Science.gov

Sample records for subtelomeric deletion syndrome

  1. Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene☆

    PubMed Central

    Linhares, Natália D.; Svartman, Marta; Salgado, Mauro Ivan; Rodrigues, Tatiane C.; da Costa, Silvia S.; Rosenberg, Carla; Valadares, Eugênia R.

    2013-01-01

    Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and that can be manifested in microforms such as single maxillary central incisor. A novel role for this gene in the developing human primary dentition was recently demonstrated. We report a 12-year old boy with a de novo 7q36.1-qter deletion characterized by high-resolution karyotyping, oligonucleotide aCGH and FISH. His phenotype includes intellectual disability, non-verbal communication, hypospadia, partial sacral agenesis and absence of coccyx, which are distinctive features of the syndrome and mainly correlated with the MNX1, HTR5A and EN2 genes. No microforms of holoprosencephaly spectrum were observed; but the patient had diastema and dental developmental abnormalities, such as conical, asymmetric and tapered inferior central incisors. The dental anomalies are reported herein for the first time in subtelomeric 7q36 deletion syndrome and may confirm clinically a novel role for the SHH gene in dental development. PMID:25606385

  2. Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene.

    PubMed

    Linhares, Natália D; Svartman, Marta; Salgado, Mauro Ivan; Rodrigues, Tatiane C; da Costa, Silvia S; Rosenberg, Carla; Valadares, Eugênia R

    2014-12-01

    Studies in mice demonstrated that the Shh gene is crucial for normal development of both incisors and molars, causing a severe retardation in tooth growth, which leads to abnormal placement of the tooth in the jaw and disrupted tooth morphogenesis. In humans the SHH gene is located on chromosome 7q36. Defects in its protein or signaling pathway may cause holoprosencephaly spectrum, a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres and that can be manifested in microforms such as single maxillary central incisor. A novel role for this gene in the developing human primary dentition was recently demonstrated. We report a 12-year old boy with a de novo 7q36.1-qter deletion characterized by high-resolution karyotyping, oligonucleotide aCGH and FISH. His phenotype includes intellectual disability, non-verbal communication, hypospadia, partial sacral agenesis and absence of coccyx, which are distinctive features of the syndrome and mainly correlated with the MNX1, HTR5A and EN2 genes. No microforms of holoprosencephaly spectrum were observed; but the patient had diastema and dental developmental abnormalities, such as conical, asymmetric and tapered inferior central incisors. The dental anomalies are reported herein for the first time in subtelomeric 7q36 deletion syndrome and may confirm clinically a novel role for the SHH gene in dental development. PMID:25606385

  3. Fine-mapping subtelomeric deletions and duplications by comparative genomic hybridization in 42 individuals.

    PubMed

    DeScipio, Cheryl; Spinner, Nancy B; Kaur, Maninder; Yaeger, Dinah; Conlin, Laura K; Ambrosini, Anthony; Hu, Sufen; Shan, Simei; Krantz, Ian D; Riethman, Harold

    2008-03-15

    Human subtelomere regions contain numerous gene-rich segments and are susceptible to germline rearrangements. The availability of diagnostic test kits to detect subtelomeric rearrangements has resulted in the diagnosis of numerous abnormalities with clinical implications including congenital heart abnormalities and mental retardation. Several of these have been described as clinically recognizable syndromes (e.g., deletion of 1p, 3p, 5q, 6p, 9q, and 22q). Given this, fine-mapping of subtelomeric breakpoints is of increasing importance to the assessment of genotype-phenotype correlations in these recognized syndromes as well as to the identification of additional syndromes. We developed a BAC and cosmid-based DNA array (TEL array) with high-resolution coverage of 10 Mb-sized subtelomeric regions, and used it to analyze 42 samples from unrelated patients with subtelomeric rearrangements whose breakpoints were previously either unmapped or mapped at a lower resolution than that achievable with the TEL array. Six apparently recurrent subtelomeric breakpoint loci were localized to genomic regions containing segmental duplication, copy number variation, and sequence gaps. Small (1 Mb or less) candidate gene regions for clinical phenotypes in separate patients were identified for 3p, 6q, 9q, and 10p deletions as well as for a 19q duplication. In addition to fine-mapping nearly all of the expected breakpoints, several previously unidentified rearrangements were detected. PMID:18257100

  4. Distinct phenotype associated with a cryptic subtelomeric deletion of 19p13.3-pter.

    PubMed

    Archer, H L; Gupta, S; Enoch, S; Thompson, P; Rowbottom, A; Chua, I; Warren, S; Johnson, D; Ledbetter, D H; Lese-Martin, C; Williams, P; Pilz, D T

    2005-07-01

    Telomeres are gene rich regions with a high recombination rate. Cryptic subtelomeric rearrangements are estimated to account for 5% of mental retardation/malformation syndromes. Here we present the first patient with a deletion of 19p13.3, identified by subtelomeric FISH analysis. His features included a distinctive facial appearance, cleft palate, hearing impairment, congenital heart malformation, keloid scarring, immune dysregulation, and mild learning difficulties. Subtelomeric FISH analysis identified a deletion of 19p13.3-pter. The deletion size was determined to be 1.2 Mb by FISH analysis. It extended from within the chromosomal region covered by BAC RP11-50C6 to 19pter. The deleted area encompassed approximately 60 genes. Fifteen possible candidate genes were considered with respect to the phenotype, including follistatin-related precursor 3 (FSTL3) and serine-threonine kinase 11 (STK-11). PMID:15937949

  5. Subtelomeric deletions of 1q43q44 and severe brain impairment associated with delayed myelination.

    PubMed

    Shimojima, Keiko; Okamoto, Nobuhiko; Suzuki, Yume; Saito, Mari; Mori, Masato; Yamagata, Tatanori; Momoi, Mariko Y; Hattori, Hideji; Okano, Yoshiyuki; Hisata, Ken; Okumura, Akihisa; Yamamoto, Toshiyuki

    2012-09-01

    Subtelomeric deletions of 1q44 cause mental retardation, developmental delay and brain anomalies, including abnormalities of the corpus callosum (ACC) and microcephaly in most patients. We report the cases of six patients with 1q44 deletions; two patients with interstitial deletions of 1q44; and four patients with terminal deletions of 1q. One of the patients showed an unbalanced translocation between chromosome 5. All the deletion regions overlapped with previously reported critical regions for ACC, microcephaly and seizures, indicating the recurrent nature of the core phenotypic features of 1q44 deletions. The four patients with terminal deletions of 1q exhibited severe volume loss in the brain as compared with patients who harbored interstitial deletions of 1q44. This indicated that telomeric regions have a role in severe volume loss of the brain. In addition, two patients with terminal deletions of 1q43, beyond the critical region for 1q44 deletion syndrome exhibited delayed myelination. As the deletion regions identified in these patients extended toward centromere, we conclude that the genes responsible for delayed myelination may be located in the neighboring region of 1q43. PMID:22718018

  6. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements

    PubMed Central

    Luo, Yue; Hermetz, Karen E.; Jackson, Jodi M.; Mulle, Jennifer G.; Dodd, Anne; Tsuchiya, Karen D.; Ballif, Blake C.; Shaffer, Lisa G.; Cody, Jannine D.; Ledbetter, David H.; Martin, Christa L.; Rudd, M. Katharine

    2011-01-01

    Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders. PMID:21729882

  7. Subtelomeric 6p25 deletion/duplication: Report of a patient with new clinical findings and genotype-phenotype correlations.

    PubMed

    Linhares, Natália D; Svartman, Marta; Rodrigues, Tatiane C; Rosenberg, Carla; Valadares, Eugênia R

    2015-05-01

    The 6p terminal deletions are rare and present variability of clinical features, which increases the importance of reporting additional cases in order to better characterize genotype-phenotype correlations. We report a 12-year-old girl with a de novo deletion in 6p25.1-pter characterized by high-resolution karyotyping and FISH. Further analysis using oligonucleotide array-CGH revealed a 5.06 Mb 6p25.1-pter deletion associated with a contiguous 1 Mb 6p25.1 duplication. The patient presented normal growth, developmental delay, frontal bossing, severe hypertelorism, corectopia, wide and depressed nasal bridge, mild learning disability, hearing loss and diffuse leukopathy. Additionaly, she presented peculiar phenotypic features reported herein for the first time in 6p25 deletion syndrome: cerebrospinal fluid fistula and bones resembling those seen in 3-M syndrome. The distinctive phenotype of the 6p25 deletion syndrome has been mainly correlated with the FOXC1 and FOXF2 genes deletions, both related mainly to eye development. We also consider the SERPINB6 as a candidate for sensorineural hearing loss and TUBB2A as a candidate for our patient's skeletal features. In addition, as our patient had a duplication including NRN1, a gene related with neurodevelopment, synaptic plasticity and cognitive dysfunction in schizophrenia, we suggest that this gene could be associated with her white matter abnormalities and neurocognitive phenotype. PMID:25817395

  8. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  9. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    PubMed Central

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  10. A boy with a submicroscopic 22qter deletion, general overgrowth and features suggestive of FG syndrome.

    PubMed

    de Vries, B B; Bitner-Glindzicz, M; Knight, S J; Tyson, J; MacDermont, K D; Flint, J; Malcolm, S; Winter, R M

    2000-12-01

    Over recent years, submicroscopic subtelomeric rearrangements have been shown to be a significant cause of mental retardation and, therefore, such abnormalities should be considered in every child with moderate to severe retardation with additional features suggestive of a chromosomal abnormality. The FG syndrome is an X-linked recessive mental retardation syndrome with congenital hypotonia, relative macrocephaly, a characteristic facies and constipation. We describe a severely mentally retarded boy with a history of severe constipation, truncal hypotonia, facial dysmorphism, fetal pads, and joint laxity, leading to an initial diagnosis of FG syndrome at the age of 3 years. Clinical re-evaluation at the age of 6 years, when he showed signs of general overgrowth, initiated a telomere screen, and a submicroscopic 22q13.3 telomere deletion was detected. The features suggestive of FG syndrome in this boy with a 22q13.3--> qter deletion may indicate testing for submicroscopic 22qter deletions in patients with atypical features of FG syndrome without a definite X-linked family history. PMID:11149619

  11. Cognitive-behavioral characteristics and developmental trajectories in children with deletion 11qter (Jacobsen syndrome), and their relation to deletion size.

    PubMed

    Fisch, Gene S

    2015-01-01

    Subtelomeric deletions represent an important class of abnormalities to be considered when investigating genetic links to intellectual disability (ID). One subtelomeric deletion found on the long arm of chromosome 11q produces a characteristic phenotype that includes ID and is often referred to as Jacobsen syndrome (JBS). Previously, researchers found an inverse relationship between IQ and deletion size. While useful, IQ does not provide a comprehensive picture of the cognitive-behavioral strengths and weaknesses in JBS, nor does it reveal how the profiles evolve as these individuals age. One purpose of this study was to confirm the relationship between IQ or adaptive behavior (DQ) and deletion size. We also examined cognitive-behavioral profiles of children with JBS and the extent to which they changed over time. Initially, at T1, we examined 10 children, ages 5-20 years, diagnosed with JBS. Cognitive ability was assessed with the Stanford-Binet (4th Edition). Adaptive behavoir was evaluated with the Vineland Adaptive Behavior Scales (VABS). Eight children were reassessed 2 years later (T2). Results show a negative but non-significant correlation between IQ and deletion size. There was no statistically significant relationship between DQ and deletion size. As for our second aim, IQ and DQ scores were stable from T1 to T2. Cognitive profiles were not significantly different from T1 to T2. However, there were significant changes in adaptive behavior domain scores from T1 to T2. Lack of a significant relationship between cognitive-behavioral measures and deletion size, as well as changes in cognitive-behavioral profiles are discussed. PMID:25425441

  12. A de novo 1.1-1.6 Mb subtelomeric deletion of chromosome 20q13.33 in a patient with learning difficulties but without obvious dysmorphic features.

    PubMed

    Béna, Frédérique; Bottani, Armand; Marcelli, Fabienne; Sizonenko, Loredana D'Amato; Conrad, Bernard; Dahoun, Sophie

    2007-08-15

    We report on a de novo submicroscopic deletion of 20q13.33 identified by subtelomeric fluorescence in situ hybridization (FISH) in a 4-year-old girl with learning difficulties, hyperlaxity and strabismus, but without obvious dysmorphic features. Further investigations by array-based comparative genomic hybridization (array-CGH) and FISH analysis allowed us to delineate the smallest reported subterminal deletion of chromosome 20q, spanning a 1.1-1.6 Mb with a breakpoint localized between BAC RP5-887L7 and RP11-261N11. The genes CHRNA4 and KCNQ2 implicated in autosomal dominant epilepsy are included in the deletion interval. Subterminal 20q deletions as found in the present patient have, to our knowledge, only been reported in three patients. We review the clinical and behavioral phenotype of such "pure" subterminal 20q deletions. PMID:17632785

  13. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... deletion syndrome to have attention deficit hyperactivity disorder (ADHD) and developmental conditions such as autism spectrum disorders that affect communication and social interaction. Because the signs and symptoms of 22q11.2 deletion syndrome are ...

  14. 1p36 deletion syndrome: an update

    PubMed Central

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. PMID:26345236

  15. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  16. A subtelomeric non-LTR retrotransposon Hebe in the bdelloid rotifer Adineta vaga is subject to inactivation by deletions but not 5' truncations

    PubMed Central

    2010-01-01

    Background Rotifers of the class Bdelloidea are microscopic freshwater invertebrates best known for: their capacity for anhydrobiosis; the lack of males and meiosis; and for the ability to capture genes from other non-metazoan species. Although genetic exchange between these animals might take place by non-canonical means, the overall lack of meiosis and syngamy should greatly impair the ability of transposable elements (TEs) to spread in bdelloid populations. Previous studies demonstrated that bdelloid chromosome ends, in contrast to gene-rich regions, harbour various kinds of TEs, including specialized telomere-associated retroelements, as well as DNA TEs and retrovirus-like retrotransposons which are prone to horizontal transmission. Vertically-transmitted retrotransposons have not previously been reported in bdelloids and their identification and studies of the patterns of their distribution and evolution could help in the understanding of the high degree of TE compartmentalization within bdelloid genomes. Results We identified and characterized a non-long terminal repeat (LTR) retrotransposon residing primarily in subtelomeric regions of the genome in the bdelloid rotifer Adineta vaga. Contrary to the currently prevailing views on the mode of proliferation of non-LTR retrotransposons, which results in frequent formation of 5'-truncated ('dead-on-arrival') copies due to the premature disengagement of the element-encoded reverse transcriptase from its template, this non-LTR element, Hebe, is represented only by non-5'-truncated copies. Most of these copies, however, were subject to internal deletions associated with microhomologies, a hallmark of non-homologous end-joining events. Conclusions The non-LTR retrotransposon Hebe from the bdelloid rotifer A. vaga was found to undergo frequent microhomology-associated deletions, rather than 5'-terminal truncations characteristic of this class of retrotransposons, and to exhibit preference for telomeric localization. These findings represent the first example of a vertically transmitted putatively deleterious TE in bdelloids, and may indicate the involvement of microhomology-mediated non-homologous end-joining in desiccation-induced double-strand break repair at the genome periphery. PMID:20359339

  17. 22q11.2 deletion syndrome.

    PubMed

    McDonald-McGinn, Donna M; Sullivan, Kathleen E; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A S; Zackai, Elaine H; Emanuel, Beverly S; Vermeesch, Joris R; Morrow, Bernice E; Scambler, Peter J; Bassett, Anne S

    2015-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  18. Prader-Willi syndrome with an unusually large 15q deletion due to an unbalanced translocation t(4;15).

    PubMed

    Varela, Monica C; Lopes, Graziela M P; Koiffmann, Celia P

    2004-01-01

    Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome. PMID:15337472

  19. Large Deletions and Point Mutations Involving DOCK8 in the Autosomal Recessive Form of the Hyper-IgE Syndrome

    PubMed Central

    Engelhardt, Karin R.; McGhee, Sean; Winkler, Sabine; Sassi, Atfa; Woellner, Cristina; Lopez-Herrera, Gabriela; Chen, Andrew; Kim, Hong Sook; Lloret, Maria Garcia; Schulze, Ilka; Ehl, Stephan; Thiel, Jens; Pfeifer, Dietmar; Veelken, Hendrik; Niehues, Tim; Siepermann, Kathrin; Weinspach, Sebastian; Reisli, Ismail; Keles, Sevgi; Genel, Ferah; Kütükçüler, Necil; Camcioğlu, Yildiz; Somer, Ayper; Aydiner, Elif Karakoc; Barlan, Isil; Gennery, Andrew; Metin, Ayse; Degerliyurt, Aydan; Pietrogrande, Maria C.; Yeganeh, Mehdi; Baz, Zeina; Al-Tamemi, Salem; Klein, Christoph; Puck, Jennifer M.; Holland, Steven M.; McCabe, Edward R. B.; Grimbacher, Bodo; Chatila, Talal

    2010-01-01

    Background The genetic etiologies of the hyper-IgE syndromes are diverse. Approximately 60-70% of patients with hyper-IgE syndrome have dominant mutations in STAT3, and a single patient was reported to have a homozygous TYK2 mutation. In the remaining hyper-IgE syndrome patients, the genetic etiology has not yet been identified. Methods We performed genome-wide single nucleotide polymorphism analysis for nine subjects with autosomal recessive hyper-IgE syndrome to locate copy number variations and homozygous haplotypes. Homozygosity mapping was performed with twelve subjects from seven additional families. The candidate gene was analyzed by genomic and cDNA sequencing to identify causative alleles in a total of 27 patients with autosomal recessive hyper-IgE syndrome. Findings Subtelomeric microdeletions were identified in six subjects at the terminus of chromosome 9p. In all patients the deleted interval involved DOCK8, encoding a protein implicated in the regulation of the actin cytoskeleton. Sequencing of subjects without large deletions revealed 16 patients from nine unrelated families with distinct homozygous mutations in DOCK8 causing premature termination, frameshift, splice site disruption, single exon- and micro-deletions. DOCK8 deficiency was associated with impaired activation of CD4+ and CD8+ T cells. Interpretation Autosomal recessive mutations in DOCK8 are responsible for many, though not all, cases of autosomal recessive hyper-IgE syndrome. DOCK8 disruption is associated with a phenotype of severe cellular immunodeficiency characterized by susceptibility to viral infections, atopic eczema, defective T cell activation and TH17 cell differentiation; and impaired eosinophil homeostasis and dysregulation of IgE. PMID:20004785

  20. Molecular dissection of the 5q deletion in myelodysplastic syndrome

    PubMed Central

    Ebert, Benjamin L.

    2011-01-01

    The 5q- syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletions of Chromosome 5q. While no genes have been identified that undergo recurrent homozygous inactivation, functional studies have revealed individual genes that contribute to the clinical phenotype of MDS through haploinsufficient gene expression. Heterozygous loss of the RPS14 gene on 5q leads to activation of p53 in the erythroid lineage and the macrocytic anemia characteristic of the 5q- syndrome. The megakaryocytic and platelet phenotype of the 5q- syndrome has been attributed to heterozygous deletion of miR145 and miR146a. Murine models have implicated heterozygous loss of APC, EGR1, DIAPH1, and NPM1 in the pathophysiology of del(5q) MDS. These findings indicate that the phenotype of MDS patients with deletions of Chromosome 5q is due to haploinsufficiency of multiple genes. PMID:21943668

  1. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome)

    PubMed Central

    Phelan, K.; McDermid, H.E.

    2012-01-01

    The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and neonatal hypotonia. In addition, more than 50% of patients show autism or autistic-like behavior, and therefore it can be classified as a syndromic form of autism spectrum disorders (ASD). The differential diagnosis includes Angelman syndrome, velocardiofacial syndrome, fragile X syndrome, and FG syndrome. Over 600 cases of 22q13.3 deletion syndrome have been documented. Most are terminal deletions of ∼100 kb to >9 Mb, resulting from simple deletions, ring chromosomes, and unbalanced translocations. Almost all of these deletions include the gene SHANK3 which encodes a scaffold protein in the postsynaptic densities of excitatory synapses, connecting membrane-bound receptors to the actin cytoskeleton. Two mouse knockout models and cell culture experiments show that SHANK3 is involved in the structure and function of synapses and support the hypothesis that the majority of 22q13.3 deletion syndrome neurological defects are due to haploinsufficiency of SHANK3, although other genes in the region may also play a role in the syndrome. The molecular connection to ASD suggests that potential future treatments may involve modulation of metabotropic glutamate receptors. PMID:22670140

  2. Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome

    PubMed Central

    Stachon, Andrea C.; Squire, Jeremy A.; Moldovan, Laura; Bayani, Jane; Meyn, Stephen; Chow, Eva; Bassett, Anne S.

    2011-01-01

    22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS. PMID:17028864

  3. Del(18p) shown to be a cryptic translocation using a multiprobe FISH assay for subtelomeric chromosome rearrangements.

    PubMed Central

    Horsley, S W; Knight, S J; Nixon, J; Huson, S; Fitchett, M; Boone, R A; Hilton-Jones, D; Flint, J; Kearney, L

    1998-01-01

    We have previously described a fluorescence in situ hybridisation (FISH) assay for the simultaneous analysis of all human subtelomeric regions using a single microscope slide. Here we report the use of this multiprobe FISH assay in the study of a patient whose karyotype was reported by G banding analysis as 46,XX,del(18)(p11.2). Although the proband had some features suggestive of a chromosomal abnormality, relatively few of the specific features of del(18p) were present. She was a 37 year old female with mild distal spinal muscular atrophy (SMA), arthritis of the hands, an abnormal chest shape (pectus excavatum), and an unusual skin condition (keratosis pilaris). Reverse chromosome painting with degenerate oligonucleotide primer-polymerase chain reaction (DOP-PCR) amplified del(18p) chromosomes as a probe confirmed the abnormality as del(18p), with no evidence of any other chromosome involvement. Subsequently, the multiprobe FISH assay confirmed deletion of 18p subtelomeric sequence. However, the assay also showed that sequences corresponding to the 2p subtelomeric probe were present on the tip of the shortened 18p. The patient is therefore monosomic for 18p11.2-pter and trisomic for 2p25-pter, and the revised karyotype is 46,XX,der(18)t(2;18)(p25; p11.2). We believe that a proportion of all cases reported as telomeric deletions may be cryptic translocations involving other chromosome subtelomeric regions. Further studies such as this are necessary to define accurately the clinical characteristics associated with pure monosomy in chromosomal deletion syndromes. Images PMID:9733029

  4. Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: beyond breakage – fusion - bridge for telomere stabilization

    PubMed Central

    Yatsenko, Svetlana A.; Hixson, Patricia; Roney, Erin K.; Scott, Daryl A.; Schaaf, Christian P.; Ng, Yu-tze; Palmer, Robbin; Fisher, Richard B.; Patel, Ankita; Cheung, Sau Wai; Lupski, James R.

    2012-01-01

    Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion-duplication or duplication-triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in C elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication. PMID:22890305

  5. Genetics Home Reference: 18q deletion syndrome

    MedlinePlus

    ... to severe, but some affected individuals have normal intelligence and development. Seizures, hyperactivity, aggression, and autistic behaviors ... Muenke M, Scott CI Jr, Overhauser J. Molecular analysis of the 18q- syndrome--and correlation with phenotype. ...

  6. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects.

    PubMed

    Varela, Monica Castro; Kok, Fernando; Otto, Paulo Alberto; Koiffmann, Celia Priszkulnik

    2004-12-01

    Angelman syndrome (AS) can result from either a 15q11-q13 deletion (del), paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. Here, we describe the phenotypic and behavioral variability detected in 49 patients with different classes of deletions and nine patients with UPD. Diagnosis was made by methylation pattern analysis of exon 1 of the SNRPN-SNURF gene and by microsatellite profiling of loci within and outside the 15q11-q13 region. There were no major phenotypic differences between the two main classes (BP1-BP3; BP2-BP3) of AS deletion patients, except for the absence of vocalization, more prevalent in patients with BP1-BP3 deletions, and for the age of sitting without support, which was lower in patients with BP2-BP3 deletions. Our data suggest that gene deletions (NIPA1, NIPA2, CYF1P1, GCP5) mapped to the region between breakpoints BP1 and BP2 may be involved in the severity of speech impairment, since all BP1-BP3 deletion patients showed complete absence of vocalization, while 38.1% of the BP2-BP3 deletion patients were able to pronounce syllabic sounds, with doubtful meaning. Compared to UPD patients, deletion patients presented a higher incidence of swallowing disorders (73.9% del x 22.2% UPD) and hypotonia (73.3% del x 28.57% UPD). In addition, children with UPD showed better physical growth, fewer or no seizures, a lower incidence of microcephaly, less ataxia and higher cognitive skills. As a consequence of their milder or less typical phenotype, AS may remain undiagnosed, leading to an overall underdiagnosis of the disease. PMID:15470370

  7. Genetics Home Reference: 1p36 deletion syndrome

    MedlinePlus

    ... link) PubMed OMIM (1 link) CHROMOSOME 1p36 DELETION SYNDROME Sources for This Page Battaglia A, Hoyme HE, Dallapiccola B, Zackai E, Hudgins L, McDonald-McGinn D, Bahi-Buisson N, Romano C, Williams CA, Brailey LL, Zuberi SM, Carey JC. Further ...

  8. TCF4 deletions in Pitt-Hopkins Syndrome.

    PubMed

    Giurgea, Irina; Missirian, Chantal; Cacciagli, Pierre; Whalen, Sandra; Fredriksen, Tessa; Gaillon, Thierry; Rankin, Julia; Mathieu-Dramard, Michele; Morin, Gilles; Martin-Coignard, Dominique; Dubourg, Christèle; Chabrol, Brigitte; Arfi, Jacqueline; Giuliano, Fabienne; Claude Lambert, Jean; Philip, Nicole; Sarda, Pierre; Villard, Laurent; Goossens, Michel; Moncla, Anne

    2008-11-01

    Pitt-Hopkins syndrome (PHS) is a probably underdiagnosed, syndromic mental retardation disorder, marked by hyperventilation episodes and characteristic dysmorphism (large beaked nose, wide mouth, fleshy lips, and clubbed fingertips). PHS was shown to be caused by de novo heterozygous mutations of the TCF4 gene, located in 18q21. We selected for this study 30 unrelated patients whose phenotype overlapped PHS but which had been initially addressed for Angelman, Mowat-Wilson, or Rett syndromes. In 10 patients we identified nine novel mutations (four large cryptic deletions, including one in mosaic, and five small deletions), and a recurrent one. So far, a total of 20 different TCF4 gene mutations have been reported, most of which either consist in deletion of significant portions of the TCF4 coding sequence, or generate premature stop codons. No obvious departure was observed between the patients harboring point mutations and large deletions at the 18q21 locus, further supporting TCF4 haploinsufficiency as the molecular mechanism underling PHS. In this report, we also further specify the phenotypic spectrum of PHS, enlarged to behavior, with aim to increase the rate and specificity of PHS diagnosis. PMID:18781613

  9. Dissecting the phenotypes of Dravet syndrome by gene deletion.

    PubMed

    Rubinstein, Moran; Han, Sung; Tai, Chao; Westenbroek, Ruth E; Hunker, Avery; Scheuer, Todd; Catterall, William A

    2015-08-01

    Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types. PMID:26017580

  10. 18q deletion syndrome: a neuropsychological case study.

    PubMed

    Arguedas, Deborah; Batchelor, Jennifer

    2009-01-01

    The 18q deletion syndrome (18q-) is a chromosomal disorder involving deletion of the distal segment of chromosome 18. Typifying features include poor cerebral myelination, reduced intellectual functioning and developmental delay. The present study reports the case of an 8-year-old girl diagnosed with 18q-, whose genetic analysis revealed a break at q21.3. Comprehensive neuropsychological testing indicated impaired functioning across most cognitive domains. However, verbal abilities were intact. Given the preservation of verbal skills on a background of relatively global impairment, CB's genetic and cognitive profile has implications for delineation of neuropsychological features associated with specific breakpoints in 18q-. PMID:19153872

  11. Molecular dissection of the 5q deletion in myelodysplastic syndrome.

    PubMed

    Ebert, Benjamin L

    2011-10-01

    The 5q-syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletions of chromosome 5q. While no genes have been identified that undergo recurrent homozygous inactivation, functional studies have revealed individual genes that contribute to the clinical phenotype of MDS through haplo-insufficient gene expression. Heterozygous loss of the RPS14 gene on 5q leads to activation of p53 in the erythroid lineage and the macrocytic anemia characteristic of the 5q-syndrome. The megakaryocytic and platelet phenotype of the 5q-syndrome has been attributed to heterozygous deletion of miR145 and miR146a. Murine models have implicated heterozygous loss of APC, EGR1, DIAPH1, and NPM1 in the pathophysiology of del(5q) MDS. These findings indicate that the phenotype of MDS patients with deletions of chromosome 5q is due to haplo-insufficiency of multiple genes. PMID:21943668

  12. Supporting Children with Genetic Syndromes in the Classroom: The Example of 22q Deletion Syndrome

    ERIC Educational Resources Information Center

    Reilly, Colin; Stedman, Lindsey

    2013-01-01

    An increasing number of children are likely to have a known genetic cause for their special educational needs. One such genetic condition is 22q11.2 deletion syndrome (22qDS), a genetic syndrome associated with early speech and language difficulties, global and specific cognitive impairments, difficulties with attention and difficulties with…

  13. Supporting Children with Genetic Syndromes in the Classroom: The Example of 22q Deletion Syndrome

    ERIC Educational Resources Information Center

    Reilly, Colin; Stedman, Lindsey

    2013-01-01

    An increasing number of children are likely to have a known genetic cause for their special educational needs. One such genetic condition is 22q11.2 deletion syndrome (22qDS), a genetic syndrome associated with early speech and language difficulties, global and specific cognitive impairments, difficulties with attention and difficulties with

  14. Developmental Trajectories in Syndromes with Intellectual Disability, with a Focus on Wolf-Hirschhorn and Its Cognitive-Behavioral Profile

    ERIC Educational Resources Information Center

    Fisch, Gene S.; Carpenter, Nancy; Howard-Peebles, Patricia N.; Holden, Jeanette J. A.; Tarleton, Jack; Simensen, Richard; Battaglia, Agatino

    2012-01-01

    Few studies exist of developmental trajectories in children with intellectual disability, and none for those with subtelomeric deletions. We compared developmental trajectories of children with Wolf-Hirschhorn syndrome to other genetic disorders. We recruited 106 children diagnosed with fragile X, Williams-Beuren syndrome, or Wolf-Hirschhorn…

  15. Developmental Trajectories in Syndromes with Intellectual Disability, with a Focus on Wolf-Hirschhorn and Its Cognitive-Behavioral Profile

    ERIC Educational Resources Information Center

    Fisch, Gene S.; Carpenter, Nancy; Howard-Peebles, Patricia N.; Holden, Jeanette J. A.; Tarleton, Jack; Simensen, Richard; Battaglia, Agatino

    2012-01-01

    Few studies exist of developmental trajectories in children with intellectual disability, and none for those with subtelomeric deletions. We compared developmental trajectories of children with Wolf-Hirschhorn syndrome to other genetic disorders. We recruited 106 children diagnosed with fragile X, Williams-Beuren syndrome, or Wolf-Hirschhorn

  16. Neuropathic scapuloperoneal syndrome (Davidenkow's syndrome) with chromosome 17p11.2 deletion.

    PubMed

    Verma, Ashok

    2005-11-01

    The nosologic boundary of neuropathic scapuloperoneal syndrome (Davidenkow's syndrome) remains ill defined and its genetic basis is unknown. A case of Davidenkow's syndrome with the monochromosomic 17p11.2 deletion that often is associated with hereditary neuropathy with liability to pressure palsies (HNPP) is described. The other allele at chromosome 17p11.2 locus was of normal length, and direct sequencing of the coding region of the peripheral nerve protein-22 gene in this allele revealed no additional mutation. The deleted allele in the proband was inherited from the paternal line in which the affected members had a late onset Charcot-Marie-Tooth type 1 clinical phenotype. This observation suggests that the rare Davidenkow's syndrome is clinically related to HNPP and its genotype could be a chromosome 17p11.2 deletion. PMID:16007675

  17. Deletion involving D15S113 in a mother and son without Angelman syndrome: Refinement of the Angelman syndrome critical deletion region

    SciTech Connect

    Michaelis, R.C.; Skinner, S.A.; Lethco, B.A.

    1995-01-02

    Deletions of 15q11-q13 typically result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The critical deletion region for Angelman syndrome has recently been restricted by a report of an Angelman syndrome patient with a deletion spanning less than 200 kb around the D15S113 locus. We report here on a mother and son with a deletion of chromosome 15 that includes the D15S113 locus. The son has mild to moderate mental retardation and minor anomalies, while the mother has a borderline intellectual deficit and slightly downslanting palpebral fissures. Neither patient has the seizures, excessive laughter and hand clapping, ataxia or the facial anomalies which are characteristic of Angelman syndrome. The proximal boundary of the deletion in our patients lies between the D15S10 and The D15S113 loci. Our patients do not have Angelman syndrome, despite the deletion of the D15S113 marker. This suggests that the Angelman syndrome critical deletion region is now defined as the overlap between the deletion found in the previously reported Angelman syndrome patient and the region that is intact in our patients. 28 refs., 6 figs.

  18. Submicroscopic terminal deletions and duplications in retarded patients with unclassified malformation syndromes.

    PubMed

    Riegel, M; Baumer, A; Jamar, M; Delbecque, K; Herens, C; Verloes, A; Schinzel, A

    2001-09-01

    Unbalanced submicroscopic subtelomeric chromosomal rearrangements represent a significant cause of unexplained moderate to severe mental retardation with and without phenotypic abnormalities. We investigated 254 patients (102 from Zürich, 152 from Liège) for unbalanced subtelomeric rearrangements by using fluorescence in situ hybridisation with probes mapping to 41 subtelomeric regions. Mental retardation combined with a pattern of dysmorphic features, with or without major malformations, and growth retardation and a normal karyotype by conventional G-banding were the criteria of inclusion. Selection criteria were more restrictive for the Zürich series in terms of clinical and cytogenetic pre-investigation. We found 13 unbalanced rearrangements and two further aberrations, which, following the investigation of other family members, had to be considered as variants without influence on the phenotype. The significant aberrations included three de novo deletions (two of 1pter, one of 5pter), three de novo duplications (8pter, 9pter, Xpter), one de novo deletion 13qter-duplication 4qter, and five familial submicroscopic translocations [(1q;18p), (2q;4p), (2p;7q), (3p;22q), (4q;10q), (12p;22q)], most of them with several unbalanced offspring with deletion-duplication. Although the incidence of abnormal results was higher (10/152) in the Liège versus the Zürich series (3/102), similar selection criteria in Zürich as in Liège would have resulted in an incidence of 7/106 and thus similar figures. In our series, submicroscopic unbalanced rearrangements explain the phenotype in 13/254 study probands. The most important selection criterion seems to be the presence of more than one affected member in a family. An examination of subtelomeric segments should be included in the diagnostic work-up of patients with unexplained mental retardation combined with physical abnormalities, when a careful conventional examination of banded chromosomes has yielded a normal result and a thorough clinical examination does not lead to another classification. The proportion of abnormal findings depends strongly on selection criteria: more stringent selection can eliminate some examinations but necessitates a high workload for experienced clinical geneticists. Once the costs and workload of screening are reduced, less selective approaches might finally be more cost-effective. PMID:11702209

  19. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic

  20. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic…

  1. Human subtelomeric duplicon structure and organization

    PubMed Central

    Ambrosini, Anthony; Paul, Sheila; Hu, Sufen; Riethman, Harold

    2007-01-01

    Background Human subtelomeric segmental duplications ('subtelomeric repeats') comprise about 25% of the most distal 500 kb and 80% of the most distal 100 kb in human DNA. A systematic analysis of the duplication substructure of human subtelomeric regions was done in order to develop a detailed understanding of subtelomeric sequence organization and a nucleotide sequence-level characterization of subtelomeric duplicon families. Results The extent of nucleotide sequence divergence within subtelomeric duplicon families varies considerably, as does the organization of duplicon blocks at subtelomere alleles. Subtelomeric internal (TTAGGG)n-like tracts occur at duplicon boundaries, suggesting their involvement in the generation of the complex sequence organization. Most duplicons have copies at both subtelomere and non-subtelomere locations, but a class of duplicon blocks is identified that are subtelomere-specific. In addition, a group of six subterminal duplicon families are identified that, together with six single-copy telomere-adjacent segments, include all of the (TTAGGG)n-adjacent sequence identified so far in the human genome. Conclusion Identification of a class of duplicon blocks that is subtelomere-specific will facilitate high-resolution analysis of subtelomere repeat copy number variation as well as studies involving somatic subtelomere rearrangements. The significant levels of nucleotide sequence divergence within many duplicon families as well as the differential organization of duplicon blocks on subtelomere alleles may provide opportunities for allele-specific subtelomere marker development; this is especially true for subterminal regions, where divergence and organizational differences are the greatest. These subterminal sequence families comprise the immediate cis-elements for (TTAGGG)n tracts, and are prime candidates for subtelomeric sequences regulating telomere-specific (TTAGGG)n tract length in humans. PMID:17663781

  2. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    ERIC Educational Resources Information Center

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…

  3. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    ERIC Educational Resources Information Center

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at

  4. Subtelomeric screening in Serbian children with dysmorphic features and unexplained developmental delay/intellectual disabilities.

    PubMed

    Damnjanovic, Tatjana; Cuturilo, Goran; Maksimovic, Nela; Dimitrijevic, Nikola; Mitic, Vesna; Jekic, Biljana; Lukovic, Ljiljana; Bunjevacki, Vera; Varljen, Tatjana; Dobricic, Valerija; Jovanovic, Ida; Kostic, Vladimir; Novakovic, Ivana

    2015-01-01

    Developmental delay and intellectual disabilities (DD/ID) are significant health problems affecting 3% of the human population. Submicroscopic chromosomal rearrangements involving subtelomeric regions are often considered to be the cause of unexplained DD/ID. Screening of subtelomeric regions was performed in 80 unrelated patients with DD/ID and normal GTG-banded chromosomes using the MLPA method with two kits (SALSA P070-B1 and P036-E1). The MLPA screening revealed subtelomeric chromosome aberrations in four cases (5%). The aberrations detected were: 1p deletion, 1p deletion combined with 12q duplication, 4p deletion, and 9p deletion combined with 15q duplication. The deletions detected were classified as causative for the patients' observed phenotypes. This study confirms the high frequency of subtelomeric rearrangements in unexplained DD/ID and reinforces the argument for routine subtelomeric screening in order to get a correct diagnosis, establish genotype-phenotype correlations and offer accurate genetic counseling. PMID:26690596

  5. Late-onset epileptic spasms in a patient with 22q13.3 deletion syndrome.

    PubMed

    Ishikawa, Nobutsune; Kobayashi, Yoshiyuki; Fujii, Yuji; Yamamoto, Toshiyuki; Kobayashi, Masao

    2016-01-01

    Patients with 22q13.3 deletion syndrome present with diverse neurological problems such as global developmental delays, hypotonia, delayed or absent speech, autistic behavior, and epilepsy. Seizures occur in up to one-third of patients with 22q13.3 deletion syndrome; however, only a few reports have provided details regarding the seizure manifestations. The present report describes a patient with 22q13.3 deletion syndrome who presented with late-onset epileptic spasms (ES) and electroencephalography features like Lennox-Gastaut syndrome. An array comparative genomic hybridization analysis revealed that a chromosomal deletion of this patient included SHANK3. To the best of our knowledge, this is the first confirmed case of late-onset ES occur in patients with 22q13.3 deletion syndrome with a SHANK3 deletion. PMID:26094094

  6. Duplication and Deletion of CFC1 Associated with Heterotaxy Syndrome

    PubMed Central

    Cao, Ruixue; Long, Fei; Wang, Liping; Xu, Yuejuan; Guo, Ying; Li, Fen; Chen, Sun; Sun, Kun

    2015-01-01

    Heterotaxy syndrome, which causes significant morbidity and mortality, is a class of congenital disorders, in which normal left–right asymmetry cannot be properly established. To explore the role of copy number variants (CNVs) in the occurrence of heterotaxy syndrome, we recruited 93 heterotaxy patients and studied 12 of them by the Affymetrix Genome-Wide Human SNP 6.0 Array. The results were confirmed in the remaining 81 patients and 500 healthy children by quantitative real-time polymerase chain reaction (qPCR). The analysis of the SNP6.0 array showed a duplication of chromosome 2q21.1, which was verified by qPCR. The result of qPCR in the other 81 patients showed that 8/81 patients had the CNVs of 2q21.1 and the only overlapping gene in these patients is CFC1. However, in the 500 healthy children, only one carried the duplication of CFC1 (p=3.5×10−7). The duplication and deletion of CFC1 may play key roles in the occurrence of heterotaxy syndrome. Moreover, the transposed great arteries, double outlet right ventricle, single atrium, and single ventricle may share a common genetic etiology with the heterotaxy syndrome. PMID:25423076

  7. Interstitial 22q13 deletions not involving SHANK3 gene: a new contiguous gene syndrome.

    PubMed

    Disciglio, Vittoria; Lo Rizzo, Caterina; Mencarelli, Maria Antonietta; Mucciolo, Mafalda; Marozza, Annabella; Di Marco, Chiara; Massarelli, Antonio; Canocchi, Valentina; Baldassarri, Margherita; Ndoni, Enea; Frullanti, Elisa; Amabile, Sonia; Anderlid, Britt Marie; Metcalfe, Kay; Le Caignec, Cédric; David, Albert; Fryer, Alan; Boute, Odile; Joris, Andrieux; Greco, Donatella; Pecile, Vanna; Battini, Roberta; Novelli, Antonio; Fichera, Marco; Romano, Corrado; Mari, Francesca; Renieri, Alessandra

    2014-07-01

    Phelan-McDermid syndrome (22q13.3 deletion syndrome) is a contiguous gene disorder resulting from the deletion of the distal long arm of chromosome 22. SHANK3, a gene within the minimal critical region, is a candidate gene for the major neurological features of this syndrome. We report clinical and molecular data from a study of nine patients with overlapping interstitial deletions in 22q13 not involving SHANK3. All of these deletions overlap with the largest, but not with the smallest deletion associated with Phelan-McDermid syndrome. The deletion sizes and breakpoints varied considerably among our patients, with the largest deletion spanning 6.9 Mb and the smallest deletion spanning 2.7 Mb. Eight out of nine patients had a de novo deletion, while in one patient the origin of deletion was unknown. These patients shared clinical features common to Phelan-McDermid syndrome: developmental delay (11/12), speech delay (11/12), hypotonia (9/12), and feeding difficulties (7/12). Moreover, the majority of patients (8/12) exhibited macrocephaly. In the minimal deleted region, we identified two candidate genes, SULT4A1 and PARVB (associated with the PTEN pathway), which could be associated in our cohort with neurological features and macrocephaly/hypotonia, respectively. This study suggests that the haploinsufficiency of genes in the 22q13 region beside SHANK3 contributes to cognitive and speech development, and that these genes are involved in the phenotype associated with the larger Phelan-McDermid syndrome 22q13 deletions. Moreover, because the deletions in our patients do not involve the SHANK3 gene, we posit the existence of a new contiguous gene syndrome proximal to the smallest terminal deletions in the 22q13 region. PMID:24700646

  8. Distal 3p deletion syndrome: detailed molecular cytogenetic and clinical characterization of three small distal deletions and review.

    PubMed

    Malmgren, Helena; Sahlén, Sigrid; Wide, Katarina; Lundvall, Mikael; Blennow, Elisabeth

    2007-09-15

    The distal 3p deletion syndrome is characterized by developmental delay, low birth weight and growth retardation, micro- and brachycephaly, ptosis, long philtrum, micrognathia, and low set ears. We have used FISH and BACs in order to map three 3p deletions in detail at the molecular level. The deletions were 10.2-11 Mb in size and encompassed 47-51 known genes, including the VHL gene. One of the deletions was interstitial, with an intact 3p telomere. In nine previously published patients with 3p deletions, the size of the deletion was estimated using molecular or molecular cytogenetic techniques. The genotype, including genes of interest, and the phenotype of these cases are compared and discussed. The localization of the proximal breakpoint in one of our patients suggests that the previously identified critical region for heart defects may be narrowed down, now containing three candidate genes. We can also conclude that deletion of the gene ATP2B2 alone is not enough to cause hearing impairment, which is frequently found in patients with 3p deletion. This is the third reported case with an interstitial deletion of distal 3p. PMID:17696125

  9. Classical Noonan syndrome is not associated with deletions of 22q11

    SciTech Connect

    Robin, N.H.; Sellinger, B.; McDonald-McGinn, D.

    1995-03-13

    Deletions of 22q11 cause DiGeorge sequence (DGS), velo-cardio-facial syndrome (VCFS), conotruncal anomaly face syndrome, and some isolated conotruncal heart anomalies. Demonstration of a 22q11 deletion in a patient with manifestations of DGS and Noonan syndrome (NS) has raised the question of whether NS is another of the chromosome 22 microdeletion syndromes. This prompted us to evaluate a cohort of patients with NS for evidence of 22q11 deletions. Five of 6 NS propositi studied in our laboratory with marker N25 (D22S75) did not have a 22q11 deletion. A 2-month-old infant with several findings suggestive of NS did have a 22q11 deletion, suggesting that a small number of 22q11 deletion propositi may present with a NS-like picture. However, most cases of NS must have another cause. 10 refs., 1 fig.

  10. Autism, ADHD, Mental Retardation and Behavior Problems in 100 Individuals with 22q11 Deletion Syndrome

    ERIC Educational Resources Information Center

    Niklasson, Lena; Rasmussen, Peder; Oskarsdottir, Solveig; Gillberg, Christopher

    2009-01-01

    This study assessed the prevalence and type of associated neuropsychiatric problems in children and adults with 22q11 deletion syndrome. One-hundred consecutively referred individuals with 22q11 deletion syndrome were given in-depth neuropsychiatric assessments and questionnaires screens. Autism spectrum disorders (ASDs) and/or attention

  11. Syndrome of proximal interstitial deletion 4p15

    SciTech Connect

    Fryns, J.P.

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  12. Detecting rearrangements in children using subtelomeric FISH and SKY.

    PubMed

    Clarkson, Blaise; Pavenski, Katerina; Dupuis, Lucie; Kennedy, Shelley; Meyn, Stephen; Nezarati, Marjan M; Nie, Gloria; Weksberg, Rosanna; Withers, Stephen; Quercia, Nada; Teebi, Ahmad S; Teshima, Ikuko

    2002-02-01

    The etiology of mental retardation (MR), often presenting as developmental delay in childhood, is unknown in approximately one-half of cases. G-banding is the standard method for investigating those suspected of having a chromosomal etiology; however, detection of structural abnormalities is limited by the size and pattern of the G-bands involved. Rearrangements involving subtelomeric regions have been shown to cause MR and this has generated interest in investigating the prevalence of these rearrangements using telomere-specific probes. In addition, because cryptic interchromosomal rearrangements may not be small or confined to chromosomal ends, spectral karyotyping (SKY) using chromosome-specific painting probes may be of value. We report here a study using these two FISH-based techniques in 50 children with idiopathic MR or developmental delay and normal GTG-banded karyotypes. Our objective was to assess the prevalence of cryptic rearrangements in this population using subtelomeric FISH and SKY. Three rearrangements were detected by subtelomeric FISH: a derivative 5 from a maternal t(5;21); a recombinant 11 from a paternal pericentric inversion; and a 2q deletion that was also present in the mother. Only the derivative 5 was detected by SKY. SKY did not detect any interstitial interchromosomal rearrangement. The prevalence of clinically significant cryptic rearrangements by subtelomeric FISH and SKY was thus 4% (95% confidence interval 0.5-13.7) and 2% (95% CI 0.05-10.7), respectively. This study supports the view that G-banding does not detect all clinically significant chromosomal abnormalities and that subtelomeric FISH and SKY can detect some of these abnormalities. PMID:11840482

  13. Characterization of 14 novel deletions underlying Rubinstein-Taybi syndrome: an update of the CREBBP deletion repertoire.

    PubMed

    Rusconi, Daniela; Negri, Gloria; Colapietro, Patrizia; Picinelli, Chiara; Milani, Donatella; Spena, Silvia; Magnani, Cinzia; Silengo, Margherita Cirillo; Sorasio, Lorena; Curtisova, Vaclava; Cavaliere, Maria Luigia; Prontera, Paolo; Stangoni, Gabriela; Ferrero, Giovanni Battista; Biamino, Elisa; Fischetto, Rita; Piccione, Maria; Gasparini, Paolo; Salviati, Leonardo; Selicorni, Angelo; Finelli, Palma; Larizza, Lidia; Gervasini, Cristina

    2015-06-01

    Rubinstein-Taybi syndrome (RSTS) is a rare, clinically heterogeneous disorder characterized by cognitive impairment and several multiple congenital anomalies. The syndrome is caused by almost private point mutations in the CREBBP (~55% of cases) and EP300 (~8%) genes. The CREBBP mutational spectrum is variegated and characterized by point mutations (30-50 %) and deletions (~10%). The latter are diverse in size and genomic position and remove either the whole CREBBP gene and its flanking regions or only an intragenic portion. Here, we report 14 novel CREBBP deletions ranging from single exons to the whole gene and flanking regions which were identified by applying complementary cytomolecular techniques: fluorescence in situ hybridization, multiplex ligation-dependent probe amplification and array comparative genome hybridization, to a large cohort of RSTS patients. Deletions involving CREBBP account for 23% of our detected CREBBP mutations, making an important contribution to the mutational spectrum. Genotype-phenotype correlations revealed that patients with CREBBP deletions extending beyond this gene did not always have a more severe phenotype than patients harboring CREBBP point mutations, suggesting that neighboring genes play only a limited role in the etiopathogenesis of CREBBP-centerd contiguous gene syndrome. Accordingly, the extent of the deletion is not predictive of the severity of the clinical phenotype. PMID:25805166

  14. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    PubMed

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-01-01

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement. PMID:21187929

  15. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    PubMed

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. PMID:26358864

  16. Parental origin of de novo chromosome 9 deletions in del(9p) syndrome

    SciTech Connect

    Micale, M.A.; Haren, J.M.; Conroy, J.M.

    1995-05-22

    Parental origin of de novo deletions in the short arm of chromosome 9 in patients with a clinical diagnosis of del(9p) syndrome was assessed in 13 patients using polymerase chain reaction (PCR) analysis of highly polymorphic dinucleotide repeat microsatellite markers located in the putative deleted region. The deletion was found to be of paternal origin in 9 cases and of maternal origin in the remaining 4 cases, suggesting that the molecular event resulting in the deletion occurs in both male and female gametogenesis and that genomic imprinting does not appear to play a role in the pathogenesis of del(9p) syndrome. 22 refs., 1 fig.

  17. Velo-cardio-facial syndrome: Frequency and textent of 22q11 deletions

    SciTech Connect

    Lindsay, E.A.; Goldberg, R.; Jurecic, V.

    1995-07-03

    Velo-cardio-facial (VCFS) or Shprintzen syndrome is associated with deletions in a region of chromosome 22q11.2 also deleted in DiGeorge anomaly and some forms of congenital heart disease. Due to the variability of phenotype, the evaluation of the incidence of deletions has been hampered by uncertainty of diagnosis. In this study, 54 patients were diagnosed with VCFS by a single group of clinicians using homogeneous clinical criteria independent of the deletion status. Cell lines of these patients were established and the deletion status evaluated for three loci within the commonly deleted region at 22q11.2 using fluorescence in situ hybridization (FISH). In 81% of the patients all three loci were hemizygous. In one patient we observed a smaller interstitial deletion than that defined by the three loci. The phenotype of this patient was not different from that observed in patients with larger deletions. 22 refs., 2 figs., 1 tab.

  18. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event.

    PubMed

    Rudd, M Katharine; Endicott, Raelynn M; Friedman, Cynthia; Walker, Megan; Young, Janet M; Osoegawa, Kazutoyo; de Jong, Pieter J; Green, Eric D; Trask, Barbara J

    2009-01-01

    Subtelomeres are concentrations of interchromosomal segmental duplications capped by telomeric repeats at the ends of chromosomes. The nature of the segments shared by different sets of human subtelomeres reflects their high rate of recent interchromosomal exchange. Here, we characterize the rearrangements incurred by the 15q subtelomere after it arose from a chromosome fission event in the common ancestor of great apes. We used FISH, sequencing of genomic clones, and PCR to map the breakpoint of this fission and track the fate of flanking sequence in human, chimpanzee, gorilla, orangutan, and macaque genomes. The ancestral locus, a cluster of olfactory receptor (OR) genes, lies internally on macaque chromosome 7. Sequence originating from this fission site is split between the terminus of 15q and the pericentromere of 14q in the great apes. Numerous structural rearrangements, including interstitial deletions and transfers of material to or from other subtelomeres, occurred subsequent to the fission, such that each species has a unique 15q structure and unique collection of ORs derived from the fission locus. The most striking rearrangement involved transfer of at least 200 kb from the fission-site region to the end of chromosome 4q, where much still resides in chimpanzee and gorilla, but not in human. This gross structural difference places the subtelomeric defect underlying facioscapulohumeral muscular dystrophy (FSHD) much closer to the telomere in human 4q than in the hybrid 4q-15q subtelomere of chimpanzee. PMID:18952852

  19. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks

    PubMed Central

    Muraki, Keiko; Han, Limei; Miller, Douglas; Murnane, John P.

    2015-01-01

    The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs. We now show that inhibition of MRE11 3′–5′ exonuclease activity with Mirin reduces the frequency of large deletions and GCRs at both interstitial and subtelomeric DSBs, but has little effect on the frequency of small deletions. We conclude that large deletions and GCRs are due to excessive processing of DSBs, while most small deletions occur during classical nonhomologous end joining (C-NHEJ). The sensitivity of subtelomeric regions to DSBs is therefore because they are prone to undergo excessive processing, and not because of a deficiency in C-NHEJ in subtelomeric regions. PMID:26209132

  20. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks.

    PubMed

    Muraki, Keiko; Han, Limei; Miller, Douglas; Murnane, John P

    2015-09-18

    The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs. We now show that inhibition of MRE11 3'-5' exonuclease activity with Mirin reduces the frequency of large deletions and GCRs at both interstitial and subtelomeric DSBs, but has little effect on the frequency of small deletions. We conclude that large deletions and GCRs are due to excessive processing of DSBs, while most small deletions occur during classical nonhomologous end joining (C-NHEJ). The sensitivity of subtelomeric regions to DSBs is therefore because they are prone to undergo excessive processing, and not because of a deficiency in C-NHEJ in subtelomeric regions. PMID:26209132

  1. Deletion mapping of 22q11 in CATCH22 syndrome: Identification of a second critical region

    SciTech Connect

    Kurahashi, Hiroki; Nakayama, Takahiro; Nishisho, Isamu

    1996-06-01

    The deletion at 22q11.2 implicates a variety of congenital anomaly syndromes, for which the acronym CATCH22 has been proposed . Most patients with these syndromes share the common large deletion spanning 1-2 Mb, while the phenotypic variability of the patients does not seem to correlate with the extent of the deletions. On the basis of the deletions of rare cases with unbalanced translocation, the shortest region of overlap (SRO) had been identified in the most-centromeric region of the common large deletion. One patient (ADU) has been reported to carry a balanced translocation with the breakpoint located in the SRO. Recently, three transcripts were identified at or very close to the ADU breakpoint (ADUBP), making them strong candidates for CATCH22 syndrome. Here, we describe one patient with a unique deletion at 22q11.2 revealed by quantitative hybridization and/or FISH with six DNA markers in the common large deletion. The patient was dizygous at loci within the SRO and hemizygous only at the most-telomeric locus in the common large deletion. This finding suggests that there must be another critical region in the common large deletion besides the breakpoint of the ADU and that haploinsufficiency of genes in this deletion may also play a major role in CATCH22 pathogenesis. 15 refs., 3 figs.

  2. A NEW OBSERVATION OF 13q DELETION SYNDROME: SEVERE UNDESCRIBED FEATURES.

    PubMed

    Garcia-Rodriguez, E; Garcia-Garcia, E; Perez-Sanchez, A; Pavon-Delgado, A

    2015-01-01

    A new observation of 13q deletion syndrome: severe undescribed features: 13q deletion syndrome is characterized by a wide phenotypic spectrum resulting from a partial deletion-of the long arm of chromosome 13. It consists predominantly of mental and motor retardation, craniofacial dysmorphia, growth retardation, and several congenital malformations. We present a new case with 13q deletion syndrome phenotypically characterized by severe major malformations, some of them still undescribed, consisting of left diaphragmatic hernia, right pulmonary sequestration, hypoplastic left heart syndrome, pancreatic agenesis, polysplenia, and catastrophic central nervous system malformations: semilobar holoprosencephaly, occipital myelomeningocele, partial agenesis of the corpus callosum and agenesis of olfactory bulbs. Fluorescence in situ hybridization technique using the probe LSI D13S319 (13q1l4) SO/ LSI 13q34 SG determined partial monosomy of chromosome 13 in 39/100 cells (mosaicism). PMID:26349191

  3. Chromosome 22q11.2 deletion in a boy with Opitz (G/BBB) syndrome

    SciTech Connect

    Fryburg, J.S.; Lin, K.Y.; Golden, W.L.

    1996-03-29

    This report is on a 14-month-old boy with manifestations of Opitz (G/BBB) syndrome in whom a 22q11.2 deletion was found. Deletion analysis was requested because of some findings in this patient reminiscent of velocardiofacial (VCF) syndrome. The extent of aspiration and of respiratory symptoms in this child is not usually seen in VCF syndrome. Opitz syndrome maps to at least two loci, one on Xp, the other on 22q11.2. 12 refs., 2 figs.

  4. Acute Dystonia in a Patient with 22q11.2 Deletion Syndrome

    PubMed Central

    Kontoangelos, Konstantinos; Maillis, Antonis; Maltezou, Maria; Tsiori, Sofia; Papageorgiou, Charalambos C.

    2015-01-01

    The 22q11.2 deletion syndrome (di George syndrome) is one of the most prevalent genetic disorders. The clinical features of the syndrome are distinct facial appearance, velopharyngeal insufficiency, conotruncal heart disease, parathyroid and immune dysfunction; however, little is known about possible neurodegenerative diseases. We describe the case of an 18-year old patient suffering from 22q11.2 deletion syndrome. Since adolescence, he presented with behavioral disorders, recommended treatment with 2 mg aloperidin and he presented cervical dystonia and emergence of torticollis and trunk dystonia. Antipsychotic medications either accelerate or reveal dystonic symptoms. PMID:26605035

  5. Nasal dimple as part of the 22q11.2 deletion syndrome

    SciTech Connect

    Gripp, K.W.; Reed, L.A.; Emanuel, B.S.

