Sample records for subtelomeric deletion syndrome

  1. Chromosome size polymorphism in Plasmodium falciparum can involve deletions of the subtelomeric pPFrep20 sequence.

    PubMed Central

    Patarapotikul, J; Langsley, G

    1988-01-01

    The P. falciparum pPFrep20 repetitive element from the Palo Alto Uganda strain has been isolated and sequenced. The Palo Alto pPFrep20 repeat (pPFPArep20) has a clustered subtelomeric location and on chromosome 1 has been deleted from one end. Analysis of chromosome 1 from 5 other strains has revealed that pPFrep20 sequences have been deleted from one end in 3 of them. Thus, deletion of pPFrep20 appears to be a frequent event that could significantly contribute to chromosome size polymorphism in P. falciparum. Images PMID:2837730

  2. Subtelomeric 6p25 deletion/duplication: Report of a patient with new clinical findings and genotype-phenotype correlations.

    PubMed

    Linhares, Natália D; Svartman, Marta; Rodrigues, Tatiane C; Rosenberg, Carla; Valadares, Eugênia R

    2015-05-01

    The 6p terminal deletions are rare and present variability of clinical features, which increases the importance of reporting additional cases in order to better characterize genotype-phenotype correlations. We report a 12-year-old girl with a de novo deletion in 6p25.1-pter characterized by high-resolution karyotyping and FISH. Further analysis using oligonucleotide array-CGH revealed a 5.06 Mb 6p25.1-pter deletion associated with a contiguous 1 Mb 6p25.1 duplication. The patient presented normal growth, developmental delay, frontal bossing, severe hypertelorism, corectopia, wide and depressed nasal bridge, mild learning disability, hearing loss and diffuse leukopathy. Additionaly, she presented peculiar phenotypic features reported herein for the first time in 6p25 deletion syndrome: cerebrospinal fluid fistula and bones resembling those seen in 3-M syndrome. The distinctive phenotype of the 6p25 deletion syndrome has been mainly correlated with the FOXC1 and FOXF2 genes deletions, both related mainly to eye development. We also consider the SERPINB6 as a candidate for sensorineural hearing loss and TUBB2A as a candidate for our patient's skeletal features. In addition, as our patient had a duplication including NRN1, a gene related with neurodevelopment, synaptic plasticity and cognitive dysfunction in schizophrenia, we suggest that this gene could be associated with her white matter abnormalities and neurocognitive phenotype. PMID:25817395

  3. Deletion 22q13.3 syndrome

    Microsoft Academic Search

    Mary C Phelan

    2008-01-01

    The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition

  4. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor.

    PubMed

    Zhou, Min; Jing, Xinyun; Xie, Pengfei; Chen, Weihua; Wang, Tao; Xia, Haiyang; Qin, Zhongjun

    2012-08-01

    Streptomyces coelicolor, with its 8 667 507-bp linear chromosome, is the genetically most studied Streptomyces species and is an excellent model for studying antibiotic production and cell differentiation. Here, we report construction of S. coelicolor derivatives containing sequential deletions of all the 10 polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) biosynthetic gene clusters and a 900-kb subtelomeric sequence (total c. 1.22 Mb, 14% of the genome). No obvious differences in growth rates and sporulation of the strains were found. An artificially circularized S. coelicolor genome with deletions of total c. 1.6 Mb segments (840-kb for the left and 761-kb for the right arm of the linear chromosome) was obtained. The actinorhodin biosynthetic gene cluster could be overexpressed in some of the constructed strains. PMID:22670631

  5. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH)

    PubMed Central

    Hollox, E; Atia, T; Cross, G; Parkin, T; Armour, J

    2002-01-01

    Background: Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. Methods: We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. Results: The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. Conclusions: MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone. PMID:12414816

  6. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist

    Microsoft Academic Search

    B B A de Vries; S M White; S J L Knight; R Regan; T Homfray; I D Young; M Super; C McKeown; M Splitt; O W J Quarrell; A H Trainer; M F Niermeijer; S Malcolm; J Flint; J A Hurst; R M Winter

    2001-01-01

    BACKGROUNDSubmicroscopic subtelomeric chromosome defects have been found in 7.4% of children with moderate to severe mental retardation and in 0.5% of children with mild retardation. Effective clinical preselection is essential because of the technical complexities and cost of screening for subtelomere deletions.METHODSWe studied 29 patients with a known subtelomeric defect and assessed clinical variables concerning birth history, facial dysmorphism, congenital

  7. Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA)

    Microsoft Academic Search

    D. A. Koolen; W. M. Nillesen; M. H. Versteeg; G. F. M. Merkx; N. V. A. M. Knoers; M. Kets; S. Vermeer; C. M. A. van Ravenswaaij-Arts; C. G. F. de Kovel; H. G. Brunner; D. F. C. M. Smeets; L. B. A. de Vries; E. A. Sistermans

    2004-01-01

    BACKGROUND: Subtelomeric rearrangements contribute to idiopathic mental retardation and human malformations, sometimes as distinct mental retardation syndromes. However, for most subtelomeric defects a characteristic clinical phenotype remains to be elucidated. OBJECTIVE: To screen for submicroscopic subtelomeric aberrations using multiplex ligation dependent probe amplification (MLPA). METHODS: 210 individuals with unexplained mental retardation were studied. A new set of subtelomeric probes, the

  8. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hac?hamdio?lu, Bülent; Hac?hamdio?lu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS.

  9. Genetics Home Reference: 16p11.2 deletion syndrome

    MedlinePLUS

    ... vary even among affected members of the same family. Some people with the deletion have no identified physical, intellectual, or behavioral abnormalities. How common is 16p11.2 deletion syndrome? Most ...

  10. Genetics Home Reference: 2q37 deletion syndrome

    MedlinePLUS

    ... cases have been reported worldwide. What are the genetic changes related to 2q37 deletion syndrome? 2q37 deletion ... Center . Where can I find general information about genetic conditions? The Handbook provides basic information about genetics ...

  11. Deletions and candidate genes in Williams syndrome

    SciTech Connect

    Perez Jurado, L.A.; Peoples, R.; Francke, U. [Stanford Univ. CA (United States)] [and others

    1994-09-01

    Hemizygosity at the elastin locus (ELN) on chromosome 7q11.23 has recently been reported in several familial and sporadic cases of the developmental disorder, Williams syndrome (WS). Because the deletion is greater than the span of the ELN gene, a contiguous gene deletion syndrome has been suggested as the probable molecular basis for this condition. Thus far, neither the size of the deletion(s), nor other genes within it are known. We have analyzed samples from 27 sporadic WS patients by genotyping two multiallelic ELN intragenic polymorphisms, detectable by PCR amplification, and by Southern blotting for ELN gene dosage. Twenty four patients were hemizygous at the ELN locus while 3 showed no deletion or detectable rearrangement. Genotype studies on parental DNA were informative in 12 of the deletions. All 12 were due to de novo events, 8 in the maternal and 4 in the paternal chromosome. In an attempt to identify genes involved in WS we are also using a candidate gene approach. Delayed clearance of an exogenous calcium load with normal or slightly increased calcitonin levels in serum has been documented in WS patients suggesting a defective calcitonin action or calcium sensing function. The calcitonin receptor (CTR) gene is, therefore, a good candidate since CTR has a dual role as a hormonal receptor for calcitonin and an extracellular calcium sensor. We have mapped the CTR gene to chromosome 7q21.1 by PCR-SSCA of somatic cell hybrids and FISH analysis. Using two color FISH with probes for ELN and CTR, both loci are located on 7q at a distance of {approximately}10 Mb, CTR being telomeric. Our CTR probe does not detect any genomic abnormality by FISH or Southern blot in the patients` samples analyzed. We have identified a diallelic polymorphism in the CTR cDNA and are currently testing the hypothesis of an impaired CTR expression as responsible for some of the clinical features of WS by analysing the CTR transcripts by RT-PCR.

  12. Dermatoglyphic profile in 22q deletion syndrome.

    PubMed

    Martín, B; Fañanás, L; Gutiérrez, B; Chow, E W C; Bassett, A S

    2004-07-01

    A genetic subtype of schizophrenia has been described in 22q11 Deletion syndrome. Previous studies have described an excess of dermatoglyphic alterations in schizophrenia, such as low a-b ridge counts (ABRCs), a high frequency of ridge dissociations, and increased dermatoglyphic fluctuating asymmetry. Little is known however, about the dermatoglyphic profile of 22qDS subjects showing psychotic symptoms and its similarity to the previously reported anomalies in schizophrenia. We studied the palmar dermatoglyphics of 22 subjects with 22qDS of predominantly Caucasian origin, 15 of whom had psychotic illness, and in 84 healthy controls of similar ethnicity. We observed higher values for total ATD angle in cases than in controls (P = 0.04). In addition, there was an excess of radial figures in the hypothenar area in cases, especially in the left hand. Interestingly, greater fluctuating asymmetry, determined by the absolute difference between right and left ABRC, was observed in 22qDS subjects compared to controls (P = 0.05). However, no differences were found for ABRCs and frequency of dissociations. Despite the small sample size, the palmprints analyzed suggest the existence of an altered dermatoglyphic profile in 22qDS, involving: (i) ATD angle amplitude, (ii) presence of radial loops in the hypothenar area, and (iii) an increment of fluctuating asymmetry. The first two features are similar to those found in other genetic syndromes associated with low IQ, while high levels of fluctuating asymmetry have often been reported in schizophrenia. PMID:15211630

  13. Dermatoglyphic Profile in 22q Deletion Syndrome

    PubMed Central

    Martín, B.; Fañanás, L.; Gutiérrez, B.; Chow, E.W.C.; Bassett, A.S.

    2011-01-01

    A genetic subtype of schizophrenia has been described in 22q11 Deletion syndrome. Previous studies have described an excess of dermatoglyphic alterations in schizophrenia, such as low a–b ridge counts (ABRCs), a high frequency of ridge dissociations, and increased dermatoglyphic fluctuating asymmetry. Little is known however, about the dermatoglyphic profile of 22qDS subjects showing psychotic symptoms and its similarity to the previously reported anomalies in schizophrenia. We studied the palmar dermatoglyphics of 22 subjects with 22qDS of predominantly Caucasian origin, 15 of whom had psychotic illness, and in 84 healthy controls of similar ethnicity. We observed higher values for total ATD angle in cases than in controls (P = 0.04). In addition, there was an excess of radial figures in the hypothenar area in cases, especially in the left hand. Interestingly, greater fluctuating asymmetry, determined by the absolute difference between right and left ABRC, was observed in 22qDS subjects compared to controls (P = 0.05). However, no differences were found for ABRCs and frequency of dissociations. Despite the small sample size, the palmprints analyzed suggest the existence of an altered dermatoglyphic profile in 22qDS, involving: (i) ATD angle amplitude, (ii) presence of radial loops in the hypothenar area, and (iii) an increment of fluctuating asymmetry. The first two features are similar to those found in other genetic syndromes associated with low IQ, while high levels of fluctuating asymmetry have often been reported in schizophrenia. PMID:15211630

  14. Recurrence and variability of germline EPCAM deletions in Lynch syndrome.

    PubMed

    Kuiper, Roland P; Vissers, Lisenka E L M; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renée C; Hogervorst, Frans B L; Gille, Johan J P; Redeker, Bert; Tops, Carli M J; van Gijn, Marielle E; van den Ouweland, Ans M W; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J; Syngal, Sapna; Culver, Julie O; Graham, Tracy; Chan, Tsun L; Nagtegaal, Iris D; van Krieken, J Han J M; Schackert, Hans K; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J L

    2011-04-01

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like families for the presence of EPCAM deletions. We identified 27 novel independent MSH2-deficient families from multiple geographical origins with varying deletions all encompassing the 3' end of EPCAM, but leaving the MSH2 gene intact. Within The Netherlands and Germany, EPCAM deletions appeared to represent at least 2.8% and 1.1% of the confirmed Lynch syndrome families, respectively. MSH2 promoter methylation was observed in epithelial tissues of all deletion carriers tested, thus confirming silencing of MSH2 as the causative defect. In a total of 45 families, 19 different deletions were found, all including the last two exons and the transcription termination signal of EPCAM. All deletions appeared to originate from Alu-repeat mediated recombination events. In 17 cases regions of microhomology around the breakpoints were found, suggesting nonallelic homologous recombination as the most likely mechanism. We conclude that 3' end EPCAM deletions are a recurrent cause of Lynch syndrome, which should be implemented in routine Lynch syndrome diagnostics. PMID:21309036

  15. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    PubMed Central

    Davidsson, Josef; Collin, Anna; Björkhem, Gudrun; Soller, Maria

    2008-01-01

    Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k) genome-wide array-based comparative genomic hybridization (CGH). Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb) region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome. PMID:18194513

  16. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome)

    Microsoft Academic Search

    K. Phelan; H. E. McDermid

    2011-01-01

    The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and

  17. Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation

    PubMed Central

    2010-01-01

    Background Subtelomeric imbalance is widely accepted as related to developmental delay/mental retardation (DD/MR). Fine mapping of aberrations in gene-enriched subtelomeric regions provides essential clues for localizing critical regions, and provides a strategy for identifying new candidate genes. To date, no large-scale study has been conducted on subtelomeric aberrations in DD/MR patients in mainland China. Methods This study included 451 Chinese children with moderate to severe clinically unexplained DD/MR. The subtelomere-MLPA (multiplex ligation dependent probe amplification) and Affymetrix human SNP array 6.0 were used to determine the subtelomeric copy number variations. The exact size and the breakpoint of each identified aberration were well defined. Results The submicroscopic subtelomeric aberrations were identified in 23 patients, with a detection rate of 5.1%. 16 patients had simple deletions, 2 had simple duplications and 5 with both deletions and duplications. The deletions involved 14 different subtelomeric regions (1p, 2p, 4p, 6p, 7p, 7q, 8p, 9p, 10p, 11q, 14q, 15q, 16p and 22q), and duplications involved 7 subtelomeric regions (3q, 4p, 6q, 7p, 8p, 12p and 22q). Of all the subtelomeric aberrations found in Chinese subjects, the most common was 4p16.3 deletion. The sizes of the deletions varied from 0.6 Mb to 12 Mb, with 5-143 genes inside. Duplicated regions were 0.26 Mb to 11 Mb, with 6-202 genes inside. In this study, four deleted subtelomeric regions and one duplicated region were smaller than any other previously reported, specifically the deletions in 11q25, 8p23.3, 7q36.3, 14q32.33, and the duplication in 22q13. Candidate genes inside each region were proposed. Conclusions Submicroscopic subtelomeric aberrations were detected in 5.1% of Chinese children with clinically unexplained DD/MR. Four deleted subtelomeric regions and one duplicated region found in this study were smaller than any previously reported, which will be helpful for further defining the candidate dosage sensitive gene associated with DD/MR. PMID:20459802

  18. Large contiguous gene deletions in Sjögren-Larsson syndrome.

    PubMed

    Engelstad, Holly; Carney, Gael; S'aulis, Dana; Rise, Janae; Sanger, Warren G; Rudd, M Katharine; Richard, Gabriele; Carr, Christopher W; Abdul-Rahman, Omar A; Rizzo, William B

    2011-11-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis. PMID:21684788

  19. Large Contiguous Gene Deletions in Sjögren-Larsson Syndrome

    PubMed Central

    Engelstad, Holly; Carney, Gael; S'Aulis, Dana; Rise, Janae; Sanger, Warren G.; Rudd, M. Katharine; Richard, Gabriele; Carr, Christopher W.; Abdul-Rahman, Omar A.; Rizzo, William B.

    2011-01-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis. PMID:21684788

  20. The short arm deletion syndrome of chromosome 4 (4p- syndrome).

    PubMed

    Zellweger, H; Bardach, J; Bordwell, J; Williams, K

    1975-01-01

    Partial deletion of the short arm of chromosome 4 (4p-) represents another (rare) cause of cleft lip and cleft palate. Further characteristic manifestations of the syndrome (also called Wolf or Wolf-Hirschhorn syndrome) are growth failure, microcephaly, prominent glabella, hypertelorism, beaked nose, poorly differentiated and low set ears, cardiac and renal malformation and hypospadias. Life expectancy is often shortened. The 4p- syndrome has many features in common with another deletion syndrome, the cri-du-chat syndrome, and also with the Smith-Lemli-Opitz syndrome. The latter is a hereditary condition with normal karyotype. The cri-du-chat syndrome is characterized by a peculiar high-pitched, mewing cry and can be differentiated from the Wolf syndrome by the different staining characteristics (banding) of chromosomes 4 and 5. PMID:1119985

  1. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    Microsoft Academic Search

    Josef Davidsson; Anna Collin; Gudrun Björkhem; Maria Soller

    2008-01-01

    BACKGROUND: Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. METHODS: In this study we present the first example of a detailed molecular genetic

  2. Large contiguous gene deletions in Sjögren–Larsson syndrome

    Microsoft Academic Search

    Holly Engelstad; Gael Carney; Dana S'Aulis; Janae Rise; Warren G. Sanger; M. Katharine Rudd; Gabriele Richard; Christopher W. Carr; Omar A. Abdul-Rahman; William B. Rizzo

    2011-01-01

    Sjögren–Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We

  3. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome\\/velocardiofacial syndrome)

    Microsoft Academic Search

    Abbas F. Jawad; Donna M. McDonald-McGinn; Elaine Zackai; Kathleen E. Sullivan

    2001-01-01

    Objectives: To characterize immunologic function and clinical characteristics in patients with chromosome 22q11.2 deletion syndrome and determine whether there was significant change over time. Methods: This study characterized the laboratory and clinical features of the immunodeficiency in a cohort of 195 patients with chromosome 22q11.2 deletion syndrome and used cross-sectional and analysis of variance to compare the findings in different

  4. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic…

  5. Subtelomere FISH analysis of 11?688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities

    PubMed Central

    Ravnan, J B; Tepperberg, J H; Papenhausen, P; Lamb, A N; Hedrick, J; Eash, D; Ledbetter, D H; Martin, C L

    2006-01-01

    Background Subtelomere fluorescence in situ hybridisation (FISH) analysis has increasingly been used as an adjunct to routine cytogenetic testing in order to detect small rearrangements. Previous reports have estimated an overall abnormality rate of 6%, with a range of 2–29% because of different inclusion criteria. Methods This study presents data compiled from 11?688 cases referred for subtelomere FISH testing in three clinical cytogenetic laboratories. Results In this study population, the detection rate for clinically significant subtelomere abnormalities was approximately 2.5%, with an additional 0.5% detection of presumed familial variants. Approximately half of the clinically significant abnormalities identified were terminal deletions, the majority of which were de novo. Most of the remaining cases were unbalanced translocations between two chromosomes or two arms of the same chromosome. Approximately 60% of the unbalanced translocations were inherited from a parent carrying a balanced form of the rearrangement. Other abnormalities identified included tandem duplications, apparently balanced translocations, partial deletions, and insertions. Interestingly, 9 cases (0.08%) were found to have interstitial deletions of non?telomeric control loci, either BCR on 22q or PML on 15q. The most common clinically significant imbalances found were deletions of 1p, 22q, 4p, 9q, 8p, 2q and 20p. The most common familial variants were a deletion or duplication of 10q, deletion of 4q, deletion of Yq, and duplication of X/Yp onto Xq. Conclusions This study of subtelomere rearrangements is a 20 fold increase in number over the previously reported largest study and represents an unbiased analysis of subtelomere rearrangements in a large, unselected patient population. PMID:16199540

  6. Syndrome of proximal interstitial deletion 4p15

    SciTech Connect

    Fryns, J.P. [Univ. of Leuven (Belgium)

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  7. Attention deficits in children with 22q.11 deletion syndrome.

    PubMed

    Niklasson, Lena; Rasmussen, Peder; Oskarsdóttir, Sólveig; Gillberg, Christopher

    2005-12-01

    This study examined attention abilities of children with 22q.11 deletion syndrome. Thirty children (14 males, 16 females; age range 7 to 13y) were given comprehensive neuropsychological and neuropsychiatric assessments. Learning disability was found in 13 children. Superiority in verbal over performance IQ was very common. Attention-deficit-hyperactivity disorder (mainly of inattentive subtype) was diagnosed in 13 children. There appeared to be a relation between low IQ and presence of autism spectrum problems. The presence of attention deficits was clearly supported by the scores on the Child Behavior Checklist and the Conners Questionnaire. On the Becker attention tests the reaction times were significantly longer in the two visual and auditory tests, indicating that the ability to sustain attention is critically impaired in this group. A tendency of inferiority on auditory compared with visual tests was noted but there were no specific problems with the focus-execute aspect of attention. PMID:16288669

  8. Generation of the Sotos syndrome deletion in mice.

    PubMed

    Migdalska, Anna M; van der Weyden, Louise; Ismail, Ozama; Rust, Alistair G; Rashid, Mamunur; White, Jacqueline K; Sánchez-Andrade, Gabriela; Lupski, James R; Logan, Darren W; Arends, Mark J; Adams, David J

    2012-12-01

    Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2-q35.3 in humans (Df(13)Ms2Dja ( +/- ) mice). Surprisingly Df(13)Ms2Dja ( +/- ) mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja ( +/- ) mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik-B4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system. PMID:22926222

  9. Characterization of 14 novel deletions underlying Rubinstein-Taybi syndrome: an update of the CREBBP deletion repertoire.

    PubMed

    Rusconi, Daniela; Negri, Gloria; Colapietro, Patrizia; Picinelli, Chiara; Milani, Donatella; Spena, Silvia; Magnani, Cinzia; Silengo, Margherita Cirillo; Sorasio, Lorena; Curtisova, Vaclava; Cavaliere, Maria Luigia; Prontera, Paolo; Stangoni, Gabriela; Ferrero, Giovanni Battista; Biamino, Elisa; Fischetto, Rita; Piccione, Maria; Gasparini, Paolo; Salviati, Leonardo; Selicorni, Angelo; Finelli, Palma; Larizza, Lidia; Gervasini, Cristina

    2015-06-01

    Rubinstein-Taybi syndrome (RSTS) is a rare, clinically heterogeneous disorder characterized by cognitive impairment and several multiple congenital anomalies. The syndrome is caused by almost private point mutations in the CREBBP (~55 % of cases) and EP300 (~8 %) genes. The CREBBP mutational spectrum is variegated and characterized by point mutations (30-50 %) and deletions (~10 %). The latter are diverse in size and genomic position and remove either the whole CREBBP gene and its flanking regions or only an intragenic portion. Here, we report 14 novel CREBBP deletions ranging from single exons to the whole gene and flanking regions which were identified by applying complementary cytomolecular techniques: fluorescence in situ hybridization, multiplex ligation-dependent probe amplification and array comparative genome hybridization, to a large cohort of RSTS patients. Deletions involving CREBBP account for 23 % of our detected CREBBP mutations, making an important contribution to the mutational spectrum. Genotype-phenotype correlations revealed that patients with CREBBP deletions extending beyond this gene did not always have a more severe phenotype than patients harboring CREBBP point mutations, suggesting that neighboring genes play only a limited role in the etiopathogenesis of CREBBP-centerd contiguous gene syndrome. Accordingly, the extent of the deletion is not predictive of the severity of the clinical phenotype. PMID:25805166

  10. Choanal atresia in a patient with the deletion (9p) syndrome

    SciTech Connect

    Shashi, V.; Golden, W.L.; Fryburg, J.S. [Univ. of Virginia, Charlottesville, VA (United States)

    1994-01-01

    The authors report on a child with choanal atresia and deletion 9p. A review of the literature documented one previous instance of choanal atresia in a patient with del(9p). Choanal atresia may be part of the spectrum of malformations in the deletion (9p) syndrome and its presence should prompt a search for this particular deletion as part of the differential diagnosis. 9 refs., 3 figs.

  11. Velo-cardio-facial syndrome: Frequency and textent of 22q11 deletions

    Microsoft Academic Search

    Elizabeth A. Lindsay; Rosalie Goldberg; Vesna Jurecic; Bernice Morrow; Christine Carlson; Raju S. Kucherlapati; Robert J. Shprintzen; Antonio Baldini

    1995-01-01

    Velo-cardio-facial (VCFS) or Shprintzen syndrome is associated with deletions in a region of chromosome 22q11.2 also deleted in DiGeorge anomaly and some forms of congenital heart disease. Due to the variability of phenotype, the evaluation of the incidence of deletions has been hampered by uncertainty of diagnosis. In this study, 54 patients were diagnosed with VCFS by a single group

  12. Developmental trajectories in 22q11.2 deletion syndrome.

    PubMed

    Swillen, Ann; McDonald-McGinn, Donna

    2015-06-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS), a neurogenetic condition, is the most common microdeletion syndrome affecting 1 in 2,000-4,000 live births and involving haploinsufficiency of ?50 genes resulting in a multisystem disorder. Phenotypic expression is highly variable and ranges from severe life-threatening conditions to only a few associated features. Most common medical problems include: congenital heart disease, in particular conotruncal anomalies; palatal abnormalities, most frequently velopharyngeal incompetence (VPI); immunodeficiency; hypocalcemia due to hypoparathyroidism; genitourinary anomalies; severe feeding/gastrointestinal differences; and subtle dysmorphic facial features. The neurocognitive profile is also highly variable, both between individuals and during the course of development. From infancy onward, motor delays (often with hypotonia) and speech/language deficits are commonly observed. During the preschool and primary school ages, learning difficulties are very common. The majority of patients with 22q11.2DS have an intellectual level that falls in the borderline range (IQ 70-84), and about one-third have mild to moderate intellectual disability. More severe levels of intellectual disability are uncommon in children and adolescents but are more frequent in adults. Individuals with 22q11.2DS are at an increased risk for developing several psychiatric disorders including attention deficit with hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety and mood disorders, and psychotic disorders and schizophrenia. In this review, we will focus on the developmental phenotypic transitions regarding cognitive development in 22q11.2DS from early preschool to adulthood, and on the changing behavioral/psychiatric phenotype across age, on a background of frequently complex medical conditions. © 2015 Wiley Periodicals, Inc. PMID:25989227

  13. Chromosome 22q11.2 deletion in a boy with Opitz (G/BBB) syndrome

    SciTech Connect

    Fryburg, J.S.; Lin, K.Y.; Golden, W.L. [Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)] [Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)

    1996-03-29

    This report is on a 14-month-old boy with manifestations of Opitz (G/BBB) syndrome in whom a 22q11.2 deletion was found. Deletion analysis was requested because of some findings in this patient reminiscent of velocardiofacial (VCF) syndrome. The extent of aspiration and of respiratory symptoms in this child is not usually seen in VCF syndrome. Opitz syndrome maps to at least two loci, one on Xp, the other on 22q11.2. 12 refs., 2 figs.

  14. Contiguous gene syndromes due to deletions in the distal short arm of the human X chromosome

    SciTech Connect

    Ballabio, A.; Andria, G. (Univ. of Reggio Calabria, Catanzaro (Italy)); Bardoni, B.; Fraccaro, M.; Maraschio, P.; Zuffardi, O.; Guioli, S.; Camerino, G. (Univ. of Pavia (Italy)); Carrozzo, R. (Univ. of Naples (Italy)); Bick, D.; Campbell, L. (Univ. of Texas, San Antonio (USA)); Hamel, B. (Univ. of Nijmegen (Netherlands)); Ferguson-Smith, M.A. (Univ. of Cambridge (England)); Gimelli, G. (G. Gaslini Institute, Genoa (Italy))

    1989-12-01

    Mendelian inherited disorders to deletions of adjacent genes on a chromosome have been described as contiguous gene syndromes. Short stature, chondrodysplasia punctata, mental retardation, steroid sulfatase deficiency, and Kallmann syndrome have been found as isolated entities or associated in various combination in 27 patients with interstitial and terminal deletions involving the distal short are of the X chromosome. The use of cDNA and genomic probes from the Xp22-pter region allowed us to identify 12 different deletion intervals and to confirm, and further refine, the chromosomal assignment of X-linked recessive chondrodysplasia punctata and Kallmann syndrome genes. A putative pseudoautosomal gene affecting height and an X-linked nonspecific mental retardation gene have been tentatively assigned to specific intervals. The deletion panel described is a useful tool for mapping new sequences and orienting chromosome walks in the region.

  15. Atypical presentations of 22q11.2 deletion syndrome: explaining the genetic defects and genome architecture.

    PubMed

    Tu?ulan-Cuni??, Andreea Cristina; Budi?teanu, Magdalena; Papuc, Sorina Mihaela; Dupont, Jean-Michel; Blancho, Dominique; Lebbar, Aziza; Viot, Géraldine; Lungeanu, Agripina; Arghir, Aurora

    2012-05-30

    22q11.2 deletion syndrome, the most common microdeletion syndrome, exhibits a broad range of phenotypes, implying a cumbersome diagnosis due to atypical or paucisymptomatic presentations. We present two atypical cases of 22q11.2 deletion syndrome and suggest a preferential occurrence of the breakpoints in regions poor in repetitive elements of SINE/Alu family. PMID:22365273

  16. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  17. The complex structure and dynamic evolution of human subtelomeres

    Microsoft Academic Search

    Heather C. Mefford; Barbara J. Trask

    2002-01-01

    Subtelomeres are extraordinarily dynamic and variable regions near the ends of chromosomes. They are defined by their unusual structure: patchworks of blocks that are duplicated near the ends of multiple chromosomes. Duplications among subtelomeres have spawned small gene families, making inter-individual variation in subtelomeres a potential source of phenotypic diversity. The ectopic recombination that occurs between subtelomeres might also have

  18. Opitz GBBB syndrome and the 22q11.2 deletion

    SciTech Connect

    Lacassie, Y.; Arriaza, M.I. [Louisiani State Univ. Medical Center and Children`s Hospital, New Orleans, LA (United States)] [Louisiani State Univ. Medical Center and Children`s Hospital, New Orleans, LA (United States)

    1996-03-29

    Recently, McDonald-McGinn et al. reported the presence of a deletion 22q11.2 in a family with autosomal dominant inheritance and in a sporadic case with the Opitz GBBB syndrome. The presence of a vascular ring in these patients prompted them to look for this deletion, since this anomaly may be associated with the 22q11.2 deletion. They reviewed the Opitz GBBB syndrome and the 22q11.2 microdeletion syndrome, finding considerable overlap of manifestations. They proposed that, in some patients, the Opitz GBBB syndrome may be due to a 22q11.2 deletion. We recently examined a newborn boy referred because of MCA. The cardinal findings in this patient (hypertelorism, hypospadias with descended testicles, characteristic nose and truncus arteriosus type I) were suggestive of the Opitz GBBB syndrome and of the velocardiofacial syndrome. The chromosomes were apparently normal (46,XY), but the FISH study showed a 22q11.2 deletion. The patient developed hypocalcemia with very low level of PTH and heart failure requiring surgery. His immunological status was normal except that CD4 cells were mildly low and natural killer cells were increased in number. The family history was noncontributory, but the full evaluation of the family is pending. The mother at first glance presents apparent hypertelorism. 3 refs.

  19. Deletion of locus D15S113 in a mother and son without features of Angelman syndrome

    Microsoft Academic Search

    R. C. Michaelis; J. C. Tarleton; T. A. Donlon; R. J. Simensen

    1994-01-01

    Deletions of the proximal long arm of chromosome 15 result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The minimal critical deletion region for Angelman syndrome has been reported to include D15S74 (B1.5), D15S10 (TD3-21), and D15S113 (LS6-1). We report a mother and son who have deletions that include D15S113 but who

  20. Severe visual impairment and retinal changes in a boy with a deletion of the gene for Nance-Horan syndrome.

    PubMed

    Mathys, R; Deconinck, H; Keymolen, K; Jansen, A; Van Esch, H

    2007-01-01

    We present the ophthalmologic findings in a boy with a deletion of Xp22 comprising the gene for Nance-Horan syndrome. Different mechanisms underlying the visual impairment in Nance-Horan syndrome are discussed. PMID:18018428

  1. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  2. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome

    SciTech Connect

    Gandelman, K.Y.; Gibson, L.; Meyn, M.S.; Yang-Feng, T.L. (Yale Univ., New Haven, CT (United States))

    1992-09-01

    Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13, and Y2, of D4S113. To delineate this 4p deletion, the authors performed a series of FISH and pulsed-field gel electrophoresis analysis by using probes from 4p16.3. A deletion of [approximately]2.5 Mb with the breakpoint at [approximately]80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, they have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to [approximately]2 MB between D4S43 and D4S142. 37 refs., 4 figs., 1 tab.

  3. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome.

    PubMed

    Gandelman, K Y; Gibson, L; Meyn, M S; Yang-Feng, T L

    1992-09-01

    Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical facial dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13 and Y2, of D4S113. To delineate this 4p deletion, we performed a series of FISH and pulsed-field gel electrophoresis analyses by using probes from 4p16.3. A deletion of approximately 2.5 Mb with the breakpoint at approximately 80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, we have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to approximately 2 Mb between D4S43 and D4S142. PMID:1379774

  4. A Patient with 22q11.2 Deletion Syndrome: Case Report

    PubMed Central

    Ba?, Firdevs; Satan, Ali; Darendeliler, Feyza; Bundak, Rüveyde; Günöz, Hülya; Saka, Nurçin

    2009-01-01

    22q11 deletion is one of the most frequently encountered genetic syndromes. The phenotypic spectrum shows a wide variability. We report a boy who presented at age 11.9 years with seizures due to hypocalcemia as a result of hypoparathyroidism. FISH analysis revealed a heterozygote deletion at 22q11.2. Positive findings for the syndrome were delayed speech development due to velofacial dysfunction, recurrent croup attacks in early childhood due to latent hypocalcemia and mild dysmorphic features. The findings of this patient indicate that 22q11 deletion syndrome may present with a wide spectrum of clinical findings and that this diagnosis needs to be considered even in patients of older ages presenting with hypocalcemia. Conflict of interest:None declared. PMID:21274400

  5. A patient with 22q11.2 deletion syndrome: case report.

    PubMed

    Ery?lmaz, Sema Kabata?; Ba?, Firdevs; Satan, Ali; Darendeliler, Feyza; Bundak, Rüveyde; Günöz, Hülya; Saka, Nurçin

    2009-01-01

    22q11 deletion is one of the most frequently encountered genetic syndromes. The phenotypic spectrum shows a wide variability. We report a boy who presented at age 11.9 years with seizures due to hypocalcemia as a result of hypoparathyroidism. FISH analysis revealed a heterozygote deletion at 22q11.2. Positive findings for the syndrome were delayed speech development due to velofacial dysfunction, recurrent croup attacks in early childhood due to latent hypocalcemia and mild dysmorphic features. The findings of this patient indicate that 22q11 deletion syndrome may present with a wide spectrum of clinical findings and that this diagnosis needs to be considered even in patients of older ages presenting with hypocalcemia. PMID:21274400

  6. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome

    PubMed Central

    Cheung, Evelyn Ning Man; George, Susan R.; Andrade, Danielle M.; Chow, Eva W. C.; Silversides, Candice K.; Bassett, Anne S.

    2015-01-01

    Purpose Hypocalcemia is a common endocrinological condition in 22q11.2 deletion syndrome. Neonatal hypocalcemia may affect neurodevelopment. We hypothesized that neonatal hypocalcemia would be associated with rare, more severe forms of intellectual disability in 22q11.2 deletion syndrome. Methods We used a logistic regression model to investigate potential predictors of intellectual disability severity, including neonatal hypocalcemia, neonatal seizures, and complex congenital heart disease, e.g., interrupted aortic arch, in 149 adults with 22q11.2 deletion syndrome. Ten subjects had moderate-to-severe intellectual disability. Results The model was highly significant (P < 0.0001), showing neonatal seizures (P = 0.0018) and neonatal hypocalcemia (P = 0.047) to be significant predictors of a more severe level of intellectual disability. Neonatal seizures were significantly associated with neonatal hypocalcemia in the entire sample (P < 0.0001), regardless of intellectual level. There was no evidence for the association of moderate- to-severe intellectual disability with other factors such as major structural brain malformations in this sample. Conclusion The results suggest that neonatal seizures may increase the risk for more severe intellectual deficits in 22q11.2 deletion syndrome, likely mediated by neonatal hypocalcemia. Neonatal hypocalcemia often remains unrecognized until the postseizure period, when damage to neurons may already have occurred. These findings support the importance of early recognition and treatment of neonatal hypocalcemia and potentially neonatal screening for 22q11.2 deletions. PMID:23765047

  7. Beckwith-Wiedemann syndrome in a child with chromosome 18q deletion.

    PubMed Central

    Brewer, C M; Lam, W W; Hayward, C; Grace, E; Maher, E R; FitzPatrick, D R

    1998-01-01

    Molecular genetic investigation of a female infant with Beckwith-Wiedemann syndrome (BWS) showed loss of IGF2 imprinting but no evidence of uniparental disomy. In addition, a deletion of chromosome 18q22.1 was identified in this infant without clinical features of 18q-syndrome (microcephaly, short stature, hypotonia). The association of a chromosome 18 deletion and BWS may be coincidental or may indicate the location of a trans activating regulator element for maintenance of IGF2 imprinting. Images PMID:9507400

  8. Prenatal diagnosis of interstitial deletion of 17(p11.2p11.2) (Smith-Magenis Syndrome)

    SciTech Connect

    NONE

    1994-01-15

    Interstitial deletion of 17p11.2 is associated with Smith-Magenis syndrome. This is a recognizable chromosomal deletion syndrome, characterized by brachycephaly, midface hypoplasia, growth and mental retardation, behavioral problems, and ocular abnormalities. Molecular analysis indicates it is a contiguous gene syndrome. Over 50 patients have been reported since the deletion was first described by Smith et al. [1982]. Cases include one with mosaicism and a familial example. None were prenatally diagnosed. The authors report on the prenatal detection of interstitial deletion of 17p11.2. 11 refs., 1 fig.

  9. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    SciTech Connect

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W. [Shriners Hospital for Crippled Children, Portland, OR (United States)

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  10. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients

    SciTech Connect

    Juyal, R.C.; Figuera, L.E.; Hauge, X. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-05-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.

  11. The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning

    Microsoft Academic Search

    H. Fagman; J. Liao; J. Westerlund; L. Andersson; B. E. Morrow; M. Nilsson

    2006-01-01

    Thyroid dysgenesis is the major cause of congenital hypothyroidism in humans. The underlying molecular mechanism is in most cases unknown, but the frequent co-incidence of cardiac anomalies suggests that the thyroid morphogenetic process may depend on proper cardiovascular development. The T-box transcrip- tion factor TBX1, which is the most probable gene for the 22q11 deletion syndrome (22q11DS\\/DiGeorge syn- drome\\/velo-cardio-facial syndrome),

  12. Fifty microdeletions among 112 cases of sotos syndrome: Low copy repeats possibly mediate the common deletion

    Microsoft Academic Search

    Naohiro Kurotaki; Naoki Harada; Osamu Shimokawa; Noriko Miyake; Hiroshi Kawame; Kimiaki Uetake; Yoshio Makita; Tatsuro Kondoh; Tsutomu Ogata; Tomoko Hasegawa; Toshiro Nagai; Takao Ozaki; Mayumi Touyama; Ruthie Shenhav; Hirofumi Ohashi; Livija Medne; Takashi Shiihara; Shigeyuki Ohtsu; Zen-ichiro Kato; Nobuhiko Okamoto; Junji Nishimoto; Dorit Lev; Yoko Miyoshi; Satoshi Ishikiriyama; Tohru Sonoda; Satoru Sakazume; Yoshimitsu Fukushima; Kenji Kurosawa; Jan-Fang Cheng; Koh-ichiro Yoshiura; Tohru Ohta; Tatsuya Kishino; Norio Niikawa; Naomichi Matsumoto

    2003-01-01

    Sotos syndrome (SoS) is an autosomal dominant overgrowth syndrome with characteristic craniofacial dysmorphic features and various degrees of mental retardation. We previously showed that haploin sufficiency of the NSD1 gene is the major cause of SoS, and submicroscopic deletions at 5q35, including NSD1, were found in about a half (20\\/42) of our patients examined. Since the first report, an additional

  13. Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: Evaluation of 235 patients

    SciTech Connect

    Lowery, M.C.; Brothman, L.J.; Leonard, C.O. [Univ. of Utah Health Sciences Center, Salt Lake City, UT (United States)] [and others

    1995-07-01

    Williams syndrome (WS) is generally characterized by mental deficiency, gregarious personality, dysmorphic facies, supravalvular aortic stenosis, and idiopathic infantile hypercalcemia. Patients with WS show allelic loss of elastin (ELN), exhibiting a submicroscopic deletion, at 7q11.23, detectable by FISH. Hemizygosity is likely the cause of vascular abnormalities in WS patients. A series of 235 patients was studied, and molecular cytogenetic deletions were seen in 96% of patients with classic WS. Patients included 195 solicited through the Williams Syndrome Association (WSA), plus 40 clinical cytogenetics cases referred by primary-care physicians. Photographs and medical records of most WSA subjects were reviewed, and patients were identified as {open_quotes}classic{open_quotes} (n = 114) or{open_quotes}uncertain{close_quotes} (n = 39). An additional 42 WSA patients were evaluated without clinical information. FISH was performed with biotinylated ELN cosmids on metaphase cells from immortalized lymphoblastoid lines from WSA patients and after high-resolution banding analysis on clinical referral patients. An alpha-satellite probe for chromosome 7 was included in hybridizations, as an internal control. Ninety-six percent of the patients with classic WS showed a deletion in one ELN allele; four of these did not show a deletion. Of the uncertain WS patients, only 3 of 39 showed a deletion. Of the 42 who were not classified phenotypically, because of lack of clinical information, 25 patients (60%) showed a deletion. Thirty-eight percent (15/40) of clinical cytogenetics cases showed an ELN deletion and no cytogenetic deletion by banded analysis. These results support the usefulness of FISH for the detection of elastin deletions as an initial diagnostic assay for WS. 14 refs., 2 figs., 4 tabs.

