in the medium-temperature range (600-900 K). The thermal resistance at the thermal interface between which the TIM was inserted was evaluated. The TIMs were chosen on the basis of their thermal stability when used with TEGs operating at medium temperatures, their electrical insulating properties, their thermal conductivity, and their thickness. The results suggest that the boron nitride (BN)-based ceramic coating, Whity Paint, and the polyurethane-based sheet, TSU700-H, are suitable TIMs for the heat source and heat sink sides, respectively, of the TEG. Use of these effectively enhances TEG performance because they reduce the thermal contact resistance at the thermal interface.

  11. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux.

    PubMed

    Samuel, Varman T; Shulman, Gerald I

    2016-01-01

    Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetyl-CoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes. PMID:26727229

  12. Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Wei; Huang, Rui

    2016-02-01

    Graphene monolayer, with extremely low flexural stiffness, displays spontaneous rippling due to thermal fluctuations at a finite temperature. When a graphene membrane is placed on a solid substrate, the adhesive interactions between graphene and the substrate could considerably suppress thermal rippling. On the other hand, the statistical nature of thermal rippling adds an entropic contribution to the graphene-substrate interactions. In this paper, we present a statistical mechanics analysis on thermal rippling of monolayer graphene supported on a rigid substrate, assuming a generic form of van der Waals interactions between graphene and substrate at T = 0 K. The rippling amplitude, the equilibrium average separation, and the average interaction energy are predicted simultaneously and compared with molecular dynamics (MD) simulations. While the amplitude of thermal rippling is reduced by adhesive interactions, the entropic contribution leads to an effective repulsion. As a result, the equilibrium average separation increases and the effective adhesion energy decreases with increasing temperature. Moreover, the effect of a biaxial pre-strain in graphene is considered, and a buckling instability is predicted at a critical compressive strain that depends on both the temperature and the adhesive interactions. Limited by the harmonic approximations, the theoretical predictions agree with MD simulations only for relatively small rippling amplitudes but can be extended to account for the anharmonic effects.

  13. Advanced thermal barrier system bond coatings for use on Ni, Co-, and Fe-base alloy substrates

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1985-01-01

    New and improved Ni-, Co-, and Fe-base bond coatings have been identified for the ZrO2-Y2O3 thermal barrier coatings to be used on NI-, Co-, and Fe-base alloy substrates. These bond coatings were evaluated in a cyclic furnace between 1120 and 1175 C. It was found that MCrAlYb (where M = Ni, Co, or Fe) bond coating thermal barrier systems. The longest life was obtained with the FeCrAlYb thermal barrier system followed by NiCrAlYb and CoCrAlYb thermal barrier systems in that order.

  14. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.

    PubMed

    Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A

    1999-03-01

    A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct. PMID:10357273

  15. Sphingobium Chlorophenolicum Dichlorohydroquinone Dioxygenase (PcpA) Is Alkaline Resistant and Thermally Stable

    PubMed Central

    Sun, Wanpeng; Sammynaiken, Ramaswami; Chen, Lifeng; Maley, Jason; Schatte, Gabriele; Zhou, Yijiang; Yang, Jian

    2011-01-01

    Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-specific and only uses 2,6-dichlorohydroquinone as its substrate. In the current study, we overexpressed and purified recombinant PcpA and showed that PcpA was highly alkaline resistant and thermally stable. PcpA exhibited two activity peaks at pH 7.0 and 10.0, respectively. The apparent kcat and Km were measured as 0.19 ± 0.01 s-1 and 0.24 ± 0.08 mM, respectively at pH 7.0, and 0.17 ± 0.01 s-1 and 0.77 ± 0.29 mM, respectively at pH 10.0. Electron paramagnetic resonance studies showed rapid oxidation of Fe(II) to Fe(III) in PcpA and the formation of a stable radical intermediate during the enzyme catalysis. The stable radical was predicted to be an epoxide type dichloro radical with the unpaired electron density localized on C3. PMID:22043174

  16. A Sliding-press-type Reel-to-reel Thermal Imprint System for Fiber Substrates

    NASA Astrophysics Data System (ADS)

    Ohtomo, Akihiro; Mekaru, Harutaka; Takagi, Hideki; Kokubo, Mitsunori; Goto, Hiroshi

    In the emerging fields related to healthcare, energy, and environment, realization of devices on flexible sheets is imminent. The materialization of such sheets would require fabrication of parts of devices on a fiber substrate where they can be assembled and interconnected by weaving. To broaden the area of a flexible sheet device, larger number of such devices will need to be formed directly on the fibers. Moreover, fabrication cost of a flexible sheet device, larger number of such devices will have to be addressed in order to make large size fabric manufacturable at affordable price. Therefore, a high-speed, low-cost, environmental friendly batch-manufacturing process of the devices on fiber is required. In this paper, we developed a reel-to-reel thermal imprint system combined with a sliding roller imprint mechanism. In this process, fiber substrate is sandwiched by a couple of flat molds, and these molds slide opposite direction each other under suitable press force and temperature. And then, we optimized conditions of this imprint process. Finally, we succeeded to imprint continuously more than 100 times and to fabricate 1.6 m long imprinted fiber. And we succeeded to imprint almost on entire cylindrical surface. A stable imprinted region was about 160° at each side.

  17. Thermal analysis of coatings and substrate materials during a disruption in fusion reactors

    SciTech Connect

    Hassanein, A.

    1993-06-01

    In a tokamak fusion reactor, the frequency of occurrence and the severity of a plasma disruption event will determine the lifetime of the plasma facing components. Disruptions are plasma instabilities which result in rapid loss of confinement and termination of plasma current Intense energy fluxes to components like the rust wall and the divertor plate are expected during the disruptions. This high energy deposition in short times may cause severe surface erosion of these components resulting from melting and vaporization. Coatings and tile materials are proposed to protect and maintain the integrity of the underneath, structural materials from both erosion losses as well as from high thermal stresses encountered during a disruption. The coating thickness should be large enough to withstand both erosion losses and to reduce the temperature rise in the substrate structural material. The coating thickness should be minimized to enhance the structural integrity, to reduce potential problems from radioactivity, and to minimize materials cost. Tile materials such as graphite and coating materials such as beryllium and tungsten on structural materials like copper, steel, and vanadium are analyzed and compared as potential diverter and first wall design options. The effect of the sprayed coating properties during the disruption is investigated. Porous sprayed material may be found to protect the structure better than condensed phase properties. The minimum coating thickness required to protect the structural material during disruption is discussed. The impact of self shielding effect by the eroded material oil the response of both the type/coating and the substrate is discussed.

  18. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.

    PubMed

    Linsdell, P; Hanrahan, J W

    1999-03-01

    1. The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. 2. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and beta-estradiol 17-(beta-D-glucuronide) (E217betaG) caused a voltage-dependent block of macroscopic CFTR Cl- currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96+/-10 and 563+/-103 microM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453+/-44 and 3760+/-710 microM (at 0 mV) respectively. 3. Reducing the extracellular Cl- concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54+/-1 microM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl- permeation through CFTR by binding within the channel pore. 4. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. 5. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. 6. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  19. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel

    PubMed Central

    Linsdell, Paul; Hanrahan, John W

    1999-01-01

    The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and β-estradiol 17-(β-D-glucuronide) (E217βG) caused a voltage-dependent block of macroscopic CFTR Cl− currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96±10 and 563±103 μM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453±44 and 3760±710 μM (at 0 mV) respectively. Reducing the extracellular Cl− concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54±1 μM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl− permeation through CFTR by binding within the channel pore. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  20. Effect of Substrates on the Resistivity and Adhesion of Copper Nanoparticle Ink

    NASA Astrophysics Data System (ADS)

    Poddar, Pritam

    Printed electronics processes have the potential to make electronics manufacturing more flexible by providing a wider choice of materials and easier processing steps. In traditional electronics manufacturing techniques, corrosive etching steps limit the choice of materials and also require advanced infrastructure for process implementation. High speed low cost printing processes (e.g. inkjet) can be used, and the printed tracks can then be cured to conductive circuits that meet the needs of electronic devices like radio frequency identification (RFID) tags, sensors, etc. In this work, intense flashes of broad spectrum light from Xenon lamps are used to cure inkjet printed metal nanoparticle inks. This technique is known as photonic curing. Paper, polyethylene terephthalate (PET), and polyimide have been used as substrates with the aim of determining how different substrates affect the behavior of the ink and the photonic curing parameters. A statistical approach was employed for the experiments, and significant control variables determining curing of the ink were identified. Experiments were also conducted to obtain prints conforming to dimensional tolerances. Using the results from the experiments, standard curing parameters for low resistance and good adhesion of the ink were obtained. The results have been statistically validated and used to study the interaction between the control variables and individual effects of each control variable on the response variable.

  1. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    SciTech Connect

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-15

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute

  2. Some effects of metallic substrate composition on degradation of thermal barrier coatings

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Lee, W.Y.; Alexander, K.B.; Pruessner, K.

    1997-12-31

    Comparisons have been made in laboratory isothermal and cyclic oxidation tests of the degradation of oxide scales grown on single crystal superalloy substrates and bond coating alloys intended for use in thermal barrier coatings systems. The influence of desulfurization of the superalloy and bond coating, of reactive element addition to the bond coating alloy, and of oxidation temperature on the spallation behavior of the alumina scales formed was assessed from oxidation kinetics and from SEM observations of the microstructure and composition of the oxide scales. Desulfurization of nickel-base superalloy (in the absence of a Y addition) resulted in an increase in the lifetime of a state-of-the-art thermal barrier coating applied to it compared to a Y-free, non-desulfurized version of the alloy. The lifetime of the same ceramic coating applied without a bond coating to a non-desulfurized model alloy that formed an ideal alumina scale was also found to be at least four times longer than on the Y-doped superalloy plus state-of-the-art bond coating combination. Some explanations are offered of the factors controlling the degradation of such coatings.

  3. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  4. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  5. Light out-coupling enhancement of organic light emitting devices using nano-structured substrate produced by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Gupta, Nidhi; Grover, Rakhi; Mehta, D. S.; Saxena, K.

    2015-07-01

    We report significant enhancement in light out-coupling efficiency of organic light-emitting devices (OLEDs) using a nano-structured substrate by rapid thermal processing (RTP). On the backside of the indium tin oxide (ITO) coated glass substrate a thin film of magnesium fluoride (MgF2) was coated by thermal evaporation. Nano-structured films of MgF2 and ITO were then produced by RTP on both sides of the glass substrate. Bottom-emitting OLEDs were fabricated on the ITO-coated glass substrate with α-NPD as the hole transport layer, Alq3 as the emissive layer, and LiF and aluminum as the cathode. On the backside of the glass substrate nano-structured MgF2 were fabricated by RTP. Experimental results of enhancement of electroluminescent intensity (EL) with and without nano-structured films are presented. Results of EL intensity of OLED are also compared with the uniform MgF2 film coated on the backside of the substrate. It was found that the enhancement of EL intensity is much higher in the case of nano-porous MgF2 film than in the case of uniform MgF2 coated on the backside of the glass substrate.

  6. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    PubMed

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). PMID:27454031

  7. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  8. Transparent resistive switching memory using aluminum oxide on a flexible substrate.

    PubMed

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-19

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices. PMID:26763473

  9. The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2007-01-01

    Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.

  10. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  11. Thermal resistance of indium coated sapphire-copper contacts below 0.1 K

    NASA Astrophysics Data System (ADS)

    Eisel, T.; Bremer, J.; Koettig, T.

    2014-11-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (Ø 20 mm × 1.5 mm) to investigate the phonon scattering at the boundaries. All sandwiches apply indium foils as intermediate layers on both sides of the sapphire. Additionally to the indium foils, thin indium films are vapour deposited onto both sides of one rough and one polished sapphire in order to improve the contact to the sapphire. Significantly different thermal resistances have been found amongst the investigated sandwiches. The lowest total thermal resistivity (roughly 26 cm2 K4/W at 30 mK helium temperature) is achieved across a sandwich consisting of a polished sapphire with indium vapour deposition. The thermal boundary resistance between indium and sapphire is estimated from the total thermal resistivity by assuming the scattering at only one boundary, which is the warm sapphire boundary where phonons impinge, and taking the scattering in the sapphire bulk into account. The so derived thermal boundary resistance agrees at low temperatures very well with the acoustic mismatch theory.

  12. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  13. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development.

    PubMed

    Zhou, Shu-Feng; Wang, Lin-Lin; Di, Yuan Ming; Xue, Charlie Changli; Duan, Wei; Li, Chun Guang; Li, Yong

    2008-01-01

    Human contains 49 ATP-binding cassette (ABC) transporter genes and the multidrug resistance associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP4/ABCC4, MRP5/ABCC5, MRP6/ABCC6, MRP7/ABCC10, MRP8/ABCC11 and MRP9/ABCC12) belong to the ABCC family which contains 13 members. ABCC7 is cystic fibrosis transmembrane conductance regulator; ABCC8 and ABCC9 are the sulfonylurea receptors which constitute the ATP-sensing subunits of a complex potassium channel. MRP10/ABCC13 is clearly a pseudo-gene which encodes a truncated protein that is highly expressed in fetal human liver with the highest similarity to MRP2/ABCC2 but without transporting activity. These transporters are localized to the apical and/or basolateral membrane of the hepatocytes, enterocytes, renal proximal tubule cells and endothelial cells of the blood-brain barrier. MRP/ABCC members transport a structurally diverse array of important endogenous substances and xenobiotics and their metabolites (in particular conjugates) with different substrate specificity and transport kinetics. The human MRP/ABCC transporters except MRP9/ABCC12 are all able to transport organic anions, such as drugs conjugated to glutathione, sulphate or glucuronate. In addition, selected MRP/ABCC members may transport a variety of endogenous compounds, such as leukotriene C(4) (LTC(4) by MRP1/ABCC1), bilirubin glucuronides (MRP2/ABCC2, and MRP3/ABCC3), prostaglandins E1 and E2 (MRP4/ABCC4), cGMP (MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11), and several glucuronosyl-, or sulfatidyl steroids. In vitro, the MRP/ABCC transporters can collectively confer resistance to natural product anticancer drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and in concert with alterations in phase II conjugating or biosynthetic enzymes, classical alkylating agents, alkylating agents. Several MRP/ABCC members (MRPs 1-3) are

  14. Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

    NASA Astrophysics Data System (ADS)

    Gaona, Daniel; Valarezo, Alfredo

    2015-09-01

    The elastic modulus of a deposit ( E d) can be obtained by monitoring the temperature (Δ T) and curvature (Δ k) of a one-side coated long plate, namely, a onedimensional (1D) deformation model. The aim of this research is to design an experimental setup that proves whether a 1D deformation model can be scaled for complex geometries. The setup includes a laser displacement sensor mounted on a robotic arm capable of scanning a specimen surface and measuring its deformation. The reproducibility of the results is verified by comparing the present results with Stony Brook University Laboratory's results. The Δ k-Δ T slope error is less than 8%, and the E d estimation error is close to 2%. These values reveal the repeatability of the experiments. Several samples fabricated with aluminum as the substrate and 100MXC nanowire (Fe and Cr alloy) as the deposit are analyzed and compared with those in finite element (FE) simulations. The linear elastic behavior of 1D (flat long plate) and 2D (squared plate) specimens during heating/cooling cycles is demonstrated by the high linearity of all Δ k-Δ T curves (over 97%). The E d values are approximately equal for 1D and 2D analyses, with a median of 96 GPa and standard deviation of 2 GPa. The correspondence between the experimental and simulated results for the 1D and 2D specimens reveals that deformation and thermal stress in coated specimens can be predicted regardless of specimen geometry through FE modeling and by using the experimental value of E d. An example of a turbine-bladeshaped substrate is presented to validate the approach.

  15. Oxygen Consumption and Substrate Utilization During and After Resistance Exercises Performed with Different Muscle Mass

    PubMed Central

    FARINATTI, PAULO; CASTINHEIRAS NETO, ANTONIO G.; AMORIM, PAULO R.S.

    2016-01-01

    This study investigated the energy expenditure (EE) and substrate utilization reflected by the respiratory-exchange ratio (RER) during and after resistance exercises performed with different muscle mass. Ten male volunteers (mean±SD; 26±4yr, 179±6cm, 77±8kg) performed multiple sets of the horizontal leg press (LP) and chest fly (CF) (5 sets of 10 repetitions with 15 repetition-maximum, 1-minute between-set intervals) in a counterbalanced design. Oxygen uptake and carbon dioxide production were measured during 40 minutes of resting; resistance exercise protocols (sets and intervals); 90 minutes of post-exercise recovery. Total fat and carbohydrate oxidation rates were calculated according to the non-protein respiratory quotient. Both exercise conditions elicited net excess post-exercise oxygen consumption (EPOC) of similar duration (approximately 40min). The EPOC magnitude at 40 minutes was greater after LP than after CF (7.36±1.10L vs. 4.73±0.99L; P<0.001). The RER was higher in LP (1.30±0.04) than CF (1.16±0.05, P=0.0003) during exercise. During recovery the RER was similar in LP and CF (P>0.05) and lower than pre-exercise (Pre-exercise=0.78±0.04 vs. CF40min=0.74±0.04; CF90min=0.68±0.02 and LP50min=0.73±0.06; LP90min=0.65±0.04, P<0.05). However, fat oxidation after LP was greater than CF between 30–90 minutes of recovery (mean total fat oxidation: LP=10.9 g vs. CF=8.4 g; P<0.01). The increases of EE and fat oxidation during post-exercise recovery were greater after multiple sets of resistance exercises performed with larger muscle mass than smaller muscle mass. This finding has practical implications for resistance training designed as part of weight management programs. PMID:27293507

  16. The influence of WC-Co HVOF thermal spraying on the microstructure of an Al-4 Cu alloy substrate

    SciTech Connect

    Guilemany, J.M.; Nutting, J.; Dong, Z.; Paco, J.M. de

    1995-10-01

    The High Velocity Oxy-Fuel (HVOF) thermal spraying process can be used to produce a dense hard coating onto a metallic surface with a good bond between the coating and the substrate. Having developed techniques for the examination of the coating substrate interfacial regions with steel it was thought appropriate to examine the interfacial structure with other substrates. An aluminium copper alloy was chosen for this study for the following reasons: (1) There had been little earlier work on substrate reactions when using aluminium alloys, the published data was chiefly concerned with characterizing the coatings. (2) Aluminium alloys have a much lower melting point than steel, hence the substrate melted zone was likely to be much greater than that found in steel. (3) The structural characteristics of aged aluminium copper alloys have been well described and hence the structural changes produced in the alloy by thermal spraying could be compared with clearly established structural data so giving markers for the temperature profile well below the immediate interface region. As in the previous investigation the transmission electron microscope was used to examine thin foils prepared from the interface region and at various depths below the interface into the substrate.

  17. Conformal AZ5214-E resist deposition on patterned (1 0 0) InP substrates

    NASA Astrophysics Data System (ADS)

    Eliás, P.; Gregusová, D.; Martaus, J.; Kostic, I.

    2006-02-01

    A draping technique was studied to deposit thin, visco-elastic AZ5214-E resist layers from a water surface over planar and patterned substrates. A visco-elastic AZ5214-E layer forms on the water surface when a drop of AZ5214-E makes contact with it. The drop spreads out within a fraction of a second because of a large positive difference in surface tension between water and AZ5214-E. The spreading mechanism lies in the ability of PGMEA (AZ5214-E liquid constituent) to form hydrogen bonds with water. We brought AZ5214-E drops to make contact with water at 20 ± 0.1 °C via adhesive forces to form AZ5214-E layers on the water surface of (1) circular and (2) square shapes. In case (1), the layers, formed from drops of V = 3 µl, had thickness t ap c sdot 4V/πΦ-2 for Φ < 32 mm, and t > c sdot 4V/πΦ-2 for larger Φ. In case (2), the layers had t ap a + bV for V between 7 and 12 µl on square-shaped water surfaces of constant area A = 34.5 mm × 34.5 mm. All layers exhibited microscopic waviness with an average thickness uniformity u ~ 91%, and submicron waviness with a root-mean-square roughness σ ~ 12 nm and a lateral correlation length ξ ~ 32 µm. AZ5214-E sheets coated conformally high mesa objects with sharp convex and concave edges: 61 µm high ridges confined to ~35°-inclined facets and 9 µm high ridges confined to negatively sloped facets. The draping technique can be used to deposit conformal AZ5214-E layers over non-planar substrates for non-planar device processing.

  18. Aphidicolin resistance in herpes simplex virus type 1 appears to alter substrate specificity in the DNA polymerase

    SciTech Connect

    Hall, J.D.; Woodward, S.

    1989-06-01

    The authors describe novel mutants of herpes simplex virus which are resistant to aphidicolin. Their mutant phenotypes suggest that they encode DNA polymerases with altered substrate recognition. This conclusion is based on their abnormal sensitivity to polymerase inhibitors and to the abnormal mutation rates exhibited by two of the mutants.

  19. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1993-07-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  20. Low-thermal-resistance, high-electrical-isolation heat intercept connection

    SciTech Connect

    Niemann, R.C.; Gonczy, J.D. ); Nicol, T.H. )

    1993-01-01

    A method for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection is presented. Electrical conductors often require the removal of heat produced from their normal operation. The heat can be removed by mechanical connection to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Such connections should be straightforward to fabricate and provide reliable performance that is independent of operating temperature. The connection method described here involves clamping, by thermal interference fit, an electrically insulating cylinder between an outer metallic ring and an inner metallic disk.

  1. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2014-09-01

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.

  2. Advanced thermal barrier system bond coatings for use on nickel-, cobalt- and iron-base alloy substrates

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1986-01-01

    New and improved Ni-, Co-, and Fe-base bond coatings have been identified for the ZrO2-Y2O3 thermal barrier coatings to be used on Ni-, Co-, and Fe-base alloy substrates. These bond coatings were evaluated in a cyclic furnace between 1120 and 1175 C. It was found that MCrAlYb (where M = Ni, Co, or Fe) bond coating thermal barrier systems have significantly longer lives than MCrAlY bond coating thermal barrier systems. The longest life was obtained with the FeCrAlYb thermal barrier system followed by NiCrAlYb and CoCrAlYb thermal barrier systems in that order.

  3. Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites

    NASA Astrophysics Data System (ADS)

    Gharagozloo-Hubmann, Kati; Boden, André; Czempiel, Gregor J. F.; Firkowska, Izabela; Reich, Stephanie

    2013-05-01

    The thermal conductivity of polymer composites is measured for several tubular carbon nanofillers (nanotubes, fibres, and whiskers). The highest enhancement in the thermal conductivity is observed for functionalized multiwalled carbon nanotubes (90% enhancement for 1 vol. %) and Pyrograf carbon fibres (80%). We model the experimental data using an effective thermal medium theory and determine the thermal interface resistance (RK) at the filler-matrix interface. Our results show that the geometry of the nanofibres and the interface resistance are two key factors in engineering heat transport in a composite.