    1997-03-31

    The phenotype of the 22q11.2 microdeletion syndrome is quite variable. We describe 2 patients with a 22q11.2 deletion and a dimpled nasal tip, which, we suggest can be the extreme of the broad or bulbous nose commonly found in the 22q11.2 deletion syndrome, and should not be confused with the more severe nasal abnormalities seen in frontonasal dysplasia. 11 refs., 2 figs.

  6. A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    PubMed Central

    Fernández, Luis; Nevado, Julián; Santos, Fernando; Heine-Suñer, Damià; Martinez-Glez, Victor; García-Miñaur, Sixto; Palomo, Rebeca; Delicado, Alicia; Pajares, Isidora López; Palomares, María; García-Guereta, Luis; Valverde, Eva; Hawkins, Federico; Lapunzina, Pablo

    2009-01-01

    Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors. PMID:19490635

  7. The Neural Correlates of Non-Spatial Working Memory in Velocardiofacial Syndrome (22q11.2 Deletion Syndrome)

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Krauss, Beth R.; AbdulSabur, Nuria; Colgan, Deirdre; Antshel, Kevin M.; Higgins, Anne Marie; Shprintzen, Robert J.

    2007-01-01

    Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant

  8. The Neural Correlates of Non-Spatial Working Memory in Velocardiofacial Syndrome (22q11.2 Deletion Syndrome)

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Krauss, Beth R.; AbdulSabur, Nuria; Colgan, Deirdre; Antshel, Kevin M.; Higgins, Anne Marie; Shprintzen, Robert J.

    2007-01-01

    Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant…

  9. A ceRNA approach may unveil unexpected contributors to deletion syndromes, the model of 5q- syndrome

    PubMed Central

    Arancio, Walter; Genovese, Swonild Ilenia; Bongiovanni, Lucia; Tripodo, Claudio

    2015-01-01

    In genomic deletions, gene haploinsufficiency might directly configure a specific disease phenotype. Nevertheless, in some cases no functional association can be identified between haploinsufficient genes and the deletion-associated phenotype. Transcripts can act as microRNA sponges. The reduction of transcripts from the hemizygous region may increase the availability of specific microRNAs, which in turn may exert in-trans regulation of target genes outside the deleted region, eventually contributing to the phenotype. Here we prospect a competing endogenous RNA (ceRNA) approach for the identification of candidate genes target of epigenetic regulation in deletion syndromes. As a model, we analyzed the 5q- myelodysplastic syndrome. Genes in haploinsufficiency within the common 5q deleted region in CD34+ blasts were identified in silico. Using the miRWalk 2.0 platform, we predicted microRNAs whose availability, and thus activity, could be enhanced by the deletion, and performed a genomewide analysis of the genes outside the 5q deleted region that could be targeted by the predicted miRNAs. The analysis pointed to two genes with altered expression in 5q- transcriptome, which have never been related with 5q- before. The prospected approach allows investigating the global transcriptional effect of genomic deletions, possibly prompting discovery of unsuspected contributors in the deletion-associated phenotype. Moreover, it may help in functionally characterizing previously reported unexpected interactions. PMID:26682279

  10. Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosome

    SciTech Connect

    Ballabio, A.; Andria, G. ); Bardoni, B.; Fraccaro, M.; Maraschio, P.; Zuffardi, O.; Guioli, S.; Camerino, G. ); Carrozzo, R. ); Bick, D.; Campbell, L. ); Hamel, B. ); Ferguson-Smith, M.A. ); Gimelli, G. )

    1989-12-01

    Mendelian inherited disorders to deletions of adjacent genes on a chromosome have been described as contiguous gene syndromes. Short stature, chondrodysplasia punctata, mental retardation, steroid sulfatase deficiency, and Kallmann syndrome have been found as isolated entities or associated in various combination in 27 patients with interstitial and terminal deletions involving the distal short are of the X chromosome. The use of cDNA and genomic probes from the Xp22-pter region allowed us to identify 12 different deletion intervals and to confirm, and further refine, the chromosomal assignment of X-linked recessive chondrodysplasia punctata and Kallmann syndrome genes. A putative pseudoautosomal gene affecting height and an X-linked nonspecific mental retardation gene have been tentatively assigned to specific intervals. The deletion panel described is a useful tool for mapping new sequences and orienting chromosome walks in the region.

  11. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:

  12. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  13. Opitz GBBB syndrome and the 22q11.2 deletion

    SciTech Connect

    Lacassie, Y.; Arriaza, M.I.

    1996-03-29

    Recently, McDonald-McGinn et al. reported the presence of a deletion 22q11.2 in a family with autosomal dominant inheritance and in a sporadic case with the Opitz GBBB syndrome. The presence of a vascular ring in these patients prompted them to look for this deletion, since this anomaly may be associated with the 22q11.2 deletion. They reviewed the Opitz GBBB syndrome and the 22q11.2 microdeletion syndrome, finding considerable overlap of manifestations. They proposed that, in some patients, the Opitz GBBB syndrome may be due to a 22q11.2 deletion. We recently examined a newborn boy referred because of MCA. The cardinal findings in this patient (hypertelorism, hypospadias with descended testicles, characteristic nose and truncus arteriosus type I) were suggestive of the Opitz GBBB syndrome and of the velocardiofacial syndrome. The chromosomes were apparently normal (46,XY), but the FISH study showed a 22q11.2 deletion. The patient developed hypocalcemia with very low level of PTH and heart failure requiring surgery. His immunological status was normal except that CD4 cells were mildly low and natural killer cells were increased in number. The family history was noncontributory, but the full evaluation of the family is pending. The mother at first glance presents apparent hypertelorism. 3 refs.

  14. Incidental Radiologic Findings in the 22q11.2 Deletion Syndrome

    PubMed Central

    Schmitt, J.E.; Yi, J.J.; Roalf, D.R.; Loevner, L.A.; Ruparel, K.; Whinna, D.; Souders, M.C.; McDonald-McGinn, D.M.; Yodh, E.; Vandekar, S.; Zackai, E.H.; Gur, R.C.; Emanuel, B.S.; Gur, R.E.

    2015-01-01

    Background and Purpose The 22q11.2 deletion syndrome is a common genetic microdeletion syndrome that results in cognitive delays and an increased risk of several psychiatric disorders, particularly schizophrenia. The current study investigates the prevalence of incidental neuroradiologic findings within this population and their relationships with psychiatric conditions. Materials and Methods Brain MR imaging from 58 individuals with 22q11.2 deletion syndrome was reviewed by board-certified radiologists by using standard clinical procedures. Intracranial incidental findings were classified into 8 categories and compared with a large typically developing cohort. Results The rate of incidental findings was significantly higher (P < .0001) in 22q11.2 deletion syndrome compared with typically developing individuals, driven by a high prevalence of cavum septum pellucidum (19.0%) and white matter abnormalities (10.3%). Both of these findings were associated with psychosis in 22q11.2 deletion syndrome. Conclusions Cavum septum pellucidum and white matter hyperintensities are significantly more prevalent in patients with the 22q11.2 deletion syndrome and may represent biomarkers for psychosis. PMID:24948496

  15. A new deletion of 18q23 with few typical features of the 18q- syndrome.

    PubMed Central

    Kohonen-Corish, M; Strathdee, G; Overhauser, J; McDonald, T; Jammu, V

    1996-01-01

    We report on a patient with a deletion of 18q23. At both 2 and 4 years of age, she displayed few of the facial features or other clinical features associated with the 18q- syndrome. Fluorescent in situ hybridisation and microsatellite marker and RFLP analysis were performed to characterise the extent of the deletion, and a terminal deletion of 18q23 was confirmed. The deleted region includes the gene for myelin basic protein, suggesting that hemizygosity of this gene does not invariably lead to mental and developmental delay. The clinical presentation of this patient suggests that either she is not deleted for the genes involved in the 18q- clinical phenotype or this patient represents one end of the spectrum of the clinical variability seen with 18q terminal deletions. Images PMID:8728701

  16. Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome

    PubMed Central

    Yang, Chen; Huang, Cheng-Hung; Cheong, Mei-Leng; Hung, Kun-Long; Lin, Lung-Huang; Yu, Yeong-Seng; Chien, Chih-Cheng; Huang, Huei-Chen; Chen, Chan-Wei; Huang, Chi-Jung

    2009-01-01

    Background Chromosome 22q11 deletion syndrome (22q11DS) causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. Methods We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH), quantitative real-time polymerase chain reaction (qPCR) and multiplex ligation-dependent probe amplification (MLPA). Results Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p < 0.01). An identical deletion was shown in three affected infants by MLPA. These reduced DNA dosages were also obtained partially using array-CGH and confirmed by qPCR but with some differences in deletion size. Conclusion Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes. PMID:19243607

  17. Child with Deletion 9p Syndrome Presenting with Craniofacial Dysmorphism, Developmental Delay, and Multiple Congenital Malformations

    PubMed Central

    Sirisena, Nirmala D.; Wijetunge, U. Kalpani S.; de Silva, Ramya; Dissanayake, Vajira H. W.

    2013-01-01

    A 4-month-old Sri Lankan male child case with a de novo terminal deletion in the p22?pter region of chromosome 9 is described. The child presented with craniofacial dysmorphism, developmental delay, and congenital malformations in agreement with the consensus phenotype. A distinctive feature observed in this child was complete collapse of the left lung due to malformation of lung tissue. Cytogenetic studies confirmed terminal deletion of the short arm of chromosome 9 distal to band p22 [46,XY,del(9)(p22?pter)]. This is the first reported case of a de novo deletion 9p syndrome associated with pulmonary hypoplasia. This finding contributes to the widening of the spectrum of phenotypic features associated with deletion 9p syndrome. PMID:23984121

  18. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    PubMed Central

    2012-01-01

    Background The majority of Marfan syndrome (MFS) cases is caused by mutations in the fibrillin-1 gene (FBN1), mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement. PMID:22260333

  19. Exonic STK11 deletions are not a rare cause of Peutz‐Jeghers syndrome

    PubMed Central

    Hearle, N C M; Rudd, M F; Lim, W; Murday, V; Lim, A G; Phillips, R K; Lee, P W; O'Donohue, J; Morrison, P J; Norman, A; Hodgson, S V; Lucassen, A; Houlston, R S

    2006-01-01

    Background Peutz‐Jeghers syndrome (PJS) is a rare, autosomal dominant cancer predisposition syndrome characterised by oro‐facial pigmentation and hamartomatous polyposis of the gastrointestinal tract. A causal germline mutation in STK11 can be identified in 30% to 80% of PJS patients. Methods Here we report the comprehensive mutational analysis of STK11 in 38 PJS probands applying conventional PCR based mutation detection methods and the recently introduced MLPA (multiplex ligation dependent probe amplification) technique developed for the identification of exonic deletions/duplications. Results Nineteen of 38 probands (50%) had detectable point mutations or small scale deletions/insertions and six probands (16%) had genomic deletions encompassing one or more STK11 exons. Conclusions These findings demonstrate that exonic STK11 deletions are a common cause of PJS and provide a strong rationale for conducting a primary screen for such mutations in patients. PMID:16582077

  20. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk

  1. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  2. Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q

    SciTech Connect

    Koiffmann, C.P.; Vianna-Morgante, A.M.; Wajntal, A.

    1995-07-31

    Deletion 11q23{r_arrow}qter and duplication 12q23{r_arrow}qter are described in a boy with neuroblastoma, multiple congenital anomalies, and mental retardation. The patient has clinical manifestations of 11q deletion and 12q duplication syndromes. The possible involvement of the segment 11q23{r_arrow}24 in the cause of the neuroblastoma is discussed. 18 refs., 2 figs., 1 tab.

  3. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome

    SciTech Connect

    Gandelman, K.Y.; Gibson, L.; Meyn, M.S.; Yang-Feng, T.L. )

    1992-09-01

    Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13, and Y2, of D4S113. To delineate this 4p deletion, the authors performed a series of FISH and pulsed-field gel electrophoresis analysis by using probes from 4p16.3. A deletion of [approximately]2.5 Mb with the breakpoint at [approximately]80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, they have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to [approximately]2 MB between D4S43 and D4S142. 37 refs., 4 figs., 1 tab.

  4. Mini-Review Monosomy 1p36 syndrome: reviewing the correlation between deletion sizes and phenotypes.

    PubMed

    Rocha, C F; Vasques, R B; Santos, S R; Paiva, C L A

    2016-01-01

    The major clinical features of monosomy 1p36 deletion are developmental delay and hypotonia associated with short stature and craniofacial dysmorphisms. The objective of this study was to review the cases of 1p36 deletion that was reported between 1999 and 2014, in order to identify a possible correlation between the size of the 1p36-deleted segment and the clinical phenotype of the disease. Scientific articles published in the (National Center for Biotechnology Information; NCBI http://www.ncbi.nlm.nih.gov/pubmed) and Scientific Electronic Library Online (www.scielo.com.br) databases were searched using key word combinations, such as "1p36 deletion", "monosomy 1p36 deletion", and "1p36 deletion syndrome". Articles in English or Spanish reporting the correlation between deletion sizes and the respective clinical phenotypes were retrieved, while letters, reviews, guidelines, and studies with mouse models were excluded. Among the 746 retrieved articles, only 17 (12 case reports and 5 series of cases), comprising 29 patients (9 males and 20 females, aged 0 months (neonate) to 22 years) bearing the 1p36 deletions and whose clinical phenotypes were described, met the inclusion criteria. The genotype-phenotype correlation in monosomy 1p36 is a challenge because of the variability in the size of the deleted segment, as well as in the clinical manifestations of similar size deletions. Therefore, the severity of the clinical features was not always associated with the deletion size, possibly because of the other influences, such as stochastic factors, epigenetic events, or reduced penetration of the deleted genes. PMID:26910004

  5. Autosomal dominant {open_quotes}Opitz{close_quotes} GBBB syndrome due to a 22q11.2 deletion

    SciTech Connect

    McDonald-McGinn, D.M.; Emanuel, B.S.; Zackai, E.H.

    1996-08-23

    The classification of Opitz GBBB syndrome has been associated with the deletion of the DiGeorge chromosome region on human chromosome 22q11.2. The broad phenotype involved in this deletion syndrome has been referred to as the DiGeorge/velocardiofacial syndrome. The clinical description of the patient will influence the diagnosis of the syndrome. More cooperation between the clinicians and the molecular researchers is necessary in order to locate the gene(s) for these disorders. 11 refs.

  6. FISH detection of chromosome 15 deletions in Prader-Willi and Angelman syndromes

    SciTech Connect

    Teshima, I.; Chadwick, D.; Chitayat, D.

    1996-03-29

    We have evaluated fluorescence in situ hybridization (FISH) analysis for the clinical laboratory detection of the 15q11-q13 deletion seen in Prader-Willi syndrome (PWS) and Angelman syndrome (AS) using probes for loci D15S11, SNRPN, D15S10, and GABRB3. In a series of 118 samples from patients referred for PWS or AS, 29 had deletions by FISH analysis. These included two brothers with a paternally transmitted deletion detectable with the probe for SNRPN only. G-banding analysis was less sensitive for deletion detection but useful in demonstrating other cytogenetic alterations in four cases. Methylation and CA-repeat analyses of 15q11-q13 were used to validate the FISH results. Clinical findings of patients with deletions were variable, ranging from newborns with hypotonia as the only presenting feature to children who were classically affected. We conclude that FISH analysis is a rapid and reliable method for detection of deletions within 15q11-q13 and whenever a deletion is found, FISH analysis of parental chromosomes should also be considered. 41 refs., 4 figs., 2 tabs.

  7. Partial USH2A deletions contribute to Usher syndrome in Denmark.

    PubMed

    Dad, Shzeena; Rendtorff, Nanna D; Kann, Erik; Albrechtsen, Anders; Mehrjouy, Mana M; Bak, Mads; Tommerup, Niels; Tranebjærg, Lisbeth; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth B

    2015-12-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so far been identified. Duplications and deletions in PCDH15 and USH2A that lead to USH1 and USH2, respectively, have previously been identified in patients from United Kingdom, Spain and Italy. In this study, we investigate the proportion of exon deletions and duplications in PCDH15 and USH2A in 20 USH1 and 30 USH2 patients from Denmark using multiplex ligation-dependent probe amplification (MLPA). Two heterozygous deletions were identified in USH2A, but no deletions or duplications were identified in PCDH15. Next-generation mate-pair sequencing was used to identify the exact breakpoints of the two deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients. PMID:25804404

  8. Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes

    PubMed Central

    Kim, Soo-Jeong; Miller, Jennifer L; Kuipers, Paul J; German, Jennifer Ruth; Beaudet, Arthur L; Sahoo, Trilochan; Driscoll, Daniel J

    2012-01-01

    Prader–Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1–BP3 and BP2–BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions. PMID:22045295

  9. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay

    PubMed Central

    Seo, Go Hun; Kim, Ja Hye; Cho, Ja Hyang; Kim, Gu-Hwan; Seo, Eul-Ju; Lee, Beom Hee; Choi, Jin-Ho

    2016-01-01

    Purpose The 1p36 deletion syndrome is a microdeletion syndrome characterized by developmental delays/intellectual disability, craniofacial dysmorphism, and other congenital anomalies. To date, many cases of this syndrome have been reported worldwide. However, cases with this syndrome have not been reported in Korean populations anywhere. This study was performed to report the clinical and molecular characteristics of five Korean patients with the 1p36 deletion syndrome. Methods The clinical characteristics of the 5 patients were reviewed. Karyotyping and multiplex ligation-dependent probe amplification (MLPA) analyses were performed for genetic diagnoses. Results All 5 patients had typical dysmorphic features including frontal bossing, flat right parietal bone, low-set ears, straight eyebrows, down-slanting palpebral fissure, hypotelorism, flat nasal roots, midface hypoplasia, pointed chins, small lips, and variable degrees of developmental delay. Each patient had multiple and variable anomalies such as a congenital heart defect including ventricular septal defect, atrial septal defect, and patent duct arteriosus, ventriculomegaly, cryptorchism, or hearing loss. Karyotyping revealed the 1p36 deletion in only 1 patient, although it was confirmed in all 5 patients by MLPA analyses. Conclusion All the patients had the typical features of 1p36 deletion. These hallmarks can be used to identify other patients with this condition in their early years in order to provide more appropriate care. PMID:26893599

  10. 5q14.3 deletion neurocutaneous syndrome: Contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C: A progressive disease.

    PubMed

    Ilari, Rita; Agosta, Guillermo; Bacino, Carlos

    2016-03-01

    We report the case of a young girl who was presented with complex clinical symptoms caused by the deletion of contiguous genes: RASA1 and MEF2C, located on chromosome 5q14.3. Specifically, the diagnosis of her skin disorder and vascular malformations involving central nervous system is consistent with a RASopathy. The child's neurological manifestations are observed in most patients suffering from 5q14.3 by deletion or mutation of the MEF2C gene. A review of the literature allowed us to conclude that the contiguous deletion of genes RASA1 and MEF2C fulfills the criteria for the diagnosis of a Neurocutaneous syndrome as proposed by Carr et al. [2011]. We also assessed the penetrance of RASA1 and clinical manifestations of MEF2C according to the type of deletion. This child described presents the complete symptomatology of both deleted genes. We would also like to highlight the progression of the disorder. © 2016 Wiley Periodicals, Inc. PMID:26774077

  11. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    SciTech Connect

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W.

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  12. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients.

    PubMed Central

    Juyal, R. C.; Figuera, L. E.; Hauge, X.; Elsea, S. H.; Lupski, J. R.; Greenberg, F.; Baldini, A.; Patel, P. I.

    1996-01-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (i) FISH analysis, (ii)PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (iii) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. Images Figure 2 PMID:8651284

  13. Genotype-phenotype correlation in 22q11.2 deletion syndrome

    PubMed Central

    2012-01-01

    Background The 22q11.2 deletion syndrome (22q11.2DS) is caused by hemizygous microdeletions on chromosome 22q11.2 with highly variable physical and neuropsychiatric manifestations. We explored the genotype-phenotype relationship in a relatively large 22q11.2DS cohort treated and monitored in our clinic using comprehensive clinical evaluation and detailed molecular characterization of the deletion. Methods Molecular analyses in 142 subjects with 22q11.2DS features were performed by FISH and MLPA methods. Participants underwent clinical assessment of physical symptoms and structured psychiatric and cognitive evaluation. Results Deletions were found in 110 individuals including one with an atypical nested distal deletion which was missed by the FISH test. Most subjects (88.2%) carried the 3Mb typically deleted region and 11.8% carried 4 types of deletions differing in size and location. No statistically significant genotype-phenotype correlations were found between deletion type and clinical data although some differences in hypocalcemia and cardiovascular anomalies were noted. Analysis of the patient with the distal nested deletion suggested a redundancy of genes causing the physical and neuropsychiatric phenotype in 22q11.2DS and indicating that the psychiatric and cognitive trajectories may be governed by different genes. Conclusions MLPA is a useful and affordable molecular method combining accurate diagnosis and detailed deletion characterization. Variations in deletion type and clinical manifestations impede the detection of significant differences in samples of moderate size, but analysis of individuals with unique deletions may provide insight into the underlying biological mechanisms. Future genotype-phenotype studies should involve large multicenter collaborations employing uniform clinical standards and high-resolution molecular methods. PMID:23245648

  14. Human subtelomeric WASH genes encode a new subclass of the WASP family.

    PubMed

    Linardopoulou, Elena V; Parghi, Sean S; Friedman, Cynthia; Osborn, Gregory E; Parkhurst, Susan M; Trask, Barbara J

    2007-12-01

    Subtelomeres are duplication-rich, structurally variable regions of the human genome situated just proximal of telomeres. We report here that the most terminally located human subtelomeric genes encode a previously unrecognized third subclass of the Wiskott-Aldrich Syndrome Protein family, whose known members reorganize the actin cytoskeleton in response to extracellular stimuli. This new subclass, which we call WASH, is evolutionarily conserved in species as diverged as Entamoeba. We demonstrate that WASH is essential in Drosophila. WASH is widely expressed in human tissues, and human WASH protein colocalizes with actin in filopodia and lamellipodia. The VCA domain of human WASH promotes actin polymerization by the Arp2/3 complex in vitro. WASH duplicated to multiple chromosomal ends during primate evolution, with highest copy number reached in humans, whose WASH repertoires vary. Thus, human subtelomeres are not genetic junkyards, and WASH's location in these dynamic regions could have advantageous as well as pathologic consequences. PMID:18159949

  15. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry.

    PubMed

    Glassford, Megan R; Rosenfeld, Jill A; Freedman, Alexa A; Zwick, Michael E; Mulle, Jennifer G

    2016-04-01

    3q29 deletion syndrome is caused by a recurrent, typically de novo heterozygous 1.6 Mb deletion, but because incidence of the deletion is rare (1 in 30,000 births) the phenotype is not well described. To characterize the range of phenotypic manifestations associated with 3q29 deletion syndrome, we have developed an online registry (3q29deletion.org) for ascertainment of study subjects and phenotypic data collection via Internet-based survey instruments. We report here on data collected during the first 18 months of registry operation, from 44 patients. This is the largest cohort of 3q29 deletion carriers ever assembled and surveyed in a systematic way. Our data reveal that 28% of registry participants report neuropsychiatric phenotypes, including anxiety disorder, panic attacks, depression, bipolar disorder, and schizophrenia. Other novel findings include a high prevalence (64%) of feeding problems in infancy and reduced weight at birth for 3q29 deletion carriers (average reduction 13.9 oz (394 g), adjusted for gestational age and sex, P = 6.5e-07). We further report on the frequency of heart defects, autism, recurrent ear infections, gastrointestinal phenotypes, and dental phenotypes, among others. We also report on the expected timing of delayed developmental milestones. This is the most comprehensive description of the 3q29 deletion phenotype to date. These results are clinically actionable toward improving patient care for 3q29 deletion carriers, and can guide the expectations of physicians and parents. These data also demonstrate the value of patient-reported outcomes to reveal the full phenotypic spectrum of rare genomic disorders. © 2016 Wiley Periodicals, Inc. PMID:26738761

  16. Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: Evaluation of 235 patients

    SciTech Connect

    Lowery, M.C.; Brothman, L.J.; Leonard, C.O.

    1995-07-01

    Williams syndrome (WS) is generally characterized by mental deficiency, gregarious personality, dysmorphic facies, supravalvular aortic stenosis, and idiopathic infantile hypercalcemia. Patients with WS show allelic loss of elastin (ELN), exhibiting a submicroscopic deletion, at 7q11.23, detectable by FISH. Hemizygosity is likely the cause of vascular abnormalities in WS patients. A series of 235 patients was studied, and molecular cytogenetic deletions were seen in 96% of patients with classic WS. Patients included 195 solicited through the Williams Syndrome Association (WSA), plus 40 clinical cytogenetics cases referred by primary-care physicians. Photographs and medical records of most WSA subjects were reviewed, and patients were identified as {open_quotes}classic{open_quotes} (n = 114) or{open_quotes}uncertain{close_quotes} (n = 39). An additional 42 WSA patients were evaluated without clinical information. FISH was performed with biotinylated ELN cosmids on metaphase cells from immortalized lymphoblastoid lines from WSA patients and after high-resolution banding analysis on clinical referral patients. An alpha-satellite probe for chromosome 7 was included in hybridizations, as an internal control. Ninety-six percent of the patients with classic WS showed a deletion in one ELN allele; four of these did not show a deletion. Of the uncertain WS patients, only 3 of 39 showed a deletion. Of the 42 who were not classified phenotypically, because of lack of clinical information, 25 patients (60%) showed a deletion. Thirty-eight percent (15/40) of clinical cytogenetics cases showed an ELN deletion and no cytogenetic deletion by banded analysis. These results support the usefulness of FISH for the detection of elastin deletions as an initial diagnostic assay for WS. 14 refs., 2 figs., 4 tabs.

  17. Shyness discriminates between children with 22q11.2 deletion syndrome and Williams syndrome and predicts emergence of psychosis in 22q11.2 deletion syndrome

    PubMed Central

    2014-01-01

    Background 22q11.2 deletion syndrome (22q11.2DS) is a common neurogenetic syndrome associated with high rates of psychosis. The aims of the present study were to identify the unique temperament traits that characterize children with 22q11.2DS compared to children with Williams syndrome (WS) and typically developing (TD) controls, and to examine temperamental predictors of the emergence of psychosis in 22q11.2DS. Methods The temperament of 55 children with 22q11.2DS, 36 with WS, and 280 TD children was assessed using the Emotionality, Activity, Sociability (EAS) Temperament Survey, Parental Ratings. The presence of a psychotic disorder was evaluated in 49 children and adolescents with 22q11.2DS at baseline and again 5.43 ± 2.23 years after baseline temperament assessment. Results Children with 22q11.2DS scored higher on Shyness compared to WS and TD controls. Children with 22q11.2DS and WS scored higher on Emotionality and lower on Activity compared to TD controls. Shyness was more severe in older compared to younger children with 22q11.2DS. Baseline Shyness scores significantly predicted the later emergence of a psychotic disorder at follow-up, in children with 22q11.2DS. Conclusions Our results suggest that shyness is an early marker associated with the later emergence of psychosis in 22q11.2DS. PMID:24517288

  18. Terminal chromosome 4q deletion syndrome in an infant with hearing impairment and moderate syndromic features: review of literature

    PubMed Central

    2014-01-01

    Background Terminal deletions of chromosome 4q are associated with a broad spectrum of phenotypes including cardiac, craniofacial, digital, and cognitive impairment. The rarity of this syndrome renders genotype-phenotype correlation difficult, which is further complicated by the widely different phenotypes observed in patients sharing similar deletion intervals. Case presentation Herein, we describe a boy with congenital hearing impairment and a variety of moderate syndromic features that prompted SNP array analysis disclosing a heterozygous 6.9Mb deletion in the 4q35.1q35.2 region, which emerged de novo in the maternal germ line. Conclusion In addition to the index patient, we review 35 cases from the literature and DECIPHER database to attempt genotype-phenotype correlations for a syndrome with great phenotypic variability. We delineate intervals with recurrent phenotypic overlap, particularly for cleft palate, congenital heart defect, intellectual disability, and autism spectrum disorder. Broad phenotypic presentation of the terminal 4q deletion syndrome is consistent with incomplete penetrance of the individual symptoms. PMID:24962056

  19. Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015

    PubMed Central

    Lamers, Mart M.; Raj, V. Stalin; Shafei, Mah’d; Ali, Sami Sheikh; Abdallh, Sultan M.; Gazo, Mahmoud; Nofal, Samer; Lu, Xiaoyan; Erdman, Dean D.; Koopmans, Marion P.; Abdallat, Mohammad

    2016-01-01

    We characterized Middle East respiratory syndrome coronaviruses from a hospital outbreak in Jordan in 2015. The viruses from Jordan were highly similar to isolates from Riyadh, Saudi Arabia, except for deletions in open reading frames 4a and 3. Transmissibility and pathogenicity of this strain remains to be determined. PMID:26981770

  20. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  1. Functional outcomes of adults with 22q11.2 deletion syndrome

    PubMed Central

    Butcher, Nancy J.; Chow, Eva W.C.; Costain, Gregory; Karas, Dominique; Ho, Andrew; Bassett, Anne S.

    2012-01-01

    Purpose The 22q11.2 deletion syndrome is a common multisystem genomic disorder with congenital and later-onset manifestations, including congenital heart disease, intellectual disability, and psychiatric illness, that may affect long-term functioning. There are limited data on adult functioning in 22q11.2 deletion syndrome. Methods We used the Vineland Adaptive Behavior Scales to assess functioning in 100 adults with 22q11.2 deletion syndrome (n = 46 male; mean age = 28.8 (standard deviation = 9.7) years) where intellect ranged from average to borderline (n = 57) to mild intellectual disability (n = 43). Results More than 75% of the subjects scored in the functional deficit range. Although personal, vocational, and financial demographics confirmed widespread functional impairment, daily living skills and employment were relative strengths. Intelligence quotient was a significant predictor (P < 0.001) of overall and domain-specific adaptive functioning skills. A diagnosis of schizophrenia was a significant predictor (P < 0.05) of overall adaptive functioning, daily living skills, and socialization scores. Notably, congenital heart disease, history of mood/anxiety disorders, sex, and age were not significant predictors of functioning. Conclusion Despite functional impairment in adulthood that is primarily mediated by cognitive and psychiatric phenotypes, relative strengths in activities of daily living and employment have important implications for services and long-term planning. These results may help to inform expectations about outcomes for patients with 22q11.2 deletion syndrome. PMID:22744446

  2. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with

  3. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    ERIC Educational Resources Information Center

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among

  4. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    ERIC Educational Resources Information Center

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  5. Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015.

    PubMed

    Lamers, Mart M; Raj, V Stalin; Shafei, Mah'd; Ali, Sami Sheikh; Abdallh, Sultan M; Gazo, Mahmoud; Nofal, Samer; Lu, Xiaoyan; Erdman, Dean D; Koopmans, Marion P; Abdallat, Mohammad; Haddadin, Aktham; Haagmans, Bart L

    2016-04-01

    We characterized Middle East respiratory syndrome coronaviruses from a hospital outbreak in Jordan in 2015. The viruses from Jordan were highly similar to isolates from Riyadh, Saudi Arabia, except for deletions in open reading frames 4a and 3. Transmissibility and pathogenicity of this strain remains to be determined. PMID:26981770

  6. Domain Specific Attentional Impairments in Children with Chromosome 22Q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of…

  7. Myopathology and a mitochondrial DNA deletion in the Pearson marrow and pancreas syndrome.

    PubMed

    de Vries, D D; Buzing, C J; Ruitenbeek, W; van der Wouw, M P; Sperl, W; Sengers, R C; Trijbels, J M; van Oost, B A

    1992-01-01

    A patient with the Pearson marrow and pancreas syndrome is presented. She showed an anaemia with neutropenia and thrombopenia, failure to thrive, diarrhoea, disturbed glucose homeostasis and lactic acidosis. An exocrine pancreatic insufficiency was lacking. The disease followed a fatal course. Biochemical investigations of skeletal muscle revealed a disturbed mitochondrial energy metabolism, while many ultrastructural abnormal features were observed in the muscle tissue. Molecular genetic studies showed a de novo deletion in the mitochondrial DNA (mtDNA), different in size from the already published deletions and flanked by two 4 bp direct repeats, interspaced by 4-5 non-repeated nucleotides. mtDNA from 12 other tissues showed the same deletion in different percentages. No obvious relation between these percentages and tissue dysfunction was found. In spite of an open reading frame of 74 codons, only little transcription product of the genomic region resulting from the deletion was found. PMID:1483044

  8. Global distribution of the most prevalent deletions causing hypotonia-cystinuria syndrome.

    PubMed

    Martens, Kevin; Heulens, Inge; Meulemans, Sandra; Zaffanello, Marco; Tilstra, David; Hes, Frederik J; Rooman, Raoul; François, Inge; de Zegher, Francis; Jaeken, Jaak; Matthijs, Gert; Creemers, John W M

    2007-10-01

    Hypotonia-cystinuria syndrome (HCS) is a recessive disorder caused by microdeletions of SLC3A1 and PREPL on chromosome 2p21. Patients present with generalized hypotonia at birth, failure to thrive, growth retardation and cystinuria type I. While the initially described HCS families live in small regions in Belgium and France, we have now identified HCS alleles in patients and carriers from the Netherlands, Italy, Canada and United States of America. Surprisingly, among the nine deletions detected in those patients, only one novel deletion was found. Furthermore, one previously described deletion was found six times, another twice. Finally, we have investigated the frequency of both deletions using a random Belgian cohort. Given the global occurrence, HCS should be considered in the differential diagnosis of neonatal hypotonia. PMID:17579669

  9. Induced chromosome deletions cause hypersociability and other features of Williams–Beuren syndrome in mice

    PubMed Central

    Li, Hong Hua; Roy, Madhuri; Kuscuoglu, Unsal; Spencer, Corinne M; Halm, Birgit; Harrison, Katharine C; Bayle, Joseph H; Splendore, Alessandra; Ding, Feng; Meltzer, Leslie A; Wright, Elena; Paylor, Richard; Deisseroth, Karl; Francke, Uta

    2009-01-01

    The neurodevelopmental disorder Williams–Beuren syndrome is caused by spontaneous ∼1.5 Mb deletions comprising 25 genes on human chromosome 7q11.23. To functionally dissect the deletion and identify dosage-sensitive genes, we created two half-deletions of the conserved syntenic region on mouse chromosome 5G2. Proximal deletion (PD) mice lack Gtf2i to Limk1, distal deletion (DD) mice lack Limk1 to Fkbp6, and the double heterozygotes (D/P) model the complete human deletion. Gene transcript levels in brain are generally consistent with gene dosage. Increased sociability and acoustic startle response are associated with PD, and cognitive defects with DD. Both PD and D/P males are growth-retarded, while skulls are shortened and brains are smaller in DD and D/P. Lateral ventricle (LV) volumes are reduced, and neuronal cell density in the somatosensory cortex is increased, in PD and D/P. Motor skills are most impaired in D/P. Together, these partial deletion mice replicate crucial aspects of the human disorder and serve to identify genes and gene networks contributing to the neural substrates of complex behaviours and behavioural disorders. PMID:20049703

  10. Mosaic partial deletion of the PTEN gene in a patient with Cowden syndrome.

    PubMed

    Salo-Mullen, Erin E; Shia, Jinru; Brownell, Isaac; Allen, Peter; Girotra, Monica; Robson, Mark E; Offit, Kenneth; Guillem, Jose G; Markowitz, Arnold J; Stadler, Zsofia K

    2014-09-01

    Cowden syndrome is an autosomal dominant condition caused by pathogenic mutations in the phosphatase and tensin homolog (PTEN) gene. Only a small proportion of identified pathogenic mutations have been reported to be large deletions and rearrangements. We report on a female patient with a previous history of breast ductal carcinoma in situ who presented to our institution for management of gastrointestinal hamartomatous polyposis. Although several neoplastic predisposition syndromes were considered, genetic evaluation determined that the patient met clinical diagnostic criteria for Cowden syndrome. Array-based comparative genomic hybridization was performed and revealed a mosaic partial deletion of the PTEN gene. Follow-up clinical history including bilateral thyroid nodules, dermatological findings, and a new primary "triple-negative" adenocarcinoma of the contralateral breast are discussed. We highlight the need for recognition and awareness of mosaicism as it may provide an explanation for variable phenotypic presentations and may alter the genetic counseling risk assessment of affected individuals and family members. PMID:24609522

  11. The use of two different MLPA kits in 22q11.2 deletion syndrome.

    PubMed

    Evers, L J M; Engelen, J J M; Houben, L M H; Curfs, L M G; van Amelsvoort, T A M J

    2016-04-01

    22q11.2 deletion syndrome (22q11DS) is one of the most common recurrent copy-number variant disorder, caused by a microdeletion in chromosome band 22q11.2 and occurring with a population prevalence of 1 in 2000. Until today there has been no evidence that the size of the deletion has an influence on the clinical phenotype. Most studies report that 22q11DS is associated with mild or borderline intellectual disability. There are a limited number of reports on 22q11DS subjects with moderate or severe intellectual disability. In this study we describe 63 adult patients with 22q11DS, including 22q11DS patients functioning at a moderate to severe intellectual disabled level. Deletion size was established with an experimental Multiplex ligation-dependent probe amplification (MLPA) mixture (P324) in addition to the commonly used MLPA kit (P250). We compared deletion size with intellectual functioning and presence of psychotic symptoms during life. The use of the experimental MLPA kit gives extra information on deletion size, only when combined with the common MLPA kit. We were able to detect eleven atypical deletions and in two cases the deletion size was shorter than all other "typical ones". We conclude that the use of the experimental kit P324 gives extra information about the deletion size, but only when used together with the standard P250 kit. We did not found any relation of deletion size with intelligence or presence of psychosis. PMID:26921528

  12. Two novel gross deletions of TSC2 in Malaysian patients with tuberous sclerosis complex and TSC2/PKD1 contiguous deletion syndrome.

    PubMed

    Ismail, Nur Farrah Dila; Nik Abdul Malik, Nik Mohd Ariff; Mohseni, Jafar; Rani, Abdulqawee Mahyoob; Hayati, Fatemeh; Salmi, Abdul Razak; Narazah, Mohd Yusof; Zabidi-Hussin, Z A M H; Silawati, Abdul Rashid; Keng, Wee Teik; Ngu, Lock Hock; Sasongko, Teguh Haryo

    2014-05-01

    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively. PMID:24683199

  13. Intrachromosomal 3p insertion as a cause of reciprocal pure interstitial deletion and duplication in two siblings: further delineation of the emerging proximal 3p deletion syndrome.

    PubMed

    Lloveras, Elisabet; Vendrell, Teresa; Fernández, Asunción; Castells, Neus; Cueto, Ana; del Campo, Miguel; Hernando, Cristina; Villa, Olaya; Plaja, Alberto

    2014-01-01

    Very few cases of constitutional interstitial deletions of the proximal short arm of chromosome 3 have been reported; however, the proximal 3p deletion is emerging as a clinically recognizable syndrome. We present an intrachromosomal insertion of 3p12.3p14.1 in a phenotypic normal man (46,XY,ins(3)(p25p12.3p14.1)) which is responsible for the unbalanced karyotype in 2 affected offspring, one with a 3p12.3p14.1 interstitial deletion and the other with a reciprocal duplication. The exceptionality of these 2 reciprocal recombinants contributes to a better definition of the proximal 3p deletion syndrome and its duplication counterpart. PMID:25720458

  14. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    SciTech Connect

    Blok, R.B.; Thorburn, D.R.; Danks, D.M.

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  15. Genotype/phenotype correlation in women with nonmosaic X chromosome deletions and Turner syndrome

    SciTech Connect

    Zinn, A.R.

    1994-09-01

    Turner syndrome is a complex human developmental disorder associated with the absence of the second sex chromosome (monosomy X). Cardinal features of the Turner phenotype include high intrauterine lethality, growth retardation, gonadal failure, and the variable presence of specific somatic abnormalities such as webbed neck, lymphedema, and skeletal abnormalities. Recent observations support the hypothesis that the phenotype associated with monosomy X results from haploid dosage of genes common the X and Y chromosomes that escape X-inactivation ({open_quotes}Turner genes{close_quotes}). Apart from a locus causing short stature that maps to the pseudoautosomal region on the distal short arm, the location of X-linked Turner genes is not known. Karyotype/phenotype correlations in women with partial X deletions have been inconsistent. However, previous studies have focused on sporadic sex chromosome aberrations and may have been confounded by occult mosaicism. In addition, mapping of deletions was limited by the resolution of cytogenetic techniques. I am reexamining genotype/phenotype correlations in partial X monosomy, focusing on a subset of cases in which mosaicism is highly unlikely (e.g., unbalanced X-autosome translocations, familial X deletions), and using molecular techniques to map deletions. I have collected eight cases of nonmosaic X deletions in women with varied manifestations of Turner syndrome. Cytogenetic data suggests that genes responsible for Turner anatomic abnormalities may lie within a critical region of the very proximal portion of the short arm (Xp11). Molecular characterization of the deletions is in progress. Methods include (1) fluorescence in situ hybridization of metaphase spreads from patient-derived cell lines, using cosmid probes that map to known locations on Xp, and (2) sequence tagged site (STS) content mapping of somatic cell hybrids retaining the deleted X chromosomes derived from these cell lines.

  16. The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains.

    PubMed

    Ellahi, Aisha; Thurtle, Deborah M; Rine, Jasper

    2015-06-01

    Saccharomyces cerevisiae telomeres have been a paradigm for studying telomere position effects on gene expression. Telomere position effect was first described in yeast by its effect on the expression of reporter genes inserted adjacent to truncated telomeres. The reporter genes showed variable silencing that depended on the Sir2/3/4 complex. Later studies examining subtelomeric reporter genes inserted at natural telomeres hinted that telomere position effects were less pervasive than previously thought. Additionally, more recent data using the sensitive technology of chromatin immunoprecipitation and massively parallel sequencing (ChIP-Seq) revealed a discrete and noncontinuous pattern of coenrichment for all three Sir proteins at a few telomeres, calling the generality of these conclusions into question. Here we combined the ChIP-Seq of the Sir proteins with RNA sequencing (RNA-Seq) of messenger RNAs (mRNAs) in wild-type and in SIR2, SIR3, and SIR4 deletion mutants to characterize the chromatin and transcriptional landscape of all native S. cerevisiae telomeres at the highest achievable resolution. Most S. cerevisiae chromosomes had subtelomeric genes that were expressed, with only ∼6% of subtelomeric genes silenced in a SIR-dependent manner. In addition, we uncovered 29 genes with previously unknown cell-type-specific patterns of expression. These detailed data provided a comprehensive assessment of the chromatin and transcriptional landscape of the subtelomeric domains of a eukaryotic genome. PMID:25823445

  17. Comparison of phenotype in uniparental disomy and deletion Prader-Willi syndrome: Sex specific differences

    SciTech Connect

    Mitchell, J.; Langlois, S.; Robinson, W.P.

    1996-10-16

    Prader-Willi syndrome (PWS) results primarily from either a paternal deletion of 15q11-q13 or maternal uniparental disomy (UPD) 15. Birth parameters and clinical presentation of 79 confirmed UPD cases and 43 deletion patients were compared in order to test whether any manifestations differ between the two groups. There were no major clinical differences between the two classes analyzed as a whole, other than the presence of hypopigmentation predominantly in the deletion group. However, there was a significant bias in sex-ratio (P<.001) limited to the UPD group with a predominance (68%) of males. An equal number of males and females was observed in the deletion group. When analyzed by sex, several significant differences between the UPD and deletion groups were observed. Female UPD patients were found to be less severely affected than female deletion patients in terms of length of gavage feeding and a later onset of hyperphagia. Although these traits are likely to be influenced by external factors, they may reflect a milder presentation of female UPD patients which could explain the observed sex bias by causing under-ascertainment of female UPD. Alternatively, there may be an effect of sex on either early trisomy 15 survival or the probability of somatic loss of a chromosome from a trisomic conceptus. 26 refs., 1 tab.

  18. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: a general strategy using hypervariable subtelomeric DNA polymorphisms.

    PubMed Central

    Wilkie, A O

    1993-01-01

    Given the availability of DNA from both parents, unusual segregation of hypervariable DNA polymorphisms (HVPs) in the offspring may be attributable to deletion, unbalanced chromosomal translocation, or uniparental disomy. The telomeric regions of chromosomes are rich in both genes and hypervariable minisatellite sequences and may also be particularly prone to cryptic breakage events. Here I describe and analyze a general approach to the detection of subtelomeric abnormalities and uniparental disomy in patients with unexplained mental retardation. With 29 available polymorphic systems, approximately 50%-70% of these abnormalities could currently be detected. Development of subtelomeric HVPs physically localized with respect to their telomeres should provide a valuable resource in routine diagnostics. PMID:8352277

  19. An interstitial 15q11-q14 deletion: expanded Prader-Willi syndrome phenotype.

    PubMed

    Butler, Merlin G; Bittel, Douglas C; Kibiryeva, Nataliya; Cooley, Linda D; Yu, Shihui

    2010-02-01

    We present an infant girl with a de novo interstitial deletion of the chromosome 15q11-q14 region, larger than the typical deletion seen in Prader-Willi syndrome (PWS). She presented with features seen in PWS including hypotonia, a poor suck, feeding problems, and mild micrognathia. She also presented with features not typically seen in PWS such as preauricular ear tags, a high-arched palate, edematous feet, coarctation of the aorta, a PDA, and a bicuspid aortic valve. G-banded chromosome analysis showed a large de novo deletion of the proximal long arm of chromosome 15 confirmed using FISH probes (D15511 and GABRB3). Methylation testing was abnormal and consistent with the diagnosis of PWS. Because of the large appearing deletion by karyotype analysis, an array comparative genomic hybridization (aCGH) was performed. A 12.3 Mb deletion was found which involved the 15q11-q14 region containing approximately 60 protein coding genes. This rare deletion was approximately twice the size of the typical deletion seen in PWS and involved the proximal breakpoint BP1 and the distal breakpoint was located in the 15q14 band between previously recognized breakpoints BP5 and BP6. The deletion extended slightly distal to the AVEN gene including the neighboring CHRM5 gene. There is no evidence that the genes in the 15q14 band are imprinted; therefore, their potential contribution in this patient's expanded PWS phenotype must be a consequence of dosage sensitivity of the genes or due to altered expression of intact neighboring genes from a position effect. PMID:20082457

  20. Neuropsychological Function in a Child with 18p Deletion Syndrome: A Case Report

    PubMed Central

    Willoughby, Brian L.; Favero, Marcus; Mochida, Ganeshwaran H.; Braaten, Ellen B.

    2014-01-01

    We report the neuropsychological profile of a 4-year-old boy with the rare 18p deletion syndrome. We used a battery of standardized tests to assess his development in intellect, language, visuomotor integration, academic readiness, socialization, and emotional and behavioral health. The results showed borderline intellectual function except for low average nonverbal reasoning skills. He had stronger receptive than expressive language skills, although both were well below his age group. He had impaired visuomotor integration and pre-academic skills such as letter identification. Emotional and behavioral findings indicated mild aggressiveness, anxiety, low frustration tolerance, and executive function weaknesses, especially at home. Interestingly, he showed social strengths, responding to attention and sharing enjoyment with his examiner. With its assessment of development in many domains, this case report is among the first to characterize the neuropsychological and psychiatric function of a young child with 18p deletion syndrome. We discuss the implications of our findings for clinical practice. PMID:25237747

  1. Neuropsychological function in a child with 18p deletion syndrome: a case report.

    PubMed

    Willoughby, Brian L; Favero, Marcus; Mochida, Ganeshwaran H; Braaten, Ellen B

    2014-09-01

    We report the neuropsychological profile of a 4-year-old boy with the rare 18p deletion syndrome. We used a battery of standardized tests to assess his development in intellect, language, visuomotor integration, academic readiness, socialization, and emotional and behavioral health. The results showed borderline intellectual function except for low average nonverbal reasoning skills. He had stronger receptive than expressive language skills, although both were well below his age group. He had impaired visuomotor integration and pre-academic skills such as letter identification. Emotional and behavioral findings indicated mild aggressiveness, anxiety, low frustration tolerance, and executive function weaknesses, especially at home. Interestingly, he showed social strengths, responding to joint attention and sharing enjoyment with his examiner. With its assessment of development in many domains, this case report is among the first to characterize the neuropsychological and psychiatric function of a young child with 18p deletion syndrome. We discuss the implications of our findings for clinical practice. PMID:25237747

  2. Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline

    PubMed Central

    Stong, Nicholas; Deng, Zhong; Gupta, Ravi; Hu, Sufen; Paul, Shiela; Weiner, Amber K.; Eichler, Evan E.; Graves, Tina; Fronick, Catrina C.; Courtney, Laura; Wilson, Richard K.; Lieberman, Paul M.; Davuluri, Ramana V.; Riethman, Harold

    2014-01-01

    Mapping genome-wide data to human subtelomeres has been problematic due to the incomplete assembly and challenges of low-copy repetitive DNA elements. Here, we provide updated human subtelomere sequence assemblies that were extended by filling telomere-adjacent gaps using clone-based resources. A bioinformatic pipeline incorporating multiread mapping for annotation of the updated assemblies using short-read data sets was developed and implemented. Annotation of subtelomeric sequence features as well as mapping of CTCF and cohesin binding sites using ChIP-seq data sets from multiple human cell types confirmed that CTCF and cohesin bind within 3 kb of the start of terminal repeat tracts at many, but not all, subtelomeres. CTCF and cohesin co-occupancy were also enriched near internal telomere-like sequence (ITS) islands and the nonterminal boundaries of subtelomere repeat elements (SREs) in transformed lymphoblastoid cell lines (LCLs) and human embryonic stem cell (ES) lines, but were not significantly enriched in the primary fibroblast IMR90 cell line. Subtelomeric CTCF and cohesin sites predicted by ChIP-seq using our bioinformatics pipeline (but not predicted when only uniquely mapping reads were considered) were consistently validated by ChIP-qPCR. The colocalized CTCF and cohesin sites in SRE regions are candidates for mediating long-range chromatin interactions in the transcript-rich SRE region. A public browser for the integrated display of short-read sequencebased annotations relative to key subtelomere features such as the start of each terminal repeat tract, SRE identity and organization, and subtelomeric gene models was established. PMID:24676094

  3. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    SciTech Connect

    McCabe, E.R.B.; Towbin, J.A. ); Engh, G. van den; Trask, B.J. )

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  4. Greig cephalopolysyndactyly syndrome: Altered phenotype of a contiguous gene syndrome by the presence of a chromosomal deletion

    SciTech Connect

    Hersh, J.H.; Williams, P.G.; Yen, F.F.

    1994-09-01

    Greig cephalopolysyndactyly syndrome (GCPS) is characterized by craniofacial anomalies, broad thumbs and halluces, polydactyly of the hands and feet, and variable syndactyly. Intellectual abilities are usually normal. Inheritance is in an autosomal dominant fashion. The disorder has been mapped to chromosome 7p13, suggesting that the condition represents a contiguous gene syndrome (CGS). A male infant presented with multiple congenital anomalies, including omphalocele, dysgenesis of the corpus callosum, hydrocephalus, esotropia, broad thumbs and halluces, syndactyly, polydactyly of one foot, hypotonia and developmental delay. A de novo interstitial deletion of chromosome 7p was detected, 46,XY,del(7)(p13p15). Although clinical findings in this case were reminiscent of GCPS, and the chromosomal abnormality included the region assigned to the candidate gene for this syndrome, additional physical abnormalities were present, as well as cognitive deficits. Some of these features have been previously described in patients with chromosomal deletions of 7p. The chromosomal abnormality in our case provides supportive evidence of the gene locus in GCPS, and that GCPS represents a new CGS. However, a larger deletion, extending beyond the limits of the gene, significantly altered the phenotype. Isolation of the gene responsible for GCPS, and identification of additional patients with chromosomal abnormalities in this region of chromosome 7, should help to provide more accurate genotype-phenotype correlations.

  5. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    ERIC Educational Resources Information Center

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general

  6. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    ERIC Educational Resources Information Center

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  7. Cognitive, Behavioural and Psychiatric Phenotype in 22q11.2 Deletion Syndrome

    PubMed Central

    Philip, Nicole

    2011-01-01

    22q11.2 Deletion syndrome has become an important model for understanding the pathophysiology of neurodevelopmental conditions, particularly schizophrenia which develops in about 20–25% of individuals with a chromosome 22q11.2 microdeletion. From the initial discovery of the syndrome, associated developmental delays made it clear that changes in brain development were a key part of the expression. Once patients were followed through childhood into adult years, further neurobehavioural phenotypes became apparent, including a changing cognitive profile, anxiety disorders and seizure diathesis. The variability of expression is as wide as for the myriad physical features associated with the syndrome, with the addition of evolving phenotype over the developmental trajectory. Notably, variability appears unrelated to length of the associated deletion. Several mouse models of the deletion have been engineered and are beginning to reveal potential molecular mechanisms for the cognitive and behavioural phenotypes observable in animals. Both animal and human studies hold great promise for further discoveries relevant to neurodevelopment and associated cognitive, behavioural and psychiatric disorders. PMID:21573985

  8. Two 22q telomere deletions serendipitously detected by FISH.

    PubMed Central

    Precht, K S; Lese, C M; Spiro, R P; Huttenlocher, P R; Johnston, K M; Baker, J C; Christian, S L; Kittikamron, K; Ledbetter, D H

    1998-01-01

    Cryptic telomere deletions have been proposed to be a significant cause of idiopathic mental retardation. We present two unrelated subjects, with normal G banding analysis, in whom 22q telomere deletions were serendipitously detected at two different institutions using fluorescence in situ hybridisation (FISH). Both probands presented with several of the previously described features associated with 22q deletions, including hypotonia, developmental delay, and absence of speech. Our two cases increase the total number of reported 22q telomere deletions to 19, the majority of which were identified by cytogenetic banding analysis. With the limited sensitivity of routine cytogenetic studies (approximately 2-5 Mb), these two new cases suggest that the actual prevalence of 22q telomere deletions may be higher than currently documented. Of additional interest is the phenotypic overlap with Angelman syndrome (AS) as it raises the possibility of a 22q deletion in patients in whom AS has been ruled out. The use of telomeric probes as diagnostic reagents would be useful in determining an accurate prevalence of chromosome 22q deletions and could result in a significantly higher detection rate of subtelomeric rearrangements. Images PMID:9832042

  9. Distal Deletion of Chromosome 11q Encompassing Jacobsen Syndrome without Platelet Abnormality.

    PubMed

    Sheth, Frenny J; Datar, Chaitanya; Andrieux, Joris; Pandit, Anand; Nayak, Darshana; Rahman, Mizanur; Sheth, Jayesh J

    2014-01-01

    Terminal 11q deletion, known as Jacobsen syndrome (JBS), is a rare genetic disorder associated with numerous dysmorphic features. We studied two cases with multiple congenital anomalies that were cytogenetically detected with deletions on 11q encompassing JBS region: 46,XX,der(11) del(11)(q24). Array comparative genomic hybridization (aCGH) analysis confirmed partial deletion of 11.8-11.9 Mb at 11q24.1q25 (case 1) and 13.9-14 Mb deletion at 11q23.3q25 together with 7.3-7.6 Mb duplication at 12q24.32q24.33 (case 2). Dysmorphism because of the partial duplication of 12q was not overtly decipherable over the Jacobsen phenotype except for a triangular facial profile. Aberrant chromosome 11 was inherited from phenotypically normal father, carrier of balanced translocation 46,XY,t(11;12)(q23.3; q24.32). In the present study, both cases had phenotypes that were milder than the ones described in literature despite having large deletion size. Most prominent features in classical JBS is thrombocytopenia, which was absent in both these cases. Therefore, detailed functional analysis of terminal 11q region is warranted to elucidate etiology of JBS and their clinical presentation. PMID:25288895

  10. A novel large deletion mutation of FERMT1 gene in a Chinese patient with Kindler syndrome

    PubMed Central

    GAO, Ying; BAI, Jin-li; LIU, Xiao-yan; QU, Yu-jin; CAO, Yan-yan; WANG, Jian-cai; JIN, Yu-wei; WANG, Hong; SONG, Fang

    2015-01-01

    Kindler syndrome (KS; OMIM 173650) is a rare autosomal recessive skin disorder, which results in symptoms including blistering, epidermal atrophy, increased risk of cancer, and poor wound healing. The majority of mutations of the disease-determining gene (FERMT1 gene) are single nucleotide substitutions, including missense mutations, nonsense mutations, etc. Large deletion mutations are seldom reported. To determine the mutation in the FERMT1 gene associated with a 7-year-old Chinese patient who presented clinical manifestation of KS, we performed direct sequencing of all the exons of FERMT1 gene. For the exons 2–6 without amplicons, we analyzed the copy numbers using quantitative real-time polymerase chain reaction (qRT-PCR) with specific primers. The deletion breakpoints were sublocalized and the range of deletion was confirmed by PCR and direct sequencing. In this study, we identified a new 17-kb deletion mutation spanning the introns 1–6 of FERMT1 gene in a Chinese patient with severe KS phenotypes. Her parents were carriers of the same mutation. Our study reported a newly identified large deletion mutation of FERMT1 gene involved in KS, which further enriched the mutation spectrum of the FERMT1 gene. PMID:26537214

  11. Congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome due to a 6p deletion.

    PubMed

    Moysés-Oliveira, Mariana; Mancini, Tatiane I; Takeno, Sylvia S; Rodrigues, Andressa D S; Bachega, Tania A S S; Bertola, Debora; Melaragno, Maria Isabel

    2014-01-01

    Cryptic deletions in balanced de novo translocations represent a frequent cause of abnormal phenotypes, including Mendelian diseases. In this study, we describe a patient with multiple congenital abnormalities, such as late-onset congenital adrenal hyperplasia (CAH), primary ovarian failure and Ehlers-Danlos syndrome (EDS), who carries a de novo t(6;14)(p21;q32) translocation. Genomic array analysis identified a cryptic 1.1-Mb heterozygous deletion, adjacent to the breakpoint on chromosome 6, extending from 6p21.33 to 6p21.32 and affecting 85 genes, including CYP21A2,TNXB and MSH5. Multiplex ligation-dependent probe amplification analysis of the 6p21.3 region was performed in the patient and her family and revealed a 30-kb deletion in the patient's normal chromosome 6, inherited from her mother, resulting in homozygous loss of genes CYP21A1P and C4B. CYP21A2 sequencing showed that its promoter region was not affected by the 30-kb deletion, suggesting that the deletion of other regulatory sequences in the normal chromosome 6 caused a loss of function of the CYP21A2 gene. EDS and primary ovarian failure phenotypes could be explained by the loss of genes TNXB and MSH5, a finding that may contribute to the characterization of disease-causing genes. The detection of this de novo microdeletion drastically reduced the estimated recurrence risk for CAH in the family. PMID:24970489

  12. Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    PubMed Central

    2014-01-01

    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed. PMID:25057328

  13. Large contiguous gene deletions in Sjögren-Larsson syndrome.

    PubMed

    Engelstad, Holly; Carney, Gael; S'aulis, Dana; Rise, Janae; Sanger, Warren G; Rudd, M Katharine; Richard, Gabriele; Carr, Christopher W; Abdul-Rahman, Omar A; Rizzo, William B

    2011-11-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis. PMID:21684788

  14. Interstitial deletion of 11(p11.2p12): A newly described contiguous gene deletion syndrome involving the gene for hereditary multiple exostoses

    SciTech Connect

    Potocki, L.; Shaffer, L.G.