  14. Terminal chromosome 4q deletion syndrome in an infant with hearing impairment and moderate syndromic features: review of literature

    PubMed Central

    2014-01-01

    Background Terminal deletions of chromosome 4q are associated with a broad spectrum of phenotypes including cardiac, craniofacial, digital, and cognitive impairment. The rarity of this syndrome renders genotype-phenotype correlation difficult, which is further complicated by the widely different phenotypes observed in patients sharing similar deletion intervals. Case presentation Herein, we describe a boy with congenital hearing impairment and a variety of moderate syndromic features that prompted SNP array analysis disclosing a heterozygous 6.9 Mb deletion in the 4q35.1q35.2 region, which emerged de novo in the maternal germ line. Conclusion In addition to the index patient, we review 35 cases from the literature and DECIPHER database to attempt genotype-phenotype correlations for a syndrome with great phenotypic variability. We delineate intervals with recurrent phenotypic overlap, particularly for cleft palate, congenital heart defect, intellectual disability, and autism spectrum disorder. Broad phenotypic presentation of the terminal 4q deletion syndrome is consistent with incomplete penetrance of the individual symptoms. PMID:24962056

  15. Deletion of short arm of chromosome 18, Del(18p) syndrome.

    PubMed

    Babaji, Prashant; Singh, Anurag; Lau, Himani; Lamba, G; Somasundaram, P

    2014-01-01

    Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril. PMID:24531606

  16. QUANTIFICATION OF 3D FACE SHAPE IN 22Q11.2 DELETION SYNDROME Katarzyna Wilamowska

    E-print Network

    Washington at Seattle, University of

    . Although many approaches for such discrimi- nation exist in the medical and computer vision literatureQUANTIFICATION OF 3D FACE SHAPE IN 22Q11.2 DELETION SYNDROME Katarzyna Wilamowska , Linda Shapiro Fellow, IEEE, Carrie Heike Department of Computer Science and Engineering, University of Washington

  17. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    ERIC Educational Resources Information Center

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  18. Delineation of the Inferior Longitudinal Fasciculus in Subjects with 22q11.2 Deletion Syndrome

    E-print Network

    using tractography. - Subjects: 18 young adult 22q11DS patients were matched on age, gender integrity and myelination in young adults with 22q11DS. BACKGROUND RESULTS CONCLUSIONS REFERENCES MATERIALS11.2 Deletion Syndrome (22q11DS) represents a population at high risk for developing schizophrenia

  19. Identification of critical regions for clinical features of distal 10q deletion syndrome.

    PubMed

    Yatsenko, S A; Kruer, M C; Bader, P I; Corzo, D; Schuette, J; Keegan, C E; Nowakowska, B; Peacock, S; Cai, W W; Peiffer, D A; Gunderson, K L; Ou, Z; Chinault, A C; Cheung, S W

    2009-07-01

    Array comparative genomic hybridization studies were performed to further characterize cytogenetic abnormalities found originally by karyotype and fluorescence in situ hybridization in five clinical cases of distal 10q deletions, including several with complex cytogenetic rearrangements and one with a partial male-to-female sex-reversal phenotype. These results have enabled us to narrow the previously proposed critical regions for the craniofacial, urogenital, and neuropsychiatric disease-related manifestations associated with distal 10q deletion syndrome. Furthermore, we propose that haploinsufficiency of the DOCK1 gene may play a crucial role in the pathogenesis of the 10q deletion syndrome. We hypothesize that alteration of DOCK1 and/or other genes involved in regulation and signaling of multiple pathways can explain the wide range of phenotypic variability between patients with similar or identical cytogenetic abnormalities. PMID:19558528

  20. 3q29 interstitial microdeletion syndrome: An inherited case associated with cardiac defect and normal cognition

    Microsoft Academic Search

    Feng Li; Emily C. Lisi; Elizabeth S. Wohler; Ada Hamosh; Denise A. S. Batista

    2009-01-01

    An inherited, interstitial subtelomere deletion of approximately 1.3–1.4 Mb at 3q29 was identified in a patient and his father utilizing BAC array comparative genomic hybridization (a-CGH). The imbalance was located within the common 3q29 microdeletion syndrome region and shared the distal breakpoint with prior published cases. However, our patient was developmentally normal at 6 months of age and his father is

  1. Testicular sex cord-stromal tumor in a boy with 2q37 deletion syndrome

    PubMed Central

    2014-01-01

    Background 2q37 deletion syndrome is a rare congenital disorder that is characterized by facial dysmorphism, obesity, vascular and skeletal malformations, and a variable degree of intellectual disability. To date, common but variable phenotypes, such as skeletal or digit malformations and obesity, have been associated with the deleted size or affected genes at chromosome 2q37. However, it remains elusive whether 2q37 deletion per se or other genetic factors, such as copy number variations (CNVs), may confer the risk for the tumorigenic condition. Case presentation We report a two-year-old Japanese boy with 2q37 deletion syndrome who exhibited the typical facial appearance, coarctation of the aorta, and a global developmental delay, while lacking the symptoms of brachydactyly and obesity. He developed a sex cord-stromal tumor of the right testis at three months of age. The array comparative genome hybridization analysis identified an 8.2-Mb deletion at 2q37.1 (chr2:234,275,216-242,674,807) and it further revealed two additional CNVs: duplications at 1p36.33–p36.32 (chr1:834,101–2,567,832) and 20p12.3 (chr20:5,425,762–5,593,096). The quantitative PCRs confirmed the heterozygous deletion of HDAC4 at 2q37.3 and duplications of DVL1 at 1q36 and GPCPD1 at 20p12.3. Conclusion This study describes the unique phenotypes in a boy with 2q37 deletion and additional CNVs at 1p36.33–p36.32 and 20p12.3. The data provide evidence that the phenotypic variations and unusual complications of 2q37 deletion syndrome are not simply explained by the deleted size or genes located at 2q37, but that external CNVs may account at least in part for their variant phenotypes. Accumulating the CNV data for chromosomal disorders will be beneficial for understanding the genetic effects of concurrent CNVs on the syndromic phenotypes and rare complications. PMID:24755370

  2. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    PubMed Central

    Dilzell, Kristen; Darcy, Diana; Sum, John; Wallerstein, Robert

    2015-01-01

    This case report concerns a 16-year-old girl with a 9.92?Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  3. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    SciTech Connect

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  4. Craniofacial and oral features of Sotos syndrome: differences in patients with submicroscopic deletion and mutation of NSD1 gene.

    PubMed

    Hirai, Norimitsu; Matsune, Kensuke; Ohashi, Hirofumi

    2011-12-01

    Sotos syndrome is a well-known overgrowth syndrome caused by haploinsufficiency of NSD1 gene located at 5q35. There are two types of mutations that cause NSD1 haploinsufficiency: mutations within the NSD1 gene (mutation type) and a 5q35 submicroscopic deletion encompassing the entire NSD1 gene (deletion type). We investigated detailed craniofacial, dental, and oral findings in five patients with deletion type, and three patients with mutation type Sotos syndrome. All eight patients had a high palate, excessive tooth wear, crowding, and all but one patient had hypodontia and deep bite. Hypodontia was exclusively observed in the second premolars, and there were no differences between the deletion and mutation types in the number of missing teeth. Another feature frequently seen in common with both types was maxillary recession. Findings seen more frequently and more pronounced in deletion-type than in mutation-type included mandibular recession, scissors or posterior cross bite, and small dental arch with labioclination of the maxillary central incisors. It is noteworthy that although either scissors bite or cross bite was present in all of the deletion-type patients, neither of these was observed in mutation-type patients. Other features seen in a few patients include enamel hypoplasia (two deletion patients), and ectopic tooth eruption (one deletion and one mutation patients). Our study suggests that Sotos syndrome patients should be observed closely for possible dental and oral complications especially for malocculusion in the deletion-type patients. PMID:22012791

  5. Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline

    PubMed Central

    Stong, Nicholas; Deng, Zhong; Gupta, Ravi; Hu, Sufen; Paul, Shiela; Weiner, Amber K.; Eichler, Evan E.; Graves, Tina; Fronick, Catrina C.; Courtney, Laura; Wilson, Richard K.; Lieberman, Paul M.; Davuluri, Ramana V.; Riethman, Harold

    2014-01-01

    Mapping genome-wide data to human subtelomeres has been problematic due to the incomplete assembly and challenges of low-copy repetitive DNA elements. Here, we provide updated human subtelomere sequence assemblies that were extended by filling telomere-adjacent gaps using clone-based resources. A bioinformatic pipeline incorporating multiread mapping for annotation of the updated assemblies using short-read data sets was developed and implemented. Annotation of subtelomeric sequence features as well as mapping of CTCF and cohesin binding sites using ChIP-seq data sets from multiple human cell types confirmed that CTCF and cohesin bind within 3 kb of the start of terminal repeat tracts at many, but not all, subtelomeres. CTCF and cohesin co-occupancy were also enriched near internal telomere-like sequence (ITS) islands and the nonterminal boundaries of subtelomere repeat elements (SREs) in transformed lymphoblastoid cell lines (LCLs) and human embryonic stem cell (ES) lines, but were not significantly enriched in the primary fibroblast IMR90 cell line. Subtelomeric CTCF and cohesin sites predicted by ChIP-seq using our bioinformatics pipeline (but not predicted when only uniquely mapping reads were considered) were consistently validated by ChIP-qPCR. The colocalized CTCF and cohesin sites in SRE regions are candidates for mediating long-range chromatin interactions in the transcript-rich SRE region. A public browser for the integrated display of short-read sequence–based annotations relative to key subtelomere features such as the start of each terminal repeat tract, SRE identity and organization, and subtelomeric gene models was established. PMID:24676094

  6. Safety of Live Viral Vaccines in Patients With Chromosome 22q11.2 Deletion Syndrome (DiGeorge Syndrome\\/Velocardiofacial Syndrome)

    Microsoft Academic Search

    Elena E. Perez; Aleksandra Bokszczanin; Elaine H. Zackai; Kathleen E. Sullivan

    The package inserts of live viral vaccines include immunodeficiency as a contraindication. Never- theless, patients with mild forms of immunodeficiency may benefit from vaccination. No published guidelines exist for the administration of these vaccines specifically to patients with chromosome 22q11.2 deletion syndrome. This syndrome is also sometimes called DiGeorge syn- drome and is associated with thymic hypoplasia and diminished T-cell

  7. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    ERIC Educational Resources Information Center

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  8. Classification of 3D Face Shape in 22Q11.2 Deletion Syndrome

    Microsoft Academic Search

    Katarzyna Wilamowska; Linda G. Shapiro; Carrie Heike

    2009-01-01

    Given a set of labeled 3D meshes acquired from stereo imaging of heads, the goal of this research is to develop a successful methodology for discriminating between individuals with 22q11.2 deletion syndrome and the general population. Although many approaches for such discrimination exist in the medical and computer vision literature, the goal is to develop methods that focus on shape-based

  9. Detection of Gene Deletions in Children with Chondrodysplasia Punctata, Ichthyosis, Kallmann Syndrome, and Ocular Albinism by FISH Studies

    Microsoft Academic Search

    Jia-Woei Hou

    Background: Contiguous gene syndrome (CGS) is characterized by a series of clinical fea- tures resulting from interstitial or terminal deletions of various adjacent genes. Several important genes have been identified in the Xp22.3 region to be responsible for genetically heterogeneous diseases. In this study, fluores- cence in situ hybridization (FISH) methods were used to detect the extent of gene deletion

  10. A new case with 10q23 interstitial deletion encompassing both PTEN and BMPR1A narrows the genetic region deleted in juvenile polyposis syndrome.

    PubMed

    Hiljadnikova Bajro, Marija; Sukarova-Angelovska, Elena; Adélaïde, Jose; Chaffanet, Max; Dimovski, Aleksandar J

    2013-02-01

    We report on a patient with a contiguous interstitial germline deletion of chromosome 10q23, encompassing BMPR1A and PTEN, with clinical manifestations of juvenile polyposis and minor symptoms of Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). The patient presented dysmorphic features as well as developmental delay at the age of 5 months. Multiple polyps along all parts of the colon were diagnosed at the age of 3 years, following an episode of a severe abdominal pain and intestinal bleeding. The high-resolution comparative genomic hybridisation revealed a 3.7-Mb deletion within the 10q23 chromosomal region: 86,329,859-90,035,024. The genotyping with four polymorphic microsatellite markers confirmed a de novo 10q deletion on the allele with a paternal origin, encompassing both PTEN and BMPR1A genes. The karyotype analysis additionally identified a balanced translocation involving chromosomes 5q and 7q, and an inversion at chromosome 2, i.e. 46,XY,t(5;7)(q13.3-q36), inv(2)(p25q34). Although many genetic defects were detected, it is most likely that the 10q23 deletion is primarily the cause for the serious phenotypic manifestations. The current clinical findings and deletion of BMPR1A indicate a diagnosis of severe juvenile polyposis, but the existing macrocephaly and PTEN deletion also point to either CS or BRRS, which cannot be ruled out at the moment because of their clinical manifestation later in life and the de novo character of the deletion. The deletion detected in our patient narrows the genetic region deleted in all reported cases with juvenile polyposis by 0.04 Mb from the telomeric side, mapping it to the region chr10:88.5-90.03Mb (GRCh37/hg19), with an overall length of 1.53 Mb. PMID:22993021

  11. Congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome due to a 6p deletion.

    PubMed

    Moysés-Oliveira, Mariana; Mancini, Tatiane I; Takeno, Sylvia S; Rodrigues, Andressa D S; Bachega, Tania A S S; Bertola, Debora; Melaragno, Maria Isabel

    2014-01-01

    Cryptic deletions in balanced de novo translocations represent a frequent cause of abnormal phenotypes, including Mendelian diseases. In this study, we describe a patient with multiple congenital abnormalities, such as late-onset congenital adrenal hyperplasia (CAH), primary ovarian failure and Ehlers-Danlos syndrome (EDS), who carries a de novo t(6;14)(p21;q32) translocation. Genomic array analysis identified a cryptic 1.1-Mb heterozygous deletion, adjacent to the breakpoint on chromosome 6, extending from 6p21.33 to 6p21.32 and affecting 85 genes, including CYP21A2,TNXB and MSH5. Multiplex ligation-dependent probe amplification analysis of the 6p21.3 region was performed in the patient and her family and revealed a 30-kb deletion in the patient's normal chromosome 6, inherited from her mother, resulting in homozygous loss of genes CYP21A1P and C4B. CYP21A2 sequencing showed that its promoter region was not affected by the 30-kb deletion, suggesting that the deletion of other regulatory sequences in the normal chromosome 6 caused a loss of function of the CYP21A2 gene. EDS and primary ovarian failure phenotypes could be explained by the loss of genes TNXB and MSH5, a finding that may contribute to the characterization of disease-causing genes. The detection of this de novo microdeletion drastically reduced the estimated recurrence risk for CAH in the family. PMID:24970489

  12. MLL2 mosaic mutations and intragenic deletion-duplications in patients with Kabuki syndrome.

    PubMed

    Banka, S; Howard, E; Bunstone, S; Chandler, K E; Kerr, B; Lachlan, K; McKee, S; Mehta, S G; Tavares, A L T; Tolmie, J; Donnai, D

    2013-05-01

    Kabuki syndrome (KS) is a rare multi-system disorder that can result in a variety of congenital malformations, typical dysmorphism and variable learning disability. It is caused by MLL2 point mutations in the majority of the cases and, rarely by deletions involving KDM6A. Nearly one third of cases remain unsolved. Here, we expand the known genetic basis of KS by presenting five typical patients with the condition, all of whom have novel MLL2 mutation types- two patients with mosaic small deletions, one with a mosaic whole-gene deletion, one with a multi-exon deletion and one with an intragenic multi-exon duplication. We recommend MLL2 dosage studies for all patients with typical KS, where traditional Sanger sequencing fails to identify mutations. The prevalence of such MLL2 mutations in KS may be comparable with deletions involving KDM6A. These findings may be helpful in understanding the mutational mechanism of MLL2 and the disease mechanism of KS. PMID:22901312

  13. Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    PubMed Central

    2014-01-01

    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed. PMID:25057328

  14. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients.

    PubMed Central

    Carlson, C; Sirotkin, H; Pandita, R; Goldberg, R; McKie, J; Wadey, R; Patanjali, S R; Weissman, S M; Anyane-Yeboa, K; Warburton, D; Scambler, P; Shprintzen, R; Kucherlapati, R; Morrow, B E

    1997-01-01

    Velo-cardio-facial syndrome (VCFS) is a relatively common developmental disorder characterized by craniofacial anomalies and conotruncal heart defects. Many VCFS patients have hemizygous deletions for a part of 22q11, suggesting that haploinsufficiency in this region is responsible for its etiology. Because most cases of VCFS are sporadic, portions of 22q11 may be prone to rearrangement. To understand the molecular basis for chromosomal deletions, we defined the extent of the deletion, by genotyping 151 VCFS patients and performing haplotype analysis on 105, using 15 consecutive polymorphic markers in 22q11. We found that 83% had a deletion and >90% of these had a similar approximately 3 Mb deletion, suggesting that sequences flanking the common breakpoints are susceptible to rearrangement. We found no correlation between the presence or size of the deletion and the phenotype. To further define the chromosomal breakpoints among the VCFS patients, we developed somatic hybrid cell lines from a set of VCFS patients. An 11-kb resolution physical map of a 1,080-kb region that includes deletion breakpoints was constructed, incorporating genes and expressed sequence tags (ESTs) isolated by the hybridization selection method. The ordered markers were used to examine the two separated copies of chromosome 22 in the somatic hybrid cell lines. In some cases, we were able to map the chromosome breakpoints within a single cosmid. A 480-kb critical region for VCFS has been delineated, including the genes for GSCL, CTP, CLTD, HIRA, and TMVCF, as well as a number of novel ordered ESTs. PMID:9326327

  15. Angelman syndrome associated with oculocutaneous albinism due to an intragenic deletion of the P gene.

    PubMed

    Fridman, C; Hosomi, N; Varela, M C; Souza, A H; Fukai, K; Koiffmann, C P

    2003-06-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, speech impairment, ataxia, and happy disposition with frequent smiling. AS results from the loss of expression of a maternal imprinted gene, UBE3A, mapped within 15q11-q13 region, due to different mechanisms: maternal deletion, paternal UPD, imprinting center mutation, and UBE3A mutation. Deletion AS patients may exhibit hypopigmentation of skin, eye, and hair correlating with deletion of P gene localized in the distal part of Prader-Willi (PWS)/AS region. Our patient presented developmental delay, severe mental retardation, absence of speech, outbursts of laughter, microcephaly, ataxia, hyperactivity, seizures, white skin, no retinal pigmentation, and gold yellow hair. His parents were of African ancestry. The SNURF-SNRPN methylation analysis confirmed AS diagnosis and microsatellite studies disclosed deletion with breakpoints in BP2 and BP3. All of the 25 exons and flanking introns of the P gene of the patient, his father, and mother were investigated. The patient is hemizygous for the deleted exon 7 of the P gene derived from his father who is a carrier of the deleted allele. Our patient manifests OCA2 associated with AS due to the loss of the maternal chromosome 15 with the normal P allele, and the paternal deletion in the P gene. As various degrees of hypopigmentation are associated with PWS and AS patients, the study of the P gene in a hemizygous state could contribute to the understanding of its effect on human pigmentation during development and to disclose the presence of modifier pigmentation gene(s) in the PWS/AS region. PMID:12749060

  16. Alagille syndrome with interstitial 20p deletion derived from maternal ins(7;20)

    SciTech Connect

    Pi-Hsien Li; San-Ging Shu; Ching-Shiang Chi [Taichung Veterans General Hospital, Taiwan (China)] [and others

    1996-06-28

    We present a 6-year-old Chinese boy with Alagille syndrome and an interstitial 20p deletion, with a karyotype of 46,XY,der(20)dir ins(7;20)(q11.23;p11.23p12.2 or p12.2p13)mat. He had a peculiar face and suffered from congenital heart disease, growth retardation, severe cholestasis, hepatosplenomegaly, and impaired renal function. The karyotype of his mother showed a balanced translocation, 46,XX,dir ins(7;20)(q11.23; p11.23p12.2 or p12.2p13), and her phenotype was normal. His dead elder brother was highly suspected as another victim of Alagille syndrome. The findings in the present family suggested that if Alagille syndrome is a single gene defect, the putative gene responsible for the syndrome would not be located at the insertion breakpoints but located within the deletion extent. 18 refs., 5 figs.

  17. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    PubMed Central

    Squarcione, Chiara; Torti, Maria Chiara; Di Fabio, Fabio; Biondi, Massimo

    2013-01-01

    The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. PMID:24353423

  18. Deletion of locus D15S113 in a mother and son without features of Angelman syndrome

    SciTech Connect

    Michaelis, R.C.; Tarleton, J.C.; Donlon, T.A.; Simensen, R.J. [Greenwood Gneetic Center, SC (United States)] [and others

    1994-09-01

    Deletions of the proximal long arm of chromosome 15 result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The minimal critical deletion region for Angelman syndrome has been reported to include D15S74 (B1.5), D15S10 (TD3-21), and D15S113 (LS6-1). We report a mother and son who have deletions that include D15S113 but who do not have features of Angelman syndrome. D.H. is a 10-year-old white male referred for genetic evaluation due to mental retardation. He has mild to moderate mental retardation and minor dysmorphic features, including downslanting palpebral fissures, prominent nose, broad forehead, small chin, midface hypoplasia, and large ears. His mother (B.S.) has slightly downslanting palpebral fissures and a borderline intellectual deficit. Neither individual has the seizures, excessive laughter, hand clapping, ataxia or facial dysmorphism which are characteristic of Angelman syndrome. The linear order of probes mapping to 15q11-q13 is 15cen-D15S11-D15S13-D15S10-D15S113-GABRB3-D15S12-tel. The proximal border of the deletion in our patients lies between D15S10 and D15S113. The fact that these two individuals do not have Angelman syndrome, despite deletion of D15S113, suggests that the Angelman syndrome critical deletion region should be further refined to exclude the D15S113 locus. In addition, the findings of a more severe intellectual impairment in the son than in the mother suggests that the region immediately telomeric to the critical deletion region for Angelman syndrome may contain imprintable genes that influence intellectual function.

  19. A de novo deletion in X 27-28 spans at least 3 megabases and results in fragile X syndrome

    SciTech Connect

    Lachiewicz, A.; Rao, K.; Aylsworth, A.; Richie, R.; Schwartz, C.; Tarleton, J. [Duke Univ. Medical Center, Durham, NC (United States)]|[Univ. of North Carolina, Chapel Hill, NC (United States)]|[Greenwood Genetic Center, NC (United States)

    1994-07-15

    A 2-year-old boy with Martin-Bell syndrome was referred for molecular testing and found to have a large deletion of FMRI. His mother was found to have two FMR-1 alleles in the normal range for CGG repeats. DNA probes located both proximal and distal to FRAXA were used to delineate the approximation location of the deletion endpoints. Proximal to the fragile site, DXS312 (pX135) was absent but DXS98 (4D8) was present. Distal to the fragile site, DXS296 (VK21) was absent but DXS304 (U6.2) was present. Our patient does not appear to have clinical findings other than those typically associated with fragile X syndrome suggesting that the deletion does not remove other contiguous genes, e.g., IDS. The deletion in this patient is larger than the patient reported by Gedeon et al., in whom approximately 2.5 megabases were estimated to be deleted. Using the physical map of Schlessinger et al., the physical extent of the deletion can be estimated to be at least 3 megabases. This patient may be useful in physical mapping of the chromosomal region near FMR-1. Continued long-term evaluation of this patient may uncover clinical findings suggestive that the deletion removes other genes near to FMR-1 or, alternatively, no findings atypical of the fragile X syndrome suggesting that no other genes lie in the deletion interval.

  20. Memory in Intellectually Matched Groups of Young Participants with 22q11.2 Deletion Syndrome and Those with Schizophrenia

    ERIC Educational Resources Information Center

    Kravariti, Eugenia; Jacobson, Clare; Morris, Robin; Frangou, Sophia; Murray, Robin M.; Tsakanikos, Elias; Habel, Alex; Shearer, Jo

    2010-01-01

    The 22q11.2 deletion syndrome (22qDS) and schizophrenia have genetic and neuropsychological similarities, but are likely to differ in memory profile. Confirming differences in memory function between the two disorders, and identifying their genetic determinants, can help to define genetic subtypes in both syndromes, identify genetic risk factors…

  1. Atypical Rett syndrome with selective FOXG1 deletion detected by comparative genomic hybridization: case report and review of literature

    Microsoft Academic Search

    Francois Dominique Jacob; Vijay Ramaswamy; John Andersen; Francois V Bolduc

    2009-01-01

    Rett syndrome is a severe neurodegenerative disorder characterized by acquired microcephaly, communication dysfunction, psychomotor regression, seizures and stereotypical hand movements. Mutations in methyl CpG binding protein 2 (MECP2) are identified in most patients with classic Rett syndrome. Genetic studies in patients with a Rett variant have expanded the spectrum of underlying genetic etiologies. Recently, a deletion encompassing several genes in

  2. Eye Gaze During Face Processing in Children and Adolescents with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Glaser, Bronwyn; Debbane, Martin; Ottet, Marie-Christine; Vuilleumier, Patrik; Zesiger, Pascal; Antonarakis, Stylianos E.; Eliez, Stephan

    2010-01-01

    Objective: The 22q11.2 deletion syndrome (22q11DS) is a neurogenetic syndrome with high risk for the development of psychiatric disorder. There is interest in identifying reliable markers for measuring and monitoring socio-emotional impairments in 22q11DS during development. The current study investigated eye gaze as a potential marker during a…

  3. PHF6 Deletions May Cause Borjeson-Forssman-Lehmann Syndrome in Females

    PubMed Central

    Berland, S.; Alme, K.; Brendehaug, A.; Houge, G.; Hovland, R.

    2011-01-01

    In a 16-year-old girl with intellectual disability, irregular teeth, slight body asymmetry, and striated skin pigmentation, highly skewed X-inactivation increased the likelihood of an X-linked cause of her condition. Among these, prominent supraorbital ridges and hearing loss suggested a filaminopathy, but no filamin A mutation was found. The correct diagnosis, Borjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900), was first made when a copy number array identified a de novo 15-kb deletion of the terminal 3 exons of the PHF6 gene. In retrospect, her phenotype resembled that of males with BFLS. Such deletions of PHF6 have not been reported previously. This might be because PHF6 mutations are rarely looked for in females since classical BFLS so far has been thought to be a male-specific syndrome, and large PHF6 deletions might be incompatible with male fetal survival. If this is the case, sporadic BFLS could be more frequent in females than in males. PMID:22190899

  4. Fifty microdeletions among 112 cases of sotos syndrome: Low copy repeats possibly mediate the common deletion

    SciTech Connect

    Kurotaki, Naohiro; Harada, Naoki; Shimokawa, Osamu; Miyake, Noriko; Kawame, Hiroshi; Uetake, Kimiaki; Makita, Yoshio; Kondoh, Tatsuro; Ogata, Tsutomu; Hasegawa, Tomoko; Nagai, Toshiro; Ozaki, Takao; Touyama, Mayumi; Shenhav, Ruthie; Ohashi, Hirofumi; Medne, Livija; Shiihara, Takashi; Ohtsu, Shigeyuki; Kato, Zen-ichiro; Okamoto, Nobuhiko; Nishimoto, Junji; Lev, Dorit; Miyoshi, Yoko; Ishikiriyama, Satoshi; Sonoda, Tohru; Sakazume, Satoru; Fukushima, Yoshimitsu; Kurosawa, Kenji; Cheng, Jan-Fang; Yoshiura, Koh-ichiro; Ohta, Tohru; Kishino, Tatsuya; Niikawa, Norio; Matsumoto, Naomichi

    2003-04-15

    Sotos syndrome (SoS) is an autosomal dominant overgrowth syndrome with characteristic craniofacial dysmorphic features and various degrees of mental retardation. We previously showed that haploin sufficiency of the NSD1 gene is the major cause of SoS, and submicroscopic deletions at 5q35, including NSD1, were found in about a half (20/42) of our patients examined. Since the first report, an additional 70 SoS cases consisting of 53 Japanese and 17 non-Japanese have been analyzed. We found 50 microdeletions (45 percent) and 16 point mutations (14 percent) among all the 112 cases. A large difference in the frequency of microdeletions between Japanese and non-Japanese patients was noted: 49 (52 percent) of the 95 Japanese patients and only one (6 percent) of the 17 non-Japanese had microdeletions. A sequence-based physical map was constructed to characterize the microdeletions. Most of the microdeletions were confirmed to be identical by FISH analysis. We identified highly homologous sequences, i.e., possible low copy repeats (LCRs), in regions flanking proximal and distal breakpoints of the common deletion. This suggests that LCRs may mediate the deletion. Such LCRs seem to be present in different populations. Thus the different frequency of microdeletions between Japanese and non-Japanese cases in our study may have been caused by patient-selection bias.

  5. Mitochondral localization and function of a subset of 22q11 Deletion Syndrome candidate genes

    PubMed Central

    Maynard, T. M.; Meechan, D. W.; Dudevoir, M. L.; Gopalakrishna, D.; Peters, A. Z.; Heindel, C. C.; Sugimoto, T. J.; Wu, Y.; Lieberman, J. A.; LaMantia, A.-S.

    2008-01-01

    Six genes in the 1.5 MB region of chromosome 22 deleted in DiGeorge/22q11 Deletion Syndrome—Mrpl40, Prodh, Slc25a1, Txnrd2, T10, and Zdhhc8—encode mitochondrial proteins. All six genes are expressed in the brain, and maximal expression coincides with peak forebrain synaptogenesis shortly after birth. Furthermore, their protein products are associated with brain mitochondria, including those in synaptic terminals. Among the six, only Zddhc8 influences mitochondria-regulated apoptosis when overexpressed, and appears to interact biochemically with established mitochondrial proteins. Zdhhc8 has an apparent interaction with Uqcrc1, a component of mitochondrial complex III. The two proteins are coincidently expressed in presynaptic processes; however, Zdhhc8 is more frequently seen in glutamatergic terminals. 22q11 deletion may alter metabolic properties of cortical mitochondria during early post-natal life, since expression complex III components, including Uqcrc1, is significantly increased at birth in a mouse model of 22q11 deletion, and declines to normal values in adulthood. Our results suggest that altered dosage of one, or several 22q11 mitochondrial genes, particularly during early postnatal cortical development, may disrupt neuronal metabolism or synaptic signaling. PMID:18775783

  6. Social Cognition in Williams Syndrome: Genotype/Phenotype Insights from Partial Deletion Patients

    PubMed Central

    Karmiloff-Smith, Annette; Broadbent, Hannah; Farran, Emily K.; Longhi, Elena; D’Souza, Dean; Metcalfe, Kay; Tassabehji, May; Wu, Rachel; Senju, Atsushi; Happé, Francesca; Turnpenny, Peter; Sansbury, Francis

    2012-01-01

    Identifying genotype/phenotype relations in human social cognition has been enhanced by the study of Williams syndrome (WS). Indeed, individuals with WS present with a particularly strong social drive, and researchers have sought to link deleted genes in the WS critical region (WSCR) of chromosome 7q11.23 to this unusual social profile. In this paper, we provide details of two case studies of children with partial genetic deletions in the WSCR: an 11-year-old female with a deletion of 24 of the 28 WS genes, and a 14-year-old male who presents with the opposite profile, i.e., the deletion of only four genes at the telomeric end of the WSCR. We tested these two children on a large battery of standardized and experimental social perception and social cognition tasks – both implicit and explicit – as well as standardized social questionnaires and general psychometric measures. Our findings reveal a partial WS socio-cognitive profile in the female, contrasted with a more autistic-like profile in the male. We discuss the implications of these findings for genotype/phenotype relations, as well as the advantages and limitations of animal models and of case study approaches. PMID:22661963

  7. Comparison of facial features of DiGeorge syndrome (DGS) due to deletion 10p13-10pter with DGS due to 22q11 deletion

    SciTech Connect

    Goodship, J.; Lynch, S.; Brown, J. [Univ. of Newcastle, Tyne (United Kingdom)] [and others

    1994-09-01

    DiGeorge syndrome (DGS) is a congenital anomaly consisting of cardiac defects, aplasia or hypoplasia of the thymus and parathroid glands, and dysmorphic facial features. The majority of DGS cases have a submicroscopic deletion within chromosome 22q11. However there have been a number of reports of DGS in association with other chromosomal abnormalities including four cases with chromosome 10p deletions. We describe a further 10p deletion case and suggest that the facial features in children with DGS due to deletions of 10p are different from those associated with chromosome 22 deletions. The propositus was born at 39 weeks gestation to unrelated caucasian parents, birth weight 2580g (10th centile) and was noted to be dysmorphic and cyanosed shortly after birth. The main dysmorphic facial features were a broad nasal bridge with very short palpebral fissures. Echocardiography revealed a large subsortic VSD and overriding aorta. She had a low ionised calcium and low parathroid hormone level. T cell subsets and PHA response were normal. Abdominal ultrasound showed duplex kidneys and on further investigation she was found to have reflux and raised plasma creatinine. She had an anteriorly placed anus. Her karyotype was 46,XX,-10,+der(10)t(3;10)(p23;p13)mat. The dysmorphic facial features in this baby are strikingly similar to those noted by Bridgeman and Butler in child with DGS as the result of a 10p deletion and distinct from the face seen in children with DiGeorge syndrome resulting from interstitial chromosome 22 deletions.

  8. [Genetic and clinical characteristics of 22q11.2 deletion syndrome].

    PubMed

    Kozlova, Iu O; Zabnenkova, V V; Shilova, N V; Min'zhenkova, M E; Antonenko, V G; Kotlukova, N P; Simonova, L V; Kazanceva, I A; Levchenko, E G; Bombardirova, T D; Zolotukhina, T V; Poliakov, A V

    2014-05-01

    In a group of 140 patients with typical phenotype, the 22q11.2 microdeletion was detected in 43 patients (32%) using FISH and MLPA methods. There were no deletions of other chromosomal loci leading to phenotypes similar to the 22q11.2 deletion syndrome (22q11.2DS). Sequencing of the TBX1 gene did not detect any mutations, except for some common neutral polymorphisms. For the first time in the Russian Federation, the diagnostic efficiency of 22q11.2DS appeared to be 32%, as a result of the application of a combination of genetic approaches for a large group of patients with suspected 22q11.2DS. PMID:25715476

  9. Intermediate interstitial deletion of chromosome 7q detected by first-trimester Down's syndrome screening.

    PubMed

    Cheong, Mei-Leng Joy; Tsai, Ming-Song; Cortes, Raul A; Harrison, Michael R

    2008-01-01

    We report a case of prenatally diagnosed chromosome 7q intermediate interstitial deletion with the aid of first-trimester Down's syndrome (DS) screening. After detection of a significantly diminished maternal serum pregnancy-associated plasma protein A and correspondingly high DS risk, the pregnant woman underwent amniocentesis for fetal chromosomal analysis. Amniocytes revealed a 46,XY,del(7) (q21.2q31.1) karyotype and 21 weeks' sonography revealed fetal growth restriction, elevated nuchal fold thickness and cardiomegaly. After therapeutic induction at 22 weeks of gestation, a 310-gram male fetus was born with multiple gross abnormalities including hypertelorism, wide nasal bridge, low-set ears, cleft palate, prominent cheeks, prominent nuchal skin, simian crease and postaxial polydactyly. We review the associated prenatal screening findings, the sonographic profile and phenotypical features associated with chromosome 7q intermediate interstitial deletion. PMID:18841024

  10. Chromosome 18q deletion syndrome with autoimmune diabetes mellitus: putative genomic loci for autoimmunity and immunodeficiency.

    PubMed

    Hogendorf, Anna; Lipska-Zietkiewicz, Beata S; Szadkowska, Agnieszka; Borowiec, Maciej; Koczkowska, Magdalena; Trzonkowski, Piotr; Drozdz, Izabela; Wyka, Krystyna; Limon, Janusz; Mlynarski, Wojciech

    2014-11-18

    A girl with 18q deletion syndrome was diagnosed with autoimmune diabetes mellitus and Hashimoto's thyroiditis at the age of 3 yr. In addition, the girl suffered from recurrent infections due to immunoglobulin A and IgG4 deficiency. She was also found to have CD3+CD4+FoxP3+, CD3+CD4+FoxP3+CD25+, and CD3+CD4+CD25+CD127 regulatory T cells deficiency. The exceptional coincidence of the two autoimmune disorders occurring at an early age, and associated with immune deficiency, implies that genes located on deleted 19.4 Mbp region at 18q21.32-q23 (chr18:58,660,699-78,012,870) might play a role in the pathogenesis of autoimmunity leading to ? cell destruction and diabetes. PMID:25403779

  11. A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi–Goutiéres syndrome associated with mtDNA deletions

    PubMed Central

    Leshinsky-Silver, Esther; Malinger, Gustavo; Ben-Sira, Liat; Kidron, Dvora; Cohen, Sarit; Inbar, Shani; Bezaleli, Tali; Levine, Arie; Vinkler, Chana; Lev, Dorit; Lerman-Sagie, Tally

    2011-01-01

    Aicardi–Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLG?, POLG?, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9?kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. PMID:21102625

  12. Contiguous ABCD1 DXS1357E deletion syndrome: report of an autopsy case.

    PubMed

    Iwasa, Mitsuaki; Yamagata, Takanori; Mizuguchi, Masashi; Itoh, Masayuki; Matsumoto, Ayumi; Hironaka, Mitsugu; Honda, Ayako; Momoi, Mariko Y; Shimozawa, Nobuyuki

    2013-06-01

    Contiguous ABCD1 DXS1357E deletion syndrome (CADDS) is a contiguous deletion syndrome involving the ABCD1 and DXS1357E/BAP31 genes on Xq28. Although ABCD1 is responsible for X-linked adrenoleukodystrophy (X-ALD), its phenotype differs from that of CADDS, which manifests with many features of Zellweger syndrome (ZS), including severe growth and developmental retardation, liver dysfunction, cholestasis and early infantile death. We report here the fourth case of CADDS, in which a boy had dysmorphic features, including a flat orbital edge, hypoplastic nose, micrognathia, inguinal hernia, micropenis, cryptorchidism and club feet, all of which are shared by ZS. The patient achieved no developmental milestones and died of pneumonia at 8 months. Biochemical studies demonstrated abnormal metabolism of very long chain fatty acids, which was higher than that seen in X-ALD. Immunocytochemistry and Western blot showed the absence of ALD protein (ALDP) despite the presence of other peroxisomal proteins. Pathological studies disclosed a small brain with hypomyelination and secondary hypoxic-ischemic changes. Neuronal heterotopia in the white matter and leptomeningeal glioneuronal heterotopia indicated a neuronal migration disorder. The liver showed fibrosis and cholestasis. The thymus and adrenal glands were hypoplastic. Array comparative genomic hybridization (CGH) analysis suggested that the deletion was a genomic rearrangement in the 90-kb span starting in DXS1357E/BACP31 exon 4 and included ABCD1, PLXNB3, SRPK3, IDH3G and SSR4, ending in PDZD4 exon 8. Thus, the absence of ALDP, when combined with defects in the B-cell antigen receptor associated protein 31 (BAP31) and other factors, severely affects VLCFA metabolism on peroxisomal functions and produces ZS-like pathology. PMID:22994209

  13. Association Between Early-Onset Parkinson Disease and 22q11.2 Deletion Syndrome

    PubMed Central

    Butcher, Nancy J.; Kiehl, Tim-Rasmus; Hazrati, Lili-Naz; Chow, Eva W. C.; Rogaeva, Ekaterina; Lang, Anthony E.; Bassett, Anne S.

    2015-01-01

    IMPORTANCE Clinical case reports of parkinsonism co-occurring with hemizygous 22q11.2 deletions and the associated multisystem syndrome, 22q11.2 deletion syndrome (22q11.2DS), suggest that 22q11.2 deletions may lead to increased risk of early-onset Parkinson disease (PD). The frequency of PD and its neuropathological presentation remain unknown in this common genetic condition. OBJECTIVE To evaluate a possible association between 22q11.2 deletions and PD. DESIGN, SETTING, AND PARTICIPANTS An observational study of the occurrence of PD in the world’s largest cohort of well-characterized adults with a molecularly confirmed diagnosis of 22q11.2DS (n = 159 [6 with postmortem tissue]; age range, 18.1–68.6 years) was conducted in Toronto, Ontario, Canada. Rare postmortem brain tissue from individuals with 22q11.2DS and a clinical history of PD was investigated for neurodegenerative changes and compared with that from individuals with no history of a movement disorder. MAIN OUTCOMES AND MEASURES A clinical diagnosis of PD made by a neurologist and neuropathological features of PD. RESULTS Adults with 22q11.2DS had a significantly elevated occurrence of PD compared with standard population estimates (standardized morbidity ratio = 69.7; 95% CI, 19.0–178.5). All cases showed early onset and typical PD symptom pattern, treatment response, and course. All were negative for family history of PD and known pathogenic PD-related mutations. The common use of antipsychotics in patients with 22q11.2DS to manage associated psychiatric symptoms delayed diagnosis of PD by up to 10 years. Postmortem brain tissue revealed classic loss of midbrain dopaminergic neurons in all 3 postmortem 22q11.2DS-PD cases. Typical ?-synuclein–positive Lewy bodies were present in the expected distribution in 2 cases but absent in another. CONCLUSIONS AND RELEVANCE These findings suggest that 22q11.2 deletions represent a novel genetic risk factor for early-onset PD with variable neuropathological presentation reminiscent of LRRK2-associated PD neuropathology. Individuals with early-onset PD and classic features of 22q11.2DS should be considered for genetic testing, and those with a known 22q11.2 deletion should be monitored for the development of parkinsonian symptoms. Molecular studies of the implicated genes, including DGCR8, may help shed light on the underlying pathophysiology of PD in 22q11.2DS and idiopathic PD. PMID:24018986

  14. Intergenerational and intrafamilial phenotypic variability in 22q11.2 Deletion syndrome subjects

    PubMed Central

    2014-01-01

    Background 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion syndrome, which occurs in approximately 1:4000 births. Familial autosomal dominant recurrence of the syndrome is detected in about 8-28% of the cases. Aim of this study is to evaluate the intergenerational and intrafamilial phenotypic variability in a cohort of familial cases carrying a 22q11.2 deletion. Methods Thirty-two 22q11.2DS subjects among 26 families were enrolled. Results Second generation subjects showed a significantly higher number of features than their transmitting parents (212 vs 129, P?=?0.0015). Congenital heart defect, calcium-phosphorus metabolism abnormalities, developmental and speech delay were more represented in the second generation (P?syndrome. PMID:24383682

  15. Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith–Magenis syndrome

    Microsoft Academic Search

    Gustavo H Vieira; Jayson D Rodriguez; Paulina Carmona-Mora; Lei Cao; Bruno F Gamba; Daniel R Carvalho; Andréa de Rezende Duarte; Suely R Santos; Deise H de Souza; Barbara R DuPont; Katherina Walz; Danilo Moretti-Ferreira; Anand K Srivastava

    2012-01-01

    Smith–Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here

  16. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa

    PubMed Central

    García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.

    2014-01-01

    Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746

  17. Autosomal recessive Wolfram syndrome associated with an 8.5-kb mtDNA single deletion.

    PubMed Central

    Barrientos, A.; Casademont, J.; Saiz, A.; Cardellach, F.; Volpini, V.; Solans, A.; Tolosa, E.; Urbano-Marquez, A.; Estivill, X.; Nunes, V.

    1996-01-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and approximately 5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. Images Figure 3 Figure 4 Figure 5 PMID:8651280

  18. Li-Fraumeni-like syndrome associated with a large BRCA1 intragenic deletion

    PubMed Central

    2012-01-01

    Background Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. Methods We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. Results We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9–19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. Conclusion This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility. PMID:22691290

  19. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3.

    PubMed

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-03-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (?29.5 to ?30.1?Mb; Hg18) and the 220-kb distal deletion (?28.74 to ?28.95?Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders. PMID:23860047

  20. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover

    SciTech Connect

    Urban, Z.; Csiszar, K.; Boyd, C.D. [and others

    1996-10-01

    Williams syndrome (WS) is a multisystem disorder characterized by mental retardation, a specific neurobehavioral profile, characteristic facies, infantile hypercalcemia, cardiovascular abnormalities, progressive joint limitation, hermas, and soft skin. Recent studies have shown that hemizygosity at the elastin (ELN) gene locus on chromosome 7q is associated with WS. Furthermore, two FISH studies using cosmid recombinants containing the 5{prime} or the 3{prime} end of the ELN gene revealed deletion of the entire ELN gene in 90%-96% of classical WS cases. However, the size of the 7q11.23 deletions and the mechanism by which these deletions arise are not known. 15 refs., 2 figs., 1 tab.