  4. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    NASA Astrophysics Data System (ADS)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-06-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  5. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  6. Physical and electrochemical properties of synthesized carbon nanotubes [CNTs] on a metal substrate by thermal chemical vapor deposition

    PubMed Central

    2012-01-01

    Multi-walled carbon nanotubes were synthesized on a Ni/Au/Ti substrate using a thermal chemical vapor deposition process. A Ni layer was used as a catalyst, and an Au layer was applied as a barrier in order to prevent diffusion between Ni and Ti within the substrate during the growth of carbon nanotubes. The results showed that vertically aligned multi-walled carbon nanotubes could be uniformly grown on the Ti substrate (i.e., metal substrate), thus indicating that the Au buffer layer effectively prevented interdiffusion of the catalyst and metal substrate. Synthesized carbon nanotubes on the Ti substrate have the diameter of about 80 to 120 nm and the length of about 5 to 10 μm. The Ti substrate, with carbon nanotubes, was prepared as an electrode for a lithium rechargeable battery, and its electrochemical properties were investigated. In a Li/CNT cell with carbon nanotubes on a 60-nm Au buffer layer, the first discharge capacity and discharge capacity after the 50th cycle were 210 and 80 μAh/cm2, respectively. PMID:22221861

  7. Method for preparation of thermally and mechanically stable metal/porous substrate composite membranes

    DOEpatents

    Damle, Ashok S.

    2004-07-13

    A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.

  8. The thermal constriction resistance of a strip contact spot on a thin film

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian; Prasad, Vish; Kao, Imin

    1999-04-01

    The thermal constriction resistance of a strip contact spot on a layer of material is analysed for the heat-flux specified boundary condition on the contact zone. Using Green's function, the solution of heat-conduction problems is reduced to a new type of hypersingular integral equations with a hyperbolic function kernel. The hypersingular integral equations are solved analytically, which provides closed-form solutions for the thermal constriction resistance. For a thin film and isoflux conditions over the contact zone, the thermal constriction resistance is proportional to the ratio of the film thickness to the contact width when the other side of the film is considered isothermal, whereas it is inversely proportional to this ratio for an adiabatic back. Such a large variation and reversal in trend reveals the possibility of using this method for the measurement of film thicknesses by measuring the thermal constriction resistance.

  9. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding

    PubMed Central

    Romano, Keith P.; Ali, Akbar; Royer, William E.; Schiffer, Celia A.

    2010-01-01

    Hepatitis C virus infects an estimated 180 million people worldwide, prompting enormous efforts to develop inhibitors targeting the essential NS3/4A protease. Resistance against the most promising protease inhibitors, telaprevir, boceprevir, and ITMN-191, has emerged in clinical trials. In this study, crystal structures of the NS3/4A protease domain reveal that viral substrates bind to the protease active site in a conserved manner defining a consensus volume, or substrate envelope. Mutations that confer the most severe resistance in the clinic occur where the inhibitors protrude from the substrate envelope, as these changes selectively weaken inhibitor binding without compromising the binding of substrates. These findings suggest a general model for predicting the susceptibility of protease inhibitors to resistance: drugs designed to fit within the substrate envelope will be less susceptible to resistance, as mutations affecting inhibitor binding would simultaneously interfere with the recognition of viral substrates. PMID:21084633

  10. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.

    PubMed

    Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R

    2014-07-01

    Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires. PMID:24758054

  11. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  12. Diameter distribution of thermally evaporated indium metal islands on silicon substrates

    NASA Astrophysics Data System (ADS)

    Balch, Joleyn; Tsakalakos, Loucas; Huber, William; Grande, James; Knussman, Michael; Cale, Timothy S.

    2007-09-01

    Although many groups have studied the initial growth stages of various metals, including indium, there is little information in literature on diameter distributions of indium in relation to film thickness or annealing conditions. This paper reports island size distributions of thermally evaporated In islands on Si (100) and Si (111) substrates for nominal film thicknesses ranging from 5 to 50 nm. Because indium has a low melting temperature, and therefore a high homologous temperature at room temperature, 3-dimensional islands form during deposition with no subsequent heat treatments needed. Island diameters were calculated using commercial image analysis software in conjunction with SEM images of the samples. It is found that there is a bimodal island diameter distribution for nominal indium thicknesses greater than 5 nm. While the diameters of the larger islands increase exponentially with nominal thickness, those of the smaller islands increase linearly, and therefore more slowly, with nominal thickness. For nominal thickness of 50 nm, the average diameters of the small and large islands differ by almost an order of magnitude. Anneal conditions were studied in an attempt to narrow diameter distributions. Samples of each nominal thickness were annealed at temperatures ranging from 360°C to 550°C and the diameters again measured. The range of island diameters become narrower with 360°C anneal and volume average island diameter increases by ~30-50%. This narrowing of the distribution occurs due to smaller islands being absorbed by the larger in a process akin to Ostwald ripening, which is facilitated by higher surface diffusivities at higher homologous temperatures.

  13. Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds

    SciTech Connect

    Babu, S.S.; Riemer, B.W.; Santella, M.L.; Feng, Z.

    1998-11-01

    An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

  14. Thermal Expansion and Electrical Resistivity Studies of Nickel and ARMCO Iron at High Temperatures

    NASA Astrophysics Data System (ADS)

    Palchaev, D. K.; Murlieva, Zh. Kh.; Gadzhimagomedov, S. H.; Iskhakov, M. E.; Rabadanov, M. Kh.; Abdulagatov, I. M.

    2015-11-01

    The electrical resistance, ρ (T), and thermal expansion coefficient, β (T), of nickel and ARMCO iron have been simultaneously measured over a wide temperature range from (300 to 1100) K. The well-known standard four-probe potentiometric method was used for measurements of the electrical resistance. The thermal expansion coefficient was measured using the quartz dilatometer technique. Both techniques were combined in the same apparatus for simultaneous measurements of the electrical resistance and TEC for the same specimen. The combined expanded uncertainty of the electrical resistance and thermal expansion coefficient measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 0.5 % and (1.5 to 4.0) %, respectively. The distinct ρ (T) scattering contribution (phonon ρ _{ph}, magnetic ρ m, and residual ρ S) terms were separated and extracted from the measured total resistivity. The physical nature and details of the temperature dependence of the electrical resistance of solid materials and correct estimations of the contributions of various scattering mechanisms to the measured total resistivity were discussed in terms of the anharmonic effect. We experimentally found simple, universal, physically based, semiempirical linear correlations between the kinetic coefficient (electrical resistance) and a thermodynamic (equilibrium) property, the thermal expansion coefficient, of solid materials. The developed, physically based, correlation model has been successfully applied for nanoscale materials (ferromagnetic nickel nanowire). A new s-d-exchange interaction energy determination technique has been proposed.

  15. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  16. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  17. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  18. Termite Resistance of Thermally-Modified Dendrocalamus asper (Schultes f.) Backer ex Heyne

    PubMed Central

    Manalo, Ronniel D.; Garcia, Carlos M.

    2012-01-01

    The effects of thermal modification on the resistance of Dendrocalamus asper against Microcerotermes losbañosensis were investigated after exposure to virgin coconut oil at 140–200 °C for 30–120 min. The results showed that heat treatment significantly improved bamboo’s resistance to termites based on mass losses and visual observations. The enhancement was highest at 200 °C. Prolonged treatment had a positive effect on the resistance at lower temperatures only. PMID:26466531

  19. Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate.

    PubMed

    Zhang, Kaili; Rossi, Carole; Alphonse, Pierre; Tenailleau, Christophe

    2008-04-16

    Two-dimensional nanostructures have a variety of applications due to their large surface areas. In this study, the authors present a simple and convenient method to realize two-dimensional NiO nanowalls by thermal treatment of a Ni thin film deposited by sputtering onto a stainless steel substrate. The substrate surface area is supposed to be significantly increased by creating nanowalls. The effects on the nanowall morphology of the thermal treatment temperature and duration are investigated. A mechanism based on the surface diffusion of Ni(2+) ions from the Ni base film is then proposed for the growth of the NiO nanowalls. The as-synthesized NiO nanowalls are characterized by scanning electron microscopy, energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. PMID:21825619

  20. Effect of Ni content on thermal and radiation resistance of VVER RPV steel

    NASA Astrophysics Data System (ADS)

    Shtrombakh, Ya. I.; Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Fedotova, S. V.; Zhurko, D. A.; Krikun, E. V.

    2015-06-01

    In this paper thermal stability and radiation resistance of VVER-type RPV steels for pressure vessels of advanced reactors with different nickel content were studied. A complex of microstructural studies and mechanical tests of the steels in different states (after long thermal exposures, provoking embrittling heat treatment and accelerated neutron irradiation) was carried out. It is shown that nickel content (other things being equal) determines the extent of materials degradation under influence of operational factors: steels with a lower nickel concentration demonstrate a higher thermal stability and radiation resistance.

  1. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    PubMed

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift. PMID:24807397

  2. Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films

    SciTech Connect

    Langner, M.C.; Kantner, C.L.S.; Chu, Y.H.; Martin, L.M.; Yu, P.; Ramesh, R.; Orenstein, J.

    2010-01-20

    We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the heat flow out of the film is limited by the film/substrate interface. We show that this behavior is consistent with an effective boundary resistance resulting from disequilibrium between the spin and phonon temperatures in the film.

  3. Improvement in UOE pipe collapse resistance by thermal aging

    SciTech Connect

    Al-Sharif, A.M.; Preston, R.

    1996-12-31

    A recent investigation has shown that the UOE pipe manufacturing process significantly degrades the collapse resistance of high strength line pipe. This paper assesses the degree of strength recovery that can be achieved by aging the pipe. An experimental investigation was performed in order to develop a quantitative relationship between time and temperature of aging, which produces an increase in compressive yield strength, with consequent increase in collapse resistance to external pressure loading.

  4. Exceptional thermal tolerance and water resistance in the mite Paratarsotomus macropalpis (Erythracaridae) challenge prevailing explanations of physiological limits.

    PubMed

    Wu, Grace C; Wright, Jonathan C

    2015-11-01

    Physiological performance and tolerance limits in metazoans have been widely studied and have informed our understanding of processes such as extreme heat and cold tolerance, and resistance to water loss. Because of scaling considerations, very small arthropods with extreme microclimatic niches provide promising extremophiles for testing predictive physiological models. Corollaries of small size include rapid heating and cooling (small thermal time constants) and high mass-specific metabolic and water exchange rates. This study examined thermal tolerance and water loss in the erythracarid mite Paratarsotomus macropalpis (Banks, 1916), a species that forages on the ground surface of the coastal sage scrub habitat of Southern California, USA. Unlike most surface-active diurnal arthropods, P. macropalpis remains active during the hottest parts of the day in midsummer. We measured water-loss gravimetrically and estimated the critical thermal maximum (CTmax) by exposing animals to a given temperature for 1h and then increasing temperature sequentially. The standardized water flux of 4.4ngh(-1)cm(-2)Pa(-1), averaged for temperatures between 22 and 40°C, is among the lowest values reported in the literature. The CTmax of 59.4°C is, to our knowledge, the highest metazoan value reported for chronic (1-h) exposure, and closely matches maximum field substrate temperatures during animal activity. The extraordinary physiological performance seen in P. macropalpis likely reflects extreme selection resulting from its small size and resultant high mass-specific water loss rate and low thermal time-constant. Nevertheless, the high water resistance attained with a very thin lipid barrier, and the mite's exceptional thermal tolerance, challenge existing theories seeking to explain physiological limits. PMID:26255840

  5. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).

    PubMed

    Römermann, Kerstin; Helmer, Renate; Löscher, Wolfgang

    2015-06-01

    Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed. PMID:25645391

  6. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology

    NASA Astrophysics Data System (ADS)

    Ou, Yi; Qu, Furong; Wang, Guanya; Nie, Mengyan; Li, Zhigang; Ou, Wen; Xie, Changqing

    2016-07-01

    By combining substrate-free structures with anodic bonding technology, we present a simple and efficient micro-electro-mechanical system (MEMS) thermal shear stress sensor. Significantly, the resulting depth of the vacuum cavity of the sensor is determined by the thickness of the silicon substrate at which Si is removed by the anisotropic wet etching process. Compared with the sensor based on a sacrificial layer technique, the proposed MEMS thermal shear-stress sensor exhibits dramatically improved sensitivity due to the much larger vacuum cavity depth. The fabricated MEMS thermal shear-stress sensor with a vacuum cavity depth as large as 525 μm and a vacuum of 5 × 10-2 Pa exhibits a sensitivity of 184.5 mV/Pa and a response time of 180 μs. We also experimentally demonstrate that the sensor power is indeed proportional to the 1/3-power of the applied shear stress. The substrate-free structures offer the ability to precisely measure the shear stress fluctuations in low speed turbulent boundary layer wind tunnels.

  7. Effects of Graphene Nanopetal Outgrowths on Internal Thermal Interface Resistance in Composites.

    PubMed

    Kumar, Anurag; Ayyagari, Nikhil; Fisher, Timothy S

    2016-03-16

    Thermal resistance at the interface between fiber and matrix is often the determining factor influencing thermal transport in carbon fiber composites. Despite its significance, few experimental measurements of its magnitude have been performed to date. Here, a 3ω method is applied to measure the interfacial thermal resistance between individual carbon fibers and an epoxy matrix. The method incorporates bulk and interfacial regions to extract interfacial characteristics. Measured values indicate an average thermal interface resistance of 18 mm(2) K/W for an interface between bare fiber and epoxy, but the average value drops to 3 mm(2) K/W after a microwave plasma chemical vapor deposition of two-dimensional graphene nanopetals on the carbon fiber surface. PMID:26901700

  8. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.

    PubMed

    Qian, Xiaoming; Fan, Jintu

    2006-11-01

    Clothing thermal insulation and moisture vapour resistance are the two most important parameters in thermal environmental engineering, functional clothing design and end use of clothing ensembles. In this study, clothing thermal insulation and moisture vapour resistance of various types of clothing ensembles were measured using the walking-able sweating manikin, Walter, under various environmental conditions and walking speeds. Based on an extensive experimental investigation and an improved understanding of the effects of body activities and environmental conditions, a simple but effective direct regression model has been established, for predicting the clothing thermal insulation and moisture vapour resistance under wind and walking motion, from those when the manikin was standing in still air. The model has been validated by using experimental data reported in the previous literature. It has shown that the new models have advantages and provide very accurate prediction. PMID:16857703

  9. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.

    PubMed

    Altman, Michael D; Ali, Akbar; Reddy, G S Kiran Kumar; Nalam, Madhavi N L; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X; Gilson, Michael K; Schiffer, Celia A; Rana, Tariq M; Tidor, Bruce

    2008-05-14

    The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from a Ki of 30-50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6-13-fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors: robust binders (maximum affinity loss of 14-16-fold), moderate binders (35-80-fold), and susceptible binders (greater than 100-fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  10. HIV-1 Protease Inhibitors from Inverse Design in the Substrate Envelope Exhibit Subnanomolar Binding to Drug-Resistant Variants

    PubMed Central

    Altman, Michael D.; Ali, Akbar; Reddy, G. S. Kiran Kumar; Nalam, Madhavi N. L.; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X.; Gilson, Michael K.; Schiffer, Celia A.; Rana, Tariq M.; Tidor, Bruce

    2010-01-01

    The acquisition of drug-resistance mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from Ki of 30–50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6–13 fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors — robust binders (maximum affinity loss of 14–16 fold), moderate binders (35–80 fold), and susceptible binders (greater than 100 fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  11. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion.

    PubMed

    Contreras-Caceres, Rafael; Santos, Catherine M; Li, Siheng; Kumar, Amit; Zhu, Zhiling; Kolar, Satya S; Casado-Rodriguez, Miguel A; Huang, Yongkai; McDermott, Alison; Lopez-Romero, Juan Manuel; Cai, Chengzhi

    2015-11-15

    In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days. PMID:26210101

  12. Significance of thermal contact resistance in two-layer, thermal-barrier-coated turbine vanes

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Gaugler, E.

    1980-01-01

    The paper studies calculated and measured metal wall temperatures of uncoated vanes and the same vanes coated with a thermal barrier coating system of NiCrAlY bond and yttria-stabilized zirconia ceramic. It is shown that thermal contact between layers is negligible. The significance of data scatter and of published ceramic thermal conductivity values is discussed.

  13. Effects of substrate deformation and sip thickness on tile/sip interface stresses for shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Garcia, R.

    1980-01-01

    A nonlinear analysis was used to study the effects of substrate deformation characteristics and strain isolator pad (SIP) thickness on TILE/SIP interface stresses for the space shuttle thermal protection system. The configuration analyzed consisted of a 5.08 cm thick, 15.24 cm square tile with a 12.7 cm square SIP footprint bordered by a 1.27 cm wide filler bar and was subjected to forces and moments representative of a 20.7 kPa aerodynamic shock passing over the tile. The SIP stress deflection curves were obtained after a 69 kPa proof load and 100 cycles conditioning at 55 kPa. The TILE/SIP interface stresses increase over flat substrate values for zero to peak substrate deformation amplitudes up to 0.191 cm by up to a factor of nearly five depending on deformation amplitude, half wave length, and location. Stresses for a 0.23 cm thick SIP found to be up to 60 percent greater than for a 0.41 cm thick SIP for identical loads and substrate deformation characteristics. A simplified method was developed for approximating the substrate location which produces maximum TILE/SIP interface stresses.

  14. Assessing the thermoelectric properties of single InSb nanowires: the role of thermal contact resistance

    NASA Astrophysics Data System (ADS)

    Yazji, S.; Swinkels, M. Y.; De Luca, M.; Hoffmann, E. A.; Ercolani, D.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Bakkers, E. P. A. M.; Zardo, I.

    2016-06-01

    The peculiar shape and dimensions of nanowires (NWs) have opened the way to their exploitation in thermoelectric applications. In general, the parameters entering into the thermoelectric figure of merit are strongly interdependent, which makes it difficult to realize an optimal thermoelectric material. In NWs, instead, the power factor can be increased and the thermal conductivity reduced, thus boosting the thermoelectric efficiency compared to bulk materials. However, the assessment of all the thermoelectric properties of a NW is experimentally very challenging. Here, we focus on InSb NWs, which have proved to be promising thermoelectric materials. The figure of merit is accurately determined by using a novel method based on a combination of Raman spectroscopy and electrical measurements. Remarkably, this type of experiment provides a powerful approach allowing us to neglect the role played by thermal contact resistance. Furthermore, we compare the thermal conductivity determined by this novel method to the one determined on the same sample by the thermal bridge method. In this latter approach, the thermal contact resistance is a non-negligible parameter, especially in NWs with large diameters. We provide experimental evidence of the crucial role played by thermal contact resistance in the assessment of the thermal properties of nanostructures, using two different measurement methods of the thermal conductivity.

  15. Thermal resistance across a copper/Kapton/copper interface at cryogenic temperatures

    SciTech Connect

    Zhao, L.; Phelan, P.E.; Niemann, R.C.; Weber, B.R.

    1997-09-01

    The high-{Tc} superconductor current lead heat intercept connection, which is utilized as a thermal intercept to remove the Joule heat from the upper stage lead to a heat sink operating at 50--77 K, consists of a structure where a 152-{micro}m film is sandwiched between two concentric copper cylinders. The material chosen for the insulating film is Kapton MT, a composite film which has a relatively low thermal resistance, but yet a high voltage standoff capability. Here, the measured thermal conductance of a copper/Kapton MT/copper junction in a flat-plate geometry is compared to the results obtained from the actual heat intercept connection. Increasing the contact pressure reduces the thermal resistance to a minimum value determined by the film conduction resistance. A comparison between the resistance of the copper/Kapton MT/copper junction and a copper/G-10/copper junction demonstrates that the Kapton MT layer yields a lower thermal resistance while still providing adequate electrical isolation.

  16. Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhan, Tianzhuo; Minamoto, Satoshi; Xu, Yibin; Tanaka, Yoshihisa; Kagawa, Yutaka

    2015-04-01

    In this study, we investigated the temperature dependence and size effect of the thermal boundary resistance at Si/Ge interfaces by non-equilibrium molecular dynamics (MD) simulations using the direct method with the Stillinger-Weber potential. The simulations were performed at four temperatures for two simulation cells of different sizes. The resulting thermal boundary resistance decreased with increasing temperature. The thermal boundary resistance was smaller for the large cell than for the small cell. Furthermore, the MD-predicted values were lower than the diffusion mismatch model (DMM)-predicted values. The phonon density of states (DOS) was calculated for all the cases to examine the underlying nature of the temperature dependence and size effect of thermal boundary resistance. We found that the phonon DOS was modified in the interface regions. The phonon DOS better matched between Si and Ge in the interface region than in the bulk region. Furthermore, in interface Si, the population of low-frequency phonons was found to increase with increasing temperature and cell size. We suggest that the increasing population of low-frequency phonons increased the phonon transmission coefficient at the interface, leading to the temperature dependence and size effect on thermal boundary resistance.

  17. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  18. Solvent-Resistant, Thermally Stable Poly(Carbonate-Imides)

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Wakelyn, N. T.; Maudgal, S.; Pratt, J. R.

    1986-01-01

    New polymers and copolymers based on polyimide backbone with carbonate moieties exhibit high temperature capability. Because of carbonate unit, many of these materials also exhibit high order or crystallinity. All of new imidecontaining polymers insensitive to acetone. New poly (carbonate-imide) exhibits significantly increased temperature resistance and shows less sensitivity to solvents than commercial polycarbonates.

  19. Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications

    SciTech Connect

    Ramón, Michael E. E-mail: hemacp@utexas.edu; Movva, Hema C. P. E-mail: hemacp@utexas.edu; Fahad Chowdhury, Sk.; Parrish, Kristen N.; Rai, Amritesh; Akinwande, Deji; Banerjee, Sanjay K.; Magnuson, Carl W.; Ruoff, Rodney S.

    2014-02-17

    High-frequency performance of graphene field-effect transistors (GFETs) has been limited largely by parasitic resistances, including contact resistance (R{sub C}) and access resistance (R{sub A}). Measurement of short-channel (500 nm) GFETs with short (200 nm) spin-on-doped source/drain access regions reveals negligible change in transit frequency (f{sub T}) after doping, as compared to ∼23% f{sub T} improvement for similarly sized undoped GFETs measured at low temperature, underscoring the impact of R{sub C} on high-frequency performance. DC measurements of undoped/doped short and long-channel GFETs highlight the increasing impact of R{sub A} for larger GFETs. Additionally, parasitic capacitances were minimized by device fabrication using graphene transferred onto low-capacitance quartz substrates.

  20. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.

    PubMed

    Severo, Elias Taylor Durgante; Calonego, Fred Willians; Sansígolo, Cláudio Angeli; Bond, Brian

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  1. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood

    PubMed Central

    2016-01-01

    In this study the effect of thermal treatment on the equilibrium moisture content, chemical composition and biological resistance to decay fungi of juvenile and mature Hevea brasiliensis wood (rubber wood) was evaluated. Samples were taken from a 53-year-old rubber wood plantation located in Tabapuã, Sao Paulo, Brazil. The samples were thermally-modified at 180°C, 200°C and 220°C. Results indicate that the thermal modification caused: (1) a significant increase in the extractive content and proportional increase in the lignin content at 220°C; (2) a significant decrease in the equilibrium moisture content, holocelluloses, arabinose, galactose and xylose content, but no change in glucose content; and (3) a significant increase in wood decay resistance against both Pycnoporus sanguineus (L.) Murrill and Gloeophyllum trabeum (Pers.) Murrill decay fungi. The greatest decay resistance was achieved from treatment at 220°C which resulted in a change in wood decay resistance class from moderately resistant to resistant. Finally, this study also demonstrated that the influence of thermal treatment in mature wood was lower than in juvenile wood. PMID:26986200

  2. Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  3. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    PubMed

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. PMID:27173842

  4. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices.