    1996-03-29

    Individuals with deletions of the proximal portion of the short arm of chromosome 11 share many manifestations including mental retardation, biparietal foramina, minor facial anomalies, and multiple cartilaginous exostoses. The finding of multiple exostoses in these patients is remarkable as the disorder hereditary multiple exostoses, which is inherited in an autosomal dominant manner, has recently been mapped by linkage to three regions, including proximal 11p. We report the clinical and molecular findings in an additional patient with an 11(p11.2p12) deletion. Cytogenetic and molecular analysis demonstrated a de novo, paternally derived deletion for markers which have been shown to be tightly linked to the 11p locus (EXT2). These data support the location of EXT2 within this region and also provide information regarding the ordering of polymorphic markers on 11p. Deletion 11(p11.2p12) is a rare, yet specific, deletion syndrome involving the EXT2 locus, a gene for parietal foramina, and a mental retardation locus, and therefore can be classified as a contiguous gene deletion syndrome. 24 refs., 4 figs., 1 tab.

  15. Duplication 5q and deletion 9p due to a t(5;9)(q34;p23) in 2 cousins with features of Hunter-McAlpine syndrome and hypothyroidism.

    PubMed

    Vásquez-Velásquez, A I; García-Castillo, H A; González-Mercado, M G; Dávalos, I P; Raca, G; Xu, X; Dwyer, E; Rivera, H

    2011-01-01

    We report on 2 similarly affected cousins with a compound imbalance resulting from a familial t(5;9)(q34;p23) and entailing both an ∼17-Mb 5q terminal duplication and an ∼12-Mb 9p terminal deletion as determined by G-banding, subtelomere FISH, and aCGH. The proband's karyotype was 46,XX,der(9)t(5;9)(q34;p23)mat.ish der(9)t(5;9)(q34;p23)(9pter-,5qter+).arr 5q34q35(163,328,000-180,629,000)×3, 9p24p23(194,000-12,664,000)×1. Her cousin had the same unbalanced karyotype inherited from his father. The clinical phenotype mainly consists of a distinct craniofacial dysmorphism featuring microcephaly, flat facies, down slanting palpebral fissures, small flat nose, long philtrum, and small mouth with thin upper lip. Additional remarkable findings were craniosynostosis of several sutures, craniolacunia and preaxial polydactyly in the proband and hypothyroidism in both subjects. The observed clinical constellation generally fits the phenotypic spectrum of the 5q distal duplication syndrome (known also as Hunter-McAlpine syndrome), except for the thyroid insufficiency which can likely be ascribed to the concurrent 9p deletion, as at least 4 other 9pter monosomic patients without chromosome 5 involvement had this hormonal disorder. The present observation further confirms the etiology of the HMS phenotype from gain of the 5q35→qter region, expands the clinical pictures of partial trisomy 5q and monosomy 9p, and provides a comprehensive list of 160 patients with 5q distal duplication. PMID:21063078

  16. Alagille syndrome with interstitial 20p deletion derived from maternal ins(7;20)

    SciTech Connect

    Pi-Hsien Li; San-Ging Shu; Ching-Shiang Chi

    1996-06-28

    We present a 6-year-old Chinese boy with Alagille syndrome and an interstitial 20p deletion, with a karyotype of 46,XY,der(20)dir ins(7;20)(q11.23;p11.23p12.2 or p12.2p13)mat. He had a peculiar face and suffered from congenital heart disease, growth retardation, severe cholestasis, hepatosplenomegaly, and impaired renal function. The karyotype of his mother showed a balanced translocation, 46,XX,dir ins(7;20)(q11.23; p11.23p12.2 or p12.2p13), and her phenotype was normal. His dead elder brother was highly suspected as another victim of Alagille syndrome. The findings in the present family suggested that if Alagille syndrome is a single gene defect, the putative gene responsible for the syndrome would not be located at the insertion breakpoints but located within the deletion extent. 18 refs., 5 figs.

  17. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    PubMed Central

    Squarcione, Chiara; Torti, Maria Chiara; Di Fabio, Fabio; Biondi, Massimo

    2013-01-01

    The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. PMID:24353423

  18. Deletion of locus D15S113 in a mother and son without features of Angelman syndrome

    SciTech Connect

    Michaelis, R.C.; Tarleton, J.C.; Donlon, T.A.; Simensen, R.J.

    1994-09-01

    Deletions of the proximal long arm of chromosome 15 result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The minimal critical deletion region for Angelman syndrome has been reported to include D15S74 (B1.5), D15S10 (TD3-21), and D15S113 (LS6-1). We report a mother and son who have deletions that include D15S113 but who do not have features of Angelman syndrome. D.H. is a 10-year-old white male referred for genetic evaluation due to mental retardation. He has mild to moderate mental retardation and minor dysmorphic features, including downslanting palpebral fissures, prominent nose, broad forehead, small chin, midface hypoplasia, and large ears. His mother (B.S.) has slightly downslanting palpebral fissures and a borderline intellectual deficit. Neither individual has the seizures, excessive laughter, hand clapping, ataxia or facial dysmorphism which are characteristic of Angelman syndrome. The linear order of probes mapping to 15q11-q13 is 15cen-D15S11-D15S13-D15S10-D15S113-GABRB3-D15S12-tel. The proximal border of the deletion in our patients lies between D15S10 and D15S113. The fact that these two individuals do not have Angelman syndrome, despite deletion of D15S113, suggests that the Angelman syndrome critical deletion region should be further refined to exclude the D15S113 locus. In addition, the findings of a more severe intellectual impairment in the son than in the mother suggests that the region immediately telomeric to the critical deletion region for Angelman syndrome may contain imprintable genes that influence intellectual function.

  19. Molecular Definition of the 22q11 Deletions in Velo-Cardio-Facial Syndrome

    PubMed Central

    Morrow, Bernice; Goldberg, Rosalie; Carlson, Christine; Gupta, Ruchira Das; Sirotkin, Howard; Collins, John; Dunham, Ian; O'Donnell, Hilary; Scambler, Peter; Shprintzen, Robert; Kucherlapati, Raju

    1995-01-01

    Velo-cardio-facial syndrome (VCFS) is a common genetic disorder among individuals with cleft palate and is associated with hemizygous deletions in human chromosome 22q11. Toward the molecular definition of the deletions, we constructed a physical map of 22q11 in the form of overlapping YACs. The physical map covers >9 cM of genetic distance, estimated to span 5 Mb of DNA, and contains a total of 64 markers. Eleven highly polymorphic short tandem-repeat polymorphic (STRP) markers were placed on the physical map, and 10 of these were unambiguously ordered. The 11 polymorphic markers were used to type the DNA from a total of 61 VCFS patients and 49 unaffected relatives. Comparison of levels of heterozygosity of these markers in VCFS patients and their unaffected relatives revealed that four of these markers are commonly hemizygous among VCFS patients. To confirm these results and to define further the breakpoints in VCFS patients, 15 VCFS individuals and their unaffected parents were genotyped for the 11 STRP markers. Haplotypes generated from this study revealed that 82% of the patients have deletions that can be defined by the STRP markers. The results revealed that all patients who have a deletion share a common proximal breakpoint, while there are two distinct distal breakpoints. Markers D22S941 and D22S944 appear to be consistently hemizygous in patients with deletions. Both of these markers are located on a single nonchimeric YAC that is 400 kb long. The results also show that the parental origin of the deleted chromosome does not have any effect on the phenotypic manifestation ImagesFigure 2Figure 3 PMID:7762562

  20. Diminutive somatic deletions in the 5q region lead to a phenotype atypical of classical 5q- syndrome.

    PubMed

    Vlachos, Adrianna; Farrar, Jason E; Atsidaftos, Eva; Muir, Ellen; Narla, Anupama; Markello, Thomas C; Singh, Sharon A; Landowski, Michael; Gazda, Hanna T; Blanc, Lionel; Liu, Johnson M; Ellis, Steven R; Arceci, Robert J; Ebert, Benjamin L; Bodine, David M; Lipton, Jeffrey M

    2013-10-01

    Classical 5q- syndrome is an acquired macrocytic anemia of the elderly. Similar to Diamond Blackfan anemia (DBA), an inherited red cell aplasia, the bone marrow is characterized by a paucity of erythroid precursors. RPS14 deletions in combination with other deletions in the region have been implicated as causative of the 5q- syndrome phenotype. We asked whether smaller, less easily detectable deletions could account for a syndrome with a modified phenotype. We employed single-nucleotide polymorphism array genotyping to identify small deletions in patients diagnosed with DBA and other anemias lacking molecular diagnoses. Diminutive mosaic deletions involving RPS14 were identified in a 5-year-old patient with nonclassical DBA and in a 17-year-old patient with myelodysplastic syndrome. Patients with nonclassical DBA and other hypoproliferative anemias may have somatically acquired 5q deletions with RPS14 haploinsufficiency not identified by fluorescence in situ hybridization or cytogenetic testing, thus refining the spectrum of disorders with 5q- deletions. PMID:23943650

  1. Diminutive somatic deletions in the 5q region lead to a phenotype atypical of classical 5q− syndrome

    PubMed Central

    Farrar, Jason E.; Atsidaftos, Eva; Muir, Ellen; Narla, Anupama; Markello, Thomas C.; Singh, Sharon A.; Landowski, Michael; Gazda, Hanna T.; Blanc, Lionel; Liu, Johnson M.; Ellis, Steven R.; Arceci, Robert J.; Ebert, Benjamin L.; Bodine, David M.; Lipton, Jeffrey M.

    2013-01-01

    Classical 5q− syndrome is an acquired macrocytic anemia of the elderly. Similar to Diamond Blackfan anemia (DBA), an inherited red cell aplasia, the bone marrow is characterized by a paucity of erythroid precursors. RPS14 deletions in combination with other deletions in the region have been implicated as causative of the 5q− syndrome phenotype. We asked whether smaller, less easily detectable deletions could account for a syndrome with a modified phenotype. We employed single-nucleotide polymorphism array genotyping to identify small deletions in patients diagnosed with DBA and other anemias lacking molecular diagnoses. Diminutive mosaic deletions involving RPS14 were identified in a 5-year-old patient with nonclassical DBA and in a 17-year-old patient with myelodysplastic syndrome. Patients with nonclassical DBA and other hypoproliferative anemias may have somatically acquired 5q deletions with RPS14 haploinsufficiency not identified by fluorescence in situ hybridization or cytogenetic testing, thus refining the spectrum of disorders with 5q− deletions. PMID:23943650

  2. Deletion at chromosome 16p13. 3 as a cause of Rubinstein-Taybi syndrome: Clinical aspects

    SciTech Connect

    Hennekam, R.C.M.; Tilanus, M.; Boogaard, M.J.H. van den ); Hamel, B.C.J.; Voshart-van Heeren, H.; Mariman, E.C.M.; Beersum, S.E.C. van ); Breuning, M.H. )

    1993-02-01

    In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. The authors investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome. 26 refs., 3 tabs., 2 figs.

  3. A de novo deletion in X 27-28 spans at least 3 megabases and results in fragile X syndrome

    SciTech Connect

    Lachiewicz, A.; Rao, K.; Aylsworth, A.; Richie, R.; Schwartz, C.; Tarleton, J. ||

    1994-07-15

    A 2-year-old boy with Martin-Bell syndrome was referred for molecular testing and found to have a large deletion of FMRI. His mother was found to have two FMR-1 alleles in the normal range for CGG repeats. DNA probes located both proximal and distal to FRAXA were used to delineate the approximation location of the deletion endpoints. Proximal to the fragile site, DXS312 (pX135) was absent but DXS98 (4D8) was present. Distal to the fragile site, DXS296 (VK21) was absent but DXS304 (U6.2) was present. Our patient does not appear to have clinical findings other than those typically associated with fragile X syndrome suggesting that the deletion does not remove other contiguous genes, e.g., IDS. The deletion in this patient is larger than the patient reported by Gedeon et al., in whom approximately 2.5 megabases were estimated to be deleted. Using the physical map of Schlessinger et al., the physical extent of the deletion can be estimated to be at least 3 megabases. This patient may be useful in physical mapping of the chromosomal region near FMR-1. Continued long-term evaluation of this patient may uncover clinical findings suggestive that the deletion removes other genes near to FMR-1 or, alternatively, no findings atypical of the fragile X syndrome suggesting that no other genes lie in the deletion interval.

  4. Deletion at chromosome 16p13.3 as a cause of Rubinstein-Taybi syndrome: clinical aspects.

    PubMed Central

    Hennekam, R C; Tilanus, M; Hamel, B C; Voshart-van Heeren, H; Mariman, E C; van Beersum, S E; van den Boogaard, M J; Breuning, M H

    1993-01-01

    In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. We investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome. Images Figure 1 Figure 2 PMID:8430692

  5. Genomic analysis of five chromosome 7p deletion patients with Greig cephalopolysyndactyly syndrome (GCPS).

    PubMed

    Schwarzbraun, Thomas; Windpassinger, Christian; Ofner, Lisa; Vincent, John B; Cheung, Joseph; Scherer, Stephen W; Wagner, Klaus; Kroisel, Peter M; Petek, Erwin

    2006-01-01

    Chromosomal deletions on chromosome 7p are associated with Greig cephalopolysyndactyly syndrome (GCPS, OMIM 175700) a syndrome affecting the development of the skull, face, and limbs. We have compared data from molecular cytogenetic and genetic analyses with clinical symptoms from five previously published GCPS deletion patients, including a pair of monozygotic twins. The genomic DNA of the probands and their parents, as well as the DNA from monoallelic cell lines of two patients, was analyzed using microsatellite markers. In some cases (e.g. where the microsatellite studies were uninformative) we also used fluorescence in situ hybridization (FISH) with bacterial artificial chromosomes (BAC) probes. The fine mapping results of the deletions and genomic data from chromosome 7, were compared to the clinical symptoms. Common breakpoint sequences or mutation hotspots were not observed. Mutation screening for PGAM2, which is responsible for a form of myopathy with recessive inheritance, was performed in all patients. Loss of heterozygosity for known genes with dominant inheritance, such as the glucokinase gene (GCK), which, when mutated or haploinsufficient, is responsible for maturity-onset diabetes of the young, type II (MODY2, OMIM 125851), was identified and included in a genetic counseling of the patients' families. PMID:16829355

  6. PHF6 Deletions May Cause Borjeson-Forssman-Lehmann Syndrome in Females.

    PubMed

    Berland, S; Alme, K; Brendehaug, A; Houge, G; Hovland, R

    2011-09-01

    In a 16-year-old girl with intellectual disability, irregular teeth, slight body asymmetry, and striated skin pigmentation, highly skewed X-inactivation increased the likelihood of an X-linked cause of her condition. Among these, prominent supraorbital ridges and hearing loss suggested a filaminopathy, but no filamin A mutation was found. The correct diagnosis, Borjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900), was first made when a copy number array identified a de novo 15-kb deletion of the terminal 3 exons of the PHF6 gene. In retrospect, her phenotype resembled that of males with BFLS. Such deletions of PHF6 have not been reported previously. This might be because PHF6 mutations are rarely looked for in females since classical BFLS so far has been thought to be a male-specific syndrome, and large PHF6 deletions might be incompatible with male fetal survival. If this is the case, sporadic BFLS could be more frequent in females than in males. PMID:22190899

  7. PHF6 Deletions May Cause Borjeson-Forssman-Lehmann Syndrome in Females

    PubMed Central

    Berland, S.; Alme, K.; Brendehaug, A.; Houge, G.; Hovland, R.

    2011-01-01

    In a 16-year-old girl with intellectual disability, irregular teeth, slight body asymmetry, and striated skin pigmentation, highly skewed X-inactivation increased the likelihood of an X-linked cause of her condition. Among these, prominent supraorbital ridges and hearing loss suggested a filaminopathy, but no filamin A mutation was found. The correct diagnosis, Borjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900), was first made when a copy number array identified a de novo 15-kb deletion of the terminal 3 exons of the PHF6 gene. In retrospect, her phenotype resembled that of males with BFLS. Such deletions of PHF6 have not been reported previously. This might be because PHF6 mutations are rarely looked for in females since classical BFLS so far has been thought to be a male-specific syndrome, and large PHF6 deletions might be incompatible with male fetal survival. If this is the case, sporadic BFLS could be more frequent in females than in males. PMID:22190899

  8. Social Cognition in Williams Syndrome: Genotype/Phenotype Insights from Partial Deletion Patients

    PubMed Central

    Karmiloff-Smith, Annette; Broadbent, Hannah; Farran, Emily K.; Longhi, Elena; DSouza, Dean; Metcalfe, Kay; Tassabehji, May; Wu, Rachel; Senju, Atsushi; Happ, Francesca; Turnpenny, Peter; Sansbury, Francis

    2012-01-01

    Identifying genotype/phenotype relations in human social cognition has been enhanced by the study of Williams syndrome (WS). Indeed, individuals with WS present with a particularly strong social drive, and researchers have sought to link deleted genes in the WS critical region (WSCR) of chromosome 7q11.23 to this unusual social profile. In this paper, we provide details of two case studies of children with partial genetic deletions in the WSCR: an 11-year-old female with a deletion of 24 of the 28 WS genes, and a 14-year-old male who presents with the opposite profile, i.e., the deletion of only four genes at the telomeric end of the WSCR. We tested these two children on a large battery of standardized and experimental social perception and social cognition tasks both implicit and explicit as well as standardized social questionnaires and general psychometric measures. Our findings reveal a partial WS socio-cognitive profile in the female, contrasted with a more autistic-like profile in the male. We discuss the implications of these findings for genotype/phenotype relations, as well as the advantages and limitations of animal models and of case study approaches. PMID:22661963

  9. Social cognition in williams syndrome: genotype/phenotype insights from partial deletion patients.

    PubMed

    Karmiloff-Smith, Annette; Broadbent, Hannah; Farran, Emily K; Longhi, Elena; D'Souza, Dean; Metcalfe, Kay; Tassabehji, May; Wu, Rachel; Senju, Atsushi; Happ, Francesca; Turnpenny, Peter; Sansbury, Francis

    2012-01-01

    Identifying genotype/phenotype relations in human social cognition has been enhanced by the study of Williams syndrome (WS). Indeed, individuals with WS present with a particularly strong social drive, and researchers have sought to link deleted genes in the WS critical region (WSCR) of chromosome 7q11.23 to this unusual social profile. In this paper, we provide details of two case studies of children with partial genetic deletions in the WSCR: an 11-year-old female with a deletion of 24 of the 28 WS genes, and a 14-year-old male who presents with the opposite profile, i.e., the deletion of only four genes at the telomeric end of the WSCR. We tested these two children on a large battery of standardized and experimental social perception and social cognition tasks - both implicit and explicit - as well as standardized social questionnaires and general psychometric measures. Our findings reveal a partial WS socio-cognitive profile in the female, contrasted with a more autistic-like profile in the male. We discuss the implications of these findings for genotype/phenotype relations, as well as the advantages and limitations of animal models and of case study approaches. PMID:22661963

  10. Memory in Intellectually Matched Groups of Young Participants with 22q11.2 Deletion Syndrome and Those with Schizophrenia

    ERIC Educational Resources Information Center

    Kravariti, Eugenia; Jacobson, Clare; Morris, Robin; Frangou, Sophia; Murray, Robin M.; Tsakanikos, Elias; Habel, Alex; Shearer, Jo

    2010-01-01

    The 22q11.2 deletion syndrome (22qDS) and schizophrenia have genetic and neuropsychological similarities, but are likely to differ in memory profile. Confirming differences in memory function between the two disorders, and identifying their genetic determinants, can help to define genetic subtypes in both syndromes, identify genetic risk factors

  11. Eye Gaze During Face Processing in Children and Adolescents with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Glaser, Bronwyn; Debbane, Martin; Ottet, Marie-Christine; Vuilleumier, Patrik; Zesiger, Pascal; Antonarakis, Stylianos E.; Eliez, Stephan

    2010-01-01

    Objective: The 22q11.2 deletion syndrome (22q11DS) is a neurogenetic syndrome with high risk for the development of psychiatric disorder. There is interest in identifying reliable markers for measuring and monitoring socio-emotional impairments in 22q11DS during development. The current study investigated eye gaze as a potential marker during a…

  12. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor

  13. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  14. Memory in Intellectually Matched Groups of Young Participants with 22q11.2 Deletion Syndrome and Those with Schizophrenia

    ERIC Educational Resources Information Center

    Kravariti, Eugenia; Jacobson, Clare; Morris, Robin; Frangou, Sophia; Murray, Robin M.; Tsakanikos, Elias; Habel, Alex; Shearer, Jo

    2010-01-01

    The 22q11.2 deletion syndrome (22qDS) and schizophrenia have genetic and neuropsychological similarities, but are likely to differ in memory profile. Confirming differences in memory function between the two disorders, and identifying their genetic determinants, can help to define genetic subtypes in both syndromes, identify genetic risk factors…

  15. Comparison of facial features of DiGeorge syndrome (DGS) due to deletion 10p13-10pter with DGS due to 22q11 deletion

    SciTech Connect

    Goodship, J.; Lynch, S.; Brown, J.

    1994-09-01

    DiGeorge syndrome (DGS) is a congenital anomaly consisting of cardiac defects, aplasia or hypoplasia of the thymus and parathroid glands, and dysmorphic facial features. The majority of DGS cases have a submicroscopic deletion within chromosome 22q11. However there have been a number of reports of DGS in association with other chromosomal abnormalities including four cases with chromosome 10p deletions. We describe a further 10p deletion case and suggest that the facial features in children with DGS due to deletions of 10p are different from those associated with chromosome 22 deletions. The propositus was born at 39 weeks gestation to unrelated caucasian parents, birth weight 2580g (10th centile) and was noted to be dysmorphic and cyanosed shortly after birth. The main dysmorphic facial features were a broad nasal bridge with very short palpebral fissures. Echocardiography revealed a large subsortic VSD and overriding aorta. She had a low ionised calcium and low parathroid hormone level. T cell subsets and PHA response were normal. Abdominal ultrasound showed duplex kidneys and on further investigation she was found to have reflux and raised plasma creatinine. She had an anteriorly placed anus. Her karyotype was 46,XX,-10,+der(10)t(3;10)(p23;p13)mat. The dysmorphic facial features in this baby are strikingly similar to those noted by Bridgeman and Butler in child with DGS as the result of a 10p deletion and distinct from the face seen in children with DiGeorge syndrome resulting from interstitial chromosome 22 deletions.

  16. Chromosome 18q deletion syndrome with autoimmune diabetes mellitus: putative genomic loci for autoimmunity and immunodeficiency.

    PubMed

    Hogendorf, Anna; Lipska-Zietkiewicz, Beata S; Szadkowska, Agnieszka; Borowiec, Maciej; Koczkowska, Magdalena; Trzonkowski, Piotr; Drozdz, Izabela; Wyka, Krystyna; Limon, Janusz; Mlynarski, Wojciech

    2016-03-01

    A girl with 18q deletion syndrome was diagnosed with autoimmune diabetes mellitus and Hashimoto's thyroiditis at the age of 3 yr. In addition, the girl suffered from recurrent infections due to immunoglobulin A and IgG4 deficiency. She was also found to have CD3+CD4+FoxP3+, CD3+CD4+FoxP3+CD25+, and CD3+CD4+CD25+CD127 regulatory T cells deficiency. The exceptional coincidence of the two autoimmune disorders occurring at an early age, and associated with immune deficiency, implies that genes located on deleted 19.4 Mbp region at 18q21.32-q23 (chr18:58,660,699-78,012,870) might play a role in the pathogenesis of autoimmunity leading to β cell destruction and diabetes. PMID:25403779

  17. A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi-Goutires syndrome associated with mtDNA deletions.

    PubMed

    Leshinsky-Silver, Esther; Malinger, Gustavo; Ben-Sira, Liat; Kidron, Dvora; Cohen, Sarit; Inbar, Shani; Bezaleli, Tali; Levine, Arie; Vinkler, Chana; Lev, Dorit; Lerman-Sagie, Tally

    2011-03-01

    Aicardi-Goutires syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLG?, POLG?, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. PMID:21102625

  18. Large deletions encompassing the TCOF1 and CAMK2A genes are responsible for Treacher Collins syndrome with intellectual disability

    PubMed Central

    Vincent, Marie; Collet, Corinne; Verloes, Alain; Lambert, Laetitia; Herlin, Christian; Blanchet, Catherine; Sanchez, Elodie; Drunat, Séverine; Vigneron, Jacqueline; Laplanche, Jean-Louis; Puechberty, Jacques; Sarda, Pierre; Geneviève, David

    2014-01-01

    Mandibulofacial dysostosis is part of a clinically and genetically heterogeneous group of disorders of craniofacial development, which lead to malar and mandibular hypoplasia. Treacher Collins syndrome is the major cause of mandibulofacial dysostosis and is due to mutations in the TCOF1 gene. Usually patients with Treacher Collins syndrome do not present with intellectual disability. Recently, the EFTUD2 gene was identified in patients with mandibulofacial dysostosis associated with microcephaly, intellectual disability and esophageal atresia. We report on two patients presenting with mandibulofacial dysostosis characteristic of Treacher Collins syndrome, but associated with unexpected intellectual disability, due to a large deletion encompassing several genes including the TCOF1 gene. We discuss the involvement of the other deleted genes such as CAMK2A or SLC6A7 in the cognitive development delay of the patients reported, and we propose the systematic investigation for 5q32 deletion when intellectual disability is associated with Treacher Collins syndrome. PMID:23695276

  19. Contiguous ABCD1 DXS1357E deletion syndrome: report of an autopsy case.

    PubMed

    Iwasa, Mitsuaki; Yamagata, Takanori; Mizuguchi, Masashi; Itoh, Masayuki; Matsumoto, Ayumi; Hironaka, Mitsugu; Honda, Ayako; Momoi, Mariko Y; Shimozawa, Nobuyuki

    2013-06-01

    Contiguous ABCD1 DXS1357E deletion syndrome (CADDS) is a contiguous deletion syndrome involving the ABCD1 and DXS1357E/BAP31 genes on Xq28. Although ABCD1 is responsible for X-linked adrenoleukodystrophy (X-ALD), its phenotype differs from that of CADDS, which manifests with many features of Zellweger syndrome (ZS), including severe growth and developmental retardation, liver dysfunction, cholestasis and early infantile death. We report here the fourth case of CADDS, in which a boy had dysmorphic features, including a flat orbital edge, hypoplastic nose, micrognathia, inguinal hernia, micropenis, cryptorchidism and club feet, all of which are shared by ZS. The patient achieved no developmental milestones and died of pneumonia at 8 months. Biochemical studies demonstrated abnormal metabolism of very long chain fatty acids, which was higher than that seen in X-ALD. Immunocytochemistry and Western blot showed the absence of ALD protein (ALDP) despite the presence of other peroxisomal proteins. Pathological studies disclosed a small brain with hypomyelination and secondary hypoxic-ischemic changes. Neuronal heterotopia in the white matter and leptomeningeal glioneuronal heterotopia indicated a neuronal migration disorder. The liver showed fibrosis and cholestasis. The thymus and adrenal glands were hypoplastic. Array comparative genomic hybridization (CGH) analysis suggested that the deletion was a genomic rearrangement in the 90-kb span starting in DXS1357E/BACP31 exon 4 and included ABCD1, PLXNB3, SRPK3, IDH3G and SSR4, ending in PDZD4 exon 8. Thus, the absence of ALDP, when combined with defects in the B-cell antigen receptor associated protein 31 (BAP31) and other factors, severely affects VLCFA metabolism on peroxisomal functions and produces ZS-like pathology. PMID:22994209

  20. Behavioral and Psychiatric Phenotypes in 22q11.2 Deletion Syndrome.

    PubMed

    Tang, Kerri L; Antshel, Kevin M; Fremont, Wanda P; Kates, Wendy R

    2015-10-01

    22q11.2 Deletion syndrome (22q11.2DS) is a chromosomal microdeletion that affects approximately 40 to 50 genes and affects various organs and systems throughout the body. Detection is typically achieved by fluorescence in situ hybridization after diagnosis of one of the major features of the deletion or via chromosomal microarray or noninvasive prenatal testing. The physical phenotype can include congenital heart defects, palatal and pharyngeal anomalies, hypocalcemia/hypoparathyroidism, skeletal abnormalities, and cranial/brain anomalies, although prevalence rates of all these features are variable. Cognitive function is impaired to some degree in most individuals, with prevalence rates of greater than 90% for motor/speech delays and learning disabilities. Attention, executive function, working memory, visual-spatial abilities, motor skills, and social cognition/social skills are affected. The deletion is also associated with an increased risk for behavioral disorders and psychiatric illness. The early onset of psychiatric symptoms common to 22q11.2DS disrupts the development and quality of life of individuals with the syndrome and is also a potential risk factor for later development of a psychotic disorder. This review discusses prevalence, phenotypic features, and management of psychiatric disorders commonly diagnosed in children and adolescents with 22q11.2DS, including autism spectrum disorders, attention deficit/hyperactivity disorder, anxiety disorders, mood disorders, and schizophrenia/psychotic disorders. Guidelines for the clinical assessment and management of psychiatric disorders in youth with this syndrome are provided, as are treatment guidelines for the use of psychiatric medications. PMID:26372046

  1. Association Between Early-Onset Parkinson Disease and 22q11.2 Deletion Syndrome

    PubMed Central

    Butcher, Nancy J.; Kiehl, Tim-Rasmus; Hazrati, Lili-Naz; Chow, Eva W. C.; Rogaeva, Ekaterina; Lang, Anthony E.; Bassett, Anne S.

    2015-01-01

    IMPORTANCE Clinical case reports of parkinsonism co-occurring with hemizygous 22q11.2 deletions and the associated multisystem syndrome, 22q11.2 deletion syndrome (22q11.2DS), suggest that 22q11.2 deletions may lead to increased risk of early-onset Parkinson disease (PD). The frequency of PD and its neuropathological presentation remain unknown in this common genetic condition. OBJECTIVE To evaluate a possible association between 22q11.2 deletions and PD. DESIGN, SETTING, AND PARTICIPANTS An observational study of the occurrence of PD in the world’s largest cohort of well-characterized adults with a molecularly confirmed diagnosis of 22q11.2DS (n = 159 [6 with postmortem tissue]; age range, 18.1–68.6 years) was conducted in Toronto, Ontario, Canada. Rare postmortem brain tissue from individuals with 22q11.2DS and a clinical history of PD was investigated for neurodegenerative changes and compared with that from individuals with no history of a movement disorder. MAIN OUTCOMES AND MEASURES A clinical diagnosis of PD made by a neurologist and neuropathological features of PD. RESULTS Adults with 22q11.2DS had a significantly elevated occurrence of PD compared with standard population estimates (standardized morbidity ratio = 69.7; 95% CI, 19.0–178.5). All cases showed early onset and typical PD symptom pattern, treatment response, and course. All were negative for family history of PD and known pathogenic PD-related mutations. The common use of antipsychotics in patients with 22q11.2DS to manage associated psychiatric symptoms delayed diagnosis of PD by up to 10 years. Postmortem brain tissue revealed classic loss of midbrain dopaminergic neurons in all 3 postmortem 22q11.2DS-PD cases. Typical α-synuclein–positive Lewy bodies were present in the expected distribution in 2 cases but absent in another. CONCLUSIONS AND RELEVANCE These findings suggest that 22q11.2 deletions represent a novel genetic risk factor for early-onset PD with variable neuropathological presentation reminiscent of LRRK2-associated PD neuropathology. Individuals with early-onset PD and classic features of 22q11.2DS should be considered for genetic testing, and those with a known 22q11.2 deletion should be monitored for the development of parkinsonian symptoms. Molecular studies of the implicated genes, including DGCR8, may help shed light on the underlying pathophysiology of PD in 22q11.2DS and idiopathic PD. PMID:24018986

  2. Myelination disturbance in a patient with hyperuricemia and hyperserotoninemia combined with 18q deletion syndrome.

    PubMed

    Lszl, Aranka; Vrs, Erika; Buga, Klra; Horvth, Katalin; Mayer, Pter; Osztovics, Magda; Pvics, Lszl; Svekus, Andrs; Patterson, Marc C

    2009-11-30

    We previously reported a male patient with an 18q21.3 deletion, hyperuricemia and typical symptoms of the Lesch-Nyhan syndrome who lacked hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) deficiency. The patient developed progressive peripheral neuropathy in additon to his profound mental retardation and self-injurious behavior. At the age of 23 years MR imaging revealed globally delayed myelination with relative sparing of the corpus callosum and frontal lobes. They were focal hyperintensities suggestive of gliosis. Multimodality evoked potentials found evidence of impaired central and peripheral conduction. Single photon emission computed tomographic (SPECT) imaging demonstrated left frontal hyperperfusion and under it a temporoparietal hypoperfusion. PMID:20025132

  3. 22q11 deletion syndrome and multiple complex developmental disorder: a case report.

    PubMed

    Scandurra, Valeria; Scordo, Maria R; Canitano, Roberto; de Bruin, Esther I

    2013-04-01

    22q11.2 Deletion Syndrome (22q11 DS) is a multisystemic condition that may also include neuropsychiatric disorders. We present a case of a 15-year-old boy that was evaluated for social difficulties, and anxiety with the above genetic abnormality. Clinical features were rather complex as different neuropsychiatric symptoms emerged from assessment and clinical evaluation. As a result we propose that Multiple Complex Developmental Disorder (MCDD) would be the best fitting comprehensive diagnosis to be added to the DSM-IV category of Pervasive Developmental Disorder-Not Otherwise Specified. PMID:23519073

  4. 22q11 Deletion Syndrome and Multiple Complex Developmental Disorder: A Case Report

    PubMed Central

    Scandurra, Valeria; Scordo, Maria R.; Canitano, Roberto; de Bruin, Esther I.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11 DS) is a multisystemic condition that may also include neuropsychiatric disorders. We present a case of a 15-year-old boy that was evaluated for social difficulties, and anxiety with the above genetic abnormality. Clinical features were rather complex as different neuropsychiatric symptoms emerged from assessment and clinical evaluation. As a result we propose that Multiple Complex Developmental Disorder (MCDD) would be the best fitting comprehensive diagnosis to be added to the DSM-IV category of Pervasive Developmental Disorder-Not Otherwise Specified. PMID:23519073

  5. A Comparative Study of Cognition and Brain Anatomy between Two Neurodevelopmental Disorders: 22q11.2 Deletion Syndrome and Williams Syndrome

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Stevens, Angela; Daly, Eileen; Toal, Fiona; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G. M.; Murphy, Kieran C.

    2009-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is associated with intellectual disability, poor social interaction and a high prevalence of psychosis. However, to date there have been no studies comparing cognition and neuroanatomical characteristics of 22q11DS with other syndromes to investigate if the cognitive strengths and difficulties and

  6. A Comparative Study of Cognition and Brain Anatomy between Two Neurodevelopmental Disorders: 22q11.2 Deletion Syndrome and Williams Syndrome

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Stevens, Angela; Daly, Eileen; Toal, Fiona; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G. M.; Murphy, Kieran C.

    2009-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is associated with intellectual disability, poor social interaction and a high prevalence of psychosis. However, to date there have been no studies comparing cognition and neuroanatomical characteristics of 22q11DS with other syndromes to investigate if the cognitive strengths and difficulties and…

  7. Mother-Child Interaction as a Window to a Unique Social Phenotype in 22q11.2 Deletion Syndrome and in Williams Syndrome

    ERIC Educational Resources Information Center

    Weisman, Omri; Feldman, Ruth; Burg-Malki, Merav; Keren, Miri; Geva, Ronny; Diesendruck, Gil; Gothelf, Doron

    2015-01-01

    Mother-child interactions in 22q11.2 Deletion syndrome (22q11.2DS) and Williams syndrome (WS) were coded for maternal sensitivity/intrusiveness, child's expression of affect, levels of engagement, and dyadic reciprocity. WS children were found to express more positive emotions towards their mothers compared to 22q11.2DS children and those with…

  8. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    PubMed Central

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  9. Practical guidelines for managing adults with 22q11.2 deletion syndrome

    PubMed Central

    Fung, Wai Lun Alan; Butcher, Nancy J.; Costain, Gregory; Andrade, Danielle M.; Boot, Erik; Chow, Eva W.C.; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony E.; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; van Amelsvoort, Therese; McDonald-McGinn, Donna M.; Bassett, Anne S.

    2015-01-01

    22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities. PMID:25569435

  10. Exclusion of 22q11 deletion in Noonan syndrome with Tetralogy of Fallot

    SciTech Connect

    Digilio, M.C.; Marino, B.; Giannotti, A.; Dallapiccola, B. |

    1996-04-24

    We read with interest the report of Robin et al. [1995] published in recent issue of the Journal. The authors described 6 patients with Noonan syndrome (NS) who underwent molecular evaluation for submicroscopic deletion of chromosome band 22q11. None of those patients presented with conotruncal heart defects. Evidence for 22q11 hemizygosity was demonstrated in only one patient. This patient had NS-like manifestations without clinical manifestations of DiGeorge (DG) or velo-cardio-facial (VCF) syndromes. The molecular results obtained in the other 5 patients led the authors to conclude that classical NS is not due to del(22)(q11), even if some patients with del(22)(q11) may present NS-like manifestations. 12 refs., 1 tab.

  11. Practical guidelines for managing adults with 22q11.2 deletion syndrome.

    PubMed

    Fung, Wai Lun Alan; Butcher, Nancy J; Costain, Gregory; Andrade, Danielle M; Boot, Erik; Chow, Eva W C; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony E; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; van Amelsvoort, Therese; McDonald-McGinn, Donna M; Bassett, Anne S

    2015-08-01

    22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities.Genet Med 17 8, 599-609. PMID:25569435

  12. A new frontonasal dysplasia syndrome associated with deletion of the SIX2 gene.

    PubMed

    Hufnagel, Robert B; Zimmerman, Sarah L; Krueger, Laura A; Bender, Patricia L; Ahmed, Zubair M; Saal, Howard M

    2016-02-01

    The frontonasal dysplasias are a group of craniofacial phenotypes characterized by hypertelorism, nasal clefting, frontal bossing, and abnormal hairline. These conditions are caused by recessive mutations in members of the aristaless gene family, resulting in abnormal cranial neural crest migration and differentiation. We report a family with a dominantly inherited craniofacial phenotype comprised of frontal bossing with high hairline, ptosis, hypertelorism, broad nasal tip, large anterior fontanelle, cranial base anomalies, and sagittal synostosis. Chromosomal microarray identified a heterozygous 108.3 kilobase deletion of chromosome 2p21 segregating with phenotype and limited to the sine oculis homeobox gene SIX2 and surrounding noncoding DNA. Similar to the human SIX2 deletion phenotype, one mouse model of frontonasal dysplasia, brachyrrhine, exhibits dominant inheritance and impaired cranial base chondrogenesis associated with reduced Six2 expression. We report the first human autosomal dominant frontonasal dysplasia syndrome associated with SIX2 deletion and with phenotypic similarities to murine models of Six2 Loss-of-function. © 2015 Wiley Periodicals, Inc. PMID:26581443

  13. Complete Deletion of a POLG1 Allele in a Patient with Alpers Syndrome.

    PubMed

    Naess, Karin; Barbaro, Michela; Bruhn, Helene; Wibom, Rolf; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran; Nemeth, Antal; Lesko, Nicole

    2012-01-01

    Mutations in the gene encoding the catalytic subunit of polymerase γ (POLG1) are a major cause of human mitochondrial disease. More than 150 different point mutations in the gene have been reported to be disease causing, resulting in a large range of clinical symptoms. Depending on the mutation or combination of mutations, disease onset can occur in early infancy or late in adult life. Here, we describe the use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect deletions within POLG1, which could otherwise go undetected by solely sequencing of the gene. We present a case where an entire POLG1 allele is deleted, with a known pathogenic mutation (W748S) on the remaining allele. The deletion was found in a boy with Alpers syndrome, presenting at 18 months of age with slightly retarded motor development, balance problems, and seizures. Administration of valproic acid (VPA) led to rapidly progressive fatal liver failure in our patient, and we would like to highlight the need to carry out complete POLG1 gene analysis before administration of VPA in cases of pediatric seizure disorders of unknown origin. Debut and severity of the disease in this patient was unique when compared to homozygous or heterozygous patients with the W748S mutation, leading to the conclusion that gene dosage plays a role in the clinical phenotype of this disease. PMID:23430898

  14. Autosomal recessive Wolfram syndrome associated with an 8.5 kb mtDNA single deletion

    SciTech Connect

    Barrientos, A.; Casademont, J.; Cardellach, F.

    1996-05-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and {approximately}5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. 39 refs., 6 figs., 3 tabs.

  15. Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi Syndrome

    PubMed Central

    Bieth, Eric; Eddiry, Sanaa; Gaston, Véronique; Lorenzini, Françoise; Buffet, Alexandre; Conte Auriol, Françoise; Molinas, Catherine; Cailley, Dorothée; Rooryck, Caroline; Arveiler, Benoit; Cavaillé, Jérome; Salles, Jean Pierre; Tauber, Maïthé

    2015-01-01

    The SNORD116 locus lies in the 15q11-13 region of paternally expressed genes implicated in Prader–Willi Syndrome (PWS), a complex disease accompanied by obesity and severe neurobehavioural disturbances. Cases of PWS patients with a deletion encompassing the SNORD116 gene cluster, but preserving the expression of flanking genes, have been described. We report a 23-year-old woman who presented clinical criteria of PWS, including the behavioural and nutritional features, obesity, developmental delay and endocrine dysfunctions with hyperghrelinemia. We found a paternally transmitted highly restricted deletion of the SNORD116 gene cluster, the shortest described to date (118 kb). This deletion was also present in the father. This finding in a human case strongly supports the current hypothesis that lack of the paternal SNORD116 gene cluster has a determinant role in the pathogenesis of PWS. Moreover, targeted analysis of the SNORD116 gene cluster, complementary to SNRPN methylation analysis, should be carried out in subjects with a phenotype suggestive of PWS. PMID:24916642

  16. Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith-Magenis syndrome.

    PubMed

    Vieira, Gustavo H; Rodriguez, Jayson D; Carmona-Mora, Paulina; Cao, Lei; Gamba, Bruno F; Carvalho, Daniel R; de Rezende Duarte, Andréa; Santos, Suely R; de Souza, Deise H; DuPont, Barbara R; Walz, Katherina; Moretti-Ferreira, Danilo; Srivastava, Anand K

    2012-02-01

    Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ~139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. PMID:21897445

  17. Cockayne Syndrome due to a maternally-inherited whole gene deletion of ERCC8 and a paternally-inherited ERCC8 exon 4 deletion.

    PubMed

    Ting, T W; Brett, M S; Tan, E S; Shen, Y; Lee, S P; Lim, E C; Vasanwala, R F; Lek, N; Thomas, T; Lim, K W; Tan, E C

    2015-11-10

    Cockayne Syndrome (CS) is an autosomal recessive disorder that causes neurological regression, growth failure and dysmorphic features. We describe a Chinese female child with CS caused by deletions of exon 4 of ERCC8 on one chromosome and exons 1-12 on the other chromosome. By using chromosomal microarray, multiplex ligation-dependant probe analysis and long range PCR, we showed that she inherited a 277 kb deletion affecting the whole ERCC8 gene from the mother and a complex rearrangement resulting in deletion of exon 4 together with a 1,656 bp inversion of intron 4 from the father. A similar complex rearrangement has been reported in four unrelated Japanese CS patients. Analysis of the deletion involving exon 4 identified LINE and other repeat elements that may predispose the region to deletions, insertions and inversions. The patient also had insulin-dependent diabetes mellitus, a rare co-existing feature in patients with CS. More research will be needed to further understand the endocrine manifestations in CS patients. PMID:26210811

  18. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome

    SciTech Connect

    Boultwood, Jacqueline; Fidler, Carrie; Strickson, Amanda J.; Watkins, Fiona; Gama, Susana; Kearney, Lyndal; Tosi, Sabrina; Kasprzyk, Arek; Cheng, Jan-Fang; Jaju, Rina J.; Wainscoat, James S.

    2002-01-15

    The 5q syndrome is the most distinct of the myelodysplastic syndromes, and the molecular basis for this disorder remains unknown. We describe the narrowing of the common deleted region (CDR) of the 5q syndrome to the approximately 1.5-megabases interval at 5q32 flanked by D5S413 and the GLRA1 gene. The Ensemblgene prediction program has been used for the complete genomic annotation of the CDR. The CDR is gene rich and contains 24 known genes and 16 novel (predicted) genes. Of 40 genes in the CDR, 33 are expressed in CD34 cells and, therefore, represent candidate genes since they are expressed within the hematopoietic stem/progenitor cell compartment. A number of the genes assigned to the CDR represent good candidates for the 5q syndrome, including MEGF1, G3BP, and several of the novel gene predictions. These data now afford a comprehensive mutational/expression analysis of all candidate genes assigned to the CDR.

  19. Monosomy 18q syndrome and atypical Rett syndrome in a girl with an interstitial deletion (18)(q21.1q22.3).

    PubMed

    Gustavsson, P; Kimber, E; Wahlström, J; Annerén, G

    1999-02-12

    We describe a 6 1/2-year-old girl with an interstitial deletion of chromosome arm 18q (18q21.1q22.3). Her clinical manifestations are a combination of those found in monosomy 18q syndrome and those of Rett syndrome. Cytogenetic analysis demonstrated a deletion of the long arm of chromosome 18, defined by molecular analysis with polymorphic markers as a de novo interstitial deletion, paternally derived. The findings typical of the 18q- syndrome included mental retardation, midface hypoplasia, and hypoplasia of labia majora, and those typical of Rett syndrome were severe mental retardation, autistic behavior, inappropriate hand-washing movements, epilepsy, attacks of sighing and hyperventilation, and progressive scoliosis since the age of 5 years. She did not have microcephaly, and the mental delay was obvious from an early age without a period of normal development, which makes the diagnosis of Rett syndrome atypical. Previously, a girl with mosaicism for a monosomy 18q associated with Rett syndrome has been described. That girl had a terminal deletion of chromosome 18q, which seems to coincide in part with that in the present girl. It is possible that genes in the distal region of 18q are involved in the etiology of Rett syndrome. PMID:10051171

  20. B cell development in chromosome 22q11.2 deletion syndrome.

    PubMed

    Derfalvi, Beata; Maurer, Kelly; McDonald McGinn, Donna M; Zackai, Elaine; Meng, Wenzhao; Luning Prak, Eline T; Sullivan, Kathleen E

    2016-02-01

    Chromosome 22q11.2 deletion syndrome is a common immune deficiency associated with thymic hypoplasia. Most patients did not survive until the mid-1980s and now there is a growing adult population. B cell and immunoglobulin defects have been described and appear to be increased in the adult population. We used flow cytometry, B cell stimulation and repertoire analysis to understand B cell function. B cell production at early stages appeared to be normal in patients but adult patients exhibited a deficit of switched memory B cells. Follicular helper T cells were present at higher percentages in patients and they exhibited a more activated phenotype in patients compared to controls. In spite of that, somatic hypermutation was decreased in patients compared to controls at all ages. Fewer mutations per clone were seen, strongly implicating aberrant T cell help. Therefore, patients with chromosome 22q11.2 deletion syndrome have a progressive decrease in switched memory B cells and evidence of compromised T cell help. In children, evidence of compromised T cell help is limited to decreased somatic hypermutation. With age, greater manifestations become apparent even though a minority of patients have hypogammaglobulinemia. As this population ages, this has important implications for management. PMID:26689329

  1. Respiratory failure, cleft palate and epilepsy in the mouse model of human Xq22.1 deletion syndrome

    PubMed Central

    Zhou, Jian; Goldberg, Ethan M.; Leu, N. Adrian; Zhou, Lei; Coulter, Douglas A.; Wang, P. Jeremy

    2014-01-01

    Chromosomal segmental deletion is a frequent cause of human diseases. A familial 1.1 Mb deletion of human chromosome Xq22.1 associates with epilepsy, cleft palate and developmental defects in heterozygous female patients. Here, we describe a mouse mutant with a targeted deletion of the syntenic segment of the mouse X chromosome that phenocopies the human syndrome. Male mice with a deletion of a 1.1 Mb Nxf2–Nxf3 X-chromosomal segment exhibit respiratory failure, neonatal lethality and cleft palate. In female mice, heterozygosity for the deletion manifests cleft palate, early postnatal lethality, postnatal growth delay and spontaneous seizures in surviving animals, apparently due to X-chromosome inactivation. Furthermore, loss of a 0.35 Mb subregion containing Armcx5, Gprasp1, Gprasp2 and Bhlhb9 is sufficient to cause the Xq22.1 syndrome phenotype. Our results support that the 1.1 Mb deletion of human Xq22.1 is the genetic cause of the associated syndrome. PMID:24569167

  2. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover

    SciTech Connect

    Urban, Z.; Csiszar, K.; Boyd, C.D.

    1996-10-01

    Williams syndrome (WS) is a multisystem disorder characterized by mental retardation, a specific neurobehavioral profile, characteristic facies, infantile hypercalcemia, cardiovascular abnormalities, progressive joint limitation, hermas, and soft skin. Recent studies have shown that hemizygosity at the elastin (ELN) gene locus on chromosome 7q is associated with WS. Furthermore, two FISH studies using cosmid recombinants containing the 5{prime} or the 3{prime} end of the ELN gene revealed deletion of the entire ELN gene in 90%-96% of classical WS cases. However, the size of the 7q11.23 deletions and the mechanism by which these deletions arise are not known. 15 refs., 2 figs., 1 tab.

  3. First case of deletion of the faciogenital dysplasia 1 (FGD1) gene in a patient with Aarskog-Scott syndrome.

    PubMed

    Bedoyan, Jirair K; Friez, Michael J; DuPont, Barbara; Ahmad, Ayesha

    2009-01-01

    Mutations within the faciogenital dysplasia 1 (FGD1) gene in individuals with clinical features of Aarskog-Scott syndrome (AAS) include missense mutations and insertions and deletions that result in frameshifts and premature terminations. Whole gene deletion and duplication represent other mutational possibilities not yet reported for FGD1 but known to exist for other genes such as MECP2. We report the first case of a boy with clinical features of AAS with deletion of FGD1 gene identified using an oligonucleotide-based X chromosome-specific microarray after attempts to generate amplicons for all of the FGD1 coding exons failed and BAC microarray analysis showed no abnormality. PMID:19110080

  4. Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion.

    PubMed

    Montiel-Sosa, Jose Francisco; Herrero, María Dolores; Munoz, Maria de Lourdes; Aguirre-Campa, Luis Enrique; Pérez-Ramírez, Gerardo; García-Ramírez, Rubén; Ruiz-Pesini, Eduardo; Montoya, Julio

    2013-08-01

    Mitochondrial DNA mutations have been associated with different illnesses in humans, such as Kearns-Sayre syndrome (KSS), which is related to deletions of different sizes and positions among patients. Here, we report a Mexican patient with typical features of KSS containing a novel deletion of 7629 bp in size with 85% heteroplasmy, which has not been previously reported. Sequence analysis revealed 3-bp perfect short direct repeats flanking the deletion region, in addition to 7-bp imperfect direct repeats within 9-10 bp. Furthermore, sequencing, alignment and phylogenetic analysis of the hypervariable region revealed that the patient may belong to a founder Native American haplogroup C4c. PMID:23391298

  5. Identification of a Japanese Lynch syndrome patient with large deletion in the 3' region of the EPCAM gene.

    PubMed

    Eguchi, Hidetaka; Kumamoto, Kensuke; Suzuki, Okihide; Kohda, Masakazu; Tada, Yuhki; Okazaki, Yasushi; Ishida, Hideyuki

    2016-02-01

    Germline deletion of the 3' portion of the Epithelial Cell Adhesion Molecule (EPCAM) gene located 5' upstream of MutS Homolog 2 (MSH2) is a novel mechanism for its inactivation in Lynch syndrome. However, its contribution in Japanese Lynch syndrome patients is poorly understood. Moreover, somatic events inactivating the remaining allele of MSH2 in cancer tissue have not been elucidated in Lynch syndrome patients with such EPCAM deletions. We identified a Japanese Lynch syndrome patient with colon cancer who evidenced germline deletion of a 4130 bp fragment of EPCAM encompassing exons 8 and 9 (c.859-672_*2170del). In normal colonic mucosa, two known fusion-transcripts of EPCAM/MSH2 generated from the rearranged gene were observed and heterozygous methylation of the MSH2 gene promoter was detected. In cancer tissue, dense methylation of MSH2 was observed and MLPA analysis demonstrated somatic deletion of the remaining EPCAM allele including exon 9, indicating that somatic deletion of EPCAM is responsible for complete inactivation of MSH2. PMID:26613680

  6. The Contribution of Whole Gene Deletions and Large Rearrangements to the Mutation Spectrum in Inherited Tumor Predisposing Syndromes.

    PubMed

    Smith, Miriam J; Urquhart, Jill E; Harkness, Elaine F; Miles, Emma K; Bowers, Naomi L; Byers, Helen J; Bulman, Michael; Gokhale, Carolyn; Wallace, Andrew J; Newman, William G; Evans, D Gareth

    2016-03-01

    Heterozygous whole gene deletions (WGDs), and intragenic microdeletions, account for a significant proportion of mutations underlying cancer predisposition syndromes. We analyzed the frequency and genotype-phenotype correlations of microdeletions in 12 genes (BRCA1, BRCA2, TP53, MSH2, MLH1, MSH6, PMS2, NF1, NF2, APC, PTCH1, and VHL) representing seven tumor predisposition syndromes in 5,897 individuals (2,611 families) from our center. Overall, microdeletions accounted for 14% of identified mutations. As expected, smaller deletions or duplications were more common (12%) than WGDs (2.2%). Where a WGD was identified in the germline in NF2, the mechanism of somatic second hit was not deletion, as previously described for NF1. For neurofibromatosis type 1 and 2, we compared the mechanism of germline deletion. Unlike NF1, where three specific deletion sizes account for most germline WGDs, NF2 deletion breakpoints were different across seven samples tested. One of these deletions was 3.93 Mb and conferred a severe phenotype, thus refining the region for a potential NF2 modifier gene to a 2.04-Mb region on chromosome 22. The milder phenotype of NF2 WGDs may be due to the apparent absence of chromosome 22 loss as the second hit. These observations of WGD phenotypes will be helpful for interpreting incidental findings from microarray analysis and next-generation sequencing. PMID:26615784

  7. Syndrome of proximal interstitial deletion 4p15: Report of three cases and review of the literature

    SciTech Connect

    Chitayat, D.; Babul, R.; Teshima, I.E.

    1995-01-16

    We report on two boys and a girl with interstitial deletion in the short arm of chromosome 4 including the segment p15.2p15.33. All had normal growth with psychomotor retardation, multiple minor congenital anomalies, and a characteristic face distinct from that of the Wolf-Hirschhorn syndrome. One of the patients had congenitally enlarged penis. These patients resemble some of the previously reported patients with similar cytogenetic abnormalities and suggests the recognition of a specific clinical chromosome deletion syndrome. 12 refs., 6 figs., 1 tab.

  8. Typical Renal-coloboma Syndrome Phenotype in a Patient with a Submicroscopic Deletion of the PAX2 Gene

    PubMed Central

    Laimutis, Kucinskas; Jackson, Craig; Xu, Xinjie; Warman, Berta; Sarunas, Rudaitis; Birute, Pundziene; Schimmenti, Lisa A.; Raca, Gordana

    2012-01-01

    We present a patient with optic nerve hypoplasia, secondary strabismus, mild deafness, abnormal external ear helices and renal hypoplasia. The clinical phenotype was consistent with renal-coloboma syndrome, but no point mutation in the PAX2 gene could be identified. High resolution array Comparative Genomic Hybridization (aCGH) analysis showed that this patient has a submicroscopic deletion on chromosome 10, affecting the entire coding region of the PAX2 gene. This finding provided the molecular confirmation of the patient’s clinical diagnosis and showed that, in addition to point mutations, deletions of the PAX2 gene contribute to the etiology of the renal-coloboma syndrome. PMID:22581475

  9. Reciprocal deletion and duplication of 17p11.2-11.2: Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome.

    PubMed

    Lee, Cha Gon; Park, Sang-Jin; Yun, Jun-No; Yim, Shin-Young; Sohn, Young Bae

    2012-12-01

    Deletion and duplication of the -3.7-Mb region in 17p11.2 result in two reciprocal syndrome, Smith-Magenis syndrome and Potocki-Lupski syndrome. Smith-Magenis syndrome is a well-known developmental disorder. Potocki-Lupski syndrome has recently been recognized as a microduplication syndrome that is a reciprocal disease of Smith-Magenis syndrome. In this paper, we report on the clinical and cytogenetic features of two Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. Patient 1 (Smith-Magenis syndrome) was a 2.9-yr-old boy who showed mild dysmorphic features, aggressive behavioral problems, and developmental delay. Patient 2 (Potocki-Lupski syndrome), a 17-yr-old boy, had only intellectual disabilities and language developmental delay. We used array comparative genomic hybridization (array CGH) and found a 2.6 Mb-sized deletion and a reciprocal 2.1 Mb-sized duplication involving the 17p11.2. These regions overlapped in a 2.1 Mb size containing 11 common genes, including RAI1 and SREBF. PMID:23255863

  10. An atypical case of fragile X syndrome caused by a deletion that includes the FMR1 gene.

    PubMed Central

    Quan, F; Zonana, J; Gunter, K; Peterson, K L; Magenis, R E; Popovich, B W

    1995-01-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and > or = 9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK's DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5'-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient's unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. Images Figure 5 Figure 2 Figure 4 Figure 6 Figure 7 PMID:7726157

  11. An atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene

    SciTech Connect

    Quan, F.; Johnson, D.B.; Anoe, K.S.