  1. Marfanoid hypermobility caused by an 862 kb deletion of Xq22.3 in a patient with Sotos syndrome.

    PubMed

    Shimojima, Keiko; Okanishi, Tohru; Yamamoto, Toshiyuki

    2011-09-01

    Sotos syndrome is a rare genetic disorder characterized by overgrowth associated with macrocephaly and delayed psychomotor development. Patients with Sotos syndrome show 5q35 deletions involving NSD1 or its point mutations. We identified the common 5q35 deletion in a patient with atypical Sotos syndrome manifesting extremely severe developmental delay, joint hypermobility, and skin hyperextensibility, which are recognized as Marfanoid hypermobility syndrome. Further analyses were performed to identify the genetic cause of these additional findings. aCGH analysis revealed an additional 862?kb deletion of Xq22.3 in this patient, which was inherited from his healthy mother. The deleted region included five genes, including the nik-related kinase gene (NRK), which would be a candidate gene for the patient's Marfanoid hypermobility, because it is a member of the glucokinase subfamily that are involved in activating the JNK pathway, and is expressed in developing skeletal musculature. Severe developmental delay seen in the patient may be derived from position effect of the deletion for neighboring interleukin 1 receptor accessory protein-like 2 gene (IL1RAPL2), which is a candidate gene for X-linked mental retardation. PMID:21834033

  2. Unusual presentation of Kallmannn syndrome with contiguous gene deletion in three siblings of a family

    PubMed Central

    Madhu, Sri Venkat; Kant, Saket; Holla, Vikram Venkappayya; Arora, Rakesh; Rathi, Sahaj

    2012-01-01

    We report the case of 3 brothers aged 34, 24, and 22 years, unmarried, who presented to our endocrinology clinic with absence of secondary sexual characters. There was no such history in other siblings, but their maternal uncle had similar complaints. On examination, all 3 had pre-pubertal appearance, voice, and genitalia along with anosmia and bimanual synkinesia. Cryptorchidism was noticed in 2 while third person had small hypoplastic testes. It was also noted that all 3 patients had icthyosis mainly involving trunk, back, and limbs. The hormonal assays were consistent with isolated hypogonadotrophic hypogonadism. IQ testing revealed mental retardation in the 2 patients. Ultrasound showed ectopic right kidney in one patient, atrophic right kidney in the second patient while the third patient had normal kidneys. MRI brain of all the patients showed poorly visualized olfactory tract and bulb. Kallmann syndrome (KS) was diagnosed based on hormonal evaluation and MRI results. Of the four types of KS: Synkinesia, renal anomaly, and X-linked pedigree pattern in our patients pointed towards X-linked type 1 KS as the possible cause. But, icthyosis and mental retardation are not usual presentation of type 1 KS. They are usually seen as a result of contiguous gene deletion of KAL1, steroid sulfatase (STS), and mental retardation (MRX) gene on X chromosome. Hence, the possible gene defect in our cases is inherited defect in contiguous gene deletion. The contiguous gene deletion as the cause of KS in 3 patients of same family is very rare and worth reporting. Also, the significance of phenotype-genotypic association in Kallmann syndrome is discussed PMID:23565415

  3. Reciprocal Deletion and Duplication of 17p11.2-11.2: Korean Patients with Smith-Magenis Syndrome and Potocki-Lupski Syndrome

    PubMed Central

    Lee, Cha Gon; Park, Sang-Jin; Yun, Jun-No; Yim, Shin-Young

    2012-01-01

    Deletion and duplication of the -3.7-Mb region in 17p11.2 result in two reciprocal syndrome, Smith-Magenis syndrome and Potocki-Lupski syndrome. Smith-Magenis syndrome is a well-known developmental disorder. Potocki-Lupski syndrome has recently been recognized as a microduplication syndrome that is a reciprocal disease of Smith-Magenis syndrome. In this paper, we report on the clinical and cytogenetic features of two Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. Patient 1 (Smith-Magenis syndrome) was a 2.9-yr-old boy who showed mild dysmorphic features, aggressive behavioral problems, and developmental delay. Patient 2 (Potocki-Lupski syndrome), a 17-yr-old boy, had only intellectual disabilities and language developmental delay. We used array comparative genomic hybridization (array CGH) and found a 2.6 Mb-sized deletion and a reciprocal 2.1 Mb-sized duplication involving the 17p11.2. These regions overlapped in a 2.1 Mb size containing 11 common genes, including RAI1 and SREBF. PMID:23255863

  4. Syndrome of proximal interstitial deletion 4p15: Report of three cases and review of the literature

    SciTech Connect

    Chitayat, D.; Babul, R.; Teshima, I.E. [Univ. of Toronto, Ontario (Canada)] [and others

    1995-01-16

    We report on two boys and a girl with interstitial deletion in the short arm of chromosome 4 including the segment p15.2p15.33. All had normal growth with psychomotor retardation, multiple minor congenital anomalies, and a characteristic face distinct from that of the Wolf-Hirschhorn syndrome. One of the patients had congenitally enlarged penis. These patients resemble some of the previously reported patients with similar cytogenetic abnormalities and suggests the recognition of a specific clinical chromosome deletion syndrome. 12 refs., 6 figs., 1 tab.

  5. An atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene

    SciTech Connect

    Quan, F.; Johnson, D.B.; Anoe, K.S. [Oregon Health Sciences Univ., Portland OR (United States)] [and others

    1994-09-01

    Fragile X syndrome results from the transcriptional inactivation of the FMR-1 gene. This is commonly caused by the expansion of an unstable CGG trinucleotide repeat in the first exon of the FMR-1 gene. We describe here an atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene. RK is a 6-year-old hyperactive, mentally retarded male. Southern analysis of PstI digested genomic DNA was performed using a 558 bp XhoI-PstI fragment specific for the 5`-end of the FMR-1 gene. This analysis revealed the absence of the normal 1.0 kb PstI fragment, indicating the deletion of at least a portion of the FMR-1 gene. PCR analysis using Xq27.3 microsatellite and STS markers confirmed the presence of a deletion of at least 600 kb encompassing the FMR-1 gene. Southern blot and PCR analysis demonstrated that this deletion was maternally transmitted and arose as a new mutation on the grandpaternal X-chromosome. High resolution chromosome banding revealed an extremely small deletion of a portion of band Xq27 which was confirmed by fluorescent in situ hybridrization (FISH) analysis using a 34 kb cosmid containing the FMR-1 gene. As expected, RK manifests physical features typical of fragile X syndrome, including a high arched palate, prognathism, and large ears. Interestingly, RK also presents with anal atresia, obesity and short stature, features not part of fragile X syndrome. In addition, RK has normal sized testicles and does not exhibit the characteristic gaze avoidance, hand-flapping, and crowd anxiety behaviors. These atypical features may result from the deletion of additional genes in the vicinity of the FMR-1 gene. Further work is underway to determine more precisely the extent of the deletion in RK`s DNA.

  6. Lack of transmission of deleted mtDNA from a woman with Kearns-Sayre syndrome to her child.

    PubMed Central

    Larsson, N G; Eiken, H G; Boman, H; Holme, E; Oldfors, A; Tulinius, M H

    1992-01-01

    We have investigated the daughter of a woman with Kearns-Sayre syndrome. The woman had a high percentage of deleted mtDNA in muscle, but no deleted mtDNA was detected in fibroblasts, bone marrow, and peripheral blood cells by Southern blot analysis. With PCR, analytical sensitivity was significantly increased, and deleted mtDNA was detected in all examined tissues from this patient. The patient had healthy parents and nine healthy siblings. No deleted mtDNA was detected in blood from the mother of the patient. The patient had an uneventful pregnancy and delivered at term. Deleted mtDNA could not be detected in placenta by Southern blot analysis. With PCR, deleted mtDNA was detected in the majority of placental specimens. This finding may, however, be due to contamination with maternal DNA. The patient's daughter was healthy at age 5 mo, and morphologic examination of muscle was normal. No transmission of deleted mtDNA to the daughter could be detected by Southern blot and PCR analysis of peripheral blood cells, bone marrow, fibroblasts, and muscle. The presence of deleted mtDNA was excluded at a fractional level of less than 1:100,000 in all examined tissues from the daughter. Images Figure 1 Figure 2 PMID:1734716

  7. Memory and Learning in Children with 22q11.2 Deletion Syndrome: Evidence for Ventral and Dorsal Stream Disruption?

    Microsoft Academic Search

    Renée R. Lajiness-O’Neill; Isabelle Beaulieu; Jeffrey B. Titus; Alexander Asamoah; Erin D. Bigler; Erawati V. Bawle; Rebecca Pollack

    2005-01-01

    This study examined memory functioning in children and adolescents with 22q11.2 Deletion Syndrome (DS; velocardiofacial syndrome). An overall verbal better than nonverbal memory pattern was evident on the Test of Memory and Learning (TOMAL), with children with 22q11.2 DS performing significantly below their siblings and children with low average IQ but similar to children with autism on facial memory. Children

  8. Temporal Lobe Anatomy and Psychiatric Symptoms in Velocardiofacial Syndrome (22Q11.2 Deletion Syndrome)

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Miller, Adam M.; Abdulsabur, Nuria; Antshel, Kevin M.; Conchelos, Jena; Fremont, Wanda; Roizen, Nancy

    2006-01-01

    Objective: To investigate the association between mesial temporal lobe morphology, ratios of prefrontal cortex to amygdala and hippocampus volumes, and psychiatric symptomatology in children and adolescents with velocardiofacial syndrome (VCFS). Method: Scores on behavioral rating scales and volumetric measures of the amygdala, hippocampus, and…

  9. Psychiatric Disorders From Childhood to Adulthood in 22q11.2 Deletion Syndrome: Results From the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome

    PubMed Central

    Schneider, Maude; Debbané, Martin; Bassett, Anne S.; Chow, Eva W.C.; Fung, Wai Lun Alan; van den Bree, Marianne B.M.; Owen, Michael; Murphy, Kieran C.; Niarchou, Maria; Kates, Wendy R.; Antshel, Kevin M.; Fremont, Wanda; McDonald-McGinn, Donna M.; Gur, Raquel E.; Zackai, Elaine H.; Vorstman, Jacob; Duijff, Sasja N.; Klaassen, Petra W.J.; Swillen, Ann; Gothelf, Doron; Green, Tamar; Weizman, Abraham; Van Amelsvoort, Therese; Evers, Laurens; Boot, Erik; Shashi, Vandana; Hooper, Stephen R.; Bearden, Carrie E.; Jalbrzikowski, Maria; Armando, Marco; Vicari, Stefano; Murphy, Declan G.; Ousley, Opal; Campbell, Linda E.; Simon, Tony J.; Eliez, Stephan

    2014-01-01

    Objective Chromosome 22q11.2 deletion syndrome is a neurogenetic disorder associated with high rates of schizophrenia and other psychiatric conditions. The authors report what is to their knowledge the first large-scale collaborative study of rates and sex distributions of psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome. The associations among psychopathology, intellect, and functioning were examined in a subgroup of participants. Method The 1,402 participants with 22q11.2 deletion syndrome, ages 6–68 years, were assessed for psychiatric disorders with validated diagnostic instruments. Data on intelligence and adaptive functioning were available for 183 participants ages 6 to 24 years. Results Attention deficit hyperactivity disorder (ADHD) was the most frequent disorder in children (37.10%) and was overrepresented in males. Anxiety disorders were more prevalent than mood disorders at all ages, but especially in children and adolescents. Anxiety and unipolar mood disorders were overrepresented in females. Psychotic disorders were present in 41% of adults over age 25. Males did not predominate in psychotic or autism spectrum disorders. Hierarchical regressions in the subgroup revealed that daily living skills were predicted by the presence of anxiety disorders. Psychopathology was not associated with communication or socialization skills. Conclusions To the authors' knowledge, this is the largest study of psychiatric morbidity in 22q11.2 deletion syndrome. It validates previous findings that this condition is one of the strongest risk factors for psychosis. Anxiety and developmental disorders were also prevalent. These results highlight the need to monitor and reduce the long-term burden of psychopathology in 22q11.2 deletion syndrome. PMID:24577245

  10. Social Skills and Associated Psychopathology in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Interventions

    ERIC Educational Resources Information Center

    Shashi, V.; Veerapandiyan, A.; Schoch, K.; Kwapil, T.; Keshavan, M.; Ip, E.; Hooper, S.

    2012-01-01

    Background: Although distinctive neuropsychological impairments have been delineated in children with chromosome 22q11 deletion syndrome (22q11DS), social skills and social cognition remain less well-characterised. Objective: To examine social skills and social cognition and their relationship with neuropsychological function/behaviour and…

  11. Emotion Regulation and Development in Children with Autism and 22q13 Deletion Syndrome: Evidence for Group Differences

    ERIC Educational Resources Information Center

    Glaser, Sarah E.; Shaw, Steven R.

    2011-01-01

    Emotion regulation (ER) abilities and developmental differences were investigated among 19 children with autism and 18 children with 22q13 Deletion Syndrome (a rare chromosomal disorder with certain autistic symptoms). The purpose of this study was to examine the phenotypic similarities between the two disorders. ER was measured by the Temperament…

  12. Maladaptive Conflict Monitoring as Evidence for Executive Dysfunction in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Bish, Joel P.; Ferrante, Samantha M.; McDonald-McGinn, Donna; Zackai, Elaine; Simon, Tony J.

    2005-01-01

    Using an adaptation of the Attentional Networks Test, we investigated aspects of executive control in children with chromosome 22q11.2 deletion syndrome (DS22q11.2), a common but not well understood disorder that produces non-verbal cognitive deficits and a marked incidence of psychopathology. The data revealed that children with DS22q11.2…

  13. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  14. Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome

    PubMed Central

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-01-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639

  15. Spontaneous deletion in the FMR-1 gene in a patient with fragile X syndrome and cherubism

    SciTech Connect

    Popovich, B.W.; Anoe, K.S.; Johnson, D.B. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    Fragile X mental retardation results from the transcriptional inactivation of the FMR-1 gene and is commonly caused by the expansion of an unstable CGG trinucleotide repeat located in the first exon of the FMR-1 gene. We describe here a two generation fragile X family in which expansion of the CGG repeat may have resulted in a deletion of a least portion of the FMR-1 gene. One member of this family, AB, carries an apparent deletion of the FMR-1 gene and presents with mental retardation and also cherubism, a feature not usually associated with fragile X syndrome. Cherubism is a condition characterized by a swelling of the lower face and is caused by giant cell lesions of the mandible and maxilla, and often the anterior ends of the ribs. The size of the CGG repeat region in this family was determined by Southern analysis of BglII, EcoRI, and PstI digested genomic DNA, isolated from peripheral blood lymphocytes, using a 558 bp PstI-Xhol fragment specific for the 5{prime}-end of the FMR-1 gene. SB and TB, the mother and maternal half-brother of AB, respectively, were both found to carry an expanded FMR-1 allele with greater than 200 CGG repeats. Negligible hybridization was observed in the DNA of AB. In addition, no amplification was observed when the polymerase chain reaction (PCR) was performed using primers flanking the CGG repeat region. These results are consistent with a deletion of at least the 5{prime} portion of the FMR-1 gene in the majority of peripheral blood lymphocytes. Further work is underway using FMR-1 cDNA probes and additional PCR primers to determine the nature of the molecular lesion in AB`s DNA and determine the relationship of this lesion to his cherubism.

  16. Hemizygosity for SMCHD1 in Facioscapulohumeral Muscular Dystrophy Type 2: Consequences for 18p Deletion Syndrome.

    PubMed

    Lemmers, Richard J L F; van den Boogaard, Marlinde L; van der Vliet, Patrick J; Donlin-Smith, Colleen M; Nations, Sharon P; Ruivenkamp, Claudia A L; Heard, Patricia; Bakker, Bert; Tapscott, Stephen; Cody, Jannine D; Tawil, Rabi; van der Maarel, Silvère M

    2015-07-01

    Facioscapulohumeral muscular dystrophy (FSHD) is most often associated with variegated expression in somatic cells of the normally repressed DUX4 gene within the D4Z4-repeat array. The most common form, FSHD1, is caused by a D4Z4-repeat array contraction to a size of 1-10 units (normal range 10-100 units). The less common form, FSHD2, is characterized by D4Z4 CpG hypomethylation and is most often caused by loss-of-function mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene on chromosome 18p. The chromatin modifier SMCHD1 is necessary to maintain a repressed D4Z4 chromatin state. Here, we describe two FSHD2 families with a 1.2-Mb deletion encompassing the SMCHD1 gene. Numerical aberrations of chromosome 18 are relatively common and the majority of 18p deletion syndrome (18p-) cases have, such as these FSHD2 families, only one copy of SMCHD1. Our finding therefore raises the possibility that 18p- cases are at risk of developing FSHD. To address this possibility, we combined genome-wide array analysis data with D4Z4 CpG methylation and repeat array sizes in individuals with 18p- and conclude that approximately 1:8 18p- cases might be at risk of developing FSHD. PMID:25820463

  17. Abnormal cortical activation during response inhibition in 22q11.2 deletion syndrome.

    PubMed

    Gothelf, Doron; Hoeft, Fumiko; Hinard, Christine; Hallmayer, Joachim F; Stoecker, John Van Dover; Antonarakis, Stylianos E; Morris, Michael A; Reiss, Allan L

    2007-06-01

    22q11.2 deletion syndrome (22q11.2DS) is a well-known genetic risk factor for schizophrenia. The catechol-O-methyltransferase (COMT) gene falls within the 22q11.2 minimal critical region of the deletion. Brain activity, as measured by functional magnetic resonance imaging (fMRI) during a Go/NoGo, response inhibition task was assessed in adolescents with 22q11.2DS (n = 13), typically developing (TD) controls (n = 14), and controls with developmental disability (DD, n = 9). Subjects with 22q11.2DS were also genotyped for the COMT Met/Val polymorphism. Groups did not differ on task performance. However, compared to both control groups, the 22q11.2DS group showed greater brain activation within left parietal regions. Comparison of brain activation between 22q11.2DS Met and Val subgroups revealed significantly increased activation (Met>Val) in the cingulate but not the dorsolateral prefrontal cortex. These preliminary findings suggest that adolescents with 22q11.2DS compensate for executive dysfunction via recruitment of parietal regions. Further, the COMT Met subgroup of 22q11.2DS may recruit additional cingulate activation for tasks requiring attention and inhibition. 22q11.2DS is a unique model for learning about the deleterious effects of decreased dosage of the COMT gene on brain function. PMID:17427209

  18. Neuroanatomic Predictors to Prodromal Psychosis in Velocardiofacial Syndrome (22q11.2 Deletion Syndrome): A Longitudinal Study

    PubMed Central

    Kates, Wendy R.; Antshel, Kevin M.; Faraone, Stephen V.; Fremont, Wanda P.; Higgins, Anne Marie; Shprintzen, Robert J.; Botti, Jo-Anna; Kelchner, Lauren; McCarthy, Christopher

    2010-01-01

    Background Up to 30% of young adults with velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) develop schizophrenia or psychosis. Identifying the neuroanatomic trajectories that increase risk for psychosis in youth with this genetic disorder is of great interest. Methods We acquired high-resolution anatomic MR images and measures of psychiatric function on 72 youth with VCFS, 26 unaffected siblings and 24 age-matched community controls at two timepoints, between late childhood (mean age, 11.9 years) and mid-adolescence (mean age, 15.1 years). Results With the exception of cranial gray matter and orbitofrontal prefrontal cortex, neuroanatomic trajectories in youth with VCFS were comparable to unaffected siblings and community controls during this developmental window. However, in youth with VCFS, longitudinal decreases in the volumes of cranial gray and white matter, prefrontal cortex, mesial temporal lobe, and cerebellum were associated with increased combined prodromal symptoms at Time 2. In contrast, only decreases in temporal lobe gray matter volumes (p < .002) and verbal IQ (p < .002) predicted specifically to positive prodromal symptoms of psychosis at Time 2. Conclusions These findings are in line with studies of non-VCFS individuals at risk for schizophrenia, and suggest that early decrements in temporal lobe gray matter may be predictive of increased risk of prodromal psychotic symptoms in youth with VCFS. PMID:21195387

  19. An interictal schizophrenia-like psychosis in an adult patient with 22q11.2 deletion syndrome

    PubMed Central

    Tastuzawa, Yasutaka; Sekinaka, Kanako; Suda, Tetsufumi; Matsumoto, Hiroshi; Otabe, Hiroyuki; Nonoyama, Shigeaki; Yoshino, Aihide

    2015-01-01

    In addition to causing polymalformative syndrome, 22q11.2 deletion can lead to various neuropsychiatric disorders including mental retardation, psychosis, and epilepsy. However, few reports regarding epilepsy-related psychosis in 22q11.2 deletion syndrome (22q11.2DS) exist. We describe the clinical characteristics and course of 22q11.2DS in a Japanese patient with comorbid mild mental retardation, childhood-onset localization-related epilepsy, and adult-onset, interictal schizophrenia-like psychosis. From a diagnostic viewpoint, early detection of impaired intellectual functioning and hyperprolinemia in patients with epilepsy with 22q11.2DS may be helpful in predicting the developmental timing of interictal psychosis. From a therapeutic viewpoint, special attention needs to be paid to phenytoin-induced hypocalcemia in this syndrome. PMID:25870791

  20. Psychiatric disorders in 22q11.2 deletion syndrome are prevalent but undertreated

    PubMed Central

    Tang, S. X.; Yi, J. J.; Calkins, M. E.; Whinna, D. A.; Kohler, C. G.; Souders, M. C.; McDonald-McGinn, D. M.; Zackai, E. H.; Emanuel, B. S.; Gur, R. C.; Gur, R. E.

    2015-01-01

    Background Chromosome 22q11.2 deletion syndrome (22q11DS) is a common genetic disorder with high rates of psychosis and other psychopathologies, but few studies discuss treatment. Our aim was to characterize the prevalence and treatment of major psychiatric illnesses in a well-characterized sample of individuals with 22q11DS. Method This was a cross-sectional study of 112 individuals aged 8 to 45 years with a confirmed diagnosis of 22q11DS. Each participant was administered a modified Schedule for Affective Disorders and Schizophrenia for School-Age Children (K-SADS) and the Structured Interview for Prodromal Syndromes (SIPS). Phenotypes assessed were threshold and subthreshold psychosis, depression, mania, generalized and separation anxiety, obsessions/compulsions, inattention/hyperactivity and substance use. Histories of mental health care and current psychotropic treatment were obtained. Results Psychopathology was common, with 79% of individuals meeting diagnostic criteria for a disorder at the time of assessment. Diagnoses of psychosis were made in 11% of cases, attenuated positive symptom syndrome (APS) in 21%, and 47% experienced significant subthreshold symptoms. Peak occurrence of psychosis risk was during adolescence (62% of those aged 12–17 years). Criteria for a mood disorder were met by 14%, for anxiety disorder 34% and for attention deficit hyperactivity disorder (ADHD) 31%. Mental health care had been received by 63% of individuals in their lifetime, but only 40% continued therapy and 39% used psychotropics. Antipsychotics were used by 42% of participants with psychosis and none of the participants with APS. Half of those at risk for psychosis were receiving no mental health care. Conclusions Psychopathology is common in 22q11DS but is not adequately treated or clinically followed. Particular attention should be paid to subthreshold psychotic symptoms, especially in adolescents. PMID:24016317

  1. Overlap of juvenile polyposis syndrome and cowden syndrome due to de novo chromosome 10 deletion involving BMPR1A and PTEN: Implications for treatment and surveillance.

    PubMed

    Alimi, Adebisi; Weeth-Feinstein, Lauren A; Stettner, Amy; Caldera, Freddy; Weiss, Jennifer M

    2015-06-01

    We describe a patient with a severe juvenile polyposis phenotype, due to a de novo deletion of chromosome 10q22.3-q24.1. He was initially diagnosed with Juvenile polyposis syndrome (JPS) at age four after presenting with hematochezia due to multiple colonic juvenile polyps. He then re-presented at 23 years with recurrent hematochezia from juvenile polyps in his ileoanal pouch. He is one of the earliest reported cases of JPS associated with a large deletion of chromosome 10. Since his initial diagnosis of JPS further studies have confirmed an association between JPS and mutations in BMPR1A in chromosome band 10q23.2, which is in close proximity to PTEN. Mutations in PTEN cause Cowden syndrome (CS) and other PTEN hamartoma tumor syndromes. Due to the chromosome 10 deletion involving contiguous portions of BMPR1A and PTEN in our patient, he may be at risk for CS associated cancers and features, in addition to the polyps associated with JPS. This case presents new challenges in developing appropriate surveillance algorithms to account for the risks associated with each syndrome and highlights the importance of longitudinal follow-up and transitional care between pediatric and adult gastroenterology for patients with hereditary polyposis syndromes. © 2015 Wiley Periodicals, Inc. PMID:25846706

  2. Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome)

    PubMed Central

    PIERDOMINICI, M; MAZZETTA, F; CAPRINI, E; MARZIALI, M; DIGILIO, M C; MARINO, B; AIUTI, A; AMATI, F; RUSSO, G; NOVELLI, G; PANDOLFI, F; LUZI, G; GIOVANNETTI, A

    2003-01-01

    Chromosome 22q11.2 deletion (del22q11.2) syndrome (DiGeorge syndrome/velocardiofacial syndrome) is a common syndrome typically consisting of congenital heart disease, hypoparathyroidism, developmental delay and immunodeficiency. Although a broad range of immunologic defects have been described in these patients, limited information is currently available on the diversity of the T-cell receptor (TCR) variable ? (BV) chain repertoire. The TCRBV repertoires of nine patients with del22q11.2 syndrome were determined by flow cytometry, fragment size analysis of the third complementarity determining region (CDR3 spectratyping) and sequencing of V(D)J regions. The rate of thymic output and the phenotype and function of peripheral T cells were also studied. Expanded TCRBV families were detected by flow cytometry in both CD4+ and CD8+ T cells. A decreased diversity of TCR repertoires was also demonstrated by CDR3 spectratyping, showing altered CDR3 profiles in the majority of TCRBV families investigated. The oligoclonal nature of abnormal peaks detected by CDR3 spectratyping was confirmed by the sequence analysis of the V(D)J regions. Thymic output, evaluated by measuring TCR rearrangement excision circles (TRECs), was significantly decreased in comparison with age-matched controls. Finally, a significant up-regulation in the percentage, but not in the absolute count, of activated CD4+ T cells (CD95+, CCR5+, HLA-DR+), IFN-? - and IL-2-expressing T cells was detected. These findings suggest that the diversity of CD4 and CD8 TCRBV repertoires is decreased in patients with del22q11.2 syndrome, possibly as a result of either impaired thymic function and/or increased T-cell activation. PMID:12699424

  3. HIGH COLORECTAL AND LOW ENDOMETRIAL CANCER RISK IN EPCAM DELETION-POSITIVE LYNCH SYNDROME: A COHORT STUDY

    PubMed Central

    Kempers, Marlies JE; Kuiper, Roland P; Ockeloen, Charlotte W; Chappuis, Pierre O; Hutter, Pierre; Rahner, Nils; Schackert, Hans K; Steinke, Verena; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Büttner, Reinhard; Verwiel, Eugene TP; van Krieken, J. Han; Nagtegaal, Iris D; Goossens, Monique; van der Post, Rachel S.; Niessen, Renée C; Sijmons, Rolf H; Kluijt, Irma; Hogervorst, Frans BL; Leter, Edward M; Gille, Johan JP; Aalfs, Cora M; Redeker, Egbert JW; Hes, Frederik J; Tops, Carli MJ; van Nesselrooij, Bernadette PM; van Gijn, Marielle E; García, Encarna B Gómez; Eccles, Diana M; Bunyan, David J; Syngal, Sapna; Stoffel, Elena M; Culver, Julie O; Palomares, Melanie R; Graham, Tracy; Velsher, Lea; Papp, Janos; Oláh, Edith; Chan, Tsun L; Leung, Suet Y; van Kessel, Ad Geurts; Kiemeney, Lambertus ALM; Hoogerbrugge, Nicoline; Ligtenberg, Marjolijn JL

    2013-01-01

    Summary BACKGROUND Lynch syndrome is caused by germline mutations in mismatch repair genes (MSH2, MLH1, MSH6 or PMS2), which lead to a high risk of predominantly colorectal and endometrial cancer. Recently, we found that also constitutional 3? end deletions of EPCAM can cause Lynch syndrome through epigenetic silencing of MSH2 in EPCAM expressing tissues. This results in a tissue specific MSH2-deficiency, which may evoke a different cancer risk and spectrum. To optimize the care for EPCAM deletion carriers we studied their cancer risk and spectrum. METHODS Clinical data of 194 carriers from 41 EPCAM families were systematically collected and compared to those of 431 carriers from 91 families with mutations in MLH1, MSH2, or MSH6. FINDINGS EPCAM deletion carriers exhibited a 75% [95%CI 65–85%] cumulative risk of colorectal cancer before the age of 70 years, with a mean age at diagnosis of 43 years, which is comparable to that of carriers of a combined EPCAM-MSH2 deletion (69% [95%CI 47-91%], p=0·8609) or of a mutation in MSH2 (77% [95%CI 64-90%], p=0·5892) or MLH1 (79% [95%CI 68-90%], p=0·5492) and higher than that of MSH6 mutation carriers (50% [95%CI 38-62%], p<0·0001). In contrast, women with EPCAM deletions (n=87) exhibited a 12% [95%CI 0-27%] cumulative risk of endometrial cancer, which is significantly lower than in carriers of a combined EPCAM-MSH2 deletion (55% [95%CI 20-90%], p<0·0001) or of a mutation in MSH2 (51% [95%CI 33-69%], p=0·0006) or MSH6 (34% [95%CI 20-48%], p=0·0309) and lower than in MLH1 (33% [95%CI 15-51%] p=0·1193) mutation carriers. This risk seems to be restricted to large deletions that extend close to the MSH2 gene promoter. Overall, a relatively high incidence of duodenal (n=3) and pancreatic (n=4) cancers was observed. INTERPRETATION EPCAM deletion carriers do have a high risk of colorectal cancer. Only those with deletions extending close to the MSH2 promoter have an increased risk of endometrial cancer. These results underscore the impact of mosaic MSH2-deficiency on cancer risk and are indicative for a protocol revision for surveillance and preventive surgery in EPCAM deletion carriers. PMID:21145788

  4. The development of cognitive control in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Shapiro, Heather M.; Tassone, Flora; Choudhary, Nimrah S.; Simon, Tony J.

    2014-01-01

    Chromosome 22q11.2 Deletion Syndrome (22q11.2DS) is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD) were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT), a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ). When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures. PMID:24959159

  5. High proportion of large genomic deletions and a genotype–phenotype update in 80 unrelated families with juvenile polyposis syndrome

    PubMed Central

    Aretz, S; Stienen, D; Uhlhaas, S; Stolte, M; Entius, M M; Loff, S; Back, W; Kaufmann, A; Keller, K?M; Blaas, S H; Siebert, R; Vogt, S; Spranger, S; Holinski?Feder, E; Sunde, L; Propping, P; Friedl, W

    2007-01-01

    Background In patients with juvenile polyposis syndrome (JPS) the frequency of large genomic deletions in the SMAD4 and BMPR1A genes was unknown. Methods Mutation and phenotype analysis was used in 80 unrelated patients of whom 65 met the clinical criteria for JPS (typical JPS) and 15 were suspected to have JPS. Results By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis of the PTEN gene in the remaining 41 mutation negative cases uncovered a point mutation in two patients (5%). SMAD4 mutation carriers had a significantly higher frequency of gastric polyposis (73%) than did patients with BMPR1A mutations (8%) (p<0.001); all seven cases of gastric cancer occurred in families with SMAD4 mutations. SMAD4 mutation carriers with gastric polyps were significantly older at gastroscopy than those without (p<0.001). In 22% of the 23 unrelated SMAD4 mutation carriers, hereditary hemorrhagic telangiectasia (HHT) was also diagnosed clinically. The documented histologic findings encompassed a wide distribution of different polyp types, comparable with that described in hereditary mixed polyposis syndromes (HMPS). Conclusions Screening for large deletions raised the mutation detection rate to 60% in the 65 patients with typical JPS. A strong genotype?phenotype correlation for gastric polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted. PMID:17873119

  6. Thrombocytopenia-absent-radius syndrome in a child showing a larger 1q21.1 deletion than the one in his healthy mother, and a significant downregulation of the commonly deleted genes.

    PubMed

    Guastadisegni, Maria Corsignano; Roberto, Roberta; L'Abbate, Alberto; Palumbo, Orazio; Carella, Massimo; Giordani, Lucia; Cecinati, Valerio; Giordano, Paola; Storlazzi, Clelia Tiziana

    2012-02-01

    Thrombocytopenia-absent-radius (TAR) syndrome is a rare condition characterized by thrombocytopenia and bilateral absence of the radii with presence of both thumbs. The phenotype has a variable expression. A 200 kb minimal deletion at 1q21.1 is present in all patients. However, the microdeletion, ranging up to 1100 kb in length, is not sufficient to cause the disease. Indeed it is present in 75-80% of unaffected parents. It is assumed that the phenotype develops only in the presence of one or more additional, as-yet-unknown, deletion modifiers (mTARs). We report here on a child affected by TAR syndrome associated with Langerhans cell histiocytosis. Unexpectedly, he showed a 2.029 kb deletion at 1q21.1, almost twice that of the unaffected mother (957 kb). Interestingly, the mother-to-son increased size of the deleted region was already observed in two cases of constitutional diseases, although both resulting as chromosomal terminal deletions. Noteworthy, qPCR experiments, never before performed for patients with TAR syndrome, disclosed that the proband had a statistically significant downregulation of the majority of the genes mapping inside the part of the deletion shared with the mother. The mother, on the contrary, did not show the same downregulation. In summary, the present report adds new insights on the pathogenesis of TAR syndrome, that may represent fruitful directions for future research. PMID:22201559

  7. Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619

  8. 22q11.2 Deletion Syndrome: Attitudes towards Disclosing the Risk of Psychiatric Illness

    PubMed Central

    Martin, Nicole; Mikhaelian, Marina; Cytrynbaum, Cheryl; Shuman, Cheryl; Chitayat, David A.; Weksberg, Rosanna

    2012-01-01

    22q11.2 Deletion Syndrome (22q11.2DS) is a common microdeletion syndrome with multisystem features. There is a strong association with psychiatric disorders. One in every four to five patients develop schizophrenia. Despite studies showing that early diagnosis and treatment are likely to lead to improved outcome, genetic counselors may be reluctant to discuss the risk of psychiatric illness. The aim of this research was to explore parental attitudes and genetic counselors’ perspectives and practice regarding disclosure of the clinical manifestations of 22q11.2DS, particularly the risk of psychiatric illness. We delivered a questionnaire to genetic counselors via established list-serves, 54 of which were completed. We also conducted interviews with four parents of adults with 22q11.2DS and schizophrenia. The majority of counselors and parents felt that the increased risk to develop a psychiatric illness is important to disclose. However, in the initial counseling session when the diagnosis was made in infancy genetic counselors were significantly less likely to discuss the risk of psychiatric disorders compared to other later onset features such as hypothyroidism (41 % vs. 83 %, p=0.001). When the diagnosis of 22q11.2DS was made in infancy, counselors’ responses in regard to timing of disclosure about psychiatric illnesses were fairly evenly divided between infancy, childhood and adolescence. In contrast, for other major features of 22q11.2DS, disclosure would predominantly be in infancy. The respondents reported that the discussion of psychiatric issues with parents was challenging due to the stigma associated with mental illness. Some also noted limited knowledge about psychiatric illness and treatment. These results suggest that genetic counselors could benefit from further education regarding psychiatric illness in 22q11.2DS and best strategies for discussing this important subject with parents and patients. PMID:22833231

  9. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments.

    PubMed

    Paylor, R; McIlwain, K L; McAninch, R; Nellis, A; Yuva-Paylor, L A; Baldini, A; Lindsay, E A

    2001-11-01

    Del22q11 syndrome is caused by heterozygous deletion of an approximately 3 Mb segment of chromosome 22q11.2. Children diagnosed with del22q11 syndrome commonly have learning difficulties, deficits of motor development, cognitive defects and attention deficit disorder. They also have a higher than normal risk for developing psychiatric disorders, mainly schizophrenia, schizoaffective disorder and bipolar disorder. Here, we show that mice that are heterozygously deleted for a subset of the genes that are deleted in patients have deficits in sensorimotor gating and learning and memory. The finding of sensorimotor gating deficits is particularly significant because patients with schizophrenia and schizotypal personality disorder show similar deficits. Thus, our deletion mouse models at least two major features of the del22q11-associated behavioral phenotype, and as such, represents an animal model of this complex behavioral phenotype. These findings not only open the way to pharmacological analyses that may lead to improved treatments, but also to the identification of gene/s that modulate these specific behaviors in humans. PMID:11726551

  10. Clinical and molecular characterization of a patient with 15q21.2q22.2 deletion syndrome.

    PubMed

    Velázquez-Wong, Ana C; Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel Á; Huicochea-Montiel, Juan C; Cárdenas-Conejo, Alan; Miguez-Muñoz, Cristian P; Araujo-Solís, María A; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego J

    2014-01-01

    We report on a 16-year-old girl with a complex phenotype, including intellectual disability, facial dysmorphisms, and obesity. During her infancy, she presented with weak sucking, global developmental delay, and later with excessive eating with central obesity. The girl was clinically diagnosed with probable Prader-Willi syndrome. Chromosomal analysis showed a de novo deletion 46,XX,del(15)(q21q22). However, the use of the Affymetrix CytoScan HD Array defined the exact breakpoints of the deleted 15q21q22 region. The imbalance, about 10.5 Mb in size, is to date the second largest deletion ever described in this chromosomal region. In addition, our patient carries a microdeletion in the 1q44 region and a gain in 9p24. The array result was arr[hg19] 9p24.1(6,619,823-6,749,335)×3, 1q44(248,688,586-248,795,277)×1, 15q21.2 q22.2(50,848,301-61,298,006)×1. Although our patient presents additional chromosomal alterations, we provide a correlation between the clinical findings and the phenotype of the 15q21 deletion syndrome. PMID:25661042

  11. Structural genomic abnormalities in autism and schizophrenia. With a focus on the 22q11.2 deletion syndrome

    Microsoft Academic Search

    J. A. S. Vorstman

    2008-01-01

    The research presented in this thesis is centered around one question: What can we learn from the study of psychiatric phenotypes related to structural genomic abnormalities? In this thesis this subject is examined, with most studies focused on the clinical and genetic aspects of the 22q11.2 deletion syndrome. In chapter 1 a review of all published case-reports on individuals with

  12. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    ERIC Educational Resources Information Center

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  13. Neuroanatomy in adolescents and young adults with 22q11 Deletion Syndrome: Comparison to an IQ-matched group

    Microsoft Academic Search

    Kate Baker; Christopher A. Chaddock; Torsten Baldeweg; David Skuse

    2011-01-01

    22q11 deletion syndrome (22q11DS) is a common genetic condition associated with learning disability and high risk for psychiatric illness, in particular schizophrenia. Previous neuroimaging studies in children and adults with 22q11DS have uncovered a number of abnormalities, but have not differentiated between features relating to cognitive impairment and features relating to risk for schizophrenia. This structural MRI study compares adolescents

  14. Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome.

    PubMed

    Deng, Yi; Goodrich-Hunsaker, Naomi J; Cabaral, Margarita; Amaral, David G; Buonocore, Michael H; Harvey, Danielle; Kalish, Kristopher; Carmichael, Owen T; Schumann, Cynthia M; Lee, Aaron; Dougherty, Robert F; Perry, Lee M; Wandell, Brian A; Simon, Tony J

    2015-04-30

    The fornix is the primary subcortical output fiber system of the hippocampal formation. In children with 22q11.2 deletion syndrome (22q11.2DS), hippocampal volume reduction has been commonly reported, but few studies as yet have evaluated the integrity of the fornix. Therefore, we investigated the fornix of 45 school-aged children with 22q11.2DS and 38 matched typically developing (TD) children. Probabilistic diffusion tensor imaging (DTI) tractography was used to reconstruct the body of the fornix in each child?s brain native space. Compared with children, significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) was observed bilaterally in the body of the fornix in children with 22q11.2DS. Irregularities were especially prominent in the posterior aspect of the fornix where it emerges from the hippocampus. Smaller volumes of the hippocampal formations were also found in the 22q11.2DS group. The reduced hippocampal volumes were correlated with lower fornix FA and higher fornix RD in the right hemisphere. Our findings provide neuroanatomical evidence of disrupted hippocampal connectivity in children with 22q11.2DS, which may help to further understand the biological basis of spatial impairments, affective regulation, and other factors related to the ultra-high risk for schizophrenia in this population. PMID:25748884

  15. An increased prevalence of thyroid disease in children with 22q11.2 deletion syndrome.

    PubMed

    Shugar, Andrea L; Shapiro, Jessica M; Cytrynbaum, Cheryl; Hedges, Stephanie; Weksberg, Rosanna; Fishman, Leona

    2015-07-01

    We reviewed the health records of pediatric patients with 22q11.2 deletion syndrome (22q11.2 DS) seen over a 5-year period in our 22q11.2 DS multidisciplinary clinic. We determined the prevalence of thyroid dysfunction in this population, in comparison to general population data. Statistical tests were applied to investigate trends in gender differences, thyroid disease subtype and co-morbid conditions in the patients identified with thyroid disease. Of 169 subjects (92 male, 77 female) 9.5% had overt thyroid disease; of these, 1.8% had hyperthyroidism and 7.7% had hypothyroidism; 42% of patients with subclinical or prodromal thyroid disease progressed to overt disease. Our data indicate that thyroid disease prevalence in the 22q11DS pediatric population is significantly higher than that in the general pediatric population Furthermore, over 1/3 of patients in our study population who presented with subclinical thyroid disease progressed to overt disease, requiring medical therapy. Thyroid disease screening should be incorporated into routine medical management of children with 22q11.2 DS. Guidelines for screening individuals with 22q11.2 DS are presented. © 2015 Wiley Periodicals, Inc. PMID:25944702

  16. Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    PubMed Central

    Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.

    2015-01-01

    Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262

  17. Chromosome 22q11.2 deletion syndrome (22q11.2DS) results from a 1.5-to 3.0-Mb deletion on the long arm

    E-print Network

    Nguyen, Danh

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) results from a 1.5- to 3.0-Mb deletion on the long arm of chromosome 22 at location q11.2 (Maynard, Haskell, Lieberman, & LaMantia, 2002). AffectedDonald-McGinn, Zackai, & Simon, 2005; Sobin, Kiley-Brabeck, & Karayiorgou, 2005). The q11.2 region of chromosome 22

  18. Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    PubMed Central

    Delio, Maria; Guo, Tingwei; McDonald-McGinn, Donna M.; Zackai, Elaine; Herman, Sean; Kaminetzky, Mark; Higgins, Anne Marie; Coleman, Karlene; Chow, Carolyn; Jarlbrzkowski, Maria; Bearden, Carrie E.; Bailey, Alice; Vangkilde, Anders; Olsen, Line; Olesen, Charlotte; Skovby, Flemming; Werge, Thomas M.; Templin, Ludivine; Busa, Tiffany; Philip, Nicole; Swillen, Ann; Vermeesch, Joris R.; Devriendt, Koen; Schneider, Maude; Dahoun, Sophie; Eliez, Stephan; Schoch, Kelly; Hooper, Stephen R.; Shashi, Vandana; Samanich, Joy; Marion, Robert; van Amelsvoort, Therese; Boot, Erik; Klaassen, Petra; Duijff, Sasja N.; Vorstman, Jacob; Yuen, Tracy; Silversides, Candice; Chow, Eva; Bassett, Anne; Frisch, Amos; Weizman, Abraham; Gothelf, Doron; Niarchou, Maria; van den Bree, Marianne; Owen, Michael J.; Suñer, Damian Heine; Andreo, Jordi Rosell; Armando, Marco; Vicari, Stefano; Digilio, Maria Cristina; Auton, Adam; Kates, Wendy R.; Wang, Tao; Shprintzen, Robert J.; Emanuel, Beverly S.; Morrow, Bernice E.

    2013-01-01

    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin. PMID:23453669

  19. A novel large deletion and single nucleotide insertion in the Wiskott-Aldrich syndrome protein gene.

    PubMed

    Gulácsy, Vera; Soltész, Beáta; Petrescu, Carmen; Bataneant, Mihaela; Gyimesi, Edit; Serban, Margit; Maródi, László; Tóth, Beáta

    2015-07-01

    Deletion mutations of WAS are relatively rare and the precise localization of large deletions in the genome has rarely been described in previous studies. We report here a 5-month-old boy with a large deletion mutation in WAS that completely abolished protein expression. To localize the deletion, a 2816-bp-length sequence that spans between exons 9 and 12 was amplified. PCR amplification of the patient's sample revealed a single band of about 1 kb in contrast to the 2816-bp-amplicon in the control. Genomic DNA sequencing of the patient revealed a 1595-bp-deletion and an adenine insertion (g.5247_6841del1595insA). This large deletion of WAS resulted in partial loss of exon 10 and intron 11, and a complete loss of intron 10 and exon 11. PMID:25082437

  20. Cornelia de Lange syndrome caused by heterozygous deletions of chromosome 8q24: Comments on the article by Pereza et al. [2012].