    PubMed

    Lin, Yi; Bunker, Christopher E; Fernando, K A Shiral; Connell, John W

    2012-02-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because ofthe unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures. PMID:22280102

  5. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  6. Modeling of laser-analyte-substrate interaction in photo-thermal infrared imaging and laser trace vaporization

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Großer, Jakob; Kendziora, Christopher A.; Papantonakis, Michael R.; Nguyen, Viet; McGill, R. Andrew

    2011-05-01

    We are developing two techniques for non-contact detection of explosives and other substances with low vapor pressure. In one approach, quantum cascade lasers (QCLs) at eye-safe power levels heat trace residues on surfaces at stand-off distances and the photo-thermal signal is imaged with an infrared camera. When using wavelengths corresponding to vibrational resonances specific to the trace molecules, the traces can be selectively heated and become visible in the infrared. In a second approach, a QCL or other IR laser of higher power is used to enhance the vapor signature of the analyte, thus facilitating vapor-based (e.g. ion mobility spectrometry) techniques. Details and advances in these techniques will be reported elsewhere. In this paper, we study the laser heating of analytes on substrates using the simulation software COMSOL. A model is validated with experimental results for particles of well characterized shape and size. The heat transfer between particle and substrate is of special interest, but not necessarily the dominant contributor to heat loss. Both air- and substrate-mediated heating of neighboring interferent particles is generally negligible. The presence of neighboring explosives particles affects the thermal kinetics via air-mediated heat transfer.

  7. Deep levels in high resistivity GaN detected by thermally stimulated luminescence and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gai, Yanqin; Li, Jingbo; Hou, Qifeng; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Li, Jinmin

    2009-08-01

    Thermally stimulated luminescence spectroscopy has been applied to study the deep centres in unintentionally doped high resistivity GaN epilayers grown by the metal organic chemical vapour deposition method on c-sapphire substrates. Two trap states with activation energies of 0.12 and 0.62 eV are evaluated from two luminescence peaks at 141.9 and 294.7 K in the luminescence curve. Our spectroscopy measurement, in combination with more accurate first-principles studies, provided insights into the microscopic origin of these levels. Our investigations suggest that the lower level at 0.12 eV might originate from CN, which behaves as a hole trap state; the deeper level at 0.62 eV can be correlated with VGa that corresponds to the yellow luminescence band observed in low-temperature photoluminescence spectra.

  8. Estimation of Thermal Contact Resistance Using Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Cong, P. Z.; Zhang, X.; Fujii, M.

    2006-01-01

    In this paper, numerical simulations of both the three-dimensional heat conduction and two-dimensional elastic wave propagation at the interface of contact solids have been carried out. Numerical results of heat conduction simulations show that both the true contact area and thermal contact conductance increase linearly with an increase in the contact pressure. Numerical results of the ultrasonic wave propagation show that the intensity of a transmitted wave is very weak but depends clearly on the contact pressure. On the other hand, the intensity of reflected wave amounts to more than 99% of the standard reflected wave that results from the case of one cylindrical specimen without contact. However, the intensity of the modified reflected wave defined by the difference between the reflected wave and standard reflected wave shows the same tendency as that of the transmitted wave. The intensities of both transmitted and modified reflected waves could be expressed by the same power function of the contact pressure. By comparing the results of heat conduction with those of ultrasonic propagation calculations, a power functional correlation between the thermal contact conductance and transmitted or modified reflected intensity has been obtained. Using this correlation, it will be possible to estimate the thermal contact conductance between two solids through measuring the intensity of either reflected or transmitted ultrasonic waves.

  9. Design and performance of low-thermal-resistance, high-electrical-isolation heat intercept connections

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Gonczy, J. D.; Phelan, P. E.; Nicol, T. H.

    Electrical conductors often require the removal of heat produced by normal operation. The heat can be removed by mechanical connection of the conductor to a refrigeration source. Such connections require both effective heat removal (low thermal resistance) and effective electrical isolation (high electrical resistance and high dielectric strength). Fabrication of these connections should be straightforward, and performance must be reliable and independent of operating temperature. The connection method described here involves clamping (by thermal interference fit) an electrically insulating cylinder between an outer metallic ring and an inner metallic disc. Material candidates for insulating cylinders include composites, e.g. epoxy/fibreglass, and ceramics, e.g. alumina. Design factors, including geometry, materials and thermal contact resistance are discussed. The design, construction experience and performance measurements of a heat intercept connection in a high-temperature superconducting lead assembly is presented.

  10. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak. PMID:22097549

  11. Factors affecting the thermal shock resistance of several hafnia based composites containing graphite or tungsten. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.

    1974-01-01

    The thermal shock resistance of hafnia based composites containing graphite powder or tungsten fibers was investigated in terms of material properties which include thermal expansion, thermal conductivity, compressive fracture stress, modulus of elasticity, and phase stability in terms of the processing parameters of hot pressing pressure and/or density, degree of stabilization of the hafnia, and composition. All other parameters were held constant or assumed constant. The thermal shock resistance was directly proportional to the compressive fracture stress to modulus of elasticity ratio and was not affected appreciably by the small thermal expansion or thermal conductivity changes. This ratio was found to vary strongly with the composition and density such that the composites containing graphite had relatively poor thermal shock resistance, while the composites containing tungsten had superior thermal shock resistance.

  12. A technique for calculating the effective thermal resistance of steel stud walls for code compliance

    SciTech Connect

    Brown, W.C.; Swinton, M.C.; Haysom, J.C.

    1998-12-31

    Canada`s Model National Energy Codes for Houses and for Buildings contain prescriptive requirements in the form of minimum thermal characteristics of envelope assemblies, including steel stud walls. To assist in the uniform enforcement of these requirements, it was necessary for the codes to prescribe acceptable methods of calculating the thermal resistance of steel and assemblies. The ASHRAE Handbook--Fundamentals proposes a simple method for predicting the thermal performance of stud walls, which is based on a weighted average of the values predicted by isothermal planes and parallel path calculation methods. The thermal resistance of 2440 mm x 2440 mm (8 ft x 8 ft) wall specimens, with 92 mm (3-5/8 in.) steel studs, was measured in a series of guarded hot box tests. Two stud gauges were evaluated, as well as two stud spacings, with one wood-based and three insulating sheathings. The measurements demonstrated that a weighting of 2:1 (isothermal planes:parallel path) provided an/ accurate prediction of the thermal resistance of walls with steel studs at 406 mm (16 in.) o.c., but that a 1:1 weighting best predicted the thermal resistance of walls with steel studs at 610 mm (24 in.) o.c. These results applied to walls with wood-based sheathing directly applied to the studs, whether or not the walls had insulating sheathing. Finally, the measurements demonstrated that an intermediate weighting of 3:2 best predicted the thermal resistance of walls with insulating sheathing installed directly onto the studs, i.e., without intermediate structural sheathing.

  13. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface

    NASA Astrophysics Data System (ADS)

    Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming

    2016-01-01

    Pursuing extremely low interfacial thermal resistance has long been the task of many researchers in the area of nano-scale heat transfer, in particular pertaining to improve heat dissipation performance in electronic cooling. While it is well known and documented that confining a macroscopic third layer between two dissimilar materials usually increases the overall interfacial thermal resistance, no research has realized the fundamental decrease in resistance so far. By performing nonequilibrium molecular dynamics simulations, we report that the overall interfacial thermal resistance can be reduced by 6 fold by confining mass graded materials with thickness of the order of nanometers. As comparison we also studied the thermal transport across the perfectly abrupt interface and the widely used alloyed (rough) interface, which shows an opposing and significantly large increase in the overall thermal resistance. With the help of frequency dependent interfacial thermal conductance and wave packet dynamics simulation, different mechanisms governing the heat transfer across these three types of interfaces are identified. It is found that for the rough interface there are two different regimes of interfacial heat transfer, which originates from the competition between phonon scattering and the thickness of the interface. The mechanism of dramatically improved interfacial heat transfer across the nano-confined mass graded interface resides in the minor phonon reflection when the phonons first reach the mass graded area and the rare occurrence of phonon scattering in the subsequent interior region. The phonons are found to be gradually truncated by the geometric interfaces and can travel through the mass graded layer with a high transmission coefficient, benefited from the small mass mismatch between two neighboring layers in the interfacial region. Our findings provide deep insight into the phonon transport across nano-confined mass graded layers and also offer significant

  14. Analysing the thermal state of voltage transformer based on resistive voltage divider

    NASA Astrophysics Data System (ADS)

    Lebedev, V.; Zhukov, V.; Yablokov, A.

    2015-10-01

    We performed a simulation of the thermal state of a resistive voltage divider based on an equation of heat conductivity with internal sources of heat, solving this equation by using two numerical procedures. We also conducted experimental research regarding transformer thermal state on a laboratory stand. We obtained numerical results of the above heat conductivity equation, taking into account the supply of heat energy from internal sources, and compared the results of our calculations with our experimental data. Transformer thermal state simulation and numerical solution procedures enable us to formulate and resolve the problems of choosing optimal transformer design and operating modes, ensuring maximum measuring accuracy when limiting the thermal state of resistive elements.

  15. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  16. Thermal-Cycling Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings on High-Density Graphite Substrate

    NASA Astrophysics Data System (ADS)

    Sure, Jagadeesh; Thyagarajan, K.; Mallika, C.; Mudali, U. Kamachi

    2015-08-01

    The thermal cycling behavior of partially stabilized zirconia (PSZ)-coated by plasma-spray process on NiCrAlY bond-coated high-density (HD) graphite substrate was investigated. Thermal cycling was carried out at 600 and 750 °C under vacuum, up to 200 cycles. Each cycle comprised a 10-min heating followed by forced air cooling for 10 min down to room temperature. Characterization of the microstructure and the phase analysis of thermal-cycled PSZ coatings by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction (XRD), and Raman spectroscopy revealed the correlation between the microstructural/crystallographic phases and the mechanical integrity of the coating up to 200 cycles. Segmented and vertical cracks generated on the coating during thermal cycling were observed to propagate with increase in the number of cycles. Macrocracks and variations in elemental compositions were not observed until 200 cycles at 600 and 750 °C. XRD and Raman spectroscopic analysis confirmed the presence of nontransformable tetragonal phase only in all the thermal-cycled PSZ coatings, irrespective of temperature up to 200 cycles.

  17. Fundamental of a Planar Type of Inductively Coupled Thermal Plasma (ICTP) on a Substrate for a Large-area Materials Processings

    NASA Astrophysics Data System (ADS)

    Suantial, Maikai; Akao, Mika; Irie, Hiromitsu; Maruyama, Yuji; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Kanazawa University Team

    2015-09-01

    In this paper, the fundamental of a planar type Ar inductively coupled thermal plasmas (ICTP) with oxygen molecular gas have been studied on a substrate. Previously, we have developed a planar-ICTP torch with a rectangular quartz vessel with an air core coil or a ferrite core coil instead of a cylindrical tube for a large-area materials processing. For adoption of such a planar-ICTP to material processings, it needs to sustain the ICTP with molecular gases on a substrate stably. To consider the uniformity of the ICTP formed on the substrate, spectroscopic observation was carried out at 3 mm above the substrate. Results showed that the radiation intensities of specified O atomic lines were almost uniformly detected along the surface of the substrate. This means that O excited atoms, which are important radicals for thermal plasma oxidation, are present in planar-ICTP uniformly on the substrate.

  18. Experimental investigation of the thermal contact resistance of a space-use deep groove ball bearing

    NASA Astrophysics Data System (ADS)

    Nakajima, Katsuhiko

    An investigation is conducted to experimentally verify an analytical method that determines the thermal contact resistance between the balls and the inner and outer rings of a space-use ball bearing. A single row bearing made from stainless steel 440 C is tested in a vacuum environment, and steady-state temperature distributions are measured to evaluate the heat flow across the stationary bearing. Test results are given for the conditions of axial, radial, and combined loading. It is concluded that the proposed calculation method accurately predicts the thermal contact resistance between the elements of a dry bearing with smooth contact surfaces.

  19. Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K.

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Weitzel, D. H.; Powell, R. L.

    1971-01-01

    Measurement of thermal conductivity, electrical resistivity, and thermopower for several aerospace alloys: titanium alloy A110-AT, aluminum alloy 7039, Inconel 718, and Hastelloy X. Tables and graphs of the measured properties and Lorenz ratio are presented over the range from 4 to 300 K. Comparisons to other measurements and theoretical analysis of the data are included. The uncertainties of the property data are estimated as 0.7 to 2.5% for thermal conductivity, 0.25% in electrical resistivity, and about 0.1 microvolt/K in thermopower.

  20. Influence of bonding pressure on thermal resistance in reactively-bonded solder joints

    NASA Astrophysics Data System (ADS)

    Kanetsuki, Shunsuke; Miyake, Shugo; Kuwahara, Koichi; Namazu, Takahiro

    2016-06-01

    To realize the practical use of reactively bonded solder joints for thermally sensitive devices such as MEMS and electrical modules, we quantitatively measure the thermal resistance of solder joints fabricated by Al/Ni self-propagating exothermic reaction. By the laser flash method with response function analysis, the influence of bonding pressure on the thermal resistance of the reactive joints is investigated. The thermal resistance of the joints obtained by 3 MPa bonding is higher than that by 20 MPa bonding. By cross-sectional scanning electron microscopy (SEM) observation, many voids are found in the vicinity of the interface between the reacted AlNi and bottom-side solder layers in 3 MPa joints. In 20 MPa joints, a Ni-rich AlNi intermetallic compound instead of voids is produced around the interface. For reducing the thermal resistance of the reactive joints, the void generation mechanism is discussed in light of SEM observation and electron probe microanalysis (EPMA) analysis results.

  1. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect

    Liu, M.; Qiu, L. E-mail: jzzhengxinghua@163.com; Zheng, X. H. E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W.

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  2. A fast thermal-curing nanoimprint resist based on cationic polymerizable epoxysiloxane

    PubMed Central

    2012-01-01

    We synthesized a series of epoxysiloxane oligomers with controllable viscosity and polarity and developed upon them a thermal-curable nanoimprint resist that was cross-linked in air at 110°C within 30 s if preexposed to UV light. The oligomers were designed and synthesized via hydrosilylation of 4-vinyl-cyclohexane-1,2-epoxide with poly(methylhydrosiloxane) with tunable viscosity, polarity, and cross-linking density. The resist exhibits excellent chemical and physical properties such as insensitivity toward oxygen, strong mechanical strength, and high etching resistance. Using this resist, nanoscale patterns of different geometries with feature sizes as small as 30 nm were fabricated via a nanoimprint process based on UV-assisted thermal curing. The curing time for the resist was on the order of 10 s at a moderate temperature with the help of UV light preexposure. This fast thermal curing speed was attributed to the large number of active cations generated upon UV exposure that facilitated the thermal polymerization process. PMID:22775987

  3. The laser ablation model development of glass substrate cutting assisted with the thermal fracture and ultrasonic mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Hsiao, Wen-Tse; Hwang, Chi-Hung; Lin, Ru-Li; Andrew Yeh, Jer-Liang

    2015-04-01

    This study presents three hybrid processing models for cutting a glass substrate, and compares their cutting speeds. The three models are (I) thermal fracture cutting technology (TFCT)-assisted laser ablation, (II) ultrasonic-assisted laser ablation, and (III) ultrasonic and TFCT-assisted laser ablation. In the experiment, a 12 W 355 nm Nd:YVO4 laser system, a 40 W CO2 laser and an ultrasonic transducer were used to cut 3 mm thick soda-lime glasses. Lasers and ultrasonic transducers were used as heat sources and vibration sources, respectively. Results show that the surface morphology of the soda-lime glass sheet depends on the processing models. After cutting, the surface and cross-sectional morphology of glass substrate were observed using a portable digital microscope and residual stresses were also evaluated thanks to a photoelasticity instrument.

  4. Morphological and SERS Properties of Silver Nanorod Array Films Fabricated by Oblique Thermal Evaporation at Various Substrate Temperatures.

    PubMed

    Oh, Myoung-Kyu; Shin, Yong-Seok; Lee, Chang-Lyoul; De, Ranjit; Kang, Hoonsoo; Yu, Nan Ei; Kim, Bok Hyeon; Kim, Joon Heon; Yang, Jin-Kyu

    2015-12-01

    Aligned silver nanorod (AgNR) array films were fabricated by oblique thermal evaporation. The substrate temperature during evaporation was varied from 10 to 100 °C using a home-built water cooling system. Deposition angle and substrate temperature were found to be the most important parameters for the morphology of fabricated films. Especially, it was found that there exists a critical temperature at ~90 °C for the formation of the AgNR array. The highest enhancement factor of the surface-enhanced Raman scattering (SERS), observed in the Ag films coated with benzenethiol monolayer, was ~6 × 10(7). Hot spots, excited in narrow gaps between nanorods, were attributed to the huge enhancement factor by our finite-difference time-domain (FDTD) simulation reflecting the real morphology. PMID:26061442

  5. Peel resistance characterization of localized polymer film bonding via thin film adhesive thermally activated by scanned CO2 laser

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Dowding, Robert; Griffiths, Jonathan; Lawrence, Jonathan

    2013-06-01

    Thermal laser polymer bonding is a non-contact process for the joining of polymer laminates using thermally activated adhesives. Conventional, contact based bonding techniques suffer from mechanical wear, geometric inflexibility and poor energy efficiency. The application of lasers offers the potential for highly localized delivery of energy and increased process flexibility whilst achieving controlled and repeatable bonding of polymer laminates in a contact free process. Unlike previously reported techniques, here it is reported that laser based non-contact bonding is both viable and highly desirable due to the increased levels of control it affords the user. In this work, laser polymer bonding of 75 μm thick linear low density polyethylene (LLDPE) film backed with a thermally activated adhesive to a 640 μm thick polypropylene (PP) substrate was conducted using continuous wave 10.6 μm laser radiation and scanning galvanometric optics. The effect of laser power and scanning traverse speed on the peel resistance properties of the bonded polymer laminates is presented, with a threshold specific energy density for successful adhesive activation determined.

  6. Increased water activity reduces the thermal resistance of Salmonella enterica in peanut butter.

    PubMed

    He, Yingshu; Li, Ye; Salazar, Joelle K; Yang, Jingyun; Tortorello, Mary Lou; Zhang, Wei

    2013-08-01

    Increased water activity in peanut butter significantly (P < 0.05) reduced the heat resistance of desiccation-stressed Salmonella enterica serotypes treated at 90 °C. The difference in thermal resistance was less notable when strains were treated at 126 °C. Using scanning electron microscopy, we observed minor morphological changes of S. enterica cells resulting from desiccation and rehydration processes in peanut oil. PMID:23728806

  7. Treating Surfaces To Obtain Narrowband Thermal Emission

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Ong, Tiong P.

    1993-01-01

    Surfaces emitting electromagnetic radiation predominantly in desired narrow spectral bands when heated made more durable, and fabricated less expensively, according to proposal. Narrowband thermal emitters made by polishing metal substrates to specularity, then coating specular surfaces with films of rare-earth oxides approximately less than 1 micrometer thick. Metal substrates inherently resistant to mechanical shock. Resistance to thermal shock achieved by choosing metals and rare-earth oxides having equal or nearly equal coefficients of thermal expansion.

  8. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas; Naramanchi, Sreekant

    2015-07-06

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lack of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk

  9. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-10-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  10. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    PubMed Central

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-01-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions. PMID:26468676

  11. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  12. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.

    PubMed

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2016-09-21

    Interfacial thermal conductance plays a vital role in defining the thermal properties of nanostructured materials in which heat transfer is predominantly phonon mediated. In this work, the thermal contact resistance (R) of a linear heterojunction within a hybrid graphene/hexagonal boron nitride (h-BN) sheet is characterized using non-equilibrium molecular dynamics (NEMD) simulations. The effects of system dimension, heat flux direction, temperature and tensile strain on the predicted R values are investigated. The spatiotemporal evolution of thermal energies from the graphene to the h-BN sheet reveals that the main energy carrier in graphene is the flexural phonon (ZA) mode, which also has the most energy transmissions across the interface. The calculated R decreases monotonically from 5.2 × 10(-10) to 2.2 × 10(-10) K m(2) W(-1) with system lengths ranging from 20 to 100 nm. For a 40 nm length hybrid system, the calculated R decreases by 42% from 4.1 × 10(-10) to 2.4 × 10(-10) K m(2) W(-1) when the system temperature increases from 200 K to 600 K. The study of the strain effect shows that the thermal contact resistance R between h-BN and graphene sheets increases with the tensile strain. Detailed phonon density of states (PDOS) is computed to understand the thermal resistance results. PMID:27531348

  13. Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface

    NASA Astrophysics Data System (ADS)

    Chen-Tai, Jr.; Pomeroy, James W.; Rorsman, Niklas; Xia, Chao; Virojanadara, Chariya; Forsberg, Urban; Kuball, Martin; Janzén, Erik

    2015-10-01

    The crystalline quality of AlGaN/GaN heterostructures was improved by optimization of surface pretreatment of the SiC substrate in a hot-wall metal-organic chemical vapor deposition reactor. X-ray photoelectron spectroscopy measurements revealed that oxygen- and carbon-related contaminants were still present on the SiC surface treated at 1200 °C in H2 ambience, which hinders growth of thin AlN nucleation layers with high crystalline quality. As the H2 pretreatment temperature increased to 1240 °C, the crystalline quality of the 105 nm thick AlN nucleation layers in the studied series reached an optimal value in terms of full width at half-maximum of the rocking curves of the (002) and (105) peaks of 64 and 447 arcsec, respectively. The improvement of the AlN growth also consequently facilitated a growth of the GaN buffer layers with high crystalline quality. The rocking curves of the GaN (002) and (102) peaks were thus improved from 209 and 276 arcsec to 149 and 194 arcsec, respectively. In addition to a correlation between the thermal resistance and the structural quality of an AlN nucleation layer, we found that the microstructural disorder of the SiC surface and the morphological defects of the AlN nucleation layers to be responsible for a substantial thermal resistance. Moreover, in order to decrease the thermal resistance in the GaN/SiC interfacial region, the thickness of the AlN nucleation layer was then reduced to 35 nm, which was shown sufficient to grow AlGaN/GaN heterostructures with high crystalline quality. Finally, with the 35 nm thick high-quality AlN nucleation layer a record low thermal boundary resistance of 1.3×10-8 m2 K/W, measured at an elevated temperature of 160 °C, in a GaN-on-SiC transistor structure was achieved.

  14. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis. PMID:27078445

  15. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability

    NASA Astrophysics Data System (ADS)

    Taylor, M. T.; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  16. Preparation of thermally stable TiO{sub 2}-terminated SrTiO{sub 3}(100) substrate surfaces

    SciTech Connect

    Ohnishi, T.; Shibuya, K.; Lippmaa, M.; Kobayashi, D.; Kumigashira, H.; Oshima, M.; Koinuma, H.