    1994-09-01

    Fragile X syndrome results from the transcriptional inactivation of the FMR-1 gene. This is commonly caused by the expansion of an unstable CGG trinucleotide repeat in the first exon of the FMR-1 gene. We describe here an atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene. RK is a 6-year-old hyperactive, mentally retarded male. Southern analysis of PstI digested genomic DNA was performed using a 558 bp XhoI-PstI fragment specific for the 5`-end of the FMR-1 gene. This analysis revealed the absence of the normal 1.0 kb PstI fragment, indicating the deletion of at least a portion of the FMR-1 gene. PCR analysis using Xq27.3 microsatellite and STS markers confirmed the presence of a deletion of at least 600 kb encompassing the FMR-1 gene. Southern blot and PCR analysis demonstrated that this deletion was maternally transmitted and arose as a new mutation on the grandpaternal X-chromosome. High resolution chromosome banding revealed an extremely small deletion of a portion of band Xq27 which was confirmed by fluorescent in situ hybridrization (FISH) analysis using a 34 kb cosmid containing the FMR-1 gene. As expected, RK manifests physical features typical of fragile X syndrome, including a high arched palate, prognathism, and large ears. Interestingly, RK also presents with anal atresia, obesity and short stature, features not part of fragile X syndrome. In addition, RK has normal sized testicles and does not exhibit the characteristic gaze avoidance, hand-flapping, and crowd anxiety behaviors. These atypical features may result from the deletion of additional genes in the vicinity of the FMR-1 gene. Further work is underway to determine more precisely the extent of the deletion in RK`s DNA.

  12. A coalescence of two syndromes in a girl with terminal deletion and inverted duplication of chromosome 5

    PubMed Central

    2014-01-01

    Background Rearrangements involving chromosome 5p often result in two syndromes, Cri-du-chat (CdC) and Trisomy 5p, caused by a deletion and duplication, respectively. The 5p15.2 has been defined as a critical region for CdC syndrome; however, genotype-phenotype studies allowed isolation of particular characteristics such as speech delay, cat-like cry and mental retardation, caused by distinct deletions of 5p. A varied clinical outcome was also observed in patients with Trisomy 5p. Duplications of 5p10-5p13.1 manifest themselves in a more severe phenotype, while trisomy of regions distal to 5p13 mainly causes mild and indistinct features. Combinations of a terminal deletion and inverted duplication of 5p are infrequent in literature. Consequences of these chromosomal rearrangements differ, depending on size of deletion and duplication in particular cases, although authors mainly describe the deletion as the cause of the observed clinical picture. Case presentation Here we present a 5-month-old Slovenian girl, with de novo terminal deletion and inverted duplication of chromosome 5p. Our patient presents features of both CdC and Trisomy 5. The most prominent features observed in our patient are a cat-like cry and severe malformations of the right ear. Conclusion The cat-like cry, characteristic of CdC syndrome, is noted in our patient despite the fact that the deletion is not fully consistent with previously defined cat-like cry critical region in this syndrome. Features like dolichocephaly, macrocephaly and ear malformations, associated with duplication of the critical region of Trisomy 5p, are also present, although this region has not been rearranged in our case. Therefore, the true meaning of the described chromosomal rearrangements is discussed. PMID:24517234

  13. Temporal Lobe Anatomy and Psychiatric Symptoms in Velocardiofacial Syndrome (22Q11.2 Deletion Syndrome)

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Miller, Adam M.; Abdulsabur, Nuria; Antshel, Kevin M.; Conchelos, Jena; Fremont, Wanda; Roizen, Nancy

    2006-01-01

    Objective: To investigate the association between mesial temporal lobe morphology, ratios of prefrontal cortex to amygdala and hippocampus volumes, and psychiatric symptomatology in children and adolescents with velocardiofacial syndrome (VCFS). Method: Scores on behavioral rating scales and volumetric measures of the amygdala, hippocampus, and…

  14. Kearns-Sayre syndrome case presenting a mitochondrial DNA deletion with unusual direct repeats and a rudimentary RNAse mitochondria ribonucleotide processing target sequence

    SciTech Connect

    Remes, A.M.; Hassinen, I.E. ); Peuhkurinen, K.J.; Herva, R.; Majamaa, K. )

    1993-04-01

    A mitochondrial DNA deletion in a case of Kearns-Sayre syndrome is described. The deletion is bracketed by direct repeats that were unusual in that one of them was located 11--13 nucleotides from the deletion seam and both were conserved, which should not occur in slip replication or illegitimate elongation. The deleted region was demarcated on the deletion side by sequences that could be predicted to form hairpin structures. The 5[prime]-side of the deletion was flanked by a sequence homologous to a 9-nucleotide piece of the conserved sequence block II of the D-loop. This arrangement around the deletion in Kearns-Sayre syndrome bears some resemblance to the arrangement in the Pearson marrow- pancreas syndrome described by A. Rotig et al. (1991, Genomics 10: 502--504). 10 refs., 1 fig.

  15. Ventricular tachycardia in a Brugada syndrome patient caused by a novel deletion in SCN5A

    PubMed Central

    Tfelt-Hansen, Jacob; Jespersen, Thomas; Hofman-Bang, Jacob; Rasmussen, Hanne Borger; Cedergreen, Pernille; Skovby, Flemming; Abriel, Hugues; Svendsen, Jesper Hastrup; Olesen, Soren-Peter; Christiansen, Michael; Haunso, Stig

    2009-01-01

    The aim of the present study was to identify the molecular mechanism behind ventricular tachycardia in a patient with Brugada syndrome. Arrhythmias in patients with Brugada syndrome often occur during sleep. However, a 28-year-old man with no previously documented arrhythmia or syncope who experienced shortness of breath and chest pain during agitation is described. An electrocardiogram revealed monomorphic ventricular tachycardia; after he was converted to nodal rhythm, he spontaneously went into sinus rhythm, and showed classic Brugada changes with coved ST elevation in leads V1 to V2. Mutation analysis of SCN5A revealed a novel mutation, 3480 deletion T frame shift mutation, resulting in premature truncation of the protein. Heterologous expression of this truncated protein in human embryonic kidney 293 cells showed a markedly reduced protein expression level. By performing whole-cell patch clamp experiments using human embryonic kidney 293 cells transfected with the mutated SCN5A, no current could be recorded. Hence, the results suggest that the patient suffered from haploinsufficiency of Nav1.5, and that this mutation was the cause of his Brugada syndrome. PMID:19279983

  16. Cognitive phenotype and psychiatric disorder in 22q11.2 deletion syndrome: A review.

    PubMed

    Biswas, Asit B; Furniss, Frederick

    2016-01-01

    The behavioural phenotype of 22q11.2 deletion syndrome syndrome (22q11DS), one of the most common human multiple anomaly syndromes, frequently includes intellectual disability (ID) together with high risk of diagnosis of psychotic disorders including schizophrenia. Candidate cognitive endophenotypes include problems with retrieval of contextual information from memory and in executive control and focussing of attention. 22q11DS may offer a model of the relationship between ID and risk of psychiatric disorder. This paper reviews research on the relationship between the cognitive phenotype and the development of psychiatric disorders in 22q11DS. Aspects of cognitive function including verbal I.Q., visual memory, and executive function, are associated with mental health outcome in people with 22q11DS. This relationship may result from a common neurobiological basis for the cognitive difficulties and psychiatric disorders. Some of the cognitive difficulties experienced by people with 22q11DS, especially in attention, memory retrieval, and face processing, may, however, in themselves constitute risk factors for development of hallucinations and paranoid delusions. Future research into factors leading to psychiatric disorder in people with 22q11DS should include assessment of social and psychological factors including life events, symptoms associated with trauma, attachment, and self-esteem, which together with cognitive risk factors may mediate mental health outcome. PMID:26942704

  17. Low platelet count in a 22q11 deletion syndrome subtype of schizophrenia☆

    PubMed Central

    Lazier, K.; Chow, E.W.C.; AbdelMalik, P.; Scutt, L.E.; Weksberg, R.; Bassett, A.S.

    2011-01-01

    Background 22q11 Deletion Syndrome (22qDS) is a genetic syndrome associated with various physical features and schizophrenia. Some reports have identified thrombocytopenia (platelet count <150 × 109/l) in individuals with 22qDS, especially children. We investigated whether adults with 22qDS and schizophrenia (22qDS-SZ) have lower platelet counts than other patients with schizophrenia (SZ). Method Complete blood counts (CBC) were recorded from medical records for 18 22qDS-SZ and 60 SZ subjects. Five CBCs per subject were randomly selected and used to calculate a within-subject mean for analyses. Results 22qDS-SZ subjects had significantly lower mean platelet counts than comparison SZ subjects (142.2 × 109/l versus 282.5 × 109/l, t = −11.5, p < 0.0001). Ten 22qDS-SZ (55%) and no comparison subjects had thrombocytopenia. Conclusions These results suggest that thrombocytopenia may be a common feature of 22qDS and that low platelet counts may comprise a readily available screening criterion to help identify this genetic syndrome among adults with schizophrenia. PMID:11439238

  18. Sprengel anomaly in deletion 22q11.2 (DiGeorge/Velo-Cardio-Facial) syndrome.

    PubMed

    Radio, Francesca Clementina; Digilio, Maria Cristina; Capolino, Rossella; Dentici, Maria Lisa; Unolt, Marta; Alesi, Viola; Novelli, Antonio; Marino, Bruno; Dallapiccola, Bruno

    2016-03-01

    Sprengel anomaly (SA) is a rare skeletal defect characterized by uni- or bi-lateral elevation of the scapula. This anomaly is often isolated, although it can occur in association with other defects, including cervical spine malformations, cleft palate, and facial anomalies. Neural crest migration anomalies have been involved in the etiology of SA. Since the same embryological pathway accounts for some of the clinical features of deletion 22q11.2 syndrome (del22q11.2; DiGeorge/Velo-Cardio-Facial syndrome), we investigated the occurrence of SA in a consecutive series of 235 del22q11.2 patients aged more than 2 years, undergoing a complete clinical and orthopedic assessment of the dorsal and thoracic skeleton. In the present series, two patients were diagnosed with true SA. Present results and published reports suggest that scapular involvement including SA occurs in 1-2% of del22q11.2 individuals. Accordingly, this anomaly should be investigated as one of the possible skeletal findings of del22q11.2 syndrome, while this diagnosis should be excluded in patients presenting with SA associated with other defects. © 2015 Wiley Periodicals, Inc. PMID:26686844

  19. An interstitial deletion of 8q23.3-q24.22 associated with Langer-Giedion syndrome, Cornelia de Lange syndrome and epilepsy.

    PubMed

    Chen, Chih-Ping; Lin, Shuan-Pei; Liu, Yu-Peng; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Chen-Chi; Wang, Wayseen

    2013-10-15

    We present a 19-year-old male with laxity of skin and joints, sparse scalp hair, facial dysmorphism, epilepsy, multiple exostoses, scoliosis, gastroesophageal reflux, cardiovascular defects, and an 8q23.3-q24.22 deletion detected by array comparative genomic hybridization. The patient was previously misdiagnosed as having Ehlers-Danlos syndrome. However, his clinical findings are in fact correlated with trichorhinophalangeal syndrome type II/Langer-Giedion syndrome and Cornelia de Lange syndrome-4. We discuss the genotype-phenotype correlation and the consequence of haploinsufficiency of TRPS1, RAD21, EXT1 and KCNQ3 in this case. PMID:23933416

  20. Mosaicism for the fragile X syndrome full mutation and deletions within the CGG repeat of the FMR1 gene.

    PubMed Central

    Mil, M; Castellv-Bel, S; Snchez, A; Lzaro, C; Villa, M; Estivill, X

    1996-01-01

    The main mutation responsible for the fragile X syndrome is the expansion of an untranslated CGG repeat in the first exon of the FMR1 gene, associated with the hypermethylation of the proximal CpG island and the CGG repeat region, and repression of transcription of FMR1. Fragile X syndrome mosaicism has been described as the coexistence of the full mutation and the permutation. We present here two cases of mosaicism for the full mutation in the FMR1 gene and deletions involving the CGG repeat region. In one case the deletion removed 113 bp proximal to the CGG repeat and part of the repeat itself, leaving 30 pure repeats, and representing 17% of lymphocytes of the patient. The 5' breakpoint of this deletion falls outside the putative hotspot for deletions in the CGG region of FMR1. In the second case the deleted region only involved the CGG sequence (leaving 15 pure repeats), with normal sequences flanking the repeat; this deleted ("normal") FMR1 was estimated to be in about 31% of blood lymphocytes. This second case can be considered a true regression of the CGG FMR1 expansion to a normal sized allele, although in mosaic form. Images PMID:8730293

  1. Spontaneous deletion in the FMR-1 gene in a patient with fragile X syndrome and cherubism

    SciTech Connect

    Popovich, B.W.; Anoe, K.S.; Johnson, D.B.

    1994-09-01

    Fragile X mental retardation results from the transcriptional inactivation of the FMR-1 gene and is commonly caused by the expansion of an unstable CGG trinucleotide repeat located in the first exon of the FMR-1 gene. We describe here a two generation fragile X family in which expansion of the CGG repeat may have resulted in a deletion of a least portion of the FMR-1 gene. One member of this family, AB, carries an apparent deletion of the FMR-1 gene and presents with mental retardation and also cherubism, a feature not usually associated with fragile X syndrome. Cherubism is a condition characterized by a swelling of the lower face and is caused by giant cell lesions of the mandible and maxilla, and often the anterior ends of the ribs. The size of the CGG repeat region in this family was determined by Southern analysis of BglII, EcoRI, and PstI digested genomic DNA, isolated from peripheral blood lymphocytes, using a 558 bp PstI-Xhol fragment specific for the 5{prime}-end of the FMR-1 gene. SB and TB, the mother and maternal half-brother of AB, respectively, were both found to carry an expanded FMR-1 allele with greater than 200 CGG repeats. Negligible hybridization was observed in the DNA of AB. In addition, no amplification was observed when the polymerase chain reaction (PCR) was performed using primers flanking the CGG repeat region. These results are consistent with a deletion of at least the 5{prime} portion of the FMR-1 gene in the majority of peripheral blood lymphocytes. Further work is underway using FMR-1 cDNA probes and additional PCR primers to determine the nature of the molecular lesion in AB`s DNA and determine the relationship of this lesion to his cherubism.

  2. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    PubMed Central

    Wong, Ling M; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. We examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with 22q11.2DS (n = 47) and typically developing controls (n = 49) ages 6–15 years saw images within a grid and after a delay, then indicated the positions of the images in the correct temporal order. Children with 22q11.2DS made more spatial and temporal errors than controls. Females with 22q11.2DS made more spatial and temporal errors than males. These results extend findings of impaired spatiotemporal processing into the memory domain in 22q11.2DS by documenting their influence on working memory performance. PMID:24679349

  3. Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome

    PubMed Central

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-01-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639

  4. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients

    SciTech Connect

    Christian, S.L.; Huang, B.; Ledbetter, D.H.

    1995-07-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation syndromes caused by paternal and maternal deficiencies, respectively, in chromosome 15q11{minus}q13. Approximately 70% of these patients have a large deletion of {approximately}4 Mb extending from D15S9 (ML34) through D15S12 (IR10A). To further characterize the deletion breakpoints proximal to D15S9, three new polymorphic microsatellite markers were developed that showed observed heterozygosities of 60%-87%. D15S541 and D15S542 were isolated for YAC A124A3 containing the D15S18 (IR39) locus. D15S543 was isolated from a cosmid cloned from the proximal right end of YAC 254B5 containing the D15S9 (ML34) locus. Gene-centromere mapping of these markers, using a panel of ovarian teratomas of known meiotic origin, extended the genetic map of chromosome 15 by 2-3 cM toward the centromere. Analysis of the more proximal S541/S542 markers on 53 Prader-Willi and 33 Angelman deletion patients indicated two classes of patients: 44% (35/80) of the informative patients were deleted for these markers (class I), while 56% (45/80) were not deleted (class II), with no difference between PWS and AS. In contrast, D15S543 was deleted in all informative patients (13/48) or showed the presence of a single allele (in 35/48 patients), suggesting that this marker is deleted in the majority of PWS and AS cases. These results confirm the presence of two common proximal deletion breakpoint regions in both Prader-Willi and Angelman syndromes and are consistent with the same deletion mechanism being responsible for paternal and maternal deletions. One breakpoint region lies between D15S541/S542 and D15S543, with an additional breakpoint region being proximal to D15S541/S542. 46 refs., 2 figs., 3 tabs.

  5. Neuromotor Deficits in Children With the 22q11 Deletion Syndrome

    PubMed Central

    Sobin, Christina; Monk, Samantha H.; Kiley-Brabeck, Karen; Khuri, Jananne; Karayiorgou, Maria

    2009-01-01

    The 22q11 chromosomal deletion syndrome (22q11DS) is associated with a heterogeneous physical phenotype, neurocognitive deficits, and increased risk of later psychiatric illness. Sporadic clinical reports suggested motor differences, but quantitative studies of movement in children with 22q11DS are rare. If present in a majority of affected school-age children, characterization of neuromotor deficits may prove to be critical for intervention, neurocognitive test interpretation, and understanding etiology. We administered the Movement Assessment Battery for Children to 72 children ages 4.3 to 16.1, including 49 children confirmed positive for the 22q11 deletion and 23 control siblings. We predicted a higher frequency of global and domain impairment in manual dexterity, eye—hand coordination, and balance among affected children. Ninety-four percent of affected children had marked neuromotor deficits, and group scores differed broadly for both global and subarea measures. Secondary analyses showed no impairment differences between younger and older children with 22q11DS, and longitudinal trajectories for 12 affected children suggested stability of deficits over 3-year intervals. Neuromotor deficits in children with 22q11DS occur early in development, continue throughout the school-age years, should be considered in the interpretation of motor-based achievement and IQ tests, and require targeted and ongoing remediation throughout childhood and adolescence. Further studies examining the specificity of motor impairment to 22q11DS are needed. PMID:16991148

  6. Social Skills and Executive Function Deficits in Children With the 22q11 Deletion Syndrome

    PubMed Central

    Kiley-Brabeck, Karen; Sobin, Christina

    2009-01-01

    The 22q11 Deletion Syndrome (22q11DS) is among the most frequent gene deletion disorders, occurring once in every 6,000 live births. Descriptive reports have suggested marked social differences in affected children. Empirical studies are needed to verify possible social skills deficits among children with 22q11DS, and also to examine possible associations between their frequently reported executive function deficits and social anomalies. Fifty-two parents of affected children (n = 52) and participating control siblings (n = 26) completed the Social Skills Rating System (SSRS) and Behavior Inventory of Executive Function (BRIEF). When compared with control siblings, children with 22q11DS had significantly lower SSRS ratings for Cooperation, Assertion, Responsibility, and Self-Control. Affected children had significantly higher BRIEF ratings for Initiation, Planning, Working Memory, and Monitoring. In affected children, global Social Skill was negatively correlated with BRIEF Global Composite scores. Initiation and Monitoring significantly predicted Social Skill. Children with 22q11DS have marked differences in social skill development which are associated with executive dysfunction. PMID:17362146

  7. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice

    PubMed Central

    Tomberg, Kärt; Khoriaty, Rami; Westrick, Randal J.; Fairfield, Heather E.; Reinholdt, Laura G.; Brodsky, Gary L.; Davizon-Castillo, Pavel; Ginsburg, David; Di Paola, Jorge

    2016-01-01

    During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains. PMID:26950939

  8. Hemizygosity for SMCHD1 in Facioscapulohumeral Muscular Dystrophy Type 2: Consequences for 18p Deletion Syndrome.

    PubMed

    Lemmers, Richard J L F; van den Boogaard, Marlinde L; van der Vliet, Patrick J; Donlin-Smith, Colleen M; Nations, Sharon P; Ruivenkamp, Claudia A L; Heard, Patricia; Bakker, Bert; Tapscott, Stephen; Cody, Jannine D; Tawil, Rabi; van der Maarel, Silvère M

    2015-07-01

    Facioscapulohumeral muscular dystrophy (FSHD) is most often associated with variegated expression in somatic cells of the normally repressed DUX4 gene within the D4Z4-repeat array. The most common form, FSHD1, is caused by a D4Z4-repeat array contraction to a size of 1-10 units (normal range 10-100 units). The less common form, FSHD2, is characterized by D4Z4 CpG hypomethylation and is most often caused by loss-of-function mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene on chromosome 18p. The chromatin modifier SMCHD1 is necessary to maintain a repressed D4Z4 chromatin state. Here, we describe two FSHD2 families with a 1.2-Mb deletion encompassing the SMCHD1 gene. Numerical aberrations of chromosome 18 are relatively common and the majority of 18p deletion syndrome (18p-) cases have, such as these FSHD2 families, only one copy of SMCHD1. Our finding therefore raises the possibility that 18p- cases are at risk of developing FSHD. To address this possibility, we combined genome-wide array analysis data with D4Z4 CpG methylation and repeat array sizes in individuals with 18p- and conclude that approximately 1:8 18p- cases might be at risk of developing FSHD. PMID:25820463

  9. Psychopathology and cognition in children with 22q11.2 deletion syndrome

    PubMed Central

    Niarchou, Maria; Zammit, Stanley; van Goozen, Stephanie H. M.; Thapar, Anita; Tierling, Hayley M.; Owen, Michael J.; van den Bree, Marianne B. M.

    2014-01-01

    Background Children with 22q11.2 deletion syndrome (22q11.2DS) have been reported to have high rates of cognitive and psychiatric problems. Aims To establish the nature and prevalence of psychiatric disorder and neurocognitive impairment in children with 22q11.2DS and test whether risk of psychopathology is mediated by the children’s intellectual impairment. Method Neurocognition and psychopathology were assessed in 80 children with 22q11.2DS (mean age 10.2 years, s.d. = 2.1) and 39 sibling controls (mean age 10.9 years, s.d. = 2.0). Results More than half (54%) of children with 22q11.2DS met diagnostic criteria for one or more DSM-IV-TR psychiatric disorder. These children had lower IQ (mean 76.8, s.d. = 13.0) than controls (mean 108.6, s.d. = 15.2) (P<0.001) and showed a range of neurocognitive impairments. Increased risk of psychopathology was not mediated by intellectual impairment. Conclusions 22q11.2DS is not related to a specific psychiatric phenotype in children. Moreover, the deletion has largely independent effects on IQ and risk of psychopathology, indicating that psychopathology in 22q11.2DS is not a non-specific consequence of generalised cognitive impairment. PMID:24115343

  10. A Turkish patient with large 17p11.2 deletion presenting with Smith Magenis syndrome.

    PubMed

    Tug, E; Cine, N; Aydin, H

    2011-01-01

    Smith-Magenis syndrome (SMS), which occurs as a result of an interstitial deletion within chromosome 17p11.2-p12, is a disorder that presents itself with minor dysmorphic features, brachydactyly, short stature, hypotonia, delayed speech, cognitive deficits and neurobehavioral problems including sleep disturbances and maladaptive repetitive and self-injurious behavior. We present a girl with full SMS phenotype. G-banding cytogenetic analysis showed normal 46,XX karyotype. Whole-genome array comparative genomic hybridization (CGH) was performed due to the severity of the phenotype and the unusual features present in the patient. An interstitial deletion in 17p11.2-p12, approximately 4.73 Mb in size was determined. Characteristic physical and behavioral phenotype strongly suggested SMS. This, to the best of our knowledge is the first patient with SMS reported in Turkey. We emphasize the need for whole genome analysis in multiple congenital abnormalities/mental retardation disorders with unusual and severe phenotypes. PMID:21614983

  11. Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome.

    PubMed

    Guo, Tingwei; Chung, Jonathan H; Wang, Tao; McDonald-McGinn, Donna M; Kates, Wendy R; Hawuła, Wanda; Coleman, Karlene; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E

    2015-12-01

    We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion. PMID:26608785

  12. Subthreshold Psychotic Symptoms in 22q11.2 Deletion Syndrome

    PubMed Central

    Tang, Sunny X.; Yi, James J.; Moore, Tyler M.; Calkins, Monica E.; Kohler, Christian G.; Whinna, Daneen A.; Souders, Margaret C.; Zackai, Elaine H.; McDonald-McGinn, Donna M.; Emanuel, Beverly S.; Bilker, Warren B.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Objective Chromosome 22q11.2 deletion syndrome (22q11DS) confers 25% risk for psychosis and is an invaluable window for understanding the neurobiological substrate of psychosis risk. The Structured Interview for Prodromal Syndromes (SIPS) is well validated in non-deleted populations for detecting clinical risk but has been only recently applied to 22q11DS. We assessed the largest 22q11DS cohort to date and report on SIPS implementation and symptoms elicited. Method The SIPS, including its 19 subscales, was administered to 157 individuals with 22q11DS aged 8 to 25. Youth and caregiver interviews were conducted and rated separately, then compared for agreement. Implementation of the SIPS in 22q11DS was challenging due to the prevalence of developmental delay and comorbid conditions. However, by explaining questions and eliciting examples, we were able to help youths and caregivers understand and respond appropriately. Consensus ratings were formulated and analyzed with item-wise and factor analysis. Results Subthreshold symptoms were common, with 85% of individuals endorsing one or more. The most commonly rated items were ideational richness (47%) and trouble with focus and attention (44%). Factor analysis revealed a three-factor solution with positive, negative, and disorganized components. Youth-caregiver comparisons suggested that youths report greater symptoms of perceptual abnormalities, suspiciousness, trouble with emotional expression, and bizarre thinking. Caregivers reported more impaired tolerance to normal stress, poor hygiene, and inattention. Conclusion The SIPS was adapted for 22q11DS through comprehensive and semi-structured administration methods, yielding a high prevalence of subthreshold psychotic symptoms. The significance and predictive validity of these symptoms require future longitudinal analysis. PMID:25151422

  13. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental

  14. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  15. Social Skills and Associated Psychopathology in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Interventions

    ERIC Educational Resources Information Center

    Shashi, V.; Veerapandiyan, A.; Schoch, K.; Kwapil, T.; Keshavan, M.; Ip, E.; Hooper, S.

    2012-01-01

    Background: Although distinctive neuropsychological impairments have been delineated in children with chromosome 22q11 deletion syndrome (22q11DS), social skills and social cognition remain less well-characterised. Objective: To examine social skills and social cognition and their relationship with neuropsychological function/behaviour and…

  16. Emotion Regulation and Development in Children with Autism and 22q13 Deletion Syndrome: Evidence for Group Differences

    ERIC Educational Resources Information Center

    Glaser, Sarah E.; Shaw, Steven R.

    2011-01-01

    Emotion regulation (ER) abilities and developmental differences were investigated among 19 children with autism and 18 children with 22q13 Deletion Syndrome (a rare chromosomal disorder with certain autistic symptoms). The purpose of this study was to examine the phenotypic similarities between the two disorders. ER was measured by the Temperament…

  17. Maladaptive Conflict Monitoring as Evidence for Executive Dysfunction in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Bish, Joel P.; Ferrante, Samantha M.; McDonald-McGinn, Donna; Zackai, Elaine; Simon, Tony J.

    2005-01-01

    Using an adaptation of the Attentional Networks Test, we investigated aspects of executive control in children with chromosome 22q11.2 deletion syndrome (DS22q11.2), a common but not well understood disorder that produces non-verbal cognitive deficits and a marked incidence of psychopathology. The data revealed that children with DS22q11.2…

  18. Novel porcine reproductive and respiratory syndrome virus strains in the United States with deletions in untranslated regions.

    PubMed

    Wang, Leyi; Zhang, Yan

    2015-12-01

    Porcine reproductive and respiratory syndrome (PRRS) still causes major problems for the swine industry worldwide. Here, we report the detection and genomic characterization of two novel PRRS virus (PRRSV) strains from the United States with deletions in untranslated regions (UTRs). The OH155-2015 strain has two single-nucleotide deletions in the 5' UTR, whereas the OH28372-2013 strain has a 13-nt deletion in the 3' UTR. In addition, OH155-2015 and OH28372-2013 have a unique deletion and mutations in the NSP2 and N gene, respectively. Our study highlights the importance of continued monitoring of PRRSV using whole-genome sequencing. PMID:26358265

  19. A patient with both Gilles de la Tourette's syndrome and chromosome 22q11 deletion syndrome: clue to the genetics of Gilles de la Tourette's syndrome?

    PubMed

    Robertson, Mary M; Shelley, Bhaskara Pillai; Dalwai, Suraiya; Brewer, Carole; Critchley, Hugo D

    2006-09-01

    This is the first published case description of the association of Gilles de la Tourette's syndrome (GTS) and chromosome 22q11.2 deletion syndrome (22q11DS; previously referred to as CATCH-22 syndrome). The co-occurrence of GTS, 22q11DS, and their behavioral/neuropsychiatric abnormalities may be due to the common endophenotypic mechanisms shared by these disorders, rather than due to specificity for GTS. Research into this genomic region may lead to advancement in neurobehavioral/neuropsychiatric genetics, which will help us in further explicating a broader perspective of gene-brain-behavior interrelationships and of the genetic underpinnings of various developmental psychopathologies and behavioral/neuropsychiatric disorders that are common to both GTS and 22q11DS. Our report should warrant further genetic investigations of the chromosome 22q11.2 deletion site using alternative strategies to the quantitative trait loci endophenotype-based approach, which would be useful for establishing the biological and molecular underpinnings of obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and GTS. PMID:16938515

  20. [De novo SCN1A gene deletion in therapy-resistant Dravet syndrome].

    PubMed

    Bene, Judit; Hadzsiev, Kinga; Komlósi, Katalin; Kövesdi, Erzsébet; Mátyás, Petra; Melegh, Béla

    2015-12-01

    Severe myoclonic epilepsy in infancy (Dravet's syndrome) is a very rare form of epilepsy. Mutations of SCN1A gene encoding voltage-gated sodium channel alpha-1 subunit are major causes of the autosomal dominant disorder. Most cases are associated with a de novo point mutation, but some patients have copy number variations. The protein encoded by the SCN1A gene plays a role in the generation and propagation of action potentials. Loss of function caused by the majority of gene mutations leads to hyperexcitability of the neuronal network that finally results in the formation of the epileptic seizures. Molecular genetic test for copy number variations of SCN1A gene is available in the department of the authors since 2013 besides sequencing analysis of the whole gene. This article presents the case of a 7-year-old patient with two years of recorded patient history outside of the author's department. Molecular genetic test, which detected a de novo SCN1A gene deletion in heterozygous form, revealed SCN1A gene associated monogenic epileptic syndrome being in the genetic background of therapy-resistant seizures. PMID:26614543

  1. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2)

    SciTech Connect

    Greenberg, F.; Lewis, R.A.; Potocki, L.

    1996-03-29

    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65% brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter. 42 refs., 2 figs., 3 tabs.

  2. Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome.

    PubMed

    Kanprasoet, Waruenada; Jensen, Laran T; Sriprach, Suwimon; Thitiananpakorn, Kanate; Rattanapornsompong, Khanti; Jensen, Amornrat Naranuntarat

    2015-12-20

    Shwachman-Diamond syndrome (SDS) is a multi-system disorder characterized by bone marrow failure, pancreatic insufficiency, skeletal abnormalities, and increased risk of leukemic transformation. Most patients with SDS contain mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS), encoding a highly conserved protein that has been implicated in ribosome biogenesis. Emerging evidence also suggests a distinct role of SBDS beyond protein translation. Using the yeast model of SDS, we examined the underlying mechanisms that cause cells lacking Sdo1p, the yeast SBDS ortholog, to exhibit reduced tolerance to various stress conditions. Our analysis indicates that the environmental stress response (ESR), heat shock response (HSR), and endoplasmic reticulum unfolded protein response (UPR) of sdo1Δ cells are functional and that defects in these pathways do not produce the phenotypes observed in sdo1Δ yeast. Depletion of mitochondrial DNA (mtDNA) was observed in sdo1Δ cells, and this is a probable cause of the mitochondrial insufficiency in SDS. Prior disruption of POR1, encoding the mitochondrial voltage dependent anion channel (VDAC), abrogated the effects of SDO1 deletion and substantially restored resistance to environmental stressors and protected against damage to mtDNA. Conversely, wild-type cells over-expressing POR1 exhibited growth impairment and increased stress sensitivity similar to that seen in sdo1Δ cells. Overall, our results suggest that specific VDAC inhibitors may have therapeutic benefits for SDS patients. PMID:26743985

  3. Identifying 22q11.2 deletion syndrome and psychosis using resting-state connectivity patterns.

    PubMed

    Scariati, Elisa; Schaer, Marie; Richiardi, Jonas; Schneider, Maude; Debban, Martin; Van De Ville, Dimitri; Eliez, Stephan

    2014-11-01

    The clinical picture associated with 22q11.2 deletion syndrome (22q11DS) includes mild mental retardation and an increased risk of schizophrenia. While the clinical phenotype has been related to structural brain network alterations, there is only scarce information about functional connectivity in 22q11DS. However, such studies could lead to a better comprehension of the disease and reveal potential biomarkers for psychosis. A connectivity decoding approach was used to discriminate between 42 patients with 22q11DS and 41 controls using resting-state connectivity. The same method was then applied within the 22q11DS group to identify brain connectivity patterns specifically related to the presence of psychotic symptoms. An accuracy of 84% was achieved in differentiating patients with 22q11DS from controls. The discriminative connections were widespread, but predominantly located in the bilateral frontal and right temporal lobes, and were significantly correlated to IQ. An 88% accuracy was obtained for identification of existing psychotic symptoms within the patients group. The regions containing most discriminative connections included the anterior cingulate cortex (ACC), the left superior temporal and the right inferior frontal gyri. Functional connectivity alterations in 22q11DS affect mostly frontal and right temporal lobes and are related to the syndrome's mild mental retardation. These results also provide evidence that resting-state connectivity can potentially become a biomarker for psychosis and that ACC plays an important role in the development of psychotic symptoms. PMID:24562717

  4. An interictal schizophrenia-like psychosis in an adult patient with 22q11.2 deletion syndrome.

    PubMed

    Tastuzawa, Yasutaka; Sekikawa, Kanako; Suda, Tetsufumi; Matsumoto, Hiroshi; Otabe, Hiroyuki; Nonoyama, Shigeaki; Yoshino, Aihide

    2015-01-01

    In addition to causing polymalformative syndrome, 22q11.2 deletion can lead to various neuropsychiatric disorders including mental retardation, psychosis, and epilepsy. However, few reports regarding epilepsy-related psychosis in 22q11.2 deletion syndrome (22q11.2DS) exist. We describe the clinical characteristics and course of 22q11.2DS in a Japanese patient with comorbid mild mental retardation, childhood-onset localization-related epilepsy, and adult-onset, interictal schizophrenia-like psychosis. From a diagnostic viewpoint, early detection of impaired intellectual functioning and hyperprolinemia in patients with epilepsy with 22q11.2DS may be helpful in predicting the developmental timing of interictal psychosis. From a therapeutic viewpoint, special attention needs to be paid to phenytoin-induced hypocalcemia in this syndrome. PMID:25870791

  5. An interictal schizophrenia-like psychosis in an adult patient with 22q11.2 deletion syndrome

    PubMed Central

    Tastuzawa, Yasutaka; Sekinaka, Kanako; Suda, Tetsufumi; Matsumoto, Hiroshi; Otabe, Hiroyuki; Nonoyama, Shigeaki; Yoshino, Aihide

    2015-01-01

    In addition to causing polymalformative syndrome, 22q11.2 deletion can lead to various neuropsychiatric disorders including mental retardation, psychosis, and epilepsy. However, few reports regarding epilepsy-related psychosis in 22q11.2 deletion syndrome (22q11.2DS) exist. We describe the clinical characteristics and course of 22q11.2DS in a Japanese patient with comorbid mild mental retardation, childhood-onset localization-related epilepsy, and adult-onset, interictal schizophrenia-like psychosis. From a diagnostic viewpoint, early detection of impaired intellectual functioning and hyperprolinemia in patients with epilepsy with 22q11.2DS may be helpful in predicting the developmental timing of interictal psychosis. From a therapeutic viewpoint, special attention needs to be paid to phenytoin-induced hypocalcemia in this syndrome. PMID:25870791

  6. Social Cognition Dysfunction in Adolescents with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome): Relationship with Executive Functioning and Social Competence/Functioning

    ERIC Educational Resources Information Center

    Campbell, L. E.; McCabe, K. L.; Melville, J. L.; Strutt, P. A.; Schall, U.

    2015-01-01

    Background: Social difficulties are often noted among people with intellectual disabilities. Children and adults with 22q.11.2 deletion syndrome (22q11DS) often have poorer social competence as well as poorer performance on measures of executive and social-cognitive skills compared with typically developing young people. However, the relationship…

  7. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth

    SciTech Connect

    Perez Jurado, L.A.; Peoples, R.; Francke, U.

    1996-10-01

    Williams syndrome (WS) is a developmental disorder with variable phenotypic expression associated, in most cases, with a hemizygous deletion of part of chromosomal band 7q11.23 that includes the elastin gene (ELN). We have investigated the frequency and size of the deletions, determined the parental origin, and correlated the molecular results with the clinical findings in 65 WS patients. Hemizygosity at the ELN locus was established by typing of two intragenic polymorphisms, quantitative Southern analysis, and/or FISH. Polymorphic markers covering the deletion and flanking regions were ordered by a combination of genetic and physical mapping. Genotyping of WS patients and available parents for 13 polymorphisms revealed that of 65 clinically defined WS patients, 61 (94%) had a deletion of the ELN locus and were also hemizygous (or non-informative) at loci D7S489B, D7S2476, D7S613, D7S2472, and D7S1870. None of the four patients without ELN deletion was hemizygous at any of the polymorphic loci studied. All patients were heterozygous (or noninformative) for centromeric (D7S1816, D7S1483, and D7S653) and telomeric (D7S489A, D7S675, and D7S669) flanking loci. The genetic distance between the most-centromeric deleted locus, D7S489B, and the most-telomeric one, D7S1870, is 2 cM. The breakpoints cluster at {approximately}1 cM to either side of ELN. In 39 families informative for parental origin, all deletions were de novo, and 18 were paternally and 21 maternally derived. Comparison of clinical data, collected in a standardized quantifiable format, revealed significantly more severe growth retardation and microcephaly in the maternal deletion group. An imprinted locus, silent on the paternal chromosome and contributing to statural growth, may be affected by the deletion. 53 refs., 5 figs., 2 tabs.

  8. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: A general strategy using hypervariable subtelomeric DNA polymorphisms

    SciTech Connect

    Wilkie, A.O.M.

    1993-09-01

    Given the availability of DNA from both parents, unusual segregation of hypervariable DNA polymorphisms (HVPs) in the offspring may be attributable to deletion, unbalanced chromosomal translocation, or uniparental disomy. The telomeric regions of chromosomes are rich in both genes and hypervariable minisatellite sequences and may also be particularly prone to cryptic breakage events. Here the author describes and analyzes a general approach to the detection of subtelomeric abnormalities and uniparental disomy in patients with unexplained mental retardation. With 29 available polymorphic systems, [approximately]50%-70% of these abnormalities could currently be detected. Development of subtelomeric HVPs physically localized with respect to their telomers should provide a valuable resource in routine diagnostics. 73 refs., 4 figs., 4 tabs.

  9. Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval.

    PubMed

    Zhao, Chunjie; Avilés, Carmen; Abel, Regina A; Almli, C Robert; McQuillen, Patrick; Pleasure, Samuel J

    2005-06-01

    Wnt signaling regulates hippocampal development but little is known about the functions of specific Wnt receptors in this structure. Frizzled 9 is selectively expressed in the hippocampus and is one of about 20 genes typically deleted in Williams syndrome. Since Williams syndrome is associated with severe visuospatial processing defects, we generated a targeted null allele for frizzled 9 to examine its role in hippocampal development. Frizzled 9-null mice had generally normal gross anatomical hippocampal organization but showed large increases in apoptotic cell death in the developing dentate gyrus. This increase in programmed cell death commenced with the onset of dentate gyrus development and persisted into the first postnatal week of life. There was also a perhaps compensatory increase in the number of dividing precursors in the dentate gyrus, which may have been a compensatory response to the increased cell death. These changes in the mutants resulted in a moderate decrease in the number of adult dentate granule cells in null mice and an increase in the number of hilar mossy cells. Heterozygous mice (the same frizzled 9 genotype as Williams syndrome patients) were intermediate between wild type and null mice for all developmental neuronanatomic defects. All mice with a mutant allele had diminished seizure thresholds, and frizzled 9 null mice had severe deficits on tests of visuospatial learning/memory. We conclude that frizzled 9 is a critical determinant of hippocampal development and is very likely to be a contributing factor to the neurodevelopmental and behavioral phenotype of patients with Williams syndrome. PMID:15930120

  10. Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy

    PubMed Central

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M.Khaled; Plovie, EvaR.; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, AndreasA.; Kalwa, Hermann; Heinig, Matthias; Padera, RobertF.; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, PaulJ.; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, StuartA.; MacRae, CalumA.; Klaassen, Sabine

    2013-01-01

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM. PMID:23768516

  11. Decreased DGCR8 Expression and miRNA Dysregulation in Individuals with 22q11.2 Deletion Syndrome

    PubMed Central

    Sellier, Chantal; Hwang, Vicki J.; Dandekar, Ravi; Durbin-Johnson, Blythe; Charlet-Berguerand, Nicolas; Ander, Bradley P.; Sharp, Frank R.; Angkustsiri, Kathleen; Simon, Tony J.; Tassone, Flora

    2014-01-01

    Deletion of the 1.5–3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70–80%), hypocalcemia (20–60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS. PMID:25084529

  12. Subtypes in 22q11.2 deletion syndrome associated with behaviour and neurofacial morphology.

    PubMed

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F; Schall, Ulrich; Murphy, Declan G M; Murphy, Kieran C; Campbell, Linda E

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among adults with 22q11DS (~25-30% vs. ~1% in the general population). The purpose of this study was to investigate whether subtypes exist among people with 22q11DS, with a similar phenotype and an increased risk of developing mental health problems. Physical, cognitive and behavioural data from 50 children and adolescents with 22q11DS were included in a k-means cluster analysis. Two distinct phenotypes were identified: Type-1 presented with a more severe phenotype including significantly impaired verbal memory, lower intellectual and academic ability, as well as statistically significant reduced total brain volume. In addition, we identified a trend effect for reduced temporal grey matter. Type-1 also presented with autism-spectrum traits, whereas Type-2 could be described as having more 22q11DS-typical face morphology, being predominately affected by executive function deficits, but otherwise being relatively high functioning with regard to cognition and behaviour. The confirmation of well-defined subtypes in 22q11DS can lead to better prognostic information enabling early identification of people with 22q11DS at high risk of psychiatric disorders. The identification of subtypes in a group of people with a relatively homogenous genetic deletion such as 22q11DS is also valuable to understand clinical outcomes. PMID:22940165

  13. The development of cognitive control in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Shapiro, Heather M.; Tassone, Flora; Choudhary, Nimrah S.; Simon, Tony J.

    2014-01-01

    Chromosome 22q11.2 Deletion Syndrome (22q11.2DS) is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD) were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT), a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ). When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures. PMID:24959159

  14. Deletions of the elastin gene at 7q11.23 occur in {approximately}90% of patients with Williams syndrome

    SciTech Connect

    Nickerson, E.; Greenberg, F.; McCaskill, C.; Shaffer, L.G.; Keating, M.T.

    1995-05-01

    To investigate the frequency of deletions of the elastin gene in patients with Williams syndrome (WS), we screened 44 patients by both FISH and PCR amplification of a dinucleotide repeat polymorphism. FISH was performed using cosmids containing either the 5{prime} or the 3{prime} end of the elastin gene. PCR analysis was performed on the patients and their parents with a (CA){sub n} repeat polymorphism found in intron 17 of the elastin locus. Of the 44 patients screened, 91% were shown to be deleted by FISH. Using the DNA polymorphism, both maternally (39%) and paternally (61%) derived deletions were found. Four patients were not deleted for elastin but have clinical features of WS. Since deletions of elastin cannot account for several features found in WS, these patients will be valuable in further delineation of the critical region responsible for the WS phenotype. Although PCR can be useful for determining the parental origin of the deletion, our results demonstrate that FISH analysis of the elastin locus provides a more rapid and informative test to confirm a clinical diagnosis of WS. The presence of two copies of the elastin locus in a patient does not, however, rule out WS as a diagnosis. 25 refs., 3 figs., 1 tab.

  15. The 13q- syndrome: the molecular definition of a critical deletion region in band 13q32.

    PubMed Central

    Brown, S; Russo, J; Chitayat, D; Warburton, D

    1995-01-01

    Patients with interstitial deletions of the long arm of chromosome 13 may have widely varying phenotypes. From cytogenetic analysis, we have postulated that there is a discrete region in 13q32 where deletion leads to a syndrome of severe malformations, including digital and brain anomalies. To test this hypothesis at the molecular level, we have studied the deletions in 17 patients; 5 had severe malformations, while the remaining 12 had only minor malformations. Our results indicate that the deletions in the severely affected patients all involve an overlapping region in q32, while the deletions in the mildly affected patients include some, but not all, of this overlapping region. Our findings are consistent with the hypothesis that the severely malformed 13q- phenotype results from the deletion of a critical region in 13q32. This region is presently defined as lying between D13S136 and D13S147 and is on the order of 1 Mb in size. Images Figure 3 Figure 4 PMID:7573047

  16. Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    PubMed Central

    Beri, Silvana; De Agostini, Cristina; Novara, Francesca; Fichera, Marco; Grillo, Lucia; Galesi, Ornella; Vetro, Annalisa; Ciccone, Roberto; Bonati, Maria Teresa; Giglio, Sabrina; Guerrini, Renzo; Osimani, Sara; Marelli, Susan; Zucca, Claudio; Grasso, Rita; Borgatti, Renato; Mani, Elisa; Motta, Cristina; Molteni, Massimo; Romano, Corrado; Greco, Donatella; Reitano, Santina; Baroncini, Anna; Lapi, Elisabetta; Cecconi, Antonella; Arrigo, Giulia; Patricelli, Maria Grazia; Pantaleoni, Chiara; D'Arrigo, Stefano; Riva, Daria; Sciacca, Francesca; Dalla Bernardina, Bernardo; Zoccante, Leonardo; Darra, Francesca; Termine, Cristiano; Maserati, Emanuela; Bigoni, Stefania; Priolo, Emanuela; Bottani, Armand; Gimelli, Stefania; Bena, Frederique; Brusco, Alfredo; di Gregorio, Eleonora; Bagnasco, Irene; Giussani, Ursula; Nitsch, Lucio; Politi, Pierluigi; Martinez-Frias, Maria Luisa; Martínez-Fernández, Maria Luisa; Martínez Guardia, Nieves; Bremer, Anna; Anderlid, Britt-Marie; Zuffardi, Orsetta

    2011-01-01

    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS. PMID:21779178

  17. The neural correlates of non-spatial working memory in velocardiofacial syndrome (22q11.2 deletion syndrome)

    PubMed Central

    Kates, Wendy R.; Krauss, Beth R.; AbdulSabur, Nuria; Colgan, Deirdre; Antshel, Kevin M.; Higgins, Anne Marie; Shprintzen, Robert J.

    2007-01-01

    Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant volumetric reductions in the parietal lobe of individuals with VCFS, but several studies have reported that the frontal lobe is relatively preserved. We used functional magnetic resonance imaging to investigate the neural correlates of non-spatial working memory in 17 youths with VCFS, 10 of their unaffected siblings, and 10 community controls (with the same proportion of learning disabilities as the VCFS youths). Task performance of siblings tended to be more accurate than children with VCFS, who did not differ from community controls. All three study groups recruited parietal regions that were equivalent in location and magnitude. Whereas the sibling group also recruited the dorsolateral prefrontal cortex (DLPFC), Broca’s area, and anterior cingulate, DLPFC activation was absent in the whole brain analyses of children with VCFS and controls. Moreover, the magnitude of frontal activation in VCFS participants was restricted relative to both siblings and controls. These findings suggest that VCFS participants exhibit frontal hypoactivation that is not attributable to performance. In addition, VCFS children and controls (many with idiopathic learning disabilities) appear to rely on phonological rehearsal to hold information on line instead of the DLPFC. Despite previous anatomic MRI reports of preserved frontal lobe volumes in VCFS therefore, these fMRI findings suggest that the frontal component of the distributed network subserving executive function and working memory may be disrupted in youth with this disorder. PMID:17618656

  18. Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619

  19. Novel 5.712 kb mitochondrial DNA deletion in a patient with Pearson syndrome: a case report.

    PubMed

    Park, Joonhong; Ryu, Hyejin; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Kim, Jiyeon; Lee, Jae Wook; Chung, Nack-Gyun; Cho, Bin; Suh, Byung Kyu

    2015-05-01

    Pearson marrow?pancreas syndrome (PS) is a progressive multi?organ disorder caused by deletions and duplications of mitochondrial DNA (mtDNA). PS is often fatal in infancy, and the majority of patients with PS succumb to the disease before reaching three?years?of?age, due to septicemia, metabolic acidosis or hepatocellular insufficiency. The present report describes the case of a four?month?old infant with severe normocytic normochromic anemia, vacuolization of hematopoietic precursors and metabolic acidosis. After extensive clinical investigation, the patient was diagnosed with PS, which was confirmed by molecular analysis of mtDNA. The molecular analysis detected a novel large?scale (5.712 kb) deletion spanning nucleotides 8,011 to 13,722 of mtDNA, which lacked direct repeats at the deletion boundaries. The present report is, to the best of our knowledge, the first case reported in South Korea. PMID:25543536

  20. Deletion 1q43-44 in a patient with clinical diagnosis of Warburg-Micro syndrome.

    PubMed

    Arroyo-Carrera, Ignacio; de Zaldívar Tristancho, María Solo; Bermejo-Sánchez, Eva; Martínez-Fernández, María Luisa; López-Lafuente, Amparo; MacDonald, Alexandra; Zúñiga, Ángel; Luis Gómez-Skarmeta, José; Luisa Martínez-Frías, María

    2015-06-01

    Warburg-Micro syndrome (WARBM) is an autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornea, congenital cataracts, optic atrophy and central nervous system malformations. This syndrome is caused by mutations in the RAB3GAP1/2 and RAB18 genes, part of the Rab family, and in the TBC1D20 gene, which contributes to lipid droplet formation/metabolism. Here we present a patient with clinical diagnosis of WARBM syndrome, who did not have mutations in either the RAB3GAP1/2 genes, in the main exons of RAB18, nor in the TBC1D20 gene. However, the analysis with CGH-array detected a 9.6 Mb deletion at 1q43-qter. We performed a genotype-phenotype correlation using 20 previously published patients in whom the coordinates of the deleted regions were defined. The comparative analysis revealed that the current patient and three of the other 20 patients share the loss of six genes, four of which are related with the family of G proteins, and are strongly expressed in the brain, retina, heart and kidney. Consequently, their haploinsufficiency may result in different combinations of clinical alterations, including some of those of WARBM syndrome. In addition, the haploinsufficiency of other genes may contribute to other defects and clinical variability. Additionally, for the genotype-phenotype correlation, one must also consider molecular pathways that can result in the observed alterations. To early confirm a genetic diagnosis is essential for the patient and family. The current patient was considered as having a recessive syndrome, but since he had a "de novo" deletion, there was not an increased recurrence risk. PMID:25899426

  1. High proportion of large genomic deletions and a genotype–phenotype update in 80 unrelated families with juvenile polyposis syndrome

    PubMed Central

    Aretz, S; Stienen, D; Uhlhaas, S; Stolte, M; Entius, M M; Loff, S; Back, W; Kaufmann, A; Keller, K‐M; Blaas, S H; Siebert, R; Vogt, S; Spranger, S; Holinski‐Feder, E; Sunde, L; Propping, P; Friedl, W

    2007-01-01

    Background In patients with juvenile polyposis syndrome (JPS) the frequency of large genomic deletions in the SMAD4 and BMPR1A genes was unknown. Methods Mutation and phenotype analysis was used in 80 unrelated patients of whom 65 met the clinical criteria for JPS (typical JPS) and 15 were suspected to have JPS. Results By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis of the PTEN gene in the remaining 41 mutation negative cases uncovered a point mutation in two patients (5%). SMAD4 mutation carriers had a significantly higher frequency of gastric polyposis (73%) than did patients with BMPR1A mutations (8%) (p<0.001); all seven cases of gastric cancer occurred in families with SMAD4 mutations. SMAD4 mutation carriers with gastric polyps were significantly older at gastroscopy than those without (p<0.001). In 22% of the 23 unrelated SMAD4 mutation carriers, hereditary hemorrhagic telangiectasia (HHT) was also diagnosed clinically. The documented histologic findings encompassed a wide distribution of different polyp types, comparable with that described in hereditary mixed polyposis syndromes (HMPS). Conclusions Screening for large deletions raised the mutation detection rate to 60% in the 65 patients with typical JPS. A strong genotype‐phenotype correlation for gastric polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted. PMID:17873119

  2. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    SciTech Connect

    Ravnan, J.B.; Golabi, M.; Lebo, R.V.

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  3. Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome

    PubMed Central

    Schreiner, Matthew J.; Karlsgodt, Katherine H.; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria

    2014-01-01

    22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched controls. Subsequently, the relationship between PCC connectivity and Social Responsiveness Scale (SRS) scores was examined in 22q11DS participants. Relative to 22q11DS participants, controls showed significantly stronger FC between the PCC and other default mode network (DMN) nodes, including the precuneus, precentral gyrus and left frontal pole. 22q11DS patients did not show age-associated FC changes observed in typically developing controls. Increased connectivity between PCC, medial prefrontal regions and the anterior cingulate cortex, was associated with lower SRS scores (i.e. improved social competence) in 22q11DS. DMN integrity may play a key role in social information processing. We observed disrupted DMN connectivity in 22q11DS, paralleling reports from idiopathic autism and schizophrenia. Increased strength of long-range DMN connectivity was associated with improved social functioning in 22q11DS. These findings support a ‘developmental-disconnection’ hypothesis of symptom development in this disorder. PMID:23912681

  4. Neural substrates of inhibitory control deficits in 22q11.2 deletion syndrome.

    PubMed

    Montojo, C A; Jalbrzikowski, M; Congdon, E; Domicoli, S; Chow, C; Dawson, C; Karlsgodt, K H; Bilder, R M; Bearden, C E

    2015-04-01

    22q11.2 deletion syndrome (22q11DS) is associated with elevated levels of impulsivity, inattention, and distractibility, which may be related to underlying neurobiological dysfunction due to haploinsufficiency for genes involved in dopaminergic neurotransmission (i.e. catechol-O-methyltransferase). The Stop-signal task has been employed to probe the neural circuitry involved in response inhibition (RI); findings in healthy individuals indicate that a fronto-basal ganglia network underlies successful inhibition of a prepotent motor response. However, little is known about the neurobiological substrates of RI difficulties in 22q11DS. Here, we investigated this using functional magnetic resonance imaging while 45 adult participants (15 22q11DS patients, 30 matched controls) performed the Stop-signal task. Healthy controls showed significantly greater activation than 22q11DS patients within frontal cortical and basal ganglia regions during successful RI, whereas 22q11DS patients did not show increased neural activity relative to controls in any regions. Using the Barratt Impulsivity Scale, we also investigated whether neural dysfunction during RI was associated with cognitive impulsivity in 22q11DS patients. RI-related activity within left middle frontal gyrus and basal ganglia was associated with severity of self-reported cognitive impulsivity. These results suggest reduced engagement of RI-related brain regions in 22q11DS patients, which may be relevant to characteristic behavioral manifestations of the disorder. PMID:24177988

  5. Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Deng, Yi; Goodrich-Hunsaker, Naomi J.; Cabaral, Margarita; Amaral, David G.; Buonocore, Michael H.; Harvey, Danielle; Kalish, Kristopher; Carmichael, Owen; Schumann, Cynthia M.; Lee, Aaron; Dougherty, Robert F.; Perry, Lee M.; Wandell, Brian A.; Simon, Tony J.

    2015-01-01

    The fornix is the primary subcortical output fiber system of the hippocampal formation. In children with 22q11.2 deletion syndrome (22q11.2DS), hippocampal volume reduction has been commonly reported, but few studies as yet have evaluated the integrity of the fornix. Therefore, we investigated the fornix of 45 school-aged children with 22q11.2DS and 38 matched typically developing (TD) children. Probabilistic diffusion tensor imaging (DTI) tractography was used to reconstruct the body of fornix in each child's brain native space. Compared with children, significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) was observed bilaterally in the body of the fornix in children with 22q11.2DS. Irregularities were especially prominent in the posterior aspect of the fornix where it emerges from the hippocampus. Smaller volumes of hippocampal formations were also found in the 22q11.2DS group. The reduced hippocampal volumes were correlated with fornix lower FA and higher RD in the right hemisphere. Our findings provide neuroanatomical evidence of disrupted hippocampal connectivity in children with 22q11.2DS, which may help to further understand the biological basis for spatial impairments, affective regulation, and other factors related to the ultra-high risk for schizophrenia in this population. PMID:25748884

  6. Communication of Psychiatric Risk in 22q11.2 Deletion Syndrome: A Pilot Project.

    PubMed

    Hart, Sarah J; Schoch, Kelly; Shashi, Vandana; Callanan, Nancy

    2016-02-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an increased chance of developing a psychiatric disorder. While parents of children affected by 22q11.2DS typically receive counseling about risk for non-psychiatric health concerns, genetic counselors may be reluctant to discuss psychiatric risk. Further education of genetic counselors may be necessary to encourage discussion of psychiatric risk with these families. The goal of this project was to develop recommendations for genetic counselors to provide psychiatric risk information to families affected by 22q11.2DS. The recommendations were developed by synthesizing resources in the literature about risk communication. These recommendations were refined following an online focus group meeting with five health care professionals who were recruited for participation from 22q11.2DS clinics across the U.S.A. The focus group data revealed three themes related to discussion of psychiatric risk: 1) Stepwise approach, 2) Discussing treatment options and reducing risks, and 3) Addressing stigma. These recommendations may be used as a foundation for a future clinical protocol to encourage discussion about the risk for psychiatric illness at an earlier point in the diagnostic process for 22q11.2DS and to provide improved information, support and resources to affected families. PMID:26578232

  7. Clinical and molecular characterization of a patient with 15q21.2q22.2 deletion syndrome.

    PubMed

    Velázquez-Wong, Ana C; Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel Á; Huicochea-Montiel, Juan C; Cárdenas-Conejo, Alan; Miguez-Muñoz, Cristian P; Araujo-Solís, María A; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego J

    2014-01-01

    We report on a 16-year-old girl with a complex phenotype, including intellectual disability, facial dysmorphisms, and obesity. During her infancy, she presented with weak sucking, global developmental delay, and later with excessive eating with central obesity. The girl was clinically diagnosed with probable Prader-Willi syndrome. Chromosomal analysis showed a de novo deletion 46,XX,del(15)(q21q22). However, the use of the Affymetrix CytoScan HD Array defined the exact breakpoints of the deleted 15q21q22 region. The imbalance, about 10.5 Mb in size, is to date the second largest deletion ever described in this chromosomal region. In addition, our patient carries a microdeletion in the 1q44 region and a gain in 9p24. The array result was arr[hg19] 9p24.1(6,619,823-6,749,335)×3, 1q44(248,688,586-248,795,277)×1, 15q21.2 q22.2(50,848,301-61,298,006)×1. Although our patient presents additional chromosomal alterations, we provide a correlation between the clinical findings and the phenotype of the 15q21 deletion syndrome. PMID:25661042

  8. Expanding the ocular phenotype of 14q terminal deletions: A novel presentation of microphthalmia and coloboma in ring 14 syndrome with associated 14q32.31 deletion and review of the literature.