    PubMed

    Pereza, Nina; Severinski, Sre?ko; Ostoji?, Saša; Volk, Marija; Maver, Aleš; Dekani?, Kristina Baraba; Kapovi?, Miljenko; Peterlin, Borut

    2015-06-01

    In the March issue of the Journal in 2012, we reported on a girl with Langer-Giedion syndrome (LGS) phenotype and a 7.5?Mb interstitial deletion at 8q23.3q24.13, encompassing the EXT1, but not the TRPS1 gene. Recent discoveries have shown that heterozygous intragenic mutations or contiguous gene deletions including the RAD21 gene, which is located downstream of the TRPS1 gene, are the cause of Cornelia de Lange syndrome-4. Considering that the interstitial deletion in our patient included the RAD21 and 30 other RefSeq genes, we would like to suggest a revision of the diagnosis reported in our previous paper and compare our patient to other reported patients with Cornelia de Lange syndrome-4 caused by heterozygous deletions of chromosome 8q24. © 2015 Wiley Periodicals, Inc. PMID:25899858

  1. Deletion 17p11.2 (Smith-Magenis syndrome) is relatively common among patients having mental retardation and myopia

    SciTech Connect

    Finucane, B.; Jaeger, E.R. [Elwyn, Inc. PA (United States); Freitag, S.K. [Jefferson Medical College, Philadelphia, PA (United States)

    1994-09-01

    We recently reported the finding of moderate to severe myopia in 6 of 10 patients with Smith-Magenis syndrome (SMS). To investigate the prevalence of SMS among mentally retarded people having myopia, we surveyed a cohort of patients residing at a facility for individuals with mental retardation (MR). Of 547 institutionalized individuals with MR, 72 (13.2%) had moderate to high myopia defined as a visual acuity of minus 3 diopters or more. It should be noted that our institution does not specifically select for people with visual impairment; rather, the facility serves people with a primary diagnosis of MR. Sixty-five of 72 (90.3%) myopic individuals identified were available for cytogenetic analysis. Seventeen (26.2%) of these patients had trisomy 21. Down syndrome (DS) is well known to be associated with eye abnormalities, including myopia. Of 48 individuals with moderate to high myopia not having DS, 5 (10.4%) were shown to have deletions of 17p11.2. This is a high prevalence considering the relative rarity of SMS. By contrast, in a randomized sample of 48 patients without significant myopia at the same facility, we found no individuals with deletion 17p11.2. We conclude that the diagnosis of SMS should be considered in any non-Down syndrome individual having MR and myopia, and that ophthalmologists serving people with MR should be made aware of this deletion syndrome. Furthermore, our results suggest that significant numbers of people having SMS could be identified through selective institutional screening of patients having a combination of MR and moderate to severe myopia.

  2. Head and neck manifestations of 22q11.2 deletion syndromes.

    PubMed

    Marom, Tal; Roth, Yehudah; Goldfarb, Abraham; Cinamon, Udi

    2012-02-01

    The allelic loss of 22q11.2 results in various developmental failures of pharyngeal pouch derivatives ("22q11.2 deletion syndromes", 22q.11DS), consequently affecting the anatomy and physiology of head and neck (H&N) organs. The objective of this paper was to describe those manifestations. Two 22q11.2DS patients with H&N manifestations were studied along with a comprehensive review of the English literature, from 1975 to 2010 regarding the associated H&N malformations among 22q11.2DS. A 24-year-old mentally disabled 22q11.2DS male presented with right hemithyroid enlargement, causing significant compressive signs. Sonography revealed a homogeneous 8 × 3 cm lesion, replacing almost the entire thyroid lobe. Fine needle aspiration revealed colloid material and abundant eosinophils. The hemithyroidectomy specimen confirmed follicular adenoma. A 19-year-old mentally disabled 22q11.2DS female underwent CT-angiography due to an upper GI bleeding. The study revealed a vascular malformation in the infratemporal fossa. Reviewing the reported data regarding 22q11.2DS-associated H&N malformations revealed abnormalities and malfunctions of the thyroid gland, parathyroid glands, thymus agenesis, cleft palate, carotid artery aberrations, malformations of the larynx and trachea and esophageal dysmotility. 22q11.DS patients may present with H&N anatomical abnormalities, along with hormonal dysfunctions, which require special awareness once treatment is offered, especially when concerning anesthetic and surgical aspects. In addition, hSNF5/INI1, a tumor suppressor gene, detected at location 22q11.2 was described to be "knocked out" in some patients. This may be associated with H&N tumors reported in these patients. PMID:21861138

  3. Unmasking of a hemizygous WFS1 gene mutation by a chromosome 4p deletion of 8.3 Mb in a patient with Wolf–Hirschhorn syndrome

    Microsoft Academic Search

    Klara Flipsen-ten Berg; Peter M van Hasselt; Marc J Eleveld; Suzanne E van der Wijst; Frans A Hol; Monique A M de Vroede; Frits A Beemer; P F Ron Hochstenbach; Martin Poot

    2007-01-01

    The Wolf–Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent

  4. A Case of 9.7 Mb Terminal Xp Deletion Including OA1 Locus Associated with Contiguous Gene Syndrome

    PubMed Central

    Cho, Eun-Hae; Kim, Sook-Young

    2012-01-01

    Terminal or interstitial deletions of Xp (Xp22.2?Xpter) in males have been recognized as a cause of contiguous gene syndromes showing variable association of apparently unrelated clinical manifestations such as Leri-Weill dyschondrosteosis (SHOX), chondrodysplasia punctata (CDPX1), mental retardation (NLGN4), ichthyosis (STS), Kallmann syndrome (KAL1), and ocular albinism (GPR143). Here we present a case of a 13.5 yr old boy and sister with a same terminal deletion of Xp22.2 resulting in the absence of genes from the telomere of Xp to GPR143 of Xp22. The boy manifested the findings of all of the disorders mentioned above. We began a testosterone enanthate monthly replacement therapy. His sister, 11 yr old, manifested only Leri-Weill dyschondrosteosis, and had engaged in growth hormone therapy for 3 yr. To the best of our knowledge, this is the first report of a male with a 9.7 Mb terminal Xp deletion including the OA1 locus in Korea. PMID:23091330

  5. Smith-Magenis syndrome deletion: A case with equivocal cytogenetic findings resolved by fluorescence in situ hybridization

    SciTech Connect

    Juyal, R.C.; Patel, P.I.; Greenberg, F. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-09-11

    The availability of markers for the 17p11.2 region has enabled the diagnosis of Smith-Magenis syndrome (SMS) by fluorescence in situ hybridization (FISH). SMS is typically associated with a discernible deletion of band 17p11.2 upon cytogenetic analysis at a resolution of 400-550 bands. We present a case that illustrates the importance of using FISH to confirm a cytogenetic diagnosis of del(17)(p11.2). Four independent cytogenetic analyses were performed with different conclusions. Results of low resolution analyses of amniocytes and peripheral blood lymphocytes were apparently normal, while high resolution analyses of peripheral blood samples in two laboratories indicated mosaicism for del(17)(p11.2). FISH clearly demonstrated a 17p deletion on one chromosome of all peripheral blood cells analyzed and ruled out mosaicism unambiguously. The deletion was undetectable by flow cytometric quantitation of chromosomal DNA content, suggesting that it is less than 2 Mb. We conclude that FISH should be used to detect the SMS deletion when routine chromosome analysis fails to detect it and to verify mosaicism. 23 refs., 3 figs., 1 tab.

  6. The NPHP1 Gene Deletion Associated with Juvenile Nephronophthisis Is Present in a Subset of Individuals with Joubert Syndrome

    PubMed Central

    Parisi, Melissa A.; Bennett, Craig L.; Eckert, Melissa L.; Dobyns, William B.; Gleeson, Joseph G.; Shaw, Dennis W. W.; McDonald, Ruth; Eddy, Allison; Chance, Phillip F.; Glass, Ian A.

    2004-01-01

    Joubert syndrome (JS) is an autosomal recessive multisystem disease characterized by cerebellar vermis hypoplasia with prominent superior cerebellar peduncles (the “molar tooth sign” [MTS] on axial magnetic resonance imaging), mental retardation, hypotonia, irregular breathing pattern, and eye-movement abnormalities. Some individuals with JS have retinal dystrophy and/or progressive renal failure characterized by nephronophthisis (NPHP). Thus far, no mutations in the known NPHP genes, particularly the homozygous deletion of NPHP1 at 2q13, have been identified in subjects with JS. A cohort of 25 subjects with JS and either renal and/or retinal complications and 2 subjects with only juvenile NPHP were screened for mutations in the NPHP1 gene by standard methods. Two siblings affected with a mild form of JS were found to have a homozygous deletion of the NPHP1 gene identical, by mapping, to that in subjects with NPHP alone. A control subject with NPHP and with a homozygous NPHP1 deletion was also identified, retrospectively, as having a mild MTS and borderline intelligence. The NPHP1 deletion represents the first molecular defect associated with JS in a subset of mildly affected subjects. Cerebellar malformations consistent with the MTS may be relatively common in patients with juvenile NPHP without classic symptoms of JS. PMID:15138899

  7. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency

    PubMed Central

    2013-01-01

    Background 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome. Methods A serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G. Results Thirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency, including ASD, seizures and abnormal EEG, hypotonia, sleep disturbances, abnormal brain MRI, gastroesophageal reflux, and certain dysmorphic features. Conclusions This study supports findings from previous research on the severity of intellectual, motor, and speech impairments seen in SHANK3 deficiency, and highlights the prominence of autism spectrum disorder in the syndrome. Limitations of existing evaluation tools are discussed, along with the need for natural history studies to inform clinical monitoring and treatment development in SHANK3 deficiency. PMID:23758760

  8. Dandy-Walker malformation and Wisconsin syndrome: novel cases add further insight into the genotype-phenotype correlations of 3q23q25 deletions

    PubMed Central

    2013-01-01

    Background The Dandy-Walker malformation (DWM) is one of the commonest congenital cerebellar defects, and can be associated with multiple congenital anomalies and chromosomal syndromes. The occurrence of overlapping 3q deletions including the ZIC1 and ZIC4 genes in few patients, along with data from mouse models, have implicated both genes in the pathogenesis of DWM. Methods and results Using a SNP-array approach, we recently identified three novel patients carrying heterozygous 3q deletions encompassing ZIC1 and ZIC4. Magnetic resonance imaging showed that only two had a typical DWM, while the third did not present any defect of the DWM spectrum. SNP-array analysis in further eleven children diagnosed with DWM failed to identify deletions of ZIC1-ZIC4. The clinical phenotype of the three 3q deleted patients included multiple congenital anomalies and peculiar facial appearance, related to the localization and extension of each deletion. In particular, phenotypes resulted from the variable combination of three recognizable patterns: DWM (with incomplete penetrance); blepharophimosis, ptosis, and epicanthus inversus syndrome; and Wisconsin syndrome (WS), recently mapped to 3q. Conclusions Our data indicate that the 3q deletion is a rare defect associated with DWM, and suggest that the hemizygosity of ZIC1-ZIC4 genes is neither necessary nor sufficient per se to cause this condition. Furthermore, based on a detailed comparison of clinical features and molecular data from 3q deleted patients, we propose clinical diagnostic criteria and refine the critical region for WS. PMID:23679990

  9. Deletion 10q23.2-q23.33 in a patient with gastrointestinal juvenile polyposis and other features of a Cowden-like syndrome.

    PubMed

    Tsuchiya, K D; Wiesner, G; Cassidy, S B; Limwongse, C; Boyle, J T; Schwartz, S

    1998-02-01

    A cytogenetically visible interstitial deletion of chromosome band 10q23 was found in a 6-year-old boy with mental retardation, dysmorphic features, and juvenile polyposis coli. In order to map this patient's deletion physically, we performed fluorescence in situ hybridization by using yeast artificial chromosomes (YACs) in the vicinity of the deletion. Five YACs that span an 11-15 cM region within the deletion were identified. This patient's deletion contains the putative locus for Cowden syndrome and a recently discovered candidate tumor suppressor gene (MMAC1 or PTEN) that has been implicated in the progression of a variety of human malignancies. Furthermore, the deletion is near and possibly overlaps a locus associated with juvenile polyposis. The findings in this patient with a constitutional 10q23 deletion raise the issue of whether there are separate genes in this region that are involved in Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, juvenile polyposis, and tumor progression, or whether all of these entities could be due to a single gene. PMID:9491322

  10. Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations.

    PubMed

    Buitenkamp, T D; Pieters, R; Gallimore, N E; van der Veer, A; Meijerink, J P P; Beverloo, H B; Zimmermann, M; de Haas, V; Richards, S M; Vora, A J; Mitchell, C D; Russell, L J; Schwab, C; Harrison, C J; Moorman, A V; van den Heuvel-Eibrink, M M; den Boer, M L; Zwaan, C M

    2012-10-01

    Children with Down's syndrome (DS) have an increased risk of developing acute lymphoblastic leukemia (ALL) and have a low frequency of established genetic aberrations. We aimed to determine which genetic abnormalities are involved in DS ALL. We studied the frequency and prognostic value of deletions in B-cell development genes and aberrations of janus kinase 2 (JAK2) and cytokine receptor-like factor 2 (CRLF2) using array-comparative genomic hybridization, and multiplex ligation-dependent probe amplification in a population-based cohort of 34 Dutch Childhood Oncology Group DS ALL samples. A population-based cohort of 88 DS samples from the UK trials was used to validate survival estimates for IKZF1 and CRLF2 abnormalities. In total, 50% of DS ALL patients had ?1 deletion in the B-cell development genes: PAX5 (12%), VPREB1 (18%) and IKZF1 (35%). JAK2 was mutated in 15% of patients, genomic CRLF2 rearrangements in 62%. Outcome was significantly worse in patients with IKZF1 deletions (6-year event-free survival (EFS) 45 ± 16% vs 95 ± 4%; P=0.002), which was confirmed in the validation cohort (6-year EFS 21 ± 12% vs 58 ± 11%; P=0.002). This IKZF1 deletion was a strong independent predictor for outcome (hazard ratio EFS 3.05; P=0.001). Neither CRLF2 nor JAK2 were predictors for worse prognosis. If confirmed in prospective series, IKZF1 deletions may be used for risk-group stratification in DS ALL. PMID:22441210

  11. Lesch-Nyhan Syndrome in a Family with a Deletion Followed by an Insertion within the HPRT1 Gene.

    PubMed

    Nguyen, Khue Vu; Nyhan, William L

    2015-06-01

    Lesch-Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase(HGprt) is defective. The authors report a novel mutation which led to LNS in a family with a deletion followed by an insertion (INDELS) via the serial replication slippage mechanism: c.428_432delTGCAGinsAGCAAA, p.Met143Lysfs*12 in exon 6 of HPRT1 gene. Molecular diagnosis discloses the genetic heterogeneity of HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling. PMID:25965333

  12. Thrombocytopenia-absent radius (TAR) syndrome: a clinical genetic series of 14 further cases. impact of the associated 1q21.1 deletion on the genetic counselling.

    PubMed

    Houeijeh, Ali; Andrieux, Joris; Saugier-Veber, Pascale; David, Albert; Goldenberg, Alice; Bonneau, Dominique; Fouassier, Marc; Journel, Hubert; Martinovic, Jelana; Escande, Fabienne; Devisme, Louise; Bisiaux, Sophie; Chaffiotte, Caroline; Baux, Mathilde; Kerckaert, Jean-Pierre; Holder-Espinasse, Muriel; Manouvrier-Hanu, Sylvie

    2011-01-01

    Thrombocytopenia-absent radius Syndrome (TAR) is a rare congenital malformation syndrome of complicated transmission. 1q21.1 deletion is necessary but not sufficient for its expression. We report the result of a French multicentric clinical study, and we emphasized on the role of the associated 1q21.1 deletion in the diagnosis and the genetic counselling of our patients. We gathered information on 14 patients presenting with TAR syndrome and referred for genetic counselling in six different university hospitals (8 foetuses, 1 child and 5 adults). Clinical or pathology details, as well as skeletal X-rays were analyzed. Genetic studies were performed by Array-CGH, and Quantitative Multiplex PCR. We demonstrated the very variable phenotypes of TAR syndrome. Female:male ratio was ?2:1. All patients presented with bilateral radial aplasia/hypoplasia with preserved thumbs. Phocomelia and lower limb anomalies were present in 28% of the cases. We reported the first case of cystic hygroma on affected foetus. 1q21.1 deletions ranging from 330 to 1100 kb were identified in all affected patients. Most of them were inherited from one healthy parent (80%). The identification of a 1q21.1 deletion allowed confirmation of TAR syndrome diagnosis, particularly in foetuses and in atypical phenotypes. Additionally, it allowed accurate genetic counselling, especially when it occurred de novo. These findings allowed discussing the diagnostic criteria and management towards TAR syndrome. PMID:21635976

  13. Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation

    Microsoft Academic Search

    Laura Torres-Juan; Jordi Rosell; Montse Morla; Catalina Vidal-Pou; Fernando García-Algas; Maria-Angeles de la Fuente; Miguel Juan; Albert Tubau; Daniel Bachiller; Marta Bernues; Angeles Perez-Granero; Nancy Govea; Xavier Busquets; Damian Heine-Suñer

    2007-01-01

    A screen for TBX1 gene mutations identified two mutations in patients with some features compatible with the 22q11.2-deletion syndrome but with no deletions. One is a de novo missense mutation and the other is a 5? untranslated region (5?UTR) C>T change that affects a nucleotide with a remarkable trans-species conservation. Computer modelling shows that the 5?UTR change is likely to

  14. Heterozygous deletion of the Williams-Beuren syndrome critical interval in mice recapitulates most features of the human disorder.

    PubMed

    Segura-Puimedon, Maria; Sahún, Ignasi; Velot, Emilie; Dubus, Pierre; Borralleras, Cristina; Rodrigues, Ana J; Valero, María C; Valverde, Olga; Sousa, Nuno; Herault, Yann; Dierssen, Mara; Pérez-Jurado, Luis A; Campuzano, Victoria

    2014-12-15

    Williams-Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55-1.83 Mb heterozygous deletion on human chromosome band 7q11.23. Through chromosomal engineering with the cre-loxP system, we have generated mice with an almost complete deletion (CD) of the conserved syntenic region on chromosome 5G2. Heterozygous CD mice were viable, fertile and had a normal lifespan, while homozygotes were early embryonic lethal. Transcript levels of most deleted genes were reduced 50% in several tissues, consistent with gene dosage. Heterozygous mutant mice showed postnatal growth delay with reduced body weight and craniofacial abnormalities such as small mandible. The cardiovascular phenotype was only manifested with borderline hypertension, mildly increased arterial wall thickness and cardiac hypertrophy. The neurobehavioral phenotype revealed impairments in motor coordination, increased startle response to acoustic stimuli and hypersociability. Mutant mice showed a general reduction in brain weight. Cellular and histological abnormalities were present in the amygdala, cortex and hippocampus, including increased proportion of immature neurons. In summary, these mice recapitulate most crucial phenotypes of the human disorder, provide novel insights into the pathophysiological mechanisms of the disease such as the neural substrates of the behavioral manifestations, and will be valuable to evaluate novel therapeutic approaches. PMID:25027326

  15. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells.

    PubMed

    Kotini, Andriana G; Chang, Chan-Jung; Boussaad, Ibrahim; Delrow, Jeffrey J; Dolezal, Emily K; Nagulapally, Abhinav B; Perna, Fabiana; Fishbein, Gregory A; Klimek, Virginia M; Hawkins, R David; Huangfu, Danwei; Murry, Charles E; Graubert, Timothy; Nimer, Stephen D; Papapetrou, Eirini P

    2015-06-01

    Chromosomal deletions associated with human diseases, such as cancer, are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q (del(7q)), a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments in a 20-Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes. PMID:25798938

  16. Novel 47.5-kb deletion in RAB27A results in severe Griscelli Syndrome type 2

    PubMed Central

    Vincent, Lisa M.; Gilbert, Fred; DiPace, Jennifer I.; Ciccone, Carla; Markello, Thomas C.; Jeong, Andrew; Dorward, Heidi; Westbroek, Wendy; Gahl, William A.; Bussel, James B.; Huizing, Marjan

    2010-01-01

    Griscelli syndrome (GS), a rare autosomal recessive disorder characterized by partial albinism and immunological impairment and/or severe neurological impairment, results from mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes. We identified a Hispanic patient born of a consanguineous union who presented with immunodeficiency, partial albinism, hepatic dysfunction, hemophagocytosis, neurological impairment, nystagmus, and silvery hair indicative of Griscelli syndrome type 2 (GS2). We screened for point mutations, but only exons 2–6 of the patient’s DNA could be PCR-amplified. Whole genome analysis using the Illumina® 1M-Duo DNA Analysis BeadChip identified a homozygous deletion in the patient’s DNA. The exact breakpoints of the 47.5-kb deletion were identified as chr15q15-q21.1: g.53332432_53379990del (NCBI Build 37.1); the patient lacks the promoter and 5’UTR regions of RAB27A, thus confirming the diagnosis of GS2. PMID:20591709

  17. Lenalidomide Promotes p53 Degradation by Inhibiting MDM2 Auto-ubiquitination in Myelodysplastic Syndrome with Chromosome 5q Deletion

    PubMed Central

    Wei, Sheng; Chen, Xianghong; McGraw, Kathy; Zhang, Ling; Komrokji, Rami; Clark, Justine; Caceres, Gisela; Billingsley, Debbie; Sokol, Lubomir; Lancet, Jeffrey; Fortenbery, Nicole; Zhou, Junmin; Eksioglu, Erika A.; Sallman, David; Wang, Huaquan; Epling-Burnette, Pearlie K.; Djeu, Julie; Maciejewski, Jaroslaw P.; Sekeres, Mikkael; List, Alan

    2013-01-01

    Allelic deletion of the RPS14 gene is a key effector of the hypoplastic anemia in patients with myelodysplastic syndrome (MDS) and chromosome 5q deletion [del(5q)]. Disruption of ribosome integrity liberates free ribosomal proteins to bind to and trigger degradation of MDM2, with consequent p53 transactivation. Herein we show that p53 is overexpressed in erythroid precursors of primary bone marrow del(5q) MDS specimens accompanied by reduced cellular MDM2. More importantly, we show that lenalidomide acts to stabilize MDM2, thereby accelerating p53 degradation. Biochemical and molecular analyses showed that lenalidomide inhibits the haplodeficient PP2Ac? phosphatase resulting in hyperphosphorylation of inhibitory serine-166 and serine-186 residues on MDM2, and displaces binding of RPS-14 to suppress MDM2 auto-ubiquitination; whereas PP2Ac? over expression promotes drug resistance. Bone marrow specimens from del(5q) MDS patients resistant to lenalidomide over-expressed PP2Ac? accompanied by restored accumulation of p53 in erythroid precursors. Our findings indicate that lenalidomide restores MDM2 functionality in the 5q- syndrome to overcome p53 activation in response to nucleolar stress, and therefore may warrant investigation in other disorders of ribosomal biogenesis. PMID:22525275

  18. Central precocious puberty in a patient with X-linked adrenal hypoplasia congenita and Xp21 contiguous gene deletion syndrome.

    PubMed

    Koh, Ji Won; Kang, So Young; Kim, Gu Hwan; Yoo, Han Wook; Yu, Jeesuk

    2013-06-01

    X-linked adrenal hypoplasia congenita is caused by the mutation of DAX-1 gene (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1), and can occur as part of a contiguous gene deletion syndrome in association with glycerol kinase (GK) deficiency, Duchenne muscular dystrophy and X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) gene deficiency. It is usually associated with hypogonadotropic hypogonadism, although in rare cases, it has been reported to occur in normal puberty or even central precocious puberty. This study addresses a case in which central precocious puberty developed in a boy with X-linked adrenal hypoplasia congenita who had complete deletion of the genes DAX-1, GK and IL1RAPL1 (Xp21 contiguous gene deletion syndrome). Initially he was admitted for the management of adrenal crisis at the age of 2 months, and managed with hydrocortisone and florinef. At 45 months of age, his each testicular volumes of 4 mL and a penile length of 5 cm were noted, with pubic hair of Tanner stage 2. His bone age was advanced and a gonadotropin-releasing hormone (GnRH) stimulation test showed a luteinizing hormone peak of 8.26 IU/L, confirming central precocious puberty. He was then treated with a GnRH agonist, as well as steroid replacement therapy. In Korea, this is the first case of central precocious puberty developed in a male patient with X-linked adrenal hypoplasia congenita. PMID:24904859

  19. Large deletion causing von Hippel-Lindau disease and hereditary breast cancer syndrome

    PubMed Central

    2014-01-01

    Patients with intragenic mutations of the VHL gene have a typical disease presentation. However in cases of large VHL gene deletions which involve other genes in the proximity of the VHL gene a presentation of the disease can be different. To investigate whether large VHL deletions that remove the FANCD2 gene have an effect on the disease phenotype, we studied a family with a 50 kb large deletion encompassing these two genes. Four patients in this family were affected by VHL-related lesions. However one carrier of the deletion also had bilateral ductal breast cancer at age 46 and 49. Both tumors were of ~2 cm in diameter. On one side lymph nodes were affected. One tumor was ER- and PR-negative (HER2 s unknown) and the second was ER- and PR-positive, and HER2-negative. Our study suggests that a deletion of FANCD2 gene, an important gene in the DNA repair pathway, may be associated with an increased risk of breast cancer, but further studies are needed in this regard. PMID:25093046

  20. Prenatal detection of TAR syndrome in a fetus with compound inheritance of an RBM8A SNP and a 334?kb deletion: a case report.

    PubMed

    Papoulidis, Ioannis; Oikonomidou, Eirini; Orru, Sandro; Siomou, Elisavet; Kontodiou, Maria; Eleftheriades, Makarios; Bacoulas, Vasilios; Cigudosa, Juan C; Suela, Javier; Thomaidis, Loretta; Manolakos, Emmanouil

    2014-01-01

    Thrombocytopenia?absent radius syndrome (TAR) is a rare genetic disorder that is characterized by the absence of the radius bone in each forearm and a markedly reduced platelet count that results in life?threatening bleeding episodes (thrombocytopenia). Tar syndrome has been associated with a deletion of a segment of 1q21.1 cytoband. The 1q21.1 deletion syndrome phenotype includes Tar and other features such as mental retardation, autism and microcephaly. This study describes a case of a prenatally diagnosed fetus with compound inheritance of a small (334 kb) deletion, as detected by array?comparative genomic hybridization, and a 5' untranslated region (UTR) low?frequency allele (rs139428292) in gene RBM8A as detected by Sanger sequencing. The study describes the first case of prenatal analysis of TAR syndrome in a fetus with compound inheritance of a 334?kb deletion in the 1q21.1 region and a low?frequency 5' UTR single nucleotide polymorphism, and provides confirmation of the causal nature of the RBM8A gene in the diagnosis of TAR syndrome. PMID:24220582

  1. Caregiver and adult patient perspectives on the importance of a diagnosis of 22q11.2 deletion syndrome

    PubMed Central

    Costain, G.; Chow, E. W. C.; Ray, P. N.; Bassett, A. S.

    2015-01-01

    Background Recent advances in genetics are particularly relevant in the field of intellectual disability (ID), where sub-microscopic deletions or duplications of genetic material are increasingly implicated as known or suspected causal factors. Data-driven reports on the impact of providing an aetiological explanation in ID are needed to help justify widespread use of new and expensive genetic technologies. Methods We conducted a survey of caregivers on the value of a genetic/aetiologic diagnosis of 22q11.2 deletion syndrome (22q11.2DS), the most common microdeletion syndrome in ID. We also surveyed the opinion of a high-functioning subset of adults with 22q11.2DS themselves. We used standard quantitative and qualitative methods to analyse the responses. Results In total, 73 of 118 surveys were returned (61.9%). There was convergence of quantitative and qualitative results, and consistency between adult patient and caregiver responses. A definitive molecular diagnosis of 22q11.2DS was a critical event with diverse positive repercussions, even if occurring later in life. Frequently cited benefits included greater understanding and certainty, newfound sense of purpose and a platform for advocacy, and increased opportunities to optimise medical, social and educational needs. Conclusions This is the first study to characterise the impact of a diagnosis of this representative microdeletion syndrome on adult patients and their families. The results both validate and expand on the theoretical benefits proposed by clinicians and researchers. The use of genome-wide microarray technologies will provide an increasing number of molecular diagnoses. The importance of a diagnosis of 22q11.2DS demonstrated here therefore has implications for changing attitudes about molecular genetic diagnosis that could benefit individuals with ID of currently unknown cause and their families. PMID:22142442

  2. A genome-wide study of de novo deletions identifies a candidate locus for non-syndromic isolated cleft lip/palate risk

    PubMed Central

    2014-01-01

    Background Copy number variants (CNVs) may play an important part in the development of common birth defects such as oral clefts, and individual patients with multiple birth defects (including clefts) have been shown to carry small and large chromosomal deletions. In this paper we investigate de novo deletions defined as DNA segments missing in an oral cleft proband but present in both unaffected parents. We compare de novo deletion frequencies in children of European ancestry with an isolated, non-syndromic oral cleft to frequencies in children of European ancestry from randomly sampled trios. Results We identified a genome-wide significant 62 kilo base (kb) non-coding region on chromosome 7p14.1 where de novo deletions occur more frequently among oral cleft cases than controls. We also observed wider de novo deletions among cleft lip and palate (CLP) cases than seen among cleft palate (CP) and cleft lip (CL) cases. Conclusions This study presents a region where de novo deletions appear to be involved in the etiology of oral clefts, although the underlying biological mechanisms are still unknown. Larger de novo deletions are more likely to interfere with normal craniofacial development and may result in more severe clefts. Study protocol and sample DNA source can severely affect estimates of de novo deletion frequencies. Follow-up studies are needed to further validate these findings and to potentially identify additional structural variants underlying oral clefts. PMID:24528994

  3. In Vivo Growth of Porcine Reproductive and Respiratory Syndrome Virus Engineered Nsp2 Deletion Mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior studies on PRRSV strain VR-2332 nonstructural protein 2 (nsp2) had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viability in vitro. We utilized selected nsp2 deletion mutants to examine in vivo growth. Young swine (4 pigs/group; 5 co...

  4. Pleiotropy in microdeletion syndromes: Neurologic and spermatogenic abnormalities in mice homozygous for the p{sup 6H} deletion are likely due to dysfunction of a single gene

    SciTech Connect

    Rinchik, E.M.; Carpenter, D.A. [Oak Ridge National Lab., TN (United States); Handel, M.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-07-03

    Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.

  5. Discrepancies in Parent and Teacher Ratings of Social-Behavioral Functioning of Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Assessment

    ERIC Educational Resources Information Center

    Shashi, Vandana; Wray, Emily; Schoch, Kelly; Curtiss, Kathleen; Hooper, Stephen R.

    2013-01-01

    Children with 22q11.2 deletion syndrome exhibit high rates of social-behavioral problems, particularly in the internalizing domain, indicating an area in need of intervention. The current investigation was designed to obtain information regarding parent and teacher ratings of the social-emotional behavior of children with 22q11DS. Using the Child…

  6. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  7. Deletions in the 3' part of the NFIX gene including a recurrent Alu-mediated deletion of exon 6 and 7 account for previously unexplained cases of Marshall-Smith syndrome.

    PubMed

    Schanze, Denny; Neubauer, Dorothée; Cormier-Daire, Valerie; Delrue, Marie-Ange; Dieux-Coeslier, Anne; Hasegawa, Tomonobu; Holmberg, Eva E; Koenig, Rainer; Krueger, Gabriele; Schanze, Ina; Seemanova, Eva; Shaw, Adam C; Vogt, Julie; Volleth, Marianne; Reis, André; Meinecke, Peter; Hennekam, Raoul C M; Zenker, Martin

    2014-09-01

    Marshall-Smith syndrome (MSS) is a very rare malformation syndrome characterized by typical craniofacial anomalies, abnormal osseous maturation, developmental delay, failure to thrive, and respiratory difficulties. Mutations in the nuclear factor 1/X gene (NFIX) were recently identified as the cause of MSS. In our study cohort of 17 patients with a clinical diagnosis of MSS, conventional sequencing of NFIX revealed frameshift and splice-site mutations in 10 individuals. Using multiplex ligation-dependent probe amplification analysis, we identified a recurrent deletion of NFIX exon 6 and 7 in five individuals. We demonstrate this recurrent deletion is the product of a recombination between AluY elements located in intron 5 and 7. Two other patients had smaller deletions affecting exon 6. These findings show that MSS is a genetically homogeneous Mendelian disorder. RT-PCR experiments with newly identified NFIX mutations including the recurrent exon 6 and 7 deletion confirmed previous findings indicating that MSS-associated mutant mRNAs are not cleared by nonsense-mediated mRNA decay. Predicted MSS-associated mutant NFIX proteins consistently have a preserved DNA binding and dimerization domain, whereas they grossly vary in their C-terminal portion. This is in line with the hypothesis that MSS-associated mutations encode dysfunctional proteins that act in a dominant negative manner. PMID:24924640

  8. Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population.

    PubMed

    Bugiani, Marianna; Gyftodimou, Yolanda; Tsimpouka, Paraskevi; Lamantea, Eleonora; Katzaki, Eleni; d'Adamo, Pio; Nakou, Sheena; Georgoudi, Nelli; Grigoriadou, Maria; Tsina, Efthymia; Kabolis, Nikolaos; Milani, Donatella; Pandelia, Efthimia; Kokotas, Haris; Gasparini, Paolo; Giannoulia-Karantana, Aglaia; Renieri, Alessandra; Zeviani, Massimo; Petersen, Michael B

    2008-09-01

    Cohen syndrome, caused by mutations in the COH1 gene, is an autosomal recessive disorder consisting of mental retardation, microcephaly, growth delay, severe myopia, progressive chorioretinal dystrophy, facial anomalies, slender limbs with narrow hands and feet, tapered fingers, short stature, kyphosis and/or scoliosis, pectus carinatum, joint hypermobility, pes calcaneovalgus, and, variably, truncal obesity. Here, we describe the clinical and molecular findings in 14 patients from an isolated Greek island population. The clinical phenotype was fairly homogeneous, although microcephaly was not constant, and some patients had severe visual disability. All patients were homozygous for a novel intragenic COH1 deletion spanning exon 6 to exon 16, suggesting a founder effect. The discovery of this mutation has made carrier detection and prenatal diagnosis possible in this population. PMID:18655112

  9. Holoprosencephaly with cerebellar vermis hypoplasia in 13q deletion syndrome: Critical region for cerebellar dysgenesis within 13q32.2q34.

    PubMed

    Mimaki, Masakazu; Shiihara, Takashi; Watanabe, Mio; Hirakata, Kyoko; Sakazume, Satoru; Ishiguro, Akio; Shimojima, Keiko; Yamamoto, Toshiyuki; Oka, Akira; Mizuguchi, Masashi

    2015-08-01

    We describe two unrelated patients with terminal deletions in the long arm of chromosome 13 showing brain malformation consisting of holoprosencephaly and cerebellar vermis hypoplasia. Array comparative genomic hybridization analysis revealed a pure terminal deletion of 13q31.3q34 in one patient and a mosaic ring chromosome with 13q32.2q34 deletion in the other. Mutations in ZIC2, located within region 13q32, cause holoprosencephaly, whereas the 13q32.2q32.3 region is associated with cerebellar vermis hypoplasia (Dandy-Walker syndrome). The rare concurrence of these major brain malformations in our patients provides further evidence that 13q32.2q32.3 deletion, harboring ZIC2 and ZIC5, leads to cerebellar dysgenesis. PMID:25454392

  10. Two patients with duplication of 17p11.2: The reciprocal of the Smith-Magenis syndrome deletion?

    SciTech Connect

    Brown, A. [Greenwood Genetic Center, SC (United States)] [Greenwood Genetic Center, SC (United States); [Clemson Univ., SC (United States); Phelan, M.C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others] [Greenwood Genetic Center, SC (United States); and others

    1996-05-17

    J.M. and H.G. are two unrelated male patients with developmental delay. Cytogenetic analysis detected a duplication of 17p11.2 in both patients. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-D17S122-tel. Four of the six markers, D17S29, D17S258, D17S71, and D17S445, were duplicated by dosage analysis. Fluorescent in situ hybridization (FISH) analysis of H.G., using cosmids for locus D17S29, confirmed the duplication in 17p11.2. Because the deletion that causes the Smith-Magenis syndrome involves the same region of 17p11.2 as the duplication in these patients, the mechanism may be similar to that proposed for the reciprocal deletion/ duplication event observed in Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and Charcot-Marie-Tooth Type 1A disease (CMT1A). 30 refs., 3 figs., 1 tab.

  11. Polymicrogyria and deletion 22q11.2 syndrome: window to the etiology of a common cortical malformation.

    PubMed

    Robin, Nathaniel H; Taylor, Clare J; McDonald-McGinn, Donna M; Zackai, Elaine H; Bingham, Peter; Collins, Kevin J; Earl, Dawn; Gill, Deepak; Granata, Tiziana; Guerrini, Renzo; Katz, Naomi; Kimonis, Virginia; Lin, Jean-Pierre; Lynch, David R; Mohammed, Shehla N; Massey, Roger F; McDonald, Marie; Rogers, R Curtis; Splitt, Miranda; Stevens, Cathy A; Tischkowitz, Marc D; Stoodley, Neil; Leventer, Richard J; Pilz, Daniela T; Dobyns, William B

    2006-11-15

    Several brain malformations have been described in rare patients with the deletion 22q11.2 syndrome (DEL22q11) including agenesis of the corpus callosum, pachygyria or polymicrogyria (PMG), cerebellar anomalies and meningomyelocele, with PMG reported most frequently. In view of our interest in the causes of PMG, we reviewed clinical data including brain-imaging studies on 21 patients with PMG associated with deletion 22q11.2 and another 11 from the literature. We found that the cortical malformation consists of perisylvian PMG of variable severity and frequent asymmetry with a striking predisposition for the right hemisphere (P = 0.008). This and other observations suggest that the PMG may be a sequela of abnormal embryonic vascular development rather than a primary brain malformation. We also noted mild cerebellar hypoplasia or mega-cisterna magna in 8 of 24 patients. Although this was not the focus of the present study, mild cerebellar anomalies are probably the most common brain malformation associated with DEL22q11. PMID:17036343

  12. The 22q11.2 deletion syndrome (22q11.2DS; also known as velocardiofacial syndrome1

    E-print Network

    Nguyen, Danh

    George syndrome2 ) is caused by a microdeletion in chromo- some 22 and has an incidence of 1 in 2,000­4,000 live full scale IQ (FSIQ). Borderline intellectual function (FSIQ 70­75) is most common, mild intellectual disability (FSIQ 55­75) is slightly less frequent and a small percentage of children fall into the low

  13. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    SciTech Connect

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)] [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia)] [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)] [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia)] [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)] [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia)] [Service d'endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)] [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  14. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Linden, Jennifer F.; Baldini, Antonio; Tucker, Abigail S.

    2015-01-01

    Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1+/?) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. PMID:25452432

  15. Memory in intellectually matched groups of young participants with 22q11.2 deletion syndrome and those with schizophrenia.

    PubMed

    Kravariti, Eugenia; Jacobson, Clare; Morris, Robin; Frangou, Sophia; Murray, Robin M; Tsakanikos, Elias; Habel, Alex; Shearer, Jo

    2010-01-01

    The 22q11.2 deletion syndrome (22qDS) and schizophrenia have genetic and neuropsychological similarities, but are likely to differ in memory profile. Confirming differences in memory function between the two disorders, and identifying their genetic determinants, can help to define genetic subtypes in both syndromes, identify genetic risk factors for the emergence of psychosis, and develop pharmacological interventions for cognitive dysfunction. However, no study has compared memory function between 22qDS and schizophrenia, while indirect comparisons are confounded by marked differences in IQ between the two populations. We compared verbal and visual memory in 29 children and adolescents with 22qDS and 15 intellectually matched youths with schizophrenia using age-appropriate, directly comparable, Wechsler scales. Verbal memory was markedly superior in the 22qDS group by 21 points. There were no group differences in visual memory. The inherently low COMT activity in 22qDS merits investigation as a potential protective factor for verbal memory. PMID:20307954

  16. Ectodermal dysplasia-skin fragility syndrome due to a new homozygous internal deletion mutation in the PKP1 gene.

    PubMed

    Boyce, Aaron E; McGrath, John A; Techanukul, Tanasit; Murrell, Dédée F; Chow, Chung Wo; McGregor, Lesley; Warren, Lachlan J

    2012-02-01

    Ectodermal dysplasia-skin fragility syndrome (ED-SFS) is a rare autosomal recessive genodermatosis resulting from mutations in the PKP1 gene, encoding the desmosomal plaque protein plakophilin-1 (PKP1). Mutations in PKP1 may manifest with skin fragility and erosions, patches of scale crust on the trunk and limbs, peri-oral cracking and inflammation, hypotrichosis, palmoplantar keratoderma with painful fissuring and other somewhat variable ectodermal anomalies. Ten cases of the syndrome have been reported. We report a further case of this desmosomal genodermatosis. A 14-month old child, born to consanguineous parents, presented with a history of neonatal bullae and subsequent development of dystrophic nails, sparse eyelashes and eyebrows, woolly scalp hair, abnormal dental development and a desquamating erythematous rash at sites of trauma. A clinical diagnosis of ED-SFS was supported by skin biopsy findings of suprabasal intraepidermal clefting and a loss of immunoreactivity for PKP1. Sequencing of genomic DNA revealed a homozygous 5 base pair deletion in exon 5 of the PKP1 gene, designated c.897del5 (CAACC). This new mutation creates a frameshift, leading to a downstream premature termination codon, p.Pro299fsX61. This case highlights the clinicopathological consequences of inherited mutations in the PKP1 gene and illustrates the key role of desmosomes in skin biology. PMID:22309335

  17. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome.

    PubMed

    Fuchs, Jennifer C; Linden, Jennifer F; Baldini, Antonio; Tucker, Abigail S

    2015-04-01

    Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1(+/-)) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. PMID:25452432

  18. Compound Heterozygosity of Low-Frequency Promoter Deletions and Rare Loss-of-Function Mutations in TXNL4A Causes Burn-McKeown Syndrome

    PubMed Central

    Wieczorek, Dagmar; Newman, William G.; Wieland, Thomas; Berulava, Tea; Kaffe, Maria; Falkenstein, Daniela; Beetz, Christian; Graf, Elisabeth; Schwarzmayr, Thomas; Douzgou, Sofia; Clayton-Smith, Jill; Daly, Sarah B.; Williams, Simon G.; Bhaskar, Sanjeev S.; Urquhart, Jill E.; Anderson, Beverley; O’Sullivan, James; Boute, Odile; Gundlach, Jasmin; Czeschik, Johanna Christina; van Essen, Anthonie J.; Hazan, Filiz; Park, Sarah; Hing, Anne; Kuechler, Alma; Lohmann, Dietmar R.; Ludwig, Kerstin U.; Mangold, Elisabeth; Steenpaß, Laura; Zeschnigk, Michael; Lemke, Johannes R.; Lourenco, Charles Marques; Hehr, Ute; Prott, Eva-Christina; Waldenberger, Melanie; Böhmer, Anne C.; Horsthemke, Bernhard; O’Keefe, Raymond T.; Meitinger, Thomas; Burn, John; Lüdecke, Hermann-Josef; Strom, Tim M.