    2004-07-12

    We have examined the thermal stability of TiO{sub 2}-terminated SrTiO{sub 3}(100) surfaces obtained by buffered HF etching and widely used as substrates for oxide film growth. In situ coaxial impact-collision ion scattering spectroscopy was used to measure the composition of the terminating atomic layer at temperatures up to 1000 deg. C, simulating a broad range of thin-film growth conditions. The TiO{sub 2} termination of a nonannealed but HF-etched surface was found to start collapsing at temperatures as low as 300 deg. C regardless of atmosphere, showing thermal instability of the chemically cleaved surface. Here, we introduce an alternative way to prepare a stabilized SrTiO{sub 3} surface, which maintains a perfect TiO{sub 2} termination up to 700 deg. C, ideal for the growth of atomically sharp oxide heterointerfaces.

  17. Radio frequency surface resistance of Tl-Ba-Ca-Cu-O films on metal and single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Arendt, P. N.; Reeves, G. A.; Elliott, N. E.; Cooke, D. W.; Gray, E. R.; Houlton, R. J.; Brown, D. R.

    1990-01-01

    Films of Tl-Ba-Ca-Cu were dc magnetron sputtered from a single multielement target. The films were deposited onto substrates of: (1) magnesium oxide, (2) a silver based alloy (Consil 995), (3) a nickel based alloy (Haynes 230), and (4) buffer layers of barium fluoride or copper oxide on Consil. To form superconducting phases, post-deposition anneals were made on these films using an alumina crucible with an over pressure of thallium and flowing oxygen. After annealing, the film phases were determined using x-ray diffraction. The film surface resistances (Rs) were measured at 22 GHz in a TE011 cavity.

  18. Radio frequency surface resistance of Tl-Ba-Ca-Cu-O films on metal and single-crystal substrates

    SciTech Connect

    Arendt, P.N.; Reeves, G.A.; Elliott, N.E.; Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Brown, D.R. )

    1990-01-25

    Films of Tl-Ba-Ca-Cu were dc magnetron sputtered from a single multielement target. The films were deposited onto substrates of: (1) magnesium oxide, (2) a silver based alloy (Consil 995), (3) a nickel based alloy (Haynes 230), and (4) buffer layers of barium fluoride or copper oxide on Consil. To form superconducting phases, post-deposition anneals were made on these films using an alumina crucible with an over pressure of thallium and flowing oxygen. After annealing, the film phases were determined using x-ray diffraction. The film surface resistances (Rs) were measured at 22 GHz in a TE{sub 011} cavity.

  19. The thermal resistance of fine powders at atmospheric pressure and under vacuum

    SciTech Connect

    McElroy, D.L.; Weaver, F.J.; Yarbrough, D.W.; Graves, R.S.

    1987-01-01

    Heat transport measurements are reported on candidate insulation systems with relatively high thermal resistances for use in appliances. The thermal resistances of small diameter silica powders at atmospheric pressure and under vacuum were measured from 295 to 340 K using unguarded radial heat flow techniques. The thermal resistances of rectangular panels containing perlite or silica powder at reduced pressure were determined using an unguarded linear heat flow technique. Values of 1.2m/sup 2//center dot/K/W for 0.0254 m (R-7 per inch) were obtained at atmospheric pressure for powders of pure, fumed, amorphous 0.01 ..mu..m dia silica particles compacted to about 10% of theoretical density. Values of 0.7 m/sup 2//center dot/K/W for 0.0254 m (R-4 per inch) were obtained at atmospheric pressure for powders of impure, amorphous (0.3 ..mu..m dia) silica particles. Under vacuum these particle systems yielded thermal resistances as high as 6 m/sup 2//center dot/K/W for 0.0254 m (R-34 per inch), and mixtures with the pure silica particles yielded over 9 m/sup 2//center dot/K/W for 0.0254 m (R- 50 per inch). Evacuated panels of pure silica particles yielded thermal resistance values over 3 m/sup 2//center dot/K/W for 0.0254 m (R-17 per inch) and decreased about 5% in resistance in 39 months. Evacuated panels of a perlite powder yielded similar values. 18 refs, 8 figs, 2 tabs.

  20. The role of thermal contact resistance in pyrotechnic ignition

    NASA Technical Reports Server (NTRS)

    Sernas, V.; Murphy, A. J.

    1974-01-01

    This paper describes a pyrotechnic ignition model based on transient heat conduction from a heated bridgewire to a pyrotechnic that is placed in contact with it. The boundary condition used at the interface was a thermal contact conductance estimated at 31,200 W per sq m-K between the wire and the pyrotechnic. Ignition was assumed to occur when a 2.5-micron layer of pyrotechnic next to the bridgewire reached a critical ignition temperature. The times to ignition predicted by this model for constant current firings were in good agreement with experimentally observed times to fire at 3.5- and 5-ampere current levels and ambient temperatures from 144 K to 366 K.

  1. Thermal Resistance of Salmonellae and Staphylococci in Foods

    PubMed Central

    Thomas, Constance T.; White, J. C.; Longrée, Karla

    1966-01-01

    The heat-resistant Salmonella senftenberg 775W and two strains of Staphylococcus aureus were tested at temperatures up to 68.3 C (71.1 C for S. senftenberg) in four different media. From the survival data, decimal reduction times (D values) were calculated for each set of conditions, and decimal reduction time curves were constructed for each bacterial strain in each medium. Slopes of decimal reduction time curves (ZD) ranged from 4.52 to 6.38 C with a single exception. There was no statistical heterogeneity among the remaining values. Results were in close agreement with published results of similar studies conducted at somewhat lower temperatures and support the practice of using a slope value (ZD) of 5.56 C for establishing time-temperature relationships for food processing. It is recommended that such a decimal reduction time curve not be extrapolated to temperatures more than 5.56 C higher than those actually tested. PMID:5970469

  2. Rolling-contact and wear resistance of hard coatings on bearing-steel substrates

    SciTech Connect

    Erdemir, A.

    1992-02-01

    Ever-increasing needs for high-performance ball- and roller-bearing components that can endure extreme applications have led to a growing interest in hard coatings for improved fatigue life and wear resistance. In particular, hard TiN and TiC coatings and, quite recently, diamond like carbon films have attracted much attention from manufacturers that produce bearing systems for both rolling- and sliding-contact applications. This paper presents an overview that highlights recent incremental progress in achieving improved fatigue and wear resistance in bearing steels through the use of hard coatings. Effects of coating adhesion, thickness, and morphology on fatigue and wear resistance of hard coatings are discussed in detail. Specific references are made to a few mechanistic models that correlate coating thickness and adhesion to improved fatigue life and wear resistance.

  3. Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process

    NASA Astrophysics Data System (ADS)

    Cong, Dalong; Zhou, Hong; Ren, Zhenan; Zhang, Haifeng; Ren, Luquan; Meng, Chao; Wang, Chuanwei

    2014-03-01

    In this study, AISI H13 steel was processed using laser surface remelting and alloying with Co-based and iron-based powders for thermal fatigue resistance enhancement. The precracks were produced on the samples before laser treatment. The microstructures of laser treated zones were examined by scanning electron microscope. X-ray diffraction was used to describe the microstructure and identify the phases in molten/alloying zones. Microhardness was measured and the thermal fatigue resistance was investigated with self-controlled thermal fatigue test method. The results indicate that laser surface remelting and alloying can repair a large proportion of thermal cracks. Meanwhile, the strengthening network obtains ultrafine microstructure and super thermal fatigue resistance, which restrains the propagation of thermal cracks. Compared with samples treated with laser surface remelting and laser surface alloying with iron-base powder, samples treated with Co-based powder produce lower cracking susceptibility and higher thermal fatigue resistance.

  4. A theoretical study of electrical and thermal response in resistance spot welding

    SciTech Connect

    Na, S.J.; Park, S.W.

    1996-08-01

    The effect of contact resistance including constriction and contamination resistance has been a major hurdle for the thermoelectrical analysis of the resistance spot welding process. In this paper, a simple model was suggested and used for calculating the electrical and thermal response of the resistance spot welding process to investigate the influence of contacting forces on the formation of weld nuggets. The electrode surface of the contact interface was assumed to be axisymmetric and its microasperities to have a trapezoidal cross-section. These microasperities were considered as the one-dimensional contact resistance elements in the finite element formulation. The contamination film was assumed to be a nonconducting oxide layer, which is very brittle, so that it is broken to some number of pieces when a contacting pressure is being applied. The crushed films were assumed to be distributed at regular intervals and to conserve their size and number during the welding process. The simulation results revealed that the proposed model can be successfully used to predict the effect of the contact resistance on the electrical and thermal response of the resistance spot welding process.

  5. Effects of Substrate Bias on the Hardness and Resistivity of Reactively Sputtered TaN and TiN Thin Films

    NASA Astrophysics Data System (ADS)

    Lu, Junqing; Arshi, Nishat

    2016-06-01

    TaN and TiN films are being widely used as conductive layers in electronic devices or protective coatings on metal surfaces. Among various deposition methods, reactive magnetron sputtering is preferred partly due to its ability to control the energy of the depositing ions by applying different substrate bias voltages. In this study, TaN and TiN films were deposited on Si/SiO2 substrates by using direct current magnetron sputtering technique with 370 W target power at 1.9 mTorr and under different substrate biases. The effects of the substrate bias on both the resistivity and the hardness of the deposited TaN and TiN films were investigated. The phase and composition of the deposited films were investigated by x-ray diffraction, the resistivity was measured by a four-point probe, and the hardness was obtained by nano-indentation. For TaN films, the use of substrate bias not only increased the hardness but also increased the resistivity. Moreover, the formation of the Ta3N5 phase at the -300 V substrate bias significantly increased the TaN film resistivity. For TiN films, the optimum resistivity (minimum) of 19.5 µΩ-cm and the hardness (maximum) of 31.5 GPa were achieved at the -100 V substrate bias. Since the phase changes occurred in both the TaN and the TiN films at higher substrate biases and these phase changes negatively affected the resistivity or hardness property of the films, the substrate bias should not significantly exceed -100 V.

  6. Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire

    NASA Astrophysics Data System (ADS)

    Zheng, Kun; Zhu, Jie; Ma, Yong-Mei; Tang, Da-Wei; Wang, Fo-Song

    2014-10-01

    To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are ~ 2 × 10-7 m2·K·W-1. Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials.

  7. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    SciTech Connect

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermal conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.

  8. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. PMID:26652422

  9. Corrosion-resistant coating prepared by the thermal decomposition of lithium permanganate

    SciTech Connect

    Ferrando, W.A.

    1999-09-01

    A ceramic, metal, or metal alloy surface is covered with lithium permanganate which is then thermally decomposed to produce a corrosion resistant coating on the surface. This coating serves as a primer coating which is preferably covered with an overcoat of a sealing paint.

  10. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    SciTech Connect

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-23

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  11. New thermal and microbial resistant metal-containing epoxy polymers.

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1 : 2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  12. New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

    PubMed Central

    Ahamad, Tansir; Alshehri, Saad M.

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  13. Erosion-corrosion resistance of thermal sprayed coatings

    SciTech Connect

    Lee, S.W.; Wang, B.Q.

    1996-11-01

    A series of laboratory erosion-corrosion experiments at the elevated temperature, 300 C and different impact velocities (2.5 m/s, 30 m/s) were carried on AISI 1018 low carbon steel and three different sprayed coating specimens. Angular silica quartz particles of 742 um were the erodent material for testing three different impact angles of 30{degree}, 45{degree}, and 90{degree}. Material wastage rates were determined from thickness loss measurements of the specimens. The morphologies of the specimens were examined by scanning electron microscopy (SEM). The erosion-corrosion resistance of coating was found to be related to their composition and microstructure rather than to their hardness. The material wastage of the specimen was determined by weight and thickness loss measurements. The morphologies of the specimens were examined scanning electron microscopy (SEM). For the material wastage of the coating specimens, High Velocity Oxygen Fuel (HVOF) coatings (DS200) and the arc-sprayed coating at elevated temperature condition exhibited 2 to 3 times lower erosion wastage than that of AISI 1018 steel.

  14. Substrate Inhibition of VanA by d-Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner.

    PubMed

    van der Aart, Lizah T; Lemmens, Nicole; van Wamel, Willem J; van Wezel, Gilles P

    2016-08-01

    The increasing resistance of clinical pathogens against the glycopeptide antibiotic vancomycin, a last-resort drug against infections with Gram-positive pathogens, is a major problem in the nosocomial environment. Vancomycin inhibits peptidoglycan synthesis by binding to the d-Ala-d-Ala terminal dipeptide moiety of the cell wall precursor lipid II. Plasmid-transferable resistance is conferred by modification of the terminal dipeptide into the vancomycin-insensitive variant d-Ala-d-Lac, which is produced by VanA. Here we show that exogenous d-Ala competes with d-Lac as a substrate for VanA, increasing the ratio of wild-type to mutant dipeptide, an effect that was augmented by several orders of magnitude in the absence of the d-Ala-d-Ala peptidase VanX. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that high concentrations of d-Ala led to the production of a significant amount of wild-type cell wall precursors, while vanX-null mutants produced primarily wild-type precursors. This enhanced the efficacy of vancomycin in the vancomycin-resistant model organism Streptomyces coelicolor, and the susceptibility of vancomycin-resistant clinical isolates of Enterococcus faecium (VRE) increased by up to 100-fold. The enhanced vancomycin sensitivity of S. coelicolor cells correlated directly to increased binding of the antibiotic to the cell wall. Our work offers new perspectives for the treatment of diseases associated with vancomycin-resistant pathogens and for the development of drugs that target vancomycin resistance. PMID:27270282

  15. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  16. Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Oldrieve, R. E.

    1975-01-01

    Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.

  17. Theoretical study on the thermal contact resistance of a space-use deep groove ball bearing

    NASA Astrophysics Data System (ADS)

    Nakajima, Katsuhiko

    The thermal contact resistance between the balls and the inner and outer rings of a space-use deep groove ball bearing is analyzed assuming that heat transfer between smooth contacting elements occurs through the elastic contact areas. It is also assumed that the stationary bearing sustains axial and/or radial loads under steady-state temperature condition. The shapes and sizes of the contact areas are calculated using the Hertzian theory. The thermal analysis is based on an isolated isothermal elliptic contact area supplying heat to an insulated half-space. The formulation of the resistance is given as a function of a geometric factor of the contact area and the thermal conductivity of the bearing. In particular, an expression for the axial load is derived with careful consideration of changes in contact angle induced by elastic deformation at the contact area.

  18. The effect of an anisotropic pressure of thermal particles on resistive wall mode stability

    SciTech Connect

    Berkery, J. W. Sabbagh, S. A.; Betti, R.; Guazzotto, L.; Manickam, J.

    2014-11-15

    The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability.

  19. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications

    NASA Astrophysics Data System (ADS)

    Barbezat, G.; Nicoll, A. R.; Sickinger, A.

    1993-04-01

    In the area of antiwear coatings, carbide-containing coatings and oxide ceramic coatings are applied using different thermal spray processes in the form of individual layers. In many industries these coatings have become technically significant on components where wear and friction can cause critical damage in the form of abrasion, erosion and scuffing together with corrosion. Carbide-containing and ceramic coatings have been produced with different thermal spray processes for the determination of abrasive, adhesive and erosive wear resistance. Two types of abrasion test, namely an adhesion wear test and an erosion test in water at a high velocity, were used for the characterization of wear resistance under different conditions. The coatings were also characterized with regard to microstructure, composition and fracture toughness. The influence of the thermal spraying process parameters on the microstructure is presented together with the influence of the microstructure on the behavior of the coatings under simulated service conditions.

  20. Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon

    NASA Astrophysics Data System (ADS)

    Múgica-Vidal, Rodolfo; Alba-Elías, Fernando; Sainz-García, Elisa; Pantoja-Ruiz, Mariola

    2015-08-01

    Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors' mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of hydrophobicity and wear resistance in this work was found in the sample that was coated using a mixture of APTES and PFH in proportions of 75 and 25%, respectively. Its WCA (100.2 ± 7.5°) was the highest of all samples that were measured and more than three times that of the uncoated glass (31 ± 0.7°). This sample underwent a change from a hydrophilic to a

  1. Thermal resistance and compressive strain of underwater aerogel syntactic foam hybrid insulation at atmospheric and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2006-05-01

    The purpose of this study was to present a new underwater thermal insulation designed for flexibility and high thermal resistance. The insulation was a hybrid composite of two constituents: syntactic foam and an insulating aerogel blanket. Methods for treating and combining the constituents into a hybrid insulation of several designs are presented. A final configuration was selected based on high thermal resistance and was tested for thermal resistance and compressive strain to a pressure of 1.2 MPa (107 msw, meters of sea water) for five continuous pressure cycles. The thermal resistance and compressive strain results were compared to foam neoprene and underwater pipeline insulation. It was found that the hybrid insulation has a thermal resistance significantly higher than both foam neoprene and underwater pipeline insulation at atmospheric and elevated hydrostatic pressures (1.2 MPa). The total thermal resistance of the hybrid insulation decreased 32% at 1.2 MPa and returned to its initial value upon decompression. It was concluded that the hybrid insulation, with modifications, could be used for wetsuit construction, shallow underwater pipeline insulation, or any underwater application where high thermal resistance, flexibility, and resistance to compression are desired.

  2. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    PubMed

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  3. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.

    PubMed

    Nalam, Madhavi N L; Ali, Akbar; Altman, Michael D; Reddy, G S Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Ozen, Aysegül; Cao, Hong; Gilson, Michael K; Tidor, Bruce; Rana, Tariq M; Schiffer, Celia A

    2010-05-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to "lock" into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  4. Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance

    PubMed Central

    Nalam, Madhavi N. L.; Ali, Akbar; Altman, Michael D.; Reddy, G. S. Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Özen, Ayşegül; Cao, Hong; Gilson, Michael K.; Tidor, Bruce; Rana, Tariq M.; Schiffer, Celia A.

    2010-01-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to “lock” into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  5. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  6. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  7. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Yong; Lee, Won-Yong; Thong, John T. L.; Kim, Gil-Sung; Lee, Sang-Kwon

    2016-03-01

    Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

  8. Thermal oxidation-grown vanadium dioxide thin films on FTO (Fluorine-doped tin oxide) substrates

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiang; Li, Yi; Wang, Feng; Huang, Yize; Fang, Baoying; Wang, Xiaohua; Zhu, Huiqun; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Qin, Yuan; Ding, Jie

    2013-11-01

    By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ˜40% happened at 900-1250 nm region at room temperature. The change of optical transmittance at this region was ˜25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor-metal phase transition at ˜51 °C, the width of the hysteresis loop is ˜8 °C.

  9. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE PAGESBeta

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  10. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    PubMed

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p < 0.0001). At adhesive coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p < 0.05). Both DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p < 0.005 and p < 0.01, respectively). However, the harder ceramic substrate of DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. PMID:18985791

  11. Role of insulin receptor substrate-1 serine 307 phosphorylation and adiponectin in adipose tissue insulin resistance in late pregnancy.

    PubMed

    Sevillano, Julio; de Castro, Javier; Bocos, Carlos; Herrera, Emilio; Ramos, M Pilar

    2007-12-01

    Insulin resistance is a hallmark of late pregnancy both in human and rat. Adipose tissue is one of the tissues that most actively contributes to this reduced insulin sensitivity. The aim of the present study was to characterize the molecular mechanisms of insulin resistance in adipose tissue at late pregnancy. To this end, we analyzed the insulin signaling cascade in lumbar adipose tissue of nonpregnant and pregnant (d 20) rats both under basal and insulin-stimulated conditions. We found that the levels of relevant signaling proteins, such as insulin receptor (IR), IR substrate-1 (IRS-1), phosphatidylinositol 3-kinase, 3-phosphoinositide-dependent kinase-1, ERK1/2, and phosphatase and tensin homolog (PTEN) did not change at late pregnancy. However, insulin-stimulated tyrosine phosphorylation of both IR and IRS-1 were significantly decreased, coincident with decreased IRS-1/p85 association and impaired phosphorylation of AKR mouse thymoma viral protooncogene (Akt) and ERK1/2. This impaired activation of IRS-1 occurred together with an increase of IRS-1 phosphorylation at serine 307 and a decrease in adiponectin levels. To corroborate the role of IRS-1 in adipose tissue insulin resistance during pregnancy, we treated pregnant rats with the antidiabetic drug englitazone. Englitazone improved glucose tolerance, and this pharmacological reversal of insulin resistance was paralleled by an increase of adiponectin levels in adipose tissue as well as by a reduction of IRS-1 serine phosphorylation. Furthermore, the impaired insulin-stimulated tyrosine phosphorylation of IRS-1 in adipose tissue of pregnant animals could be restored ex vivo by treating isolated adipocytes with adiponectin. Together, our findings support a role for adiponectin and serine phosphorylation of IRS-1 in the modulation of insulin resistance in adipose tissue at late pregnancy. PMID:17823255

  12. Substrate-independent approach for the generation of functional protein resistant surfaces.

    PubMed

    Rodriguez-Emmenegger, Cesar; Kylián, Ondrej; Houska, Milan; Brynda, Eduard; Artemenko, Anna; Kousal, Jaroslav; Alles, Aldo Bologna; Biederman, Hynek

    2011-04-11

    A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media. PMID:21381652

  13. Thermal boundary resistance in Si/Ge interfaces determined by approach-to-equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Hahn, Konstanze; Melis, Claudio; Colombo, Luciano

    2015-03-01

    Nanostructured materials hold great promises as efficient thermoelectrics. In such materials, the propagation of phonons is hindered by the internal interfaces (grain boundaries), leading to a reduced overall thermal conductivity and, therefore, to a larger figure of merit. Any further improvement in this field does, however, require a better fundamental understanding of the specific interface effects on thermal transport. In the present work we use approach-to-equilibrium molecular dynamics simulations (AEMD) to investigate the interfacial thermal resistance (ITR) of Si/Ge interfaces, occurring in very promising nanostructured SiGe alloys. We discuss how ITR depends on the thickness of the interface layer, as well as on its composition. Furthermore, the effect of the heat flux direction has been investigated at ambient temperature showing lower ITR for thermal transport from Si to Ge than vice versa. This feature is discussed in connection to possible rectification effects. Present address: The Institute for Molecular Engineering, University of Chicago.

  14. Structural Properties and Resistance-Switching Behavior of Thermally Grown NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Wook; Jung, Ranju; Park, Bae Ho; Li, Xiang-Shu; Park, Chanwoo; Shin, Seongmo; Kim, Dong-Chirl; Lee, Chang Won; Seo, Sunae

    2008-03-01

    We investigated the structural and electrical properties of polycrystalline NiO thin films on Pt electrodes formed by thermal oxidation. A Ni-Pt alloy phase was found at the interface, which could be explained by the oxidation kinetics and reactions of Ni, NiO, and Pt. An increase in the oxidation temperature decreased the volume of the alloy layer and improved the crystalline quality of the NiO thin films. Pt/NiO/Pt structures were fabricated, and they showed reversible resistance switching from a high-resistance state (HRS) to a low-resistance state (LRS) and vice versa during unipolar current-voltage measurements. The oxidation temperature affected (did not affect) the HRS (LRS) resistance of the Pt/NiO/Pt structures. This indicated that the transport characteristics of HRS and LRS should be different.