    PubMed

    Salter, Claire G; Baralle, Diana; Collinson, Morag N; Self, James E

    2016-04-01

    A variety of ocular anomalies have been described in the rare ring 14 and 14q terminal deletion syndromes, yet the character, prevalence, and extent of these anomalies are not well defined. Identification of these ocular anomalies can be central to providing diagnoses and facilitating optimal individual patient management. We report a child with a 14q32.31 terminal deletion and ring chromosome formation, presenting with severe visual impairment secondary to significant bilateral coloboma and microphthalmia. This patient is compared to previously reported patients with similar ocular findings and deletion sizes to further refine a locus for coloboma in the 14q terminal region. Those with ring formation and linear deletions are compared and the possibility of ring formation affecting the proximal 14q region is discussed. This report highlights the severity of ocular anomalies that can be associated with ring 14 and 14q terminal deletion syndromes and reveals the limited documentation of ocular examination in these two related syndromes. This suggests that many children with these genetic changes do not undergo an ophthalmology examination as part of their clinical assessment, yet it is only when this evaluation becomes routine that the true prevalence and extent of ocular involvement can be defined. This report therefore advocates for a thorough ophthalmological exam in children with ring 14 or 14q terminal deletion syndrome. © 2016 Wiley Periodicals, Inc. PMID:26773965

  9. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    ERIC Educational Resources Information Center

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  10. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    ERIC Educational Resources Information Center

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to

  11. A Single Amino Acid Deletion in the Matrix Protein of Porcine Reproductive and Respiratory Syndrome Virus Confers Resistance to a Polyclonal Swine Antibody with Broadly Neutralizing Activity

    PubMed Central

    Popescu, Luca N.; Monday, Nicholas; Calvert, Jay G.; Rowland, Raymond R. R.

    2015-01-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  12. A single amino acid deletion in the matrix protein of porcine reproductive and respiratory syndrome virus confers resistance to a polyclonal swine antibody with broadly neutralizing activity.

    PubMed

    Trible, Benjamin R; Popescu, Luca N; Monday, Nicholas; Calvert, Jay G; Rowland, Raymond R R

    2015-06-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  13. Detection of submicroscopic deletions in band 17p13 in patients with the Miller-Dieker syndrome

    PubMed Central

    Schwartz, Charles E.; Johnson, John P.; Holycross, Bridget; Mandeville, Tracy M.; Sears, Tena S.; Graul, Elizabeth A.; Carey, John C.; Schroer, Richard J.; Phelan, Mary C.; Szollar, Judith; Flannery, David B.; Stevenson, Roger E.

    1988-01-01

    The Miller-Dieker syndrome (MDS), a syndrome with lissencephaly, distinctive craniofacial features, growth impairment, and profound developmental failure, has been associated with a deletion of the distal part of chromosome band 17p13. A minority of patients with the syndrome do not have a deletion detectable with current cytogenetic techniques. Using three highly polymorphic DNA probes (pYNZ22, pYNH37.3, and p144D6) we have detected microdeletions in three MDS patients, two of whom had no visible abnormalities of chromosome 17. Loci defined by two of the DNA probes, pYNZ22 and pYNH37.3, were deleted in all three patients. The most distal locus, defined by p144D6, was present in one MDS patient, possibly defining the distal limits of the MDS region in band 17pl3.3. None of these loci were absent in one case of lissencephaly without MDS. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:2903661

  14. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    PubMed

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. PMID:24035971

  15. Epilepsy phenotype associated with a chromosome 2q24.3 deletion involving SCN1A: Migrating partial seizures of infancy or atypical Dravet syndrome?

    PubMed

    Lim, Byung Chan; Hwang, Hee; Kim, Hunmin; Chae, Jong-Hee; Choi, Jieun; Kim, Ki Joong; Hwang, Yong Seung; Yum, Mi-Sun; Ko, Tae-Sung

    2015-01-01

    The deletion of a sodium channel gene cluster located on chromosome 2q24.3 is associated with variable epilepsy phenotypes, including Dravet syndrome and migrating partial seizures of infancy. Although SCN1A is considered as the major contributor to the epilepsy phenotype, the role of other sodium channel genes that map within this cluster has not been delineated. We presented five new cases with a chromosome 2q24.3 deletion involving SCN1A and investigated their epilepsy phenotype in relation to the extent of the deletion. Three cases with deletion of the whole sodium channel gene cluster (SCN3A, SCN2A, SCN1A, SCN9A, and SCN7A) exhibited a complex epilepsy phenotype that was atypical for Dravet syndrome and suggestive of migrating partial seizures of infancy: early seizure onset (before 2 months of age), severe developmental delay from seizure onset, multifocal interictal spikes, polymorphous focal seizures, and acquired microcephaly. Two cases with partial deletion of SCN1A and SCN9A and whole SCN1A deletion had an epilepsy phenotype of Dravet syndrome. A literature review of cases with chromosome 2q24.3 deletion revealed that, in most Dravet syndrome cases, it does not involve SCN2A and SCN3A, whereas a complex epilepsy phenotype that is shared with migrating partial seizures of infancy was associated with cases of deletion of the whole sodium channel gene cluster. PMID:25524840

  16. Brain and Behavior in Children with 22Q11.2 Deletion Syndrome: A Volumetric and Voxel-Based Morphometry MRI Study

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; Van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit hyperactivity disorder…

  17. Brain and Behavior in Children with 22Q11.2 Deletion Syndrome: A Volumetric and Voxel-Based Morphometry MRI Study

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; Van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit hyperactivity disorder

  18. Detection and delineation of an unusual 17p11.2 deletion by array-CGH and refinement of the Smith-Magenis syndrome minimum deletion to approximately 650 kb.

    PubMed

    Schoumans, Jacqueline; Staaf, Johan; Jönsson, Göran; Rantala, Johanna; Zimmer, Kerstin Sars; Borg, Ake; Nordenskjöld, Magnus; Anderlid, Britt-Marie

    2005-01-01

    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to approximately 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients. PMID:16179224

  19. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.

    PubMed

    D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P

    2009-06-01

    The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements. PMID:19271239

  20. Phenotypic and molecular convergence of 2q23.1 deletion syndrome with other neurodevelopmental syndromes associated with autism spectrum disorder.

    PubMed

    Mullegama, Sureni V; Alaimo, Joseph T; Chen, Li; Elsea, Sarah H

    2015-01-01

    Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262

  1. Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    PubMed Central

    Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.

    2015-01-01

    Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262

  2. A novel large deletion and single nucleotide insertion in the Wiskott-Aldrich syndrome protein gene.

    PubMed

    Gulácsy, Vera; Soltész, Beáta; Petrescu, Carmen; Bataneant, Mihaela; Gyimesi, Edit; Serban, Margit; Maródi, László; Tóth, Beáta

    2015-07-01

    Deletion mutations of WAS are relatively rare and the precise localization of large deletions in the genome has rarely been described in previous studies. We report here a 5-month-old boy with a large deletion mutation in WAS that completely abolished protein expression. To localize the deletion, a 2816-bp-length sequence that spans between exons 9 and 12 was amplified. PCR amplification of the patient's sample revealed a single band of about 1 kb in contrast to the 2816-bp-amplicon in the control. Genomic DNA sequencing of the patient revealed a 1595-bp-deletion and an adenine insertion (g.5247_6841del1595insA). This large deletion of WAS resulted in partial loss of exon 10 and intron 11, and a complete loss of intron 10 and exon 11. PMID:25082437

  3. Enhanced maternal origin of the 22q11.2 deletion in velocardiofacial and DiGeorge syndromes.

    PubMed

    Delio, Maria; Guo, Tingwei; McDonald-McGinn, Donna M; Zackai, Elaine; Herman, Sean; Kaminetzky, Mark; Higgins, Anne Marie; Coleman, Karlene; Chow, Carolyn; Jalbrzikowski, Maria; Jarlbrzkowski, Maria; Bearden, Carrie E; Bailey, Alice; Vangkilde, Anders; Olsen, Line; Olesen, Charlotte; Skovby, Flemming; Werge, Thomas M; Templin, Ludivine; Busa, Tiffany; Philip, Nicole; Swillen, Ann; Vermeesch, Joris R; Devriendt, Koen; Schneider, Maude; Dahoun, Sophie; Eliez, Stephan; Schoch, Kelly; Hooper, Stephen R; Shashi, Vandana; Samanich, Joy; Marion, Robert; van Amelsvoort, Therese; Boot, Erik; Klaassen, Petra; Duijff, Sasja N; Vorstman, Jacob; Yuen, Tracy; Silversides, Candice; Chow, Eva; Bassett, Anne; Frisch, Amos; Weizman, Abraham; Gothelf, Doron; Niarchou, Maria; van den Bree, Marianne; Owen, Michael J; Suñer, Damian Heine; Andreo, Jordi Rosell; Armando, Marco; Vicari, Stefano; Digilio, Maria Cristina; Auton, Adam; Kates, Wendy R; Wang, Tao; Shprintzen, Robert J; Emanuel, Beverly S; Morrow, Bernice E

    2013-03-01

    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6-1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin. PMID:23453669

  4. [Graves disease and IgA deficiency as manifestations of 22q11.2 deletion syndrome].

    PubMed

    Silva, João Miguel de Almeida; Silva, Cecília Pereira; Melo, Flavio Fernando Nogueira de; Silva, Luis Alberto A; Utagawa, Claudia Yamada

    2010-08-01

    The 22q11.2 deletion syndrome (22q11.2DS) is related to a high phenotypic variability including the velocardiofacial/DiGeorge spectrum. Autoimmune, endocrine and immunodeficiency manifestations have been reportedly associated with the syndrome. The objective of this study was to report a case of 22q11.2DS associated with IgA deficiency and Graves disease and review literature in order to verify the frequency of syndrome alterations. Autoimmune disorders have been increasingly related to 22q11.2DS, and new phenotypes are being incorporated in the clinical spectrum of this syndrome. In our study we found that Graves disease in association with 22q11.2DS was reported in only sixteen patients, and fifteen cases were described in the last 13 years. Based on the incidence and on the amplitude of this recognized spectrum, we reinforce the findings of literature that Graves disease should be included on the 22q11.2DS manifestations, which would lead us to seek it with 22q11.2 deletion patients. PMID:20857064

  5. Genetics Home Reference: Jacobsen syndrome

    MedlinePlus

    ... 11 , Jacobsen syndrome is also known as 11q terminal deletion disorder. The signs and symptoms of Jacobsen ... disorder 11q deletion syndrome 11q- deletion syndrome 11q terminal deletion disorder 11q23 deletion disorder Jacobsen thrombocytopenia Related ...

  6. Deletion 17p11.2 (Smith-Magenis syndrome) is relatively common among patients having mental retardation and myopia

    SciTech Connect

    Finucane, B.; Jaeger, E.R.; Freitag, S.K.

    1994-09-01

    We recently reported the finding of moderate to severe myopia in 6 of 10 patients with Smith-Magenis syndrome (SMS). To investigate the prevalence of SMS among mentally retarded people having myopia, we surveyed a cohort of patients residing at a facility for individuals with mental retardation (MR). Of 547 institutionalized individuals with MR, 72 (13.2%) had moderate to high myopia defined as a visual acuity of minus 3 diopters or more. It should be noted that our institution does not specifically select for people with visual impairment; rather, the facility serves people with a primary diagnosis of MR. Sixty-five of 72 (90.3%) myopic individuals identified were available for cytogenetic analysis. Seventeen (26.2%) of these patients had trisomy 21. Down syndrome (DS) is well known to be associated with eye abnormalities, including myopia. Of 48 individuals with moderate to high myopia not having DS, 5 (10.4%) were shown to have deletions of 17p11.2. This is a high prevalence considering the relative rarity of SMS. By contrast, in a randomized sample of 48 patients without significant myopia at the same facility, we found no individuals with deletion 17p11.2. We conclude that the diagnosis of SMS should be considered in any non-Down syndrome individual having MR and myopia, and that ophthalmologists serving people with MR should be made aware of this deletion syndrome. Furthermore, our results suggest that significant numbers of people having SMS could be identified through selective institutional screening of patients having a combination of MR and moderate to severe myopia.

  7. De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome

    PubMed Central

    2014-01-01

    Background Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown. Case presentation Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways. Conclusions Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development. PMID:24885342

  8. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3.

    PubMed

    Hurst, Jane A; Jenkins, Dagan; Vasudevan, Pradeep C; Kirchhoff, Maria; Skovby, Flemming; Rieubland, Claudine; Gallati, Sabina; Rittinger, Olaf; Kroisel, Peter M; Johnson, David; Biesecker, Leslie G; Wilkie, Andrew O M

    2011-07-01

    Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion. PMID:21326280

  9. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    PubMed Central

    Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis. PMID:24455347

  10. Dynamic reprogramming of transcription factors to and from the subtelomere

    PubMed Central

    Mak, H. Craig; Pillus, Lorraine; Ideker, Trey

    2009-01-01

    Transcription factors are most commonly thought of as proteins that regulate expression of specific genes, independently of the order of those genes along the chromosome. By screening genome-wide chromatin immunoprecipitation (ChIP) profiles in yeast, we find that more than 10% of DNA-binding transcription factors concentrate at the subtelomeric regions near to chromosome ends. None of the proteins identified were previously implicated in regulation at telomeres, yet genomic and proteomic studies reveal that a subset of factors show many interactions with established telomere binding complexes. For many factors, the subtelomeric binding pattern is dynamic and undergoes flux toward or away from the telomere as physiological conditions shift. We find that subtelomeric binding is dependent on environmental conditions and correlates with the induction of gene expression in response to stress. Taken together, these results underscore the importance of genome structure in understanding the regulatory dynamics of transcriptional networks. PMID:19372386

  11. Intellectual Functioning in Relation to Autism and ADHD Symptomatology in Children and Adolescents with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hidding, E.; Swaab, H.; Sonneville, L. M. J.; Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    Background: The 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intellectual functioning and severity of ASD and ADHD…

  12. Individuals with 22q11.2 Deletion Syndrome Are Impaired at Explicit, but Not Implicit, Discrimination of Local Forms Embedded in Global Structures

    ERIC Educational Resources Information Center

    Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mélanie; Debbané, Martin; Eliez, Stephan

    2014-01-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals…

  13. Individuals with 22q11.2 Deletion Syndrome Are Impaired at Explicit, but Not Implicit, Discrimination of Local Forms Embedded in Global Structures

    ERIC Educational Resources Information Center

    Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mlanie; Debban, Martin; Eliez, Stephan

    2014-01-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals

  14. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency

    PubMed Central

    2013-01-01

    Background 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome. Methods A serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G. Results Thirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency, including ASD, seizures and abnormal EEG, hypotonia, sleep disturbances, abnormal brain MRI, gastroesophageal reflux, and certain dysmorphic features. Conclusions This study supports findings from previous research on the severity of intellectual, motor, and speech impairments seen in SHANK3 deficiency, and highlights the prominence of autism spectrum disorder in the syndrome. Limitations of existing evaluation tools are discussed, along with the need for natural history studies to inform clinical monitoring and treatment development in SHANK3 deficiency. PMID:23758760

  15. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2

    SciTech Connect

    Matsuoka, Rumiko; Takao, Atsuyoshi; Kimura, Misa; Kondo, Chisato; Ando, Masahiko; Momma, Kazuo; Imamura, Shin-ichiro; Joh-o, Kunitaka; Ikeda, Kazuo; Nishibatake, Makoto

    1994-11-15

    The so-called {open_quotes}conotruncal anomaly face syndrome{close_quotes} (CTAFS) is characterized by a peculiar facial appearance associated with congenital heart disease (CHD), especially cardiac outflow tract defects such as tetralogy of Fallot (TOF), double outlet ring ventricle (DORV), and truncus arteriosus (TAC). CTAFS and the DiGeorge anomaly (DGA) have many similar phenotypic characteristics, suggesting that they share a common cause. In many cases DGA is known to be associated with monosomy for a region of chromosome 22q11.2. Fifty CTAFS patients and 10 DGA patients, 11 parents couples and 10 mothers of CTAFS patients, and 3 parents couples and 2 mothers of DGA patients were examined by fluorescent in situ hybridization (FISH) using the N25 (D22S75) DGCR probe (Oncor). Monosomy for a region of 22q11.2 was found in 42 CTAFS, 9 DGA, 4 mothers, and 1 father who had CTAF without CHD. The remaining 8 CTAFS patients, 1 DGA patient and 1 mother who had questionable CTAF without CHD, showed no such chromosome abnormality. For the control, 60 patients who had CHD without CTAF or other know malformation syndromes were examined and had no deletion of 22q11.2. Therefore, we conclude that CTAFS is a part of the CATCH 22 syndrome; cardiac defects, abnormal faces, thymic hypoplasia, cleft palate, and hypocalcemia (CATCH) resulting from 22q11.2 deletions. 20 refs., 3 figs., 2 tabs.

  16. Mother-Child Interaction as a Window to a Unique Social Phenotype in 22q11.2 Deletion Syndrome and in Williams Syndrome.

    PubMed

    Weisman, Omri; Feldman, Ruth; Burg-Malki, Merav; Keren, Miri; Geva, Ronny; Diesendruck, Gil; Gothelf, Doron

    2015-08-01

    Mother-child interactions in 22q11.2 Deletion syndrome (22q11.2DS) and Williams syndrome (WS) were coded for maternal sensitivity/intrusiveness, child's expression of affect, levels of engagement, and dyadic reciprocity. WS children were found to express more positive emotions towards their mothers compared to 22q11.2DS children and those with developmental delay in a conflict interaction. During the same interaction, dyads of 22q11.2DS children were characterized by higher levels of maternal intrusiveness, lower levels of child's engagement and reduced reciprocity compared to dyads of typically developing children. Finally, 22q11.2DS children with the COMT Met allele showed less adaptive behaviors than children with the Val allele. Dyadic behaviors partially coincided with the distinct social phenotypes in these syndromes and are potential behavioral markers of psychopathological trajectory. PMID:25791124

  17. Human homologue sequences to the Drosophila dishevelled segment-polarity gene are deleted in the DiGeorge syndrome.

    PubMed Central

    Pizzuti, A.; Novelli, G.; Mari, A.; Ratti, A.; Colosimo, A.; Amati, F.; Penso, D.; Sangiuolo, F.; Calabrese, G.; Palka, G.; Silani, V.; Gennarelli, M.; Mingarelli, R.; Scarlato, G.; Scambler, P.; Dallapiccola, B.

    1996-01-01

    DiGeorge syndrome (DGS) is a developmental defect of some of the neural crest derivatives. Most DGS patients show haploinsufficiency due to interstitial deletions of the proximal long arm of chromosome 22. Deletions of 22q11 have also been reported with patients with the velocardio-facial syndrome and familial conotruncal heart defects. It has been suggested that the wide phenotype spectrum associated with 22q11 monosomy is a consequence of contiguous-gene deletions. We report the isolation of human cDNAs homologous to the Drosophila dishevelled (dsh) segment-polarity gene. Sequences homologous to the 3' UTR of these transcripts (DVL-22) were positioned within the DGS critical region and were found to be deleted in DGS patients. Human DVL mRNAs are expressed in several fetal and adult tissues, including the thymus and, at high levels, the heart. Two transcripts, 3.2 and 5kb, were detected, in northern blot analysis, with different expression patterns in the surveyed tissues when different cDNAs were used. The isolated cDNAs exhibit high amino acid homology with the mouse and Xenopus Dvl-1 gene, the only other vertebrate dsh homologues so far isolated. The pivotal role of dsh in fly development suggests an analogous key function in vertebrate embryogenesis of its homologue genes. Since DGS may be due to perturbation of differentiation mechanisms at decisive embryological stages, a Dsh-like gene in the small-region overlap (SRO) might be a candidate for the pathogenesis of this disorder. Images Figure 1 Figure 2 Figure 3 PMID:8644734

  18. 6q21–22 deletion syndrome with interrupted aortic arch

    PubMed Central

    Matsumoto, Ayumi; Nozaki, Yasuyuki; Minami, Takaomi; Jimbo, Eriko F; Shiraishi, Hirohiko; Yamagata, Takanori

    2015-01-01

    Interstitial deletion of 6q21–22 has been previously reported in 11 individuals, who presented with intellectual disability, facial dysmorphism, cardiac abnormality, cerebellar hypoplasia and dysplasia of the corpus callosum. Here, we report the first instance of a patient with 6q21–22 deletion presenting with interrupted aortic arch in addition to the previously described clinical signs. Array analysis using Agilent Human genome CGH 180K identified a 13.3-Mb deletion at 6q21–q22.31 (nt. 109885195–123209593).

  19. Single nucleotide polymorphism discovery in TBX1 in individuals with and without 22q11.2 deletion syndrome

    PubMed Central

    Heike, Carrie L.; Starr, Jacqueline R.; Rieder, Mark J.; Cunningham, Michael L.; Edwards, Karen L.; Stanaway, Ian; Crawford, Dana C.

    2015-01-01

    BACKGROUND Children with 22q11.2 deletion syndrome (22q11.2DS) have a wide range of clinical features. TBX1 has been proposed as a candidate gene for some of the features in this condition. Polymorphisms in the non-deleted TBX1, which may affect the function of the sole TBX1 gene in individuals with the 22q11.2DS, may be a key to understanding the phenotypic variability among individuals with a shared deletion. Comprehensive single nucleotide polymorphism (SNP) discovery by resequencing candidate genes can identify genetic variants that influence a given phenotype. The purpose of this study was to further characterize the sequence variability in TBX1 by identifying all common SNPs in this gene. METHODS We resequenced TBX1 in 29 children with a documented 22q11.2 deletion and 95 non-deleted, healthy individuals. We estimated allele frequencies, performed tagSNP selection, and inferred haplotypes. We also compared SNP frequencies between 22q11.2DS and control samples. RESULTS We identified 355 biallelic markers among the 190 chromosomes resequenced in the control panel. The vast majority of the markers identified were SNPs (n=331), and the remainder indels (n=24). We did not identify SNPs or indels in the cis- regulatory element (FOX–binding site) upstream of TBX1. In children with 22q11.2DS we detected 187 biallelic markers, six of which were indels. Four of the seven coding SNPs identified in the controls were identified in children with 22q11.2DS. CONCLUSIONS This comprehensive SNP discovery data can be used to select SNPs to genotype for future association studies assessing the role of TBX1 and phenotypic variability in individuals with 22q11.2DS. PMID:19645056

  20. Evaluation of Potential Modifiers of the Cardiac Phenotype in the 22q11.2 Deletion Syndrome

    PubMed Central

    Goldmuntz, Elizabeth; Driscoll, Deborah A.; Emanuel, Beverly S.; McDonald-McGinn, Donna; Mei, Minghua; Zackai, Elaine; Mitchell, Laura E.

    2010-01-01

    BACKGROUND The phenotype associated with deletion of the 22q11.2 chromosomal region is highly variable, yet little is known about the source of this variability. Cardiovascular anomalies, including tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, perimembranous ventricular septal defects, and aortic arch anomalies, occur in approximately 75% of individuals with a 22q11.2 deletion. METHODS Data from 343 subjects enrolled in a study of the 22q11.2 deletion syndrome were used to evaluate potential modifiers of the cardiac phenotype in this disorder. Subjects with and without cardiac malformations, and subjects with and without aortic arch anomalies were compared with respect to sex and race. In addition, in the subset of subjects from whom a DNA sample was available, genotypes for variants of four genes that are involved in the folate-homocysteine metabolic pathway and that have been implicated as risk factors for other birth defects were compared. Five variants in four genes were genotyped by heteroduplex or restriction digest assays. The chi-square or Fisher’s exact test was used to evaluate the association between the cardiac phenotype and each potential modifier. RESULTS The cardiac phenotype observed in individuals with a 22q11.2 deletion was not significantly associated with either sex or race. The genetic variants that were evaluated also did not appear to be associated with the cardiovascular phenotype. CONCLUSIONS Variation in the cardiac phenotype observed between individuals with a 22q11.2 deletion does not appear to be related to sex, race, or five sequence variants in four folate-related genes that are located outside of the 22q11.2 region. PMID:18770859

  1. Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    PubMed Central

    Robinson, J. Elliott; Wolfe, Stephanie M.; Kaiser-Rogers, Kathleen; Greenwood, Robert S.

    2016-01-01

    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background. PMID:27199890

  2. Detection of a concomitant distal deletion in an inverted duplication of chromosome 3. Is there an overall mechanism for the origin of such duplications/deficiencies?

    PubMed

    Jenderny, J; Poetsch, M; Hoeltzenbein, M; Friedrich, U; Jauch, A

    1998-01-01

    We describe the first inverted duplication of the p21.3p26 region of chromosome 3 in a child with phenotypic features of the trisomy 3p syndrome. This uncommon type of aberration was verified by multicolour fluorescence in situ hybridisation (FISH) using yeast artificial chromosome (YAC) clones from chromosome 3 (CEPH library). With a newly constructed YAC clone from the 3p26 region an unexpected subtelomeric deletion was diagnosed in the aberrant chromosome 3. Using the primed in situ labelling (PRINS) method, telomeres were found to be present on the recombinant chromosome 3. The repeated appearance of concomitant distal deletions in inverted duplications suggests that an overall mechanism exists for the origin of such duplications/deficiencies. PMID:9801868

  3. Problem Behaviors Associated with Deletion Prader-Willi, Smith-Magenis, and Cri Du Chat Syndromes.

    ERIC Educational Resources Information Center

    Clarke, David J.; Boer, Harm

    1998-01-01

    Problem behaviors of 38 individuals with Cri-du-Chat syndrome, 55 individuals with Prader Willi syndrome, and 21 individuals with Smith-Magenis syndrome were investigated. All three disorders were Associated with greater ratings of problem behaviors (besides eating abnormalities and sleep abnormalities) than comparison groups. (Author/CR)

  4. Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing.

    PubMed

    Tashiro, Sanki; Handa, Tetsuya; Matsuda, Atsushi; Ban, Takuto; Takigawa, Toru; Miyasato, Kazumi; Ishii, Kojiro; Kugou, Kazuto; Ohta, Kunihiro; Hiraoka, Yasushi; Masukata, Hisao; Kanoh, Junko

    2016-01-01

    A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body 'knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing. PMID:26804021

  5. Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing

    PubMed Central

    Tashiro, Sanki; Handa, Tetsuya; Matsuda, Atsushi; Ban, Takuto; Takigawa, Toru; Miyasato, Kazumi; Ishii, Kojiro; Kugou, Kazuto; Ohta, Kunihiro; Hiraoka, Yasushi; Masukata, Hisao; Kanoh, Junko

    2016-01-01

    A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body ‘knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing. PMID:26804021

  6. Deletion 4q21/4q22 syndrome: Two patients with de novo 4q21.3q23 and 4q13.2q23 deletions

    SciTech Connect

    Nowaczyk, M.J.M.; Seigel-Bartelt, J.; Clarke, J.T.R.

    1997-04-14

    We report on 2 patients with de novo proximal interstitial deletions of the long arm of chromosome 4: in one the deletion resulted in monosomy (4)(q21.3q23), in the other it produced monosomy (4)(q13.2q23). Review of 9 cases of deletions involving the 4q21/ 4q22 region reported previously detected a characteristic phenotype in 8 patients. This phenotype was present in our patients. We conclude that the deletion in the 4q21/4q22 region results in a specific clinical syndrome associated with central nervous system overgrowth that may be a result of anomalous imprinting in the 4q21/4q22 region. 39 refs., 6 figs., 1 tab.

  7. Transcription of subtelomere tandemly repetitive DNA in chicken embryogenesis.

    PubMed

    Trofimova, Irina; Chervyakova, Darya; Krasikova, Alla

    2015-09-01

    Transcription of tandemly repetitive DNA in embryogenesis seems to be of special interest due to a crucial role of non-coding RNAs in many aspects of development. However, only a few data are available on tandem repeats transcription at subtelomere regions of chromosomes during vertebrate embryogenesis. To reduce this gap, we examined stage and tissue-specific pattern of subtelomeric PO41 (pattern of 41 bp) tandem repeat transcription during embryogenesis of chicken (Gallus gallus domesticus). Using whole-mount RNA fluorescent in situ hybridization and reverse transcription PCR with specific primers, we demonstrated that both strands of PO41 repeat are transcribed at each of the studied stages of chicken embryo development: from 7-8 HH to 20 HH stages. Subtelomere-derived transcripts localize in the nuclei of all cell types and throughout the all embryonic bodies: head, somites, tail, wings and buds. In embryo-dividing cells and cultured embryonic fibroblasts, PO41 RNAs envelop terminal regions of chromosomes. PO41-containing RNAs are predominantly single-stranded and can be polyadenylated, indicating appearance of non-nascent form of subtelomeric transcripts. PO41 repeat RNAs represent a rare example of ubiquitously transcribed non-coding RNAs, such as Xist/XIST RNA or telomere repeat-containing RNA. Distribution of PO41 repeat transcripts at different stages of embryo development and among cell types has extremely uniform pattern, indicating on possible universal functions of PO41 non-coding RNAs. PMID:26363798

  8. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  9. Converging levels of analysis on a genomic hotspot for psychosis: Insights from 22q11.2 Deletion Syndrome

    PubMed Central

    Schreiner, Matthew J.; Lazaro, Maria T.; Jalbrzikowski, Maria; Bearden, Carrie E.

    2012-01-01

    Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1–2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, micro RNA processing, and posttranslational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder’s association with schizophrenia. This article is part of a Special Issue entitled ‘Neurodevelopmental Disorders’. PMID:23098994

  10. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells

    PubMed Central

    Kotini, Andriana G; Chang, Chan-Jung; Boussaad, Ibrahim; Delrow, Jeffrey J; Dolezal, Emily K; Nagulapally, Abhinav B; Perna, Fabiana; Fishbein, Gregory A; Klimek, Virginia M; Hawkins, R David; Huangfu, Danwei; Murry, Charles E; Graubert, Timothy; Nimer, Stephen D; Papapetrou, Eirini P

    2015-01-01

    Chromosomal deletions associated with human diseases, such as cancer are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q [del(7q)], a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments, in a 20 Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes. PMID:25798938

  11. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region.

    PubMed

    Nicita, Francesco; Garone, Giacomo; Spalice, Alberto; Savasta, Salvatore; Striano, Pasquale; Pantaleoni, Chiara; Spartà, Maria Valentina; Kluger, Gerhard; Capovilla, Giuseppe; Pruna, Dario; Freri, Elena; D'Arrigo, Stefano; Verrotti, Alberto

    2016-01-01

    Seizures are rarely reported in Williams-Beuren syndrome (WBS)--a contiguous-gene-deletion disorder caused by a 7q11.23 heterozygous deletion of 1.5-1.8 Mb--and no previous study evaluated electro-clinical features of epilepsy in this syndrome. Furthermore, it has been hypothesized that atypical deletion (e.g., larger than 1.8 Mb) may be responsible for a more pronounced neurological phenotypes, especially including seizures. Our objectives are to describe the electro-clinical features in WBS and to correlate the epileptic phenotype with deletion of the 7q11.23 critical region. We evaluate the electro-clinical features in one case of distal 7q11.23 deletion syndrome and in eight epileptic WBS (eWBS) patients. Additionally, we compare the deletion size-and deleted genes-of four epileptic WBS (eWBS) with that of four non-epileptic WBS (neWBS) patients. Infantile spasms, focal (e.g., motor and dyscognitive with autonomic features) and generalized (e.g., tonic-clonic, tonic, clonic, myoclonic) seizures were encountered. Drug-resistance was observed in one patient. Neuroimaging discovered one case of focal cortical dysplasia, one case of fronto-temporal cortical atrophy and one case of periventricular nodular heterotopia. Comparison of deletion size between eWBS and neWBS patients did not reveal candidate genes potentially underlying epilepsy. This is the largest series describing electro-clinical features of epilepsy in WBS. In WBS, epilepsy should be considered both in case of typical and atypical deletions, which do not involve HIP1, YWHAG or MAGI2. PMID:26437767

  12. Central precocious puberty in a patient with X-linked adrenal hypoplasia congenita and Xp21 contiguous gene deletion syndrome

    PubMed Central

    Koh, Ji Won; Kang, So Young; Kim, Gu Hwan; Yoo, Han Wook

    2013-01-01

    X-linked adrenal hypoplasia congenita is caused by the mutation of DAX-1 gene (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1), and can occur as part of a contiguous gene deletion syndrome in association with glycerol kinase (GK) deficiency, Duchenne muscular dystrophy and X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) gene deficiency. It is usually associated with hypogonadotropic hypogonadism, although in rare cases, it has been reported to occur in normal puberty or even central precocious puberty. This study addresses a case in which central precocious puberty developed in a boy with X-linked adrenal hypoplasia congenita who had complete deletion of the genes DAX-1, GK and IL1RAPL1 (Xp21 contiguous gene deletion syndrome). Initially he was admitted for the management of adrenal crisis at the age of 2 months, and managed with hydrocortisone and florinef. At 45 months of age, his each testicular volumes of 4 mL and a penile length of 5 cm were noted, with pubic hair of Tanner stage 2. His bone age was advanced and a gonadotropin-releasing hormone (GnRH) stimulation test showed a luteinizing hormone peak of 8.26 IU/L, confirming central precocious puberty. He was then treated with a GnRH agonist, as well as steroid replacement therapy. In Korea, this is the first case of central precocious puberty developed in a male patient with X-linked adrenal hypoplasia congenita. PMID:24904859

  13. RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith-Magenis syndrome.

    PubMed

    Bi, Weimin; Saifi, G Mustafa; Girirajan, Santhosh; Shi, Xin; Szomju, Barbara; Firth, Helen; Magenis, R Ellen; Potocki, Lorraine; Elsea, Sarah H; Lupski, James R

    2006-11-15

    Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother. PMID:17041942

  14. Reproductive Health Issues for Adults with a Common Genomic Disorder: 22q11.2 Deletion Syndrome.

    PubMed

    Chan, Chrystal; Costain, Gregory; Ogura, Lucas; Silversides, Candice K; Chow, Eva W C; Bassett, Anne S

    2015-10-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. Survival to reproductive age and beyond is now the norm. Several manifestations of this syndrome, such as congenital cardiac disease and neuropsychiatric disorders, may increase risk for adverse pregnancy outcomes in the general population. However, there are limited data on reproductive health in 22q11.2DS. We performed a retrospective chart review for 158 adults with 22q11.2DS (75 male, 83 female; mean age 34.3 years) and extracted key variables relevant to pregnancy and reproductive health. We present four illustrative cases as brief vignettes. There were 25 adults (21 > age 35 years; 21 female) with a history of one or more pregnancies. Outcomes for women with 22q11.2DS, compared with expectations for the general population, showed a significantly elevated prevalence of small for gestational age liveborn offspring (p < 0.001), associated mainly with infants with 22q11.2DS. Stillbirths also showed elevated prevalence (p < 0.05). Not all observed adverse events appeared to be attributable to transmission of the 22q11.2 deletion. Recurring issues relevant to reproductive health in 22q11.2DS included the potential impact of maternal morbidities, inadequate social support, unsafe sexual practices, and delayed diagnosis of 22q11.2DS and/or lack of genetic counseling. These preliminary results emphasize the importance of early diagnosis and long term follow-up that could help facilitate genetic counseling for men and women with 22q11.2DS. We propose initial recommendations for pre-conception management, educational strategies, prenatal planning, and preparation for possible high-risk pregnancy and/or delivery. PMID:25579115

  15. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome.

    PubMed

    Mlynarski, Elisabeth E; Xie, Michael; Taylor, Deanne; Sheridan, Molly B; Guo, Tingwei; Racedo, Silvia E; McDonald-McGinn, Donna M; Chow, Eva W C; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J; Roberts, Amy E; Piotrowicz, Małgorzata; Bearden, Carrie E; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Goldmuntz, Elizabeth; Bassett, Anne S; Morrow, Bernice E; Emanuel, Beverly S

    2016-03-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients. PMID:26742502

  16. Reproductive Health Issues for Adults with a Common Genomic Disorder: 22q11.2 Deletion Syndrome

    PubMed Central

    Chan, Chrystal; Costain, Gregory; Ogura, Lucas; Silversides, Candice K.; Chow, Eva W.C.

    2015-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. Survival to reproductive age and beyond is now the norm. Several manifestations of this syndrome, such as congenital cardiac disease and neuropsychiatric disorders, may increase risk for adverse pregnancy outcomes in the general population. However, there are limited data on reproductive health in 22q11.2DS. We performed a retrospective chart review for 158 adults with 22q11.2DS (75 male, 83 female; mean age 34.3 years) and extracted key variables relevant to pregnancy and reproductive health. We present four illustrative cases as brief vignettes. There were 25 adults (21>age 35 years; 21 female) with a history of one or more pregnancies. Outcomes for women with 22q11.2DS, compared with expectations for the general population, showed a significantly elevated prevalence of small for gestational age liveborn offspring (p<0.001), associated mainly with infants with 22q11.2DS. Stillbirths also showed elevated prevalence (p<0.05). Not all observed adverse events appeared to be attributable to transmission of the 22q11.2 deletion. Recurring issues relevant to reproductive health in 22q11.2DS included the potential impact of maternal morbidities, inadequate social support, unsafe sexual practices, and delayed diagnosis of 22q11.2DS and/or lack of genetic counseling. These preliminary results emphasize the importance of early diagnosis and long term follow-up that could help facilitate genetic counseling for men and women with 22q11.2DS. We propose initial recommendations for pre-conception management, educational strategies, pre-natal planning, and preparation for possible high-risk pregnancy and/or delivery. PMID:25579115

  17. Genotype-phenotype association studies of chromosome 8p inverted duplication deletion syndrome.

    PubMed

    Fisch, Gene S; Davis, Ryan; Youngblom, Janey; Gregg, Jeff

    2011-05-01

    Individuals diagnosed with chromosome 8p inverted duplication deletion (invdupdel(8p)) manifest a wide range of clinical features and cognitive impairment. The purpose of this study is to employ array CGH technology to define more precisely the cytogenetic breakpoints and regions of copy number variation found in several individuals with invdupdel(8p), and compare these results with their neuropsychological characteristics. We examined the cognitive-behavioral features of two male and two female children, ages 3-15 years, with invdupdel(8p). We noted cognitive deficits that ranged from mild to severe, and adaptive behavior composites that ranged from significantly to substantially lower than adequate levels. CARS scores, a measure of autistic behavior, identified three children with autism or autistic-like features. Three of the four children exhibited attention deficits and hyperactivity consistent with a DSM-IV-TR diagnosis of ADHD. One child showed extreme emotional lability. Interestingly, intellectual disability was not correlated with deletion size, nor was the deletion location associated with the autistic phenotype. On the other hand, the duplication length in 8p21.1/8p22 was associated with cognitive deficit. In addition, a small locus of over-expression in 8p21.3 was common for all three participants diagnosed as autistic. A limitation of the study is its small sample size. Further analyses of the deleted and over-expressed regions are needed to ascertain the genes involved in cognitive function and, possibly, autism. PMID:21259039

  18. In Vivo Growth of Porcine Reproductive and Respiratory Syndrome Virus Engineered Nsp2 Deletion Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies on PRRSV strain VR-2332 nonstructural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 co...

  19. Epilepsy and Other Neuropsychiatric Manifestations in Children and Adolescents with 22q11.2 Deletion Syndrome

    PubMed Central

    Kim, Eun-Hee; Yum, Mi-Sun; Lee, Beom-Hee; Kim, Hyo-Won; Lee, Hyun-Jeoung; Kim, Gu-Hwan; Lee, Yun-Jeong; Yoo, Han-Wook

    2016-01-01

    Background and Purpose 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome. Epilepsy and other neuropsychiatric (NP) manifestations of this genetic syndrome are not uncommon, but they are also not well-understood. We sought to identify the characteristics of epilepsy and other associated NP manifestations in patients with 22q11.2DS. Methods We retrospectively analyzed the medical records of 145 child and adolescent patients (72 males and 73 females) with genetically diagnosed 22q11.2DS. The clinical data included seizures, growth chart, psychological reports, development characteristics, school performance, other clinical manifestations, and laboratory findings. Results Of the 145 patients with 22q11.2DS, 22 (15.2%) had epileptic seizures, 15 (10.3%) had developmental delay, and 5 (3.4%) had a psychiatric illness. Twelve patients with epilepsy were classified as genetic epilepsy whereas the remaining were classified as structural, including three with malformations of cortical development. Patients with epilepsy were more likely to display developmental delay (odds ratio=3.98; 95% confidence interval=1.5-10.5; p=0.005), and developmental delay was more common in patients with structural epilepsy than in those with genetic epilepsy. Conclusions Patients with 22q11.2DS have a high risk of epilepsy, which in these cases is closely related to other NP manifestations. This implies that this specific genetic locus is critically linked to neurodevelopment and epileptogenesis. PMID:26754781

  20. Pleiotropy in microdeletion syndromes: Neurologic and spermatogenic abnormalities in mice homozygous for the p{sup 6H} deletion are likely due to dysfunction of a single gene

    SciTech Connect

    Rinchik, E.M.; Carpenter, D.A.; Handel, M.A.

    1995-07-03

    Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.

  1. Mild Beckwith-Wiedemann and severe long-QT syndrome due to deletion of the imprinting center 2 on chromosome 11p.

    PubMed

    Gurrieri, Fiorella; Zollino, Marcella; Oliva, Antonio; Pascali, Vincenzo; Orteschi, Daniela; Pietrobono, Roberta; Camporeale, Antonella; Coll Vidal, Monica; Partemi, Sara; Brugada, Ramon; Bellocci, Fulvio; Neri, Giovanni

    2013-09-01

    We report on a young woman admitted to our Cardiology Unit because of an episode of cardiac arrest related to a long-QT syndrome (LQTS). This manifestation was part of a broader phenotype, which was recognized as a mild form of Beckwith-Wiedemann syndrome (BWS). Molecular analysis confirmed the diagnosis of BWS owing to a maternally inherited deletion of the centromeric imprinting center, or ICR2, an extremely rare genetic mechanism in BWS. The deletion interval (198 kb) also included exons 11-16 of the KCNQ1 gene, known to be responsible for LQTS at locus LQT1. No concomitant mutations were found in any other of the known LQT genes. The proposita's mother carries the same deletion in her paternal chromosome and shows manifestations of the Silver-Russell syndrome (SRS). This report describes the smallest BWS-causing ICR2 deletion and provides the first evidence that a paternal deletion of ICR2 leads to a SRS-like phenotype. In addition, our observation strongly suggests that in cases of LQTS due to mutation of the KCNQ1 gene (LQT1), an accurate clinical genetic evaluation should be done in order to program the most appropriate genetic tests. PMID:23511928

  2. Mild Beckwith-Wiedemann and severe long-QT syndrome due to deletion of the imprinting center 2 on chromosome 11p

    PubMed Central

    Gurrieri, Fiorella; Zollino, Marcella; Oliva, Antonio; Pascali, Vincenzo; Orteschi, Daniela; Pietrobono, Roberta; Camporeale, Antonella; Coll Vidal, Monica; Partemi, Sara; Brugada, Ramon; Bellocci, Fulvio; Neri, Giovanni

    2013-01-01

    We report on a young woman admitted to our Cardiology Unit because of an episode of cardiac arrest related to a long-QT syndrome (LQTS). This manifestation was part of a broader phenotype, which was recognized as a mild form of Beckwith-Wiedemann syndrome (BWS). Molecular analysis confirmed the diagnosis of BWS owing to a maternally inherited deletion of the centromeric imprinting center, or ICR2, an extremely rare genetic mechanism in BWS. The deletion interval (198 kb) also included exons 11–16 of the KCNQ1 gene, known to be responsible for LQTS at locus LQT1. No concomitant mutations were found in any other of the known LQT genes. The proposita's mother carries the same deletion in her paternal chromosome and shows manifestations of the Silver-Russell syndrome (SRS). This report describes the smallest BWS-causing ICR2 deletion and provides the first evidence that a paternal deletion of ICR2 leads to a SRS-like phenotype. In addition, our observation strongly suggests that in cases of LQTS due to mutation of the KCNQ1 gene (LQT1), an accurate clinical genetic evaluation should be done in order to program the most appropriate genetic tests. PMID:23511928

  3. An 11p15 Imprinting Centre Region 2 Deletion in a Family with Beckwith Wiedemann Syndrome Provides Insights into Imprinting Control at CDKN1C

    PubMed Central

    Algar, Elizabeth; Dagar, Vinod; Sebaj, Menka; Pachter, Nicholas

    2011-01-01

    We report a three generation family with Beckwith Wiedemann syndrome (BWS) in whom we have identified a 330 kb deletion within the KCNQ1 locus, encompassing the 11p15.5 Imprinting Centre II (IC2). The deletion arose on the paternal chromosome in the first generation and was only associated with BWS when transmitted maternally to subsequent generations. The deletion on the maternal chromosome was associated with a lower median level of CDKN1C expression in the peripheral blood of affected individuals when compared to a cohort of unaffected controls (p<0.05), however was not significantly different to the expression levels in BWS cases with loss of methylation (LOM) within IC2 (p<0.78). Moreover the individual with a deletion on the paternal chromosome did not show evidence of elevated CDKN1C expression or features of Russell Silver syndrome. These observations support a model invoking the deletion of enhancer elements required for CDKN1C expression lying within or close to the imprinting centre and importantly extend and validate a single observation from an earlier study. Analysis of 94 cases with IC2 loss of methylation revealed that KCNQ1 deletion is a rare cause of loss of maternal methylation, occurring in only 3% of cases, or in 1.5% of BWS overall. PMID:22205991

  4. An 11p15 imprinting centre region 2 deletion in a family with Beckwith Wiedemann syndrome provides insights into imprinting control at CDKN1C.

    PubMed

    Algar, Elizabeth; Dagar, Vinod; Sebaj, Menka; Pachter, Nicholas

    2011-01-01

    We report a three generation family with Beckwith Wiedemann syndrome (BWS) in whom we have identified a 330 kb deletion within the KCNQ1 locus, encompassing the 11p15.5 Imprinting Centre II (IC2). The deletion arose on the paternal chromosome in the first generation and was only associated with BWS when transmitted maternally to subsequent generations. The deletion on the maternal chromosome was associated with a lower median level of CDKN1C expression in the peripheral blood of affected individuals when compared to a cohort of unaffected controls (p<0.05), however was not significantly different to the expression levels in BWS cases with loss of methylation (LOM) within IC2 (p<0.78). Moreover the individual with a deletion on the paternal chromosome did not show evidence of elevated CDKN1C expression or features of Russell Silver syndrome. These observations support a model invoking the deletion of enhancer elements required for CDKN1C expression lying within or close to the imprinting centre and importantly extend and validate a single observation from an earlier study. Analysis of 94 cases with IC2 loss of methylation revealed that KCNQ1 deletion is a rare cause of loss of maternal methylation, occurring in only 3% of cases, or in 1.5% of BWS overall. PMID:22205991

  5. Deletions in the 3' part of the NFIX gene including a recurrent Alu-mediated deletion of exon 6 and 7 account for previously unexplained cases of Marshall-Smith syndrome.

    PubMed

    Schanze, Denny; Neubauer, Dorothée; Cormier-Daire, Valerie; Delrue, Marie-Ange; Dieux-Coeslier, Anne; Hasegawa, Tomonobu; Holmberg, Eva E; Koenig, Rainer; Krueger, Gabriele; Schanze, Ina; Seemanova, Eva; Shaw, Adam C; Vogt, Julie; Volleth, Marianne; Reis, André; Meinecke, Peter; Hennekam, Raoul C M; Zenker, Martin

    2014-09-01

    Marshall-Smith syndrome (MSS) is a very rare malformation syndrome characterized by typical craniofacial anomalies, abnormal osseous maturation, developmental delay, failure to thrive, and respiratory difficulties. Mutations in the nuclear factor 1/X gene (NFIX) were recently identified as the cause of MSS. In our study cohort of 17 patients with a clinical diagnosis of MSS, conventional sequencing of NFIX revealed frameshift and splice-site mutations in 10 individuals. Using multiplex ligation-dependent probe amplification analysis, we identified a recurrent deletion of NFIX exon 6 and 7 in five individuals. We demonstrate this recurrent deletion is the product of a recombination between AluY elements located in intron 5 and 7. Two other patients had smaller deletions affecting exon 6. These findings show that MSS is a genetically homogeneous Mendelian disorder. RT-PCR experiments with newly identified NFIX mutations including the recurrent exon 6 and 7 deletion confirmed previous findings indicating that MSS-associated mutant mRNAs are not cleared by nonsense-mediated mRNA decay. Predicted MSS-associated mutant NFIX proteins consistently have a preserved DNA binding and dimerization domain, whereas they grossly vary in their C-terminal portion. This is in line with the hypothesis that MSS-associated mutations encode dysfunctional proteins that act in a dominant negative manner. PMID:24924640

  6. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    PubMed Central

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.

    2011-01-01

    Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290

  7. Differential Gene Expression Reveals Mitochondrial Dysfunction in an Imprinting Center Deletion Mouse Model of Prader-Willi Syndrome

    PubMed Central

    Fan, Weiwei; Coskun, Pinar E.; Nalbandian, Angle; Knoblach, Susan; Resnick, James L.; Hoffman, Eric; Wallace, Douglas C.; Kimonis, Virginia E.

    2013-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation (OXPHOS) complexes in the brain, heart, liver and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+III were upregulated in the imprinting center deletion (PWS-IC) mice compared to the wild type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. PMID:24127921

  8. Isochromosome 15q of maternal origin in two Prader-Willi syndrome patients previously diagnosed erroneously as cytogenetic deletions

    SciTech Connect

    Saitoh, Shinji; Niikawa, Norio; Mutirangura, A.; Kuwano, A.; Ledbetter, D.H.

    1994-03-01

    Since a previous report on two Prader-Willi syndrome (PWS) patients with t(15q;15q) was erroneous, the authors report new data and a corrected interpretation. Reexamination of the parental origin of their t(15q;15q) using polymorphic DNA markers that are mapped to various regions of 15q documented no molecular deletions at the 15q11-q13 region in either patient. Both patients were homozygous at all loci examined and their haplotypes on 15q coincided with one of those in their respective mothers. These results indicate that the presumed t(15q;15q) in each patient was actually an isochromosome 15q producing maternal uniparental disomy, consistent with genomic imprinting at the PWS locus. 30 refs., 1 fig., 3 tabs.

  9. Multitasking Abilities in Adolescents With 22q11.2 Deletion Syndrome: Results From an Experimental Ecological Paradigm.

    PubMed

    Schneider, Maude; Eliez, Stephan; Birr, Julie; Menghetti, Sarah; Debbané, Martin; Van der Linden, Martial

    2016-03-01

    The 22q11.2 deletion syndrome (22q11.2DS) is associated with cognitive and functional impairments and increased risk for schizophrenia. We characterized multitasking abilities of adolescents with 22q11.2DS using an experimental naturalistic setting and examined whether multitasking impairments were associated with real-world functioning and negative symptoms. Thirty-nine adolescents (19 with 22q11.2DS and 20 controls) underwent the Multitasking Evaluation for Adolescents. Real-world functioning and clinical symptoms were assessed in participants with 22q11.2DS. Adolescents with 22q11.2DS performed poorly in the multitasking evaluation. Our data also suggest that multitasking abilities are related to adaptive functioning in the practical domain and negative symptoms. This study shows that adolescents with 22q11.2DS are characterized by multitasking impairments, which may be relevant for several aspects of the clinical phenotype. PMID:26914469

  10. Large-Scale Deletions and SMADIP1 Truncating Mutations in Syndromic Hirschsprung Disease with Involvement of Midline Structures

    PubMed Central

    Amiel, Jeanne; Espinosa-Parrilla, Yolanda; Steffann, Julie; Gosset, Philippe; Pelet, Anna; Prieur, Marguerite; Boute, Odile; Choiset, Agnès; Lacombe, Didier; Philip, Nicole; Le Merrer, Martine; Tanaka, Hajime; Till, Marianne; Touraine, Renaud; Toutain, Annick; Vekemans, Michel; Munnich, Arnold; Lyonnet, Stanislas

    2001-01-01

    Hirschsprung disease (HSCR) is a common malformation of neural-crest–derived enteric neurons that is frequently associated with other congenital abnormalities. The SMADIP1 gene recently has been recognized as disease causing in some patients with 2q22 chromosomal rearrangement, resulting in syndromic HSCR with mental retardation, with microcephaly, and with facial dysmorphism. We screened 19 patients with HSCR and mental retardation and eventually identified large-scale SMADIP1 deletions or truncating mutations in 8 of 19 patients. These results allow further delineation of the spectrum of malformations ascribed to SMADIP1 haploinsufficiency, which includes frequent features such as hypospadias and agenesis of the corpus callosum. Thus, SMADIP1, which encodes a transcriptional corepressor of Smad target genes, may play a role not only in the patterning of neural-crest–derived cells and of CNS but also in the development of midline structures in humans. PMID:11595972

  11. Differential gene expression reveals mitochondrial dysfunction in an imprinting center deletion mouse model of Prader-Willi syndrome.

    PubMed

    Yazdi, Puya G; Su, Hailing; Ghimbovschi, Svetlana; Fan, Weiwei; Coskun, Pinar E; Nalbandian, Angèle; Knoblach, Susan; Resnick, James L; Hoffman, Eric; Wallace, Douglas C; Kimonis, Virginia E

    2013-10-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity, and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation complexes in the brain, heart, liver, and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+‫III were up-regulated in the PWS imprinting center deletion mice compared to the wild-type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. PMID:24127921

  12. Two patients with duplication of 17p11.2: The reciprocal of the Smith-Magenis syndrome deletion?

    SciTech Connect

    Brown, A.; Phelan, M.C.; Rogers, R.C.

    1996-05-17

    J.M. and H.G. are two unrelated male patients with developmental delay. Cytogenetic analysis detected a duplication of 17p11.2 in both patients. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-D17S122-tel. Four of the six markers, D17S29, D17S258, D17S71, and D17S445, were duplicated by dosage analysis. Fluorescent in situ hybridization (FISH) analysis of H.G., using cosmids for locus D17S29, confirmed the duplication in 17p11.2. Because the deletion that causes the Smith-Magenis syndrome involves the same region of 17p11.2 as the duplication in these patients, the mechanism may be similar to that proposed for the reciprocal deletion/ duplication event observed in Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and Charcot-Marie-Tooth Type 1A disease (CMT1A). 30 refs., 3 figs., 1 tab.

  13. Socioeconomic Status and Psychological Function in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Genetic Counseling

    PubMed Central

    Shashi, Vandana; Keshavan, Matcheri; Kaczorowski, Jessica; Schoch, Kelly; Lewandowski, Kathryn E.; McConkie-Rosell, Allyn; Hooper, Stephen R.; Kwapil, Thomas R.

    2010-01-01

    The purpose of this study is to examine the association between parental socio-economic status (SES) and childhood neurocognition and behavior in children with chromosome 22q11.2 deletion syndrome (22q11DS). Although undoubtedly, the deletion of genes in the 22q11.2 interval is primarily responsible for the psychological manifestations, little is known about the role of the environment in either mitigating or contributing to these problems. We examined the association of parental socio-economic status (SES) with cognition and behavior in children with 22q11DS (n=65) and matched healthy control subjects (n=52), since SES is a component of family resources. We found that in children with 22q11DS, higher SES correlated with better overall functioning (p<.01) and social skills (p<.01), and less frequent oppositional defiant behavior (p<.001). These findings were in contrast to the control subjects in whom SES correlated with cognition and achievement, but not behavior. Our results indicate that environmental factors influence the behavioral phenotype in children with 22q11DS, providing a framework for developing appropriate interventions. As such, genetic counseling for families with 22q11DS may include consideration of family resources and inclusion of other health professionals, such as social workers, to explore with the family available social supports and resources. PMID:20680421

  14. A familial contiguous gene deletion syndrome at Xp22.3 characterized by severe learning disabilities and ADHD.

    PubMed

    Boycott, Kym M; Parslow, Malcolm I; Ross, Judith L; Miller, Ivan P; Bech-Hansen, N Torben; MacLeod, Patrick M

    2003-10-01

    We describe a mother and two sons with a 6-Mb terminal deletion of the short arm of the X chromosome. The breakpoint was localized to a region between DXS6837 and sAJ243947 in Xp22.33. The two boys were shown to be deleted for the SHOX and ARSE genes on their X chromosome. Both sons were short in stature and showed mild to moderate skeletal abnormalities. The most significant findings in the younger son were severe learning disabilities and attention deficit hyperactivity disorder (ADHD). The older son tested in the mild mental retardation range and was also affected by ADHD. The VCX-A gene, implicated recently in X-linked nonspecific mental retardation, was found to be present in both boys. The mother's stature was greater than one standard deviation below her target height and she had only subtle radiographic evidence of Madelung deformity. Our findings indicate that loss of the Xp22.3 region is not always associated with the classic presentations of Lri-Weill syndrome, or chondrodysplasia punctata, and that one or more genes involved in learning and attention may reside in Xp22.3. PMID:12955766

  15. Cryptic Transcription Mediates Repression of Subtelomeric Metal Homeostasis Genes

    PubMed Central

    Fernandez, Cesar F.; Sayani, Shakir; Chanfreau, Guillaume F.

    2011-01-01

    Nonsense-mediated mRNA decay (NMD) prevents the accumulation of transcripts bearing premature termination codons. Here we show that Saccharomyces cerevisiae NMD mutants accumulate 5′–extended RNAs (CD-CUTs) of many subtelomeric genes. Using the subtelomeric ZRT1 and FIT3 genes activated in response to zinc and iron deficiency, respectively, we show that transcription of these CD-CUTs mediates repression at the bona fide promoters, by preventing premature binding of RNA polymerase II in conditions of metal repletion. Expression of the main ZRT1 CD-CUT is controlled by the histone deacetylase Rpd3p, showing that histone deacetylases can regulate expression of genes through modulation of the level of CD-CUTs. Analysis of binding of the transcriptional activator Zap1p and insertion of transcriptional terminators upstream from the Zap1p binding sites show that CD-CUT transcription or accumulation also interferes with binding of the transcriptional activator Zap1p. Consistent with this model, overexpressing Zap1p or using a constitutively active version of the Aft1p transcriptional activator rescues the induction defect of ZRT1 and FIT3 in NMD mutants. These results show that cryptic upstream sense transcription resulting in unstable transcripts degraded by NMD controls repression of a large number of genes located in subtelomeric regions, and in particular of many metal homeostasis genes. PMID:21738494

  16. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia

    PubMed Central

    Mulle, Jennifer Gladys; Pulver, Ann E.; McGrath, John M.; Wolyniec, Paula; Dodd, Anne F.; Cutler, David J.; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F.; Hurles, Matthew; Barnes, Chris P.; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F.; Gejman, Pablo V.; Sanders, Alan R.; Duan, Jubao; Mitchell, Adele A.; Peter, Inga; Sklar, Pamela; O’Dushlaine, Colm T.; Grozeva, Detelina; O’Donovan, Michael C.; Owen, Michael J.; Hultman, Christina M.; Kähler, Anna K.; Sullivan, Patrick F.; Kirov, George; Warren, Stephen T.