    2014-01-01

    Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations. PMID:25434003

  19. Psychiatric Disorders and Intellectual Functioning throughout Development in Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Green, Tamar; Gothelf, Doron; Glaser, Bronwyn; Debbane, Martin; Frisch, Amos; Kotler, Moshe; Weizman, Abraham; Eliez, Stephan

    2009-01-01

    Objective: Velocardiofacial syndrome (VCFS) is associated with cognitive deficits and high rates of schizophrenia and other neuropsychiatric disorders. We report the data from two large cohorts of individuals with VCFS from Israel and Western Europe to characterize the neuropsychiatric phenotype from childhood to adulthood in a large sample.…

  20. The original shaker-with-syndactylism mutation (sy) is a contiguous gene deletion syndrome.

    PubMed

    Johnson, K R; Cook, S A; Zheng, Q Y

    1998-11-01

    Tests for allelism among mice with four different mutant alleles at the shaker-with-syndactylism locus on mouse Chromosome (Chr) 18 provide evidence that the original radiation-induced mutation, sy, is a deletion including at least two genes associated with distinct phenotypes. Mice homozygous for sy have syndactylous feet and other skeletal malformations, are deaf, and exhibit abnormal behavior characteristic of vestibular dysfunction. Two less severe spontaneous mutations, shown to be allelic with sy, cause syndactylism when homozygous (hence named fused phalanges, sy(fp) and sy(fp-2J)), but do not affect hearing and behavior. Here we describe a third spontaneous mutation allelic with sy that does not affect foot morphology (hence named no syndactylism, sy(ns)), but that does cause deafness and balance defects when homozygous. Complementation test results indicate that sy(fp) and sy(fp-2J) are alleles of the same gene, but that sy(ns) is an allele of a different gene. The original sy mutation, therefore, includes both of the genes defined by these three spontaneous mutations. Typing of DNA markers in sy/sy mice revealed a deletion of approximately 1 cM in the sy region of Chr 18, including D18Mit52, D18Mit124, D18Mit181, and D18Mit205. The genetic relationships described here will aid in positional cloning efforts to identify the genes responsible for the disparate phenotypes associated with the sy locus. PMID:9799839

  1. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax

    Microsoft Academic Search

    Hernando A. del Portillo; Carmen Fernandez-Becerra; Sharen Bowman; Karen Oliver; Martin Preuss; Cecilia P. Sanchez; Nick K. Schneider; Juan M. Villalobos; Marie-Adele Rajandream; David Harris; Luiz H. Pereira da Silva; Bart Barrell; Michael Lanzer

    2001-01-01

    The malarial parasite Plasmodium vivax causes disease in humans, including chronic infections and recurrent relapses, but the course of infection is rarely fatal, unlike that caused by Plasmodium falciparum. To investigate differences in pathogenicity between P. vivax and P. falciparum, we have compared the subtelomeric domains in the DNA of these parasites. In P. falciparum, subtelomeric domains are conserved and

  2. A 5-year-old white girl with Prader-Willi syndrome and a submicroscopic deletion of chromosome 15q11q13

    SciTech Connect

    Butler, M.G. [Vanderbilt Univ. Medical Center, Nashville, TN (United States)] [Vanderbilt Univ. Medical Center, Nashville, TN (United States); Christian, S.L.; Kubota, T.; Ledbetter, D.H. [National Inst. of Health, Bethesda, MD (United States)] [National Inst. of Health, Bethesda, MD (United States)

    1996-10-16

    We report on a 5-year-old white girl with Prader-Willi syndrome (PWS) and a submicroscopic deletion of 15q11q13 of approximately 100-200 kb in size. High resolution chromosome analysis was normal but fluorescence in situ hybridization (FISH), Southern hybridization, and microsatellite data from the 15q11q13 region demonstrated that the deletion was paternal in origin and included the SNRPN, PAR-5, and PAR-7 genes from the proximal to distal boundaries of the deletion segment. SNRPN and PW71B methylation studies showed an abnormal pattern consistent with the diagnosis of PWS and supported the presence of a paternal deletion of 15q11q13 or an imprinting mutation. Biparental (normal) inheritance of PW71B (D15S63 locus) and a deletion of the SNRPN gene were observed by microsatellite, quantitative Southern hybridization, and/or FISH analyses. Our patient met the diagnostic criteria for PWS, but has no reported behavior problems, hyperphagia, or hypopigmentation. Our patient further supports SNRPN and possibly other genomic sequences which are deleted as the cause of the phenotype recognized in PWS patients. 21 refs., 7 figs.

  3. Nonverbal and verbal learning: a comparative study of children and adolescents with 22q11 deletion syndrome, non-syndromal Nonverbal Learning Disorder and memory disorder.

    PubMed

    Lepach, A C; Petermann, F

    2011-12-01

    The 22q11 deletion syndrome (DS) is a common genetic disorder, and a Nonverbal Learning Disorder (NLD) is considered as a predominant part of the phenotype. The focus of our study was to investigate the role of learning in this NLD characteristic. We compared results of children and adolescents with 22q11 DS; with non-syndromal NLD and with memory disorders on multi-trial verbal and nonverbal learning tests. Better verbal and worse nonverbal IQs were significantly discrepant for the 22q11 DS sample and for the NLD sample; the memory sample had a FS-IQ in the normal range with lower verbal IQ. General IQ was lowest for the 22q11 DS group. Similar differences in normal verbal and worse nonverbal learning resulted for the 22q11 sample and NLD-sample, while memory sample showed low performances on both tasks. Error analysis in the visual learning task indicated that lacking integration of visual-spatial information affected impaired visual memory performances in 22q11 DS and NLD. Our results reflected a common neurological basis with visual-spatial and visual memory deficits in NLD and in the 22q11 DS sample. To further investigate the issue of cross modal novelty learning deficits we recommend the use of abstract verbal learning material. PMID:21598176

  4. Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein

    Microsoft Academic Search

    Morten Sunesen; Rebecca R. Selzer; Robert M. Brosh Jr; S. Balajee; Tinna Stevnsner; Vilhelm A. Bohr

    2000-01-01

    Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a

  5. Neurocognitive development in 22q11.2 Deletion Syndrome: Comparison to youth with developmental delay and medical comorbidities

    PubMed Central

    Gur, Raquel E.; Yi, James J.; McDonald-McGinn, Donna M.; Tang, Sunny X.; Calkins, Monica E.; Whinna, Daneen; Souders, Margaret C.; Savitt, Adam; Zackai, Elaine H.; Moberg, Paul J.; Emanuel, Beverly S.; Gur, Ruben C.

    2015-01-01

    The 22q11.2 deletion syndrome (22q11DS) presents with medical and neuropsychiatric manifestations including neurocognitive deficits. Quantitative neurobehavioral measures linked to brain circuitry can help elucidate genetic mechanisms contributing to deficits. To establish the neurocognitive profile and neurocognitive “growth charts”, we compared cross-sectionally 137 individuals with 22q11DS ages 8–21 to 439 demographically matched non-deleted individuals with developmental delay (DD) and medical comorbidities and 443 typically developing (TD) participants. We administered a computerized neurocognitive battery that measures performance accuracy and speed in executive, episodic memory, complex cognition, social cognition and sensorimotor domains. The accuracy performance profile of 22q11DS showed greater impairment than DD, who were impaired relative to TD. Deficits in 22q11DS were most pronounced for face memory and social cognition, followed by complex cognition. Performance speed was similar for 22q11DS and DD, but 22q11DS individuals were differentially slower in face memory and emotion identification. The growth chart, comparing neurocognitive age based on performance relative to chronological age, indicated that 22q11DS participants lagged behind both groups from the earliest age assessed. The lag ranged from less than a year to over three years depending on chronological age and neurocognitive domain. The greatest developmental lag across the age range was for social cognition and complex cognition, with the smallest for episodic memory and sensorimotor speed, where lags were similar to DD. The results suggest that 22q11.2 microdeletion confers specific vulnerability that may underlie brain circuitry associated with deficits in several neuropsychiatric disorders and thereby help identify potential targets and developmental epochs optimal for intervention. PMID:24445907

  6. Large germline deletions of the CYLD gene in patients with Brooke-Spiegler syndrome and multiple familial trichoepithelioma.

    PubMed

    Vanecek, Tomas; Halbhuber, Zbynek; Kacerovska, Denisa; Martinek, Petr; Sedivcova, Monika; Carr, Richard A; Slouka, David; Michal, Michal; Kazakov, Dmitry V

    2014-11-01

    Brooke-Spiegler syndrome (BSS) and its phenotypic variants, multiple familial trichoepithelioma (MFT) and familial cylindromatosis, are rare autosomal dominant hereditary diseases. They are characterized by the presence of multiple adnexal tumors, especially cylindromas, spiradenomas, spiradenocylindromas, and trichoepitheliomas. Implicated in the pathogenesis of the disease is the gene CYLD, which is localized on the long arm of chromosome 16. This gene encodes an evolutionarily conserved protein belonging to the deubiquitinating enzymes family, which plays a key role in many signaling pathways, especially in NF-?B, JNK, and Wnt. Less than 90 germline mutations of CYLD have been identified in patients with BSS/MFT. These mutations are mostly small alterations in the coding sequence and at exon-intron junction sites. One patient with an intronic mutation and another with a large CYLD deletion have also been recorded. In this study, the authors have analyzed a cohort of 14 patients with BSS/MFT from 13 families for large genome rearrangements by array comparative genome hybridization followed by confirmatory sequencing. We identified 2 large deletions, namely c.-34111_*297858del378779 and c.914-6398_1769del13642ins20 in patients with MFT and BSS, respectively. All other analyzable patients did not reveal any copy number alteration. It is concluded that the large rearrangements are relatively rare in patients without a germline CYLD mutation demonstrable by conventional sequencing. The pathogenetic mechanisms in patients with BSS/MFT lacking germline sequence alterations or large rearrangements in the CYLD gene remain to be clarified. PMID:25347032

  7. Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment

    PubMed Central

    DeBoer, Tracy; Wu, Zhongle; Lee, Aaron; Simon, Tony J

    2007-01-01

    Background Previous investigations of individuals with chromosome 22q11.2 deletion syndrome (DS22q11.2) have reported alterations in both brain anatomy and cognitive function. Neuroanatomical studies have reported multiple abnormalities including changes in both gray and white matter in the temporal lobe, including the amygdala and hippocampus. Separate investigations of cognitive abilities have established the prevalence of general intellectual impairment, although the actual extent to which a single individual is affected varies greatly within the population. The present study was designed to examine structures within the temporal lobe and assess their functional significance in terms of cognition in children with DS22q11.2. Method A total of 72 children (ages 7–14 years) participated in the investigation: 36 children (19 female, 17 male) tested FISH positive for chromosome 22q11.2 deletion (Mean age = 10 years 9 months, ± 2 yr 4 mo) and 36 were age-matched typically developing controls (13 female, 23 male; Mean age = 10 years 6 months, ± 1 yr 11 mo). For each subject, a three-dimensional high-resolution (1 mm isotropic) T1-weighted structural MRI was acquired. Neuroanatomical guidelines were used to define borders of the amygdala and hippocampus bilaterally and volumes were calculated based on manual tracings of the regions. The Wechsler Intelligence Scale for Children (WISC) was also administered. Results Volumetric reductions in total gray matter, white matter, and both the amygdala and hippocampus bilaterally were observed in children with DS22q11.2. Reductions in the left hippocampus were disproportionate to decreases in gray matter after statistically controlling for group differences in total gray matter, age, and data collection site. This specific reduction in hippocampal volume was significantly correlated with performance on standardized measures of intelligence, whereas the other neuroanatomical measures were not (gray/white matter, CSF, and amygdala). Conclusion Results from this study not only contribute to the understanding of the neuroanatomical variation in DS22q11.2, but also provide insight into the nature and source of the cognitive impairments associated with the syndrome. Specifically, we report that decreases in hippocampal volume may serve as an index of severity for cognitive impairments in children with DS22q11.2. PMID:17956622

  8. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2

    PubMed Central

    2014-01-01

    Background Wolfram Syndrome type 2 (WFS2) is considered a phenotypic and genotypic variant of WFS, whose minimal criteria for diagnosis are diabetes mellitus and optic atrophy. The disease gene for WFS2 is CISD2. The clinical phenotype of WFS2 differs from WFS1 for the absence of diabetes insipidus and psychiatric disorders, and for the presence of bleeding upper intestinal ulcers and defective platelet aggregation. After the first report of consanguineous Jordanian patients, no further cases of WFS2 have been reported worldwide. We describe the first Caucasian patient affected by WFS2. Case presentation The proband was a 17 year-old girl. She presented diabetes mellitus, optic neuropathy, intestinal ulcers, sensorineural hearing loss, and defective platelet aggregation to ADP. Genetic testing showed a novel homozygous intragenic deletion of CISD2 in the proband. Her brother and parents carried the heterozygous mutation and were apparently healthy, although they showed subclinical defective platelet aggregation. Long runs of homozygosity analysis from SNP-array data did not show any degree of parental relationship, but the microsatellite analysis confirmed the hypothesis of a common ancestor. Conclusion Our patient does not show optic atrophy, one of the main diagnostic criteria for WFS, but optic neuropathy. Since the “asymptomatic” optic atrophy described in Jordanian patients is not completely supported, we could suppose that the ocular pathology in Jordanian patients was probably optic neuropathy and not optic atrophy. Therefore, as optic atrophy is required as main diagnostic criteria of WFS, it might be that the so-called WFS2 could not be a subtype of WFS. In addition, we found an impaired aggregation to ADP and not to collagen as previously reported, thus it is possible that different experimental conditions or inter-patient variability can explain different results in platelet aggregation. Further clinical reports are necessary to better define the clinical spectrum of this syndrome and to re-evaluate its classification. PMID:25056293

  9. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki -Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior

    PubMed Central

    Heck, Detlef H.; Gu, Wenli; Cao, Ying; Qi, Shuhua; Lacaria, Melanie; Lupski, James R.

    2012-01-01

    A quantitative long-term fluid consumption and fluid licking assay was performed in two mouse models with either an ~ 2Mb genomic deletion, Df(11)17, or the reciprocal duplication CNV, Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alteration in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication vs. deletion showed longer vs. shorter intervals between visits to the waterspout, generated more vs. less licks per visit and had higher vs. lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavior differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect. PMID:22991245

  10. Myelodysplastic Syndrome with 6q Deletion as the Sole Chromosome Abnormality in an Iranian Patient: A Case Report with Review of Literature

    PubMed Central

    Ferdowsi, Shirin; Shirkoohi, Reza; Toogeh, Gholamreza

    2013-01-01

    Abstract Background: The myelodysplastic syndrome (MDS) is a highly heterogenous disorder and karyotype analysis is helpful for diagnostic and prognostic estimation. Deletion in long arm chromosome 6 (6q del) as a sole abnormality is a rare event in MDS. This is the first case report of del (6q) as the only observed diagnostic change in Iran. We also reviewed the literature of this cytogenetic lesion.

  11. Applicability of the Nonverbal Learning Disability Paradigm for Children With 22q11.2 Deletion Syndrome

    PubMed Central

    Schoch, Kelly; Harrell, Waverly; Hooper, Stephen R.; Ip, Edward H.; Saldana, Santiago; Kwapil, Thomas R.; Shashi, Vandana

    2014-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans. Nonverbal learning disability (NLD) has been used to describe the strengths and deficits of children with 22q11DS, but the applicability of the label for this population has seldom been systematically evaluated. The goal of the current study was to address how well the NLD diagnosis characterizes children and adolescents with 22q11DS. A total of 74 children and adolescents with 22q11DS were given neurocognitive, socioemotional, and academic assessments to measure aspects of NLD. Of the cohort, 20% met at least 7 of 9 assessed criteria for NLD; 25% showed verbal skills exceeding their nonverbal skills as assessed by an IQ test; and 24% showed the good rote verbal capacity commonly associated with NLD. Hypothesizing that if the entire cohort did not show consistent NLD characteristics, the descriptor might be more accurate for a distinct subgroup, the authors used latent class analysis to divide participants into three subgroups. However, the lines along which the groups broke out were more related to general functioning level than to NLD criteria. All three groups showed a heightened risk for psychiatric illness, highlighting the importance of careful mental health monitoring for all children with 22q11DS. PMID:22572413

  12. Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK

    PubMed Central

    Gallenmüller, Constanze; Müller-Felber, Wolfgang; Dusl, Marina; Stucka, Rolf; Guergueltcheva, Velina; Blaschek, Astrid; von der Hagen, Maja; Huebner, Angela; Müller, Juliane S.; Lochmüller, Hanns; Abicht, Angela

    2014-01-01

    Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous disorders characterized by a neuromuscular transmission defect. In recent years, causative mutations have been identified in atleast 15 genes encoding proteins of the neuromuscular junction. Mutations in MUSK are known as a very rare genetic cause of CMS and have been described in only three families, world-wide. Consequently, the knowledge about efficient drug therapy is very limited. We identified a novel missense mutation (p.Asp38Glu) heteroallelic to a genomic deletion affecting exons 2–3 of MUSK as cause of a limb-girdle CMS in two brothers of Turkish origin. Clinical symptoms included fatigable limb weakness from early childhood on. Upon diagnosis of a MUSK-related CMS at the age of 16 and 13 years, respectively, treatment with salbutamol was initiated leading to an impressive improvement of clinical symptoms, while treatment with esterase inhibitors did not show any benefit. Our findings highlight the importance of a molecular diagnosis in CMS and demonstrate considerable similarities between patients with MUSK and DOK7-related CMS in terms of clinical phenotype and treatment options. PMID:24183479

  13. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome

    PubMed Central

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-01-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064

  14. Efficacy and safety of lenalidomide in patients with myelodysplastic syndrome with chromosome 5q deletion

    PubMed Central

    Duong, Vu H.; Komrokji, Rami S.

    2012-01-01

    Myelodysplastic syndrome (MDS) with del(5q) is a unique hematopoietic stem cell disease that typically follows an indolent course and demonstrates particular sensitivity to lenalidomide, a second-generation immunomodulatory agent. Early trials demonstrated rapid and durable responses leading to US Food and Drug Administration (FDA) approval in 2005. Definitive confirmatory evidence from a large phase III trial was recently published. Other recent advances include a better understanding of the pathogenesis of disease including haplodeficiency of several candidate genes, and elucidation of the lenalidomide-specific effect on two phosphatases ultimately leading to p53 degradation in the erythroid progenitors and cell cycle arrest in earlier myeloid progenitors. In this review, we describe the pathogenesis of MDS with del(5q), summarize the major clinical studies establishing the activity of lenalidomide in this population, discuss commonly encountered adverse events, and shed light on practical uses of this agent in the clinic. PMID:23556117

  15. A 45-bp insertion/deletion polymorphism of UCP2 gene is associated with metabolic syndrome

    PubMed Central

    2014-01-01

    Background Metabolic syndrome (MeS) is being recognized as a risk factor for insulin resistance and cardiovascular disease. The present study was aimed to find out the possible association between 45-bp I/D polymorphism of uncoupling protein 2 (UCP2) and MeS. Methods DNA was extracted from peripheral blood of 151 subjects with and 149 subjects without MeS. 45-bp I/D variant of UCP2 was detected using polymerase chain reaction (PCR). Results Our finding showed that 45-bp I/D polymorphism was associated with protection against MeS (OR?=?0.56, 95%?CI?=?0.34-0.92, p?=?0.020 D/I vs DD and OR?=?0.54, 95%?CI?=?0.34-0.86, p?=?0.009; D/I + I/I vs D/D). The I allele decreased the risk of MeS (OR?=?0.62, 95%?CI?=?0.44-0.90, p?=?0.011) in comparison with D allele. Conclusion In conclusion, our result suggests that 45-bp I/D polymorphism is associated with the risk of MeS, which remains to be cleared. PMID:24398006

  16. BMPR1A is a candidate gene for congenital heart defects associated with the recurrent 10q22q23 deletion syndrome.

    PubMed

    Breckpot, Jeroen; Tranchevent, Léon-Charles; Thienpont, Bernard; Bauters, Marijke; Troost, Els; Gewillig, Marc; Vermeesch, Joris R; Moreau, Yves; Devriendt, Koenraad; Van Esch, Hilde

    2012-01-01

    Congenital heart defects (CHD) are associated with the recurrent 10q22q23 deletion syndrome and with partially overlapping distal 10q23.2.q23.31 microdeletions. We report on a de novo intragenic deletion of the BMPR1A gene in a normally developing adolescent boy with short stature, delayed puberty, facial dysmorphism and an atrioventricular septal defect. Based on this finding, complemented with computational prioritization data and molecular evidence in literature, the critical region for CHD on 10q23 can be downsized to a single gene, BMPR1A. Although loss-of-function mutations in BMPR1A typically result in juvenile polyposis syndrome, none of the patients with the typical 10q22q23 microdeletion syndrome, comprising this gene, were reported to have juvenile polyposis thus far. We reason that, even in the absence of juvenile polyposis syndrome, sequencing and copy number analysis of BMPR1A should be considered in patients with (atrioventricular) septal defects, especially when associated with facial dysmorphism and anomalous growth. PMID:22067610

  17. Deletions Involving Long-Range Conserved Nongenic Sequences Upstream and Downstream of FOXL2 as a Novel Disease-Causing Mechanism in Blepharophimosis Syndrome

    PubMed Central

    Beysen, D.; Raes, J.; Leroy, B. P.; Lucassen, A.; Yates, J. R. W.; Clayton-Smith, J.; Ilyina, H.; Brooks, S. Sklower; Christin-Maitre, S.; Fellous, M.; Fryns, J. P.; Kim, J. R.; Lapunzina, P.; Lemyre, E.; Meire, F.; Messiaen, L. M.; Oley, C.; Splitt, M.; Thomson, J.; Peer, Y. Van de; Veitia, R. A.; De Paepe, A.; De Baere, E.

    2005-01-01

    The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes. PMID:15962237

  18. NF1 Microdeletion Syndrome: Refined FISH Characterization of Sporadic and Familial Deletions with Locus-Specific Probes

    Microsoft Academic Search

    Paola Riva; Lucia Corrado; Federica Natacci; Pierangela Castorina; Bai-Li Wu; Gretchen H. Schneider; Maurizio Clementi; Romano Tenconi; Bruce R. Korf; Lidia Larizza

    2000-01-01

    Summary Two familial and seven sporadic patients with neurofi- bromatosis 1—who showed dysmorphism, learning dis- abilities\\/mental retardation, and additional signs and carried deletions of the NF1 gene—were investigated by use of a two-step FISH approach to characterize the deletions. With FISH of YAC clones belonging to a 7- Mb 17q11.2 contig, we estimated the extension of all of the deletions

  19. Two families with isolated cat cry without the cri-du-chat syndrome phenotype have an inherited 5p15.3 deletion: Delineation of the larynx malformation region

    SciTech Connect

    Gersh, M.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Pasztor, L.M. [Children`s Mercy Hospital, Kansas City, MO (United States)] [and others

    1994-09-01

    The cri-du-chat syndrome is a contiguous gene syndrome that results from a deletion of the short arm of chromosome 5 (5p). Patients present with a cat-like cry at birth that is usually considered diagnostic of this syndrome. Additional features of the syndrome include failure to thrive, microcephaly, hypertelorism, epicanthal folds, hypotonia, and severe mental retardation. We report on two families in which the patients with 5p deletions have only the characteristic cat-like cry with normal to mildly delayed development. One family has three children with varying levels of developmental delay and a deletion of 5p15.3 that was inherited from the father. The second family has a mother and daughter both presenting with a cat-like cry and normal intelligence. A de novo deletion in a patient with isolated cat cry and mild developmental delay was also identified. The precise locations of the deletions in each family were determined by fluorescent in situ hybridization using lambda phage, cosmids, and YAC clones. Cryptic translocations and mosaicism were not detected in the parents transmitting the deletion. All of the deletion breakpoints map distal to the previously defined cri-du-chat critical region. A YAC contig has been constructed for the chromosomal region implicated in the larynx malformation. DNA clones mapping in this region will be useful diagnostic tools for delineating 5p deletions that result in the typical features of cri-du-chat syndrome with deletions that result in the isolated cat-like cry feature which is associated with a better prognosis.

  20. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome.

    PubMed

    Brooks, Samantha A; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F

    2010-04-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  1. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    PubMed Central

    Brooks, Samantha A.; Gabreski, Nicole; Miller, Donald; Brisbin, Abra; Brown, Helen E.; Streeter, Cassandra; Mezey, Jason; Cook, Deborah; Antczak, Douglas F.

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals. PMID:20419149

  2. Neonatal Lethal Costello Syndrome and Unusual Dinucleotide Deletion/Insertion Mutations in HRAS Predicting p.Gly12Val

    PubMed Central

    Burkitt-Wright, Emma MM; Bradley, Lisa; Shorto, Jennifer; McConnell, Vivienne PM; Gannon, Caroline; Firth, Helen V; Park, Soo-Mi; D'Amore, Angela; Munyard, Paul F; Turnpenny, Peter D; Charlton, Amanda; Wilson, Meredith; Kerr, Bronwyn

    2012-01-01

    De novo heterozygous mutations in HRAS cause Costello syndrome (CS), a condition with high mortality and morbidity in infancy and early childhood due to cardiac, respiratory, and muscular complications. HRAS mutations predicting p.Gly12Val, p.Gly12Asp, and p.Gly12Cys substitutions have been associated with severe, lethal, CS. We report on molecular, clinical, and pathological findings in patients with mutations predicting HRAS p.Gly12Val that were identified in our clinical molecular genetic testing service. Such mutations were identified in four patients. Remarkably, three were deletion/insertion mutations affecting coding nucleotides 35 and 36. All patients died within 6 postnatal weeks, providing further evidence that p.Gly12Val mutations predict a very poor prognosis. High birth weight, polyhydramnios (and premature birth), cardiac hypertrophy, respiratory distress, muscle weakness, and postnatal growth failure were present. Dysmorphism was subtle or non-specific, with edema, coarsened facial features, prominent forehead, depressed nasal bridge, anteverted nares, and low-set ears. Proximal upper limb shortening, a small bell-shaped chest, talipes, and fixed flexion deformities of the wrists were seen. Neonatal atrial arrhythmia, highly suggestive of CS, was also present in two patients. One patient had congenital alveolar dysplasia, and another, born after 36 weeks' gestation, bronchopulmonary dysplasia. A rapidly fatal disease course, and the difficulty of identifying subtle dysmorphism in neonates requiring intensive care, suggest that this condition remains under-recognized, and should enter the differential diagnosis for very sick infants with a range of clinical problems including cardiac hypertrophy and disordered pulmonary development. Clinical management should be informed by knowledge of the poor prognosis of this condition. © 2012 Wiley Periodicals, Inc. PMID:22495892

  3. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions

    PubMed Central

    Dubourg, C.; Bonnet-Brilhault, F.; Toutain, A.; Mignot, C.; Jacquette, A.; Dieux, A.; Gérard, M.; Beaumont-Epinette, M.-P.; Julia, S.; Isidor, B.; Rossi, M.; Odent, S.; Bendavid, C.; Barthélémy, C.; Verloes, A.; David, V.

    2014-01-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions. PMID:24715852

  4. Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

    PubMed

    Hoeft, Fumiko; Dai, Li; Haas, Brian W; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula; Korenberg, Julie R; Reiss, Allan L

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain. PMID:25105779

  5. Mapping Genetically Controlled Neural Circuits of Social Behavior and Visuo-Motor Integration by a Preliminary Examination of Atypical Deletions with Williams Syndrome

    PubMed Central

    Hoeft, Fumiko; Dai, Li; Haas, Brian W.; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain. PMID:25105779

  6. Detection of "deleted" mitochondrial genomes in cytochrome-c oxidase-deficient muscle fibers of a patient with Kearns-Sayre syndrome.

    PubMed Central

    Mita, S; Schmidt, B; Schon, E A; DiMauro, S; Bonilla, E

    1989-01-01

    Using in situ hybridization and immunocytochemistry, we studied a muscle biopsy sample from a patient with Kearns-Sayre syndrome (KSS) who had a deletion of mitochondrial DNA (mtDNA) and partial deficiency of cytochrome-c oxidase (COX; EC 1.9.3.1). We sought a relationship between COX deficiency and abnormalities of mtDNA at the single-fiber level. COX deficiency clearly correlated with a decrease of normal mtDNA and, conversely, deleted mtDNA was more abundant in COX-deficient fibers, especially ragged-red fibers. The distribution of mtRNA had a similar pattern, suggesting that deleted mtDNA is transcribed. Immunocytochemistry showed that the nuclear DNA-encoded subunit IV of COX was present but that the mtDNA-encoded subunit II was markedly diminished in COX-deficient ragged-red fibers. Because the mtDNA deletion in this patient did not comprise the gene encoding COX subunit II, COX deficiency may have resulted from lack of translation of mtRNA encoding all three mtDNA-encoded subunits of COX. Images PMID:2556715

  7. Deletion of a 760?kb region at 4p16 determines the prenatal and postnatal growth retardation characteristic of Wolf?Hirschhorn syndrome

    PubMed Central

    Concolino, Daniela; Rossi, Elena; Strisciuglio, Pietro; Iembo, Maria Antonietta; Giorda, Roberto; Ciccone, Roberto; Tenconi, Romano; Zuffardi, Orsetta

    2007-01-01

    Background Recently the genotype/phenotype map of Wolf?Hirschhorn syndrome (WHS) has been refined, using small 4p deletions covering or flanking the critical region in patients showing only some of the WHS malformations. Accordingly, prenatal?onset growth retardation and failure to thrive have been found to result from haploinsufficiency for a 4p gene located between 0.4 and 1.3?Mb, whereas microcephaly results from haploinsufficiency of at least two different 4p regions, one of 2.2–2.38?Mb and a second one of 1.9–1.28?Mb. Methods and Results We defined the deletion size of a ring chromosome (r(4)) in a girl with prenatal onset growth retardation, severe failure to thrive and true microcephaly but without the WHS facial gestalt and mental retardation. A high?resolution comparative genome hybridisation array revealed a 760?kb 4p terminal deletion. Conclusions This case, together with a familial 4p deletion involving the distal 400?kb reported in normal women, may narrow the critical region for short stature on 4p to 360–760?kb. This region is also likely to contain a gene for microcephaly. “In silico” analysis of all genes within the critical region failed to reveal any strikingly suggestive expression pattern; all genes remain candidates for short stature and microcephaly. PMID:17911656

  8. NF1 Microdeletion Syndrome: Refined FISH Characterization of Sporadic and Familial Deletions with Locus-Specific Probes

    PubMed Central

    Riva, Paola; Corrado, Lucia; Natacci, Federica; Castorina, Pierangela; Wu, Bai-Li; Schneider, Gretchen H.; Clementi, Maurizio; Tenconi, Romano; Korf, Bruce R.; Larizza, Lidia

    2000-01-01

    Summary Two familial and seven sporadic patients with neurofibromatosis 1—who showed dysmorphism, learning disabilities/mental retardation, and additional signs and carried deletions of the NF1 gene—were investigated by use of a two-step FISH approach to characterize the deletions. With FISH of YAC clones belonging to a 7-Mb 17q11.2 contig, we estimated the extension of all of the deletions and identified the genomic regions harboring the breakpoints. Mosaicism accounted for the mild phenotype in two patients. In subsequent FISH experiments, performed with locus-specific probes generated from the same YACs by means of a novel procedure, we identified the smallest region of overlapping (SRO), mapped the deletion breakpoints, and identified the genes that map to each deletion interval. From centromere to telomere, the ?0.8-Mb SRO includes sequence-tagged site 64381, the SUPT6H gene (encoding a transcription factor involved in chromatin structure), and NF1. Extending telomerically from the SRO, two additional genes—BLMH, encoding a hydrolase involved in bleomycin resistance, and ACCN1, encoding an amiloride-sensitive cation channel expressed in the CNS—were located in the deleted intervals of seven and three patients, respectively. An apparently common centromeric deletion breakpoint was shared by all of the patients, whereas a different telomeric breakpoint defined a deletion interval of 0.8–3 Mb. There was no apparent correlation between the extent of the deletion and the phenotype. This characterization of gross NF1 deletions provides the premise for addressing correctly any genotype-phenotype correlation in the subset of patients with NF1 deletions. PMID:10631140

  9. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    SciTech Connect

    Brown, T.R.; Lubahn, D.B.; Wilson, E.M.; Joseph, D.R.; French, F.S.; Migeon, C.J. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-11-01

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the most probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.

  10. Patient with dup(5)(q35.2-q35.3) reciprocal to the common Sotos syndrome deletion and review of the literature.

    PubMed

    Žilina, Olga; Reimand, Tiia; Tammur, Pille; Tillmann, Vallo; Kurg, Ants; Õunap, Katrin

    2013-04-01

    The recent implementation of array techniques in research and clinical practice has revealed the existence of recurrent reciprocal deletions and duplications in several genome loci. The most intriguing feature is that some reciprocal genomic events can result in opposite phenotypic outcome. One of such examples is 5q35.2-q35.3. Deletions in this locus lead to Sotos syndrome characterized by childhood overgrowth with advanced bone age, craniofacial dysmorphic features including macrocephaly, and learning difficulties; while duplications have been proposed to manifest in opposite phenotype related to growth. Here, we report a patient with 5q35.2-q35.3 duplication and compare her clinical phenotype with five previously described cases. Short stature since the birth, microcephaly, brachydactyly, delayed bone age, mild to moderate intellectual disability and mild facial dysmorphism seem to be characteristic features of 5q35.2-q35.3 duplication. PMID:23369838

  11. Clinical features and molecular analysis of the ? thalassemia/mental retardation syndromes. 1. Cases due to deletions involving chromosome band 16p13.3

    PubMed Central

    Wilkie, A. O. M.; Buckle, V. J.; Harris, P. C.; Lamb, J.; Barton, N. J.; Reeders, S. T.; Lindenbaum, R. H.; Nicholls, R. D.; Barrow, M.; Bethlenfalvay, N. C.; Hutz, M. H.; Tolmie, J. L.; Weatherall, D. J.; Higgs, D. R.

    1990-01-01

    We describe eight patients who have ? thalassemia which cannot be accounted for by the Mendelian inheritance of abnormal ? globin genes. Apart from the hematologic abnormality, the other universal clinical finding is mild to moderate mental handicap; there is also a broad spectrum of associated dysmorphic features. Initial analysis of the ? globin gene complex (which maps to chromosome band 16p13.3), demonstrated that the ? thalassemia results from failure of the patient to inherit an ? globin allele from one of the parents. Using a combined molecular and cytogenetic approach, we have extended this analysis to show that all of these patients have 16p deletions which are variable in extent but limited to the terminal band 16p13.3; in at least four cases the deletion results from unbalanced chromosome translocation, and hence aneuploidy of a second chromosome is also present. The relatively nonspecific clinical phenotype contrasts with the other currently known microdeletion syndromes; this may reflect ascertainment bias in the recognition of such syndromes. This work represents the first step in the characterization of a new microdeletion syndrome that is probably underdiagnosed at present. Imagesp[1116]-aFigure 1Figure 3Figure 5 PMID:2339704

  12. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    SciTech Connect

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. (Erasmus Univ., Rotterdam (Netherlands))

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  13. Molecular-cytogenetic detection of a deletion of 1p36.3.

    PubMed Central

    Giraudeau, F; Aubert, D; Young, I; Horsley, S; Knight, S; Kearney, L; Vergnaud, G; Flint, J

    1997-01-01

    We report a deletion of 1p36.3 in a child with microcephaly, mental retardation, broad forehead, deep set eyes, depressed nasal bridge, flat midface, relative prognathism, and abnormal ears. The phenotype is consistent with that described for partial monosomy for 1p36.3. Reverse chromosome painting and microsatellite and Southern blot analyses were used to map the extent of the deletion. Fluorescence in situ hybridisation (FISH) analysis using probes from every telomere indicates that the rearrangement is likely to be a chromosomal truncation or rearrangement involving subtelomeric repetitive DNA. The deletion was identified by screening a sample of children and adults with idiopathic mental retardation. In conjunction with previous work on this sample, we estimate that 7.4% of the group have subtelomeric rearrangements. Images PMID:9138156

  14. Self-Reported Speech Problems in Adolescents and Young Adults with 22q11.2 Deletion Syndrome: A Cross-Sectional Cohort Study

    PubMed Central

    Vorstman, Jacob AS; Kon, Moshe; Mink van der Molen, Aebele B

    2014-01-01

    Background Speech problems are a common clinical feature of the 22q11.2 deletion syndrome. The objectives of this study were to inventory the speech history and current self-reported speech rating of adolescents and young adults, and examine the possible variables influencing the current speech ratings, including cleft palate, surgery, speech and language therapy, intelligence quotient, and age at assessment. Methods In this cross-sectional cohort study, 50 adolescents and young adults with the 22q11.2 deletion syndrome (ages, 12-26 years, 67% female) filled out questionnaires. A neuropsychologist administered an age-appropriate intelligence quotient test. The demographics, histories, and intelligence of patients with normal speech (speech rating=1) were compared to those of patients with different speech (speech rating>1). Results Of the 50 patients, a minority (26%) had a cleft palate, nearly half (46%) underwent a pharyngoplasty, and all (100%) had speech and language therapy. Poorer speech ratings were correlated with more years of speech and language therapy (Spearman's correlation= 0.418, P=0.004; 95% confidence interval, 0.145-0.632). Only 34% had normal speech ratings. The groups with normal and different speech were not significantly different with respect to the demographic variables; a history of cleft palate, surgery, or speech and language therapy; and the intelligence quotient. Conclusions All adolescents and young adults with the 22q11.2 deletion syndrome had undergone speech and language therapy, and nearly half of them underwent pharyngoplasty. Only 34% attained normal speech ratings. Those with poorer speech ratings had speech and language therapy for more years. PMID:25276637

  15. The 30-Amino-Acid Deletion in the Nsp2 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China Is Not Related to Its Virulence?

    PubMed Central

    Zhou, Lei; Zhang, Jialong; Zeng, Jingwen; Yin, Shuoyan; Li, Yanhua; Zheng, Linying; Guo, Xin; Ge, Xinna; Yang, Hanchun

    2009-01-01

    During the past 2 years, an atypical clinical outbreak, caused by a highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) with a unique 30-amino-acid deletion in its Nsp2-coding region, was pandemic in China. In this study, we generated four full-length infectious cDNA clones: a clone of the highly virulent PRRSV strain JXwn06 (pWSK-JXwn), a clone of the low-virulence PRRSV strain HB-1/3.9 (pWSK-HB-1/3.9), a chimeric clone in which the Nsp2 region containing the 30-amino-acid deletion was replaced by the corresponding region of the low-virulence PRRSV strain HB-1/3.9 (pWSK-JXwn-HB1nsp2), and a mutated HB-1/3.9 clone with the same deletion in Nsp2 as JXwn06 (pWSK-HB1-ND30). We also investigated the pathogenicities of the rescued viruses (designated RvJXwn, RvJXwn-HB1nsp2, RvHB-1/3.9, and RvHB1-ND30, respectively) in specific-pathogen-free piglets in order to determine the role of the 30-amino-acid deletion in the virulence of the highly pathogenic PRRSV. All the rescued viruses could replicate stably in MARC-145 cells. Our findings indicated that RvJXwn-HB1nsp2 retained high virulence for piglets, like RvJXwn and the parental virus JXwn06, although the survival time of piglets infected with RvJXwn-HB1nsp2 was obviously prolonged. RvHB1-ND30 exhibited low virulence for piglets, like RvHB-1/3.9 and the parental virus HB-1/3.9. Therefore, we conclude that the 30-amino-acid deletion is not related to the virulence of the highly pathogenic PRRSV emerging in China. PMID:19244318

  16. High frequency of mosaic CREBBP deletions in Rubinstein-Taybi syndrome patients and mapping of somatic and germ-line breakpoints.

    PubMed

    Gervasini, Cristina; Castronovo, Paola; Bentivegna, Angela; Mottadelli, Federica; Faravelli, Francesca; Giovannucci-Uzielli, Maria Luisa; Pessagno, Alice; Lucci-Cordisco, Emanuela; Pinto, Anna Maria; Salviati, Leonardo; Selicorni, Angelo; Tenconi, Romano; Neri, Giovanni; Larizza, Lidia

    2007-11-01

    Rubinstein-Taybi syndrome (RSTS) is a rare malformation disorder caused by mutations in the closely related CREBBP and EP300 genes, accounting respectively for up to 60 and 3% of cases. About 10% of CREBBP mutations are whole gene deletions often extending into flanking regions. Using FISH and microsatellite analyses as a first step in the CREBBP mutation screening of 42 Italian RSTS patients, we identified six deletions, three of which were in a mosaic condition that has not been previously reported in RSTS. The use of region-specific BAC clones and small CREBBP probes allowed us to assess the extent of all of the deletions by mapping their endpoints to genomic intervals of 5-10 kb. Four of our five intragenic breakpoints cluster at the 5' end of CREBBP, where there is a peak of breakpoints underlying rearrangements in RSTS patients and tumors. The search for genomic motifs did not reveal any low-copy repeats (LCRs) or any greater density of repetitive sequences. In contrast, the percentage of interspersed repetitive elements (mainly Alu and LINEs in the CREBBP exon 2 region) is significantly higher than that in the entire gene or the average in the genome, thus suggesting that this characteristic may be involved in the region's vulnerability to breaking and nonhomologous pairing. The FISH analysis extended to the EP300 genomic region did not reveal any deletions. The clinical presentation was typical in all cases, but more severe in the three patients carrying constitutional deletions, raising a question about the possible underdiagnosis of a few cases of mild RSTS. PMID:17855048

  17. Prospective Control Abilities during Visuo-Manual Tracking in Children with 22q11.2 Deletion Syndrome Compared to Age- and IQ-Matched Controls

    ERIC Educational Resources Information Center

    Van Aken, Katrijn; Swillen, Ann; Beirinckx, Marc; Janssens, Luc; Caeyenberghs, Karen; Smits-Engelsman, Bouwien

    2010-01-01

    To examine whether children with a 22q11.2 Deletion syndrome (22q11.2DS) are able to use prospective control, 21 children with 22q11.2DS (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.05 [plus or minus] 10.2) and 21 control children (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.38 [plus or minus] 12.0) were asked to perform a visuo-manual…

  18. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  19. CCR2 Gene Deletion and Pharmacologic Blockade Ameliorate a Severe Murine Experimental Autoimmune Neuritis Model of Guillain-Barré Syndrome

    PubMed Central

    Yuan, Furong; Yosef, Nejla; Lakshmana Reddy, Chetan; Huang, Ailing; Chiang, Sharon C.; Tithi, Hafiza Rahman; Ubogu, Eroboghene E.

    2014-01-01

    The molecular determinants and signaling pathways responsible for hematogenous leukocyte trafficking during peripheral neuroinflammation are incompletely elucidated. Chemokine ligand/receptor pair CCL2/CCR2 has been pathogenically implicated in the acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barré syndrome (GBS). We evaluated the role of CCR2 in peripheral neuroinflammation utilizing a severe murine experimental autoimmune neuritis (sm-EAN) model. Sm-EAN was induced in 8–12 week old female SJL CCR2 knockout (CCR2KO), heterozygote (CCR2HT) and wild type (CCR2WT) mice, and daily neuromuscular severity scores and weights recorded. In vitro and in vivo splenocyte proliferation and cytokine expression assays, and sciatic nerve Toll-like receptor (TLR) 2, TLR4 and CCL2 expression assays were performed to evaluate systemic and local innate immune activation at disease onset. Motor nerve electrophysiology and sciatic nerve histology were also performed to characterize the inflammatory neuropathy at expected peak severity. To further determine the functional relevance of CCR2 in sm-EAN, 20 mg/kg CCR2 antagonist, RS 102895 was administered daily for 5 days to a cohort of CCR2WT mice following sm-EAN disease onset, with efficacy compared to 400 mg/kg human intravenous immunoglobulin (IVIg). CCR2KO mice were relatively resistant to sm-EAN compared to CCR2WT and CCR2HT mice, associated with attenuated peripheral nerve demyelinating neuritis. Partial CCR2 gene deletion did not confer any protection against sm-EAN. CCR2KO mice demonstrated similar splenocyte activation or proliferation profiles, as well as TLR2, TLR4 and CCL2 expression to CCR2WT or CCR2HT mice, implying a direct role for CCR2 in sm-EAN pathogenesis. CCR2 signaling blockade resulted in rapid, near complete recovery from sm-EAN following disease onset. RS 102895 was significantly more efficacious than IVIg. CCR2 mediates pathogenic hematogenous monocyte trafficking into peripheral nerves, with consequential demyelination in sm-EAN. CCR2 is amenable to pharmacologic blockade, making it a plausible drug target for GBS. PMID:24632828

  20. A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome.

    PubMed

    Hooper, Stephen R; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S; Allen, Andrew; Shashi, Vandana

    2013-05-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental changes that occur in the early teen years, prior to the age of highest psychosis risk. Data were collected from 71 participants (42 subjects with 22q11DS and 29 control subjects) at Time 1 (T1) and Time 2 (T2), approximately 3.5 years later. The 22q11DS group was significantly lower functioning than controls on IQ, neurocognition, and academic achievement at both T1 and T2. Children with 22q11DS also showed significantly greater social-behavioral difficulties and psychiatric symptoms, and were more likely to meet criteria for psychiatric disorders at both time points. In evaluating change over time from T1 to T2, the 22q11DS group did not show significant changes in psychoeducational or psychiatric outcomes relative to the controls, however, lack of expected age-related gains in attention regulation were noted. Within the 22q11DS group, an increase in the Attenuated Prodrome for Schizophrenia (number of psychiatric symptoms) was noted from T1 to T2 and four children with 22q11DS met criteria for Psychosis for the first time. Predictors at T1 that uncovered psychopathology symptoms at T2 included full-scale IQ, externalizing symptoms, and problem social behaviors. Overall, younger adolescent and preadolescent children with 22q11DS in this study exhibited slowed growth in attention regulation, with an increase in subclinical symptoms of schizophrenia, suggestive of increasing impairments in domains that are relevant to the high risk of Schizophrenia. Early predictors of later psychopathology included both cognitive and behavioral abnormalities. These findings begin to elucidate the trajectory of changes in psychopathology in children with 22q11DS in the years leading up to the onset of major psychiatric illnesses. PMID:23506790

  1. Interstitial deletions are not the main mechanism leading to 18q deletions

    SciTech Connect

    Strathdee, G.; Harrison, W.; Goodart, S.A.; Overhauser, J. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Riethman, H.C. (Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States))

    1994-06-01

    Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions. 30 refs., 3 figs.