  15. Thermal resistance between liquid /sup 3/He and copper potassium tutton salt

    SciTech Connect

    Fujii, Y.; Shigi, T.

    1987-01-01

    The thermal resistance between liquid /sup 3/He and copper potassium tutton salt (CPS) has been measured through its magnetic ordering temperature (T/sub c/ = 29.6 mK). The thermal resistance R for pure /sup 3/He has a broad minimum near 60 mK and increases continuously through T/sub c/ with decreasing temperature, except for a dip at T/sub c/. Below T/sub c/, R is proportional to T/sup -1.5/. Effects of /sup 4/He coating have been studied by stepwise addition of /sup 4/Me into liquid /sup 3/He. The thermal resistance increased drastically for the liquid containing 150 ppm/sup 4/Me and more for 95% /sup 4/He. By sudden depressurization of the liquid /sup 3/He containing 480 ppm /sup 4/He, a considerable decrease of R was observed. Since R for pure /sup 3/He was much smaller than the calculated Kapitza resistance, the present experimental results indicate the existence of surface magnetic coupling between liquid /sup 3/He and CPS.

  16. Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    PubMed Central

    Paszek, Matthew J.; Boettiger, David; Weaver, Valerie M.; Hammer, Daniel A.

    2009-01-01

    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled. PMID:20011123

  17. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    PubMed

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate. PMID:25936009

  18. Soil thermal resistivity and thermal stability measuring instrument. Volume 2. Manual for operation and use of the thermal property analyzer and statistical weather analysis program to determine thermal design parameters. Final report

    SciTech Connect

    Boggs, S.A.; Radhakrishna, H.S.

    1981-11-01

    Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.

  19. Optoelectronic Properties of Thermally Evaporated ZnO Films with Nanowalls on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Tse-Pu; Hung, Fei-Yi; Chang, Sheng-Po; Chang, Shoou-Jinn; Hu, Zhan-Shuo; Chen, Kuan-Jen

    2013-04-01

    Zinc oxide (ZnO) films with two-dimensional (2D) vertically aligned nanowalls, denoted by nanowalls-films, are successfully prepared on glass substrates at a low growth temperature of 450 °C without using metal catalysts. The morphology and optical properties of the nanowalls-film are characterized by scanning electron microscopy, X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence measurement. The ZnO nanowalls-film show a strong UV emission and a preferred c-axis orientation with a hexagonal structure. The UV sensor measurement of the ZnO nanowalls-film shows a high sensitivity to UV light, rapid rise and decay times, and a good UV-to-visible rejection ratio.

  20. Thermal contact resistance for a CU/G-10CR interface in a cylindrical geometry

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.; Nicol, T.H.

    1996-07-01

    A major component of a high-T[sub c] superconductor current lead designed to provide current to low-T[sub c] superconductor magnets is the heat intercept connection, which is a cylindrical structure consisting of an inner Cu disk, a thin-walled G-10CR composite tube, and an outer Cu ring, assembled by a thermal interference fit. It was determined in a previous study that the thermal contact resistance (R[sub c]) between the composite tube and the two Cu pieces contributed a substantial portion of the total thermal resistance between the inner and outer Cu pieces. This report emphasizes the analysis of the data for the third and final design of the heat intercept connection. In particular, it is found that R[sub c] decreases dramatically with increasing heat flux, a result consistent with earlier studies of composite cylinders. However, for the present data, the thermal contact conductance [=1/R{sub c}]varies with the calculated contact pressure with a power-law exponent of approximately 10, as compared to a theoretical value near 1. In addition, the presence of He or N[sub 2] gas substantially reduces R [sub c] even though the contacting surfaces are coated with a thermal grease.

  1. Experimental results on the thermal contact resistance of G-10CR composites at cryogenic temperatures

    SciTech Connect

    Phelan, P.E.; Mei, S.

    1999-07-01

    The composite material G-10CR, an epoxy resin laminate reinforced with glass filaments, is widely used in cryogenic structures, especially where thermal insulation is required. The thermal contact resistance, or its inverse, the thermal contact conductance, at a G-10CR/G-10CR interface has not previously been investigated at cryogenic temperatures. Consequently, an experimental apparatus was designed and constructed to permit measurements of the thermal contact conductance over a temperature range from 10 to 300 K, while enabling a controlled contact pressure to be applied. Such measurements for these composite materials indicated that the fiber orientation, plays a crucial role in determining the thermal contact conductance, which is greatest in the warp direction, where the glass fibers offer a high-thermal-conductance path for heat flow in parallel to the epoxy matrix. Typical results demonstrating the effect of fiber orientation on thermal contact conductance are displayed. The dimensionless contact conductance was shown to vary with dimensionless contact pressure with a power-law exponent near 0.28, in broad agreement with other data reported for graphite fiber composites.

  2. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.

    1981-01-01

    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  3. Porous Substrate Effects on Thermal Flows Through a Rev-Scale Finite Volume Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zarghami, Ahad; Francesco, Silvia Di; Biscarini, Chiara

    2014-09-01

    In this paper, fluid flows with enhanced heat transfer in porous channels are investigated through a stable finite volume (FV) formulation of the thermal lattice Boltzmann method (LBM). Temperature field is tracked through a double distribution function (DDF) model, while the porous media is modeled using Brinkman-Forchheimer assumptions. The method is tested against flows in channels partially filled with porous media and parametric studies are conducted to evaluate the effects of various parameters, highlighting their influence on the thermo-hydrodynamic behavior.

  4. Thermal method for fabricating a hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju; Lee, Tae H.; Chen, Ling; Dorris, Stephen E.; Balachandran, Uthamalingam

    2009-10-20

    A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  5. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    NASA Astrophysics Data System (ADS)

    López-Galilea, I.; Ordás, N.; García-Rosales, C.; Lindig, S.

    2009-04-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  6. [The enhancement of human thermal resistance by the single use of bemitil and fenibut].

    PubMed

    Makarov, V I; Tiurenkov, I N; Klauchek, S V; Nalivaĭko, I Iu; Antipova, A Iu

    1997-01-01

    The authors studied the effect of single intake of bymetil (0.5 g) and phenibut (0.25 g) on the thermal state, gas-energy exchange, blood oxygenation, working capacity, and the subjective status of man in intensive physical exertion in isolating means of individual protection. The drugs under study increased thermal resistance, promoted normal supply of the organism with oxygen, and provided the maintenance of man's high working capacity under conditions which lead to his overheating. The best protective effects was produced in this case with phenibut. PMID:9162292

  7. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  8. Analytical estimations for thermal crosstalk, retention, and scaling limits in filamentary resistive memory

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.

    2014-06-01

    We discuss the thermal effects on scaling, retention, and error rate in filamentary resistive memories from a theoretical perspective using an analytical approach. Starting from the heat equation, we derive the temperature profile surrounding a resistive memory device and calculate its effect on neighboring devices. We outline the engineering tradeoffs that are expected with continued scaling, such as retention and power use per device. Based on our calculations, we expect scaling to continue well below 10 nm, but that the effect of heating from neighboring devices needs to be considered for some applications even at current manufacturing capabilities. We discuss possible designs to alleviate some of these effects while further increasing device density.

  9. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    NASA Astrophysics Data System (ADS)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  10. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  11. Defect structure transformation after thermal annealing in a surface layer of Zn-implanted Si(001) substrates.

    PubMed

    Shcherbachev, Kirill; Privezentsev, Vladimir; Kulikauskas, Vaclav; Zatekin, Vladimir; Saraykin, Vladimir

    2013-08-01

    A combination of high-resolution X-ray diffractometry, Rutherford back scattering spectroscopy and secondary-ion mass spectrometry (SIMS) methods were used to characterize structural transformations of the damaged layer in Si(001) substrates heavily doped by Zn ions after a multistage thermal treatment. The shape of the SIMS profiles for Zn atoms correlates with the crystal structure of the damaged layer and depends on the presence of the following factors influencing the mobility of Zn atoms: (i) an amorphous/crystalline (a/c) interface, (ii) end-of-range defects, which are located slightly deeper than the a/c interface; (iii) a surface area enriched by Si vacancies; and (iv) the chemical interaction of Zn with Si atoms, which leads to the formation of Zn-containing phases in the surface layer. PMID:24046492

  12. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    NASA Astrophysics Data System (ADS)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  13. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity.

    PubMed

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  14. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  15. Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH.

    PubMed

    Zhao, Qianqian; Liu, Honglei; Zhang, Ying; Zhang, Yuzhen

    2010-12-01

    Phytase is widely used as a feed additive in industry. It is important to investigate the thermal stability, optimal pH and temperature and protease resistance of phytases in application. We introduced random mutations in a protease-resistance phytase gene of Penicillium sp. using Mn²+-dITP random mutation method, and identified two mutants 2-28 (T11A, G56E, L65F, Q144H and L151S) and 2-249 (T11A, H37Y, G56E, L65F, Q144H, L151S and N354D) with improved thermal stability and optimal temperature and pH. The mutants retained their high resistance to pepsin. The catalytic activity at 37 °C was up to 133.3 U and 136.6 U per mg protein with broad optimal temperature ranges of 37-55 °C and 37-50 °C, respectively. After a heat treatment at 100 °C for 5 min, the two mutant proteins retained about 72.81% and 92.43% of the initial activity, respectively. In addition, the optimal pH of mutant 2-249 was reduced to 4.8. All these improved properties made them more suitable to be used as feed additive in the feed industry than the present commercial phytases. Structure analysis suggested that the replacements of G56E, L65F, Q144H, and L151S improved the thermal stability of the protein by increasing new hydrogen bonds among the adjacent secondary structures. Moreover, the mutation of L151S enhanced the activity in the range of 37-70 °C and pH 2.5-7.0 by facilitating the interaction between the substrate and the catalytic centre. The substitution of N354D influenced the pH profile by weakening the bondage with the side chain of D353, which caused a pKa shift of the catalytic centre. PMID:20826112

  16. Thermal resistances in the Everest Area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model

    NASA Astrophysics Data System (ADS)

    Rounce, D. R.; McKinney, D. C.

    2014-01-01

    Debris thickness is an important characteristic of many debris-covered glaciers in the Everest region of the Himalayas. The debris thickness controls the melt rates of the glaciers, which has large implications for hydrologic models, the glaciers response to climate change, and the development of glacial lakes. Despite its importance, there is little knowledge of how the debris thickness varies over these glaciers. This paper uses an energy balance model in conjunction with Landsat7 ETM+ satellite imagery to derive thermal resistances, which is the debris thickness divided by the thermal conductivity. The developed model accounts for the nonlinear temperature gradient in the debris cover to derive accurate thermal resistances. Fieldwork performed on Lhotse Shar/Imja glacier in September 2013 was used to validate the satellite-derived thermal resistances. Results indicate that accounting for the nonlinear temperature gradient is crucial. Furthermore, correcting the incoming shortwave radiation term for the effects of topography and including the turbulent heat fluxes is imperative to derive accurate thermal resistances. Since the topographic correction is important, the model will improve with the quality of the DEM. The main limitation of this work is the poor resolution (60 m) of the satellite's thermal band. The derived thermal resistances are accurate at this resolution, but are unable to derive trends related to slope and aspect on a finer scale. Nonetheless, the study finds this model derives accurate thermal resistances on this scale and is transferable to other debris-covered glaciers in the Everest region.

  17. Topotaxial growth of α-Fe2O3 nanowires on iron substrate in thermal annealing method

    NASA Astrophysics Data System (ADS)

    Srivastava, Himanshu; Srivastava, A. K.; Babu, Mahendra; Rai, Sanjay; Ganguli, Tapas

    2016-06-01

    A detail cross-sectional transmission electron microscopy of as-grown α-Fe2O3 nanowire sample, synthesized on iron substrate by thermal annealing method, was carried out to understand the mechanism of growth in this system. Iron undergoes sequential oxidation to form a layered structure of Fe/FeO/Fe3O4/α-Fe2O3. α-Fe2O3 nanowires grow on to the top of α-Fe2O3 layer. It was found that subsequent oxide layers grow topotaxially on the grains of iron, which results in a direct orientation relationship between the α-Fe2O3 nanowire and the parent grain of iron. The results also showed that the grains of α-Fe2O3 layer, which were uniquely oriented in [110] direction, undergo highly anisotropic growth to form the nanowire. This anisotropic growth occurs at a twin interface, given by (-11-1), in the α-Fe2O3 layer. It was concluded that the growth at twin interface could be the main driving factor for such anisotropic growth. These observations are not only helpful in understanding the growth mechanism of α-Fe2O3 nanowires, but it also demonstrates a way of patterning the nanowires by controlling the texture of iron substrate.

  18. The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems

    SciTech Connect

    Miller, William A

    2013-01-01

    Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

  19. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  20. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    SciTech Connect

    Kawahito, A.; Yanase, T.; Endo, T.; Nagahama, T.; Shimada, T.

    2015-05-07

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y{sub 0.15}Zr{sub 0.85}O{sub 2}) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  1. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    NASA Astrophysics Data System (ADS)

    Kawahito, A.; Yanase, T.; Endo, T.; Nagahama, T.; Shimada, T.

    2015-05-01

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y0.15Zr0.85O2) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  2. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  3. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.

    PubMed

    Naganuma, Tamaki; Traversa, Enrico

    2014-06-21

    Abundant oxygen vacancies coexisting with Ce(3+) ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce(3+) ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce(3+) ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce(3+) and Ce(4+) ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce(3+) ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce(3+) ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce(3+) ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce(3+) to Ce(4+) occurred at 350 °C in air. Highly concentrated Ce(3+) ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce(3+) stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce(3+) sites. This study also illuminates the potential interaction mechanisms of stable Ce(3+) ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. PMID:24812662

  4. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    PubMed

    Masereeuw, Rosalinde; Notenboom, Sylvia; Smeets, Pascal H E; Wouterse, Alfons C; Russel, Frans G M

    2003-11-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is also present in the luminal membrane of proximal tubule cells of the kidney, but little information is available on its role in the renal excretion of xenobiotics. The authors compared renal transport of the fluorescent Mrp2 substrates calcein, fluo-3, and lucifer yellow (LY) between perfused kidneys isolated from Wistar Hannover (WH) and TR(-) rats. Isolated rat kidneys were perfused with 100 nM of the nonfluorescent calcein-AM or 500 nM fluo3-AM, which enter the tubular cells by diffusion and are hydrolyzed intracellularly into the fluorescent anion. The urinary excretion rates of calcein and fluo-3 were 3 to 4 times lower in perfused kidneys from TR(-) rats compared with WH rats. In contrast, the renal excretion of LY (10 micro M, free anion) was somewhat delayed but appeared unimpaired in TR(-) rats. Membrane vesicles from Sf9 cells expressing human MRP2 or human MRP4 indicated that MRP2 exhibits a preferential affinity for calcein and fluo-3, whereas LY is a better substrate for MRP4. We conclude that the renal clearance of the Mrp2 substrates calcein and fluo-3 is significantly reduced in TR(-) rat; for LY, the absence of the transporter may be compensated for by (an)other organic anion transporter(s). PMID:14569083

  5. Crystallinity and thermal resistance of microcrystalline cellulose prepared from manau rattan (Calamusmanan)

    NASA Astrophysics Data System (ADS)

    Rizkiansyah, Raden Reza; Mardiyati, Steven, Suratman, R.

    2016-04-01

    The objective of this study was to prepare microcrystalline cellulose from Manau rattan (Calamusmanan) and to investigate the influence of concentration of sulfuric acid and hydrolysis time on crystallinity and thermal resistance of the microcrystalline cellulose (MCC). In this research, MCC was extracted through two stages, which is alkalization and acid hydrolysis. Alkalization was prepared by soaking manau rattan powder into sodium hydroxide (NaOH) 17.5wt% at 100°C for 8 hours. Acid hydrolysis was prepared by using sulfuric acid with concentration 0.1 M; 0.3 M; and 0.5 M for 4, 6, 8 and 10 hours. Crystallinity of MCC was measured by XRD, and thermal resistance was characterized by TGA. MCC was successfully extracted from manau rattan. The highest crystallinity of MCC obtained was 72.42% which prepared by acid hydrolysis with concentration 0.5 M for 10 hours. MCC prepared by acid hydrolysis with concentration 0.5 M for 10 hours not only resulted the highest crystallinity but also the best thermal resistance.

  6. A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography

    NASA Astrophysics Data System (ADS)

    Ibos, Laurent; Monchau, Jean-Pierre; Feuillet, Vincent; Candau, Yves

    2015-04-01

    This study concerns the in-situ determination of the thermal resistance of a building wall. Measurements were performed in the PANISSE platform, which is a residential building with two floors located in the town of Villemomble, at about ten kilometers in the east of Paris. During a renovation, a 6cm-thick external insulating layer was fixed onto the cellular concrete walls of the house. Three methods using IR thermography were used to estimate the thermal resistance of the insulated walls. Results are compared to a standardized method (ISO 9869-1) that uses contact sensors. The comparison is made considering estimated thermal resistance values, measurement uncertainties and measurement duration.

  7. Leptin receptor deficiency confers resistance to behavioral effects of fluoxetine and desipramine via separable substrates

    PubMed Central

    Guo, M; Lu, X-Y

    2014-01-01

    Depression is a complex, heterogeneous mental disorder. Currently available antidepressants are only effective in about one-third to one-half of all patients. The mechanisms underlying antidepressant response and treatment resistance are poorly understood. Recent clinical evidence implicates the involvement of leptin in treatment response to antidepressants. In this study, we determined the functional role of the leptin receptor (LepRb) in behavioral responses to the selective serotonergic antidepressant fluoxetine and the noradrenergic antidepressant desipramine. While acute and chronic treatment with fluoxetine or desipramine in wild-type mice elicited antidepressant-like effects in the forced swim test, mice null for LepRb (db/db) displayed resistance to treatment with either fluoxetine or desipramine. Fluoxetine stimulated phosphorylation of Akt(Thr308) and GSK-3β(Ser9) in the hippocampus and prefrontal cortex (PFC) of wild-type mice but not in db/db mice. Desipramine failed to induce measurable changes in Akt, GSK-3β or ERK1/2 phosphorylation in the hippocampus and PFC, as well as hypothalamus of either genotype of mice. Deletion of LepRb specifically from hippocampal and cortical neurons resulted in fluoxetine insensitivity in the forced swim test and tail suspension test while leaving the response to desipramine intact. These results suggest that functional LepRb is critically involved in regulating the antidepressant-like behavioral effects of both fluoxetine and desipramine. The antidepressant effects of fluoxetine but not desipramine are dependent on the presence of functional LepRb in the hippocampus and cortex. PMID:25463972

  8. Thermal (Kapitza) resistance of interfaces in compositional dependent ZnO-In2O3 superlattices

    NASA Astrophysics Data System (ADS)

    Liang, Xin; Baram, Mor; Clarke, David R.

    2013-06-01

    Compositionally dependent superlattices, In2O3(ZnO)k, form in the ZnO-rich portion of the ZnO-In2O3 phase diagram, decreasing thermal conductivity and altering both the electron conductivity and Seebeck coefficient over a wide range of composition and temperature. With increasing indium concentration, isolated point defects first form in ZnO and then superlattice structures with decreasing interface spacing evolve. By fitting the temperature and indium concentration dependence of the thermal conductivity to the Klemens-Callaway model, incorporating interface scattering and accounting for conductivity anisotropy, the Kapitza resistance due to the superlattice interfaces is found to be 5.0 ± 0.6 × 10-10 m2K/W. This finding suggests that selecting oxides with a compositionally dependent superlattice structure can be a viable approach, unaffected by grain growth, to maintaining low thermal conductivity at high temperatures.

  9. Photothermal Evidence of Laterally Inhomogeneous Interfacial Thermal Resistance in Copper-Coated Carbon Samples

    NASA Astrophysics Data System (ADS)

    Kijamnajsuk, P.; Pelzl, J.; Chirtoc, M.; Horny, N.; Schäfer, D.; Eisenmenger-Sittner, C.

    2012-11-01

    In this study, the heat transport in copper-carbon flat model systems was studied by frequency-dependent photothermal radiometry (PTR). The samples consist of Cu films of about 1 μm thickness deposited by magnetron sputtering on vitreous carbon (Sigradur). Particular interest was devoted to the influence of interface defects on the interfacial thermal conductance (or resistance) of the CuC systems. The PTR data were analyzed in the frame of a heat diffusion equation for one- and three-dimensional heat transport. By comparing PTR signals from as-prepared and from heat-treated samples, the lateral inhomogeneities of the interfacial thermal conductance could be quantified. The measured phase differences were analyzed in the scope of a model where a small part of the surface area has a different interfacial thermal conductance than the major part of the surface.

  10. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys

    NASA Astrophysics Data System (ADS)

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Fang, Q. F.; Wang, X. P.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Luo, G. N.

    2016-02-01

    The thermal shock (single shot) resistance and mechanical properties of the W-0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m2 for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m2 for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ˜2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 107 J/m3, about 10 times higher than that of the swaged WZC (2.9 × 106 J/m3). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity.

  11. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  12. Clofazimine and B4121 sensitize an intrinsically resistant human colon cancer cell line to P-glycoprotein substrates.

    PubMed

    van Rensburg, C E; Joone, G K; O'Sullivan, J F

    2000-01-01

    The potential of B4121 to sensitize three intrinsically resistant human colon cancer cell lines (CaCo2, ATCC HTB 37; COLO 32 DM, ATCC CCL 220; HT-29, ATCC HTB 38) to vinblastine, doxorubicin, daunorubicin, paclitaxel, taxotere and cisplatin at a non-toxic, therapeutically relevant concentration of 0.25 microg/ml was compared with that of clofazimine at a similar concentration. The cell line expressing high levels of P-glycoprotein (P-gp), COLO 320 DM, was susceptible to chemosensitization by the experimental agents for the P-gp substrates (paclitaxel, taxotere, daunorubicin, vinblastine and doxorubicin) but not for cisplatin. CaCo2 cells expressed lower levels of P-gp and were only marginally susceptible to sensitization by any one of these drugs, except in the case of sensitization by B4121 for doxorubicin and taxotere, whereas the HT-29, a P-gp negative cell line, was unaffected. The riminophenazines, especially B4121, might prove useful as combination treatment in circumventing P-gp mediated resistance of colon cancers. PMID:10601617

  13. LL-37-Derived Peptides Eradicate Multidrug-Resistant Staphylococcus aureus from Thermally Wounded Human Skin Equivalents

    PubMed Central

    de Breij, Anna; Chan, Heelam; van Dissel, Jaap T.; Drijfhout, Jan W.; Hiemstra, Pieter S.; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H.

    2014-01-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266

  14. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents.

    PubMed

    Haisma, Elisabeth M; de Breij, Anna; Chan, Heelam; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2014-08-01

    Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266

  15. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Cormier, J.; Costil, S.

    2016-06-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  16. Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Cormier, J.; Costil, S.