    2013-01-01

    Background Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNV also increase risk for autism spectrum disorders (ASD), suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with ASD. The reciprocal deletion of this region causes Williams-Beuren syndrome (WBS). Methods We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for copy number variation (CNV), using a high-density genome-wide array. An excess of large rare and de novo CNV were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the 7q11.23 duplication is associated with SZ. Results We find duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 controls (unadjusted odds ratio, 21.52, 95% CI: 3.13-922.6, p-value 5.5×10-5; adjusted odds ratio 10.8, 95% CI: 1.46-79.62, p-value 0.007). Of three SZ duplication carriers with available detailed retrospective data, all show social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. Conclusion We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams syndrome deletion at chromosome 7q11.23 confers an approximately 10-fold increase in risk for SZ. PMID:23871472

  17. A 1.3-Mb 7q11.23 Atypical Deletion Identified in a Cohort of Patients with Williams-Beuren Syndrome

    PubMed Central

    Delgado, L.M.; Gutierrez, M.; Augello, B.; Fusco, C.; Micale, L.; Merla, G.; Pastene, E.A.

    2013-01-01

    Williams-Beuren syndrome is a rare multisystem neurodevelopmental disorder caused by a 1.55-1.84-Mb hemizygous deletion on chromosome 7q11.23. The classical phenotype consists of characteristic facial features, supravalvular aortic stenosis, intellectual disability, overfriendliness, and visuospatial impairment. So far, 26-28 genes have been shown to contribute to the multisystem phenotype associated with Williams-Beuren syndrome. Among them, haploinsufficiency of the ELN gene has been shown to cause the cardiovascular anomalies. Identification of patients with atypical deletions has provided valuable information for genotype-phenotype correlation, in which other genes such as LIMK1,CLIP2, GTF2IRD1, or GTF2I have been correlated with specific cognitive profiles or craniofacial features. Here, we report the clinical and molecular characteristics of a patient with an atypical deletion that does not include the GTF2I gene and only partially includes the GTF2IRD1 gene. PMID:23653586

  18. Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male Snord116 deletion mouse model for Prader-Willi Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms ...

  19. Association of the Family Environment with Behavioural and Cognitive Outcomes in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Allen, T. M.; Hersh, J.; Schoch, K.; Curtiss, K.; Hooper, S. R.; Shashi, V.

    2014-01-01

    Background: Children with 22q11.2 deletion syndrome (22q11DS) are at risk for social-behavioural and neurocognitive sequelae throughout development. The current study examined the impact of family environmental characteristics on social-behavioural and cognitive outcomes in this paediatric population. Method: Guardians of children with 22q11DS

  20. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  1. Complete Genome Sequence of a Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus That Has a Further Deletion in the Nsp2 Gene

    PubMed Central

    Ji, Guobiao; Li, Yingying; Tan, Feifei; Zhuang, Jinshan

    2016-01-01

    Here, we report the complete genome of a Chinese highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) characterized by a further 29-amino acid (87 nucleotides) deletion in its Nsp2-coding region compared to the prototype of the HP-PRRSV JXA1 strain. PMID:26893437

  2. A New Account of the Neurocognitive Foundations of Impairments in Space, Time, and Number Processing in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Simon, Tony J.

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly…

  3. Association of the Family Environment with Behavioural and Cognitive Outcomes in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Allen, T. M.; Hersh, J.; Schoch, K.; Curtiss, K.; Hooper, S. R.; Shashi, V.

    2014-01-01

    Background: Children with 22q11.2 deletion syndrome (22q11DS) are at risk for social-behavioural and neurocognitive sequelae throughout development. The current study examined the impact of family environmental characteristics on social-behavioural and cognitive outcomes in this paediatric population. Method: Guardians of children with 22q11DS…

  4. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  5. Complete Genome Sequence of a Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus That Has a Further Deletion in the Nsp2 Gene.

    PubMed

    Ji, Guobiao; Li, Yingying; Tan, Feifei; Zhuang, Jinshan; Li, Xiangdong; Tian, Kegong

    2016-01-01

    Here, we report the complete genome of a Chinese highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) characterized by a further 29-amino acid (87 nucleotides) deletion in its Nsp2-coding region compared to the prototype of the HP-PRRSV JXA1 strain. PMID:26893437

  6. Discrepancies in Parent and Teacher Ratings of Social-Behavioral Functioning of Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Assessment

    ERIC Educational Resources Information Center

    Shashi, Vandana; Wray, Emily; Schoch, Kelly; Curtiss, Kathleen; Hooper, Stephen R.

    2013-01-01

    Children with 22q11.2 deletion syndrome exhibit high rates of social-behavioral problems, particularly in the internalizing domain, indicating an area in need of intervention. The current investigation was designed to obtain information regarding parent and teacher ratings of the social-emotional behavior of children with 22q11DS. Using the Child…

  7. Social Cognitive Training in Adolescents with Chromosome 22q11.2 Deletion Syndrome: Feasibility and Preliminary Effects of the Intervention

    ERIC Educational Resources Information Center

    Shashi, V.; Harrell, W.; Eack, S.; Sanders, C.; McConkie-Rosell, A.; Keshavan, M. S.; Bonner, M. J.; Schoch, K.; Hooper, S. R.

    2015-01-01

    Background: Children with chromosome 22q11.2 deletion syndrome (22q11DS) often have deficits in social cognition and social skills that contribute to poor adaptive functioning. These deficits may be of relevance to the later occurrence of serious psychiatric illnesses such as schizophrenia. Yet, there are no evidence-based interventions to improve…

  8. Cutaneous features in 17q21.31 deletion syndrome: a differential diagnosis for cardio-facio-cutaneous syndrome

    PubMed Central

    Burkitt Wright, Emma; Donnai, Dian; Johnson, Diana; Clayton-Smith, Jill

    2010-01-01

    Microdeletion of 17q21.31 causes a recurrent recognisable dysmorphic syndrome. Four further patients with 17q21.31 microdeletions are reported here where previously the diagnosis of cardio-facio-cutaneous (CFC) syndrome was suggested. These patients have significant similarities of facial gestalt to previously reported 17q21.31 microdeletion patients, but a striking feature that has not been emphasised previously is the large number of naevi and other pigmentary skin abnormalities that may be present. These features, together with a coarse facial appearance, relative macrocephaly and significant learning disabilities, had led to the previous diagnostic suggestion of CFC syndrome in each of these four cases. PMID:21084979

  9. De novo exonic deletion of KDM6A in a Chinese girl with Kabuki syndrome: A case report and brief literature review.

    PubMed

    Yang, Pu; Tan, Hu; Xia, Yan; Yu, Qian; Wei, Xianda; Guo, Ruolan; Peng, Ying; Chen, Chen; Li, Haoxian; Mei, Libin; Huang, Yanru; Liang, Desheng; Wu, Lingqian

    2016-06-01

    Kabuki syndrome (KS) is a rare condition with multiple congenital anomalies and mental retardation. Exonic deletions, disrupting the lysine (K)-specific demethylase 6A (KDM6A) gene have been demonstrated as rare cause of KS. Here, we report a de novo 227-kb deletion in chromosome Xp11.3 of a 7-year-old Chinese girl with KS. Besides the symptoms of KS, the patient also presented with skin allergic manifestations, which were considered to be a new, rare feature of the phenotypic spectrum. The deletion includes the upstream region and exons 1-2 of KDM6A and potentially causes haploinsuffiency of the gene. We also discuss the mutation spectrum of KDM6A and clinical variability of patients with KDM6A deletion through a literature review. © 2016 Wiley Periodicals, Inc. PMID:27028180

  10. Holoprosencephaly with cerebellar vermis hypoplasia in 13q deletion syndrome: Critical region for cerebellar dysgenesis within 13q32.2q34.

    PubMed

    Mimaki, Masakazu; Shiihara, Takashi; Watanabe, Mio; Hirakata, Kyoko; Sakazume, Satoru; Ishiguro, Akio; Shimojima, Keiko; Yamamoto, Toshiyuki; Oka, Akira; Mizuguchi, Masashi

    2015-08-01

    We describe two unrelated patients with terminal deletions in the long arm of chromosome 13 showing brain malformation consisting of holoprosencephaly and cerebellar vermis hypoplasia. Array comparative genomic hybridization analysis revealed a pure terminal deletion of 13q31.3q34 in one patient and a mosaic ring chromosome with 13q32.2q34 deletion in the other. Mutations in ZIC2, located within region 13q32, cause holoprosencephaly, whereas the 13q32.2q32.3 region is associated with cerebellar vermis hypoplasia (Dandy-Walker syndrome). The rare concurrence of these major brain malformations in our patients provides further evidence that 13q32.2q32.3 deletion, harboring ZIC2 and ZIC5, leads to cerebellar dysgenesis. PMID:25454392

  11. 22q11.2 Deletion Syndrome due to a Translocation t(6;22) in a Patient Conceived via in vitro Fertilization.

    PubMed

    Gollo Dantas, Anelisa; Bortolai, Adriana; Moysés-Oliveira, Mariana; Takeno Herrero, Sylvia; Azoubel Antunes, Adriana; Tavares Costa-Carvalho, Beatriz; Ayres Meloni, Vera; Melaragno, Maria Isabel

    2016-02-01

    We report on a patient conceived via in vitro fertilization (IVF) with a 22q11.2 deletion due to an unusual unbalanced translocation involving chromosomes 6 and 22 in a karyotype with 45 chromosomes. Cytogenomic studies showed that the patient has a 3.3-Mb deletion of chromosome 22q and a 0.4-Mb deletion of chromosome 6p, which resulted in haploinsufficiency of the genes responsible for the 22q11.2 deletion syndrome and also of the IRF4 gene, a member of the interferon regulatory factor family of transcription factors, which is expressed in the immune system cells. The rearrangement could be due to the manipulation of the embryo or as a sporadic event unrelated to IVF. Translocation involving chromosome 22 in a karyotype with 45 chromosomes is a rare event, with no previous reports involving chromosomes 6p and 22q. PMID:26997945

  12. SNP array and phenotype correlation shows that FLI1 deletion per se is not responsible for thrombocytopenia development in Jacobsen syndrome.

    PubMed

    Trkova, Marie; Becvarova, Vera; Hynek, Martin; Hnykova, Lenka; Hlavova, Eva; Kreckova, Gabriela; Kulovany, Eduard; Cutka, David; Zatloukalova, Jitka; Markova, Kristyna; Sukova, Martina; Horacek, Jiri; Stejskal, David

    2012-10-01

    Jacobsen syndrome (JBS) is a rare chromosomal disorder caused by terminal deletion of the long arm of chromosome 11. We report on four prenatally diagnosed patients with JBS with variable prenatal and postnatal phenotypes and 11q deletions of varying sizes. Precise characterization of the deleted region in three patients was performed by SNP arrays. The severity of both the prenatal and postnatal phenotypes did not correlate with the size of the haploinsufficient region. Despite the large difference in the deletion size (nearly 6 Mb), both of the live-born patients had similar phenotypes corresponding to JBS. However, one of the most prominent features of JBS, thrombocytopenia, was only present in the live-born boy. The girl, who had a significantly longer deletion spanning all four genes suspected of being causative of JBS-related thrombocytopenia (FLI1, ETS1, NFRKB, and JAM3), did not manifest a platelet phenotype. Therefore, our findings do not support the traditional view of deletion size correlation in JBS or the causative role of FLI1, ETS1, NFRKB, and JAM3 deletion per se for the development of disease-related thrombocytopenia. PMID:22887642

  13. Autistic Spectrum Disorders in Velo-Cardio Facial Syndrome (22q11.2 Deletion)

    ERIC Educational Resources Information Center

    Antshel, Kevin M.; Aneja, Alka; Strunge, Leslie; Peebles, Jena; Fremont, Wanda P.; Stallone, Kimberly; AbdulSabur, Nuria; Higgins, Anne Marie; Shprintzen, Robert J.; Kates, Wendy R.

    2007-01-01

    The extent to which the phenotype of children comorbid for velocardiofacial syndrome (VCFS) and autism spectrum disorders (ASD) differs from that of VCFS-only has not been studied. The sample consisted of 41 children (20 females) with VCFS, ranging in age from 6.5 years to 15.8 years. Eight children with VCFS met formal DSM-IV diagnostic criteria…

  14. Psychiatric Disorders and Intellectual Functioning throughout Development in Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Green, Tamar; Gothelf, Doron; Glaser, Bronwyn; Debbane, Martin; Frisch, Amos; Kotler, Moshe; Weizman, Abraham; Eliez, Stephan

    2009-01-01

    Objective: Velocardiofacial syndrome (VCFS) is associated with cognitive deficits and high rates of schizophrenia and other neuropsychiatric disorders. We report the data from two large cohorts of individuals with VCFS from Israel and Western Europe to characterize the neuropsychiatric phenotype from childhood to adulthood in a large sample.…

  15. A complex microcephaly syndrome in a Pakistani family associated with a novel missense mutation in RBBP8 and a heterozygous deletion in NRXN1.

    PubMed

    Agha, Zehra; Iqbal, Zafar; Azam, Maleeha; Siddique, Maimoona; Willemsen, Marjolein H; Kleefstra, Tjitske; Zweier, Christiane; de Leeuw, Nicole; Qamar, Raheel; van Bokhoven, Hans

    2014-03-15

    We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18 p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A>G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607kb deletion, encompassing exons 13-19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8. PMID:24440292

  16. Discussing the psychiatric manifestations of 22q11.2 deletion syndrome: an exploration of clinical practice among medical geneticists

    PubMed Central

    Morris, Emily; Inglis, Angela; Friedman, Jan; Austin, Jehannine

    2013-01-01

    Purpose The aim of this study was to determine the frequency with which medical geneticists discuss the psychiatric manifestations of 22q11.2 deletion syndrome (22q11DS) with families in relation to the frequency with which they discuss the other manifestations of the syndrome and to explore relationships between discussion of these features and stigma toward psychiatric disorders. Methods We surveyed medical geneticists in the United States and Canada regarding the frequency with which they discuss various features of 22q11DS with families in the context of four clinical scenarios in which only the age of the patient at diagnosis differed. Respondents also completed a 20-item validated psychometric measure of stigma towards psychiatric disorders. Results 308/546 medical geneticists completed the survey (56% response rate). Psychiatric disorders were discussed significantly less often than other features of 22q11DS (p<0.0001), but psychiatric disorders were discussed significantly more often when the patient was ≥ 13 years old (p<0.0001), than when the patient was younger. Geneticists who discussed psychiatric disorders the least had significantly higher levels of stigma towards psychiatric disorders (p=0.007). Conclusion Psychiatric risks are less often discussed with families during childhood. Education for physicians to help reduce stigma towards psychiatric disorders (which may impede discussion of psychiatric disorders) may warrant exploration in this population. PMID:23579435

  17. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Linden, Jennifer F.; Baldini, Antonio; Tucker, Abigail S.

    2015-01-01

    Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1+/?) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. PMID:25452432

  18. Preliminary structure and predictive value of attenuated negative symptoms in 22q11.2 deletion syndrome.

    PubMed

    Schneider, Maude; Van der Linden, Martial; Glaser, Bronwyn; Rizzi, Eleonora; Dahoun, Sophie P; Hinard, Christine; Bartoloni, Lucia; Antonarakis, Stylianos E; Debbané, Martin; Eliez, Stephan

    2012-04-30

    Current research in schizophrenia suggests that negative symptoms cannot be considered a unitary construct and should be divided in two dimensions: lack of motivation and impoverishment of expression. In addition, negative symptoms are particularly related to decreased daily-life functioning. In the present study, we aimed to replicate these results in a sample of participants with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition associated with high risk of developing schizophrenia. We also expected to observe an association between the COMT Val/Met polymorphism and negative symptoms. We examined the factorial structure of negative symptoms in a sample of 47 individuals with 22q11DS using the Structured Interview for Prodromal Symptoms (SIPS) and the Positive and Negative Syndrome Scale (PANSS). We also performed stepwise regression analyses to investigate the associations between negative symptoms, adaptive skills and the COMT Val/Met polymorphism. Negative symptoms were explained by a two-factor solution, namely the "amotivation and social withdrawal" and the "emotional withdrawal and expression" dimensions. The motivational dimension was significantly associated with daily-life functioning. Met carriers were rated as experiencing significantly more symptoms of amotivation. The results are interpreted in the light of existing cognitive models in the field of motivation and schizophrenia. PMID:22377578

  19. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    SciTech Connect

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  20. Genomic deletions of OFD1 account for 23% of oral-facial-digital type 1 syndrome after negative DNA sequencing.

    PubMed

    Thauvin-Robinet, Christel; Franco, Brunella; Saugier-Veber, Pascale; Aral, Bernard; Gigot, Nadège; Donzel, Anne; Van Maldergem, Lionel; Bieth, Eric; Layet, Valérie; Mathieu, Michèle; Teebi, Ahmad; Lespinasse, James; Callier, Patrick; Mugneret, Francine; Masurel-Paulet, Alice; Gautier, Elodie; Huet, Frédéric; Teyssier, Jean-Raymond; Tosi, Mario; Frébourg, Thierry; Faivre, Laurence

    2009-02-01

    Oral-facial-digital type I syndrome (OFDI) is characterised by an X-linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, dental and distal abnormalities, polycystic kidney disease and central nervous system malformations. Considerable allelic heterogeneity has been reported within the OFD1 gene, but DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene remains negative in more than 20% of cases. We hypothesized that genomic rearrangements could account for the majority of the remaining undiagnosed cases. Thus, we took advantage of two independent available series of patients with OFDI syndrome and negative DNA bi-directional sequencing of the exons and intron-exon boundaries of the OFD1 gene from two different European labs: 13/36 cases from the French lab; 13/95 from the Italian lab. All patients were screened by a semiquantitative fluorescent multiplex method (QFMPSF) and relative quantification by real-time PCR (qPCR). Six OFD1 genomic deletions (exon 5, exons 1-8, exons 1-14, exons 10-11, exons 13-23 and exon 17) were identified, accounting for 5% of OFDI patients and for 23% of patients with negative mutation screening by DNA sequencing. The association of DNA direct sequencing, QFMPSF and qPCR detects OFD1 alteration in up to 85% of patients with a phenotype suggestive of OFDI syndrome. Given the average percentage of large genomic rearrangements (5%), we suggest that dosage methods should be performed in addition to DNA direct sequencing analysis to exclude the involvement of the OFD1 transcript when there are genetic counselling issues. PMID:19023858

  1. A unique MSH2 exon 8 deletion accounts for a major portion of all mismatch repair gene mutations in Lynch syndrome families of Sardinian origin

    PubMed Central

    Borelli, Iolanda; Barberis, Marco A; Spina, Francesca; Cavalchini, Guido C Casalis; Vivanet, Caterina; Balestrino, Luisa; Micheletti, Monica; Allavena, Anna; Sala, Paola; Carcassi, Carlo; Pasini, Barbara

    2013-01-01

    Lynch syndrome is an autosomal-dominant hereditary condition predisposing to the development of specific cancers, because of germline mutations in the DNA-mismatch repair (MMR) genes. Large genomic deletions represent a significant fraction of germline mutations, particularly among the MSH2 gene, in which they account for 20% of the mutational spectrum. In this study we analyzed 13 Italian families carrying MSH2 exon 8 deletions, 10 of which of ascertained Sardinian origin. The overrepresentation of Sardinians was unexpected, as families from Sardinia account for a small quota of MMR genes mutation tests performed in our laboratory. The hypothesis that such a result is owing to founder effects in Sardinia was tested by breakpoint junctions sequencing and haplotype analyses. Overall, five different exon eight deletions were identified, two of which recurrent in families, all apparently unrelated, of Sardinian origin (one in eight families, one in two families). The c.1277–1180_1386+2226del3516insCATTCTCTTTGAAAA deletion shares the same haplotype between all families and appears so far restricted to the population of South-West Sardinia, showing the typical features of a founder effect. The three non-Sardinian families showed three different breakpoint junctions and haplotypes, suggesting independent mutational events. This work has useful implications in genetic testing for Lynch syndrome. We developed a quick test for each of the identified deletions: this can be particularly useful in families of Sardinian origin, in which MSH2 exon 8 deletions may represent 50% of the overall mutational spectrum of the four MMR genes causing Lynch syndrome. PMID:22781090

  2. The internet is parents' main source of information about psychiatric manifestations of 22q11.2 deletion syndrome (22q11.2DS)☆

    PubMed Central

    van den Bree, Marianne B.M.; Miller, Gregory; Mansell, Elizabeth; Thapar, Anita; Flinter, Frances; Owen, Michael J.

    2013-01-01

    With advances in laboratory technology, an increasing number of potentially pathogenic CNVs is recognised. The phenotypic effects of some CNVs are well characterised, however, it remains unclear how much information reaches the parents of affected children and by what route. The 22q11.2 deletion syndrome (del22q11.2) is caused by the deletion of approximately 40 genes from the long arm of chromosome 22 and was first described in 1955 [1]. Our study reports the extent to which parents of an affected child are aware of the various manifestation of the condition and describes how they first learned about these potential problems. PMID:23707654

  3. Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts

    PubMed Central

    Brown, Chris A.; Murray, Andrew W.; Verstrepen, Kevin J.

    2010-01-01

    Summary Background Subtelomeres, regions proximal to telomeres, exhibit characteristics unique to eukaryotic genomes. Genes residing in these loci are subject to epigenetic regulation and elevated rates of both meiotic and mitotic recombination. However, most genome sequences do not contain assembled subtelomeric sequences, and, as a result, subtelomeres are often overlooked in comparative genomics. Results We study the evolution and functional divergence of subtelomeric gene families in the yeast lineage. Our computational results show that subtelomeric families are evolving and expanding much faster than families that do not contain subtelomeric genes. Focusing on three related subtelomeric MAL gene families involved in disaccharide metabolism that show typical patterns of rapid expansion and evolution, we show experimentally how frequent duplication events followed by functional divergence yields novel alleles that allow metabolism of different carbohydrates. Conclusions Taken together, our computational and experimental analyses show that the extraordinary instability of eukaryotic subtelomeres supports rapid adaptation to novel niches by promoting gene recombination and duplication followed by functional divergence of the alleles. PMID:20471265

  4. Systematic Screening for Subtelomeric Anomalies in a Clinical Sample of Autism

    ERIC Educational Resources Information Center

    Wassink, Thomas H.; Losh, Molly; Piven, Joseph; Sheffield, Val C.; Ashley, Elizabeth; Westin, Erik R.; Patil, Shivanand R.

    2007-01-01

    High-resolution karyotyping detects cytogenetic anomalies in 5-10% of cases of autism. Karyotyping, however, may fail to detect abnormalities of chromosome subtelomeres, which are gene rich regions prone to anomalies. We assessed whether panels of FISH probes targeted for subtelomeres could detect abnormalities beyond those identified by…

  5. Systematic Screening for Subtelomeric Anomalies in a Clinical Sample of Autism

    ERIC Educational Resources Information Center

    Wassink, Thomas H.; Losh, Molly; Piven, Joseph; Sheffield, Val C.; Ashley, Elizabeth; Westin, Erik R.; Patil, Shivanand R.

    2007-01-01

    High-resolution karyotyping detects cytogenetic anomalies in 5-10% of cases of autism. Karyotyping, however, may fail to detect abnormalities of chromosome subtelomeres, which are gene rich regions prone to anomalies. We assessed whether panels of FISH probes targeted for subtelomeres could detect abnormalities beyond those identified by

  6. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    PubMed

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-02-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice. PMID:26872257

  7. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes

    PubMed Central

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S.; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-01-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice. PMID:26872257

  8. Smaller and larger deletions of the Williams Beuren syndrome region implicate genes involved in mild facial phenotype, epilepsy and autistic traits

    PubMed Central

    Fusco, Carmela; Micale, Lucia; Augello, Bartolomeo; Teresa Pellico, Maria; Menghini, Deny; Alfieri, Paolo; Cristina Digilio, Maria; Mandriani, Barbara; Carella, Massimo; Palumbo, Orazio; Vicari, Stefano; Merla, Giuseppe

    2014-01-01

    Williams Beuren syndrome (WBS) is a multisystemic disorder caused by a hemizygous deletion of 1.5 Mb on chromosome 7q11.23 spanning 28 genes. A few patients with larger and smaller WBS deletion have been reported. They show clinical features that vary between isolated SVAS to the full spectrum of WBS phenotype, associated with epilepsy or autism spectrum behavior. Here we describe four patients with atypical WBS 7q11.23 deletions. Two carry ∼3.5 Mb larger deletion towards the telomere that includes Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma (YWHAG) genes. Other two carry a shorter deletion of ∼1.2 Mb at centromeric side that excludes the distal WBS genes BAZ1B and FZD9. Along with previously reported cases, genotype–phenotype correlation in the patients described here further suggests that haploinsufficiency of HIP1 and YWHAG might cause the severe neurological and neuropsychological deficits including epilepsy and autistic traits, and that the preservation of BAZ1B and FZD9 genes may be related to mild facial features and moderate neuropsychological deficits. This report highlights the importance to characterize additional patients with 7q11.23 atypical deletions comparing neuropsychological and clinical features between these individuals to shed light on the pathogenic role of genes within and flanking the WBS region. PMID:23756441

  9. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  10. A 5-year-old white girl with Prader-Willi syndrome and a submicroscopic deletion of chromosome 15q11q13

    SciTech Connect

    Butler, M.G.; Christian, S.L.; Kubota, T.; Ledbetter, D.H.

    1996-10-16

    We report on a 5-year-old white girl with Prader-Willi syndrome (PWS) and a submicroscopic deletion of 15q11q13 of approximately 100-200 kb in size. High resolution chromosome analysis was normal but fluorescence in situ hybridization (FISH), Southern hybridization, and microsatellite data from the 15q11q13 region demonstrated that the deletion was paternal in origin and included the SNRPN, PAR-5, and PAR-7 genes from the proximal to distal boundaries of the deletion segment. SNRPN and PW71B methylation studies showed an abnormal pattern consistent with the diagnosis of PWS and supported the presence of a paternal deletion of 15q11q13 or an imprinting mutation. Biparental (normal) inheritance of PW71B (D15S63 locus) and a deletion of the SNRPN gene were observed by microsatellite, quantitative Southern hybridization, and/or FISH analyses. Our patient met the diagnostic criteria for PWS, but has no reported behavior problems, hyperphagia, or hypopigmentation. Our patient further supports SNRPN and possibly other genomic sequences which are deleted as the cause of the phenotype recognized in PWS patients. 21 refs., 7 figs.

  11. Translocations involving 4p16.3 in three families: deletion causing the Pitt-Rogers-Danks syndrome and duplication resulting in a new overgrowth syndrome.

    PubMed Central

    Partington, M W; Fagan, K; Soubjaki, V; Turner, G

    1997-01-01

    Three families are reported who have a translocation involving 4p16.3. Nine subjects are described with the clinical features of the Pitt-Rogers-Danks (PRD) syndrome confirming pre- and postnatal growth failure, microcephaly, severe mental retardation, seizures, and a distinctive facial appearance; a deletion of 4p16.3 was seen in all eight patients studied with fluorescence in situ hybridisation (FISH). Eleven subjects had a new syndrome with physical overgrowth, heavy facial features, and mild to moderate mental handicap; a duplication of the chromosome region 4p16.3 was found in the four subjects studied. It is suggested that the growth abnormalities in these two families may be explained by a dosage effect of the fibroblast growth factor receptor gene 3 (FGFR3), which is located at 4p16.3, that is, a single dose leads to growth failure and a triple dose to physical overgrowth. We describe the molecular mapping of the translocation breakpoint and define it to within locus D4S43. Images PMID:9321756

  12. Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11.2: Report of five families with a review of the literature

    SciTech Connect

    Leana-Cox, J.; Pangkanon, Suthipong; Eanet, K.R.

    1996-11-11

    The DiGeorge (DG), velocardiofacial (VCF), and conotruncal anomaly-face (CTAF) syndromes were originally described as distinct disorders, although overlapping phenotypes have been recognized. It is now clear that all three syndromes result from apparently similar or identical 22q11.2 deletions, suggesting that they represent phenotypic variability of a single genetic syndrome. We report on 12 individuals in five families with del(22)(q11.2) by fluorescent in situ hybridization, and define the frequency of phenotypic abnormalities in those cases and in 70 individuals from 27 del(22)(q11.2) families from the literature. Common manifestations include mental impairment (97%), abnormal face (93%), cardiac malformations (681%), thymic (64%) and parathyroid (63%) abnormalities, and cleft palate or velopharyngeal insufficiency (48%). Familial DG, VCF, and CTAF syndromes due to del(22)(q11.2) show significant inter- and intrafamilial clinical variability consistent with the hypothesis that a single gene or group of tightly linked genes is the common cause of these syndromes. Up to 25% of 22q deletions are inherited, indicating that parents of affected children warrant molecular cytogenetic evaluation. We propose use of the compound term {open_quotes}DiGeorge/velocardiofacial (DGNCF) syndrome{close_quotes} in referring to this condition, as it calls attention to the phenotypic spectrum using historically familiar names. 41 refs., 2 figs., 2 tabs.

  13. [Lenalidomide treatment in myelodysplastic syndrome with 5q deletion--Czech MDS group experience].

    PubMed

    Jonášová, Anna; Červinek, Libor; Bělohlávková, Petra; Čermák, Jaroslav; Beličková, Monika; Rohoň, Petr; Černá, Olga; Hochová, Ivana; Šišková, Magda; Kačmářová, Karla; Janoušová, Eva

    2015-12-01

    Myelodysplastic syndrome (MDS) is a common hematological disease in patients over sixty. Despite intensive research, the therapy of this heterogeneous blood disease is complicated. In recent years, two new therapeutic approaches have been proposed: immunomodulation and demethylation therapy. Immunomodulation therapy with lenalidomide represents a meaningful advance in the treatment of anemic patients, specifically those with 5q- aberrations. As much as 60-70% of patients respond and achieve transfusion independence. We present the initial lenalidomide experience of the Czech MDS group. We analyze Czech MDS register data of 34 (31 female; 3 male; median age 69 years) chronically transfused low risk MDS patients with 5q- aberration treated by lenalidomide. Twenty-seven (79.4%) patients were diagnosed with 5q- syndrome, 5 patients with refractory anemia with multilineage dysplasia, 1 patient with refractory anemia with excess of blasts 1, and 1 patient with myelodysplastic/myeloproliferative unclassified. Response, as represented by achieving complete transfusion independence, was achieved in 91% of patients. A true 5q- syndrome diagnosis in most our patients may be responsible for such a high response rate. Complete cytogenetic response was reached in 15% of patients and partial cytogenetic response in 67%, within a median time of 12 months. TP53 mutation was detected in 15% (3 from 18 tested) and 2 of these patients progressed to higher grade MDS. The majority of patients tolerated lenalidomide very well. Based on this albeit small study, we present our findings of high lenalidomide efficacy as well as the basic principles and problems of lenalidomide therapy. PMID:26806497

  14. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging.

    PubMed

    Villalon-Reina, Julio; Jahanshad, Neda; Beaton, Elliott; Toga, Arthur W; Thompson, Paul M; Simon, Tony J

    2013-11-01

    Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders. PMID:23602925

  15. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    PubMed Central

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  16. A Williams syndrome patient with a familial t(6;7) translocation and deletion of the elastin gene

    SciTech Connect

    Pober, B.R.; Gibson, L.H.; Yang-Feng, T.L.

    1994-09-01

    Discovery of a {open_quotes}balanced{close_quotes} reciprocal translocation [46,XX,t(6;7)(q11.2;q11.23)] on routine amniocentesis prompted clinical and cytogenetic study of additional family members. The same t(6;7) translocation was found in the clincally normal father and in a sibling with Williams syndrome (WS). WS had been diagnosed previously according to clinical criteria including distinctive facial features, supravalvar aortic stenosis requiring surgical repair, dental abnormalties and developmental delay. A clinically normal female was delivered and the translocation was confirmed with a cord blood specimen. Hemizygosity for the gene, elastin, (which has been mapped to the chromosome 7 translocation breakpoint, 7q11.23, in this family) appears to be a cause of WS. We therefore investigated whether the t(6;7) in the phenotypically normal father represented more than a simple reciprocal translocation. FISH using a chromosome 7 specific library revealed no differences between the cytogenetically identical, yet phenotypically distinct, father and son. Hybridization with a cosmid MR127D4 containing elastin sequence showed that the WS patient was missing one allele from the derivative chromosome 7 whereas both his mother and father had two copies of the elastin gene. This family indicates that the de novo loss of one copy of the elastin gene produces the recognizable phenotype of Williams syndrome. Molecular characterization (with additional probes) of the extent of this de novo deletion near the translocation breakpoint is in progress. This information will be valuable for defining the WS-critical region and will lead to a better understanding of the molecular basis for WS.

  17. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2

    PubMed Central

    2014-01-01

    Background Wolfram Syndrome type 2 (WFS2) is considered a phenotypic and genotypic variant of WFS, whose minimal criteria for diagnosis are diabetes mellitus and optic atrophy. The disease gene for WFS2 is CISD2. The clinical phenotype of WFS2 differs from WFS1 for the absence of diabetes insipidus and psychiatric disorders, and for the presence of bleeding upper intestinal ulcers and defective platelet aggregation. After the first report of consanguineous Jordanian patients, no further cases of WFS2 have been reported worldwide. We describe the first Caucasian patient affected by WFS2. Case presentation The proband was a 17 year-old girl. She presented diabetes mellitus, optic neuropathy, intestinal ulcers, sensorineural hearing loss, and defective platelet aggregation to ADP. Genetic testing showed a novel homozygous intragenic deletion of CISD2 in the proband. Her brother and parents carried the heterozygous mutation and were apparently healthy, although they showed subclinical defective platelet aggregation. Long runs of homozygosity analysis from SNP-array data did not show any degree of parental relationship, but the microsatellite analysis confirmed the hypothesis of a common ancestor. Conclusion Our patient does not show optic atrophy, one of the main diagnostic criteria for WFS, but optic neuropathy. Since the “asymptomatic” optic atrophy described in Jordanian patients is not completely supported, we could suppose that the ocular pathology in Jordanian patients was probably optic neuropathy and not optic atrophy. Therefore, as optic atrophy is required as main diagnostic criteria of WFS, it might be that the so-called WFS2 could not be a subtype of WFS. In addition, we found an impaired aggregation to ADP and not to collagen as previously reported, thus it is possible that different experimental conditions or inter-patient variability can explain different results in platelet aggregation. Further clinical reports are necessary to better define the clinical spectrum of this syndrome and to re-evaluate its classification. PMID:25056293

  18. Facial emotion perception by intensity in children and adolescents with 22q11.2 deletion syndrome.

    PubMed

    Leleu, Arnaud; Saucourt, Guillaume; Rigard, Caroline; Chesnoy, Gabrielle; Baudouin, Jean-Yves; Rossi, Massimiliano; Edery, Patrick; Franck, Nicolas; Demily, Caroline

    2016-03-01

    Difficulties in the recognition of emotions in expressive faces have been reported in people with 22q11.2 deletion syndrome (22q11.2DS). However, while low-intensity expressive faces are frequent in everyday life, nothing is known about their ability to perceive facial emotions depending on the intensity of expression. Through a visual matching task, children and adolescents with 22q11.2DS as well as gender- and age-matched healthy participants were asked to categorise the emotion of a target face among six possible expressions. Static pictures of morphs between neutrality and expressions were used to parametrically manipulate the intensity of the target face. In comparison to healthy controls, results showed higher perception thresholds (i.e. a more intense expression is needed to perceive the emotion) and lower accuracy for the most expressive faces indicating reduced categorisation abilities in the 22q11.2DS group. The number of intrusions (i.e. each time an emotion is perceived as another one) and a more gradual perception performance indicated smooth boundaries between emotional categories. Correlational analyses with neuropsychological and clinical measures suggested that reduced visual skills may be associated with impaired categorisation of facial emotions. Overall, the present study indicates greater difficulties for children and adolescents with 22q11.2DS to perceive an emotion in low-intensity expressive faces. This disability is subtended by emotional categories that are not sharply organised. It also suggests that these difficulties may be associated with impaired visual cognition, a hallmark of the cognitive deficits observed in the syndrome. These data yield promising tracks for future experimental and clinical investigations. PMID:26149605

  19. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions on the short arm of chromosome 11

    SciTech Connect

    Bartsch, O.; Werner, W.; Hinkel, G.K.; Van Hul, W.; Willems, P.J.

    1996-04-01

    A contiguous gene syndrome due to deletions of the proximal short arm of chromosome 11 is described in eight patients belonging to four families. The main clinical features are multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation. The patients have cytogenetic and/or molecular deletions of chromosome 11p11-p13. These deletions are located between the centromere and D11S914 in a region of {approximately}20 cM. The present study confirms the presence of a multiple exostoses gene on chromosome 11p. Furthermore, it suggests that the gene for isolated foramina parietalia permagna and genes associated with craniofacial dysostosis and mental retardation reside in the same chromosomal region. 31 refs., 5 figs., 1 tab.

  20. Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK.

    PubMed

    Gallenmüller, Constanze; Müller-Felber, Wolfgang; Dusl, Marina; Stucka, Rolf; Guergueltcheva, Velina; Blaschek, Astrid; von der Hagen, Maja; Huebner, Angela; Müller, Juliane S; Lochmüller, Hanns; Abicht, Angela

    2014-01-01

    Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous disorders characterized by a neuromuscular transmission defect. In recent years, causative mutations have been identified in atleast 15 genes encoding proteins of the neuromuscular junction. Mutations in MUSK are known as a very rare genetic cause of CMS and have been described in only three families, world-wide. Consequently, the knowledge about efficient drug therapy is very limited. We identified a novel missense mutation (p.Asp38Glu) heteroallelic to a genomic deletion affecting exons 2-3 of MUSK as cause of a limb-girdle CMS in two brothers of Turkish origin. Clinical symptoms included fatigable limb weakness from early childhood on. Upon diagnosis of a MUSK-related CMS at the age of 16 and 13years, respectively, treatment with salbutamol was initiated leading to an impressive improvement of clinical symptoms, while treatment with esterase inhibitors did not show any benefit. Our findings highlight the importance of a molecular diagnosis in CMS and demonstrate considerable similarities between patients with MUSK and DOK7-related CMS in terms of clinical phenotype and treatment options. PMID:24183479

  1. Hypoventilation in REM sleep in a case of 17p11.2 deletion (Smith-Magenis syndrome).

    PubMed

    Leoni, Chiara; Cesarini, Laura; Dittoni, Serena; Battaglia, Domenica; Novelli, Antonio; Bernardini, Laura; Losurdo, Anna; Vollono, Catello; Testani, Elisa; Della Marca, Giacomo; Zampino, Giuseppe

    2010-03-01

    We describe a 2-year-old baby affected by Smith-Magenis syndrome (SMS), due to 17p11.2 deletion, who presented repeated episodes of hemoglobin desaturation during REM sleep. The boy, aged 14 months, presented a phenotype characterized by psychomotor delay, right posterior plagiocephaly, telecanthus, strabismus, upslanting palpebral fissures, broad hypoplastic nasal bridge, short philtrum, deep ring shaped skin creases around the limbs, proximal syndactyly, bilateral hypoacusia. Polysomnographic (PSG) recording showed episodes of REM-related hypoventilation (hemoglobin desaturations without apneas or hypopneas). Sleep disorders are present in almost all the cases of SMS, but very few reports describe the sleep-related respiratory patterns. The finding of REM hypoventilation in SMS does not allow an unequivocal interpretation. It could reflect a subclinical restrictive respiratory impairment or, alternatively, an impairment of central respiratory control during REM sleep. In SMS children, respiratory abnormalities during sleep, and in particular during REM sleep, may cause sleep disruption, reduction of time spent in REM sleep, and daytime sleepiness. We therefore suggest that some sleep abnormalities described in SMS could be consequent to Sleep Disordered Breathing, and in particular to REM hypoventilation. Sleep studies in SMS should include the recording of respiratory parameters. PMID:20186811

  2. Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

    PubMed

    Näf, Ernst; Laubscher, Dominik; Hopfer, Helmut; Streit, Markus; Matyas, Gabor

    2016-01-01

    Germline mutation of the FLCN gene causes Birt-Hogg-Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD. PMID:26342594

  3. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    PubMed

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  4. Targeted Deletion of the Gene Encoding the La Autoantigen (Sjögren's Syndrome Antigen B) in B Cells or the Frontal Brain Causes Extensive Tissue Loss

    PubMed Central

    Gaidamakov, Sergei; Maximova, Olga A.; Chon, Hyongi; Blewett, Nathan H.; Wang, Hongsheng; Crawford, Amanda K.; Day, Amanda; Tulchin, Natalie; Crouch, Robert J.; Morse, Herbert C.; Blitzer, Robert D.

    2014-01-01

    La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types. PMID:24190965

  5. Telomere fusion in Drosophila: The role of subtelomeric chromatin.

    PubMed

    Marzullo, Marta; Gatti, Maurizio

    2015-07-01

    Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion. PMID:26786804

  6. A Deletion in FOXN1 Is Associated with a Syndrome Characterized by Congenital Hypotrichosis and Short Life Expectancy in Birman Cats

    PubMed Central

    Abitbol, Marie; Bossé, Philippe; Thomas, Anne; Tiret, Laurent

    2015-01-01

    An autosomal recessive syndrome characterized by congenital hypotrichosis and short life expectancy has been described in the Birman cat breed (Felis silvestris catus). We hypothesized that a FOXN1 (forkhead box N1) loss-of-function allele, associated with the nude phenotype in humans, mice and rats, may account for the syndrome observed in Birman cats. To the best of our knowledge, spontaneous mutations in FOXN1 have never been described in non-human, non-rodent mammalian species. We identified a recessive c.1030_1033delCTGT deletion in FOXN1 in Birman cats. This 4-bp deletion was associated with the syndrome when present in two copies. Percentage of healthy carriers in our French panel of genotyped Birman cats was estimated to be 3.2%. The deletion led to a frameshift and a premature stop codon at position 547 in the protein. In silico, the truncated FOXN1 protein was predicted to lack the activation domain and critical parts of the forkhead DNA binding domain, both involved in the interaction between FOXN1 and its targets, a mandatory step to promote normal hair and thymic epithelial development. Our results enlarge the panel of recessive FOXN1 loss-of-function alleles described in mammals. A DNA test is available; it will help owners avoid matings at risk and should prevent the dissemination of this morbid mutation in domestic felines. PMID:25781316

  7. A deletion in FOXN1 is associated with a syndrome characterized by congenital hypotrichosis and short life expectancy in Birman cats.

    PubMed

    Abitbol, Marie; Bossé, Philippe; Thomas, Anne; Tiret, Laurent

    2015-01-01

    An autosomal recessive syndrome characterized by congenital hypotrichosis and short life expectancy has been described in the Birman cat breed (Felis silvestris catus). We hypothesized that a FOXN1 (forkhead box N1) loss-of-function allele, associated with the nude phenotype in humans, mice and rats, may account for the syndrome observed in Birman cats. To the best of our knowledge, spontaneous mutations in FOXN1 have never been described in non-human, non-rodent mammalian species. We identified a recessive c.1030_1033delCTGT deletion in FOXN1 in Birman cats. This 4-bp deletion was associated with the syndrome when present in two copies. Percentage of healthy carriers in our French panel of genotyped Birman cats was estimated to be 3.2%. The deletion led to a frameshift and a premature stop codon at position 547 in the protein. In silico, the truncated FOXN1 protein was predicted to lack the activation domain and critical parts of the forkhead DNA binding domain, both involved in the interaction between FOXN1 and its targets, a mandatory step to promote normal hair and thymic epithelial development. Our results enlarge the panel of recessive FOXN1 loss-of-function alleles described in mammals. A DNA test is available; it will help owners avoid matings at risk and should prevent the dissemination of this morbid mutation in domestic felines. PMID:25781316

  8. Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf–Hirschhorn Syndrome

    PubMed Central

    Andersen, Erica F; Carey, John C; Earl, Dawn L; Corzo, Deyanira; Suttie, Michael; Hammond, Peter; South, Sarah T

    2014-01-01

    Wolf–Hirschhorn syndrome (WHS) is a complex genetic disorder caused by the loss of genomic material from the short arm of chromosome 4. Genotype–phenotype correlation studies indicated that the loss of genes within 4p16.3 is necessary for expression of the core features of the phenotype. Within this region, haploinsufficiency of the genes WHSC1 and LETM1 is thought to be a major contributor to the pathogenesis of WHS. We present clinical findings for three patients with relatively small (<400 kb) de novo interstitial deletions that overlap WHSC1 and LETM1. 3D facial analysis was performed for two of these patients. Based on our findings, we propose that hemizygosity of WHSC1 and LETM1 is associated with a clinical phenotype characterized by growth deficiency, feeding difficulties, and motor and speech delays. The deletion of additional genes nearby WHSC1 and LETM1 does not result in a marked increase in the severity of clinical features, arguing against their haploinsufficiency. The absence of seizures and typical WHS craniofacial findings in our cohort suggest that deletion of distinct or additional 4p16.3 genes is necessary for expression of these features. Altogether, these results show that although loss-of-function for WHSC1 and/or LETM1 contributes to some of the features of WHS, deletion of additional genes is required for the full expression of the phenotype, providing further support that WHS is a contiguous gene deletion disorder. PMID:23963300

  9. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    SciTech Connect

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang; Kaplan, P.

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  10. Mild Wolf-Hirschhorn phenotype and partial GH deficiency in a patient with a 4p terminal deletion.

    PubMed

    Titomanlio, L; Romano, A; Conti, A; Genesio, R; Salerno, M; De Brasi, D; Nitsch, L; Del Giudice, E

    2004-06-01

    Wolf-Hirschhorn syndrome (WHS) is caused by a variably-sized deletion of chromosome 4 involving band 4p16 whose typical craniofacial features are "Greek warrior helmet appearance" of the nose, microcephaly, and prominent glabella. Almost all patients show mental retardation and pre- and post-natal growth delay. Patient was born at term, after a pregnancy characterized by intra-uterine growth retardation (IUGR). Delivery was uneventful. Developmental delay was evident since the first months of life. At 2 years, he developed generalized tonic-clonic seizures. Because of short stature, low growth velocity and delayed bone age, at 4 years he underwent growth hormone (GH) evaluation. Peak GH after two provocative tests revealed a partial GH deficiency. Clinical observation at 7 years disclosed a distinctive facial appearance, with microcephaly, prominent eyes, and beaked nose. Brain MRI showed left temporal mesial sclerosis. GTG banded karyotype was normal. Because of mental retardation, subtelomeric fluorescence in situ hybridization (FISH) analysis was performed, disclosing a relatively large deletion involving 4p16.2 --> pter (about 4.5 Mb), in the proband, not present in the parents. The smallest deletion detected in a WHS patient thus far includes two candidate genes, WHSC1 and WHSC2. Interestingly, that patient did not show shortness of stature, and that could be due to the haploinsufficiency of other genes localized in the flanking regions. Contribution of GH alterations and possible GH therapy should be further considered in WHS patients. PMID:15108211

  11. Effect of lenalidomide treatment on clonal architecture of myelodysplastic syndromes without 5q deletion.

    PubMed

    Chesnais, Virginie; Renneville, Aline; Toma, Andrea; Lambert, Jérôme; Passet, Marie; Dumont, Florent; Chevret, Sylvie; Lejeune, Julie; Raimbault, Anna; Stamatoullas, Aspasia; Rose, Christian; Beyne-Rauzy, Odile; Delaunay, Jacques; Solary, Eric; Fenaux, Pierre; Dreyfus, François; Preudhomme, Claude; Kosmider, Olivier; Fontenay, Michaela

    2016-02-11

    Non-del(5q) transfusion-dependent low/intermediate-1 myelodysplastic syndrome (MDS) patients achieve an erythroid response with lenalidomide in 25% of cases. Addition of an erythropoiesis-stimulating agent could improve response rate. The impact of recurrent somatic mutations identified in the diseased clone in response to lenalidomide and the drug's effects on clonal evolution remain unknown. We investigated recurrent mutations by next-generation sequencing in 94 non-del(5q) MDS patients randomized in the GFM-Len-Epo-08 clinical trial to lenalidomide or lenalidomide plus epoetin β. Clonal evolution was analyzed after 4 cycles of treatment in 42 cases and reanalyzed at later time points in 18 cases. The fate of clonal architecture of single CD34(+)CD38(-) hematopoietic stem cells was also determined in 5 cases. Mutation frequency was >10%: SF3B1 (74.5%), TET2 (45.7%), DNMT3A (20.2%), and ASXL1 (19.1%). Analysis of variant allele frequencies indicated a decrease of major mutations in 15 of 20 responders compared with 10 of 22 nonresponders after 4 cycles. The decrease in the variant allele frequency of major mutations was more significant in responders than in nonresponders (P < .001). Genotyping of single CD34(+)CD38(-) cell-derived colonies showed that the decrease in the size of dominant subclones could be associated with the rise of founding clones or of hematopoietic stem cells devoid of recurrent mutations. These effects remained transient, and disease escape was associated with the re-emergence of the dominant subclones. In conclusion, we show that, although the drug initially modulates the distribution of subclones, loss of treatment efficacy coincides with the re-expansion of the dominant subclone. This trial was registered at www.clinicaltrials.gov as #NCT01718379. PMID:26626993

  12. Gastrointestinal involvement in patients affected with 22q11.2 deletion syndrome.

    PubMed

    Giardino, Giuliana; Cirillo, Emilia; Maio, Filomena; Gallo, Vera; Esposito, Tiziana; Naddei, Roberta; Grasso, Fiorentino; Pignata, Claudio

    2014-03-01

    OBJECTIVE. Enteropathy is a very common feature in patients with primary immunodeficiencies. In patients with Del22 gastrointestinal (GI) alterations, including feeding disorders and congenital abnormalities have been often reported, mostly in the first year of life. MATERIAL AND METHODS. Aim of this monocentric study is to better define the GI involvement in a cohort of 26 patients affected with Del22 syndrome. Anamnestic information was retrospectively collected for each patient. Weight and height parameters at the time of the screening were recorded. Plasma levels of hemoglobin, iron, ferritin, albumin, total protein, calcium, phosphorus, transaminase levels, antigliadin (AGA) IgA and IgG, and antitissue transglutaminase (anti-TGase) titers were measured. RESULTS. A GI involvement was identified in the 58% of patients. The prominent problems were abdominal pain, vomiting, gastroesophageal reflux and chronic constipation. Weight deficiency, short stature and failure to thrive were reported in 54, 42, and 30% of the patients, respectively. The evidence of sideropenic anemia, in keeping with hypoproteinemia, impaired acid steatocrit or cellobiose/mannitol test suggested an abnormal intestinal permeability. In this cohort, a high prevalence of AGA IgA and IgG positivity was observed. Celiac disease (CD) was suspected in three patients, and in one of them confirmed by histology. In this patient, a long-lasting gluten-free diet failed to restore the intestinal architecture. CONCLUSIONS. In conclusion, GI involvement is a very common feature in Del22 patients. A better characterization of GI involvement would be very useful to improve the management of these patients. PMID:24344832

  13. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication.

    PubMed

    Linardopoulou, Elena V; Williams, Eleanor M; Fan, Yuxin; Friedman, Cynthia; Young, Janet M; Trask, Barbara J

    2005-09-01

    Human subtelomeres are polymorphic patchworks of interchromosomal segmental duplications at the ends of chromosomes. Here we provide evidence that these patchworks arose recently through repeated translocations between chromosome ends. We assess the relative contribution of the principal mechanisms of ectopic DNA repair to the formation of subtelomeric duplications and find that non-homologous end-joining predominates. Once subtelomeric duplications arise, they are prone to homology-based sequence transfers as shown by the incongruent phylogenetic relationships of neighbouring sections. Interchromosomal recombination of subtelomeres is a potent force for recent change. Cytogenetic and sequence analyses reveal that pieces of the subtelomeric patchwork have changed location and copy number with unprecedented frequency during primate evolution. Half of the known subtelomeric sequence has formed recently, through human-specific sequence transfers and duplications. Subtelomeric dynamics result in a gene duplication rate significantly higher than the genome average and could have both advantageous and pathological consequences in human biology. More generally, our analyses suggest an evolutionary cycle between segmental polymorphisms and genome rearrangements. PMID:16136133

  14. Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres

    PubMed Central

    Therizols, Pierre; Duong, Tarn; Dujon, Bernard; Zimmer, Christophe; Fabre, Emmanuelle

    2010-01-01

    Physical interactions between distinct chromosomal genomic loci are important for genomic functions including recombination and gene expression, but the mechanisms by which these interactions occur remain obscure. Using telomeric association as a model system, we analyzed here the in vivo organization of chromosome ends of haploid yeast cells during interphase. We separately labeled most of the 32 subtelomeres and analyzed their positions both in nuclear space and relative to three representative reference subtelomeres by high-throughput 3D microscopy and image processing. We show that subtelomeres are positioned nonrandomly at the nuclear periphery, depending on the genomic size of their chromosome arm, centromere attachment to the microtubule organizing center (spindle pole body, SPB), and the volume of the nucleolus. The distance of subtelomeres to the SPB increases consistently with chromosome arm length up to ≈300 kb; for larger arms the influence of chromosome arm length is weaker, but the effect of the nucleolar volume is stronger. Distances between pairs of subtelomeres also exhibit arm-length dependence and suggest, together with dynamic tracking experiments, that potential associations between subtelomeres are unexpectedly infrequent and transient. Our results suggest that interactions between subtelomeres are nonspecific and instead governed by physical constraints, including chromosome structure, attachment to the SPB, and nuclear crowding. PMID:20080699

  15. A cognitive decline precedes the onset of psychosis in patients with the 22q11.2 deletion syndrome

    PubMed Central

    Vorstman, Jacob A.S.; Breetvelt, Elemi J; Duijff, Sasja N.; Eliez, Stephan; Schneider, Maude; Jalbrzikowski, Maria; Armando, Marco; Vicari, Stefano; Shashi, Vandana; Hooper, Stephen R.; Chow, Eva W.C.; Fung, Wai Lun Alan; Butcher, Nancy J.; Young, Donald A.; McDonald-McGinn, Donna M.; Vogels, Annick; van Amelsvoort, Therese; Gothelf, Doron; Weinberger, Ronnie; Weizman, Abraham; Klaassen, Petra WJ; Koops, Sanne; Kates, Wendy R.; Antshel, Kevin M.; Simon, Tony J.; Ousley, Opal Y.; Swillen, Ann; Gur, Raquel E.; Bearden, Carrie E.; Kahn, René S.; Bassett, Anne S.

    2015-01-01

    Importance Patients with 22q11.2 deletion syndrome (22q11DS) have an elevated (25%) risk for developing schizophrenia. Recent reports have suggested that a subgroup of children with 22q11DS display a substantial decline in cognitive abilities, starting at a young age. Objective To determine whether early cognitive decline is associated with risk of psychotic disorder in 22q11DS. Design, setting and participants As part of an international research consortium initiative, we used the largest dataset of intelligence (IQ) measurements in subjects with 22q11DS reported to date in order to investigate longitudinal IQ trajectories and the risk of subsequent psychotic illness. A total of 829 subjects with a confirmed hemizygous 22q11.2 deletion, recruited through 12 international clinical research sites, were included. Both psychiatric assessment and longitudinal IQ measurements were available for a subset of 411 subjects (388 with ≥1 assessment at age 8 to 24 years). Main outcome measures Diagnosis of a psychotic disorder, longitudinal IQ trajectory and initial IQ, as well as timing of the last psychiatric assessment with respect to the last IQ test. Results On average, children with 22q11DS showed a mild decline in full scale IQ (7 points) with increasing age, particularly in the domain of verbal IQ (9 points). In those who developed psychotic illness (47/388) this decline was significantly steeper (p<0.0001). Those with a negative deviation from the average cognitive trajectory observed in 22q11DS were at significantly increased risk for the development of a psychotic disorder (OR=2.49, 95% CI 1.24–5.00, p=0.01). The divergence of verbal IQ trajectories between those who subsequently developed a psychotic disorder and those who did not was distinguishable from the age of 11 years onwards. Conclusions and relevance In 22q11DS early cognitive decline is a robust indicator of the risk of developing a psychotic illness. These findings mirror those observed in idiopathic schizophrenia. The results provide further support for investigations of 22q11DS as a genetic model for elucidating neurobiological mechanisms underlying the development of psychosis. PMID:25715178

  16. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    PubMed Central

    Váša, František; Griffa, Alessandra; Scariati, Elisa; Schaer, Marie; Urben, Sébastien; Eliez, Stephan; Hagmann, Patric

    2015-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop. PMID:26870660

  17. Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome.

    PubMed

    Gothelf, Doron; Hoeft, Fumiko; Ueno, Takefumi; Sugiura, Lisa; Lee, Agatha D; Thompson, Paul; Reiss, Allan L

    2011-03-01

    The primary objective of the current prospective study was to examine developmental patterns of voxel-by-voxel gray and white matter volumes (GMV, WMV, respectively) that would predict psychosis in adolescents with 22q11.2 deletion syndrome (22q11.2DS), the most common known genetic risk factor for schizophrenia. We performed a longitudinal voxel-based morphometry analysis using structural T1 MRI scans from 19 individuals with 22q11.2DS and 18 typically developing individuals. In 22q11.2DS, univariate analysis showed that greater reduction in left dorsal prefrontal cortical (dPFC) GMV over time predicted greater psychotic symptoms at Time2. This dPFC region also showed significantly reduced volumes in 22q11.2DS compared to typically developing individuals at Time1 and 2, greater reduction over time in 22q11.2DS COMT(Met) compared to COMT(Val), and greater reduction in those with greater decline in verbal IQ over time. Leave-one-out Multivariate pattern analysis results (MVPA) on the other hand, showed that patterns of GM and WM morphometric changes over time in regions including but not limited to the dPFC predicted risk for psychotic symptoms (94.7-100% accuracy) significantly better than using univariate analysis (63.1%). Additional predictive brain regions included medial PFC and dorsal cingulum. This longitudinal prospective study shows novel evidence of morphometric spatial patterns predicting the development of psychotic symptoms in 22q11.2DS, and further elucidates the abnormal maturational processes in 22q11.2DS. The use of neuroimaging using MVPA may hold promise to predict outcome in a variety of neuropsychiatric disorders. PMID:20817203

  18. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  19. First molecular diagnosis of Donohue syndrome in Africa: novel unusual insertion/deletion mutation in the INSR gene.