  2. A submicroscopic unbalanced subtelomeric translocation t(2p;10q) identified by fluorescence in situ hybridization: fetus with increased nuchal translucency and normal standard karyotype with later growth and developmental delay, rhombencephalosynapsis (RES).

    PubMed

    Lespinasse, J; Testard, H; Nugues, F; Till, M; Cordier, M P; Althuser, M; Amblard, F; Fert-Ferrer, S; Durand, C; Dalmon, F; Pourcel, C; Jouk, P S

    2004-01-01

    Reaching an accurate diagnosis in children with mental retardation associated or not with dysmorphic signs is important to make precise diagnosis of a syndrome and for genetic counseling. A female case with severe growth and development delay, dysmorphic features and feeding disorder is presented. Antenataly, the fetus was observed to have increased nuchal translucency and a slight hypoplastic cerebellum. A standard karyotype was normal. RES and a submicroscopic unbalanced subtelomeric translocation t(2p; 10q) were demonstrated after birth. We show that within the framework of a collaborative approach, a concerted research of submicroscopic subtelomeric rearrangements should be performed in case of mental retardation associated with facial dysmorphic features, and when other etiologies or non-genetic factors (iatrogenic, toxic, infectious, metabolic...) have been ruled out. PMID:15581840

  3. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype

    SciTech Connect

    Estabrooks, L.L.; Lamb, A.N.; Kirkman, H.N.; Callanan, N.P.; Rao, K.W. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1992-11-01

    The authors report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. The families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. The authors speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype. 36 refs., 4 figs., 3 tabs.

  4. A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection

    PubMed Central

    Deng, Zhong; Wang, Zhuo; Stong, Nick; Plasschaert, Robert; Moczan, Aliah; Chen, Horng-Shen; Hu, Sufeng; Wikramasinghe, Priyankara; Davuluri, Ramana V; Bartolomei, Marisa S; Riethman, Harold; Lieberman, Paul M

    2012-01-01

    The contribution of human subtelomeric DNA and chromatin organization to telomere integrity and chromosome end protection is not yet understood in molecular detail. Here, we show by ChIP-Seq that most human subtelomeres contain a CTCF- and cohesin-binding site within ?1–2?kb of the TTAGGG repeat tract and adjacent to a CpG-islands implicated in TERRA transcription control. ChIP-Seq also revealed that RNA polymerase II (RNAPII) was enriched at sites adjacent to the CTCF sites and extending towards the telomere repeat tracts. Mutation of CTCF-binding sites in plasmid-borne promoters reduced transcriptional activity in an orientation-dependent manner. Depletion of CTCF by shRNA led to a decrease in TERRA transcription, and a loss of cohesin and RNAPII binding to the subtelomeres. Depletion of either CTCF or cohesin subunit Rad21 caused telomere-induced DNA damage foci (TIF) formation, and destabilized TRF1 and TRF2 binding to the TTAGGG proximal subtelomere DNA. These findings indicate that CTCF and cohesin are integral components of most human subtelomeres, and important for the regulation of TERRA transcription and telomere end protection. PMID:23010778

  5. Report of two patients and further characterization of interstitial 9p13 deletion--a rare but recurrent microdeletion syndrome?

    PubMed

    Niemi, Anna-Kaisa; Kwan, Andrea; Hudgins, Louanne; Cherry, Athena M; Manning, Melanie A

    2012-09-01

    To date, an interstitial deletion of 9p13 has been described only two times in the medical literature. These reports were based on routine chromosomal analysis. We report on two additional patients with an interstitial deletion of 9p13 further defined on array CGH who share clinical features with the other two patients previously described. Our first patient is a 16-year-old girl with a 5.9?Mb deletion at 9p13.3-9p13.1, initially detected on routine karyotype analysis and further characterized on array CGH. Our second patient is a 7½-year-old boy with a 4.8?Mb deletion also at 9p13.3-9p13.1. Patients with 9p13 deletion appear to have mild to moderate developmental delay, social and interactive personality, behavior issues such as attention deficit-hyperactivity disorder, short stature, prominent antihelices, hypoplastic nails, and precocious/early puberty. Our 16-year-old patient is the oldest patient described thus far. This report further characterizes this condition and helps to delineate the long-term prognosis in these patients. PMID:22887577

  6. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

    PubMed Central

    Jalbrzikowski, Maria; Lazaro, Maria T.; Gao, Fuying; Huang, Alden; Chow, Carolyn; Geschwind, Daniel H.

    2015-01-01

    Background 22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes. Methods We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE) and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases. Results Eighty-five percent of 22q11DS individuals (N = 39) carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7). DE analysis and weighted gene co-expression network analysis (WGCNA) identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD. Conclusion These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD. PMID:26201030

  7. TBX1 Mutation Identified by Exome Sequencing in a Japanese Family with 22q11.2 Deletion Syndrome-Like Craniofacial Features and Hypocalcemia

    PubMed Central

    Kawai, Masahiko; Nagashima, Takeshi; Funayama, Ryo; Nakayama, Keiko; Nakashima, Shinichi; Kato, Fumiko; Fukami, Maki; Aoki, Yoko; Matsubara, Yoichi

    2014-01-01

    Background Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS)-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. Methodology/Principal Findings We studied three subjects with craniofacial features and hypocalcemia (group 1), two subjects with craniofacial features alone (group 2), and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459) specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. Conclusions/Significance Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes. PMID:24637876

  8. Longitudinal Follow-up of Autism Spectrum Features and Sensory Behaviors in Angelman Syndrome by Deletion Class

    ERIC Educational Resources Information Center

    Peters, Sarika U.; Horowitz, Lucia; Barbieri-Welge, Rene; Taylor, Julie Lounds; Hundley, Rachel J.

    2012-01-01

    Background: Angelman syndrome (AS) is a neurogenetic disorder characterized by severe intellectual disability, lack of speech, and low threshold for laughter; it is considered a "syndromic" form of autism spectrum disorder (ASD). Previous studies have indicated overlap of ASD and AS, primarily in individuals with larger (approximately 6 Mb) Class…

  9. A Prospective Cross-Sectional Study of Speech in Patients with the 22q11 Deletion Syndrome.

    ERIC Educational Resources Information Center

    Persson, Christina; Lohmander, Anette; Jonsson, Radi; Oskarsdottir, Solveig; Soderpalm, Ewa

    2003-01-01

    A study investigated a consecutive series of 65 participants (ages 3-33) with a confirmed 22q11.2 deletion, to ascertain the frequency and severity of articulation difficulties, velopharyngeal impairment (VPI), and intelligibility. The majority had VPI; over half to such a degree that surgery had been performed or was considered necessary.…

  10. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    PubMed

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ?2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism. PMID:25195018

  11. Exonic Deletions in AUTS2 Cause a Syndromic Form of Intellectual Disability and Suggest a Critical Role for the C Terminus

    PubMed Central

    Beunders, Gea; Voorhoeve, Els; Golzio, Christelle; Pardo, Luba M.; Rosenfeld, Jill A.; Talkowski, Michael E.; Simonic, Ingrid; Lionel, Anath C.; Vergult, Sarah; Pyatt, Robert E.; van de Kamp, Jiddeke; Nieuwint, Aggie; Weiss, Marjan M.; Rizzu, Patrizia; Verwer, Lucilla E.N.I.; van Spaendonk, Rosalina M.L.; Shen, Yiping; Wu, Bai-lin; Yu, Tingting; Yu, Yongguo; Chiang, Colby; Gusella, James F.; Lindgren, Amelia M.; Morton, Cynthia C.; van Binsbergen, Ellen; Bulk, Saskia; van Rossem, Els; Vanakker, Olivier; Armstrong, Ruth; Park, Soo-Mi; Greenhalgh, Lynn; Maye, Una; Neill, Nicholas J.; Abbott, Kristin M.; Sell, Susan; Ladda, Roger; Farber, Darren M.; Bader, Patricia I.; Cushing, Tom; Drautz, Joanne M.; Konczal, Laura; Nash, Patricia; de Los Reyes, Emily; Carter, Melissa T.; Hopkins, Elizabeth; Marshall, Christian R.; Osborne, Lucy R.; Gripp, Karen W.; Thrush, Devon Lamb; Hashimoto, Sayaka; Gastier-Foster, Julie M.; Astbury, Caroline; Ylstra, Bauke; Meijers-Heijboer, Hanne; Posthuma, Danielle; Menten, Björn; Mortier, Geert; Scherer, Stephen W.; Eichler, Evan E.; Girirajan, Santhosh; Katsanis, Nicholas; Groffen, Alexander J.; Sistermans, Erik A.

    2013-01-01

    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3? AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future. PMID:23332918

  12. The 18q syndrome: analysis of chromosomes by bivariate flow karyotyping and the PCR reveals a successive set of deletion breakpoints within 18q21.2-q22.2.

    SciTech Connect

    Silverman, G.A.; Schneider, S.S.; Flint, A.; Lalande, M. [Harvard Medical School, Boston, MA (United States); Massa, H.F.; Engh, G. van den; Trask, B.J. [Univ. of Washington, Seattle, WA (United States); Leonard, J.C. [Coriell Institute for Medical Research, Camden, NJ (United States); Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States)

    1995-04-01

    The 18q- syndrome is one of several terminal deletion disorders that occur in humans. Previous G-banding studies suggest that the loss of a critical band, 18q21.3, results in mental retardation, craniofacial anomalies, and metabolic defects. However, it is difficult to reconcile the consistent loss of a single region with the large variability in clinical phenotype. The purpose of this study was to reassess the extent of chromosomal loss in a cohort of 17 18q- syndrome patients by using fluorescent-activated chromosome sorting, PCR, and FISH. Bivariate flow karyotypes revealed heterogeneity among the deletions; they ranged in size from 9 to 26 Mb. To confirm this heterogeneity at a molecular level, deleted and normal chromosomes 18 of six patients were collected by flow sorting, preamplified by random priming, and assayed for marker content by the PCR. This analysis defined five unique breakpoints among the six patients. We conclude that the terminal deletions in the 18q-syndrome occur over a broad region spanning the interval from 18q21.2 to 18q22.2. Our results suggest that the variability in clinical phenotype may be more representative of a contiguous-gene syndrome with a baseline deficit of 18q22.2-qter than of the loss of a single critical region within 18q21.3. 49 refs., 6 figs., 2 tabs.

  13. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome.

    PubMed

    Sagie, Shira; Ellran, Erika; Katzir, Hagar; Shaked, Rony; Yehezkel, Shiran; Laevsky, Ilana; Ghanayim, Alaa; Geiger, Dan; Tzukerman, Maty; Selig, Sara

    2014-07-15

    Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome. PMID:24549038

  14. Discrepancies in Parent and Teacher Ratings of Social-Behavioral Functioning of Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Assessment

    PubMed Central

    Wray, E; Shashi, V; Schoch, K; Curtiss, K; Hooper, SR

    2014-01-01

    Children with 22q11.2 deletion syndrome exhibit high rates of social-behavioral problems, creating an area in need of intervention. This study obtained parent and teacher ratings on the CBCL/TRF of 67 children with 22q11DS and 57 controls. Results indicated significant differences in social-behavioral functioning of children with 22q11DS compared to controls, depending on rater type. Parents reported greater internalizing, withdrawal, and social problems in children with 22q11DS while teachers perceived few differences between groups. Correlational analyses indicated weak concordance between parent and teacher reports, with no significant correlations on three summary scales. The findings support the use of multiple informants when evaluating the social-behavioral functioning of children with 22q11DS, and suggest that interpretations based on one informant/setting should be made cautiously. PMID:24245728

  15. The distal 8p deletion (8)(p23.1): A common syndrome associated with cogenital heart defect and mental retardation?

    SciTech Connect

    Wu, B.L.; Schneider, G.H.; Sabatino, D.E. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    We describe the clinical manifestations and molecular cytogenetic analysis of three patients with a similar distal deletion: del(8)(p23.1). Case 1: A nine-year-old girl who was the product of a normal pregnancy, with family history of recurrent miscarriages. She has an ASD, development delay and dysmorphic features. Case 2: A three-month-old female who died with a hypoplastic left heart and dysmorphic features. Her non-identical twin sister is healthy. No further family history is available. Case 3: A four-year-old boy who was the product of a normal pregnancy with family history of mental retardation. He has bifid uvula, delayed speech and language, and no major malformations or dysmorphic features. High resolution G and R banding revealed in all three patients del(8)(p23.1), but the breakpoint for case 1 and 2 was proximal to 8p23.1 and for case 3 distal to 8p23.1. FISH studies with a chromosome 8 paint probe confirmed that no other rearrangement was involved. Chromosome analysis of the parents of case 3 and mother of case 1 were normal; the remaining parents were not available for study. Eight individual patients and three members in one family with del(8)(p23.1) have been reported in the past five years. Major congenital anomalies, especially congenital heart defect, is most often associated with a breakpoint proximal to 8p23.1 Three patients were detected within a three year period in this study and five cases were found within a four year period by another group, suggesting that the distal 8p deletion may be a relatively common syndrome. This small deletion is easily overlooked (i.e. case 1 and 3 were reported as normal at amniocentesis) and can be associated with few or no major congenital anomalies.

  16. A subject with a novel type I bare lymphocyte syndrome has tapasin deficiency due to deletion of 4 exons by Alu-mediated recombination.

    PubMed

    Yabe, Toshio; Kawamura, Sumiyo; Sato, Masako; Kashiwase, Koichi; Tanaka, Hidenori; Ishikawa, Yoshihide; Asao, Yoji; Oyama, Junko; Tsuruta, Kazuma; Tokunaga, Katsushi; Tadokoro, Kenji; Juji, Takeo

    2002-08-15

    HLA class I expression depends on the formation of a peptide-loading complex composed of class I heavy chain; beta(2)-microglobulin; the transporter associated with antigen processing (TAP); and tapasin, which links TAP to the heavy chain. Defects in TAP result in a class I deficiency called the type I bare lymphocyte syndrome (BLS). In the present study, we examined a subject with a novel type I BLS who does not exhibit apparent TAP abnormalities but who has a tapasin defect. The subject's TAPASIN gene has a 7.4-kilobase deletion between introns 3 and 7; an Alu repeat-mediated unequal homologous recombination may be the cause of the deletion. No tapasin polypeptide was detected in the subject's cells. The cell surface class I expression level in tapasin-deficient cells was markedly reduced but the reduction was not as profound as in TAP-deficient cells. These results suggest that tapasin deficiency is another cause of type I BLS. PMID:12149238

  17. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome

    PubMed Central

    Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.

    2014-01-01

    The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875

  18. Myelodysplastic syndrome with 5q deletion following IgM monoclonal gammopathy, showing gene mutation MYD88 L265P.

    PubMed

    Zagaria, Antonella; Coccaro, Nicoletta; Tota, Giuseppina; Anelli, Luisa; Minervini, Angela; Casieri, Paola; Cellamare, Angelo; Minervini, Crescenzio Francesco; Brunetti, Claudia; Ricco, Alessandra; Orsini, Paola; Cumbo, Cosimo; Specchia, Giorgina; Albano, Francesco

    2015-01-01

    Patients affected by monoclonal gammopathy of undetermined significance (MGUS) very rarely develop a myelodysplastic syndrome (MDS). However, it was also demonstrated that MGUS patients had a significantly increased risk of developing MDS compared to the general population. We report a case of 5q-syndrome following a MGUS IgMk with mutation of MYD88 L256P. To our knowledge, this is the first case of del(5q) MDS following MGUS IgMk with the MYD88 L256P mutation in which there is coexistence of the markers of the two clonal diseases, but as an expression of distinct pathological features. PMID:25159121

  19. Deletion 17p11.2 (Smith-Magenis syndrome) is relatively common among patients having mental retardation and myopia

    Microsoft Academic Search

    B. Finucane; E. R. Jaeger; S. K. Freitag

    1994-01-01

    We recently reported the finding of moderate to severe myopia in 6 of 10 patients with Smith-Magenis syndrome (SMS). To investigate the prevalence of SMS among mentally retarded people having myopia, we surveyed a cohort of patients residing at a facility for individuals with mental retardation (MR). Of 547 institutionalized individuals with MR, 72 (13.2%) had moderate to high myopia

  20. Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    Microsoft Academic Search

    Samantha A. Brooks; Nicole Gabreski; Donald Miller; Abra Brisbin; Helen E. Brown; Cassandra Streeter; Jason Mezey; Deborah Cook; Douglas F. Antczak

    2010-01-01

    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the

  1. Association between angiotensin I-converting enzyme gene insertion\\/deletion polymorphism and mitral valve prolapse syndrome

    Microsoft Academic Search

    Hsiang-Tai Chou; Yng-Tay Chen; Yi-Ru Shi; Fuu-Jen Tsai

    2003-01-01

    Background Some studies have reported that patients with mitral valve prolapse syndrome (MVPS) also have a disorder in the autonomic or neuroendocrine function, which can cause a host of related symptoms. A potential role of the renin-angiotensin system in the pathogenesis of MVPS has been addressed. However, the role of angiotensin I-converting enzyme (ACE) genetic variant in MVPS has not

  2. Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion.

    PubMed

    Neubert, Gerda; von Au, Katja; Drossel, Katrin; Tzschach, Andreas; Horn, Denise; Nickel, Renate; Kaindl, Angela M

    2013-01-10

    Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11-q13 (about 70-90%), but can also be caused by paternal uniparental disomy of chromosome 15q11-q13 (3-7%), an imprinting defect (2-4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5Mb-deletion of chromosome 15q11.2-q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~364kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2-q13.1 deletion contains genes critical for Prader-Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point. PMID:23124039

  3. De novo 7p partial trisomy characterized by subtelomeric FISH and whole-genome array in a girl with mental retardation

    PubMed Central

    2011-01-01

    Chromosome rearrangements involving telomeres have been established as one of the major causes of idiopathic mental retardation/developmental delay. This case of 7p partial trisomy syndrome in a 3-year-old female child presenting with developmental delay emphasizes the clinical relevance of cytogenetic diagnosis in the better management of genetic disorders. Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19. Whole-genome cytogenetic microarray-based analysis showed a mosaic 3.5 Mb gain at Xq21.1 besides the approximately 24.5 Mb gain corresponding to 7p15.3- > pter. The possible mechanisms of origin of the chromosomal rearrangement and the clinical relevance of trisomy for the genes lying in the critical regions are discussed. PMID:21968244

  4. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2

    Microsoft Academic Search

    Rumiko Matsuoka; Atsuyoshi Takao; Misa Kimura; Chisato Kondo; Masahiko Ando; Kazuo Momma; Shin-ichiro Imamura; Kunitaka Joh-o; Kazuo Ikeda; Makoto Nishibatake

    1994-01-01

    The so-called {open_quotes}conotruncal anomaly face syndrome{close_quotes} (CTAFS) is characterized by a peculiar facial appearance associated with congenital heart disease (CHD), especially cardiac outflow tract defects such as tetralogy of Fallot (TOF), double outlet ring ventricle (DORV), and truncus arteriosus (TAC). CTAFS and the DiGeorge anomaly (DGA) have many similar phenotypic characteristics, suggesting that they share a common cause. In many

  5. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S. [South Texas Genetics Center, San Antonio, TX (United States)

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  6. Large de novo deletion of 7p15.1 to 7p12.1 involving the imprinted gene GRB10 associated with a complex phenotype including features of Beckwith Wiedemann syndrome.

    PubMed

    Naik, Swati; Riordan-Eva, Elliott; Thomas, N Simon; Poole, Rebecca; Ashton, Mark; Crolla, John A; Temple, I Karen

    2011-01-01

    We present an infant with a de novo cytogenetically visible interstitial deletion of approximately 21.9Mb involving chromosome bands 7p15.1-7p12.1, with the loss of 119 genes confirmed by array CGH. The infant had a ventricular septal defect, hand and skull anomalies, and hyperglycaemia compatible with haploinsufficiency of TBX20, GLI3, and GCK genes, respectively. In addition, the infant had some features reminiscent of Beckwith Wiedemann syndrome including macroglossia, umbilical hernia, and a relatively large birth weight and we speculate that this is due to the deletion of GRB10, an imprinted gene on chromosome 7. This report illustrates how knowledge of genes within a deleted interval facilitates optimal medical management, can explain observed phenotypes, and stimulates research questions. PMID:20933618

  7. The effect of hypocalcemia in early childhood on autism-related social and communication skills in patients with 22q11 deletion syndrome.

    PubMed

    Muldoon, Meghan; Ousley, Opal Y; Kobrynski, Lisa J; Patel, Sheena; Oster, Matthew E; Fernandez-Carriba, Samuel; Cubells, Joseph F; Coleman, Karlene; Pearce, Bradley D

    2014-09-30

    22q11 deletion syndrome (22qDS), also known as DiGeorge syndrome, is a copy number variant disorder that has a diverse clinical presentation including hypocalcaemia, learning disabilities, and psychiatric disorders. Many patients with 22q11DS present with signs that overlap with autism spectrum disorder (ASD) yet the possible physiological mechanisms that link 22q11DS with ASD are unknown. We hypothesized that early childhood hypocalcemia influences the neurobehavioral phenotype of 22q11DS. Drawing on a longitudinal cohort of 22q11DS patients, we abstracted albumin-adjusted serum calcium levels from 151 participants ranging in age from newborn to 19.5 years (mean 2.5 years). We then examined a subset of 20 infants and toddlers from this group for the association between the lowest calcium level on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC). The mean (SD) age at calcium testing was 6.2 (8.5) months, whereas the mean (SD) age at the CSBS-DP ITC assessment was 14.7 (3.8) months. Lower calcium was associated with significantly greater impairment in the CSBS-DP ITC Social (p < 0.05), Speech (p < 0.01), and Symbolic domains (p < 0.05), in regression models adjusted for sex, age at blood draw, and age at the psychological assessment. Nevertheless, these findings are limited by the small sample size of children with combined data on calcium and CSBS-DP ITC, and hence will require replication in a larger cohort with longitudinal assessments. Considering the role of calcium regulation in neurodevelopment and neuroplasticity, low calcium during early brain development could be a risk factor for adverse neurobehavioral outcomes. PMID:25267002

  8. Functional analysis of candidate genes in 2q13 deletion syndrome implicates FBLN7 and TMEM87B deficiency in congenital heart defects and FBLN7 in craniofacial malformations.

    PubMed

    Russell, Mark W; Raeker, Maide O; Geisler, Sarah B; Thomas, Peedikayil E; Simmons, Tracy A; Bernat, John A; Thorsson, Thor; Innis, Jeffrey W

    2014-08-15

    Recurrent 2q13 deletion syndrome is associated with incompletely penetrant severe cardiac defects and craniofacial anomalies. We used an atypical, overlapping 1.34 Mb 2q13 deletion in a patient with pathogenically similar congenital heart defects (CHD) to narrow the putative critical region for CHD to 474 kb containing six genes. To determine which of these genes is responsible for severe cardiac and craniofacial defects noted in the patients with the deletions, we used zebrafish morpholino knockdown to test the function of each orthologue during zebrafish development. Morpholino-antisense-mediated depletion of fibulin-7B, a zebrafish orthologue of fibulin-7 (FBLN7), resulted in cardiac hypoplasia, deficient craniofacial cartilage deposition and impaired branchial arch development. TMEM87B depletion likewise resulted in cardiac hypoplasia but with preserved branchial arch development. Depletion of both fibulin-7B and TMEM87B resulted in more severe defects of cardiac development, suggesting that their concurrent loss may enhance the risk of a severe cardiac defect. We postulate that heterozygous loss of FBLN7 and TMEM87B account for some of the clinical features, including cardiac defects and craniofacial abnormalities associated with 2q13 deletion syndrome. PMID:24694933

  9. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams–Beuren syndrome neurocognitive profile

    Microsoft Academic Search

    A. Antonell; M. Del Campo; L. F. Magano; L. Kaufmann; J. Martinez de la Iglesia; F. Gallastegui; R. Flores; U. Schweigmann; C. Fauth; D. Kotzot; L. A. Perez-Jurado

    2010-01-01

    BackgroundWilliams–Beuren syndrome (WBS) is a developmental disorder with multisystemic manifestations mainly characterised by vascular stenoses, distinctive craniofacial features, mental retardation with a characteristic neurocognitive profile, and some endocrine and connective tissue abnormalities, caused by a recurrent deletion of 1.55 Mb including 26–28 genes at chromosomal region 7q11.23. The analysis of clinical–molecular correlations in a few reported atypical patients has been

  10. Simultaneous Copy Number Losses within Multiple Subtelomeric Regions in Early-Onset Type2 Diabetes Mellitus

    PubMed Central

    Kodama, Shinjiro; Yamada, Tetsuya; Imai, Junta; Sawada, Shojiro; Takahashi, Kei; Tsukita, Sohei; Kaneko, Keizo; Uno, Kenji; Ishigaki, Yasushi; Oka, Yoshitomo; Katagiri, Hideki

    2014-01-01

    Genetic factors play very important roles in the onset and progression of type 2 diabetes mellitus (T2DM). However, the genetic factors correlating with T2DM onset have not as yet been fully clarified. We previously found that copy number losses in the subtelomeric region on chromosome 4p16.3 were detected in early-onset Japanese T2DM patients (onset age <35 years) at a high frequency. Herein, we additionally found two novel copy number losses within the subtelomeric regions on chromosomes 16q24.2-3 and 22q13.31-33, which have significant associations with early-onset Japanese T2DM. The associations were statistically significant by Fisher's exact tests with P values of 5.19×10?3 and 1.81×10?3 and odds ratios of 5.7 and 4.4 for 16q24.2-3 and 22q13.31-33, respectively. Furthermore, copy number variation (CNV) analysis of the whole genome using the CNV BeadChip system verified simultaneous copy number losses in all three subtelomeric regions in 11 of our 100 T2DM subjects, while none of 100 non-diabetic controls showed the copy number losses in all three regions. Our results suggest that the mechanism underlying induction of CNVs is involved in the pathogenesis of early-onset T2DM. Thus, copy number losses within multiple subtelomeric regions are strongly associated with early-onset T2DM and examination of simultaneous CNVs in these three regions may lead to the development of an accurate and selective procedure for detecting genetic susceptibility to T2DM. PMID:24709989

  11. Mapping of the human P84 gene to the subtelomeric region of chromosome 20p

    Microsoft Academic Search

    Chad Eckert; Shari Olinsky; James Cummins; Dietrich Stephan; Vinodh Narayanan

    1997-01-01

    P84 is a novel neural adhesion molecule that may play an important role in synaptogenesis. We have recently cloned a murine\\u000a cDNA encoding the P84 adhesion molecule. The human homologue of P84 has previously been isolated (by others) as a brain specific\\u000a cDNA containing CCA repeats. We have mapped the human P84 gene to the subtelomeric region of chromosome 20p

  12. Candidate gene analysis using genomic quantitative PCR: identification of ADAMTS13 large deletions in two patients with Upshaw-Schulman syndrome

    PubMed Central

    Eura, Yuka; Kokame, Koichi; Takafuta, Toshiro; Tanaka, Ryojiro; Kobayashi, Hikaru; Ishida, Fumihiro; Hisanaga, Shuichi; Matsumoto, Masanori; Fujimura, Yoshihiro; Miyata, Toshiyuki

    2014-01-01

    Direct sequencing is a popular method to discover mutations in candidate genes responsible for hereditary diseases. A certain type of mutation, however, can be missed by the method. Here, we report a comprehensive genomic quantitative polymerase chain reaction (qPCR) to complement the weakness of direct sequencing. Upshaw-Schulman syndrome (USS) is a recessively inherited disease associated with severe deficiency of plasma ADAMTS13 activity. We previously analyzed ADAMTS13 in 47 USS patients using direct sequencing, and 44 of them had either homozygous or compound heterozygous mutations. Then, we sought to reveal more extensive defects of ADAMTS13 in the remaining three patients. We quantified copy numbers of each ADAMTS13 exon in the patients by using genomic qPCR. Each primer pair was designed to contain at least one of the two primers used in direct sequencing, to avoid missing any exonic deletions. The qPCR demonstrated heterozygous loss of exons 7 and 8 in one patient and exon 27 in the other, and further analysis revealed c.746_987+373del1782 and c.3751_3892+587del729, respectively. Genomic qPCR provides an effective method for identifying extensive defects of the target genes. PMID:24936513

  13. Novel Nsp2 deletion based on molecular epidemiology and evolution of porcine reproductive and respiratory syndrome virus in Shandong Province from 2013 to 2014.

    PubMed

    Wang, Feng-Xue; Qin, Li-Ting; Liu, Ying; Liu, Xing; Sun, Na; Yang, Yong; Chen, Ting; Zhu, Hong-Wei; Ren, Jing-Qiang; Sun, Ying-Jun; Cheng, Shi-Peng; Wen, Yong-Jun

    2015-07-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China's Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96-97.5%), the other 4 strains shared considerable homology with JXA1 (94-98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6-98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study. PMID:25958135

  14. Association of the family environment with behavioural and cognitive outcomes in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Allen, T. M.; Hersh, J.; Schoch, K.; Curtiss, K.; Hooper, S. R.; Shashi, V.

    2014-01-01

    Background Children with 22q11.2 deletion syndrome (22q11DS) are at risk for social-behavioural and neurocognitive sequelae throughout development. The current study examined the impact of family environmental characteristics on social-behavioural and cognitive outcomes in this pediatric population. Method Guardians of children with 22q11DS were recruited through two medical genetics clinics. Con senting guardians were asked to complete several questionnaires regarding their child's social, emotional and behavioural functioning, as well as family social environment and parenting styles. Children with 22q11DS were asked to undergo a cognitive assessment, including IQ and achievement testing, and measures of attention, executive function and memory. Results Modest associations were found between aspects of the family social environment and parenting styles with social-behavioural and cognitive/academic outcomes. Regression models indicated that physical punishment, socioeconomic status, parental control and family organisation significantly predicted social-behavioural and cognitive outcomes in children with 22q11DS. Conclusion Characteristics of the family social environment and parenting approaches appear to be associated with functional outcomes of children with 22q11DS. Understanding the impact of environmental variables on developmental outcomes can be useful in determining more effective targets for intervention. This will be important in order to improve the quality of life of individuals affected by 22q11DS. PMID:23742203

  15. A case report of two brothers with ATR-X syndrome due to low maternal frequency of somatic mosaicism for an intragenic deletion in the ATRX.

    PubMed

    Shimbo, Hiroko; Ninomiya, Shinsuke; Kurosawa, Kenji; Wada, Takahito

    2014-07-01

    In clinical practice, it is important to diagnose the carrier state of female patients with X-linked diseases for genetic counseling to calculate the recurrent risk of offspring. Because some X-linked diseases show high rates of gonadal mosaicism, this diagnosis is sometimes difficult, when there are few offspring in a family and no mutation is detected in the maternal genomic DNA. Here, we report two male siblings with ATR-X syndrome carrying an intragenic deletion of 78.6?kb involving exons 2-5 out of the 35 exons in the ATRX, as revealed by PCR amplification of these exons. The mother was expected to be an obligate carrier, but we could not confirm her as a mutation carrier by quantitative PCR (qPCR) for the exons. However, we identified the breakpoint of ATRX, and qPCR with breakpoint-specific primers revealed gonosomal mosaicism, with a relative frequency of the mutation of <1% in genomic DNA of her peripheral blood. For these obligate carriers of X-linked disease, we should aggressively investigate the maternal genomic status, not only because her genetic condition is important for estimating the recurrent risk of her offspring but also because a diagnosis of her gonosomal mosaicism can render negligible the possibility that her female siblings are carriers. We should reconfirm that a female who has a risk of being a carrier has a gonosomal or somatic mutation, even if she is an obligate carrier or apparently harbors a mutation. PMID:24898829

  16. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

    PubMed

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick Pl; Christodoulou, John

    2014-11-26

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype.European Journal of Human Genetics advance online publication, 26 November 2014; doi:10.1038/ejhg.2014.249. PMID:25424712

  17. How might stress contribute to increased risk for schizophrenia in children with chromosome 22q11.2 deletion syndrome?

    PubMed

    Beaton, Elliott A; Simon, Tony J

    2011-03-01

    The most common human microdeletion occurs at chromosome 22q11.2. The associated syndrome (22q11.2DS) has a complex and variable phenotype with a high risk of schizophrenia. While the role of stress in the etiopathology of schizophrenia has been under investigation for over 30 years (Walker et al. 2008), the stress-diathesis model has yet to be investigated in children with 22q11.2DS. Children with 22q11.2DS face serious medical, behavioral, and socioemotional challenges from infancy into adulthood. Chronic stress elevates glucocorticoids, decreases immunocompetence, negatively impacts brain development and function, and is associated with psychiatric illness in adulthood. Drawing knowledge from the extant and well-developed anxiety and stress literature will provide invaluable insight into the complex etiopathology of schizophrenia in people with 22q11.2DS while suggesting possible early interventions. Childhood anxiety is treatable and stress coping skills can be developed thereby improving quality of life in the short-term and potentially mitigating the risk of developing psychosis. PMID:21475728

  18. ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18.

    PubMed

    Cheng, Chih-Ya; Wu, Jaw-Ching; Tsai, Jin-Wu; Nian, Fang-Shin; Wu, Pei-Chun; Kao, Lung-Sen; Fann, Ming-Ji; Tsai, Shih-Jen; Liou, Ying-Jay; Tai, Chin-Yin; Hong, Chen-Jee

    2015-05-01

    Mutations in the gene of RAB18, a member of Ras superfamily of small G-proteins, cause Warburg Micro Syndrome (WARBM) which is characterized by defective neurodevelopmental and ophthalmological phenotypes. Despite loss of Rab18 had been reported to induce disruption of the endoplasmic reticulum structure and neuronal cytoskeleton organization, parts of the pathogenic mechanism caused by RAB18 mutation remain unclear. From the N-ethyl-N-nitrosourea (ENU)-induced mutagenesis library, we identified a mouse line whose Rab18 was knocked out. This Rab18(-/-) mouse exhibited stomping gait, smaller testis and eyes, mimicking several features of WARBM. Rab18(-/-) mice were obviously less sensitive to pain and touch than WT mice. Histological examinations on Rab18(-/-) mice revealed progressive axonal degeneration in the optic nerves, dorsal column of the spinal cord and sensory roots of the spinal nerves while the motor roots were spared. All the behavioral and pathological changes that resulted from abnormalities in the sensory axons were prevented by introducing an extra copy of Rab18 transgene in Rab18(-/-) mice. Our results reveal that sensory axonal degeneration is the primary cause of stomping gait and progressive weakness of the hind limbs in Rab18(-/-) mice, and optic nerve degeneration should be the major pathology of progressive optic atrophy in children with WARBM. Our results indicate that the sensory nervous system is more vulnerable to Rab18 deficiency and WARBM is not only a neurodevelopmental but also neurodegenerative disease. PMID:25779931

  19. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    PubMed

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. PMID:25725334

  20. Locus-specific control of DNA resection and suppression of subtelomeric VSG recombination by HAT3 in the African trypanosome

    PubMed Central

    Glover, Lucy; Horn, David

    2014-01-01

    The African trypanosome, Trypanosoma brucei, is a parasitic protozoan that achieves antigenic variation through DNA-repair processes involving Variant Surface Glycoprotein (VSG) gene rearrangements at subtelomeres. Subtelomeric suppression of DNA repair operates in eukaryotes but little is known about these controls in trypanosomes. Here, we identify a trypanosome histone acetyltransferase (HAT3) and a deacetylase (SIR2rp1) required for efficient RAD51-dependent homologous recombination. HAT3 and SIR2rp1 were required for RAD51-focus assembly and disassembly, respectively, at a chromosome-internal locus and a synthetic defect indicated distinct contributions to DNA repair. Although HAT3 promoted chromosome-internal recombination, it suppressed subtelomeric VSG recombination, and these locus-specific effects were mediated through differential production of ssDNA by DNA resection; HAT3 promoted chromosome-internal resection but suppressed subtelomeric resection. Consistent with the resection defect, HAT3 was specifically required for the G2-checkpoint response at a chromosome-internal locus. HAT3 also promoted resection at a second chromosome-internal locus comprising tandem-duplicated genes. We conclude that HAT3 and SIR2rp1 can facilitate temporally distinct steps in DNA repair. HAT3 promotes ssDNA formation and recombination at chromosome-internal sites but has the opposite effect at a subtelomeric VSG. These locus-specific controls reveal compartmentalization of the T. brucei genome in terms of the DNA-damage response and suppression of antigenic variation by HAT3. PMID:25300492

  1. An examination of the relationship of anxiety and intelligence to adaptive functioning in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Angkustsiri, Kathleen; Leckliter, Ingrid; Tartaglia, Nicole; Beaton, Elliott A.; Enriquez, Janice; Simon, Tony J.

    2012-01-01

    Objective This study investigates the relationship between anxiety symptoms and adaptive function in children with Chromosome 22q11.2 Deletion Syndrome (22q11.2DS). Methods Seventy-eight children ages 7-14 years with 22q11.2DS and 36 typically developing (TD) children without known genetic syndromes participated in a larger study of neurocognition. Parents completed questionnaires about their child’s anxiety symptoms (Behavior Assessment System for Children, 2nd ed.: BASC-2 and Spence Children’s Anxiety Scale: SCAS) and adaptive functioning (BASC-2 and Adaptive Behavior Assessment System, 2nd ed.: ABAS-II). Within the 22q11.2DS group, different DSM-IV anxiety domains were also analyzed using SCAS subscales. Results Based on parent report, 19% of children with 22q11.2DS had a prior diagnosis of an anxiety disorder vs. 58% with at least one elevated anxiety score (BASC-2 and/or SCAS). Mean BASC-2 anxiety scores were significantly higher in 22q11.2DS (55.6+12.5) than TD (48.3+10; p=0.003) and a greater percentage of children with 22q11.DS (37%) had elevated BASC-2 anxiety scores compared with TD (14%; p=0.01). Higher anxiety scores were related to lower adaptive function (r=?0.27, p=0.015) but there was no relationship between WISC-IV FSIQ and BASC-2 adaptive skills (r=?0.06, p=0.6) in the 22q11.2DS group. For the individual SCAS anxiety subscales, panic-agoraphobia (r=?0.38, p=0.03), physical injury (r=?0.34, p=0.05), and obsessive compulsive disorder (r=?0.47, p=0.005) were significantly negatively related to adaptive function in 22q11.2DS. Conclusions Despite known risk, anxiety is under-identified in children with 22q11.2DS. The presence of anxiety symptoms, but not intelligence levels, in children with 22q11.2DS is negatively correlated with adaptive function and impacts everyday living skills. PMID:23117596

  2. Coordinated interaction of Down syndrome cell adhesion molecule and deleted in colorectal cancer with dynamic TUBB3 mediates Netrin-1-induced axon branching.

    PubMed

    Huang, H; Shao, Q; Qu, C; Yang, T; Dwyer, T; Liu, G

    2015-05-01

    Modulation of actin and microtubule (MT) dynamics in neurons is implicated in guidance cue-dependent axon outgrowth, branching and pathfinding. Although the role of MTs in axon guidance has been well known, how extracellular guidance signals engage MT behavior in axon branching remains unclear. Previously, we have shown that TUBB3, the most dynamic ?-tubulin isoform in neurons, directly binds to deleted in colorectal cancer (DCC) to regulate MT dynamics in Netrin-1-mediated axon guidance. Here, we report that TUBB3 directly interacted with another Netrin-1 receptor Down syndrome cell adhesion molecule (DSCAM) and Netrin-1 increased this interaction in primary neurons. MT dynamics were required for Netrin-1-promoted association of DSCAM with TUBB3. Knockdown of either DSCAM or DCC or addition of a function blocking anti-DCC antibody mutually blocked Netrin-1-induced interactions, suggesting that DSCAM interdependently coordinated with DCC in Netrin-1-induced binding to TUBB3. Both DSCAM and DCC were partially colocalized with TUBB3 in the axon branch and the axon branching point of primary neurons and Netrin-1 increased these colocalizations. Netrin-1 induced the interaction of endogenous DSCAM with polymerized TUBB3 in primary neurons and Src family kinases (SFKs) were required for regulating this binding. Knockdown of DSCAM only, DCC only or both was sufficient to block Netrin-1-induced axon branching of E15 mouse cortical neurons. Knocking down TUBB3 inhibited Netrin-1 induced axon branching as well. These results suggest that DSCAM collaborates with DCC to regulate MT dynamics via direct binding to dynamic TUBB3 in Netrin-1-induced axon branching. PMID:25754961

  3. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis.

    PubMed

    Prasad, Sarah; Katina, Stanislav; Hennessy, Robin J; Murphy, Kieran C; Bowman, Adrian W; Waddington, John L

    2015-03-01

    Persons with 22q11.2 deletion syndrome (22q11.2DS) are characterized inter alia by facial dysmorphology and greatly increased risk for psychotic illness. Recent studies indicate facial dysmorphology in adults with schizophrenia. This study evaluates the extent to which the facial dysmorphology of 22q11.2DS is similar to or different from that evident in schizophrenia. Twenty-one 22q11.2DS-sibling control pairs were assessed using 3D laser surface imaging. Geometric morphometrics was applied to 30 anatomical landmarks, 480 geometrically homologous semi-landmarks on curves and 1720 semi-landmarks interpolated on each 3D facial surface. Principal component (PC) analysis of overall shape space indicated PC2 to strongly distinguish 22q11.2DS from controls. Visualization of PC2 indicated 22q11.2DS and schizophrenia to be similar in terms of overall widening of the upper face, lateral displacement of the eyes/orbits, prominence of the cheeks, narrowing of the lower face, narrowing of nasal prominences and posterior displacement of the chin; they differed in terms of facial length (increased in 22q11.2DS, decreased in schizophrenia), mid-face and nasal prominences (displaced upwards and outwards in 22q11.2DS, less prominent in schizophrenia); lips (more prominent in 22q11.2DS; less prominent in schizophrenia) and mouth (open mouth posture in 22q11.2DS; closed mouth posture in schizophrenia). These findings directly implicate dysmorphogenesis in a cerebral-craniofacial domain that is common to 22q11.2DS and schizophrenia and which may repay further clinical and genetic interrogation in relation to the developmental origins of psychotic illness. PMID:25691406

  4. Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male Snord116 deletion mouse model for Prader-Willi syndrome.

    PubMed

    Lin, Dahe; Wang, Qi; Ran, Haiying; Liu, Kai; Wang, Yao; Wang, Juanjuan; Liu, Yazhen; Chen, Ruichuan; Sun, Yuxiang; Liu, Runzhong; Ding, Feng

    2014-07-01

    Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms including hyperphagia and hyperghrelinemia. In this study, male Snord116del mice were characterized and tested for their acute and chronic responses to anorexic substances related to the ghrelin pathway. In comparison with their wild-type littermates, the food intake rate of Snord116del mice was 14% higher when fed ad libitum, and 32% to 49% higher within 12 hours after fasting. Fasted Snord116del mice were less sensitive to the acute anorexic effect of competitive antagonist [d-Lys(3)]-GHRP6, YIL-781, and reverse agonist [d-Arg(1),d-Phe(5),d-Trp(7,9),Leu(11)]-substance P (SPA) of ghrelin receptor GHS-R. All 3 GHS-R inhibitors failed to inhibit chronic food intake of either Snord116del or wild-type mice due to rapid adaptation. Although fasted Snord116del mice had normal sensitivity to the acute anorexic effect of glucagon-like peptide 1 receptor agonist exenatide, those fed ad libitum required a higher dose and more frequent delivery to achieve ?15% suppression of long-term food intake in comparison with wild-type mice. Ghrelin, however, is unlikely to be essential for the anorexic effect of exenatide in fed mice, as shown by the fact that exenatide did not reduce ghrelin levels in fed mice and food intake of ghrelin(-/-) mice fed ad libitum could be suppressed by exenatide. In conclusion, this study suggests that GHS-R may not be an effective therapeutic target, and in contrast, exenatide may produce anorexic effect in PWS individuals. PMID:24735326

  5. Sex chromosome differentiation in Humulus japonicus Siebold & Zuccarini, 1846 (Cannabaceae) revealed by fluorescence in situ hybridization of subtelomeric repeat

    PubMed Central

    Alexandrov, Oleg S.; Divashuk, Mikhail G.; Yakovin, Nikolay A.; Karlov, Gennady I.