    2016-05-01

    APS coating is deposited with different treated surfaces to understand the effects of surface topography and particle sizes on adhesion bond strength. Grit blasting and laser surface texturing have been used to create a controlled roughness and controlled surface topography, respectively. Coating adhesion is mainly controlled by a mechanical interlocking mechanism. Fully melted Ni-Al powder fills the respected target surface with high-speed radial flow. Pores around central flattening splat are usually seen due to splash effects. Laser surface texturing has been used to study near interface coating depending on the target shape and in-contact area. Pull-off test results have revealed predominant correlation with powder, surface topography, and adhesion bond strength. Adhesion bond strength is linked to the in-contact area. So, coating adhesion might be optimized with powder granulometry. Pores near the interface would be localized zones for crack initiations and propagations. A mixed-mode failure has been reported for sharp interface (interface and inter-splats cracks) due to crack kicking out phenomena. Coating toughness near the interface is a key issue to maximize adhesion bond strength. Volume particles and topography parameters have been proposed to enhance adhesion bond strength for thermal spray process for small and large in-contact area.

  17. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC

    NASA Astrophysics Data System (ADS)

    Jing, Zhengjun; Zhou, Hong; Zhang, Peng; Wang, Chuanwei; Meng, Chao; Cong, Dalong

    2013-04-01

    Thermal fatigue and wear exist simultaneously during the service life of brake discs. Previous researchers only studied thermal fatigue resistance or abrasion resistance of compact graphite cast iron (CGI), rather than combining them together. In this paper, wear resistance after thermal fatigue of CGI was investigated basing on the principle of bionics, which was close to actual service condition of the brake discs. In the meanwhile, the effect of thermal fatigue on wear resistance was also discussed. Non-smooth bionic units were fabricated by laser cladding WC powder with different proportions (50 wt.%, 60 wt.%, 70 wt.%). Microstructure and microhardness of the units were investigated, and wear mass losses of the samples were also compared. The results indicate that thermal fatigue has a negative effect on the wear resistance. After the same thermal fatigue cycles times, the wear resistance of laser cladding WC samples is superior to that of laser remelting ones and their wear resistance enhances with the increase of WC content.

  18. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    PubMed

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. PMID:24135887

  19. A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr.

    PubMed

    Grove, Tyler L; Livada, Jovan; Schwalm, Erica L; Green, Michael T; Booker, Squire J; Silakov, Alexey

    2013-07-01

    Cfr-dependent methylation of C8 of A2503 in 23S ribosomal RNA confers bacterial resistance to an array of clinically important antibiotics that target the large subunit of the ribosome, including the synthetic oxazolidinone antibiotic linezolid. The key element of the proposed mechanism for Cfr, a radical S-adenosylmethionine enzyme, is the addition of a methylene radical, generated by hydrogen-atom abstraction from the methyl group of an S-methylated cysteine, onto C8 of A2503 to form a protein-nucleic acid crosslinked species containing an unpaired electron. Herein we use continuous-wave and pulsed EPR techniques to provide direct spectroscopic evidence for this intermediate, showing a spin-delocalized radical with maximum spin density at N7 of the adenine ring. In addition, we use rapid freeze-quench EPR to show that the radical forms and decays with rate constants that are consistent with the rate of formation of the methylated product. PMID:23644479

  20. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    PubMed Central

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.; Krycer, James R.; Thomas, Kristen C.; Oxbøll, Anne-Julie; Jordy, Andreas B.; Jensen, Thomas E.; Yang, Guang; Schjerling, Peter; Kiens, Bente; James, David E.; Ruegg, Markus A.; Richter, Erik A.

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo. PMID:25161886

  1. Thermal shock resistance of core reinforced all-ceramic crown systems.

    PubMed

    Mora, G P; O'Brien, W J

    1994-02-01

    The coefficient of thermal expansion of core and veneer porcelains for all ceramic crowns must be compatible to prevent formation of stresses during the firing cycles. The purpose of this study was to use a thermal shock test to evaluate the crazing resistance of six all-ceramic crown systems. The systems tested were: Vita In-Ceram, Vita Hi-Ceram, Dicor veneered with Vitadur N, magnesia core veneered with Ceramco II, magnesia core veneered with Silhouette, and magnesia core veneered with Vita VMK 68. A maxillary central incisor was prepared with 1.0 mm axial and 1.5 mm incisal reduction. Refractory dies were prepared and crowns were fabricated using the manufacturers' recommendations. Six specimens of each system were placed inside a beaker in a furnace at 90 degrees C. After 15 min heat soak, ice water was poured into the beaker through a funnel. The samples were dried in air, reheated, and inspected for crazing using light microscopy. If crazing was observed, this would constitute a failure at a temperature difference (delta T) of 90 degrees C. If no failure occurred, the test was repeated at increasing temperature increments of 10 degrees C until failure. The crazing resistance of each system, expressed as the mean delta T, was: > 200 (Hi-Ceram), 163 +/- 14 (In-Ceram), 152 +/- 19 (Dicor/Vitadur N), 143 +/- 5 (magnesia core/Vita VMK 68), 122 +/- 21 (magnesia core/Silhouette), and 118 +/- 10 (magnesia core/Ceramco II) degrees C. All systems tested resisted crazing due to quenching in ice cold water from 100 degrees C. Systems with lower coefficients of expansion showed significantly greater resistance to thermal shock using ANOVA. PMID:8207030

  2. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    NASA Astrophysics Data System (ADS)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier

    2016-07-01

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5-100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  3. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  4. Novel negative resists using thermally stable crosslinkers based on phenolic compounds

    NASA Astrophysics Data System (ADS)

    Kajita, Toru; Kobayashi, Eiichi; Ota, Toshiyuki; Miura, Takao

    1993-09-01

    This is a preliminary report on a family of crosslinkers based on phenolic compounds for negative-working photoresists which are suitable for KrF excimer laser exposure using poly(hydroxystyrene) (PHS) as a base resin. The crosslinkers are benzylic derivatives having etherificated or esterificated phenolic hydroxyl group. Several effects upon the resist performances of chemically amplified (CA) resist systems comprising onium salt, PHS, and the crosslinkers are mainly discussed: i.e., sort of substituent, sort of mother molecular structure, sort of crosslinkable group, baking conditions, PHS's molecular weight, additives, and so on. The CA resist gives quarter-micron line and space pairs without swelling using a KrF excimer laser exposure. Moreover, in this report another effective method for inhibiting the swelling is proposed. Finally, a unique negative resist, which is not a CA resist, is also presented. It gives negative-tone images by thermal crosslinking reaction following photo- induced dissociation of the protective group of crosslinker.

  5. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-01

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  6. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    SciTech Connect

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  7. Evidence for thermal boundary resistance effects on superconducting radiofrequency cavity performances

    NASA Astrophysics Data System (ADS)

    Palmieri, Vincenzo; Rossi, Antonio Alessandro; Stark, Sergey Yu; Vaglio, Ruggero

    2014-08-01

    The majority of the literature on superconducting cavities for particle accelerators concentrates on the interaction of a radiofrequency (RF) electromagnetic field with a superconductor cooled in liquid helium, generally either at a fixed temperature of 4.2 K or 1.8 K, basing the analysis of experimental results on the assumption that the superconductor is at the same temperature as the infinite reservoir of liquid helium. Only a limited number of papers have extended their analysis to the more complex overall system composed of an RF field, a superconductor and liquid helium. Only a few papers have analyzed, for example, the problem of the Kapitza resistance, i.e. the thermal boundary resistance between the superconductor and the superfluid helium. Among them, the general conclusion is that the Kapitza resistance, one of the most controversial and less understood topics in physics, is generally negligible, or not relevant for the performance enhancement of cavities. In our work presented here, studying the performance of 6 GHz niobium (Nb) test cavities, we have discovered and studied a new effect consisting of an abrupt change in the surface resistance versus temperature at the superfluid helium lambda transition Tλ. This abrupt change (or ‘jump’) clearly appears when the RF measurement of a cavity is performed at constant power rather than at a constant field. We have correlated this jump to a change in the thermal exchange regime across the lambda transition, and, through a simple thermal model and further reasonable assumptions, we have calculated the thermal boundary resistance between niobium and liquid helium in the temperature range between 4.2 K and 1.8 K. We find that the absolute values of the thermal resistance both above and below the lambda point are fully compatible with the data reported in the literature for heat transfer to pool boiling helium I (HeI) above Tλ and for the Kapitza interface resistance (below Tλ) between a polished metal

  8. Measurement of the transient thermal resistance of a sphere in contact with flat surfaces under ambient condition

    SciTech Connect

    Siu, W.W.M.; Lee, S.H.K.

    1999-07-01

    Contacting surfaces with loading, which involve heat transfer processes, are common in various engineering systems. Therefore, over the last half-century, extensive works have been done on studying the thermal contact resistance. Nevertheless, there is almost no study on the thermal resistance of sphere, except some works considering spherical surfaces for modeling non-flat engineering surface in contact. However, among most of the heat transfer system, sphere is indeed a common geometry, such as catalytic bed, insulation and powder metallurgy system, and these processes are transient in nature. Therefore, the study of the contact resistances of a sphere and between spheres is indeed significant in this concern. Furthermore, the transient effect on the thermal resistance has to be investigated. By and large, the current typical apparatus, which have been used for measuring contact resistance at steady state condition, may require quite a bit a modification with sophisticated control systems. Therefore, development of the experimental setup was required. Instead of using guard heater and vacuum chamber, this setup makes use of the thermal contact resistance between interface of insulation layers and eliminated natural convection by minimizing the buoyancy to viscous forces ratio. The proposed experimental setup was verified with different tests that the error due to heat loss is often less than 15%. Furthermore, some actual thermal resistance measurements were performed to show the applicability of this setup.

  9. Sensing of retained martensite during thermal cycling of shape memory alloy wires via electrical resistance

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher B.

    2013-04-01

    Shape memory alloys (SMAs) remain one of the most commercially viable active materials, thanks to a high specific work and the wide availability of high quality material. Still, significant challenges remain in predicting the degradation of SMA actuators during thermal cycling. One challenges in both the motivation and verification of degradation models is the measurement of retained martensite fraction during cycling. Direct measurement via diffraction is difficult to perform in situ, impossible for thin wires, (< 0.5mm) and prohibitively difficult for lengthy studies. As an alternative, the temperature coefficient of electrical resistivity (TCR) is used as an indicator of martensite phase fraction during thermal cycling of SMA wires. We investigate this technique with an example cycling experiment, using the TCR to successfully measure a 20% increase in retained martensite fraction over 80000 thermal cycles. As SMA wire temperature is difficult to measure directly during resistive heating, we also introduce a method to infer temperature to within 5 °C by integrating the lumped heat equation.

  10. Microthruster with integrated platinum thin film resistance temperature detector (RTD), heater, and thermal insulation

    NASA Astrophysics Data System (ADS)

    Miyakawa, N.; Legner, W.; Ziemann, T.; Telitschkin, D.; Fecht, H.-J.; Friedberger, A.

    2011-06-01

    We have fabricated microthruster chip pairs - one chip with microthruster structures such as injection capillaries, combustion chamber and nozzle, the other chip with platinum thin film devices such as resistance temperature detectors (RTDs) and a heater. The platinum thin film was sputtered on thermally oxidized silicon wafers WITHOUT adhesion layer. The effects of anneal up to 1050°C on the surface morphology of platinum thin films with varied geometry as well as with / without PECVD-SiO2 coating were investigated in air and N2 and results will also be presented. Electrical characterization of sensors was carried out in a furnace tube in which the sensors' temperature was varied between room temperature and 1000°C with a ramp of +/-5Kmin-1 in air and N2. The experiments showed that the temperature-resistance characteristics of sensors had stabilized after the first heating up to 1000°C in N2. After stabilization the sensors underwent further 8 temperature cycles which correspond to over 28h of operation time between 800 - 1000°C. To reduce the loss of combustion heat, chip material around the microthruster structures was partially removed. The effects of thermal insulation were investigated with microthruster chip pairs which were clamped together mechanically. The heater power was varied up to 20W and the temperature distribution in the chip pairs with / without thermal insulation was monitored with 7 integrated thin film sensors.

  11. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    SciTech Connect

    Bandriyana, B.; Utaja

    2010-06-22

    Thermal stratification introduces thermal shock effect which results in local stress and fatigue problems that must be considered in the design of nuclear power plant components. Local stress and fatigue calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343 deg. C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  12. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  13. Erosion resistance of cooled thermal sprayed coatings under simulated erosion conditions at waterwall in FBCs

    SciTech Connect

    Wang, B.Q.; Lee, S.W.

    1997-12-31

    The erosion-corrosion (E-C) behavior of cooled 1018 steel and several thermal sprayed coatings by bed ash, retrieved from an operating circulating fluidized bed combustor (CFBC) boiler firing biomass, was determined in laboratory tests using a nozzle type elevated temperature erosion tester. Test conditions attempted but not exactly to simulate the erosion conditions found at the refractory/bare-tube interface at the combustor waterwall of FBC boilers. The specimens were water-cooled on the backside. Material wastage rates were determined from the thickness loss measurements of specimens. Test results were compared with erosion-corrosion test results for isothermal specimens. The morphology of specimens was examined by scanning electron microscopy (SEM). It was found that the cooled specimens demonstrated higher erosion-corrosion wastage than those of the isothermal specimens. At a shallow impact angle of 30{degree} the effect of cooling specimens on the erosion wastage for thermal sprayed coatings was less than that for 1018 steel, while at a steep impact angle of 90{degree} this effect for thermal sprayed coatings was greater than that for 1018 steel. The hypersonic velocity oxygen fuel (HVOF) Cr{sub 3}C{sub 2} ceramic coating exhibited the highest E-C resistance due to its favorable composition and fine structure. The poor E-C resistance of arc-sprayed FeCrSiB coating was attributed to larger splat size, higher porosity and the presence of radial and tangential microcracks within the coating.

  14. Thermal Conductivity and Electrical Resistivity of FeTe1-xSx Sintered Samples

    NASA Astrophysics Data System (ADS)

    Kikegawa, Takako; Sato, Kazuki; Ishikawa, Keisuke

    The temperature dependence of thermal conductivity and the temperature and magnetic field dependence of electrical resistivity have been measured for FeTe1-xSx polycrystalline samples. The samples were prepared by solid state reaction with a three-step procedure. For FeTe0.8S0.2 and FeTe0.7S0.3, zero resistivity due to the superconducting transition was observed not only in oxygen post-annealed samples but also in as-grown ones. These samples include the certain amount of impurities FeTe2 and Fe3O4. The formation of these ion compounds reduces the excess Fe atoms leading to the appearance of the zero resistivity in as-grown samples. Positive magnetoresistivity and/or negative magnetoresistivity, which were extremely small, were observed for FeTe and S-doped samples. The magnetoresistivity curves show B2 dependence. It was observed that the thermal conductivity κ of FeTe exhibits a hump structure below 72 K which corresponds to the crystal structural and magnetic transitions. The enhancement of κ due to the superconducting transition could not be detected for as-grown FeTe0.8S0.2 and FeTe0.7S0.3 because of the absence of the bulk superconductivity in the as-grown samples and the extremely small ratio of the electronic contribution to κ.

  15. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  16. Atomic and electronic structure peculiarities of silicon wires formed on substrates with varied resistivity according to ultrasoft X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Turishchev, S. Yu.; Terekhov, V. A.; Nesterov, D. N.; Koltygina, K. G.; Sivakov, V. A.; Domashevskaya, E. P.

    2015-04-01

    Silicon wires arrays have been produced by metal-assisted wet chemical etching with the use of crystalline silicon substrates. The arrays and individual nanowires have been studied by scanning and transmission electron microscopy. The electronic structure and phase composition of the surface and near-surface layers of the arrays have been studied by ultrasoft X-ray emission spectroscopy. It is shown that the morphologically more developed sample formed on a substrate with low resistivity is considerably more strongly subject to oxidation with noticeable formation of phases of intermediate silicon oxides. The array of nanowires formed on a substrate with high resistivity also undergoes natural oxidation, but does so to a substantially lesser extent and, with increasing depth of analysis, mostly contains the phase of crystalline silicon constituting the bulk of the nanowires being formed.

  17. Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate

    SciTech Connect

    Lin, Yu-Wei; Huang, Jia-Hong; Yu, Ge-Ping

    2010-07-15

    This study investigated the microstructure and properties of nanocrystalline TiZrN films on AISI 304 stainless steel substrate. TiZrN films were prepared by reactive magnetron sputtering based on the previous optimum coating conditions (substrate temperature, system pressure, nitrogen flow, etc.) for TiN and ZrN thin films. The composition ratio of TiZrN coatings were adjusted by changing the Zr target power, while keeping the Ti target power constant. Experiments were conduced to find the optimum composition with desired properties. The ratio of TiZrN composition was analyzed by x-ray photoelectron spectroscopy and Rutherford backscattering spectrometer. In terms of phase formation, there were two types of coatings that were considered: single-phase solid solutions of TiZrN and interlacing nuclei of TiZr in the matrix of TiZrN. The thickness of all TiZrN films as measured by the secondary ion mass spectroscopy was about 500 nm, and the composition depth profiles indicated that the compositions in the TiZrN films were uniform from the film surface to the 304 stainless steel substrate. The crystal structure of the TiZrN films was determined by x-ray diffraction using a M18XHF-SRA diffractometer with Cu K{sub {alpha}} radiation. A diffraction peak of TiZrN (002) was observed between that of TiN (002) and ZrN (002); similarly, a diffraction peak of TiZrN (111) was observed between that of TiN(111) and ZrN(111), respectively. The corrosion resistance of the TiZrN film deposited on the 304 stainless steel has been investigated by electrochemical measurement. The electrolyte, 0.5M H{sub 2}SO{sub 4} containing 0.05M KSCN, was used for the potentiodynamic polarization. The potentiodynamic scan was conducted from -800 to 800 mV standard calomel electrode (SCE).

  18. Thermal characterization of diamond films through modulated photothermal radiometry.

    PubMed

    Guillemet, Thomas; Kusiak, Andrzej; Fan, Lisha; Heintz, Jean-Marc; Chandra, Namas; Zhou, Yunshen; Silvain, Jean-François; Lu, Yongfeng; Battaglia, Jean-Luc

    2014-02-12

    Diamond (Dia) films are promising heat-dissipative materials for electronic packages because they combine high thermal conductivity with high electrical resistivity. However, precise knowledge of the thermal properties of the diamond films is crucial to their potential application as passive thermal management substrates in electronics. In this study, modulated photothermal radiometry in a front-face configuration was employed to thermally characterize polycrystalline diamond films deposited onto silicon (Si) substrates through laser-assisted combustion synthesis. The intrinsic thermal conductivity of diamond films and the thermal boundary resistance at the interface between the diamond film and the Si substrate were investigated. The results enlighten the correlation between the deposition process, film purity, film transverse thermal conductivity, and interface thermal resistance. PMID:24422442

  19. Controlling the Integration of Polyvinylpyrrolidone onto Substrate by Quartz Crystal Microbalance with Dissipation To Achieve Excellent Protein Resistance and Detoxification.

    PubMed

    Zheng, Jian; Wang, Lin; Zeng, Xiangze; Zheng, Xiaoyan; Zhang, Yan; Liu, Sa; Shi, Xuetao; Wang, Yingjun; Huang, Xuhui; Ren, Li

    2016-07-27

    Blood purification systems, in which the adsorbent removes exogenous and endogenous toxins from the blood, are widely used in clinical practice. To improve the protein resistance of and detoxification by the adsorbent, researchers can modify the adsorbent with functional molecules, such as polyvinylpyrrolidone (PVP). However, achieving precise control of the functional molecular density, which is crucial to the activity of the adsorbent, remains a significant challenge. In the present study, we prepared a model system for blood purification adsorbents in which we controlled the integration density of PVP molecules of different molecular weights on an Au substrate by quartz crystal microbalance with dissipation (QCM-D). We characterized the samples with atomic force microscopy, X-ray photoelectron spectroscopy, and QCM-D and found that the molecular density and the chain length of the PVP molecules played important roles in determining the properties of the sample. At the optimal condition, the modified sample demonstrated strong resistance to plasma proteins, decreasing the adsorption of human serum albumin (HSA) and fibrinogen (Fg) by 92.5% and 79.2%, respectively. In addition, the modified sample exhibited excellent detoxification, and the adsorption of bilirubin increased 2.6-fold. Interestingly, subsequent atomistic molecular dynamics simulations indicated that the favorable interactions between PVP and bilirubin were dominated by hydrophobic interactions. An in vitro platelet adhesion assay showed that the adhesion of platelets on the sample decreased and that the platelets were maintained in an inactivated state. The CCK-8 assay indicated that the modified sample exhibited negligible cytotoxicity to L929 cells. These results demonstrated that our method holds great potential for the modification of adsorbents in blood purification systems. PMID:27363467

  20. Homogeneous Dispersion of Carbon Nanotubes on Surface-Modified Bulk Titanium Substrates by Thermal Chemical Vapor Deposition.

    PubMed

    Kim, Hogyu; Kwak, Seoung Yeol; Park, Ju Hyuk; Suk, Myung Jin; Oh, Sung Tag; Kim, Young Do

    2016-01-01

    Catalytic syntheses of CNTs on the pristine Ti mesh, the pristine Ti plate and the etched Ti plate have been conducted using thermal chemical vapor deposition (CVD) with Fe catalysts. Surface of the pristine Ti plate was etched in a sulfuric acid (H₂SO₄) solution to facilitate the uniform dispersion of Fe catalysts. The surface of Ti substrates, the distribution and the composition of catalysts, and the structure and dispersion of the CNTs were examined using Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), electron probe micro-analysis (EPMA) and Micro-Raman spectroscopy. Fe catalysts were dispersed uniformly on the surface of the etched Ti plate indicating that Surface modification by etching was effective. CNTs on the pristine Ti mesh and the etched Ti plate are more densely populated and have smaller diameters than CNTs on the pristine Ti plate. These results can be attributed to smaller Fe catalysts more homogeneously distributed on the pristine Ti mesh and the etched Ti plate. The calculated I(G)/I(D) ratios of 1.02 and 0.97 for CNTs on the pristine Ti mesh and the etched Ti plate, respectively, indicate a high degree of structural disorders on CNTs. PMID:27398544

  1. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  2. Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Liu, Y. Q.; Xu, X. Y.; Wang, Z. R.

    2016-07-01

    Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.

  3. Formalising a mechanistic linkage between heterotrophic feeding and thermal bleaching resistance

    NASA Astrophysics Data System (ADS)

    Wooldridge, Scott A.

    2014-12-01

    In this paper, I utilise the CO2 (sink) limitation model of coral bleaching to propose a new biochemical framework that explains how certain (well-adapted) coral species can utilise heterotrophic carbon acquisition to combat the damaging algal photoinhibition response sequence that underpins thermal bleaching, thereby increasing thermal bleaching resistance. This mechanistic linkage helps to clarify a number of previously challenging experimental responses arising from feeding (versus starved) temperature stress experiments, and isotope labelling (tracer) experiments with heterotrophic carbon sources (e.g., zooplankton). In an era of rapidly warming surface ocean temperatures, the conferred fitness benefits arising from such a mechanistic linkage are considerable. Yet, various ecological constraints are outlined which caution against the ultimate benefit of the mechanism for raising bleaching thresholds at the coral community (reef) scale. Future experiments are suggested that can strengthen these proposed arguments.

  4. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.