    PubMed

    Siala-Sahnoun, Olfa; Dhieb, Dhoha; Ben Thabet, Afef; Hmida, Nedia; Belguith, Neila; Fakhfakh, Faiza

    2016-03-01

    Donohue syndrome (DS) is a very rare autosomal recessive disease affecting less than one in a million life births. It represents the most severe form of insulin resistance due to mutations involving the insulin receptor (IR) gene "INSR". DS is characterized by pre- and postnatal growth retardation with failure-to-thrive, lipoatrophy, acanthosis nigricans, hypertrichosis, and dysmorphic features. An exhaustive INSR gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools, including ESEfinder, MFOLD and Proter software were also used to predict the impact of INSR mutation on INSR on gene expression as well as on the protein structure and function. The results have shown a novel unusual c.3003_3012delinsGGAAG (p.S1001_D1004delinsRE) insertion/deletion (indel) mutation within the exon 16 in the three patients, which represent the fourth indel mutation within the INSR gene. The mutation modifies the secondary structure of DNA and RNA, as well as the composition of exonic splicing enhancers of exon 16. Moreover, despite the conservation of the secondary structure of the IR, the p.S1001_D1004delinsRE in-frame mutation is accompanied by the loss of four amino acids replaced by two residues of different nature and hydrophobicity level in the juxtamembrane domain of the receptor. The results have confirmed the role of the juxtamembrane domain of IR involved in a crucial interaction of the IR with cellular effectors essentially the IR substrate 1 (IRS-1), the SHC and the Nck proteins that ensure the signal mediated by the insulin transduction pathway in target cells. Our findings have also proven the genotype/phenotype correlation between INSR mutation and DS phenotype severity. PMID:26874853

  20. Atypical Developmental Trajectory of Functionally Significant Cortical Areas in Children with Chromosome 22q11.2 Deletion Syndrome

    PubMed Central

    Srivastava, Siddharth; Buonocore, Michael H.; Simon, Tony J.

    2011-01-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic disorder associated with neurocognitive impairments. This article focuses on the cortical gyrification changes that are associated with the genetic disorder in 6–15-year-old children with 22q11.2DS, when compared with a group of age-matched typically developing (TD) children. Local gyrification index (lGI; Schaer et al. [2008]: IEEE Trans Med Imaging 27:161–170) was used to characterize the cortical gyrification at each vertex of the pial surface. Vertex-wise statistical analysis of lGI differences between the two groups revealed cortical areas of significant reduction in cortical gyrification in children with 22q11.2DS, which were mainly distributed along the medial aspect of each hemisphere. To gain further insight into the developmental trajectory of the cortical gyrification, we examined age as a factor in lGI changes over the 6–15 years of development, within and across the two groups of children. Our primary results pertaining to the developmental trajectory of cortical gyrification revealed cortical regions where the change in lGI over the 6–15 years of age was significantly modulated by diagnosis, implying an atypical development of cortical gyrification in children with 22q11.2DS, when compared with the TD children. Significantly, these cortical areas included parietal structures that are associated, in typical individuals, with visuospatial, attentional, and numerical cognition tasks in which children with 22q11.2DS show impairments. PMID:21416559

  1. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome.

    PubMed

    Váša, František; Griffa, Alessandra; Scariati, Elisa; Schaer, Marie; Urben, Sébastien; Eliez, Stephan; Hagmann, Patric

    2016-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs - chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, "de-centralizing" the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30-40% of 22q11DS patients develop. PMID:26870660

  2. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome.

    PubMed

    Brooks, Samantha A; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F

    2010-04-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  3. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome

    PubMed Central

    Karpinski, Beverly A.; Maynard, Thomas M.; Fralish, Matthew S.; Nuwayhid, Samer; Zohn, Irene E.; Moody, Sally A.; LaMantia, Anthony-S.

    2014-01-01

    ABSTRACT We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS. PMID:24357327

  4. In-Frame Deletion and Missense Mutations of the C-Terminal Helicase Domain of SMARCA2 in Three Patients with Nicolaides-Baraitser Syndrome

    PubMed Central

    Wolff, D.; Endele, S.; Azzarello-Burri, S.; Hoyer, J.; Zweier, M.; Schanze, I.; Schmitt, B.; Rauch, A.; Reis, A.; Zweier, C.

    2012-01-01

    Using high-resolution molecular karyotyping with SNP arrays to identify candidate genes for etiologically unexplained intellectual disability, we identified a 32-kb de novo in-frame deletion of the C-terminal helicase domain of the SMARCA2 gene in a patient with severe intellectual disability, epilepsy, sparse hair, prominent joints, and distinct facial anomalies. Sequencing of the gene in patients with a similar phenotype revealed de novo missense mutations in this domain in 2 further patients, pointing to a crucial role of the SMARCA2 C-terminal helicase domain. The clinical features observed in all 3 patients are typical of Nicolaides-Baraitser syndrome, an only rarely reported syndrome with mainly moderate to severe intellectual disability. Notably, one of our patients with a p.Gly1132Asp mutation showed typical morphological features but an exceptional good development with borderline overall IQ and learning difficulties, thus expanding the phenotypic spectrum of Nicolaides-Baraitser syndrome. PMID:22822383

  5. Chromosome breakage in Prader-Willi and Angelman syndrome deletions may involve recombination between a repeat at the proximal and distal breakpoints

    SciTech Connect

    Amos-Landgraf J.; Nicholls, R.D.; Gottlieb, W.

    1994-09-01

    Prader-Willi (PWS) and Angelman (AS) syndromes most commonly arise from large deletions of 15q11-q13. Deletions in PWS are paternal in origin, while those in AS are maternal in origin, clearly demonstrating genomic imprinting in these clinically distinct neurobehavioural disorders. In at least 90% of PWS and AS deletion patients, the same 4 Mb region within 15q11-q13 is deleted with breakpoints clustering in single YAC clones at the proximal and distal ends. To study the mechanism of chromosome breakage in PWS and AS, we have previously isolated 25 independent clones from these three YACs using Alu-vector PCR. Four clones were selected that appear to detect a low copy repeat that is located in the proximal and distal breakpoint regions of chromosome 15q11-q13. Three clones detect the same 4 HindIII bands in genomic DNA, all from 15q11-q13, with differing intensities for the probes located at the proximal or distal breakpoints region, respectively. This suggests that these probes detect related members of a low-copy repeat at either location. Moreover, the 254RL2 probe detects a novel HindIII band in two unrelated PWS deletion patients, suggesting that this may represent a breakpoint fragment, with recombination occurring within a similar interval in both patients. A fourth clone, 318RL3 detects 5 bands in HindIII-digested genomic DNA, all from 15q11-q13. This YAC endclone itself is not deleted in PWS and AS deletion patients, as seen by an invariant strong band. Two other strong bands are variably intact or deleted in different PWS or AS deletion patients, suggesting a relationship of this sequence to the breakpoints. Moreover, PCR using 318RL3 primers from the distal 93C9 YAC led to the isolation of a related clone with 96% identity, demonstrating the existence of a low-copy repeat with members close to the proximal and distal breakpoints. Taken together, our data suggest a complex, low-copy repeat with members at both the proximal and distal boundaries.

  6. Structural and transcriptional analysis of a human subtelomeric repeat.

    PubMed Central

    Cheng, J F; Smith, C L; Cantor, C R

    1991-01-01

    A human subtelomeric repeat (designated as the HST repeat) has been isolated and characterized from a yeast artificial chromosome containing one human telomere. This repeat is located immediately adjacent to the telomeric T2AG3 repeats at the extreme termini of the human chromosomes. The DNA sequence of 3.6 kb of the HST repeat has been determined. The HST repeat spans over 3.6 kb in length, and contains one evolutionarily conserved CpG-rich region. The copy number of the HST repeat varies among telomeres. Genomic hybridization experiments suggest that the HST repeat consists of two distinct segments, and the distal portions of the HST repeat are also distributed elsewhere in the genome. In HeLa cells, the HST repeat sequence appears to be transcribed into a 6 kb polyadenylated RNA and a variety of non-polyadenylated RNA species. Images PMID:2011494

  7. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    PubMed Central

    2010-01-01

    Background The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval. Methods We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE) for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR. Results Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears), single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb). Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed. Conclusions From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a frequency of about 0.3% in patients ascertained for unexplained intellectual disability and congenital anomalies. This atypical deletion reduces the minimal interval for the syndrome from 1.75 Mb to 766 kb, implicating a reduced number of genes (15 versus 38). Sequencing of genes in the 15q24 interval in large ASD and intellectual disability samples may identify mutations of etiologic importance in the development of these disorders. PMID:20678247

  8. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity

    PubMed Central

    D'Angelo, Carla S.; Moller dos Santos, Mauren F.; Alonso, Luis G.; Koiffmann, Celia P.

    2015-01-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified ‘new’ microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD. PMID:26279650

  9. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity.

    PubMed

    D'Angelo, Carla S; Moller Dos Santos, Mauren F; Alonso, Luis G; Koiffmann, Celia P

    2015-07-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified 'new' microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD. PMID:26279650

  10. Mapping Genetically Controlled Neural Circuits of Social Behavior and Visuo-Motor Integration by a Preliminary Examination of Atypical Deletions with Williams Syndrome

    PubMed Central

    Hoeft, Fumiko; Dai, Li; Haas, Brian W.; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain. PMID:25105779

  11. Deletions of Yq11 associated with short stature and the Turner syndrome. Tentative mapping of a region associated with specific Turner stigmata to proximal interval 5.

    SciTech Connect

    McElreavey, K.; Barbaux, S.; Vilain, E.

    1994-09-01

    Turner syndrome is a complex human phenotype, commonly associated with a 45,X karyotype. Mapping the Turner phenotype is difficult since hidden mosaicisms, partial monosomy and complex rearrangements are present in many affected individuals. In addition, attempts to map the genes involved to the X chromosome have failed to yield a consistent localisation. An alternative approach to map and identify Turner genes is to study XY individuals, with sex chromosome abnormalities, who present with or without characteristic Turner stigmata. We report the analysis of 4 individuals with terminal deletions of Yq. The individuals were azoospermic males without phenotypic abnormalities (2 cases) and azoospermic males presenting with a specific subset of Turner stigmata (2 cases). Breakpoints in each of the cytogenetically detectable Yq deletions were mapped by Southern analysis and Y chromosome-specific sequence tagged sites (STS). Correlation between the patients phenotypes and the extent of their deletion indicate a critical region associated with specific Turner stigmata (cubitus valgus, shield chest, short fourth metacarpals) and growth retardation at Yq at proximal interval 5. These data provide evidence that the somatic features of the Turner syndrome are most likely caused by haploinsufficiency of genes at several loci.

  12. Review of Disrupted Sleep Patterns in Smith-Magenis Syndrome and Normal Melatonin Secretion in a Patient with an Atypical Interstitial 17p11.2 Deletion

    PubMed Central

    Boudreau, Eilis A.; Johnson, Kyle P.; Jackman, Angela R.; Blancato, Jan; Huizing, Marjan; Bendavid, Claude; Jones, MaryPat; Chandrasekharappa, Settara C.; Lewy, Alfred J.; Smith, Ann C. M.; Magenis, R. Ellen

    2009-01-01

    Smith-Magenis syndrome (SMS) is a disorder characterized by multiple congenital anomalies and behavior problems, including abnormal sleep patterns. It is most commonly due to a 3.5 Mb interstitial deletion of chromosome 17 band p11.2. Secretion of melatonin, a hormone produced by the pineal gland, is the body’s signal for nighttime darkness. Published reports of 24-hour melatonin secretion patterns in two independent SMS cohorts (US & France) document an inverted endogenous melatonin pattern in virtually all cases (96%), suggesting that this finding is pathognomic for the syndrome. We report on a woman with SMS due to an atypical large proximal deletion (∼6Mb; cen<->TNFRSFproteinB) of chromosome band (17)(p11.1p11.2) who presents with typical sleep disturbances but a normal pattern of melatonin secretion. We further describe a melatonin light suppression test in this patient. This is the second reported patient with a normal endogenous melatonin rhythm in SMS associated with an atypical large deletion. These two patients are significant because they suggest that the sleep disturbances in SMS cannot be solely attributed to the abnormal diurnal melatonin secretion versus the normal nocturnal pattern. PMID:19530184

  13. Isolation of a transcription factor expressed in neural crest from the region of 22q11 deleted in DiGeorge syndrome

    SciTech Connect

    Wadey, R.; Roberts, C.; Daw, S.

    1994-09-01

    Deletions within chromosome 22q11 cause a wide variety of birth defects including DiGeorge syndrome and Shprintzen syndrome. We have defined a commonly deleted region of over 2 Mb, and a critical region of 300 kb. A gene, TUPLE1, has been isolated from this critical region encoding a transcriptional regulator similar to the yeast HIR1 histone regulator gene. Since it has been suggested that DGS results from a defective neural crest, the expression of Tuple1 was examined in whole mouse and chick embryos, tissue sections and neural tube explants: Tuple1 is expressed in a dynamic pattern with high levels in regions containing migrating crest. Prior to crest migration Tuple1 is expressed in a rhombomere-specific expression pattern. Later Tuple1 is expressed in discrete domains within the developing neural tube. A remarkable feature of the experiments was the detection of a similar dynamic pattern with sense probe; i.e., there is an antisense Tuple1 transcript. This was confirmed using RPA. Tuple1 is being screened for mutations in non-deletion patients and constructs assembled for homologous recombination in ES cells. Tuple1 maps to MMU16 extending the homology of linkage with human chromosome 22. From these data we predict that the human homologue of the murine scid mutation maps to 22q11.

  14. Age-dependent clinical problems in a Norwegian national survey of patients with the 22q11.2 deletion syndrome.

    PubMed

    Lima, Kari; Følling, Ivar; Eiklid, Kristin L; Natvig, Solveig; Abrahamsen, Tore G

    2010-08-01

    Patients with the 22q11.2 deletion syndrome display a wide phenotypic variation that is important for clinical follow-up. In this national survey of 60 patients (ages 1 to 54 years) diagnosed by Fluorescence in situ hybridization test, data were collected from medical records, a physical examination, and a semistructured interview. Ultrasound investigation of the kidneys was also performed. In addition, multiplex ligation probe amplification assay was performed to detect deletion size. Phenotypic features leading to the genetic diagnosis were noted. The patients showed a variety of organ malformations including 39 with heart anomalies. Only 20 individuals had been diagnosed with 22q11.2 DS in the first year of life. Four patients had renal and five males had genital malformations. The increased infection susceptibility (excluding otitis media) and most feeding difficulties subsided during early childhood. Speech difficulties started early and were a major problem for many patients at least until 10 years of age. Ten patients developed kyphoscoliosis in late childhood. In teenagers and adults, abnormal social behavior, learning disabilities, and psychiatric symptoms dominated. Our study which also includes adult patients emphasizes a marked change in challenges in individuals with the 22q11.2 deletion syndrome with increasing age. PMID:20186429

  15. Review of disrupted sleep patterns in Smith-Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion.

    PubMed

    Boudreau, Eilis A; Johnson, Kyle P; Jackman, Angela R; Blancato, Jan; Huizing, Marjan; Bendavid, Claude; Jones, Marypat; Chandrasekharappa, Settara C; Lewy, Alfred J; Smith, Ann C M; Magenis, R Ellen

    2009-07-01

    Smith-Magenis syndrome (SMS) is a disorder characterized by multiple congenital anomalies and behavior problems, including abnormal sleep patterns. It is most commonly due to a 3.5 Mb interstitial deletion of chromosome 17 band p11.2. Secretion of melatonin, a hormone produced by the pineal gland, is the body's signal for nighttime darkness. Published reports of 24-hr melatonin secretion patterns in two independent SMS cohorts (US and France) document an inverted endogenous melatonin pattern in virtually all cases (96%), suggesting that this finding is pathognomic for the syndrome. We report on a woman with SMS due to an atypical large proximal deletion ( approximately 6Mb; cen<->TNFRSFproteinB) of chromosome band (17)(p11.2p11.2) who presents with typical sleep disturbances but a normal pattern of melatonin secretion. We further describe a melatonin light suppression test in this patient. This is the second reported patient with a normal endogenous melatonin rhythm in SMS associated with an atypical large deletion. These two patients are significant because they suggest that the sleep disturbances in SMS cannot be solely attributed to the abnormal diurnal melatonin secretion versus the normal nocturnal pattern. PMID:19530184

  16. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions

    PubMed Central

    Dubourg, C.; Bonnet-Brilhault, F.; Toutain, A.; Mignot, C.; Jacquette, A.; Dieux, A.; Gérard, M.; Beaumont-Epinette, M.-P.; Julia, S.; Isidor, B.; Rossi, M.; Odent, S.; Bendavid, C.; Barthélémy, C.; Verloes, A.; David, V.

    2014-01-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions. PMID:24715852

  17. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions.

    PubMed

    Dubourg, C; Bonnet-Brilhault, F; Toutain, A; Mignot, C; Jacquette, A; Dieux, A; Gérard, M; Beaumont-Epinette, M-P; Julia, S; Isidor, B; Rossi, M; Odent, S; Bendavid, C; Barthélémy, C; Verloes, A; David, V

    2014-02-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions. PMID:24715852

  18. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome

    PubMed Central

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-01-01

    Background SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin–Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. Methods We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. Results We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin–Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. Conclusions We thus propose that SOX11 deletion or mutation can present with a Coffin–Siris phenotype. PMID:26543203

  19. 35-Year Follow-Up of a Case of Ring Chromosome 2: Array-CGH Analysis and Literature Review of the Ring Syndrome.

    PubMed

    Sarri, Catherine; Douzgou, Sofia; Kontos, Haris; Anagnostopoulou, Katherine; Tmer, Zeynep; Grigoriadou, Maria; Petersen, Michael B; Kokotas, Haris; Merou, Konstantina; Pandelia, Efi; Giouroukou, Elena; Papanikolaou, Katerina; Ct, Gilbert B; Gyftodimou, Yolanda

    2015-01-01

    Ct et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and mild to moderate mental retardation. We reconsidered the ring chromosome 2 case previously published by Ct et al. [1981], and we characterized it by array CGH, polymorphic markers as well as subtelomere MLPA and FISH analysis. A terminal deletion (q37.3qter) of maternal origin of the long arm of the ring chromosome 2 was detected and confirmed by all the above-mentioned methods. Ring chromosome 2 cases are exceedingly rare. Only 18 cases, including the present one, have been published so far, and our patient is the longest reported survivor, with a 35-year follow-up, and the third case characterized by array-CGH analysis. PMID:25997743

  20. The subtelomeric region is important for chromosome recognition and pairing during meiosis

    PubMed Central

    Calderón, María del Carmen; Rey, María-Dolores; Cabrera, Adoración; Prieto, Pilar

    2014-01-01

    The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing. PMID:25270583

  1. Inefficient search of large-scale space in Williams syndrome: further insights on the role of LIMK1 deletion in deficits of spatial cognition.

    PubMed

    Smith, Alastair D; Gilchrist, Iain D; Hood, Bruce; Tassabehji, May; Karmiloff-Smith, Annette

    2009-01-01

    Williams syndrome (WS) is a genetic disorder associated with impairments of spatial cognition. This has primarily been studied in small-scale space, and rarely in large-scale environments. In order to fully characterise the spatial deficits in WS, and also to address claims that the deletion of LIM-kinase 1 (LIMK1) on chromosome 7 is responsible for those deficits, we report an automated large-scale search task for humans that places the participant egocentrically within the search space. Search locations were defined as lights and switches embedded in the floor, and participants attempted to locate a hidden target by pressing the switch at potential locations. We compared individuals with WS to patients with smaller deletions (including LIMK1) in the critical region on chromosome 7. Whilst partial-deletion participants performed efficiently on the task, participants with WS demonstrated inefficient search profiles: their search slopes were steeper and they made significantly more erroneous revisits to previously inspected locations. Our findings indicate that spatial deficits associated with WS also affect large-scale spatial processing and suggest that hemizygous deletion of LIMK1 is not sufficient to account for any of the spatial deficits associated with WS. PMID:19662944

  2. Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam.

    PubMed

    Hoa, Tran Thi Tuyet; Zwart, Mark P; Phuong, Nguyen T; Oanh, Dang T H; de Jong, Mart C M; Vlak, Just M

    2012-06-13

    Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most variable. Here we examined the nature of these 2 indel regions in 313 WSSV-infected Penaeus monodon shrimp collected between 2006 and 2009 from 76 aquaculture ponds in the Mekong Delta region of Vietnam. In the Indel-I region, 2 WSSV genotypes with deletions of either 5950 or 6031 bp in length compared with that of a reference strain from Thailand (WSSV-TH-96-II) were detected. In the Indel-II region, 4 WSSV genotypes with deletions of 8539, 10970, 11049 or 11866 bp in length compared with that of a reference strain from Taiwan (WSSV-TW) were detected, and the 8539 and 10970 bp genotypes predominated. Indel-II variants with longer deletions were found to correlate statistically with WSSV-diseased shrimp originating from more intensive farming systems. Like Indel-I lengths, Indel-II lengths also varied based on the Mekong Delta province from which farmed shrimp were collected. PMID:22691984

  3. A complex Xp11.22 deletion in a patient with syndromic autism: exploration of FAM120C as a positional candidate gene for autism.

    PubMed

    De Wolf, Veerle; Crepel, An; Schuit, Frans; van Lommel, Leentje; Ceulemans, Berten; Steyaert, Jean; Seuntjens, Eve; Peeters, Hilde; Devriendt, Koen

    2014-12-01

    We present a male patient with sporadic Aarskog syndrome, cleft palate, mild intellectual disability, and autism spectrum disorder (ASD). A submicroscopic discontiguous deletion was detected on chromosome Xp11.2 encompassing FGD1, FAM120C, and PHF8. That the deletion encompassed FGD1 (exons 2-8) explains the Aarskog features while the deletion of PHF8 most likely explains the cleft palate and mild intellectual disability. We identify FAM120C as a novel X-linked candidate gene for autism for two reasons: first, a larger deletion encompassing FAM120C segregates with autism in a previously reported family and second, there is recent evidence that FAM120C interacts with CYFIP1, part of the FMRP (Fragile X Mental Retardation Protein) network. In the current study, resequencing of FAM120C in 87 Belgian male patients with autism spectrum disorder identified no novel mutations. Expression of Fam120c in mouse tissues showed enriched expression in pituitary, cerebellum, cortex, and pancreatic islets of Langerhans. Additionally, we found a cortical expression pattern of Fam120c similar to that of Fmr1. In conclusion, FAM120C is a novel candidate gene for autism spectrum disorder based on genetic evidence and the brain expression pattern. Thereby we highlight a role for FMRP network genes in ASD. PMID:25258334

  4. Detection of deleted mitochondrial genomes in cytochrome-c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome

    SciTech Connect

    Mita, S.; Schmidt, B.; Schon, E.A.; DiMauro, S.; Bonilla, E. )

    1989-12-01

    Using in situ hybridization and immunocytochemistry, the authors studied a muscle biopsy sample from a patient with Kearns-Sayre syndrome (KSS) who had a deletion of mitochondrial DNA (mtDNA) and partial deficiency of cytochrome-c oxidase. They sought a relationship between COX deficiency and abnormalities of mtDNA at the single-fiber level. COX deficiency clearly correlated with a decrease of normal mtDNA and, conversely, deleted mtDNA was more abundant in COX-deficient fibers, especially ragged-red fibers. The distribution of mtRNA has a similar pattern, suggesting that deleted mtDNA is transcribed. Immunocytochemistry showed that the nuclear DNA-encoded subunit IV of COX was present but that the mtDNA-encoded subunit II was markedly diminished in COX-deficient ragged-red fibers. Because the mtDNA deletion in this patient did not comprise the gene encoding COX subunit II, COX deficiency may have resulted from lack of translation of mtRNA encoding all three mtDNA-encoded subunits of COX.

  5. Two families with isolated cat cry without the cri-du-chat syndrome phenotype have an inherited 5p15.3 deletion: Delineation of the larynx malformation region

    SciTech Connect

    Gersh, M.; Overhauser, J.; Pasztor, L.M.

    1994-09-01

    The cri-du-chat syndrome is a contiguous gene syndrome that results from a deletion of the short arm of chromosome 5 (5p). Patients present with a cat-like cry at birth that is usually considered diagnostic of this syndrome. Additional features of the syndrome include failure to thrive, microcephaly, hypertelorism, epicanthal folds, hypotonia, and severe mental retardation. We report on two families in which the patients with 5p deletions have only the characteristic cat-like cry with normal to mildly delayed development. One family has three children with varying levels of developmental delay and a deletion of 5p15.3 that was inherited from the father. The second family has a mother and daughter both presenting with a cat-like cry and normal intelligence. A de novo deletion in a patient with isolated cat cry and mild developmental delay was also identified. The precise locations of the deletions in each family were determined by fluorescent in situ hybridization using lambda phage, cosmids, and YAC clones. Cryptic translocations and mosaicism were not detected in the parents transmitting the deletion. All of the deletion breakpoints map distal to the previously defined cri-du-chat critical region. A YAC contig has been constructed for the chromosomal region implicated in the larynx malformation. DNA clones mapping in this region will be useful diagnostic tools for delineating 5p deletions that result in the typical features of cri-du-chat syndrome with deletions that result in the isolated cat-like cry feature which is associated with a better prognosis.

  6. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    SciTech Connect

    Brown, T.R.; Lubahn, D.B.; Wilson, E.M.; Joseph, D.R.; French, F.S.; Migeon, C.J. )

    1988-11-01

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the most probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.

  7. Real-Time Evolution of a Subtelomeric Gene Family in Candida albicans

    PubMed Central

    Anderson, Matthew Z.; Wigen, Lauren J.; Burrack, Laura S.; Berman, Judith

    2015-01-01

    Subtelomeric regions of the genome are notable for high rates of sequence evolution and rapid gene turnover. Evidence of subtelomeric evolution has relied heavily on comparisons of historical evolutionary patterns to infer trends and frequencies of these events. Here, we describe evolution of the subtelomeric TLO gene family in Candida albicans during laboratory passaging for over 4000 generations. C. albicans is a commensal and opportunistic pathogen of humans and the TLO gene family encodes a subunit of the Mediator complex that regulates transcription and affects a range of virulence factors. We identified 16 distinct subtelomeric recombination events that altered the TLO repertoire. Ectopic recombination between subtelomeres on different chromosome ends occurred approximately once per 5000 generations and was often followed by loss of heterozygosity, resulting in the complete loss of one TLO gene sequence with expansion of another. In one case, recombination within TLO genes produced a novel TLO gene sequence. TLO copy number changes were biased, with some TLOs preferentially being copied to novel chromosome arms and other TLO genes being frequently lost. The majority of these nonreciprocal recombination events occurred either within the 3′ end of the TLO coding sequence or within a conserved 50-bp sequence element centromere-proximal to TLO coding sequence. Thus, subtelomeric recombination is a rapid mechanism of generating genotypic diversity through alterations in the number and sequence of related gene family members. PMID:25956943

  8. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes.

    PubMed Central

    Rubio, J P; Thompson, J K; Cowman, A F

    1996-01-01

    PfEMP1, a Plasmodium falciparum-encoded protein on the surface of infected erythrocytes is a ligand that mediates binding to receptors on endothelial cells. The PfEMP1 protein, which is encoded by the large var gene family, shows antigenic variation and changes in binding phenotype associated with alterations in antigenicity. We have constructed a yeast artificial chromosome contig of chromosome 12 from P. falciparum and show that var genes are arranged in four clusters; two lie amongst repetitive subtelomeric sequences and two occur in the more conserved central region. Analysis of parasite chromosomes by pulsed field gel electrophoresis (PFGE) demonstrates that most contain var genes and two-dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex. Analysis of a var gene located in the subtelomeric region of chromosome 12 has shown that it has close homologues at the opposite end of the chromosome and in the subtelomeric region of two other chromosomes. This suggests that recombination between heterologous chromosomes has occurred in the subtelomeric regions of these chromosomes. The subtelomeric location of var genes dispersed amongst repetitive sequences has important implications for generation of antigenic variants and novel cytoadherent specificities of this protein. Images PMID:8670911

  9. Rhabdoid tumor predisposition syndrome caused by SMARCB1 constitutional deletion: prenatal detection of new case of recurrence in siblings due to gonadal mosaicism.

    PubMed

    Gigante, Laura; Paganini, Irene; Frontali, Marina; Ciabattoni, Serena; Sangiuolo, Federica Carla; Papi, Laura

    2016-01-01

    Rhabdoid tumors are aggressive malignancies that show loss-of-function mutations of SMARCB1 gene, a member of the SWI/SNF chromatin-remodeling complex controlling gene transcription. One-third of patients affected by rhabdoid tumor harbor a germ-line mutation of SMARCB1 defining a rhabdoid tumor predisposition syndrome. The occurrence of a second somatic mutation determines the development of neoplasia in a two-hit model. Most germ-line mutations occur de novo, and few cases of recurrence in a sibship have been described. Here we report on a new Italian family with recurrence of SMARCB1 germ-line deletion in two siblings due to gonadal mosaicism. The deletion was identified in the 9-month-old proband with malignant rhabdoid tumor of the right kidney and disseminated metastases. Testing of both parents confirmed the de novo origin of the mutation, but recurrence was then detected prenatally in a new pregnancy. This is the sixth family with malignant rhabdoid tumor predisposition syndrome with the recurrence of the same germ-line SMARCB1 mutation in the sibship but not in healthy parents, suggesting that gonadal mosaicism is a less rare event than supposed. The clinical outcome in our patient confirms previous data of poorer outcome in patients with rhabdoid tumor predisposition syndrome. PMID:26342593

  10. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    SciTech Connect

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. )

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  11. A 3.7 Mb Deletion Encompassing ZEB2 Causes a Novel Polled and Multisystemic Syndrome in the Progeny of a Somatic Mosaic Bull

    PubMed Central

    Capitan, Aurélien; Allais-Bonnet, Aurélie; Pinton, Alain; Marquant-Le Guienne, Brigitte; Le Bourhis, Daniel; Grohs, Cécile; Bouet, Stéphan; Clément, Laëtitia; Salas-Cortes, Laura; Venot, Eric; Chaffaux, Stéphane; Weiss, Bernard; Delpeuch, Arnaud; Noé, Guy; Rossignol, Marie-Noëlle; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Barasc, Harmonie; Auguste, Aurélie; Pannetier, Maëlle; Deloche, Marie-Christine; Lhuilier, Emeline; Bouchez, Olivier; Esquerré, Diane; Salin, Gérald; Klopp, Christophe; Donnadieu, Cécile; Chantry-Darmon, Céline; Hayes, Hélène; Gallard, Yves; Ponsart, Claire; Boichard, Didier; Pailhoux, Eric

    2012-01-01

    Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. PMID:23152852

  12. A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull.

    PubMed

    Capitan, Aurélien; Allais-Bonnet, Aurélie; Pinton, Alain; Marquant-Le Guienne, Brigitte; Le Bourhis, Daniel; Grohs, Cécile; Bouet, Stéphan; Clément, Laëtitia; Salas-Cortes, Laura; Venot, Eric; Chaffaux, Stéphane; Weiss, Bernard; Delpeuch, Arnaud; Noé, Guy; Rossignol, Marie-Noëlle; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Barasc, Harmonie; Auguste, Aurélie; Pannetier, Maëlle; Deloche, Marie-Christine; Lhuilier, Emeline; Bouchez, Olivier; Esquerré, Diane; Salin, Gérald; Klopp, Christophe; Donnadieu, Cécile; Chantry-Darmon, Céline; Hayes, Hélène; Gallard, Yves; Ponsart, Claire; Boichard, Didier; Pailhoux, Eric

    2012-01-01

    Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. PMID:23152852

  13. Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci

    PubMed Central

    2011-01-01

    Background Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. The uterovaginal aplasia is either isolated (type I) or more frequently associated with other malformations (type II or Müllerian Renal Cervico-thoracic Somite (MURCS) association), some of which belong to the malformation spectrum of DiGeorge phenotype (DGS). Its etiology remains poorly understood. Thus the phenotypic manifestations of MRKH and DGS overlap suggesting a possible genetic link. This would potentially have clinical consequences. Methods We searched DiGeorge critical chromosomal regions for chromosomal anomalies in a cohort of 57 subjects with uterovaginal aplasia (55 women and 2 aborted fetuses). For this candidate locus approach, we used a multiplex ligation-dependent probe amplification (MLPA) assay based on a kit designed for investigation of the chromosomal regions known to be involved in DGS. The deletions detected were validated by Duplex PCR/liquid chromatography (DP/LC) and/or array-CGH analysis. Results We found deletions in four probands within the four chromosomal loci 4q34-qter, 8p23.1, 10p14 and 22q11.2 implicated in almost all cases of DGS syndrome. Conclusion Uterovaginal aplasia appears to be an additional feature of the broad spectrum of the DGS phenotype. The DiGeorge critical chromosomal regions may be candidate loci for a subset of MRKH syndrome (MURCS association) individuals. However, the genes mapping at the sites of these deletions involved in uterovaginal anomalies remain to be determined. These findings have consequences for clinical investigations, the care of patients and their relatives, and genetic counseling. PMID:21406098

  14. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  15. A submicroscopic deletion involving part of the CREBBP gene detected by array-CGH in a patient with Rubinstein-Taybi syndrome.

    PubMed

    Lai, Angeline H M; Brett, Maggie S; Chin, Wai-Hoe; Lim, Eileen C P; Ng, Jasmine S H; Tan, Ene-Choo

    2012-05-10

    We report a girl with Rubinstein-Taybi syndrome (RSTS) who was found to have copy number loss on 16p13.3 by array-CGH. She has developmental delay and other features of RSTS including downslanting palpebral fissures, a prominent nose with the nasal septum extending below the alae nasi, broad thumbs and big toes, postaxial polydactyly of the right foot and constipation from birth. We report the junction sequence across the breakpoint region for a microdeletion in RSTS. The sequencing results also showed that the deletion was 81.4kb involving three genes DNASE 1, TRAP 1, and CREBBP. PMID:22426292

  16. Prospective Control Abilities during Visuo-Manual Tracking in Children with 22q11.2 Deletion Syndrome Compared to Age- and IQ-Matched Controls

    ERIC Educational Resources Information Center

    Van Aken, Katrijn; Swillen, Ann; Beirinckx, Marc; Janssens, Luc; Caeyenberghs, Karen; Smits-Engelsman, Bouwien

    2010-01-01

    To examine whether children with a 22q11.2 Deletion syndrome (22q11.2DS) are able to use prospective control, 21 children with 22q11.2DS (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.05 [plus or minus] 10.2) and 21 control children (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.38 [plus or minus] 12.0) were asked to perform a visuo-manual

  17. Prospective Control Abilities during Visuo-Manual Tracking in Children with 22q11.2 Deletion Syndrome Compared to Age- and IQ-Matched Controls

    ERIC Educational Resources Information Center

    Van Aken, Katrijn; Swillen, Ann; Beirinckx, Marc; Janssens, Luc; Caeyenberghs, Karen; Smits-Engelsman, Bouwien

    2010-01-01

    To examine whether children with a 22q11.2 Deletion syndrome (22q11.2DS) are able to use prospective control, 21 children with 22q11.2DS (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.05 [plus or minus] 10.2) and 21 control children (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.38 [plus or minus] 12.0) were asked to perform a visuo-manual…

  18. Chromosome 20p inverted duplication deletion identified in a Thai female adult with mental retardation, obesity, chronic kidney disease and characteristic facial features.

    PubMed

    Trachoo, Objoon; Assanatham, Montira; Jinawath, Natini; Nongnuch, Arkom

    2013-06-01

    We report on a 21-year-old Thai woman presenting with mental retardation, developmental delays, selective mutism, distinctive facial features, sensorineural hearing loss, single right kidney, uterine didelphys and obesity. A longitudinal clinical course beginning in childhood revealed excessive weight gain, poor language skills and poor school performance. Chronic kidney disease stage 4, with elevated blood pressure, was first noted in adulthood. Array comparative genomic hybridization detected a copy loss at 20p13 co-existing with a copy gain at 20p13-20p11.22. A conventional cytogenetic study revealed the complex structural rearrangement of chromosome 20 [der (20) dup (20) (p11.2p13) del (20) (p13.pter)]. A FISH analysis, using probes against duplication and deletion regions, confirmed that there was an inverted duplication of p11.2-p13 and a deletion in the subtelomere region. Previous reports have identified this cytogenetic characterization in a Caucasian boy. Therefore, this is the first reported case of chromosome 20p inverted duplication deletion syndrome in an adult from the Southeast Asian population group. PMID:23542666

  19. A novel mitochondrial DNA deletion in a patient with Pearson syndrome and neonatal diabetes mellitus provides insight into disease etiology, severity and progression.

    PubMed

    Chen, Xin-Yu; Zhao, Si-Yu; Wang, Yan; Wang, Dong; Dong, Chang-Hu; Yang, Ying; Wang, Zhi-Hua; Wu, Yuan-Ming

    2016-07-01

    Pearson syndrome (PS) is a rare, mitochondrial DNA (mtDNA) deletion disorder mainly affecting hematopoietic system and exocrine pancreas in early infancy, which is characterized by multi-organ involvement, variable manifestations and poor prognosis. Since the clinical complexity and uncertain outcome of PS, the ability to early diagnose and anticipate disease progression is of great clinical importance. We described a patient with severe anemia and hyperglycinemia at birth was diagnosed with neonatal diabetes mellitus, and later with PS. Genetic testing revealed that a novel mtDNA deletion existed in various non-invasive tissues from the patient. The disease course was monitored by mtDNA deletion heteroplasmy and mtDNA/nucleus DNA genome ratio in different tissues and at different time points, showing a potential genotype-phenotype correlation. Our findings suggest that for patient suspected for PS, it may be therapeutically important to first perform detailed mtDNA analysis on non-invasive tissues at the initial diagnosis and during disease progression. PMID:26016877

  20. Currarino Syndrome and HPE Microform Associated with a 2.7-Mb Deletion in 7q36.3 Excluding SHH Gene

    PubMed Central

    Coutton, C.; Poreau, B.; Devillard, F.; Durand, C.; Odent, S.; Rozel, C.; Vieville, G.; Amblard, F.; Jouk, P.-S.; Satre, V.

    2014-01-01

    Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon and can be caused by environmental and genetic factors. HPE is usually described as a continuum of brain malformations from the most severe alobar HPE to the middle interhemispheric fusion variant or syntelencephaly. A microform of HPE is limited to craniofacial features such as congenital nasal pyriform aperture stenosis and single central maxillary incisor, without brain malformation. Among the heterogeneous causes of HPE, point mutations and deletions in the SHH gene at 7q36 have been identified as well as extremely rare chromosomal rearrangements in the long-range enhancers of this gene. Here, we report a boy with an HPE microform associated with a Currarino syndrome. Array CGH detected a de novo 2.7-Mb deletion in the 7q36.3 region including the MNX1 gene, usually responsible for the Currarino triad but excluding SHH, which is just outside the deletion. This new case provides further evidence of the importance of the SHH long-range enhancers in the HPE spectrum. PMID:24550762

  1. Currarino Syndrome and HPE Microform Associated with a 2.7-Mb Deletion in 7q36.3 Excluding SHH Gene.

    PubMed

    Coutton, C; Poreau, B; Devillard, F; Durand, C; Odent, S; Rozel, C; Vieville, G; Amblard, F; Jouk, P-S; Satre, V

    2014-01-01

    Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon and can be caused by environmental and genetic factors. HPE is usually described as a continuum of brain malformations from the most severe alobar HPE to the middle interhemispheric fusion variant or syntelencephaly. A microform of HPE is limited to craniofacial features such as congenital nasal pyriform aperture stenosis and single central maxillary incisor, without brain malformation. Among the heterogeneous causes of HPE, point mutations and deletions in the SHH gene at 7q36 have been identified as well as extremely rare chromosomal rearrangements in the long-range enhancers of this gene. Here, we report a boy with an HPE microform associated with a Currarino syndrome. Array CGH detected a de novo 2.7-Mb deletion in the 7q36.3 region including the MNX1 gene, usually responsible for the Currarino triad but excluding SHH, which is just outside the deletion. This new case provides further evidence of the importance of the SHH long-range enhancers in the HPE spectrum. PMID:24550762

  2. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis.

    PubMed

    Gu, Heng; Jiang, Jian-hui; Li, Jian-ying; Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family. PMID:24143197

  3. A Familial Cri-du-Chat/5p Deletion Syndrome Resulted from Rare Maternal Complex Chromosomal Rearrangements (CCRs) and/or Possible Chromosome 5p Chromothripsis

    PubMed Central

    Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family. PMID:24143197

  4. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype

    SciTech Connect

    Mewar, R.; Harrison, W.; Weaver, D.D.; Palmer, C.; Davee, M.A.; Overhauser, J.

    1994-08-15

    We report on an infant who presented at birth with some characteristics of trisomy 18 syndrome, including low birth weight, facial abnormalities, overlapping fingers, and congenital heart defects. On chromosome analysis, no additional chromosome 18 was observed and both chromosome 18 homologues appeared normal. However, a small piece of chromosomal material of unknown origin was detected at the tip of the long arm of chromosome 1. Fluorescence in situ hybridization (FISH) using whole chromosome 18 painting probes disclosed no additional hybridization at the telomere of 1q, suggesting that the material was derived from another chromosome. Further chromosome painting experiments suggested that the telomeric addition was of chromosome 1 origin. To identify subchromosomal regions involved in the rearrangement, additional FISH analyses were performed using single copy and repetitive DNA probes mapping different portions of chromosome 1. The analyses showed that probes mapping to 1q34-43 were duplicated in the derivative chromosome 1. In addition, a DNA probe mapping to 1q44 was found to be deleted from the derivative chromosome 1. Our composite analysis suggests that a deletion and a duplication of chromosome 1q can result in some of the clinical findings usually associated with trisomy 16 syndrome. These results demonstrate the usefulness of FISH analysis when karyotype analysis is not consistent with the clinical description. 23 refs., 3 figs., 2 tabs.

  5. Interstitial deletions are not the main mechanism leading to 18q deletions

    SciTech Connect

    Strathdee, G.; Harrison, W.; Goodart, S.A.; Overhauser, J. ); Riethman, H.C. )

    1994-06-01

    Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions. 30 refs., 3 figs.

  6. An unusual phenotype of MEN1 syndrome with a SI-NEN associated with a deletion of the MEN1 gene

    PubMed Central

    Lopez, Caroline L; Hackmann, Karl; Albers, Max B; Pehl, Anika; Kann, Peter H; Slater, Emily P; Schröck, Evelin; Bartsch, Detlef K

    2016-01-01

    Summary We report about a young female who developed an unusual and an aggressive phenotype of the MEN1 syndrome characterized by the development of a pHPT, malignant non-functioning pancreatic and duodenal neuroendocrine neoplasias, a pituitary adenoma, a non-functioning adrenal adenoma and also a malignant jejunal NET at the age of 37 years. Initial Sanger sequencing could not detect a germline mutation of the MEN1 gene, but next generation sequencing and MPLA revealed a deletion of the MEN1 gene ranging between 7.6 and 25.9 kb. Small intestine neuroendocrine neoplasias (SI-NENs) are currently not considered to be a part of the phenotype of the MEN1-syndrome. In our patient the SI-NENs were detected during follow-up imaging on Ga68-Dotatoc PET/CT and could be completely resected. Although SI-NENs are extremely rare, these tumors should also be considered in MEN1 patients. Whether an aggressive phenotype or the occurrence of SI-NENs in MEN1 are more likely associated with large deletions of the gene warrants further investigation. Learning points Our patient presents an extraordinary course of disease.Although SI-NENs are extremely rare, these tumors should also be considered in MEN1 patients, besides the typical MEN1 associated tumors.This case reports indicate that in some cases conventional mutation analysis of MEN1 patients should be supplemented by the search for larger gene deletions with modern techniques, if no germline mutation could be identified by Sanger sequencing. PMID:27076911

  7. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    PubMed

    Vilboux, Thierry; Ciccone, Carla; Blancato, Jan K; Cox, Gerald F; Deshpande, Charu; Introne, Wendy J; Gahl, William A; Smith, Ann C M; Huizing, Marjan

    2011-01-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS. PMID:21857958

  8. In-frame multi-exon deletion of SMC1A in a severely affected female with Cornelia de Lange Syndrome.

    PubMed

    Hoppman-Chaney, Nicole; Jang, Jin Sung; Jen, Jin; Babovic-Vuksanovic, Dusica; Hodge, Jennelle C

    2012-01-01

    Cornelia de Lange Syndrome (CdLS) is a genetically heterogeneous disorder characterized by dysmorphic facial features, cleft palate, limb defects, growth retardation, and developmental delay. Approximately 60% of patients with CdLS have an identifiable mutation in the NIPBL gene at 5p13.2. Recently, an X-linked form of CdLS with a generally milder phenotype was attributed to mutation of the structural maintenance of chromosomes 1A gene (SMC1A) at Xp11.22. Relatively few CdLS patients with mutations in SMC1A are known; female carriers have minor facial dysmorphism and cognitive deficiency without major structural abnormalities. To date, all mutations identified in SMC1A are missense or small in-frame deletions that preserve the open reading frame of the gene and likely have a dominant-negative effect. We report on a female with monosomy X mosaicism and a phenotype suggestive of a severe form of CdLS who presented with growth and mental retardation, multiple congenital anomalies, and facial dysmorphism. Array CGH confirmed mosaic monosomy X and identified a novel deletion of SMC1A spanning multiple exons, suggesting a possible loss-of-function effect. Sequencing of both genomic and cDNA demonstrated an 8,152?bp deletion of genomic DNA from exon 13 to intron 16. Although a loss-of-function effect cannot be excluded, the resulting mRNA remains in-frame and is expressed in peripheral blood lymphocytes, suggesting a dominant-negative effect. We hypothesize that the size of this deletion compared to previously reported mutations may account for this patient's severe CdLS phenotype. The presence of mosaic monosomy X may also modify the phenotype. PMID:22106055

  9. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

    PubMed Central

    Jalbrzikowski, Maria; Lazaro, Maria T.; Gao, Fuying; Huang, Alden; Chow, Carolyn; Geschwind, Daniel H.

    2015-01-01

    Background 22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes. Methods We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE) and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases. Results Eighty-five percent of 22q11DS individuals (N = 39) carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7). DE analysis and weighted gene co-expression network analysis (WGCNA) identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD. Conclusion These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD. PMID:26201030

  10. Contribution of Congenital Heart Disease to Neuropsychiatric Outcome in School-Age Children with 22q11.2 Deletion Syndrome

    PubMed Central

    Yi, James J.; Tang, Sunny X.; McDonald-McGinn, Donna M.; Calkins, Monica E.; Whinna, Daneen A.; Souders, Margaret C.; Zackai, Elaine H.; Goldmuntz, Elizabeth; Gaynor, James W.; Gur, Ruben C.; Emanuel, Beverly S.; Gur, Raquel E.

    2014-01-01

    Children with 22q11.2 deletion syndrome (22q11DS) present with congenital heart disease (CHD) and high prevalence of psychiatric disorders and neurocognitive deficits. Although CHD has been implicated in neurodevelopment, its role in the neuropsychiatric outcome in 22q11DS is poorly understood. We investigated whether CHD contributes to the high prevalence of psychiatric disorders and neurocognitive impairments in 22q11DS. Fifty-four children ages 8–14 years with 22q11DS and 16 age-matched non-deleted children with CHD participated. They were assessed using semi-structured interviews and a Computerized Neurocognitive Battery. CHD status was assessed using available medical records. Prevalence of psychiatric disorders and cognitive profiles were compared among the groups. There were no significant differences between the prevalence of psychiatric disorders in the 22q11DS with and without CHD. In 22q11DS with CHD, the prevalence rates were 41% anxiety disorders, 37% ADHD and 71% psychosis spectrum. In 22q11DS without CHD, the rates were 33% anxiety disorders, 41% ADHD and 64% psychosis spectrum. In comparison, the non-deleted CHD group had lower rates of psychopathology (25% anxiety disorders, 6% ADHD, and 13% psychosis spectrum). Similarly, the 22q11DS groups, regardless of CHD status, had significantly greater neurocognitive deficits across multiple domains, compared to the CHD-only group. We conclude that CHD in this sample of children with 22q11.2DS does not have a major impact on the prevalence of psychiatric disorders and is not associated with increased neurocognitive deficits. These findings suggest that the 22q11.2 deletion status itself may confer significant neuropsychiatric vulnerability in this population. PMID:24265253

  11. High level of full-length cereblon mRNA in lower risk myelodysplastic syndrome with isolated 5q deletion is implicated in the efficacy of lenalidomide.

    PubMed

    Jonasova, Anna; Bokorova, Radka; Polak, Jaroslav; Vostry, Martin; Kostecka, Arnost; Hajkova, Hana; Neuwirtova, Radana; Siskova, Magda; Sponerova, Dana; Cermak, Jaroslav; Mikulenkova, Dana; Cervinek, Libor; Brezinova, Jana; Michalova, Kyra; Fuchs, Ota

    2015-07-01

    Downregulation of cereblon (CRBN) gene expression is associated with resistance to the immunomodulatory drug lenalidomide and poor survival outcomes in multiple myeloma (MM) patients. However, the importance of CRBN gene expression in patients with myelodysplastic syndrome (MDS) and its impact on lenalidomide therapy are not clear. In this study, we evaluate cereblon expression in mononuclear cells isolated from bone marrow [23 lower risk MDS patients with isolated 5q deletion (5q-), 37 lower risk MDS patients with chromosome 5 without the deletion of long arms (non-5q-), and 24 healthy controls] and from peripheral blood (38 patients with 5q-, 52 non-5q- patients and 25 healthy controls) to gain insight into, firstly, the role of cereblon in lower risk MDS patients with or without 5q deletion and, secondly, into the mechanisms of lenalidomide action. Patients with 5q- lower risk MDS have the highest levels of CRBN mRNA in comparison with both lower risk MDS without the deletion of long arms of chromosome 5 and healthy controls. CRBN gene expression was measured using the quantitative TaqMan real-time PCR. High levels of CRBN mRNA were detected in all lenalidomide responders during the course of therapy. A significant decrease of the CRBN mRNA level during lenalidomide treatment is associated with loss of response to treatment and disease progression. These results suggest that, similar to the treatment of MM, high levels of full-length CRBN mRNA in lower risk 5q- patients are necessary for the efficacy of lenalidomide. PMID:25284710

  12. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection

    PubMed Central

    Deng, Zhong; Wang, Zhuo; Stong, Nick; Plasschaert, Robert; Moczan, Aliah; Chen, Horng-Shen; Hu, Sufeng; Wikramasinghe, Priyankara; Davuluri, Ramana V; Bartolomei, Marisa S; Riethman, Harold; Lieberman, Paul M

    2012-01-01

    The contribution of human subtelomeric DNA and chromatin organization to telomere integrity and chromosome end protection is not yet understood in molecular detail. Here, we show by ChIP-Seq that most human subtelomeres contain a CTCF- and cohesin-binding site within ∼1–2 kb of the TTAGGG repeat tract and adjacent to a CpG-islands implicated in TERRA transcription control. ChIP-Seq also revealed that RNA polymerase II (RNAPII) was enriched at sites adjacent to the CTCF sites and extending towards the telomere repeat tracts. Mutation of CTCF-binding sites in plasmid-borne promoters reduced transcriptional activity in an orientation-dependent manner. Depletion of CTCF by shRNA led to a decrease in TERRA transcription, and a loss of cohesin and RNAPII binding to the subtelomeres. Depletion of either CTCF or cohesin subunit Rad21 caused telomere-induced DNA damage foci (TIF) formation, and destabilized TRF1 and TRF2 binding to the TTAGGG proximal subtelomere DNA. These findings indicate that CTCF and cohesin are integral components of most human subtelomeres, and important for the regulation of TERRA transcription and telomere end protection. PMID:23010778

  13. Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome

    PubMed Central

    Mlynarski, Elisabeth E.; Sheridan, Molly B.; Xie, Michael; Guo, Tingwei; Racedo, Silvia E.; McDonald-McGinn, Donna M.; Gai, Xiaowu; Chow, Eva W.C.; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J.; Roberts, Amy E.; Piotrowicz, Małgorzata; Bearden, Carrie E.; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R.; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Shaikh, Tamim H.; Bassett, Anne S.; Goldmuntz, Elizabeth; Morrow, Bernice E.; Emanuel, Beverly S.

    2015-01-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10−3, two-tailed Fisher’s exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10−2, two-tailed Fisher’s exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10−4, two-tailed Fisher’s exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS. PMID:25892112

  14. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders.

    PubMed

    Deutsch, Stephen I; Burket, Jessica A; Benson, Andrew D; Urbano, Maria R

    2016-01-01

    Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation. PMID:26257138

  15. Longitudinal Follow-up of Autism Spectrum Features and Sensory Behaviors in Angelman Syndrome by Deletion Class

    ERIC Educational Resources Information Center

    Peters, Sarika U.; Horowitz, Lucia; Barbieri-Welge, Rene; Taylor, Julie Lounds; Hundley, Rachel J.

    2012-01-01

    Background: Angelman syndrome (AS) is a neurogenetic disorder characterized by severe intellectual disability, lack of speech, and low threshold for laughter; it is considered a "syndromic" form of autism spectrum disorder (ASD). Previous studies have indicated overlap of ASD and AS, primarily in individuals with larger (approximately 6 Mb) Class…

  16. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    PubMed

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ∼2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism. PMID:25195018

  17. Caregiver and Adult Patient Perspectives on the Importance of a Diagnosis of 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Costain, G.; Chow, E. W. C.; Ray, P. N.; Bassett, A. S.

    2012-01-01

    Background: Recent advances in genetics are particularly relevant in the field of intellectual disability (ID), where sub-microscopic deletions or duplications of genetic material are increasingly implicated as known or suspected causal factors. Data-driven reports on the impact of providing an aetiological explanation in ID are needed to help…

  18. 16p11.2 Deletion Syndrome Mice Display Sensory and Ultrasonic Vocalization Deficits During Social Interactions.

    PubMed

    Yang, Mu; Mahrt, Elena J; Lewis, Freeman; Foley, Gillian; Portmann, Thomas; Dolmetsch, Ricardo E; Portfors, Christine V; Crawley, Jacqueline N

    2015-10-01

    Recurrent deletions and duplications at chromosomal region 16p11.2 are variably associated with speech delay, autism spectrum disorder, developmental delay, schizophrenia, and cognitive impairments. Social communication deficits are a primary diagnostic symptom of autism. Here we investigated ultrasonic vocalizations (USVs) in young adult male 16p11.2 deletion mice during a novel three-phase male-female social interaction test that detects vocalizations emitted by a male in the presence of an estrous female, how the male changes its calling when the female is suddenly absent, and the extent to which calls resume when the female returns. Strikingly fewer vocalizations were detected in two independent cohorts of 16p11.2 heterozygous deletion males (+/-) during the first exposure to an unfamiliar estrous female, as compared to wildtype littermates (+/+). When the female was removed, +/+ emitted calls, but at a much lower level, whereas +/- males called minimally. Sensory and motor abnormalities were detected in +/-, including higher nociceptive thresholds, a complete absence of acoustic startle responses, and hearing loss in all +/- as confirmed by lack of auditory brainstem responses to frequencies between 8 and 100 kHz. Stereotyped circling and backflipping appeared in a small percentage of individuals, as previously reported. However, these sensory and motor phenotypes could not directly explain the low vocalizations in 16p11.2 deletion mice, since (a) +/- males displayed normal abilities to emit vocalizations when the female was subsequently reintroduced, and (b) +/- vocalized less than +/+ to social odor cues delivered on an inanimate cotton swab. Our findings support the concept that mouse USVs in social settings represent a response to social cues, and that 16p11.2 deletion mice are deficient in their initial USVs responses to novel social cues. PMID:25663600

  19. Familiar Hypopigmentation Syndrome in Sheep Associated with Homozygous Deletion of the Entire Endothelin Type-B Receptor Gene

    PubMed Central

    Lühken, Gesine; Fleck, Katharina; Pauciullo, Alfredo; Huisinga, Maike; Erhardt, Georg

    2012-01-01

    In humans, rodents and horses, pigmentary anomalies in combination with other disorders, notably intestinal aganglionosis, are associated with variants of the endothelin type-B receptor gene (EDNRB). In an inbred Cameroon sheep flock, five white lambs with light blue eyes were sired from the same ram and died within a few hours up to a few days after birth, some of them with signs of intestinal obstruction. The aim of this study was to investigate if the observed hypopigmentation and a possible lethal condition were associated with a molecular change at the ovine EDNRB locus, and to check if such a genetic alteration also occurs in other Cameroon sheep flocks. Sequence analysis revealed a deletion of about 110 kb on sheep chromosome 10, comprising the entire EDNRB gene, on both chromosomes in the two available hypopigmented lambs and on a single chromosome in the two dams and three other unaffected relatives. This micro-chromosomal deletion was also confirmed by quantitative real-time PCR and by fluorescence in situ hybridization. Genotyping of a total of 127 Cameroon sheep in 7 other flocks by duplex PCR did not identify additional carriers of the deletion. Although both hypopigmented lambs available for post-mortem examination had a considerably dilated cecum and remaining meconium, histopathological examination of intestinal samples showed morphologically normal ganglion cells in appropriate number and distribution. This is to our knowledge the first description of an ENDRB gene deletion and associated clinical signs in a mammalian species different from humans and rodents. In humans and rats it is postulated that the variable presence and severity of intestinal aganglionosis and other features in individuals with EDNRB deletion is due to a variable genetic background and multiple gene interactions. Therefore the here analyzed sheep are a valuable animal model to test these hypotheses in another species. PMID:23300849

  20. Familial co-segregation of Coffin-Lowry syndrome inherited from the mother and autosomal dominant Waardenburg type IV syndrome due to deletion of EDNRB inherited from the father.