    2012-01-01

    Abstract Humulus japonicus Siebold et Zucc (Japanese hop) is a dioecious species of the family Cannabaceae. The chromosome number is 2n = 16 = 14 + XX for females and 2n = 17 = 14 + XY1Y2 for male. To date, no fluorescence in situ hybridization (FISH) markers have been established for the identification of Humulus japonicus sex chromosomes. In this paper, we report a method for the mitotic and meiotic sex chromosome differentiation in Humulus japonicus by FISH for HJSR, a high copy subtelomeric repeat. The signal is present in the subtelomeric region of one arm of the X chromosome. We demonstrate that males have two Y chromosomes that differ in FISH signal with the HJSR probe. Indeed, the HJSR probe hybridizes to a subtelomeric region on both arms of chromosome Y1 but not of chromosome Y2. The orientation and position of pseudoautosomal regions (PAR1 and PAR2) were also determined. PMID:24260665

  6. Hemizygous subtelomeres of an African trypanosome chromosome may account for over 75% of chromosome length

    PubMed Central

    Callejas, Sergio; Leech, Vanessa; Reitter, Christopher; Melville, Sara

    2006-01-01

    African trypanosomes are parasitic protozoa that infect a wide range of mammals, including humans. These parasites remain extracellular in the mammalian bloodstream, where antigenic variation allows them to survive the immune response. The Trypanosoma brucei nuclear genome sequence has been published recently. However, the significant chromosome size polymorphism observed among strains and subspecies of T. brucei, where total DNA content may vary up to 30%, necessitates a comparative study to determine the underlying basis and significance of such variation between parasites. In addition, the sequenced strain (Tb927) presents one of the smallest genomes analyzed among T. brucei isolates; therefore, establishing polymorphic regions will provide essential complementary information to the sequencing project. We have developed a Tb927 high-resolution DNA microarray to study DNA content variation along chromosome I, one of the most size-variable chromosomes, in different strains and subspecies of T. brucei. Results show considerable copy number polymorphism, especially at subtelomeres, but are insufficient to explain the observed size difference. Additional sequencing reveals that >50% of a larger chromosome I consists of arrays of variant surface glycoprotein genes (VSGs), involved in avoidance of acquired immunity. In total, the subtelomeres appear to be three times larger than the diploid core. These results reveal that trypanosomes can utilize subtelomeres for amplification and divergence of gene families to such a remarkable extent that they may constitute most of a chromosome, and that the VSG repertoire may be even larger than reported to date. Further experimentation is required to determine if these results are applicable to all size-variable chromosomes. PMID:16899654

  7. Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis

    PubMed Central

    Crabtree, Jonathan; Yu, Yan; Kim, Stanley; Chen, Dan; Loss, Omar; Cairns, Timothy; Goldman, Gustavo; Armstrong-James, Darius; Haynes, Ken; Haas, Hubertus; Schrettl, Markus; May, Gregory; Nierman, William C.; Bignell, Elaine

    2008-01-01

    Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus. PMID:18787699

  8. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    PubMed Central

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-01-01

    Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S. PMID:19732459

  9. Telomere shortening and telomere position effect in mild ring 17 syndrome

    PubMed Central

    2014-01-01

    Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome. PMID:24393457

  10. Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae.

    PubMed

    Rehman, Muhammad Attiq; Wang, Dongliang; Fourel, Genevieve; Gilson, Eric; Yankulov, Krassimir

    2009-01-01

    Subtelomeric genes are either fully active or completely repressed and can switch their state about once per 20 generations. This meta-stable telomeric position effect is mediated by strong repression signals emitted by the telomere and relayed/enhanced by weaker repressor elements called proto-silencers. In addition, subtelomeric regions contain sequences with chromatin partitioning and antisilencing activities referred to as subtelomeric antisilencing regions. Using extensive mutational analysis of subtelomeric elements, we show that ARS consensus sequence (ACS)-containing proto-silencers convert to antisilencers in several replication factor mutants. We point out the significance of the B1 auxiliary sequence next to ACS in mediating these effects. In contrast, an origin-derived ACS does not convert to antisilencer in mutants and its B1 element has little bearing on silencing. These results are specific for the analyzed ACS and in addition to the effects of each mutation (relative to wild type) on global silencing. Another line of experiments shows that Mcm5p possesses antisilencing activity and is recruited to telomeres in an ACS-dependent manner. Mcm5p persists at this location at the late stages of S phase. We propose that telomeric ACS are not static proto-silencers but conduct finely tuned silencing and antisilencing activities mediated by ACS-bound factors. PMID:19005221

  11. Langerhans cell histiocytosis in a pediatric patient with thrombocytopenia-absent radius syndrome and 1q21.1 deletion: case report and proposal of a rapid molecular diagnosis of 1q21.1 deletion.

    PubMed

    Giordano, Paola; Cecinati, Valerio; Grassi, Massimo; Giordani, Lucia; De Mattia, Delia; Santoro, Nicola

    2011-12-01

    We describe a child with thrombocytopenia-absent radius (TAR) syndrome in whom a refractory Langerhans cell histiocytosis (LCH) developed at 9 years. Recently, it has been demonstrated, in a large cohort of patients with TAR syndrome, that microdeletion on chromosome 1q21.1 is the characteristic genetic alteration. This genetic alteration was found in the affected son and in maternal lineage. Our data confirm the role played by the 1q21.1 microdeletion in the pathogenesis of TAR syndrome proposing a panel of polymorphic markers for a rapid and low-cost screening of 1q21.1 microdeletion. We do not know if the occurrence of two rare diseases as of TAR syndrome and LCH could be considered a chance association; at our knowledge, a genetic link does not seem to be present between the diseases. Descriptions of additional cases of LCH in patients with TAR syndrome are necessary before a cause and effect relationship can be proven. PMID:21428712

  12. Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.).

    PubMed

    Mikhailova, E I; Sosnikhina, S P; Kirillova, G A; Tikholiz, O A; Smirnov, V G; Jones, R N; Jenkins, G

    2001-05-01

    The nuclear dispositions of subtelomeric and pericentromeric domains in pollen mother cells (PMCs) were tracked during meiosis in wildtype and two asynaptic mutants of rye (Secale cereale L.) by means of fluorescence in situ hybridization (FISH). Homozygotes for sy1 and sy9 non-allelic mutations form axial elements during leptotene of male meiosis, but fail to form synaptonemal complexes. Consequently, recombination is severely impaired, and high univalency is observed at metaphase I. Simultaneous FISH with pSc200 subtelomeric tandem repeat and CCS1 centromeric sequence revealed that at pre-meiotic interphase the two domains are in a bipolar Rabl orientation in both the PMCs and tapetal cells. At the onset of meiotic prophase, the subtelomeric regions in PMCs of wildtype and sy9 cluster into a typical bouquet conformation. The timing of this event in rye is comparable with that in wheat, and is earlier than that observed in other organisms, such as maize, yeast and mammals. This arrangement is retained until later in leptotene and zygotene when the pericentromeric domains disperse and the subtelomeric clusters fragment. The mutant phenotype of sy9 manifests itself during leptotene to zygotene, when the pericentromeric regions become distinctly more distended than in wildtype, and largely fail to pair during zygotene. This indicates that difference in the nature or timing of chromosome condensation in this region is the cause or consequence of asynapsis. By contrast, sy1 fails to form comparable aggregates of subtelomeric regions at leptotene in only half of the nuclei studied. Instead, two to five aggregates are formed that fail to disperse at later stages of meiotic prophase. In addition, the pericentromeric regions disperse prematurely at leptotene and do not associate in pairs at any subsequent stage. It is supposed that the sy1 mutation could disrupt the nuclear disposition of centromeres and telomeres at the end of pre-meiotic interphase, which could cause, or contribute to, its asynaptic phenotype. PMID:11329374

  13. Molecular analysis of two patients with a duplicated 17p11.2 indicates that this entity may be the reciprocal of the deletion seen in Smith-Magenis syndrome

    SciTech Connect

    Brown, A.; Schwartz, C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others

    1994-09-01

    J.M. and H.G. are two unrelated patients that presented at an early age with developmental delay and failure to thrive. Clinical features specific to J.M. include unusual facies, global developmental delay, and clinodactyly of the fifth toe. A cytogenetic analysis of H.G. was performed on amniocytes obtained due to a low MSAFP conducted as part of a routine screening. In both J.M. and H.G., a duplication of chromosome 17p11.2 was discovered. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-tel. All of the markers were found to be duplicated by dosage analysis except for D17S58. FISH analysis of H.G., using the Smith-Magenis diagnostic probe obtained from ONCOR, also detected a duplication in 17p11.2. The chromosome containing the duplication could be the result of unequal crossing over due to a misalignment of the two chromosomes during meiosis I. It has been shown that the markers deleted in Smith-Magenis syndrome (SMS) patients are the same as those markers duplicated in J.M. and H.G. Therefore, the chromosomal duplication in 17p11.2 observed in these two patients could be the reciprocal of the chromosomal deletion seen in Smith-Magenis syndrome patients. Interestingly, a similar reciprocal duplication/deletion event is observed for CMT1A and HNPP (hereditary neuropathy with liability to pressure palsies) just distal to the SMS region.

  14. Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review.

    PubMed

    Quintero-Rivera, Fabiola; Sharifi-Hannauer, Pantea; Martinez-Agosto, Julian A

    2010-10-01

    The screening of individuals with mild dysmorphic features and mental retardation using whole genome scanning technologies has resulted in the delineation of several previously unrecognized microdeletion syndromes. Microdeletion of 3q29 has been recently described as one such new syndrome. The clinical phenotype is variable despite an almost identical submicroscopic deletion size in most cases. We report on two individuals that further expand the clinical presentation of this rare disorder and compare the findings with earlier reports to refine the 3q29 microdeletion syndrome phenotype. The propositi are a 10-year-old female and a 15-year-old male, who have in common intellectual disabilities, a history of autism and psychiatric symptoms ranging from bipolar disorder presenting with increasing suicidal ideation to aggressive behavior and general anxiety. Other shared physical findings include asymmetric face, high-nasal bridge, crowded/dysplastic teeth, and tapered fingers. Oligonucleotide array-based chromosomal microarray analysis (CMA) using a genome-wide SNP array identified a de novo subtelomeric microdeletion of chromosome region 3q29 ranging from 1.6 to 2.1?Mb. The region of overlap encompasses 20 RefSeq genes, including FBX045, DLG1, and PAK2. These genes are related to neuronal postsynaptic membrane function and PTEN signaling, suggesting a role for synaptic connectivity dysfunction in the etiology of autism in these children. The novel clinical presentation of our patients expands the clinical spectrum of the 3q29 microdeletion syndrome and provides additional insights into the pathophysiology of autism and psychiatric disorders. PMID:20830797

  15. Intellectual disability associated with retinal dystrophy in the Xp11.3 deletion syndrome: ZNF674 on trial. Guilty or innocent?

    PubMed Central

    Delphin, Nathalie; Hanein, Sylvain; Taie, Lucas Fares; Zanlonghi, Xavier; Bonneau, Dominique; Moisan, Jean-Paul; Boyle, Christine; Nitschke, Patrick; Pruvost, Solenn; Bonnefont, Jean-Paul; Munnich, Arnold; Roche, Olivier; Kaplan, Josseline; Rozet, Jean-Michel

    2012-01-01

    X-linked retinal dystrophies (XLRD) are listed among the most severe RD owing to their early onset, leading to significant visual loss before the age of 30. One-third of XLRD are accounted for by RP2 mutations at the Xp11.23 locus. Deletions of ca. 1.2?Mb in the Xp11.3-p11.23 region have been previously reported in two independent families segregating XLRD with intellectual disability (ID). Although the RD was ascribed to the deletion of RP2, the ID was suggested to be accounted for by the loss of ZNF674, which mutations were independently reported to account for isolated XLID. Here, we report deletions in the Xp11.3-p11.23 region responsible for the loss of ZNF674 in two unrelated families segregating XLRD, but no ID, identified by chromosomal microarray analysis. These findings question the responsibility of ZNF674 deletions in ID associated with X-linked retinal dystrophy. PMID:22126752

  16. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome.

    PubMed

    Gao, Shan; Moreno, Myriam; Eliason, Steven; Cao, Huojun; Li, Xiao; Yu, Wenjie; Bidlack, Felicitas B; Margolis, Henry C; Baldini, Antonio; Amendt, Brad A

    2015-04-15

    T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS. PMID:25556186

  17. Microhomology-mediated deletion and gene conversion in African trypanosomes.

    PubMed

    Glover, Lucy; Jun, Junho; Horn, David

    2011-03-01

    Antigenic variation in African trypanosomes is induced by DNA double-strand breaks (DSBs). In these protozoan parasites, DSB repair (DSBR) is dominated by homologous recombination (HR) and microhomology-mediated end joining (MMEJ), while non-homologous end joining (NHEJ) has not been reported. To facilitate the analysis of chromosomal end-joining, we established a system whereby inter-allelic repair by HR is lethal due to loss of an essential gene. Analysis of intrachromosomal end joining in individual DSBR survivors exclusively revealed MMEJ-based deletions but no NHEJ. A survey of microhomologies typically revealed sequences of between 5 and 20?bp in length with several mismatches tolerated in longer stretches. Mean deletions were of 54?bp on the side closest to the break and 284?bp in total. Break proximity, microhomology length and GC-content all favored repair and the pattern of MMEJ described above was similar at several different loci across the genome. We also identified interchromosomal gene conversion involving HR and MMEJ at different ends of a duplicated sequence. While MMEJ-based deletions were RAD51-independent, one-sided MMEJ was RAD51 dependent. Thus, we describe the features of MMEJ in Trypanosoma brucei, which is analogous to micro single-strand annealing; and RAD51 dependent, one-sided MMEJ. We discuss the contribution of MMEJ pathways to genome evolution, subtelomere recombination and antigenic variation. PMID:20965968

  18. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome.

    PubMed

    Portmann, Thomas; Yang, Mu; Mao, Rong; Panagiotakos, Georgia; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L; Grueter, Brad A; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L; Zhengqui, Zhou; Miller, Michael A; Lerch, Jason P; Henkelman, R Mark; Shamloo, Mehrdad; Malenka, Robert C; Crawley, Jacqueline N; Dolmetsch, Ricardo E

    2014-05-22

    A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  19. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: rare association with pulmonary valve stenosis.

    PubMed

    Digilio, M Cristina; Bernardini, Laura; Consoli, Federica; Lepri, Francesca R; Giuffrida, M Grazia; Baban, Anwar; Surace, Cecilia; Ferese, Rosangela; Angioni, Adriano; Novelli, Antonio; Marino, Bruno; De Luca, Alessandro; Dallapiccola, Bruno

    2013-03-01

    Microdeletion 1q21.1 (del 1q21.1) and the reciprocal microduplication 1q21.1 (dup 1q21.1) are newly recognized genomic disorders, characterized by developmental delay, dysmorphic features and congenital malformations. Congenital heart defect (CHD) is a major feature of del 1q21.1, and has been occasionally reported in dup 1q21.1. We report here a family segregating del 1q21.1 in 3 members. Two of the affected family members had CHD, including the proband with syndromic atrial septal defect, pulmonary valve stenosis (PVS), and muscular ventricular septal defects, and the maternal uncle with non-syndromic PVS. This finding prompted investigation of the role of recurrent rearrangements of chromosome 1q21.1 in the pathogenesis of PVS. We gathered 38 patients with PVS (11 syndromic and 27 non-syndromic), and searched for genomic rearrangements of 1q21.1. A dup 1q21.1 was detected in a single sporadic non-syndromic patient. Review of the CHDs in published del 1q21.1 and dup 1q21.1 subjects showed a great heterogeneity in anatomic types. In conclusion, the present family illustrates recurrent CHD in del 1q21.1, expressing either as syndromic in one family member or as non-syndromic in the another one. The spectrum of CHDs associated with del 1q21.1 and dup 1q21.1 can occasionally include PVS. PMID:23270675

  20. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity

    PubMed Central

    Jehi, Sanaa E.; Li, Xiaohua; Sandhu, Ranjodh; Ye, Fei; Benmerzouga, Imaan; Zhang, Mingjie; Zhao, Yanxiang; Li, Bibo

    2014-01-01

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation. PMID:25313155

  1. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity.

    PubMed

    Jehi, Sanaa E; Li, Xiaohua; Sandhu, Ranjodh; Ye, Fei; Benmerzouga, Imaan; Zhang, Mingjie; Zhao, Yanxiang; Li, Bibo

    2014-11-10

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation. PMID:25313155

  2. Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder

    Microsoft Academic Search

    Phyllis L. Faust; Mary E. Hatten

    2010-01-01

    Zellweger syndrome is a peroxisomal bio- genesis disorder that results in abnormal neuronal mi- gration in the central nervous system and severe neuro- logic dysfunction. The pathogenesis of the multiple severe anomalies associated with the disorders of per- oxisome biogenesis remains unknown. To study the re- lationship between lack of peroxisomal function and organ dysfunction, the PEX2 peroxisome assembly gene

  3. Pearson bone marrow-pancreas syndrome with insulin-dependent diabetes, progressive renal tubulopathy, organic aciduria and elevated fetal haemoglobin caused by deletion and duplication of mitochondrial DNA

    Microsoft Academic Search

    A. Superti-Furga; E. Schoenle; P. Tuchschmid; R. Caduff; V. Sabato; D. DeMattia; R. Gitzelmann; B. Steinmann

    1993-01-01

    We report a patient with a clinical picture consisting of small birth weight, connatal hypoplastic anaemia, vacuolised bone marrow precursors, failure to thrive, and, subsequently, by insulin-dependent diabetes, renal Fanconi syndrome, lactic acidosis, complex organic aciduria, and elevation of haemoglobin F and of adenosine deaminase activity. The clinical course was progressive and death occurred at age 19 months. A high

  4. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    Microsoft Academic Search

    L Alison McInnes; Alisa Nakamine; Marion Pilorge; Tracy Brandt; Patricia Jiménez González; Marietha Fallas; Elina R Manghi; Lisa Edelmann; Joseph Glessner; Hakon Hakonarson; Catalina Betancur; Joseph D Buxbaum

    2010-01-01

    BACKGROUND: The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts

  5. Predicting Reading Comprehension Academic Achievement in Late Adolescents with Velo-Cardio-Facial (22q11.2 Deletion) Syndrome (VCFS): A Longitudinal Study

    ERIC Educational Resources Information Center

    Antshel, K.; Hier, B.; Fremont, W.; Faraone, S. V.; Kates, W.

    2014-01-01

    Background: The primary objective of the current study was to examine the childhood predictors of adolescent reading comprehension in velo-cardio-facial syndrome (VCFS). Although much research has focused on mathematics skills among individuals with VCFS, no studies have examined predictors of reading comprehension. Methods: 69 late adolescents…

  6. Submicroscopic deletions at 22q11.2: Variability of the clinical picture and delineation of a commonly deleted region

    Microsoft Academic Search

    Elizabeth A. Lindsay; L. G. Shaffer; F. Greenberg; Stuart K. Shapira; Peter J. Scambler; Antonio Baldini

    1995-01-01

    DiGeorge anomaly (DGA) and velo-cardio-facial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies

  7. Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions.

    PubMed

    Yamashita, Shintaro; Nishino, Ichizo; Nonaka, Ikuya; Goto, Yu-Ichi

    2008-01-01

    We examined 136 patients with mitochondrial DNA (mtDNA) deletion. Clinical diagnoses included chronic progressive external ophthalmoplegia (94 patients); Kearns-Sayre syndrome (KSS; 33 patients); Pearson's marrow-pancreas syndrome (six patients); and Leigh syndrome, Reye-like syndrome, and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (one patient). The length and location of deletion were highly variable. Only one patient had deletion within the so-called shorter arc between the two origins of mtDNA replication. The length of deletion and the number of deleted transfer ribonucleic acid (tRNAs) showed a significant relationship with age at onset. Furthermore, KSS patients had longer and larger numbers of deleted tRNAs, which could be risk factors for the systemic involvement of single mtDNA deletion diseases. We found 81 patterns of deletion. Direct repeats of 4 bp or longer flanking the breakpoints were found in 96 patients (70.5%) and those of 10 bp or longer in 49 patients (36.0%). We found two other common deletions besides the most common deletion (34 patients: 25.0%): the 2,310-bp deletion from nt 12113 to nt 14421 (11 patients: 8.0%) and the 7,664-bp deletion from nt 6330 to nt 13993 (ten patients: 7.3%). These deletions had incomplete direct repeats longer than 13 bp with one base mismatch. PMID:18414780

  8. Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother

    PubMed Central

    Tabet, Anne-Claude; Pilorge, Marion; Delorme, Richard; Amsellem, Frédérique; Pinard, Jean-Marc; Leboyer, Marion; Verloes, Alain; Benzacken, Brigitte; Betancur, Catalina

    2012-01-01

    The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1?Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1?Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95?Mb (21.28–30.23?Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847?kb (28.40–29.25?Mb), inherited from his apparently healthy father. Recurrent deletions in this region encompassing the SH2B1 gene were recently reported in early-onset obesity and in individuals with neurodevelopmental disorders associated with phenotypic variability. We discuss the clinical and genetic implications of two different 16p chromosomal rearrangements in this family, and suggest that the 16p11.2 deletion in the father predisposed to the formation of the duplication in his twin children. PMID:22234155

  9. Schizophrenia Susceptibility Associated with Interstitial Deletions of Chromosome 22q11

    Microsoft Academic Search

    Maria Karayiorgou; Michael A. Morris; Bernice Morrow; Robert J. Shprintzen; Rosalie Goldberg; Julian Borrow; Arnaud Gos; Gerald Nestadt; Paula S. Wolyniec; Virginia K. Lasseter; Harvey Eisen; Barton Childs; Haig H. Kazazian; Raju Kucherlapati; Stylianos E. Antonarakis; Ann E. Pulver; David E. Housman

    1995-01-01

    We report the results of two studies examining the genetic overlap between schizophrenia and velocardiofacial syndrome. In study A, we characterize two interstitial deletions identified on chromosome 22q11 in a sample of schizophrenic patients. The size of the deletions was estimated to be between 1.5 and 2 megabases. In study B, we examine whether variations in deletion size are associated

  10. 9q22 Deletion - First Familial Case

    PubMed Central

    2011-01-01

    Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400) due to haploinsufficiency of the PTCH1 gene (MIM *601309). Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K). The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337) which causing both brachydactyly type 1 (MIM #113000) and Robinow syndrome (MIM #268310), and the immunologically active SYK gene (MIM *600085). The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling. PMID:21693067

  11. A novel immunodeficiency syndrome associated with partial trisomy 19p13

    PubMed Central

    Seidel, Markus G; Duerr, Celia; Woutsas, Stavroula; Schwerin-Nagel, Anette; Sadeghi, Kambis; Neesen, Jürgen; Uhrig, Sabine; Santos-Valente, Elisangela; Pickl, Winfried F; Schwinger, Wolfgang; Urban, Christian; Boztug, Kaan; Förster-Waldl, Elisabeth

    2014-01-01

    Background Subtelomeric deletions and duplications may cause syndromic disorders that include features of immunodeficiency. To date, no phenotype of immunological pathology has been linked to partial trisomy 19. We report here on two unrelated male patients showing clinical and laboratory signs of immunodeficiency exhibiting a duplication involving Chromosome 19p13. Methods Both patients underwent a detailed clinical examination. Extended laboratory investigations for immune function, FISH and array comparative genome hybridization (CGH) analyses were performed. Results The reported patients were born prematurely with intrauterine growth retardation and share clinical features including neurological impairment, facial dysmorphy and urogenital malformations. Array CGH analyses of both patients showed a largely overlapping terminal duplication affecting Chromosome 19p13. In both affected individuals, the clinical course was marked by recurrent severe infections. Signs of humoral immunodeficiency were detected, including selective antibody deficiency against polysaccharide antigens in patient 1 and reduced IgG1, IgG3 subclass levels and IgM deficiency in patient 2. Class-switched B memory cells were almost absent in both patients. Normal numbers of T cells, B cells and natural killer cells were observed in both boys. Lymphocytic proliferation showed no consistent functional pathology, however, function of granulocytes and monocytes as assessed by oxidative burst test was moderately reduced. Moreover, natural killer cytotoxicity was reduced in both patients. Immunoglobulin substitution resulted in a decreased number and severity of infections and improved thriving in both patients. Conclusions Partial trisomy 19p13 represents a syndromic disorder associating organ malformation and hitherto unrecognised immunodeficiency. PMID:24431329

  12. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    PubMed

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451. PMID:24334608

  13. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice

    PubMed Central

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R.; Wang, Yong; Yang, Jun

    2014-01-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451. PMID:24334608

  14. Genetics Home Reference: FOXG1 syndrome

    MedlinePLUS

    ... cerebrum), which controls most voluntary activity, language, sensory perception, learning, and memory. In some cases, FOXG1 syndrome ... callosum ; deletion ; disability ; embryonic ; encephalopathy ; gene ; involuntary ; microcephaly ; perception ; protein ; spectrum ; syndrome ; tissue ; white matter You may ...

  15. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice

    E-print Network

    Miraldi, Emily R.

    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b[superscript ...

  16. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study

    Microsoft Academic Search

    A K Ryan; J A Goodship; D I Wilson; N Philip; A Levy; H Seidel; S Schuffenhauer; H Oechsler; B Belohradsky; M Prieur; A Aurias; F L Raymond; J Clayton-Smith; E Hatchwell; C McKeown; F A Beemer; B Dallapiccola; G Novelli; J A Hurst; J Ignatius; A J Green; R M Winter; L Brueton; K Brøndum-Nielsen; P J Scambler

    1997-01-01

    We present clinical data on 558 patients with deletions within the DiGeorge syndrome critical region of chromosome 22q11. Twenty-eight percent of the cases where parents had been tested had inherited deletions, with a marked excess of maternally inherited deletions (maternal 61, paternal 18). Eight percent of the patients had died, over half of these within a month of birth and

  17. Frequency of 22q11 deletions in patients with conotruncal defects

    Microsoft Academic Search

    Elizabeth Goldmuntz; Bernard J Clark; Laura E Mitchell; Abbas F Jawad; Bettina F Cuneo; Lori Reed; Donna McDonald-McGinn; Peggy Chien; Jennifer Feuer; Elaine H Zackai; Beverly S Emanuel; Deborah A Driscoll

    1998-01-01

    Objectives. This study was designed to determine the frequency of 22q11 deletions in a large, prospectively ascertained sample of patients with conotruncal defects and to evaluate the deletion frequency when additional cardiac findings are also considered.Background. Chromosome 22q11 deletions are present in the majority of patients with DiGeorge, velocardiofacial and conotruncal anomaly face syndromes in which conotruncal defects are a

  18. Deletion of imperfect cloned copies

    E-print Network

    Satyabrata Adhikari; Binayak. S. Choudhury

    2005-08-10

    In this work, we design a deleting machine and shown that for some given condition on machine parameters, it gives slightly better result than P-B deleting machine [5,6]. Also it is shown that for some particular values of the machine parameters it acts like Pati-Braunstein deleting machine. We also study the combined effect of cloning and deleting machine, where at first the cloning is done by some standard cloning machines such as Wootters-Zurek [1] and Buzek-Hillery [2] cloning machine and then the copy mode is deleted by Pati-Braunstein deleting machine or our prescribed deleting machine. After that we examine the distortion of the input state and the fidelity of deletion .

  19. Jacobsen syndrome

    PubMed Central

    Mattina, Teresa; Perrotta, Concetta Simona; Grossfeld, Paul

    2009-01-01

    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe and require heart surgery in the neonatal period. Newborns with Jacobsen syndrome may have difficulties in feeding and tube feeding may be necessary. Special attention should be devoted due to hematological problems. About 20% of children die during the first two years of life, most commonly related to complications from congenital heart disease, and less commonly from bleeding. For patients who survive the neonatal period and infancy, the life expectancy remains unknown. PMID:19267933

  20. Alagille syndrome.

    PubMed Central

    Krantz, I D; Piccoli, D A; Spinner, N B

    1997-01-01

    Alagille syndrome (OMIM 118450) is an autosomal dominant disorder associated with abnormalities of the liver, heart, eye, skeleton, and a characteristic facial appearance. Also referred to as the Alagille-Watson syndrome, syndromic bile duct paucity, and arteriohepatic dysplasia, it is a significant cause of neonatal jaundice and cholestasis in older children. In the fully expressed syndrome, affected subjects have intrahepatic bile duct paucity and cholestasis, in conjunction with cardiac malformations (most frequently peripheral pulmonary stenosis), ophthalmological abnormalities (typically of the anterior chamber with posterior embryotoxon being the most common), skeletal anomalies (most commonly butterfly vertebrae), and characteristic facial appearance. Inheritance is autosomal dominant, but expressivity is highly variable. Sibs and parents of probands are often found to have mild expression of the presumptive disease gene, with abnormalities of only one or two systems. The frequency of new mutations appears relatively high, estimated at between 15 and 50%. The disease gene has been mapped to chromosome 20 band p12 based on multiple patients described with cytogenetic or molecular rearrangements of this region. However, the frequency of detectable deletions of 20p12 is low (less than 7%). Progress has been made in the molecular definition of an Alagille syndrome critical region within the short arm of chromosome 20. We will review the clinical, genetic, cytogenetic, and molecular findings in this syndrome. Images PMID:9039994

  1. Sotos syndrome

    PubMed Central

    Baujat, Geneviève; Cormier-Daire, Valérie

    2007-01-01

    Sotos syndrome is an overgrowth condition characterized by cardinal features including excessive growth during childhood, macrocephaly, distinctive facial gestalt and various degrees of learning difficulty, and associated with variable minor features. The exact prevalence remains unknown but hundreds of cases have been reported. The diagnosis is usually suspected after birth because of excessive height and occipitofrontal circumference (OFC), advanced bone age, neonatal complications including hypotonia and feeding difficulties, and facial gestalt. Other inconstant clinical abnormalities include scoliosis, cardiac and genitourinary anomalies, seizures and brisk deep tendon reflexes. Variable delays in cognitive and motor development are also observed. The syndrome may also be associated with an increased risk of tumors. Mutations and deletions of the NSD1 gene (located at chromosome 5q35 and coding for a histone methyltransferase implicated in transcriptional regulation) are responsible for more than 75% of cases. FISH analysis, MLPA or multiplex quantitative PCR allow the detection of total/partial NSD1 deletions, and direct sequencing allows detection of NSD1 mutations. The large majority of NSD1 abnormalities occur de novo and there are very few familial cases. Although most cases are sporadic, several reports of autosomal dominant inheritance have been described. Germline mosaicism has never been reported and the recurrence risk for normal parents is very low (<1%). The main differential diagnoses are Weaver syndrome, Beckwith-Wiedeman syndrome, Fragile X syndrome, Simpson-Golabi-Behmel syndrome and 22qter deletion syndrome. Management is multidisciplinary. During the neonatal period, therapies are mostly symptomatic, including phototherapy in case of jaundice, treatment of the feeding difficulties and gastroesophageal reflux, and detection and treatment of hypoglycemia. General pediatric follow-up is important during the first years of life to allow detection and management of clinical complications such as scoliosis and febrile seizures. An adequate psychological and educational program with speech therapy and motor stimulation plays an important role in the global development of the patients. Final body height is difficult to predict but growth tends to normalize after puberty. PMID:17825104

  2. Redefining phenotypes associated with mitochondrial DNA single deletion.

    PubMed

    Mancuso, Michelangelo; Orsucci, Daniele; Angelini, Corrado; Bertini, Enrico; Carelli, Valerio; Comi, Giacomo Pietro; Donati, Maria Alice; Federico, Antonio; Minetti, Carlo; Moggio, Maurizio; Mongini, Tiziana; Santorelli, Filippo Maria; Servidei, Serenella; Tonin, Paola; Toscano, Antonio; Bruno, Claudio; Bello, Luca; Caldarazzo Ienco, Elena; Cardaioli, Elena; Catteruccia, Michela; Da Pozzo, Paola; Filosto, Massimiliano; Lamperti, Costanza; Moroni, Isabella; Musumeci, Olimpia; Pegoraro, Elena; Ronchi, Dario; Sauchelli, Donato; Scarpelli, Mauro; Sciacco, Monica; Valentino, Maria Lucia; Vercelli, Liliana; Zeviani, Massimo; Siciliano, Gabriele

    2015-05-01

    Progressive external ophthalmoplegia (PEO), Kearns-Sayre syndrome (KSS) and Pearson syndrome are the three sporadic clinical syndromes classically associated with single large-scale deletions of mitochondrial DNA (mtDNA). PEO plus is a term frequently utilized in the clinical setting to identify patients with PEO and some degree of multisystem involvement, but a precise definition is not available. The purpose of the present study is to better define the clinical phenotypes associated with a single mtDNA deletion, by a retrospective study on a large cohort of 228 patients from the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases". In our database, single deletions account for about a third of all patients with mtDNA-related disease, more than previously recognized. We elaborated new criteria for the definition of PEO and "KSS spectrum" (a category of which classic KSS represents the most severe extreme). The criteria for "KSS spectrum" include the resulting multisystem clinical features associated with the KSS features, and which therefore can predict their presence or subsequent development. With the new criteria, we were able to classify nearly all our single-deletion patients: 64.5 % PEO, 31.6 % KSS spectrum (including classic KSS 6.6 %) and 2.6 % Pearson syndrome. The deletion length was greater in KSS spectrum than in PEO, whereas heteroplasmy was inversely related with age at onset. We believe that the new phenotype definitions implemented here may contribute to a more homogeneous patient categorization, which will be useful in future cohort studies of natural history and clinical trials. PMID:25808502

  3. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited

    Microsoft Academic Search

    N Helali; A K Iafolla; S G Kahler; M B Qumsiyeh

    1996-01-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH).

  4. A 1.1 million base pair X-chromosomal deletion covering the PDHA1 and CDKL5 genes in a female patient with West syndrome and pyruvate oxidation deficiency.

    PubMed

    Mayr, Johannes A; Koch, Johannes; Fauth, Christine; Zimmermann, Franz A; Rauscher, Christian; Zschocke, Johannes; Sperl, Wolfgang

    2012-06-01

    Mutations in the X-linked E1? subunit of the pyruvate dehydrogenase complex (PHDC) are the most frequent causes of PDHC deficiency. The clinical picture is heterogeneous depending on residual enzyme activity and X-inactivation. We report on a girl who presented at an age of 3 weeks with muscular hypotonia, vomiting, hyperlactatemia, microcephaly, enlarged ventricles, partial agenesis of the corpus callosum, and seizures. PDHA1 sequencing was normal in DNA from blood. In muscle, normal PDHC activity was measured while substrate oxidation rates revealed moderately diminished pyruvate oxidation. Quantitative PCR analysis revealed hemizygosity of the whole PDHA1 gene. Homozygosity mapping and determination of the breakpoint showed a 1.1 million base pair deletion on the X-chromosome including the CDKL5 and PDHA1 genes. The difficulty in the diagnosis of PDHC deficiency is evident: (1) enzyme activity can be normal depending on the X-inactivation; (2) large deletions can be missed by routine genetic analysis; and (3) only quantification of the PDHA1 gene content revealed the mutation in our patient. We recommend to revisit patients who are clinically suspicious for a mitochondrial disorder especially for hidden PDHA1 mutations, such as large deletions. PMID:22473288

  5. Autism in Angelman Syndrome: An Exploration of Comorbidity

    ERIC Educational Resources Information Center

    Trillingsgaard, Anegen; Ostergaard, John R.

    2004-01-01

    The aim was to explore the comorbidity between Angelman syndrome and autism spectrum disorders (ASDs). Identification of autism in children with Angelman syndrome presents a diagnostic challenge. In the present study, 16 children with Angelman syndrome, all with a 15q11-13 deletion, were examined for ASDs. Thirteen children with Angelman syndrome

  6. Congenital heart disease in mice deficient for the DiGeorge syndrome region

    Microsoft Academic Search

    Elizabeth A. Lindsay; Annalisa Botta; Vesna Jurecic; Sandra Carattini-Rivera; Yin-Chai Cheah; Howard M. Rosenblatt; Allan Bradley; Antonio Baldini

    1999-01-01

    The heterozygous chromosome deletion within the band 22q11 (del22q11) is an important cause of congenital cardiovascular defects. It is the genetic basis of DiGeorge syndrome and causes the most common deletion syndrome in humans. Because the deleted region is largely conserved in the mouse, we were able to engineer a chromosome deletion (Df1) spanning a segment of the murine region

  7. Amniotic band syndrome.

    PubMed

    Shetty, Prathvi; Menezes, Leo Theobald; Tauro, Leo Francis; Diddigi, Kumar Arun

    2013-10-01

    Amniotic band syndrome is an uncommon congenital disorder without any genetic or hereditary disposition. It involves fetal entrapment in strands of amniotic tissue and causes an array of deletions and deformations. Primary treatment is plastic and reconstructive surgery after birth with in utero fetal surgery also coming in vogue. PMID:24426485

  8. The 9p- syndrome.

    PubMed

    Alfi, O S; Donnell, G N; Allderdice, P W; Derencsenyi, A

    1976-03-01

    Six patients (4 females and 2 males) with terminal deletion of the short arm of chromosome 9 distal to band p22 are described. The disorder constitutes a clinically identifiable syndrome consisting of mental retardation, sociable personality, trigonocephaly, mongoloid eyes, wide flat nasal bridge, anteverted nostrils, long upper lip, short neck, long digits mostly secondary to long middle phalanges, and predominance of whorls on fingers. The findings suggest that the clinical features are antithetical to the trisomy 9p syndrome. The deleted chromosome segment is relatively small and could be easily overlooked. It is hoped that this delineation of clinical features seen in 9,p- patients may help in focusing attention on the small deletion. PMID:1084115

  9. [A case of deletion of the short arm of the chromosome 21 (21p-) (christchurch chromosome) discovered prenatally:clinical and cytogenetic data].

    PubMed

    Tavokina, L V; Vorsanova, S G; Zukin, V D; Sopko, N I; Zinchenko, V M; Veselovski?, V V; Bychkova, A M; Nikitchina, T V; Iurov, Iu B

    2004-01-01

    Results of cytogenetic research of placental villi and amniotic fluid cells culture of the 22-weeks-old fetus with multiple congenital malformations (MCM) are presented. The absence of the short arm in one of the homologue of the chromosome 21 was revealed. Cytogenetic analysis of the fetus father's blood lymphocytes determined the similar chromosome. Further research of the father's karyotype made by FISH-method using specific DNA samples had discovered the absence of subtelomeric parts in the short arm of the chromosome 21 that might be considered as a deletion. It was suggested that the effect of position and interaction of genes could play a key role in appearing of MCM in the fetus in the case when the 21p-chromosome was transferred to it from the healthy parents. PMID:15098444

  10. Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother

    E-print Network

    Paris-Sud XI, Université de

    Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal Unit, Bondy, France Running title: Duplication 16p11.2p12.2 in twins with autism Corresponding author recently in chromosome 16p. 16p11.2 rearrangements (29.5-30.1 Mb) are associated with autism, intellectual

  11. Deletions in the CGG repeat region of the FMR1 gene

    SciTech Connect

    Graaff, E. de; Oostra, B.A. [Erasmus Univ., Rotterdam (Netherlands); Meijer, H. [and others

    1994-09-01

    The fragile X syndrome is the most frequent cause of inherited mental retardation. A remarkable feature of FMR1, the gene involved in the fragile X syndrome, is the presence of a polymorphic (CGG){sub n} repeat in the first exon of the gene. In patients this repeat is expanded to over 200 repeats. The expansion results in methylation of the CpG island 250 bp upstream of this repeat, leading to the absence of FMR1 mRNA and protein, thus resulting in the fragile X phenotype. We have found that the instability of the repeat is not restricted to the CGG repeat itself but expands to the flanking region as well. Firstly, we have identified a family in which 4 males with the fragile X clinical phenotype had a deletion immediately 5{prime} of the CGG repeat. Sequencing the deletion junction revealed that the AGG triplets that normally intersperse the CGG repeat were lacking. This suggests that prior to the deletion an expansion of the repeat had occured. The male patients with this deletion did not have FMR1 mRNA expression. The deceased grandfather, from whom the deletion originated, was fertile, despite the lack of FMR1 mRNA expression. This indicated that FMR1 expression is not required for spermatogenesis. Other deletions were found in 4 individual patients. These patients were mosaic for both a full mutation and a small deletion in the region surrounding the (CGG){sub n} repeat, present in approximately 5% of their cells. Sequence analysis of the regions surrounding the deletions showed that the (CGG){sub n} repeat was missing in all 4 patients. The 5{prime} endpoints of all deletions were found to be located between 75 to 53 bp proximal to the CGG repeat. This suggests a hot spot region for deletions and emphasizes the instability of this region when the CGG repeat is expanded. Models explaining the occurrence of the deletions will be discussed.

  12. Functional Consequences of Mitochondrial DNA Deletions in Human Skin Fibroblasts

    PubMed Central

    Majora, Marc; Wittkampf, Tanja; Schuermann, Bianca; Schneider, Maren; Franke, Susanne; Grether-Beck, Susanne; Wilichowski, Ekkehard; Bernerd, Françoise; Schroeder, Peter; Krutmann, Jean

    2009-01-01

    Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor ?-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-?-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both ?-aminopropionitrile and N-tert-butyl-?-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin. PMID:19661442

  13. Sotos syndrome, infantile hypercalcemia, and nephrocalcinosis: a contiguous gene syndrome.

    PubMed

    Kenny, Joanna; Lees, Melissa M; Drury, Susan; Barnicoat, Angela; Van't Hoff, William; Palmer, Rodger; Morrogh, Deborah; Waters, Jonathan J; Lench, Nicholas J; Bockenhauer, Detlef

    2011-08-01

    Sotos syndrome is characterized by overgrowth, a typical facial appearance, and learning difficulties. It is caused by heterozygous mutations, including deletions, of NSD1 located at chromosome 5q35. Here we report two unrelated cases of Sotos syndrome associated with nephrocalcinosis. One patient also had idiopathic infantile hypercalcemia. Genetic investigations revealed heterozygous deletions at 5q35 in both patients, encompassing NSD1 and SLC34A1 (NaPi2a). Mutations in SLC34A1 have previously been associated with hypercalciuria/nephrolithiasis. Our cases suggest a contiguous gene deletion syndrome including NSD1 and SLC34A1 and provide a potential genetic basis for idiopathic infantile hypercalcemia. PMID:21597970

  14. Are mitochondrial DNA deletions causative in chronic progressive external ophthalmoplegia patients?

    Microsoft Academic Search

    Marie J. B Jean-Francois; Steve Collins; Nicky Kotsimbos; Xenia Dennett; Edward Byrne

    1997-01-01

    Twenty-one patients with long standing unexplained ptosis (3), chronic progressive external ophthalmoplegia (CPEO, 16) or Kearns-Sayre syndrome (KSS, 2) were studied for the presence of mitochondrial DNA (mtDNA) deletions and the major disease-associated mtDNA point mutations with the aim of correlating mitochondrial genetic abnormalities with pathogenesis in these patients. Only 52% were found to have a deletion; of these, 82%

  15. Short stature in a mother and daughter with terminal deletion of Xp22.3

    SciTech Connect

    Schwinger, E.; Kirschstein, M.; Konermann, T. [Institut fuer Humangenetik, Hamburg (Germany)] [and others] [Institut fuer Humangenetik, Hamburg (Germany); and others

    1996-05-03

    Short stature in females is often caused by homozygosity for the terminal portion of Xp due to monosomy X or a deletion. We report on a mother and daughter with short stature as sole phenotypic abnormality and deletion of bands Xp22.32-p22.33 demonstrated by classic and molecular cytogenetic analysis. In both individuals, the deleted X chromosome was late replicating. Molecular analysis suggested that the deletion is terminal and the breakpoint was localized between the STS and DXS7470 loci in Xp22.32. Chromosome analysis is often done on females with short stature to exclude Ullrich-Turner syndrome. Small deletions, terminal or interstitial, are easily missed by conventional cytogenetic investigation; thus molecular analyses are useful to detect those cases. 8 refs., 3 figs.