    PubMed

    Chou, Ying-Nien; Chang, Yung; Wen, Ten-Chin

    2015-05-20

    We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study. PMID:25912841

  5. Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella

    PubMed Central

    Zhang, Lin Jie; Wu, Zhao Li; Wang, Kuan Fu; Liu, Qun; Zhuang, Hua Mei; Wu, Gang

    2015-01-01

    Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos-resistant homozygote (RR) and chlorpyrifos-susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide-resistant and insecticide-susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20,hsp90,Apaf-1, and caspase-7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf-1,caspase-9, and caspase-7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed. PMID:25691976

  6. Resist-free antireflective nanostructured film fabricated by thermal-NIL

    NASA Astrophysics Data System (ADS)

    Kang, Young Hun; Han, Jae Hyung; Cho, Song Yun; Choi, Choon-Gi

    2014-05-01

    Resist-free antireflective (AR) nanostructured films are directly fabricated on polycarbonate (PC) film using thermal-nanoimprint lithography (T-NIL) and the moth-eye shape of AR nanostructure is elaborately optimized with different oxygen reactive ion etching conditions. Anodic aluminum oxide (AAO) templates are directly used as master molds of T-NIL for preparation of AR nanostructures on PC film without an additional T-NIL resist. AR nanostructures are well arranged with a period of about 200 nm and diameter of about 150 nm, which corresponds to those of the AAO template mold. The moth-eye AR nanostructures exhibit the average reflectance of 2% in wavelength range from 400 to 800 nm. From the results, highly enhanced AR properties with simple direct imprinting on PC film demonstrate the potential for panel application in the field of flat display, touch screen, and solar cells.

  7. Low resistive p-type GaN using two-step rapid thermal annealing processes

    SciTech Connect

    Scherer, M.; Schwegler, V.; Seyboth, M.; Kirchner, C.; Kamp, M.; Pelzmann, A.; Drechsler, M.

    2001-06-15

    Two-step thermal annealing processes were investigated for electrical activation of magnesium- doped galliumnitride layers. The samples were studied by room-temperature Hall measurements and photoluminescence spectroscopy at 16 K. After an annealing process consisting of a short-term step at 960{degree}C followed by a 600{degree}C dwell step for 5 min a resistivity as low as 0.84 {Omega}cm is achieved for the activated sample, which improves the results achieved by standard annealing (800{degree}C for 10 min) by 25% in resistivity and 100% in free hole concentration. Photoluminescence shows a peak centered at 3.0 eV, which is typical for Mg-doped samples with high free hole concentrations.{copyright} 2001 American Institute of Physics.

  8. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.

    PubMed

    Feng, Shiling; Cheng, Haoran; Xu, Zhou; Shen, Shian; Yuan, Ming; Liu, Jing; Ding, Chunbang

    2015-11-01

    Panax notoginseng attract public attention due to their potential biomedical properties and corresponding health benefits. The present study investigated the anti-aging and thermal stress resistance effects of polysaccharides from P. notoginseng on Caenorhabditis elegans. Results showed polysaccharides had little scavenging ability of reactive oxygen species (ROS) in vitro, but significantly extended lifespan of C. elegans, especially the main root polysaccharide (MRP) which prolongs the mean lifespan of wild type worms by 21%. Further study demonstrated that the heat stress resistance effect of polysaccharides on C. elegans might be attributed to the elevation of antioxidant enzyme activities (both superoxide dismutase (SOD) and catalase (CAT)) and the reduction lipid peroxidation of malondialdehyde (MDA) level. Taken together, the results provided a scientific basis for the further exploitation of the mechanism of longer lifespan controlled by P. notoginseng polysaccharides on C. elegans. The P. notoginseng polysaccharides might be considered as a potential source to delay aging. PMID:26234580

  9. Resistance of fly ash-Portland cement blends to thermal shock

    DOE PAGESBeta

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydrationmore » of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators« less

  10. Resistance of fly ash-Portland cement blends to thermal shock

    SciTech Connect

    Pyatina, Tatiana; Sugama, Toshifumi

    2015-09-11

    Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90 % fly ash F (FAF) were left to set at room temperature, then hydrated for 24 hours at 85°C and 24-more hours at 300°C and tested in five thermal-shock cycles (600°C heat - 25°C water quenching). XRD, and thermal gravimetric analyses, along with calorimetric measurements and SEM-EDX tests demonstrated that the activated blends form more hydrates after 24 hours at 300°C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and sodaash engendered the concomitant hydration of OPC and FAF, with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime, and wairakite, along with the amorphous FAF hydration products. In SS-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after 5 thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermalshock. As a result, there was no significant difference in the performance of the blends with different activators

  11. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    PubMed Central

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  12. Thermal resistance of attic loose-fill insulations decreases under simulated winter conditions

    SciTech Connect

    Graves, R.S.; Wilkes, K.E.; McElroy, D.L.

    1994-05-01

    Two absolute techniques were used to measure the thermal resistance of attic loose-fill insulations: the Large Scale Climate Simulator (LSCS) and the Unguarded Thin-Heater Apparatus (UTHA). Two types of attic loose-fill insulations (unbonded and bonded/cubed) were tested under simulated winter conditions. To simulate winter conditions for an attic insulation, the specimens were tested with heat flow up, large temperature differences, and an air gap. The specimens were tested either with a constant mean temperature (30 or 21{degrees}C) and an increasing temperature difference or with a constant base temperature (21{degrees}C) and an increasing temperature difference (i.e., a decreasing mean temperature). The UTHA test specimens had a nominal thickness of 0.2 m of loose-fill insulation. The LSCS test specimens had a nominal thickness of 0.3 m of loose-fill insulation contained in a 4.2 by 5 m attic test module with a gypsum board base. The module had a gabled attic with a 5 in 12 slope roof. The tests yielded the surface-to-surface thermal resistance, R, which includes the thermal resistance due to gypsum, insulation, and any wood joists. Tests with and without an air gap were conducted in the UTHA. Surface-to-surface thermal resistance results from the LSCS and the UTHA show similar trends for these two types of loose-fill insulation when tested under simulated winter conditions. Tests with no air gap gave values of R that agreed with the bag label R-value for the insulations; R increased with lower mean temperatures. These no-gap values of R were 2 to 5% greater than the values of R obtained with an air gap for temperature differences of less than 22{degrees}C. For larger temperature differences R decreased, and at temperature differences of over 40{degrees}C, the R values were 50% less than those at small temperature differences.

  13. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  14. Thermal-resistive current filamentation in the cathode plasma of a pinch-reflex diode

    SciTech Connect

    Tripathi, V.K.; Ottinger, P.F.; Guillory, J.

    1983-06-01

    Electron current flow drawn off a hollow cylindrical cathode in a pinch-reflex ion diode is observed to have a filamentary structure. Such filamentation can lead to nonuniform anode turn on and ion emission. Consequently, ion beam brightness is degraded. In this context a purely growing thermal-resistive instability in the cathode plasma is examined. The instability causes current filamentation and grows on a time scale comparable to the electron--ion energy equilibration time. Electron inelastic collisions have a stabilizing influence on the instability.

  15. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  16. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance.

    PubMed

    Moskalev, Alexey; Plyusnina, Ekaterina; Shaposhnikov, Mikhail; Shilova, Lyubov; Kazachenok, Alexey; Zhavoronkov, Alexander

    2012-11-15

    There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance. PMID:23095639

  17. Improvements in contact resistivity and thermal stability of Au-contacted InP solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    Specific contact resistivities for as-fabricated Au contacts on n-p InP solar cells are typically in the 10(exp -3) ohm/sq cm range, but contact resistivities in the 10(exp -6) ohm/sq cm range can be obtained if the cells are heat treated at 400 C for a few minutes. This heat treatment, however, results in a dramatic drop in the open circuit voltage of the cell due to excessive dissolution of the emitter into the metallization. It was found that low values of contact resistivity can be secured without the accompanying drop in the open circuit voltage by adding Ga and In in the Au metallization. It is shown that Au contacts containing as little as 1 percent atomic Ga can suppress the reaction that takes place at the metal-InP interface during heat treatment, while exhibiting contact resistivity values in the low 10(exp -5) ohm/sq cm. Detailed explanations for the observed superior thermal stability of these contacts are presented.

  18. Effect of substrate characteristics on microbial community structure, function, resistance, and resilience; application to coupled photocatalytic-biological treatment.

    PubMed

    Marsolek, Michael D; Rittmann, Bruce E

    2016-03-01

    Advanced oxidation (AO) coupled with biodegradation is an emerging treatment technology for wastewaters containing biologically recalcitrant and inhibitory organics, including those containing chlorinated aromatic compounds. The composition of the AO effluent organics can vary significantly with reaction conditions, and this composition can affect the performance of subsequent biodegradation. Three synthetic effluents were used to mimic varying degrees of AO of 2,4,5-trichlorophenol: 4-chlorocatechol to mimic light transformation, 2-chloromuconic acid to mimic moderate transformation, and acetate to mimic extensive transformation. The substrates were fed to identical chemostats and analyzed at steady state for removal of chemical oxygen demand (COD) and dissolved organic carbon (DOC), biomass concentration, and bacterial diversity. The chemostat fed acetate performed best at steady state. The 2-chloromuconic acid chemostat was next in terms of steady-state performance, and the 4-chlorocatechol reactor performed worst, correlating with degree of AO transformation. A spike of 100 μM 2,4,5-trichlorophenol was then applied to each chemostat. The chemostat fed 4-chlorocatechol exhibited the best resistance to the perturbation in terms of maintaining consistent community structure and biomass concentration, whereas the performance of the acetate-fed chemostat was severely impaired in these categories, although it quickly regained capacity to remove organics near pre-perturbation levels demonstrating good resilience. The opposing trends for steady-state versus perturbed performance highlight tradeoffs inherent in coupled chemical-biological systems. PMID:26722990

  19. High-Resistivity Semi-insulating AlSb on GaAs Substrates Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Vaughan, E. I.; Addamane, S.; Shima, D. M.; Balakrishnan, G.; Hecht, A. A.

    2016-04-01

    Thin-film structures containing AlSb were grown using solid-source molecular beam epitaxy and characterized for material quality, carrier transport optimization, and room-temperature radiation detection response. Few surface defects were observed, including screw dislocations resulting from shear strain between lattice-mismatched layers. Strain was also indicated by broadening of the AlSb peak in x-ray diffraction measurements. Threading dislocations and interfacial misfit dislocations were seen with transmission electron microscopy imaging. Doping of the AlSb layer was introduced during growth using GaTe and Be to determine the effect on Hall transport properties. Hall mobility and resistivity were largest for undoped AlSb samples, at 3000 cm2/V s and 106 Ω cm, respectively, and increased doping levels progressively degraded these values. To test for radiation response, p-type/intrinsic/ n-type (PIN) diode structures were grown using undoped AlSb on n-GaAs substrates, with p-GaSb cap layers to protect the AlSb from oxidation. Alpha-particle radiation detection was achieved and spectra were produced for 241Am, 252Cf, and 239Pu sources. Reducing the detector surface area increased the pulse height observed, as expected based on voltage-capacitance relationships for diodes.

  20. Development of a Laboratory Experiment to Derivate the Thermal Conductivity based on Electrical Resistivity Measurments

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Firmbach, L.; Dietrich, P.

    2014-12-01

    In the course of the energy transition, the number of shallow geothermal systems is constantly growing. These systems allow the exploitation of renewable energy from the subsurface, reduced CO2 emission and additionally, energy storage. An efficient performance of geothermal systems strongly depends upon the availability of exploration data (e.g. thermal conductivity distribution). However, due to high exploration costs, the dimensioning of smaller plants (< 30 kW) is generally based on literature values. While standard in-situ-tests are persistent for larger scale projects, they yield only integral values, e.g. entire length of a borehole heat exchanger. Hence, exploring the distribution of the thermal conductivity as important soil parameter requires the development of new cost-efficient technologies. The general relationship between the electrical (RE) and the thermal resistivity (RT) can be described as log(RE) = CR log(RT) with CRas a multiplier depending on additional soil parameter (e.g. water content, density, porosity, grain size and distribution). Knowing the influencing factor of these additional determining parameters, geoelectrical measurements could provide a cost-efficient exploration strategy of the thermal conductivity for shallow geothermal sites. The aim of this study now is to define the multiplier CRexperimentally to conclude the exact correlation of the thermal and electrical behavior. The set-up consists of an acrylic glass tube with two current electrodes installed at the upper and lower end of the tube. Four electrode chains (each with eight electrodes) measure the potential differences in respect to an induced heat flux initiated by a heat plate. Additional, eight temperature sensors measure the changes of the temperature differences. First, we use this set-up to analyze the influence of soil properties based on differing homogenous sediments with known chemical and petro-physical properties. Further, we analyze the influence of the water

  1. Chromium-niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenichi; Shibuya, Keisuke; Suzuki, Megumi; Sakai, Kenichi; Fujita, Jun-ichi; Sawa, Akihito

    2016-05-01

    We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal-insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1-x-yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  2. The thermal stability of Pt/Ir coated AFM tips for resistive switching measurements

    NASA Astrophysics Data System (ADS)

    Wojtyniak, M.; Szot, K.; Waser, R.

    2011-06-01

    In this paper, we focus on the thermally treated atomic force microscope tips used in the investigation of the resistive switching phenomenon. Since the resistive switching phenomenon is often connected with the red-ox process, it is crucial to investigate the influence of oxidizing and reducing conditions at elevated temperatures on typical AFM tips. To fully characterize the influence of different conditions on the tip properties we used several techniques such as: X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and local-conductivity atomic force microscopy. The chemical composition as well as the topography and morphology of the most popular Pt/Ir coated silicon tips were investigated. The influence of thermal treatment on the tip apex was also imaged and the changes in the electrical behavior of the tip coating were observed. Applied temperatures ranges were: 500-700 ° C for oxidizing conditions (air) and 300-700 ° C for reducing conditions (vacuum 10 -6 Torr), the annealing time was set to 0.5 h. Results yielded the formation of Pt 2Si and SiO 2 on the tip surface. The Pt tends to agglomerate into particles over time, depending on the temperature and conditions. The tip apex radius increases while the electrical conductivity decreases with the temperature. In conclusion, even the lowest applied temperature leads to changes in the tip properties, while these changes are much more pronounced under oxidizing conditions.

  3. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  4. Characterization and Effect of Thermal Annealing on InAs Quantum Dots Grown by Droplet Epitaxy on GaAs(111)A Substrates.

    PubMed

    Bietti, Sergio; Esposito, Luca; Fedorov, Alexey; Ballabio, Andrea; Martinelli, Andrea; Sanguinetti, Stefano

    2015-12-01

    We report the study on formation and thermal annealing of InAs quantum dots grown by droplet epitaxy on GaAs (111)A surface. By following the changes in RHEED pattern, we found that InAs quantum dots arsenized at low temperature are lattice matched with GaAs substrate, becoming almost fully relaxed when substrate temperature is increased. Morphological characterizations performed by atomic force microscopy show that annealing process is able to change density and aspect ratio of InAs quantum dots and also to narrow size distribution. PMID:26058506

  5. Thermal resistance at a solid/superfluid helium interface.

    PubMed

    Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay

    2016-05-01

    Kapitza in 1941 discovered that heat flowing across a solid in contact with superfluid helium (<2 K) encounters a strong thermal resistance at the interface. Khalatnikov demonstrated theoretically that this constitutes a general phenomenon related to all interfaces at all temperatures, given the dependence of heat transmission on the acoustic impedance (sound velocity  ×  density) of each medium. For the solid/superfluid interface, the measured transmission of heat is almost one hundred times stronger than the Khalatnikov prediction. This discrepancy could be intuitively attributed to diffuse scattering of phonons at the interface but, despite several attempts, a detailed quantitative comparison between theoretical and experimental findings to explain the occurrence of scattering and its contribution to heat transmission had been lacking. Here we show that when the thermal wavelength λ of phonons of the less dense medium (liquid (4)He) becomes comparable to the r.m.s. surface roughness σ, the heat flux crossing the interface is amplified; in particular when σ ≈ 0.33λ, a spatial resonant mechanism occurs, as proposed by Adamenko and Fuks. We used a silicon single crystal whose surface roughness was controlled and characterized. The thermal boundary resistance measurements were performed from 0.4 to 2 K at different superfluid pressures ranging from saturated vapour pressure (SVP) to above (4)He solidification, to eliminate all hypothetical artefact mechanisms. Our results demonstrate the physical conditions necessary for resonant phonon scattering to occur at all interfaces, and therefore constitute a benchmark in the design of nanoscale devices for heat monitoring. PMID:26928639

  6. Substrate-Modulated Thermal Fluctuations Affect Long-Range Allosteric Signaling in Protein Homodimers: Exemplified in CAP

    PubMed Central

    Toncrova, Hedvika; McLeish, Tom C.B.

    2010-01-01

    Abstract The role of conformational dynamics in allosteric signaling of proteins is increasingly recognized as an important and subtle aspect of this ubiquitous phenomenon. Cooperative binding is commonly observed in proteins with twofold symmetry that bind two identical ligands. We construct a coarse-grained model of an allosteric coupled dimer and show how the signal can be propagated between the distant binding sites via change in slow global vibrational modes alone. We demonstrate that modulation on substrate binding of as few as 5–10 slow modes can give rise to cooperativity observed in biological systems and that the type of cooperativity is given by change of interaction between the two monomers upon ligand binding. To illustrate the application of the model, we apply it to a challenging test case: the catabolite activator protein (CAP). CAP displays negative cooperativity upon association with two identical ligands. The conformation of CAP is not affected by the binding, but its vibrational spectrum undergoes a strong modification. Intriguingly, the first binding enhances thermal fluctuations, yet the second quenches them. We show that this counterintuitive behavior is, in fact, necessary for an optimal anticooperative system, and captured within a well-defined region of the model's parameter space. From analyzing the experimental results, we conclude that fast local modes take an active part in the allostery of CAP, coupled to the more-global slow modes. By including them into the model, we elucidate the role of the modes on different timescales. We conclude that such dynamic control of allostery in homodimers may be a general phenomenon and that our model framework can be used for extended interpretation of thermodynamic parameters in other systems. PMID:20483341

  7. Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment

    NASA Astrophysics Data System (ADS)

    Iriyama, Yasutoshi; Kako, Tomonori; Yada, Chihiro; Abe, Takeshi; Ogumi, Zempachi

    An all-solid-state thin-film battery consisting of a c-axis-oriented LiCoO 2 thin-film and a lithium phosphorus oxynitride (LiPON) glass electrolyte was fabricated. Thermal treatment at 473 K after fabrication of the LiPON/LiCoO 2 interface decreased the charge transfer resistance at the interface, and the resistance was further reduced by prolonging the thermal treatment time. The charge transfer resistance per unit electrode area (interfacial resistivity) of a film battery thermal-treated for 60 min decreased down to 125 Ω cm 2, which is ca. five times larger than that in the case of an organic electrolyte (1 mol dm -3 LiClO 4 dissolved in propylene carbonate)/LiCoO 2 interface (25 Ω cm 2). Due to the reduction of the charge transfer resistance at the LiPON/LiCoO 2 interface, the reaction current of the film battery was greatly increased by the thermal treatment. Also, thermally treated film batteries showed stable electrochemical lithium insertion/extraction properties compared with the batteries using conventional organic electrolytes. Both the voltammograms and the impedance spectra of the film battery maintained their initial shape for over 100 cycles, and the capacity retention ratio per cycle was calculated to be 99.9%.

  8. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression - Part II: Thermal conductivity

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Prabudhya; Vikram, Ajit; Phillips, Ryan K.; Hoorfar, Mina

    2016-07-01

    The gas diffusion layer (GDL) is a thin porous layer sandwiched between a bipolar plate (BPP) and a catalyst coated membrane in a fuel cell. Besides providing passage for water and gas transport from and to the catalyst layer, it is responsible for electron and heat transfer from and to the BPP. In this paper, a method has been developed to measure the GDL bulk thermal conductivity and the contact resistance at the GDL/BPP interface under inhomogeneous compression occurring in an actual fuel cell assembly. Toray carbon paper GDL TGP-H-060 was tested under a range of compression pressure of 0.34 to 1.71 MPa. The results showed that the thermal contact resistance decreases non-linearly (from 3.8 × 10-4 to 1.17 × 10-4 Km2 W-1) with increasing pressure due to increase in microscopic contact area between the GDL and BPP; while the effective bulk thermal conductivity increases (from 0.56 to 1.42 Wm-1 K-1) with increasing the compression pressure. The thermal contact resistance was found to be greater (by a factor of 1.6-2.8) than the effective bulk thermal resistance for all compression pressure ranges applied here. This measurement technique can be used to identify optimum GDL based on minimum bulk and contact resistances measured under inhomogeneous compression.

  9. Improvements of Thermal, Mechanical, and Water-Resistance Properties of Polybenzoxazine/Boron Carbide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramdani, Noureddine; Derradji, Mehdi; Wang, Jun; Mokhnache, El-Oualid; Liu, Wen-Bin

    2016-07-01

    Novel kinds of nanocomposites based on bisphenol A-aniline based polybenzoxazine matrix P(BA-a) and 0 wt.%-20 wt.% boron carbide (B4C) nanoparticles were produced and their properties were evaluated in terms of the nano-B4C content. The thermal conductivity of the P(BA-a) matrix was improved approximately three times from 0.18 W/m K to 0.86 W/m K at 20 wt.% nano-B4C loading, while its coefficient of thermal expansion (CTE) was deceased by 47% with the same nanofiller content. The microhardness properties were significantly improved by adding the B4C nanoparticles. At 20 wt.% of nano-B4C content, dynamic mechanical analysis (DMA) revealed a marked increase in the storage modulus and the glass transition temperature (T g) of the nanocomposites, reaching 3.9 GPa and 204°C, respectively. Hot water uptake tests showed that the water-resistance of the polybenzoxazine matrix was increased by filling with nano-B4C nano-filler. The morphological analysis reflected that the improvements obtained in the mechanical and thermal properties are related to the uniform dispersion of the nano-B4C particles and their strong adhesion to the P(BA-a) matrix.

  10. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.

    PubMed

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-20

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails. PMID:26508524

  11. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM

    NASA Astrophysics Data System (ADS)

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-01

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al2O3/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier’s law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al2O3 fillers to be 1.16 × 10-8 m2K W-1, which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  12. Growth of Epitaxial Anatase TiO2(001) Thin Film on NaCl(001) Substrate by Ion Beam Sputtering and Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Kao, Chung-Ho; Tsai, Jia-Hong; Yeh, Sung-Wei; Huang, Hsing-Lu; Gan, Dershin; Shen, Pouyan

    2012-04-01

    The anatase TiO2(001) surface was shown to have superior photoreactivity. Epitaxial anatase (001) films used to be grown on single-crystal SrTiO3 and LaAlO3 substrates. It is shown in this report that these films can be grown also on the NaCl substrate, which is much cheaper and easily prepared. Epitaxial TiO(001) films were first grown on the NaCl(001) substrate. By testing the TiO-to-anatase transformation over temperature and time ranges, an epitaxial anatase (001) film was prepared by simple thermal oxidation in air. The formation of a single-variant anatase (001) film instead of a multiple-variant film is discussed in this report.

  13. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.