    PubMed

    Loupe, Jacob; Sampath, Srirangan; Lacassie, Yves

    2014-10-01

    We report an African-American family that was identified after the proposita was referred for diagnostic evaluation at 4½ months with a history of Hirschsprung and dysmorphic features typical of Waardenburg syndrome (WS). Family evaluation revealed that the father had heterochromidia irides and hypertelorism supporting the clinical diagnosis of WS; however, examination of the mother revealed characteristic facial and digital features of Coffin-Lowry syndrome (CLS). Molecular testing of the mother identified a novel 2 bp deletion (c.865_866delCA) in codon 289 of RPS6KA3 leading to a frame-shift and premature termination of translation 5 codons downstream (NM_004586.2:p.Gln289ValfsX5). This deletion also was identified in the proposita and her three sisters with a clinical suspicion of CLS, all of whom as carriers for this X-linked disorder had very subtle manifestations. The molecular confirmation of WS type 4 (Shah-Waardenburg; WS4) was not as straightforward. To evaluate WS types 1-4, multiple sequential molecular tests were requested, including Sanger sequencing of all exons, and deletion/duplication analysis using MLPA for PAX3, MITF, SOX10, EDN3 and EDNRB. Although sequencing did not identify any disease causing variants, MLPA identified a heterozygous deletion of the entire EDNRB in the father. This deletion was also found in the proposita and the oldest child. Since the heterozygous deletion was the only change identified in EDNRB, this family represents one of the few cases of an autosomal dominant inheritance of WS4 involving the endothelin pathway. Altogether, clinical evaluation of the family revealed one child to be positive for WS4 and two positive for CLS, while two children were positive for both diseases simultaneously (including the proposita) while another pair test negative for either disease. This kinship is an example of the coincidence of two conditions co-segregating in one family, with variable phenotypes requiring molecular testing to confirm the clinical diagnoses. PMID:25118007

  1. Expressed var genes are found in Plasmodium falciparum subtelomeric regions.

    PubMed Central

    Hernandez-Rivas, R; Mattei, D; Sterkers, Y; Peterson, D S; Wellems, T E; Scherf, A

    1997-01-01

    The antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes are modulated by a family of variant surface proteins encoded by the var multigene family. The var genes occur on multiple chromosomes, often in clusters, and 50 to 150 genes are estimated to be present in the haploid parasite genome. Transcripts from var genes have been previously mapped to internal chromosome positions, but the generality of such assignments and the expression sites and mechanisms that control switches of var gene expression are still in early stages of investigation. Here we describe investigations of closely related var genes that occur in association with repetitive elements near the telomeres of P. falciparum chromosomes. DNA sequence analysis of one of these genes (FCR3-varT11-1) shows the characteristic two-exon structure encoding expected var features, including three variable Duffy binding-like (DBL) domains, a transmembrane sequence, and a carboxy-terminal segment thought to anchor the protein product in knobs at the surface of the parasitized erythrocyte. FCR3-varT11-1 cross-hybridizes with var genes located close to the telomeres of many other P. falciparum chromosomes, including a transcribed gene (FCR3-varT3-1) in chromosome 3 of the P. falciparum FCR3 line. The relatively high level transcription from this gene shows that the polymorphic chromosome ends of P. falciparum, which have been proposed to be transcriptionally silent, can be active expression sites for var genes. The pattern of the FCR3-varT11-1 and FCR3-varT3-1 genes are variable between different P. falciparum lines, presumably due to DNA rearrangements. Thus, recombination events in subtelomeric DNA may have a role in the expression of novel var forms. PMID:9001213

  2. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders

    PubMed Central

    Zufferey, Flore; Sherr, Elliott H; Beckmann, Noam D; Hanson, Ellen; Maillard, Anne M; Hippolyte, Loyse; Macé, Aurélien; Ferrari, Carina; Kutalik, Zoltán; Andrieux, Joris; Aylward, Elizabeth; Barker, Mandy; Bernier, Raphael; Bouquillon, Sonia; Conus, Philippe; Delobel, Bruno; Faucett, W Andrew; Goin-Kochel, Robin P; Grant, Ellen; Harewood, Louise; Hunter, Jill V; Lebon, Sébastien; Ledbetter, David H; Martin, Christa Lese; Männik, Katrin; Martinet, Danielle; Mukherjee, Pratik; Ramocki, Melissa B; Spence, Sarah J; Steinman, Kyle J; Tjernagel, Jennifer; Spiro, John E; Reymond, Alexandre; Beckmann, Jacques S; Chung, Wendy K; Jacquemont, Sébastien

    2012-01-01

    Background The recurrent ∼600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. Objective To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. Methods We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. Results When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. Conclusions The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases. PMID:23054248

  3. A familial GLI2 deletion (2q14.2) not associated with the holoprosencephaly syndrome phenotype.

    PubMed

    Kordaß, Ulrike; Schröder, Carmen; Elbracht, Miriam; Soellner, Lukas; Eggermann, Thomas

    2015-05-01

    Molecular alterations of the GLI2 gene in 2q14.2 are associated with features from the holoprosencephaly spectrum. However, the phenotype is extremely variable, ranging from unaffected mutation heterozygotes to isolated or combined pituitary hormone deficiency, and to patients with a phenotype that overlaps with holoprosencephaly, including abnormal pituitary gland formation/function, craniofacial dysmorphisms, branchial arch anomalies, and polydactyly. Although many point mutations within the GLI2 gene have been identified, large (sub) microscopic deletions affecting 2q14.2 are rare. We report on a family with a 4.3 Mb deletion in 2q14 affecting GLI2 without any dysmorphologic features belonging to the holoprosencephaly spectrum. This family confirms the incomplete penetrance of genomic disturbances affecting the GLI2 gene. However, the family presented here is unique as none of the three identified individuals with a GLI2 deletion showed any typical signs of holoprosencephaly, whereas all patients reported so far were referred for genetic testing because at least one member exhibited holoprosencephaly and related features. PMID:25820550

  4. Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome.

    PubMed

    Garcia, Amy M; Wakeman, Derek; Lu, Jianyun; Rowley, Christopher; Geisman, Taylor; Butler, Catherine; Bala, Shashi; Swietlicki, Elzbieta A; Warner, Brad W; Levin, Marc S; Rubin, Deborah C

    2014-09-15

    Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection. PMID:25059825

  5. Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients

    SciTech Connect

    Osborne, L.R.; Rommens, J.; Tsui, Lap-Chee

    1996-09-01

    Williams syndrome (WS) is a multisystem developmental disorder caused by the deletion of contiguous genes at 7q11.23. Hemizygosity of the elastin (ELN) gene can account for the vascular and connective tissue abnormalities observed in WS patients, but the genes that contribute to features such as infantile hypercalcemia, dysmorphic facies, and mental retardation remain to be identified. In addition, the size of the genomic interval commonly deleted in WS patients has not been established. In this study we report the characterization of a 500-kb region that was determined to be deleted in our collection of WS patients. A detailed physical map consisting of cosmid, P1 artificial chromosomes, and yeast artificial chromosomes was constructed and used for gene isolation experiments. Using the techniques of direct cDNA selection and genomic DNA sequencing, a three known genes (ELN, LIMK1, and RFC2), a novel gene (WSCR1) with homology to RNA-binding proteins, a gene with homology to restin, and four other putative transcription units were identified. LIMK1 is a protein kinase with two repeats of the LIM/double zinc finger motif, and it is highly expressed in brain. RFC2 is the 40-kDa ATP-binding sub-unit of replication factor C, which is known to play a role in the elongation of DNA catalyzed by DNA polymerase {delta} and {epsilon}. LIMK1 and WSCR1 may be particularly relevant when explaining cognitive defects observed in WS patients. 56 refs., 4 figs., 3 tabs.

  6. The distal 8p deletion (8)(p23.1): A common syndrome associated with cogenital heart defect and mental retardation?

    SciTech Connect

    Wu, B.L.; Schneider, G.H.; Sabatino, D.E.

    1994-09-01

    We describe the clinical manifestations and molecular cytogenetic analysis of three patients with a similar distal deletion: del(8)(p23.1). Case 1: A nine-year-old girl who was the product of a normal pregnancy, with family history of recurrent miscarriages. She has an ASD, development delay and dysmorphic features. Case 2: A three-month-old female who died with a hypoplastic left heart and dysmorphic features. Her non-identical twin sister is healthy. No further family history is available. Case 3: A four-year-old boy who was the product of a normal pregnancy with family history of mental retardation. He has bifid uvula, delayed speech and language, and no major malformations or dysmorphic features. High resolution G and R banding revealed in all three patients del(8)(p23.1), but the breakpoint for case 1 and 2 was proximal to 8p23.1 and for case 3 distal to 8p23.1. FISH studies with a chromosome 8 paint probe confirmed that no other rearrangement was involved. Chromosome analysis of the parents of case 3 and mother of case 1 were normal; the remaining parents were not available for study. Eight individual patients and three members in one family with del(8)(p23.1) have been reported in the past five years. Major congenital anomalies, especially congenital heart defect, is most often associated with a breakpoint proximal to 8p23.1 Three patients were detected within a three year period in this study and five cases were found within a four year period by another group, suggesting that the distal 8p deletion may be a relatively common syndrome. This small deletion is easily overlooked (i.e. case 1 and 3 were reported as normal at amniocentesis) and can be associated with few or no major congenital anomalies.

  7. An atypical facial appearance and growth pattern in a child with Cornelia de Lange Syndrome: an intragenic deletion predicting loss of the N-terminal region of NIPBL.

    PubMed

    Murray, Jennie E; Walayat, Muhammed; Gillett, Peter; Sharkey, Freddie H; Rajan, Diana; Carter, Nigel P; FitzPatrick, David R

    2012-01-01

    Cornelia de Lange Syndrome (CdLS) is a multisystem disorder with a live birth prevalence of approximately one per 15 000. Clinical diagnosis is based on a characteristic facies – low frontal hair line, short nose, triangular nasal tip, crescent shaped mouth, upturned nose, and arched eyebrows – characteristic limb defects and a distinctive pattern of growth and development. Approximately half of all classical cases of CdLS have heterozygous loss of-function mutations in the gene encoding NIPBL, a component of the cohesion-loading apparatus (Dorsett and Krantz, 2009). Herein we describe a patient with a rare intragenic deletion of NIPBL who has typical microcephaly and developmental problems but atypical growth pattern and facial features. PMID:21934607

  8. A tumor of the uterine cervix with a complex histology in a Peutz-Jeghers syndrome patient with genomic deletion of the STK11 exon 1 region.

    PubMed

    Kobayashi, Yusuke; Masuda, Kenta; Kimura, Tokuhiro; Nomura, Hiroyuki; Hirasawa, Akira; Banno, Kouji; Susumu, Nobuyuki; Sugano, Kokichi; Aoki, Daisuke

    2014-02-01

    Patients with Peutz-Jeghers syndrome (PJS) have a risk of complicating malignant tumors, including cancer of the uterine cervix. Mutations in the STK11 gene have been identified as being responsible for PJS. However, the genotype-phenotype correlation in PJS is poorly understood, especially with respect to malignant tumors. Here, we report a detailed analysis of a case of a cervical tumor in a PJS patient showing a large genomic deletion in exon 1 of STK11 without human papillomavirus infection. Histological examination revealed a complex histology consisting of three components: lobular endocervical gland hyperplasia (LEGH), minimal deviation adenocarcinoma (MDA) and mucinous adenocarcinoma. Immunohistochemistry for STK11 was positive in the LEGH and MDA components, while that of the mucinous adenocarcinoma stained very faintly. These findings support a close relationship among LEGH, MDA and mucinous adenocarcinoma and imply that inactivation of STK11 may occur during progression from MDA to mucinous adenocarcinoma. PMID:24490603

  9. Characterization of the STK11 splicing variant as a normal splicing isomer in a patient with Peutz–Jeghers syndrome harboring genomic deletion of the STK11 gene

    PubMed Central

    Masuda, Kenta; Kobayashi, Yusuke; Kimura, Tokuhiro; Umene, Kiyoko; Misu, Kumiko; Nomura, Hiroyuki; Hirasawa, Akira; Banno, Kouji; Kosaki, Kenjiro; Aoki, Daisuke; Sugano, Kokichi

    2016-01-01

    We report a STK11 splicing variant comprising a 131-bp insertion that is derived from intron 1, which has previously been reported to possess potent pathogenicity. The same variant was detected in a Peutz–Jeghers syndrome patient harboring a genomic deletion in the vicinity of exon 1 of the STK11 gene, which indicated that this variant was derived from the wild-type allele. We also found the same variant in other normal subjects. This variant corresponds to the predicted transcript variant of STK11 (XM_011528209), which is derived from the genomic sequence of Chr19 (NT_011295.12). Therefore, we concluded that the splicing variant was not pathogenic. PMID:27081568

  10. Primary hyperoxaluria type 1 and brachydactyly mental retardation syndrome caused by a novel mutation in AGXT and a terminal deletion of chromosome 2.

    PubMed

    Tammachote, Rachaneekorn; Kingsuwannapong, Nelawat; Tongkobpetch, Siraprapa; Srichomthong, Chalurmpon; Yeetong, Patra; Kingwatanakul, Pornchai; Monico, Carla G; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2012-09-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by mutations in the alanine:glyoxylate aminotransferase (AGXT) gene, located on chromosome 2q37. Mutant AGXT leads to excess production and excretion of oxalate, resulting in accumulation of calcium oxalate in the kidney, and progressive loss of renal function. Brachydactyly mental retardation syndrome (BDMR) is an autosomal dominant disorder, caused by haploinsufficiency of histone deacetylase 4 (HDAC4), also on chromosome 2q37. It is characterized by skeletal abnormalities and developmental delay. Here, we report on a girl who had phenotypes of both PH1 and BDMR. PCR-sequencing of the coding regions of AGXT showed a novel missense mutation, c.32C>G (p.Pro11Arg) inherited from her mother. Functional analyses demonstrated that it reduced the enzymatic activity to 31% of the wild-type and redirected some percentage of the enzyme away from the peroxisome. Microsatellite and array-CGH analyses indicated that the proband had a paternal de novo telomeric deletion of chromosome 2q, which included HDAC4. To our knowledge, this is the first report of PH1 and BDMR, with a novel AGXT mutation and a de novo telomeric deletion of chromosome 2q. PMID:22821680

  11. DHFR 19-bp Deletion and SHMT C1420T Polymorphisms and Metabolite Concentrations of the Folate Pathway in Individuals with Down Syndrome

    PubMed Central

    Mendes, Cristiani Cortez; Raimundo, Aline Maria Zanchetta de Aquino; Oliveira, Luciana Dutra; Zampieri, Bruna Lancia; Marucci, Gustavo Henrique; Biselli, Joice Matos; Goloni-Bertollo, Eny Maria; Eberlin, Marcos Nogueira; Haddad, Renato; Riccio, Maria Francesca; Vannucchi, Hélio; Carvalho, Valdemir Melechco

    2013-01-01

    Background: Down syndrome (DS) results from the presence and expression of three copies of the genes located on chromosome 21. Studies have shown that, in addition to overexpression of the Cystathionine β-synthase (CBS) gene, polymorphisms in genes involved in folate/homocysteine (Hcy) metabolism may also influence the concentrations of metabolites of this pathway. Aim: Investigate the association between Dihydrofolate reductase (DHFR) 19-base pair (bp) deletion and Serine hydroxymethyltransferase (SHMT) C1420T polymorphisms and serum folate and plasma Hcy and methylmalonic acid (MMA) concentrations in 85 individuals with DS. Methods: Molecular analysis of the DHFR 19-bp deletion and SHMT C1420T polymorphisms was performed by polymerase chain reaction (PCR) by difference in the size of fragments and real-time PCR allelic discrimination, respectively. Serum folate was quantified by chemiluminescence and plasma Hcy and MMA by liquid chromatography–tandem mass spectrometry. Results: Individuals with DHFR DD/SHMT TT genotypes presented increased folate concentrations (p=0.004) and the DHFR II/SHMT TT genotypes were associated with increased MMA concentrations (p=0.008). In addition, the MMA concentrations were negatively associated with age (p=0.04). Conclusion: There is an association between DHFR DD/SHMT TT and DHFR II/SHMT TT combined genotypes and folate and MMA concentrations in individuals with DS. PMID:23421317

  12. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.

    PubMed

    Toritsuka, Michihiro; Kimoto, Sohei; Muraki, Kazue; Landek-Salgado, Melissa A; Yoshida, Atsuhiro; Yamamoto, Norio; Horiuchi, Yasue; Hiyama, Hideki; Tajinda, Katsunori; Keni, Ni; Illingworth, Elizabeth; Iwamoto, Takashi; Kishimoto, Toshifumi; Sawa, Akira; Tanigaki, Kenji

    2013-10-22

    22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate precursor cells. Furthermore, Df1/+ mice show functional defects in Chemokine receptor 4/Chemokine ligand 12 (Cxcr4/Cxcl12; Sdf1) signaling, which reportedly underlie interneuron migration. Notably, the defects in interneuron progenitors are rescued by ectopic expression of Dgcr8, one of the genes in 22q11 microdeletion. Furthermore, heterozygous knockout mice for Dgcr8 show similar neurodevelopmental abnormalities as Df1/+ mice. Thus, Dgcr8-mediated regulation of microRNA is likely to underlie Cxcr4/Cxcl12 signaling and associated neurodevelopmental defects. Finally, we observe that expression of CXCL12 is decreased in olfactory neurons from sporadic cases with schizophrenia compared with normal controls. Given the increased risk of 22q11DS in schizophrenia that frequently shows interneuron abnormalities, the overall study suggests that CXCR4/CXCL12 signaling may represent a common downstream mediator in the pathophysiology of schizophrenia and related mental conditions. PMID:24101523

  13. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    PubMed Central

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875

  14. Chromosome 18q22.2-->qter deletion and a congenital anomaly syndrome with multiple vertebral segmentation defects.

    PubMed Central

    Dowton, S B; Hing, A V; Sheen-Kaniecki, V; Watson, M S

    1997-01-01

    Multiple vertebral segmentation defects occur in a group of conditions variably associated with anomalies of other organ systems. This report describes a female child in whom a deletion of chromosome 18 (18q22.2-->qter) is associated with congenital anomalies including multiple vertebral segmentation defects resembling sporadic spondylocostal dysplasia. The child also has unilateral renal agenesis and unilateral fibular aplasia. The association of severe multiple vertebral segmentation defects with 18q- in this patient suggests the possibility that a gene important for somite formation or vertebral differentiation maps to this segment of chromosome 18. Images PMID:9152840

  15. 40 Mb duplication in chromosome band 5p13.1p15.33 with 800 kb terminal deletion in a foetus with mild phenotypic features.

    PubMed

    Izzo, A; Genesio, R; Ronga, V; Nocera, V; Marullo, L; Cicatiello, R; Sglavo, G; Paladini, D; Conti, A; Nitsch, L

    2012-02-01

    Large duplication of the short arm of chromosome 5 is a rare condition normally associated to severe phenotype anomalies including heart and brain malformations. We report a prenatal case of a large 5p duplication with sub-telomeric deletion in a foetus with very mild phenotypic abnormalities. Foetal ultrasonographic examination at 22 weeks of gestation showed short femur, clubfeet, pielectasy, and facial dysmorphisms. Chromosome investigations revealed an inverted duplication of the short arm of chromosome 5 from 5p13.1 to 5p15.33 and a 800 kb deletion at 5pter. The absence of severe anomalies such as cardiac and cerebral defects, observed so far in all large 5p duplications, and the comparison to previous cases described both in literature and in DECIPHER database suggest that the critical region for the severe phenotype in 5p duplication syndrome might be smaller than that previously described, excluding half of the 5p13 band. This might help in prenatal genetic counselling. PMID:22269966

  16. Environment-responsive transcription factors bind subtelomeric elements and regulate gene silencing

    PubMed Central

    Smith, Jennifer J; Miller, Leslie R; Kreisberg, Richard; Vazquez, Laura; Wan, Yakun; Aitchison, John D

    2011-01-01

    Subtelomeric chromatin is subject to evolutionarily conserved complex epigenetic regulation and is implicated in numerous aspects of cellular function including formation of heterochromatin, regulation of stress response pathways and control of lifespan. Subtelomeric DNA is characterized by the presence of specific repeated segments that serve to propagate silencing or to protect chromosomal regions from spreading epigenetic control. In this study, analysis of genome-wide chromatin immunoprecipitation and expression data, suggests that several yeast transcription factors regulate subtelomeric silencing in response to various environmental stimuli through conditional association with proto-silencing regions called X elements. In this context, Oaf1p, Rox1p, Gzf1p and Phd1p control the propagation of silencing toward centromeres in response to stimuli affecting stress responses and metabolism, whereas others, including Adr1p, Yap5p and Msn4p, appear to influence boundaries of silencing, regulating telomere-proximal genes in Y′ elements. The factors implicated here are known to control adjacent genes at intrachromosomal positions, suggesting their dual functionality. This study reveals a path for the coordination of subtelomeric silencing with cellular environment, and with activities of other cellular processes. PMID:21206489

  17. Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome

    PubMed Central

    Merico, Daniele; Zarrei, Mehdi; Costain, Gregory; Ogura, Lucas; Alipanahi, Babak; Gazzellone, Matthew J.; Butcher, Nancy J.; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Chow, Eva W. C.; Andrade, Danielle M.; Frey, Brendan J.; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2015-01-01

    Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes. PMID:26384369

  18. Imprinted expression of UBE3A in non-neuronal cells from a Prader–Willi syndrome patient with an atypical deletion

    PubMed Central

    Martins-Taylor, Kristen; Hsiao, Jack S.; Chen, Pin-Fang; Glatt-Deeley, Heather; De Smith, Adam J.; Blakemore, Alexandra I.F.; Lalande, Marc; Chamberlain, Stormy J.

    2014-01-01

    Prader–Willi syndrome (PWS) and Angelman syndrome (AS) are two neurodevelopmental disorders most often caused by deletions of the same region of paternally inherited and maternally inherited human chromosome 15q, respectively. AS is a single gene disorder, caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, while PWS is still considered a contiguous gene disorder. Rare individuals with PWS who carry atypical microdeletions on chromosome 15q have narrowed the critical region for this disorder to a 108 kb region that includes the SNORD116 snoRNA cluster and the Imprinted in Prader–Willi (IPW) non-coding RNA. Here we report the derivation of induced pluripotent stem cells (iPSCs) from a PWS patient with an atypical microdeletion that spans the PWS critical region. We show that these iPSCs express brain-specific portions of the transcripts driven by the PWS imprinting center, including the UBE3A antisense transcript (UBE3A-ATS). Furthermore, UBE3A expression is imprinted in most of these iPSCs. These data suggest that UBE3A imprinting in neurons only requires UBE3A-ATS expression, and no other neuron-specific factors. These data also suggest that a boundary element lying within the PWS critical region prevents UBE3A-ATS expression in non-neural tissues. PMID:24363065

  19. Delineation of the clinically recognizable 17q22 contiguous gene deletion syndrome in a patient carrying the smallest microdeletion known to date.

    PubMed

    Martínez-Fernández, María Luisa; Fernández-Toral, Joaquin; Llano-Rivas, Isabel; Bermejo-Sánchez, Eva; MacDonald, Alexandra; Martínez-Frías, María Luisa

    2015-09-01

    We describe a patient with a 1.34 Mb microdeletion at chromosome band 17q22, which is also present in his affected mother. To better delineate this microdeletion syndrome, we compare the clinical and molecular characteristics of 10 previously reported cases and our patient. Of these, the present patient has the smallest deletion which includes five genes: MMD, TMEM100, PCTP, ANKFN1, and NOG. We compare the clinical manifestations described in relation to NOG, since this is the only gene whose loss is shared by our patient and the other eight patients. Previously, the clinical patterns associated with NOG mutations have been included under the general term "NOG-related symphalangism spectrum disorder (NOG-SSD)." Based on our analyses, and considering that there is a clinical correlation observed in cases with a "17q22 microdeletion including NOG" of which the main characteristics can be contributed to loss of this gene, we propose that the clinical patterns observed in these patients should be named as NOG-spectrum disorder-contiguous gene syndrome (NOGSD-CGS). This designation is important for clinicians because when a patient has defects concordant with alterations of NOG but also presents other anomalies not related to this gene, they would be able to suspect the existence of a microdeletion affecting 17q22, therefore, allowing an early diagnosis. This will also enable the clinician to provide the family with adequate information about the prognosis and the risk of reoccurrence in future potential offspring. PMID:25899082

  20. Cytogenetic follow-up by karyotyping and fluorescence in situ hybridization: implications for monitoring patients with myelodysplastic syndrome and deletion 5q treated with lenalidomide

    PubMed Central

    Göhring, Gudrun; Giagounidis, Aristoteles; Büsche, Guntram; Hofmann, Winfried; Kreipe, Hans Heinrich; Fenaux, Pierre; Hellström-Lindberg, Eva; Schlegelberger, Brigitte

    2011-01-01

    In patients with low and intermediate risk myelodysplastic syndrome and deletion 5q (del(5q)) treated with lenalidomide, monitoring of cytogenetic response is mandatory, since patients without cytogenetic response have a significantly increased risk of progression. Therefore, we have reviewed cytogenetic data of 302 patients. Patients were analyzed by karyotyping and fluorescence in situ hybridization. In 85 patients, del(5q) was only detected by karyotyping. In 8 patients undergoing karyotypic evolution, the del(5q) and additional chromosomal aberrations were only detected by karyotyping. In 3 patients, del(5q) was only detected by fluorescence in situ hybridization, but not by karyotyping due to a low number of metaphases. Karyotyping was significantly more sensitive than fluorescence in situ hybridization in detecting the del(5q) clone. In conclusion, to optimize therapy control of myelodysplastic syndrome patients with del(5q) treated with lenalidomide and to identify cytogenetic non-response or progression as early as possible, fluorescence in situ hybridization alone is inadequate for evaluation. Karyotyping must be performed to optimally evaluate response. (clinicaltrials.gov identifier: NCT01099267 and NCT00179621) PMID:21109690

  1. Targeted deletion of collagen V in tendons and ligaments results in a classic Ehlers-Danlos syndrome joint phenotype.

    PubMed

    Sun, Mei; Connizzo, Brianne K; Adams, Sheila M; Freedman, Benjamin R; Wenstrup, Richard J; Soslowsky, Louis J; Birk, David E

    2015-05-01

    Collagen V mutations underlie classic Ehlers-Danlos syndrome, and joint hypermobility is an important clinical manifestation. We define the function of collagen V in tendons and ligaments, as well as the role of alterations in collagen V expression in the pathobiology in classic Ehlers-Danlos syndrome. A conditional Col5a1(flox/flox) mouse model was bred with Scleraxis-Cre mice to create a targeted tendon and ligament Col5a1-null mouse model, Col5a1(Δten/Δten). Targeting was specific, resulting in collagen V-null tendons and ligaments. Col5a1(Δten/Δten) mice demonstrated decreased body size, grip weakness, abnormal gait, joint laxity, and early-onset osteoarthritis. These gross changes were associated with abnormal fiber organization, as well as altered collagen fibril structure with increased fibril diameters and decreased fibril number that was more severe in a major joint stabilizing ligament, the anterior cruciate ligament (ACL), than in the flexor digitorum longus tendon. The ACL also had a higher collagen V content than did the flexor digitorum longus tendon. The collagen V-null ACL and flexor digitorum longus tendon both had significant alterations in mechanical properties, with ACL exhibiting more severe changes. The data demonstrate critical differential regulatory roles for collagen V in tendon and ligament structure and function and suggest that collagen V regulatory dysfunction is associated with an abnormal joint phenotype, similar to the hypermobility phenotype in classic Ehlers-Danlos syndrome. PMID:25797646

  2. Amelioration of the typical cognitive phenotype in a patient with the 5pter deletion associated with Cri-du-chat syndrome in addition to a partial duplication of CTNND2.

    PubMed

    Sardina, Jennifer M; Walters, Allyson R; Singh, Kathryn E; Owen, Renius X; Kimonis, Virginia E

    2014-07-01

    Cri-du-chat is a rare congenital syndrome characterized by intellectual disability, severe speech/developmental delay, dysmorphic features, and additional syndromic findings. The etiology of this disorder is well known, and is attributed to a large deletion on chromosome 5 that typically ranges from band 5p15.2 to the short arm terminus. This region contains CTNND2, a gene encoding a neuronal-specific protein, delta-catenin, which plays a critical role in cellular motility and brain function. The exact involvement of CTNND2 in the cognitive functionality of individuals with Cri-du-chat has not been fully deciphered, but it is thought to be significant. This report describes an 8-year-old African-American female with a complex chromosome 5 abnormality and a relatively mild case of cri-du-chat syndrome. Because of the surprisingly mild cognitive phenotype, although a karyotype had confirmed the 5p deletion at birth, an oligo-SNP microarray was obtained to further characterize her deletion. The array revealed a complex rearrangement, including a breakpoint in the middle of CTNND2, which resulted in a partial deletion and partial duplication of that gene. The array also verified the expected 5p terminal deletion. Although the patient has a significant deletion in CTNND2, half of the gene (including the promoter region) is not only preserved, but is duplicated. The patient's milder cognitive and behavioral presentation, in conjunction with her atypical 5p alteration, provides additional evidence for the role of CTNND2 in the cognitive phenotype of individuals with Cri-du-chat. PMID:24677774

  3. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  4. Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion.

    PubMed

    Neubert, Gerda; von Au, Katja; Drossel, Katrin; Tzschach, Andreas; Horn, Denise; Nickel, Renate; Kaindl, Angela M

    2013-01-10

    Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11-q13 (about 70-90%), but can also be caused by paternal uniparental disomy of chromosome 15q11-q13 (3-7%), an imprinting defect (2-4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5Mb-deletion of chromosome 15q11.2-q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~364kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2-q13.1 deletion contains genes critical for Prader-Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point. PMID:23124039

  5. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3Al) allele produces ehlers-danlos syndrome type IV in the heterozygous offspring

    SciTech Connect

    McGookey Milewicz, D.; Witz, A.M.; Byers, P.H. ); Smith, A.C.M.; Manchester, D.K.; Waldstein, G. )

    1993-07-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutation in the type III collagen gene (COL3A1). The authors studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. 71 refs., 4 figs., 2 tabs.

  6. Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3

    PubMed Central

    Cardoso, Carlos; Leventer, Richard J.; Ward, Heather L.; Toyo-oka, Kazuhito; Chung, June; Gross, Alyssa; Martin, Christa L.; Allanson, Judith; Pilz, Daniela T.; Olney, Ann H.; Mutchinick, Osvaldo M.; Hirotsune, Shinji; Wynshaw-Boris, Anthony; Dobyns, William B.; Ledbetter, David H.

    2003-01-01

    Deletions of 17p13.3, including the LIS1 gene, result in the brain malformation lissencephaly, which is characterized by reduced gyration and cortical thickening; however, the phenotype can vary from isolated lissencephaly sequence (ILS) to Miller-Dieker syndrome (MDS). At the clinical level, these two phenotypes can be differentiated by the presence of significant dysmorphic facial features and a more severe grade of lissencephaly in MDS. Previous work has suggested that children with MDS have a larger deletion than those with ILS, but the precise boundaries of the MDS critical region and causative genes other than LIS1 have never been fully determined. We have completed a physical and transcriptional map of the 17p13.3 region from LIS1 to the telomere. Using fluorescence in situ hybridization, we have mapped the deletion size in 19 children with ILS, 11 children with MDS, and 4 children with 17p13.3 deletions not involving LIS1. We show that the critical region that differentiates ILS from MDS at the molecular level can be reduced to 400 kb. Using somatic cell hybrids from selected patients, we have identified eight genes that are consistently deleted in patients classified as having MDS. In addition, deletion of the genes CRK and 14-3-3ɛ delineates patients with the most severe lissencephaly grade. On the basis of recent functional data and the creation of a mouse model suggesting a role for 14-3-3ɛ in cortical development, we suggest that deletion of one or both of these genes in combination with deletion of LIS1 may contribute to the more severe form of lissencephaly seen only in patients with MDS. PMID:12621583

  7. Genetic and biochemical study of dual hereditary jaundice: Dubin-Johnson and Gilbert's syndromes. Haplotyping and founder effect of deletion in ABCC2.

    PubMed

    Slachtova, Lenka; Seda, Ondrej; Behunova, Jana; Mistrik, Martin; Martasek, Pavel

    2016-05-01

    Dual hereditary jaundice, a combination of Dubin-Johnson and Gilbert's syndromes, is a rare clinical entity resulting from the compound defects of bilirubin conjugation and transport. We aimed to study the hereditary jaundice in 56 members from seven seemingly unrelated Roma families, to find the causal genetic defect and to estimate its origin in Roma population. On the basis of biochemical results of total and conjugated serum bilirubin and clinical observations, ABCC2 gene, TATA box and phenobarbital enhancer (PBREM) of UGT1A1 gene were analyzed by sequencing, RFLP and fragment analysis. We found a novel variant c.1013_1014delTG in the eighth exon of ABCC2 gene in 17 individuals in homozygous state. Dual defect NG_011798.1:c.[1013_1014delTG]; NG_002601.2:g.[175492_175493insTA] in homozygous state was found in four subjects. Biochemical analyses of porphyrins and coproporphyrin isomers in urine performed by HPLC showed inverted ratio of excreted coproporphyrin, with the predominance of coproporphyrin I (up to 100%), typical for patients with Dubin-Johnson syndrome. Pursuant cultural and social specifics of the population led us to suspect a founder effect; therefore, we performed a haplotype study using genotyping data from Affymetrix Genome-Wide Human SNP Array 6.0. As a result, we detected a common 86 kbp haplotype encompassing promoter and part of the ABCC2 coding region among all families, and estimated the age of the ancestral variant to 178-185 years. In this study, we found a novel deletion in ABCC2 gene, described genetic and biochemical features of dual hereditary jaundice and confirmed the existence of founder effect and common haplotype among seven Roma families. PMID:26350512

  8. The effect of hypocalcemia in early childhood on autism-related social and communication skills in patients with 22q11 deletion syndrome.

    PubMed

    Muldoon, Meghan; Ousley, Opal Y; Kobrynski, Lisa J; Patel, Sheena; Oster, Matthew E; Fernandez-Carriba, Samuel; Cubells, Joseph F; Coleman, Karlene; Pearce, Bradley D

    2015-09-01

    22q11 deletion syndrome (22qDS), also known as DiGeorge syndrome, is a copy number variant disorder that has a diverse clinical presentation including hypocalcaemia, learning disabilities, and psychiatric disorders. Many patients with 22q11DS present with signs that overlap with autism spectrum disorder (ASD) yet the possible physiological mechanisms that link 22q11DS with ASD are unknown. We hypothesized that early childhood hypocalcemia influences the neurobehavioral phenotype of 22q11DS. Drawing on a longitudinal cohort of 22q11DS patients, we abstracted albumin-adjusted serum calcium levels from 151 participants ranging in age from newborn to 19.5 years (mean 2.5 years). We then examined a subset of 20 infants and toddlers from this group for the association between the lowest calcium level on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC). The mean (SD) age at calcium testing was 6.2 (8.5) months, whereas the mean (SD) age at the CSBS-DP ITC assessment was 14.7 (3.8) months. Lower calcium was associated with significantly greater impairment in the CSBS-DP ITC Social (p < 0.05), Speech (p < 0.01), and Symbolic domains (p < 0.05), in regression models adjusted for sex, age at blood draw, and age at the psychological assessment. Nevertheless, these findings are limited by the small sample size of children with combined data on calcium and CSBS-DP ITC, and hence will require replication in a larger cohort with longitudinal assessments. Considering the role of calcium regulation in neurodevelopment and neuroplasticity, low calcium during early brain development could be a risk factor for adverse neurobehavioral outcomes. PMID:25267002

  9. Familial translocation t(Y;15)(q12;p11) and de novo deletion of the Prader-Willi syndrome (PWS) critical region on 15q11-q13.

    PubMed

    Eliez, S; Morris, M A; Dahoun-Hadorn, S; DeLozier-Blanchet, C D; Gos, A; Sizonenko, P; Antonarakis, S E

    1997-06-13

    We describe a 17-year-old girl with mild Prader-Willi syndrome (PWS) due to 15q11-q13 deletion. The deletion occurred on a paternal chromosome 15 already involved in a translocation, t(Y;15)(q12;p11), the latter being present in five other, phenotypically normal individuals in three generations. This appears to be the first case of PWS in which the causative 15q11-q13 deletion occurred on a chromosome involved in a familial translocation, but with breakpoints considerably distal to those of the familial rearrangement. The translocation could predispose to additional rearrangements occurring during meiosis and/or mitosis or, alternatively, the association of two cytogenetic anomalies on the same chromosome could be fortuitous. PMID:9188657

  10. Association of the family environment with behavioural and cognitive outcomes in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Allen, T. M.; Hersh, J.; Schoch, K.; Curtiss, K.; Hooper, S. R.; Shashi, V.

    2014-01-01

    Background Children with 22q11.2 deletion syndrome (22q11DS) are at risk for social-behavioural and neurocognitive sequelae throughout development. The current study examined the impact of family environmental characteristics on social-behavioural and cognitive outcomes in this pediatric population. Method Guardians of children with 22q11DS were recruited through two medical genetics clinics. Con senting guardians were asked to complete several questionnaires regarding their child's social, emotional and behavioural functioning, as well as family social environment and parenting styles. Children with 22q11DS were asked to undergo a cognitive assessment, including IQ and achievement testing, and measures of attention, executive function and memory. Results Modest associations were found between aspects of the family social environment and parenting styles with social-behavioural and cognitive/academic outcomes. Regression models indicated that physical punishment, socioeconomic status, parental control and family organisation significantly predicted social-behavioural and cognitive outcomes in children with 22q11DS. Conclusion Characteristics of the family social environment and parenting approaches appear to be associated with functional outcomes of children with 22q11DS. Understanding the impact of environmental variables on developmental outcomes can be useful in determining more effective targets for intervention. This will be important in order to improve the quality of life of individuals affected by 22q11DS. PMID:23742203

  11. Novel Nsp2 deletion based on molecular epidemiology and evolution of porcine reproductive and respiratory syndrome virus in Shandong Province from 2013 to 2014.

    PubMed

    Wang, Feng-Xue; Qin, Li-Ting; Liu, Ying; Liu, Xing; Sun, Na; Yang, Yong; Chen, Ting; Zhu, Hong-Wei; Ren, Jing-Qiang; Sun, Ying-Jun; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-07-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China's Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96-97.5%), the other 4 strains shared considerable homology with JXA1 (94-98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6-98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study. PMID:25958135

  12. Deleted in Breast Cancer 1 Limits Adipose Tissue Fat Accumulation and Plays a Key Role in the Development of Metabolic Syndrome Phenotype

    PubMed Central

    Escande, Carlos; Nin, Veronica; Pirtskhalava, Tamar; Chini, Claudia C.S.; Tchkonia, Tamar; Kirkland, James L.

    2015-01-01

    Obesity is often regarded as the primary cause of metabolic syndrome. However, many lines of evidence suggest that obesity may develop as a protective mechanism against tissue damage during caloric surplus and that it is only when the maximum fat accumulation capacity is reached and fatty acid spillover occurs into to peripheral tissues that metabolic diseases develop. In this regard, identifying the molecular mechanisms that modulate adipocyte fat accumulation and fatty acid spillover is imperative. Here we identify the deleted in breast cancer 1 (DBC1) protein as a key regulator of fat storage capacity of adipocytes. We found that knockout (KO) of DBC1 facilitated fat cell differentiation and lipid accumulation and increased fat storage capacity of adipocytes in vitro and in vivo. This effect resulted in a “healthy obesity” phenotype. DBC1 KO mice fed a high-fat diet, although obese, remained insulin sensitive, had lower free fatty acid in plasma, were protected against atherosclerosis and liver steatosis, and lived longer. We propose that DBC1 is part of the molecular machinery that regulates fat storage capacity in adipocytes and participates in the “turn-off” switch that limits adipocyte fat accumulation and leads to fat spillover into peripheral tissues, leading to the deleterious effects of caloric surplus. PMID:25053585

  13. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype

    PubMed Central

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick PL; Christodoulou, John

    2015-01-01

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype. PMID:25424712

  14. Novel homozygous deletion of segmental KAL1 and entire STS cause Kallmann syndrome and X-linked ichthyosis in a Chinese family.

    PubMed

    Xu, H; Li, Z; Wang, T; Wang, S; Liu, J; Wang, D W

    2015-12-01

    Kallmann syndrome (KS) is a genetically heterogeneous disease characterised by hypogonadotrophic hypogonadism in association with anosmia or hyposmia. This condition affects 1 in 10 000 men and 1 in 50,000 women. Defects in seventeen genes including KAL1 gene contribute to the molecular basis of KS. We report the clinical characteristics, molecular causes and treatment outcome of two Chinese brothers with KS and X-linked ichthyosis. The phenotypes of the patients were characterised by bilateral cryptorchidism, unilateral renal agenesis in one patient but normal kidney development in another. The patients had low serum testosterone, follicle-stimulating hormone and luteinising hormone levels and a blunt response to the gonadotrophin-releasing hormone stimulation test. After human chorionic gonadotrophin treatment, the serum testosterone levels were normalized, and the pubic hair, penis length and testicular volumes were greatly improved in both of the patients. The two affected siblings had the same novel deletion at Xp22.3 including exons 9-14 of KAL1 gene and entire STS gene. Our study broadens the mutation spectrum in the KAL1 gene associated with KS and facilitates the genetic diagnosis and counselling for KS. PMID:25597551

  15. Case of Sjögren-Larsson syndrome with a large deletion in the ALDH3A2 gene confirmed by single nucleotide polymorphism array analysis.

    PubMed

    Gaboon, Nagwa E A; Jelani, Musharraf; Almramhi, Mona M; Mohamoud, Hussein S A; Al-Aama, Jumana Y

    2015-07-01

    Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder inherited in an autosomal recessive fashion. SLS patients are characterized by lipid metabolism error, primarily leading to cardinal signs of ichthyosis, spasticity and mental retardation. Additional signs include short stature, epilepsy, retinal abnormalities and photophobia. More than 90 mutations of the ALDH3A2 gene have been reported for SLS, and such variants can be successfully detected at a rate of 94% by direct DNA sequencing. We performed direct sequencing of ALDH3A2 gene from the index patient, however, no mutation could be detected. HumanCytoSNPs12 array analysis and subsequent targeted single nucleotide polymorphism analysis revealed a novel deletion mutation at chromosome 17p11.2. This 67-Kb region includes the first five coding exons of ALDH3A2, and is flanked by rs2245639 and rs962801. To the best of our knowledge, this mutation is novel and our findings broaden the mutation spectrum of ALDH3A2 causing SLS phenotype. PMID:25855245

  16. Deleted in breast cancer 1 limits adipose tissue fat accumulation and plays a key role in the development of metabolic syndrome phenotype.

    PubMed

    Escande, Carlos; Nin, Veronica; Pirtskhalava, Tamar; Chini, Claudia C S; Tchkonia, Tamar; Kirkland, James L; Chini, Eduardo N

    2015-01-01

    Obesity is often regarded as the primary cause of metabolic syndrome. However, many lines of evidence suggest that obesity may develop as a protective mechanism against tissue damage during caloric surplus and that it is only when the maximum fat accumulation capacity is reached and fatty acid spillover occurs into to peripheral tissues that metabolic diseases develop. In this regard, identifying the molecular mechanisms that modulate adipocyte fat accumulation and fatty acid spillover is imperative. Here we identify the deleted in breast cancer 1 (DBC1) protein as a key regulator of fat storage capacity of adipocytes. We found that knockout (KO) of DBC1 facilitated fat cell differentiation and lipid accumulation and increased fat storage capacity of adipocytes in vitro and in vivo. This effect resulted in a "healthy obesity" phenotype. DBC1 KO mice fed a high-fat diet, although obese, remained insulin sensitive, had lower free fatty acid in plasma, were protected against atherosclerosis and liver steatosis, and lived longer. We propose that DBC1 is part of the molecular machinery that regulates fat storage capacity in adipocytes and participates in the "turn-off" switch that limits adipocyte fat accumulation and leads to fat spillover into peripheral tissues, leading to the deleterious effects of caloric surplus. PMID:25053585

  17. Molecular characterization of near-complete trisomy 17p syndrome from inverted duplication in association with cryptic deletion of 17pter.

    PubMed

    Park, Chang-Hun; Kim, Hee-Jin; Lee, Seung-Tae; Seo, Jeong Meen; Kim, Sun-Hee

    2014-03-10

    Trisomy of the short arm of chromosome 17 (T17P) is a genomic disorder presenting with growth retardation, motor and mental retardation and constitutional physical anomalies including congenital heart defects. Here we report a case of near-complete T17P of which the genomic dosage aberrations were delineated by chromosomal microarray along with conventional diagnostic modalities. A 9-year-old Korean boy was admitted because of esophageal obstruction. He showed clinical manifestations of T17P, along with atypical features of scoliosis, corpus callosum agenesis, and seizure. Chromosome analyses revealed an inverted duplication of the chromosomal segment between 17p11.2 and 17p13.3. Chromosomal microarray revealed a duplication of the most of the short arm of chromosome 17 (size ~19.09 Mb) along with a cryptic deletion of a small segment of 17p terminal end (17pter) (~261 Kb). This is the first report of molecular characterization of near-complete T17P from inverted duplication in association with 17pter microdeletion. The fine delineation of the extent of genomic aberration by SNP-based microarray could help us better understand the molecular mechanism and genotype-phenotype correlations in T17P syndrome. PMID:24393711

  18. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

    PubMed

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick P L; Christodoulou, John

    2015-09-01

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype. PMID:25424712

  19. ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18.

    PubMed

    Cheng, Chih-Ya; Wu, Jaw-Ching; Tsai, Jin-Wu; Nian, Fang-Shin; Wu, Pei-Chun; Kao, Lung-Sen; Fann, Ming-Ji; Tsai, Shih-Jen; Liou, Ying-Jay; Tai, Chin-Yin; Hong, Chen-Jee

    2015-05-01

    Mutations in the gene of RAB18, a member of Ras superfamily of small G-proteins, cause Warburg Micro Syndrome (WARBM) which is characterized by defective neurodevelopmental and ophthalmological phenotypes. Despite loss of Rab18 had been reported to induce disruption of the endoplasmic reticulum structure and neuronal cytoskeleton organization, parts of the pathogenic mechanism caused by RAB18 mutation remain unclear. From the N-ethyl-N-nitrosourea (ENU)-induced mutagenesis library, we identified a mouse line whose Rab18 was knocked out. This Rab18(-/-) mouse exhibited stomping gait, smaller testis and eyes, mimicking several features of WARBM. Rab18(-/-) mice were obviously less sensitive to pain and touch than WT mice. Histological examinations on Rab18(-/-) mice revealed progressive axonal degeneration in the optic nerves, dorsal column of the spinal cord and sensory roots of the spinal nerves while the motor roots were spared. All the behavioral and pathological changes that resulted from abnormalities in the sensory axons were prevented by introducing an extra copy of Rab18 transgene in Rab18(-/-) mice. Our results reveal that sensory axonal degeneration is the primary cause of stomping gait and progressive weakness of the hind limbs in Rab18(-/-) mice, and optic nerve degeneration should be the major pathology of progressive optic atrophy in children with WARBM. Our results indicate that the sensory nervous system is more vulnerable to Rab18 deficiency and WARBM is not only a neurodevelopmental but also neurodegenerative disease. PMID:25779931

  20. Absence of subtelomeric rearrangements in selected patients with mental retardation as assessed by multiprobe T FISH

    PubMed Central

    2012-01-01

    Background Mental retardation (MR) is a heterogeneous condition that affects 2-3% of the general population and is a public health problem in developing countries. Chromosomal abnormalities are an important cause of MR and subtelomeric rearrangements (STR) have been reported in 4-35% of individuals with idiopathic MR or an unexplained developmental delay, depending on the screening tests and patient selection criteria used. Clinical checklists such as that suggested by de Vries et al. have been used to improve the predictive value of subtelomeric screening. Findings Fifteen patients (1–20 years old; five females and ten males) with moderate to severe MR from a genetics outpatient clinic of the Gaffrée and Guinle Teaching Hospital (HUGG) of the Federal University of Rio de Janeiro State (UNIRIO) were screened with Multiprobe T FISH after normal high resolution karyotyping. No subtelomeric rearrangements were detected even though the clinical score of the patients ranged from four to seven. Conclusion In developing countries, FISH-based techniques such as Multiprobe T FISH are still expensive. Although Multiprobe T FISH is a good tool for detecting STR, in this study it did not detect STR in patients with unexplained MR/developmental delay even though these patients had a marked chromosomal imbalance. Our findings also show that clinical scores are not reliable predictors of STR. PMID:23259705

  1. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    PubMed

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. PMID:25725334

  2. Deletion of receptor for advanced glycation end products exacerbates lymphoproliferative syndrome and lupus nephritis in B6-MRL Fas lpr/j mice.

    PubMed

    Goury, Antoine; Meghraoui-Kheddar, Aïda; Belmokhtar, Karim; Vuiblet, Vincent; Ortillon, Jeremy; Jaisson, Stéphane; Devy, Jerôme; Le Naour, Richard; Tabary, Thierry; Cohen, Jacques H M; Schmidt, Ann-Marie; Rieu, Philippe; Touré, Fatouma

    2015-04-15

    The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor that interacts with advanced glycation end products, but also with C3a, CpG DNA oligonucleotides, and alarmin molecules such as HMGB1 to initiate a proinflammatory reaction. Systemic lupus erythematosus is an autoimmune disorder associated with the accumulation of RAGE ligands. We generated mice invalidated for RAGE in the lupus-prone B6-MRL Fas lpr/j background to determine the role of RAGE in the pathogenesis of systemic lupus erythematosus. We compared the phenotype of these mice with that of their wild-type and B6-MRL Fas lpr/j littermates. Lymphoproliferative syndrome, production of anti-dsDNA Abs, lupus nephritis, and accumulation of CD3(+)B220(+)CD4(-)CD8(-) autoreactive T cells (in the peripheral blood and the spleen) were significantly increased in B6-MRL Fas lpr/j RAGE(-/-) mice compared with B6-MRL Fas lpr/j mice (respectively p < 0.005, p < 0.05, p < 0.001, and p < 0.001). A large proportion of autoreactive T cells from B6-MRL Fas lpr/j mice expressed RAGE at their surface. Time course studies of annexin V expression revealed that autoreactive T cells in the spleen of B6-MRL Fas lpr/j-RAGE(-/-) mice exhibited a delay in apoptosis and expressed significantly less activated caspase 3 (39.5 ± 4.3%) than T cells in B6-MRL Fas lpr/j mice (65.5 ± 5.2%) or wild-type mice (75.3 ± 2.64%) (p = 0.02). We conclude that the deletion of RAGE in B6-MRL Fas lpr/j mice promotes the accumulation of autoreactive CD3(+)B220(+)CD4(-)CD8(-) T cells, therefore exacerbating lymphoproliferative syndrome, autoimmunity, and organ injury. This suggests that RAGE rescues the apoptosis of T lymphocytes when the death receptor Fas/CD95 is dysfunctional. PMID:25762779

  3. White Matter Microstructural Abnormalities of the Cingulum Bundle in Youth with 22q11.2 Deletion Syndrome: Associations with Medication, Neuropsychological Function, and Prodromal Symptoms of Psychosis

    PubMed Central

    Kates, Wendy R.; Olszewski, Amy K.; Gnirke, Matthew H.; Kikinis, Zora; Nelson, Joshua; Antshel, Kevin M.; Fremont, Wanda; Radoeva, Petya D.; Middleton, Frank A.; Shenton, Martha E.; Coman, Ioana L.

    2014-01-01

    Background The 22q11.2 Deletion Syndrome (22q11.2DS) is regarded as an etiologically homogenous model for understanding neuroanatomic disruptions associated with a high risk for schizophrenia. This study utilized diffusion tensor imaging (DTI) to analyze white matter microstructure in individuals with 22q11.2DS. We focused on the cingulum bundle (CB), previously shown to be disrupted in patients with schizophrenia and associated with symptoms of psychosis. Methods White matter microstructure was assessed in the anterior, superior, and posterior CB using the tractography algorithm in DTIStudio. Neuropsychological function, presence of prodromal symptoms of psychosis, and medication history were assessed in all participants. Results Relative to controls, young adults with 22q11.2DS showed alterations in most DTI metrics of the CB. Alterations were associated with positive prodromal symptoms of psychosis. However, when individuals with 22q11.2DS were divided by usage of antipsychotics / mood stabilizers, the medicated and non-medicated groups differed significantly in axial diffusivity of the anterior CB and in fractional anisotropy of the superior CB. DTI metrics did not differ between the medicated group and the control group. Conclusions Results suggest that the microstructure of the CB is altered in individuals with 22q11.2DS, and that those alterations may underlie positive prodromal symptoms of psychosis. Our findings further provide preliminary evidence that antipsychotic / mood stabilizer usage may have a reparative effect on white matter microstructure in prodromal 22q11.2DS, independent of the potential effects of psychosis. Future studies of white matter pathology in individuals with 22q11.2DS should test for potential effects of medication on white matter microstructure. PMID:25066496

  4. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety

    PubMed Central

    Scott, Julia A.; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R.; Schumann, Cynthia M.; Carmichael, Owen T.; Simon, Tony J.

    2016-01-01

    Background Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. Methods We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. Results We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Limitations Shape alterations are not specific to hippocampal subfields. Conclusion Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection. PMID:26599134

  5. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: Illuminating the developmental relationship to risk for psychosis

    PubMed Central

    Prasad, Sarah; Katina, Stanislav; Hennessy, Robin J.; Murphy, Kieran C.; Bowman, Adrian W.

    2015-01-01

    Persons with 22q11.2 deletion syndrome (22q11.2DS) are characterized inter alia by facial dysmorphology and greatly increased risk for psychotic illness. Recent studies indicate facial dysmorphology in adults with schizophrenia. This study evaluates the extent to which the facial dysmorphology of 22q11.2DS is similar to or different from that evident in schizophrenia. Twenty‐one 22q11.2DS‐sibling control pairs were assessed using 3D laser surface imaging. Geometric morphometrics was applied to 30 anatomical landmarks, 480 geometrically homologous semi‐landmarks on curves and 1720 semi‐landmarks interpolated on each 3D facial surface. Principal component (PC) analysis of overall shape space indicated PC2 to strongly distinguish 22q11.2DS from controls. Visualization of PC2 indicated 22q11.2DS and schizophrenia to be similar in terms of overall widening of the upper face, lateral displacement of the eyes/orbits, prominence of the cheeks, narrowing of the lower face, narrowing of nasal prominences and posterior displacement of the chin; they differed in terms of facial length (increased in 22q11.2DS, decreased in schizophrenia), mid‐face and nasal prominences (displaced upwards and outwards in 22q11.2DS, less prominent in schizophrenia); lips (more prominent in 22q11.2DS; less prominent in schizophrenia) and mouth (open mouth posture in 22q11.2DS; closed mouth posture in schizophrenia). These findings directly implicate dysmorphogenesis in a cerebral‐craniofacial domain that is common to 22q11.2DS and schizophrenia and which may repay further clinical and genetic interrogation in relation to the developmental origins of psychotic illness. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:25691406

  6. Autism spectrum disorders and hyperactive/impulsive behaviors in Japanese patients with Prader-Willi syndrome: a comparison between maternal uniparental disomy and deletion cases.

    PubMed

    Ogata, Hiroyuki; Ihara, Hiroshi; Murakami, Nobuyuki; Gito, Masao; Kido, Yasuhiro; Nagai, Toshiro

    2014-09-01

    This study aims to compare maternal uniparental disomy 15 (mUPD) and a paternal deletion of 15q11-13 (DEL) of Prader-Willi syndrome (PWS) in regard to autism spectrum disorders (ASD). Forty-five Japanese individuals with PWS were recruited from a single recruitment center. The participants consisted of 22 children (aged from 6 to 12) and 23 adolescents (aged from 13 to 19). Six children and seven adolescents were confirmed as having mUPD. Sixteen children and 16 adolescents were confirmed as having DEL. Under blindness to the participants' genotypes, a single psychologist carried out behavioral and psychological assessments, including the Wechsler Intelligence Scales, Pervasive Developmental Disorders Autism Society Japan Rating Scale (PARS), and ADHD-Rating Scale-IV (ADHD-RS-IV). Two comparisons were made: one between mUPD and DEL children and another between mUPD and DEL adolescents. In children, no significant differences were found between mUPD and DEL participants in terms of autistic (PARS childhood, P = 0.657) and impulsive behaviors (ADHD-RS-IV hyperactive/impulsive, P = 0.275). In adolescents, mUPD patients showed significantly more autistic symptomatology (PARS adolescent, P = 0.027) and significantly more impulsive behavior (ADHD-RS-IV hyperactive/impulsive, P = 0.01) than DEL patients. Our findings about Japanese PWS patients were consistent with previous researches from western countries not focused on Asian patients, indicating that mUPD cases would be more prone to ASD than DEL cases, regardless of ethnoregional differences. In addition, our data suggested that the behavioral difference between mUPD and DEL cases in terms of autistic and impulsive symptoms tend to be unrecognizable in their childhood. PMID:24850752

  7. Chemotherapy refractory testicular germ cell tumor is associated with a variant in Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF)

    PubMed Central

    Fung, Chunkit; Vaughn, David J.; Mitra, Nandita; Ciosek, Stephanie L.; Vardhanabhuti, Saran; Nathanson, Katherine L.; Kanetsky, Peter A.

    2012-01-01

    Introduction: There is evidence that inherited genetic variation affects both testicular germ cell tumor (TGCT) treatment outcome and risks of late-complications arising from cisplatin-based chemotherapy. Using a candidate gene approach, we examined associations of three genes involved in the cisplatin metabolism pathway, GSTP1, COMT, and TPMT, with TGCT outcome and cisplatin-induced neurotoxicity. Materials and Methods: Our study population includes a subset of patients (n = 137) from a genome-wide association study at the University of Pennsylvania that evaluates inherited genetic susceptibility to TGCT. All patients in our study had at least one course of cisplatin-based chemotherapy with at least 1 year of follow-up. A total of 90 markers in GSTP1, COMT, and TPMT and their adjacent genomic regions (±20 kb) were analyzed for associations with refractory TGCT after first course of chemotherapy, progression-free survival (PFS), overall survival (OS), peripheral neuropathy, and ototoxicity. Results: After adjustment for multiple comparisons, one Single nucleotide polymorphism (SNP), rs2073743, in the flanking region (±20 kb) of COMT was associated with refractory TGCT after initial chemotherapy. This SNP lies within the intron region of the Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF). The G allele of rs2073743 predisposed patients to refractory disease with a relative risk of 2.6 (95% CI 1.1, 6.3; P = 0.03). Assuming recessive inheritance, patients with the GG genotype had 22.7 times higher risk (95% CI 3.3, 155.8; P = 0.04) of developing refractory disease when compared to those with the GC or CC genotypes. We found no association of our candidate genes with peripheral neuropathy, ototoxicity, PFS and OS. Discussion: This is the first study to suggest that germline genetic variants of ARVCF may affect TGCT outcome. The result of this study is hypothesis generating and should be validated in future studies. PMID:23248619

  8. Reduced Fronto-Temporal and Limbic Connectivity in the 22q11.2 Deletion Syndrome: Vulnerability Markers for Developing Schizophrenia?

    PubMed Central

    Ottet, Marie-Christine; Schaer, Marie; Cammoun, Leila; Schneider, Maude; Debbané, Martin; Thiran, Jean-Philippe; Eliez, Stephan

    2013-01-01

    The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially pro