    PubMed

    Yagyu, Hitomi; Saito, Tsuguyuki; Isogai, Akira; Koga, Hirotaka; Nogi, Masaya

    2015-10-01

    Optically transparent cellulose nanopaper is one of the best candidate substrates for flexible electronics. Some types of cellulose nanopaper are made of mechanically or chemically modified cellulose nanofibers. Among these, nanopapers produced from chemically modified cellulose nanofibers are the most promising substrate because of their lower power consumption during fabrication and higher optical transparency (lower haze). However, because their thermal durability is as low as plastics, paper devices using chemically modified nanopaper often do not have sufficiently high performance. In this study, by decreasing the carboxylate content in the cellulose nanofibers, the thermal durability of chemically modified nanopaper was drastically improved while maintaining high optical transparency, low coefficient of thermal expansion, and low power consumption during fabrication. As a result, light-emitting diode lights illuminated on the chemically modified nanopaper via highly conductive lines, which were obtained by printing silver nanoparticle inks and high-temperature heating. PMID:26402324

  14. Thermal conductivity and electrical resistivity of gadolinium as functions of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Jacobsson, P.; Sundqvist, B.

    1989-11-01

    The electrical resistivity ρ and the thermal diffusivity a of gadolinium have been measured as functions of T in the range 45-400 K. The thermal conductivity λ has been calculated from a and experimental data for the specific-heat capacity, cp. λ can be analyzed in terms of simple models for the lattice and electronic components above the Curie temperature TC~=291.4 K. Below TC an additional term, identified as a magnon (spin-wave) thermal conductivity λm, is found. ρ and λ have also been studied as functions of T and P in the range 150-400 K and 0-2.5 GPa. The Lorenz function L=ρλ/T increases by about 20%/GPa under pressure due to a very strong pressure dependence of the lattice thermal conductivity. The pressure coefficients of ρ and λ are -5.1×10-2 and 0.22 GPa-1, respectively, at 300 K (above TC), and 0 and 0.16 GPa-1 at 200 K (below TC). TC and the spin-reorganization temperature Tr~=219 K both decrease under pressure, at the rates -14.0 and -22.0 K/GPa, respectively. Although the magnitude of λm cannot be accurately calculated from the zero-pressure data for λ, the temperature dependence of dλ/dP allows us to distinguish between several models and assign a value of λm~=1.5 W m-1 K-1, or 16.0% of λ, at 200 K.

  15. Thermal resistance of Francisella tularensis in infant formula and fruit juices.

    PubMed

    Day, J B; Trujillo, S; Hao, Y Y D; Whiting, R C

    2008-11-01

    Francisella tularensis is a gram-negative bacterium that can cause gastrointestinal or oropharyngeal tularemia from ingestion of contaminated food or water. Despite the potential for accidental or intentional contamination of foods with F. tularensis, little information exists on the thermal stability of this organism in food matrices. In the present study, the thermal resistance of the live vaccine strain of F. tularensis in four food products (liquid infant formula, apple juice, mango juice, and orange juice) was investigated. D-values ranged from 12 s (57.5 degrees C) to 580 s (50 degrees C) in infant formula with a z-value of 4.37 degrees C. D-values in apple juice ranged from 8 s (57.5 degrees C) to 59 s (50 degrees C) with a z-value of 9.17 degrees C. The live vaccine strain did not survive at temperatures above 55 degrees C in mango juice and orange juice (>6-log inactivation). D-values at 55 to 47.5 degrees C were 15 to 59 s in mango juice and 16 to 105 s in orange juice with z-values of 9.28 and 12.30 degrees C, respectively. These results indicate that current pasteurization parameters used for destroying common foodborne bacterial pathogens are adequate for eliminating F. tularensis in the four foods tested. This study is the first to determine thermal inactivation of F. tularensis in specific foods and will permit comparisons with the thermal inactivation data of other more traditional foodborne pathogens. PMID:19044262

  16. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    SciTech Connect

    Weening, R. H.

    2012-06-15

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

  17. Thermal Resistances in the Everest Area derived from Satellite Imagery using a Nonlinear Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Rounce, D.; McKinney, D. C.

    2013-12-01

    Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M

  18. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  19. Survival of Listeria monocytogenes in sea water and effect of exposure on thermal resistance.

    PubMed

    Bremer, P J; Osborne, C M; Kemp, R A; Smith, J J

    1998-09-01

    Survival, recoverability and sublethal injury of two strains of Listeria monocytogenes, Scott A and an environmental strain KM, on exposure to sea water at 12.8 or 20.8 degrees C was determined using in situ diffusion chambers. Plate counts were used to assess recoverability and injury while 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction was used to determine respiratory activity. T90 values (times for 10-fold decreases in numbers of recoverable cells) on non-selective medium (trypticase soya agar with 0.6% yeast extract) at 12.8 and 20.8 degrees C were 61.7 and 69.2 h for L. monocytogenes Scott A, and 103.0 and 67.0 h for L. monocytogenes KM, respectively. On selective medium (Oxford agar), T90 values at 12.8 and 20.8 degrees C were 60.6 and 56.9 h for L. monocytogenes Scott A, and 83.0 and 65.9 h for L. monocytogenes KM, respectively. With Scott A, the percentage of sublethally injured cells at 12.8 and 20.8 degrees C was 1.7 and 17.7%, respectively, while for KM the values were 19.0 and 1.6%, respectively. The fraction of cells reducing CTC but which were not recoverable on plating progressively increased on exposure to sea water. Listeria monocytogenes KM challenged at 58 degrees C showed an apparent increase in heat resistance after exposure to sea water at 20.8 degrees C for 7 d (D58 = 2.64 min) compared with before exposure (D58 = 1.24). This increase in thermal resistance was not apparent at temperatures greater than 63 degrees C, and analysis of the best-fit regression lines fitted to the thermal data obtained from the two cell populations indicated that their thermal resistance was not significantly different (P > 0.05) over the temperature range tested (58-62 degrees C). PMID:9750285

  20. Two orders of magnitude reduction in the temperature dependent resistivity of Ga1-xMnxAs grown on (6 3 1) GaAs insulating substrates

    NASA Astrophysics Data System (ADS)

    Rangel-Kuopp, Victor-Tapio; Martinez-Velis, Isaac; Gallardo-Hernandez, Salvador; Lopez-Lopez, Maximo

    2013-12-01

    The temperature dependent van der Pauw (T-Pauw) technique was used to investigate the resistivity of three Ga1-xMnxAs layers grown on (6 3 1) GaAs semi-insulating substrates. The samples had Mn concentration of 3.52×l020 cm-3, 5.05×1020 cm-3 and 1.12×l021 cm-3, corresponding to Mn cell effusion temperature TMn of 700 °C, 715 °C and 745 °C, respectively. They were compared to samples grown under the same conditions but on (0 0 1) GaAs semi-insulating substrates. For the sample grown at TMn=700 °C on a (6 3 1) substrate, a two orders of magnitude decrease in the resistivity is observed, when compared with the sample grown on a (0 0 1) substrate. For the sample grown at TMn=715 °C the decrease is approximately four times, while for the sample grown at TMn=745 °C the decrease is approximately forty times. We plotted the resistivities as a function of temperature in Arrhenius plots, where we extracted two activation energies, the smallest one between 6 and 11 meV, and the largest one between 25 and 183 meV. Both activation energies increased as TMn increased. These results are in agreement with SIMS analysis where we observed that manganese concentration in the (6 3 1) orientation growth is around two order of magnitude larger than in the samples grown in the (0 0 1) orientation substrate.

  1. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates

    NASA Astrophysics Data System (ADS)

    Chan, Mei Yin; Komatsu, Katsuyoshi; Li, Song-Lin; Xu, Yong; Darmawan, Peter; Kuramochi, Hiromi; Nakaharai, Shu; Aparecido-Ferreira, Alex; Watanabe, Kenji; Taniguchi, Takashi; Tsukagoshi, Kazuhito

    2013-09-01

    We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices.We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substrates further indicate that reducing substrate traps is crucial for enhancing the mobility in atomically thin MoS2 devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03220e

  2. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    DOE PAGESBeta

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; Satija, Sushil K.; Page, Kirt A.; Patton, Derek L.; Jones, Ronald L.; Karin, Alamgir; Douglas, Jack F.

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less

  3. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    SciTech Connect

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; Satija, Sushil K.; Page, Kirt A.; Patton, Derek L.; Jones, Ronald L.; Karin, Alamgir; Douglas, Jack F.

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.

  4. Model for thermal stress resistance of truly elastic materials containing more than one crack. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.

    1974-01-01

    The model was developed upon the physical properties of surface energy and intrinsic modulus of elasticity of a material containing a number of equal sized microcracks which are independent of one another. The effect of these cracks upon the strain energy per unit volume of material necessary to continue simultaneous crack growth as well as the measured physical properties was established, and the thermal stress resistance is developed in terms of this energy. The model is expressed in its final form in terms of the measured physical properties of fracture strength, effective modulus of elasticity, and coefficient of thermal expansion. The model was applied to existent thermal stress data of ceramic materials for which these physical properties had been measured. On the basis of these data it was concluded that the thermal stress resistance of a material may be improved by increasing the fracture strength.

  5. Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB.

    PubMed

    Schuster, Sabine; Vavra, Martina; Kern, Winfried V

    2016-07-01

    Efflux pumps of the resistance nodulation cell division (RND) transporter family, such as AcrB of Escherichia coli, play an important role in the development of multidrug resistance, but the molecular basis for their substrate promiscuity is not yet completely understood. From a collection of highly clarithromycin-resistant AcrB periplasmic domain mutants derived from in vitro random mutagenesis, we identified variants with an unusually altered drug resistance pattern characterized by increased susceptibility to many drugs of lower molecular weight, including fluoroquinolones, tetracyclines, and oxazolidinones, but unchanged or increased resistance to drugs of higher molecular weight, including macrolides. Sequencing of 14 such "divergent resistance" phenotype mutants and 15 control mutants showed that this unusual phenotype was associated with mutations at residues I38 and I671 predominantly to phenylalanine and threonine, respectively, both conferring a similar susceptibility pattern. Reconstructed I38F and I671T single mutants as well as an engineered I38F I671T double mutant with proved efflux competence revealed an equivalent phenotype with enhanced or unchanged resistance to many large AcrB substrates but increased susceptibility to several lower-molecular-weight drugs known to bind within the distal binding pocket. The two isoleucines located in close vicinity to each other in the lower porter domain of AcrB beneath the bottom of the proximal binding pocket may be part of a preferential small-drug entrance pathway that is compromised by the mutations. This finding supports recent indications of distinct entrance channels used by compounds with different physicochemical properties, of which molecular size appears to play a prominent role. PMID:27161641

  6. Diffusion in liquid metal systems. [information on electrical resistivity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1975-01-01

    Physical properties of twenty liquid metals are reported; some of the data on such liquid metal properties as density, electrical resistivity, thermal conductivity, and heat capacity are summarized in graphical form. Data on laboratory handling and safety procedure are summarized for each metal; heat-transfer-correlations for liquid metals under various conditions of laminar and turbulent flow are included. Where sufficient data were available, temperature equations of properties were obtained by the method of least-squares fit. All values of properties given are valid in the given liquid phase ranges only. Additional tabular data on some 40 metals are reported in the appendix. Included is a brief description of experiments that were performed to investigate diffusion in liquid indium-gallium systems.

  7. Simulation of thermal reset transitions in resistive switching memories including quantum effects

    SciTech Connect

    Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B.; Suñé, J.; Miranda, E.; Romera, E.

    2014-06-07

    An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO{sub 2}/Si-n{sup +} structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

  8. Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle

    NASA Astrophysics Data System (ADS)

    Jin, Zhiwen; Liu, Guo; Wang, Jizheng

    2013-05-01

    Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.

  9. The effect of bioindicator preparation and storage on thermal resistance of Bacillus stearothermophilus spores.

    PubMed

    Penna, Thereza Christina Vessoni; Ishii, Marina; Machoshvili, Irene Alexeevna; Marques, Marcelo

    2002-01-01

    Paper strips inoculated with spores of Bacillus stearothermophilus ATCC 7953 were conventionally dried (lot 1) and lyophilized (lot 2); stored in defined environments of 32 and 86% relative humidity at 10, 25 and 33 degrees C for 210 d; and submitted to moist heat treatments at 121 degrees C. A significant decrease in thermal resistance from initial starting levels was found for lyophilized bioindicators stored at 86% relative humidity. The respective average D121 degrees C values were 1.55+/-0.05 and 1.37+/-0.10 min for lyophilized bioindicators stored at 32 and 86% relative humidity; and 1.65+/-0.15 min and 1.57+/-0.11 min for dried bioindicators stored in the same environments. PMID:12018279

  10. Temperate and virulent Lactobacillus delbrueckii bacteriophages: comparison of their thermal and chemical resistance.

    PubMed

    Ebrecht, Ana C; Guglielmotti, Daniela M; Tremmel, Gustavo; Reinheimer, Jorge A; Suárez, Viviana B

    2010-06-01

    The aim of this work was to study the efficiency of diverse chemical and thermal treatments usually used in dairy industries to control the number of virulent and temperate Lactobacillus delbrueckii bacteriophages. Two temperate (Cb1/204 and Cb1/342) and three virulent (BYM, YAB and Ib3) phages were studied. The thermal treatments applied were: 63 degrees C for 30 min (low temperature--long time, LTLT), 72 degrees C for 15 s (high temperature--short time, HTST), 82 degrees C for 5 min (milk destined to yogurt elaboration) and 90 degrees C for 15 min (FIL-IDF). The chemical agents studied were: sodium hypochlorite, ethanol, isopropanol, peracetic acid, biocides A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid). The kinetics of inactivation were drew and T(99) (time necessary to eliminate the 99% of phage particles) calculated. Results obtained showed that temperate phages revealed lower resistance than the virulent ones to the treatment temperatures. Biocides A, C, E and peracetic acid showed a notable efficiency to inactivate high concentrations of temperate and virulent L. delbrueckii phages. Biocide B evidenced, in general, a good capacity to eliminate the phage particles. Particularly for this biocide virulent phage Ib3 showed the highest resistance in comparison to the rest of temperate and virulent ones. On the contrary, biocide D and isopropanol presented a very low capacity to inactivate all phages studied. The efficiency of ethanol and hypochlorite was variable depending to the phages considered. These results allow a better knowledge and give useful information to outline more effective treatments to reduce the phage infections in dairy plants. PMID:20417401

  11. Dymalloy: A composite substrate for high power density electronic components

    SciTech Connect

    Kerns, J.A.; Colella, N.J.; Makowiecki, D.; Davidson, H.L.

    1995-06-29

    High power density electronic components such as fast microprocessors and power semiconductors must operate below the maximum rated device junction temperature to ensure reliability. function temperatures are determined by the amount of heat generated and the thermal resistance from junction to the ambient thermal environment. Two of the Largest contributions to this thermal resistance are the die attach interface and the package base. A decrease in these resistances can allow increased component packing density in MCMs, reduction of heat sink volume in tightly packed systems, enable the use of higher performance circuit components, and improve reliability. The substrate for high power density devices is the primary thermal link between the junctions and the heat sink. Present high power multichip modules and single chip packages use substrate materials such as silicon nitride or copper tungsten that have thermal conductivity in the range of 200 W/mK. We have developed Dymalloy, a copper-diamond composite, that has a thermal conductivity of 420 W/mK and an adjustable coefficient of thermal expansion, nominally 5.5 ppm/C at 25 C, compatible with silicon and gallium arsenide. Because of the matched coefficient of thermal expansion it is possible to use low thermal resistance hard die attach methods. Dymalloy is a composite material made using micron size Type I diamond powder that has a published thermal conductivity of 600 to 1000 W/mK in a metal matrix that has a thermal conductivity of 350 W/mK. The region of chemical bonding between the matrix material and diamond is limited to approximately 1000 A to maintain a high effective thermal conductivity for the composite. The material may be fabricated in near net shapes. Besides having exceptional thermal properties, the mechanical properties of this material also make it an attractive candidate as an electronic component substrate material.

  12. Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Barrow, B. J.

    1986-01-01

    Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy.

  13. Examinations of Chemical Resistance and Thermal Behaviour of Ceramic Filter Materials for Hot-Gas Cleaning

    SciTech Connect

    Angermann, J.; Meyer, B.; Horlbeck, W.

    2002-09-19

    Increasing prosperity and the steady growth of the world population lead to a strongly rising energy requirement. Therefore the saving of the available resources as well as the limitation of CO{sub 2}-emission are the main reasons for developing highly efficient power stations. The use of combined cycle technology for advanced coal fired power plants allow a significantly higher conversion efficiency than it is possible in an only steam power plant. In order to increase the gas turbine inlet temperature, the filtration of fine particles is necessary. Therefore the filtration unit is one of the key components of the circulating pressurized fluidized bed combustion technology (PFBC). To use this technology more effectively, gas cleaning at high temperatures or in an reducing atmosphere is necessary. A possibility of the effective gas cleaning at high temperatures is the use of porous ceramic candle filters. The structure of such filter elements usually consists of a highly porous sup port which ensures the mechanical strength and a layer which operates as the functional part for the particle removal. To ensure a guaranteed lifetime of about 16000 h the effect of combustion or gasification atmosphere and temperature on the thermal and mechanical properties of the filter material has to be studied. The examinations and results, described in this article, are part of some previous work. This paper focuses especially on the chemical resistance and the thermal behaviour of the used ceramic filter materials.

  14. Development of silane-hydrolysate binder for UV-resistant thermal control coatings

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1981-01-01

    Detailed characterizaton and formulation studies were performed on a methyltriakoxysilane hydrolysate as a binder for thermal control coatings. The binder was optimized by varying hydrolysis temperature, time, catalyst type, and water concentration. The candidate coating formulations, based on this binder with TiO2 pigment, were optimized via a detailed series of sprayed test panels that included the parameters of binder/pigment ratio, ethanol content, pigment particle size, coating thickness and cure conditions. A typical optimized coating was prepared by acetic acid catalyzed hydrolysis of methyltriethoxysilane with 3.25 mol-equivalents of water over a 24 hour period at room temperature. The resulting hydrolysate was directly mixed with pre-milled TiO2 (12 grams pigment/26 grams binder) to yield a sprayable consistency. Panels were sprayed to result in a nominal cure coating thickness of 2 mils. Cure was affected by air drying for 24 hr at room temperature plus 72 hr at 150 F. These coatings are typically extremely tough and abrasion-resistant, with an absorptance (alpha) of 0.20 and emittance (e) of 0.89. No significant coating damage was observed in the mandrel bend test, even after exposure to thermal cycling from -160 to 160 F. Vacuum exposure of the coatings for 930 hours at 1 equivalent UV sun resulted in no visible degradation and no significant increase in absorptance.

  15. Microstructure and Wear Resistance of Fe-Based Amorphous Metallic Coatings Prepared by HVOF Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2010-12-01

    Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were fabricated by means of high velocity oxygen fuel (HVOF) thermal spraying process. The microstructure and wear performance of the coatings were characterized simultaneously in this article. It is found that the coatings present a dense layered structure with the porosity below 1.5%. The coatings primarily consist of amorphous matrix and some precipitated nanocrystals, though a fraction of Fe-rich phases and oxide stringers also formed during deposited process. High thermal stability enables the amorphous coatings to work below 920 K temperature without crystallization. Depending on the structural advantage, the amorphous coatings exhibit high average microhardness of 997.3 HV0.2, and excellent wear resistance during dry frictional wear process. The dominant wear mechanism of amorphous coating under this condition is fatigue wear, leading to partial or entire flaking off of the lamellae. In addition, the appearance of oxidative wear accelerates the failure of fatigue wear.

  16. Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.

    SciTech Connect

    Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

    1999-07-02

    This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

  17. Effects of substrate annealing and post-crystallization thermal treatments on the functional properties of preferentially oriented (Pb,Ca)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Poyato, R.; Calzada, M. L.; Pardo, L.

    2003-04-01

    <111> and <001>,<100> preferentially oriented calcium-modified lead titanate thin films have been studied. Effects of the substrate annealing and post-crystallization thermal treatment of the films on the texture and ferro-, piezo-, and pyroelectric properties have been analyzed and discussed. The annealing of the substrate has effect on the texture of <001>,<100>-oriented films and, as a consequence, produces an increase in the net polarization in the perpendicular direction to the plane of the film and in the pyroelectric coefficient. The annealing of the substrate does not affect the texture of <111>-oriented films, but the electrical properties at the electrode-substrate interface and, as a consequence, gives place to high internal electric fields leading to the highest spontaneous piezo- (5 pm V-1) and pyroelectric coefficients (25.0×10-9 C cm-2 K-1). The asymmetry that characterizes the functional properties of <111>-oriented films under poling with negative or positive polarity is also consequence of such a high internal field. This is accompanied with a remarkable field stability of the piezoelectric d33 coefficient when poling in the sense of the spontaneous polarization (d33˜45 pm V-1 under ±200 kV cm-1). The application of post-crystallization thermal treatment results in an enhancement of the ferroelectric and pyroelectric properties in all the films, by liberation of domains that were clamped by charged defects. Both the substrate and post-crystallization film annealing treatments lead to reach the highest values of remanent polarization (43 μC cm-2), pyroelectric coefficient (42.0×10-9 C cm-2 K-1), and figure of merit [13.3×10-6 (N m-2)-1/2] reported to date for sol-gel PTC films.

  18. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    PubMed Central

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  19. Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions

    NASA Astrophysics Data System (ADS)

    Kazan, M.; Bruyant, A.; Royer, P.; Masri, P.

    2010-04-01

    This review is intended to provide a critical and up-to-date survey of the analytical approximation methods that are encountered in interface thermal conductance. Because of the importance of the III-nitride materials for novel technological applications, these methods are applied to the thermal conductance of the interfaces between the III-nitride thin films and their commonly used substrates. The phonon behavior and the probability that a phonon transmits from the III-nitride film to the substrate are described first within the context of two limiting models for the interface thermal conductance. The acoustic mismatch model, which assumes that all the phonons incident to the interface are specularly transmitted or specularly reflected, and the diffuse mismatch model, which assumes that all the phonons incident to the interface are diffusively transmitted or diffusively reflected. We show that these two limiting models give very different results for the thermal conductance of the interface between the III-nitride films and their substrates. Next, a statistical model which describes the reflection of plane waves from rough surface is employed to discriminate between the specularly transmitted phonons and the diffusively transmitted phonons. This model predicts that a reflected plane wave leads to a plane wave in the direction of specular reflection and to a contribution with a finite angular spread about that direction depending on the tangential correlation of the surface asperities. Based upon this result, a new model for the interface thermal conductance, that interpolates between the acoustic mismatch model and the diffuse mismatch model and takes into account, instead the Debye approximation, the detailed phonon spectra of the materials in contact, is developed and applied to the interfaces GaN/Si, GaN/SiC, AlN/Si, AlN/SiC, InN/Si, and InN/SiC. In addition to the phonon wavevector, or alternatively, the phonon energy and the angles of incidence, the

  20. Expression of a phosphorylated p130Cas substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells

    PubMed Central

    Soni, Shefali; Lin, Bor-Tyh; August, Avery; Nicholson, Robert I.; Kirsch, Kathrin H.

    2009-01-01

    Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM-R cells, which were established by long-term exposure of estrogen (E2)-dependent MCF-7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant-negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial-like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3-kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti-apoptotic protein Bcl-2. Importantly, these changes re-sensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. PMID:19330798