  16. Deletion of chromosome 21 in a girl with congenital hypothyroidism and mild mental retardation

    SciTech Connect

    Ahlbom, B.E.; Anneren, G. [Univ. Hospital, Uppsala (Sweden)] [Univ. Hospital, Uppsala (Sweden); Sidenvall, R. [Central Hospital of Hudiksvall (Sweden)] [Central Hospital of Hudiksvall (Sweden)

    1996-08-23

    We report on a girl with a large interstitial deletion of the long arm of chromosome 21 and with mild mental retardation, congenital hypothyroidism, and hyperopia. The deletion [del(21)(q11.1-q22.1)] extends molecularly from marker D21S215 to D21S213. The distal breakpoint is not clearly defined but is situated between markers D21S213 and IFNAR. This patient has the largest deletion of chromosome 21 known without having severe mental retardation or malformations. The deletion does not involve the {open_quotes}Down syndrome chromosome{close_quotes} region, the region of chromosome 21 which in trisomy causes most of the manifestations of Down syndrome. Apparently, the proximal part of the long arm of chromosome 21 does not include genes that are responsible for severe clinical effects in the event of either deletion or duplication, since several reported patients with either trisomy or deletion of this region have mild phenotypic abnormalities. Congenital hypothyroidism is much more common in Down syndrome than in the average population. Thus, the congenital hypothyroidism of the present patient might indicate that there is one or several genes on the proximal part of chromosome 21, which might be of importance for the thyroid function. 24 refs., 4 figs., 2 tabs.

  17. De novo interstitial deletion q16.2q21 on chromosome 6

    SciTech Connect

    Villa, A.; Urioste, M.; Luisa, M. [Universidad Complutense, Madrid (Spain)] [and others

    1995-01-30

    A de novo interstitial deletion of 6q16.2q21 was observed in a 23-month-old boy with mental and psychomotor delay, obese appearance, minor craniofacial anomalies, and brain anomalies. We compare clinical manifestations of this patient with those observed in previously reported cases with similar 6q interstitial deletions. It is interesting to note the clinical similarities between some patients with interstitial deletions of 6q16 or q21 bands and patients with Prader-Willi syndrome (PWS) and it may help to keep in mind cytogenetic studies of patients with some PWS findings. 24 refs., 3 figs., 2 tabs.

  18. Neurodevelopmental and behavioral abnormalities associated with deletion of chromosome 9p.

    PubMed

    Eshel, Gideon; Lahat, Eli; Reish, Orit; Barr, Joseph

    2002-01-01

    We report a child with craniosynostosis, partial absence of the corpus callosum, developmental delay, precocious puberty, and deletion of chromosome 9(p12p13,3). A review of the literature did not reveal any previous combination of the same kind. Craniosynostosis and partial absence of the corpus callosum, separately or in conjunction, may be part of the spectrum of malformations in the chromosome 9p deletion syndrome, and its presence, in combination with other known features, should prompt a search for this particular deletion as part of the differential diagnosis. PMID:11913572

  19. A novel acquired cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) with a submicroscopic deletion at 11p14.3 in an adult with hypereosinophilic syndrome.

    PubMed

    Kjeldsen, Eigil

    2015-08-01

    Hypereosinophilic syndrome (HES) is a clinically and pathologically heterogeneous disease entity. It is characterized by persistent eosinophilia and organ damage after excluding other causes. Clonal eosinophilia is distinguished from idiopathic eosinophilia by the presence of histologic, cytogenetic, or molecular evidence of an underlying malignancy. There are two distinct subcategories of clonal eosinophilia: chronic eosinophilic leukemia, not otherwise specified and myeloid/lymphoid neoplasms with eosinophilia and mutations involving platelet-derived growth factor receptor ?/? or fibroblast growth factor receptor 1. More than 50% of HES are without knowledge of underlying pathogenic molecular pathways. Here we examined a HES patient by oligo-based aCGH analysis and molecular cytogenetic methods. Examination for the common eosinophilia-related cytogenetic abnormalities involving the genes PDGFRA, PDGFRB, and FGFR1 together with BCR-ABL fusion gene was negative. Cytogenetic analysis and multi-color FISH analysis revealed a novel cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2). By oaCGH analysis we could not find any copy number changes related to the cytogenetic breakpoints but instead detected a 0.9Mb submicroscopic deletion at 11p14.3. The deleted region involved the 5'-upstream sequences and exons 1-4 of the LUZP2 gene, which encodes a leucine zipper protein. Analysis of surrogate germ-line cells revealed a normal result showing that the detected chromosomal aberrations were acquired. This is the first report on a HES patient associated with a novel complex three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) and a submicroscopic deletion in chromosome band 11p14.3. The study also demonstrates the benefits of oligo-based aCGH analysis in detecting hidden disease related chromosomal abnormalities. The present findings provide additional clues to unravel important molecular pathways in HES to obtain the full spectrum of acquired chromosomal and genomic aberrations in this heterogeneous disease entity. As more cases become characterized this may eventually improve on classification and treatment options. PMID:25962659

  20. Fragile X phenotype in a patient with a large de novo deletion in Xq27-q28

    SciTech Connect

    Albright, S.G.; Rao, K.W.; Tennison, M.B.; Aylsworth, A.S. [Univ. of North Carolina, Chapel Hill, NC (United States); Lachiewicz, A.M. [Duke Univ. Medical Center, Durham, NC (United States); Tarleton, J.C.; Schwartz, C.E.; Richie, R. [Greenwood Genetic Center, SC (United States)

    1994-07-15

    A 2-year-old boy with manifestations of the fragile X syndrome was found to have a cytogenetically visible deletion of Xq27-q28 including deletion of FMR-1. Molecular analysis of the patient was recently described in Tarleton et al. and the deletion was estimated to be at least 3 megabases (Mb). His mother had 2 FMR-1 alleles with normal numbers of CGG repeats, 20 and 32, respectively. Thus, the deletion occurred as a de novo event. The patient does not appear to have clinical or laboratory findings other than those typically associated with fragile X syndrome, suggesting that the deletion does not remove other contiguous genes. This report describes the phenotype of the patient, including psychological studies. 23 refs., 3 figs.

  1. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion.

    PubMed

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-11-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance. PMID:25614873

  2. SNP array mapping of 20p deletions: Genotypes, Phenotypes and Copy Number Variation

    PubMed Central

    Kamath, Binita M.; Thiel, Brian D.; Gai, Xiaowu; Conlin, Laura K.; Munoz, Pedro S.; Glessner, Joseph; Clark, Dinah; Warthen, Daniel M.; Shaikh, Tamim H.; Mihci, Ercan; Piccoli, David A.; Grant, Struan F.A.; Hakonarson, Hakon; Krantz, Ian D.; Spinner, Nancy B.

    2008-01-01

    The use of array technology to define chromosome deletions and duplications is bringing us closer to establishing a genotype/phenotype map of genomic copy number alterations. We studied 21 patients and 5 relatives with deletions of the short arm of chromosome 20 using the Illumina HumanHap550 SNP array to 1) more accurately determine the deletion sizes, 2) identify and compare breakpoints, 3) establish genotype/phenotype correlations and 4) investigate the use of the HumanHap550 platform for analysis of chromosome deletions. Deletions ranged from 95kb to 14.62Mb, and all of the breakpoints were unique. Eleven patients had deletions between 95kb and 4Mb and these individuals had normal development, with no anomalies outside of those associated with Alagille syndrome. The proximal and distal boundaries of these eleven deletions constitute a 5.4MB region, and we propose that haploinsufficiency for only 1 of the 12 genes in this region causes phenotypic abnormalities. This defines the JAG1 associated critical region, in which deletions do not confer findings other than those associated with Alagille syndrome. The other 10 patients had deletions between 3.28Mb and 14.62Mb, which extended outside the critical region, and notably, all of these patients, had developmental delay. This group had other findings such as autism, scoliosis and bifid uvula. We identified 47 additional polymorphic genome-wide copy number variants (>20 SNPs), with 0–5 variants called per patient. Deletions of the short arm of chromosome 20 are associated with relatively mild and limited clinical anomalies. The use of SNP arrays provides accurate high-resolution definition of genomic abnormalities. PMID:19058200

  3. 14q12 Microdeletion syndrome and congenital variant of Rett syndrome

    Microsoft Academic Search

    Maria Antonietta Mencarelli; Tjitske Kleefstra; Eleni Katzaki; Filomena Tiziana Papa; Monika Cohen; Rolph Pfundt; Francesca Ariani; Ilaria Meloni; Francesca Mari; Alessandra Renieri

    2009-01-01

    Only two patients with 14q12 deletion have been reported to date. Here, we describe an additional patient with a similar deletion in order to improve the clinical delineation of this new microdeletion syndrome. The emerging phenotype is characterized by a Rett-like clinical course with an almost normal development during the first months of life followed by a period of regression.

  4. Deletions in immunoglobulin mu chains.

    PubMed Central

    Köhler, G; Potash, M J; Lehrach, H; Shulman, M J

    1982-01-01

    Eight mutant hybridoma lines are described, which synthesize short immunoglobulin mu chains. Four internal deletions were mapped by Southern blot analysis. They are shown to remove DNA from either part or all of the first, and first and second, constant mu exons. The sizes of the deletions range between 0.6 and 5 kb, leaving an equal or unequal number of splice signals. Shorter mu RNA of one size was found irrespective of whether an exon was completely or only partially deleted. These results preclude exclusive 3' (constant region) to 5' (variable region) directional splicing of the mu RNA. No important signals seem to reside in the deleted DNA stretches affecting the transcription or the correct RNA splicing of the remaining exons. The internal mu protein deletions revealed unusual covalent light chain attachment demonstrating functional homology between the first (normally used) and fourth mu constant domain. The other mu protein deletions (10, 11, and 12 kd) involved neither gross DNA nor RNA lesions and are considered to be due to premature chain termination. Since secretion is found in most of the mutant IgM-producing lines, no single one of the four mu constant domains (including the C-terminal one which contains the so-called secretory piece) is necessary for secretion. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6329690

  5. Common deletion polymorphisms in the human genome

    Microsoft Academic Search

    Steven A McCarroll; Tracy N Hadnott; George H Perry; Pardis C Sabeti; Michael C Zody; Jeffrey C Barrett; Stephanie Dallaire; Stacey B Gabriel; Charles Lee; Mark J Daly; David M Altshuler

    2005-01-01

    The locations and properties of common deletion variants in the human genome are largely unknown. We describe a systematic method for using dense SNP genotype data to discover deletions and its application to data from the International HapMap Consortium to characterize and catalogue segregating deletion variants across the human genome. We identified 541 deletion variants (94% novel) ranging from 1

  6. Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption

    PubMed Central

    Paciorkowski, Alex R; Keppler-Noreuil, Kim; Robinson, Luther; Sullivan, Christopher; Sajan, Samin; Christian, Susan L; Bukshpun, Polina; Gabriel, Stacy B; Gleeson, Joseph G; Sherr, Elliott H; Dobyns, William B

    2013-01-01

    Deletions of 16p13.11 have been associated with a variety of phenotypes, and have also been found in normal individuals. We report on two unrelated patients with severe microcephaly, agenesis of the corpus callosum, scalp rugae, and a fetal brain disruption (FBD)-like phenotype with inherited deletions of 16p13.11. The first patient was subsequently found on whole exome sequencing to have a nonsense mutation (p.R44X) in NDE1 on the non-deleted chromosome 16 homolog. We then undertook copy number studies of 16p13.11 and sequencing of NDE1 in nine additional patients with a similar severe microcephaly, agenesis of the corpus callosum, and FBD-like phenotype. The second patient was found to have an inherited deletion of the entire NDE1 gene combined with a frameshift mutation (c.1020-1021het_delGA) in the non-deleted NDE1. These observations broaden the phenotype seen in NDE1-related microcephaly to include FBD. These data also represent the second described syndrome, after Bernard-Soulier syndrome, where an autosomal recessive condition combines an inherited segmental duplication mediated deletion with a mutation in a gene within the non-deleted homolog. Finally, we performed informatics analysis of the 16p13.11 gene content, and found that there are many genes within the region with evidence for role(s) in brain development. Sequencing of other candidate genes in this region in patients with deletion 16p13.11 and more severe neurophenotypes may be warranted. PMID:23704059

  7. ATLAS DQ2 Deletion Service

    NASA Astrophysics Data System (ADS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-12-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  8. Prenatal diagnosis of two de novo 4q35-qter deletions characterized by array-CGH

    PubMed Central

    2013-01-01

    Background The 4q- syndrome is a well known genetic condition caused by a partial terminal or interstitial deletion in the long arm of chromosome 4. The great variability in the extent of these deletions and the possible contribution of additional genetic rearrangements, such as unbalanced translocations, lead to a wide spectrum of clinical manifestations. The majority of reports of 4q- cases are associated with large deletions identified by conventional chromosome analysis; however, the widespread clinical use of novel molecular techniques such as array comparative genomic hybridization (a-CGH) has increased the detection rate of submicroscopic chromosomal aberrations associated with 4q- phenotype. Results Herein we report two prenatal cases of 4qter deletions which presented the first with no sonographic findings and the second with brain ventriculomegaly combined with oligohydramnios. Standard karyotyping demonstrated a deletion at band q35.1 of chromosome 4 in both cases. The application of a-CGH confirmed the diagnosis and offered a precise characterization of the genetic defect. Conclusions We provide a review of the currently available literature on the prenatal diagnostic approach of 4q- syndrome and we compare our results with other published cases. Our data suggest that the identification and the precise molecular characterization of new cases with 4q- syndrome will contribute in elucidating the genetic spectrum of this disorder. PMID:24176130

  9. Behavioral Profiles in Phelan-McDermid Syndrome: Focus on Mental Health

    ERIC Educational Resources Information Center

    Shaw, Steven R.; Rahman, Amira; Sharma, Akanksha

    2011-01-01

    Phelan-McDermid syndrome (PMS) is a multiple congenital anomalies and intellectual disabilities syndrome associated with a deletion of chromosome 22 terminal band 13.3. The deletion is associated with severe intellectual disabilities, absent or delayed speech, behavior problems, and autism. The objective of this study was to provide a detailed…

  10. Nijmegen breakage syndrome.

    PubMed

    Kondratenko, Irina; Paschenko, Olga; Polyakov, Alexandr; Bologov, Andrey

    2007-01-01

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disease, characterized by microcephaly, growth retardation, immunodeficiency, chromosome instability, radiation sensitivity, and a strong predisposition to lymphoid malignancy. The gene responsible for the development of this syndrome (NBS1) was mapped on chromosome 8q21. The product of this gene--nibrin--is a protein with 95 kDa molecular weight (p95). The same mutation in the NBS1 gene (deletion 657del5) was detected in most of the evaluated patients. In this chapter, we describe the analysis of the literature and our results on clinical and immunological features and genetic evaluation of 21 NBS patients. PMID:17712992

  11. Genetics Home Reference: Jacobsen syndrome

    MedlinePLUS

    ... have no history of the disorder in their family, though they can pass the chromosome deletion to their children. Between 5 percent and 10 percent of people with Jacobsen syndrome inherit the chromosome abnormality from an unaffected parent. In these cases, the ...

  12. Role of Phosphoinositide-Specific Phospholipase C ?2 in Isolated and Syndromic Mental Retardation

    Microsoft Academic Search

    Vincenza Rita Lo Vasco

    2011-01-01

    Deletions in the distal region of the short arm of chromosome 1 (1p36) are widely diffuse, both as somatic abnormalities in tumors and as constitutive in the congenital 1p36 deletion syndrome. The deletion size varies from 1.5 to 10 Mb, with common breakpoints located from 1p36.13 to 1p36.33. Patients bearing constitutional deletion of a smaller region, 1p36.3, present with a

  13. Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot.

    PubMed

    Howe, James R; Shellnut, Jason; Wagner, Brian; Ringold, John C; Sayed, Mohamed G; Ahmed, Abul F; Lynch, Patrick M; Amos, Christopher I; Sistonen, Pertti; Aaltonen, Lauri A

    2002-05-01

    Juvenile polyposis (JP) is an autosomal dominant syndrome in which affected patients develop upper- and/or lower-gastrointestinal (GI) polyps. A subset of families with JP have germline mutations in the SMAD4 (MADH4) gene and are at increased risk of GI cancers. To date, six families with JP have been described as having the same SMAD4 deletion (1244-1247delAGAC). The objective of the present study is to determine whether this deletion is a common ancestral mutation or a mutational hotspot. DNA from members of four families with JP, from Iowa, Mississippi, Texas, and Finland, that had this 4-bp deletion was used to genotype 15 simple tandem repeat polymorphism (STRP) markers flanking the SMAD4 gene, including 2 new STRPs within 6.3 and 70.9 kb of the deletion. Haplotypes cosegregating with JP in each family were constructed, and the distances of the closest markers were determined from the draft sequence of the human genome. No common haplotype was observed in these four families with JP. A 14-bp region containing the deletion had four direct repeats and one inverted repeat. Because no common ancestor was suggested by haplotype analysis and the sequence flanking the deletion contains repeats frequently associated with microdeletions, this common SMAD4 deletion in JP most likely represents a mutational hotspot. PMID:11920286

  14. Metabolic Syndrome

    MedlinePLUS

    ... applies to a condition known as metabolic syndrome. Metabolic Syndrome Is an Early Warning Sign Metabolic syndrome isn' ... 2 diabetes down the road. What Exactly Is Metabolic Syndrome? Metabolic syndrome is a collection of problems that ...

  15. Beals Syndrome

    MedlinePLUS

    ... Boards & Staff Annual Report & Financials Contact Us Donate Marfan & Related Disorders What is Marfan Syndrome? What are ... the syndrome. How does Beals syndrome compare with Marfan syndrome? People with Beals syndrome have many of ...

  16. FISH analysis of a subtle familial Xp deletion in a female patient with Madelung deformity

    SciTech Connect

    Hsu, T.Y.; Gibson, L.H.; Pober, B.R. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1994-09-01

    A subtle deletion of Xp [del(X)(p22.32)]was identified by high-resolution chromosome analysis in a twelve-year-old female with short stature (<2 percentile) and Madelung deformity suggestive of Turner syndrome. The proband`s mother, who has short stature (<2 percentile) and demyelinating disorder, also showed this deletion. The maternal grandmother is of normal height and carries two normal X chromosomes. Both the patient and her mother have no other physical abnormalities and are of normal intelligence. To confirm and delineate this Xp deletion, fluorescence in situ hybridization (FISH) was performed on metaphases from the patient and her mother using probes of DXYS20 (a pseudoautosomal locus), DXS232A, and a newly isolated Xp YAC clone, YHX2, whose relative map position is unknown. Hybridization signals of DXS232A were detected on both X chromosomes, and DXYS20 and YHX2 were missing from one of the X`s of both the patient and her mother. YHX2 was thus placed distal to DXS232A (tel-DXYS20-YHX2-S232A-cen). This familial deletion with a breakpoint distal to DXS232A, which is located at -900 Kb telomeric to STS locus, appears to be the smallest Xp deletion reported thus far. Short stature is consistently associated with females carrying Xp deletions. Madelung deformity has been found in some patients with Turner syndrome or Dyschondrosteosis but it has not been reported in patients with Xp deletion. Our results suggest that the phenotype of our patient is associated with her chromosome abnormality. Due to the subtlety of the deletion identified in our patient and her mother, females presenting with short stature warrant careful clinical and cytogenetic evaluation.

  17. Old syndromes and new cytogenetics.

    PubMed

    Punnett, H H; Zakai, E H

    1990-09-01

    This annotation has been confined to well-established clinical syndromes with recently discovered chromosomal etiologies. It deliberately omits retinoblastoma, the oft-cited paradigm of a contiguous gene syndrome, since it is usually inherited as a Mendelian single gene disorder. However, it was recognition of both the deletion of band q14 of chromosome 13 in mentally retarded children with retinoblastoma, and the linkage of retinoblastoma with the genetic marker esterase D, which resulted in the eventual cloning of the gene. Also omitted are microdeletions of the X chromosome. These disorders are seen primarily in males, who manifest the phenotypic effects of the deletion of the loci of various combinations of adjacent genes: Duchenne muscular dystrophy, glycerol kinase deficiency, adrenal hypoplasia, optic albinism, hypogonadotropic hypogonadism and anosmia (Kallman syndrome), chondrodysplasia punctata and ichthyosis. Many are also mentally retarded. The third group omitted are Mendelian disorders occurring with atypical mental retardation (not usually part of the disorder), the presumption being that they include small deletions. It is expected that other contiguous gene syndromes will be recognized eventually; Rubinstein-Taybi and Cornelia de Lange syndromes are prime candidates. Why do deletions have such dramatic consequences when a normal homologue of the region is present? If their effects were due to the uncovering of recessive genes, we would expect to see greater variations in phenotype among carriers, including normal individuals whose deletions were masked by the protective effects of dominant alleles in the homologous regions. Imprinting--the 'stamping' of a gene as it passes through the germ line--provides a more satisfactory explanation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2227145

  18. Constructing Deletions with Defined Endpoints in Drosophila

    Microsoft Academic Search

    Lynn Cooley; Dianne Thompson; Allan C. Spradling

    1990-01-01

    Chromosomes bearing small deletions are valuable tools in Drosophila genetics. We have investigated a method for efficiently constructing precise chromosomal deficiencies. Two P transposable elements were positioned within a progenitor strain at the sites of the desired deletion endpoints. Deletions spanning the two transposons were recovered at high frequency when P element transposase was expressed in these flies, but only

  19. Secure Deletion of Data from SSD

    Microsoft Academic Search

    Akli Fundo; Aitenka Hysi; Igli Tafa

    2014-01-01

    The deletion of data from storage is an important component on data security. The deletion of entire disc or special files is well-known on hard drives, but this is quite different on SSDs, because they have a different architecture inside, and the main problem is if they serve the same methods like hard drives for data deletion or erasing. The

  20. MEF2C-Related 5q14.3 Microdeletion Syndrome Detected by Array CGH: A Case Report

    PubMed Central

    Shim, Jae Sun; Min, Kyunghoon; Lee, Seung Hoon; Park, Ji Eun; Park, Sang Hee; Kim, MinYoung

    2015-01-01

    Genetic screening is being widely applied to trace the origin of global developmental delay or intellectual disability. The 5q14.3 microdeletion has recently been uncovered as a clinical syndrome presenting with severe intellectual disability, limited walking ability, febrile convulsions, absence of speech, and minor brain malformations. MEF2C was suggested as a gene mainly responsible for the 5q14.3 microdeletion syndrome. We present the case of a 6-year-old girl, who is the first patient in Korea with de novo interstitial microdeletions involving 5q14.3, showing the typical clinical features of 5q14.3 microdeletion syndrome with a smaller size of chromosomal involvement compared to the previous reports. The microdeletion was not detected by subtelomeric multiplex ligation-dependent probe amplification, but by array comparative genomic hybridization, which is advisable for the detection of a small-sized genetic abnormality.

  1. Bladder exstrophy and extreme genital anomaly in a patient with pure terminal 1q deletion: expansion of phenotypic spectrum.

    PubMed

    Zaki, M S; Gillessen-Kaesbach, G; Vater, I; Caliebe, A; Siebert, R; Kamel, A K; Mohamed, A M; Mazen, I

    2012-01-01

    We describe a 5 2/12 years old male patient with a de novo deletion 1q43q44 of approximately 10.4 Mb in size. The boy presented with the classic features of chromosome 1q43q44 deletion syndrome including growth and psychomotor retardation, microcephaly, distinct facial features and various midline defects as agenesis of corpus callosum, cardiac and urogenital anomalies. Fronto-parietal simplified gyral pattern was an additional neuroimaging finding. The urogenital anomalies in our patient were remarkable in form of bladder exstrophy and severe hypogenitalism with a marked hypoplastic scrotum, small sized retractile testis and absent phallus. To the best of our knowledge, bladder exstrophy and absence phallus have not been previously reported in terminal deletion 1q43q44 syndrome. This report provides further evidence of phenotype-genotype correlation and expands the phenotypic spectrum of midline defects described with this syndrome. PMID:22061479

  2. A PCR test for progressive external ophthalmoplegia and Kearns-Sayre syndrome on DNA from blood samples

    Microsoft Academic Search

    I. F. M De Coo; T Gussinklo; P. J. W Arts; B. A Van Oost; H. J. M Smeets

    1997-01-01

    Progressive external ophthalmoplegia (PEO) and Kearns-Sayre syndrome (KSS) are caused by deletions in mitochondrial DNA. Identification of these deletions is important for diagnosis, prognosis and genetic counselling. As yet, the most frequently used test is Southern blot analysis of DNA isolated from a muscle biopsy. Here, we describe a sensitive PCR-based test for the identification of these deletions in DNA

  3. Interstitial deletions of the short arm of chromosome 4 in patients with a similar combination of multiple minor anomalies and mental retardation

    SciTech Connect

    White, D.M.; Pillers, D.A.M.; Magenis, R.E. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-07-17

    Interstitial deletions of chromosome 4 have been described rarely and have had variable presentations. We describe the phenotypic characteristics associated with interstitial deletion of the p14-16 region of chromosome 4 in 7 patients with multiple minor anomalies in common, and with mental retardation. A review of published cases of interstitial deletions of the short arm of chromosome 4 is provided. These deletions present a distinct phenotype which is different from that of Wolf-Hirschhorn syndrome. 52 refs., 12 figs., 2 tabs.

  4. Xp21 deletion in female patients with intellectual disability: Two new cases and a review of the literature.

    PubMed

    Heide, Solveig; Afenjar, Alexandra; Edery, Patrick; Sanlaville, Damien; Keren, Boris; Rouen, Alexandre; Lavillaureix, Alinoë; Hyon, Capucine; Doummar, Diane; Siffroi, Jean-Pierre; Chantot-Bastaraud, Sandra

    2015-01-01

    Xp21 continuous gene deletion syndrome is characterized by complex glycerol kinase deficiency (GK), adrenal hypoplasia congenital (NROB1), intellectual disability and/or Duchenne muscular dystrophy (DMD). The clinical features depend on the size of the deletion, as well as on the number and the nature of the encompassed genes. More than 100 male patients have been reported so far, while only a few cases of symptomatic female carriers have been described. We report here detailed clinical features and X chromosome inactivation analysis in two unrelated female patients with overlapping Xp21 deletions presenting with intellectual disability and inconstant muscular symptoms. PMID:25917374

  5. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles

    PubMed Central

    Boone, Philip M.; Campbell, Ian M.; Baggett, Brett C.; Soens, Zachry T.; Rao, Mitchell M.; Hixson, Patricia M.; Patel, Ankita; Bi, Weimin; Cheung, Sau Wai; Lalani, Seema R.; Beaudet, Arthur L.; Stankiewicz, Pawel; Shaw, Chad A.; Lupski, James R.

    2013-01-01

    Over 1200 recessive disease genes have been described in humans. The prevalence, allelic architecture, and per-genome load of pathogenic alleles in these genes remain to be fully elucidated, as does the contribution of DNA copy-number variants (CNVs) to carrier status and recessive disease. We mined CNV data from 21,470 individuals obtained by array-comparative genomic hybridization in a clinical diagnostic setting to identify deletions encompassing or disrupting recessive disease genes. We identified 3212 heterozygous potential carrier deletions affecting 419 unique recessive disease genes. Deletion frequency of these genes ranged from one occurrence to 1.5%. When compared with recessive disease genes never deleted in our cohort, the 419 recessive disease genes affected by at least one carrier deletion were longer and located farther from known dominant disease genes, suggesting that the formation and/or prevalence of carrier CNVs may be affected by both local and adjacent genomic features and by selection. Some subjects had multiple carrier CNVs (307 subjects) and/or carrier deletions encompassing more than one recessive disease gene (206 deletions). Heterozygous deletions spanning multiple recessive disease genes may confer carrier status for multiple single-gene disorders, for complex syndromes resulting from the combination of two or more recessive conditions, or may potentially cause clinical phenotypes due to a multiply heterozygous state. In addition to carrier mutations, we identified homozygous and hemizygous deletions potentially causative for recessive disease. We provide further evidence that CNVs contribute to the allelic architecture of both carrier and recessive disease-causing mutations. Thus, a complete recessive carrier screening method or diagnostic test should detect CNV alleles. PMID:23685542

  6. Ribosomal protein gene deletions in Diamond-Blackfan anemia

    PubMed Central

    Vlachos, Adrianna; Atsidaftos, Eva; Carlson-Donohoe, Hannah; Markello, Thomas C.; Arceci, Robert J.; Ellis, Steven R.; Lipton, Jeffrey M.

    2011-01-01

    Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA. PMID:22045982

  7. Deletion of Prepl Causes Growth Impairment and Hypotonia in Mice

    PubMed Central

    Lone, Anna Mari; Leidl, Mathias; McFedries, Amanda K.; Horner, James W.; Creemers, John; Saghatelian, Alan

    2014-01-01

    Genetic studies of rare diseases can identify genes of unknown function that strongly impact human physiology. Prolyl endopeptidase-like (PREPL) is an uncharacterized member of the prolyl peptidase family that was discovered because of its deletion in humans with hypotonia-cystinuria syndrome (HCS). HCS is characterized by a number of physiological changes including diminished growth and neonatal hypotonia or low muscle tone. HCS patients have deletions in other genes as well, making it difficult to tease apart the specific role of PREPL. Here, we develop a PREPL null (PREPL?/?) mouse model to address the physiological role of this enzyme. Deletion of exon 11 from the Prepl gene, which encodes key catalytic amino acids, leads to a loss of PREPL protein as well as lower Prepl mRNA levels. PREPL?/? mice have a pronounced growth phenotype, being significantly shorter and lighter than their wild type (PREPL+/+) counterparts. A righting assay revealed that PREPL?/? pups took significantly longer than PREPL+/+ pups to right themselves when placed on their backs. This deficit indicates that PREPL?/? mice suffer from neonatal hypotonia. According to these results, PREPL regulates growth and neonatal hypotonia in mice, which supports the idea that PREPL causes diminished growth and neonatal hypotonia in humans with HCS. These animals provide a valuable asset in deciphering the underlying biochemical, cellular and physiological pathways that link PREPL to HCS, and this may eventually lead to new insights in the treatment of this disease. PMID:24586561

  8. Two new cases of FMRI deletion associated with mental impairment

    SciTech Connect

    Hirst, M.; Grewal, P.; Flannery, A.; Davies, K. [John Radcliffe Hospital, Oxford, England (United Kingdom); Slatter, R.; Maher, E.; Barton, D. [Molecular Genetics Lab., Cambridge (United Kingdom); Fryns, J.P. [University Hospital Gasthuisberg, Leuven (Belgium)

    1995-01-01

    Screening of families clinically ascertained for the fragile X syndrome phenotype revealed two mentally impaired males who were cytogenetically negative for the fragile X chromosome. In both cases, screening for the FMR1 trinucleotide expansion mutation revealed a rearrangement within the FMR1 gene. In the first case, a 660-bp deletion is present in 40% of peripheral lymphocytes. PCR and sequence analysis revealed it to include the CpG island and the CGG trinucleotide repeat, thus removing the FMR1 promoter region and putative mRNA start site. In the second case, PCR analysis demonstrated that a deletion extended from a point proximal to FMR1 to 25 kb into the gene, removing all the region 5{prime} to exon 11. The distal breakpoint was confirmed by Southern blot analysis and localized to a 600-bp region, and FMR1-mRNA analysis in a cell line established from this individual confirmed the lack of a transcript. These deletion patients provide further confirmatory evidence that loss of FMR1 gene expression is indeed responsible for mental retardation. Additionally, these cases highlight the need for the careful examination of the FMR1 gene, even in the absence of cytogenetic expression, particularly when several fragile X-like clinical features are present. 31 refs., 6 figs.

  9. Brief Report: Peculiar Evolution of Autistic Behaviors in Two Unrelated Children with Brachidactyly-Mental Retardation Syndrome

    ERIC Educational Resources Information Center

    Mazzone, Luigi; Vassena, Lia; Ruta, Liliana; Mugno, Diego; Galesi, Ornella; Fichera, Marco

    2012-01-01

    Brachidactyly-Mental Retardation (BDMR) Syndrome (MIM 600430) is associated with terminal deletions at chromosome 2q37 and a limited number of studies also reported an association between 2q37 [right arrow] qter deletion and autism. Herein we describe two cases of autism in unrelated children with BDMR Syndrome, showing physical, cognitive,…

  10. A novel mosaic NSD1 intragenic deletion in a patient with an atypical phenotype.

    PubMed

    Castronovo, Chiara; Rusconi, Daniela; Crippa, Milena; Giardino, Daniela; Gervasini, Cristina; Milani, Donatella; Cereda, Anna; Larizza, Lidia; Selicorni, Angelo; Finelli, Palma

    2013-03-01

    Sotos syndrome, which is characterized by overgrowth, macrocephaly, distinctive facial features, and developmental delay, arises from mutations and deletions of the NSD1 gene at 5q35.3. Sixteen NSD1 intragenic deletions (including one in a mosaic condition) and one partial duplication have been reported in patients with Sotos syndrome. Here, we describe a boy aged 4 years and 10 months that showed facial dysmorphism (including frontal bossing, widely spaced eyes, deeply set eyes, a wide nasal bridge, anteverted nares, and a wide mouth), normal growth, and a psychomotor delay. High-resolution array comparative genomic hybridization (CGH) analysis identified a mosaic heterozygous intragenic NSD1 deletion of 38?kb, which included part of intron 2 and the entire exon 3, and led to NSD1 haploinsufficiency. The deletion somatic mosaicism was subsequently confirmed by fluorescence in situ hybridization (FISH) analysis using fosmid clones. This patient presents the most atypical phenotype thus far associated with NSD1 haploinsufficiency. It is possible that this atypical phenotype may have resulted from the somatic mosaicism of the NSD1 defect. Our study confirms the usefulness of array CGH for increasing the detection rate of NSD1 abnormalities and for diagnosing syndromic patients that do not present an easily recognized phenotype. PMID:23341071

  11. Deletion and duplication within the p11.2 region of chromosome 17

    SciTech Connect

    McCorquodale, D.J.; McCorquodale, M.; Bereziouk, O. [Univ. of Illinois College of Medicine, Chicago, IL (United States)] [and others

    1994-09-01

    A 7 1/2-year-old male patient presented with mild mental retardation, speech delay, hyperactivity, behavioral problems, mild facial hypoplasia, short broad hands, digital anomalies, and self-injurious behavior. Chromosomes obtained from peripheral blood cells revealed a deletion of 17p11.2 in about 40% of the metaphases examined, suggesting that the patient had Smith-Magenis Syndrome. A similar pattern of mosaicism in peripheral blood cells, but not in fibroblasts in which all cells displayed the deletion, has been previously reported. Since some cases of Smith-Magenis Syndrome have a deletion that extends into the region associated with Charcot-Marie-Tooth (CMT) Syndrome, we examined interphase cells with a CMT1A-specific probe by the method of fluorescence in situ hybridization. The CMT1A region was not deleted, but about 40% of the cells gave signals indicating a duplication of the CMT1A region. The patient has not presented neuropathies associated with CMT at this time. Future tracking of the patient should be informative.

  12. Hunter-McAlpine craniosynostosis phenotype associated with skeletal anomalies and interstitial deletion of chromosome 17q

    SciTech Connect

    Thomas, J.A.; Manchester, D.K.; Prescott, K.E.; Milner, R.; McGavran, L.; Cohen, M.M. Jr. [Univ. of Colorado School of Medicine, Denver, CO (United States)] [Univ. of Colorado School of Medicine, Denver, CO (United States); [Dalhousie Univ., Halifax, Nova Scotia (Canada)

    1996-04-24

    Hunter-McAlpine syndrome is an autosomal dominant disorder consisting of variable manifestations including craniosynostosis, almond-shaped palpebral fissures, small mouth, mild acral-skeletal anomalies, short stature, and mental deficiency. We report on a 9-year-old boy with this phenotype with more severe skeletal abnormalities than previously described. Chromosomes showed del(17)(q23.1{r_arrow}q24.2); the more severe phenotype may be explained by the deletion. The deletion also suggests the possibility that the gene for Hunter-McAlpine syndrome might map to that region. 8 refs., 5 figs., 2 tabs.

  13. Sjögren syndrome

    MedlinePLUS

    Xerostomia-Sjögren syndrome; Keratoconjunctivitis sicca - Sjögren; Sicca syndrome ... in children. Primary Sjögren syndrome is defined as dry eyes and dry mouth without another autoimmune disorder. Secondary ...

  14. 22q11.2 Deletions in Patients with Conotruncal Defects: Data from 1610 Consecutive Cases

    PubMed Central

    Peyvandi, Shabnam; Lupo, Philip J; Garbarini, Jennifer; Woyciechowski, Stacy; Edman, Sharon; Emanuel, Beverly S; Mitchell, Laura; Goldmuntz, Elizabeth

    2013-01-01

    Background The 22q11.2 deletion syndrome is characterized by multiple congenital anomalies including conotruncal cardiac defects. Identifying the patient with a 22q11.2 deletion (22q11del) can be challenging because many extracardiac features become apparent later in life. We sought to better define the cardiac phenotype associated with a 22q11del to help direct genetic testing. Methods 1,610 patients with conotruncal defects were sequentially tested for a 22q11del. Counts and frequencies for primary lesions and cardiac features were tabulated for those with and without a 22q11del. Logistic regression models investigated cardiac features that predicted deletion status in tetralogy of Fallot (TOF). Results Deletion frequency varied by primary anatomic phenotype. Regardless of the cardiac diagnosis, a concurrent aortic arch anomaly (AAA) was strongly associated with deletion status (OR 5.07, 95% CI: 3.66–7.04). In the TOF subset, the strongest predictor of deletion status was an AAA (OR 3.14, 95% CI: 1.87–5.27, p <0.001), followed by pulmonary valve atresia (OR 2.03, 95% CI: 1.02–4.02, p= 0.04). Among those with double outlet right ventricle and transposition of the great arteries, only those with an AAA had a 22q11del. However, five percent of patients with an isolated conoventricular ventricular septal defect and normal aortic arch anatomy had a 22q11del, while no one with an IAA-A had a 22q11del. Conclusion A subset of patients with conotruncal defects are at risk for a 22q11del. A concurrent AAA increases the risk regardless of the intracardiac anatomy. These findings help direct genetic screening for the 22q11.2 deletion syndrome in the cardiac patient. PMID:23604262

  15. Clinical comparison of 10q26 overlapping deletions: delineating the critical region for urogenital anomalies.

    PubMed

    Vera-Carbonell, Ascensión; López-González, Vanesa; Bafalliu, Juan Antonio; Ballesta-Martínez, María J; Fernández, Asunción; Guillén-Navarro, Encarna; López-Expósito, Isabel

    2015-04-01

    The 10q26 deletion syndrome is a clinically heterogeneous disorder. The most common phenotypic characteristics include pre- and/or postnatal growth retardation, microcephaly, developmental delay/intellectual disability and a facial appearance consisting of a broad nasal bridge with a prominent nose, low-set malformed ears, strabismus, and a thin vermilion of the upper lip. In addition, limb and cardiac anomalies as well as urogenital anomalies are occasionally observed. In this report, we describe three unrelated females with 10q26 terminal deletions who shared clinical features of the syndrome, including urogenital defects. Cytogenetic studies showed an apparently de novo isolated deletion of the long arm of chromosome 10, with breakpoints in 10q26.1, and subsequent oligo array-CGH analysis confirmed the terminal location and defined the size of the overlapping deletions as ? 13.46, ? 9.31 and ? 9.17 Mb. We compared the phenotypic characteristics of the present patients with others reported to have isolated deletions and we suggest that small 10q26.2 terminal deletions may be associated with growth retardation, developmental delay/intellectual disability, craniofacial features and external genital anomalies whereas longer terminal deletions affecting the 10q26.12 and/or 10q26.13 regions may be responsible for renal/urinary tract anomalies. We propose that the haploinsufficiency of one or several genes located in the 10q26.12-q26.13 region may contribute to the renal or urinary tract pathogenesis and we highlight the importance of FGFR2 and probably of CTBP2 as candidate genes. PMID:25655674

  16. Microdeletion 3q syndrome.

    PubMed

    Ramieri, Valerio; Tarani, Luigi; Costantino, Francesco; Basile, Emanuela; Liberati, Natascia; Rinna, Claudio; Cascone, Piero; Colloridi, Fiorenza

    2011-11-01

    The authors present the clinical case of a 5-month-old boy, affected by multimalformative syndrome with features of microdeletion 3q syndrome. In the literature so far, the real incidence is unknown because of its rarity. The goal of this study was to describe the salient findings of this rare malformative syndrome, which needs a multidisciplinary approach. The patient had 3q interstitial chromosome deletion (q22.1-q25.2). He showed the following clinical features: microcephaly, microphthalmia, epicantus inversus, blepharophimosis, palpebral ptosis, short neck with pterygium, brachycephaly, round face, hypotelorism, broad nasal bridge, beaked nose, large and low-set ears, soft cleft palate, retromicrognathia with large mouth, arthrogryposis of the superior limbs and knees in association with clinodactyly, overlapping of second and third digits of both hands and feet, and gastroesophageal reflux. The patient developed physical and motor development delay. He was affected by Dandy-walker malformation, characterized by cerebellum vermis hypoplasia. The placement of the patient in contiguous gene syndrome (Dandy walker syndrome, Pierre-Robin sequence, and Seckel syndrome) was carried out by a multidisciplinary team to have a holistic evaluation of clinical findings. Thanks to this approach, it was possible to establish a complete diagnostic and therapeutic course. The genetic analysis enables to arrange an assistive program. Surgeons' attention was focused on the malformations, which represented an obstacle for normal development and social life. PMID:22067867

  17. Ophthalmic features in a dysmorphic boy with chromosome 4q deletion and duplication.

    PubMed

    Parentin, Fulvio; Fabretto, Antonella; Benussi, Daniela Gambel; Petix, Vincenzo; Marchetti, Federico; Dalprà, Leda; Redaelli, Serena; Pensiero, Stefano; Pecile, Vanna

    2009-06-01

    The 4q deletion syndrome shows varying phenotype, ranging from severe and complex malformations, unconformable with life, to more specific findings, as genitourinary, gastrointestinal and cardiac malformations, cleft palate,microcephaly, hypertelorism and abnormal ears and limbs. Strabismus, nystagmus, ophthalmoplegia, and optic nerve anomalies have been rarely described in literature. We report an original case of simultaneous deletion and duplication of chromosome 4q, confirmed by SNPs-array analysis of DNA, and characterized by a previously unreported association between optic nerve hypoplasia and progressive external ophthalmoplegia. PMID:19373683

  18. Frontonasal malformation with tetralogy of Fallot associated with a submicroscopic deletion of 22q11

    SciTech Connect

    Stratton, R.F. [South Texas Genetics Center, San Antonio, TX (United States)] [South Texas Genetics Center, San Antonio, TX (United States); Payne, R.M. [Central Texas Genetics Center, Austin, TX (United States)] [Central Texas Genetics Center, Austin, TX (United States)

    1997-03-31

    We report on a 14-month-old girl with bifid nasal tip and tetralogy of Fallot. Several similar patients have been described with CNS or eye abnormalities. Chromosome analysis with FISH, using Oncor DiGeorge probes, confirmed a submicroscopic deletion of 22q11. Many patients with Shprintzen (velo-cardio-facial) syndrome have a similar deletion with conotruncal cardiac defects and an abnormal nasal shape, suggesting that a gene in this area, possibly affecting neural crest cells, influences facial and other midline development. 13 refs., 1 fig.

  19. Preliminary phenotypic map of chromosome 4p16 based on 4p deletions

    SciTech Connect

    Estabrooks, L.L.; Rao, K.W.; Aylsworth, A.S. [Univ. of North Carolina, Chapel Hill, NC (United States)] [and others

    1995-07-17

    We have collected and analyzed clinical information from 11 patients with chromosome 4p deletions or rearrangements characterized by various molecular techniques. Comparing the extent of these patients` deletions with their respective clinical presentations led to the proposal of a preliminary phenotypic map of chromosome 4p. This map consists of regions which, when deleted, are associated with specific clinical manifestations. Nonspecific changes such as mental and growth retardation are not localized, and probably result from the deletion of more than one gene or region. The region associated with most of the facial traits considered typical in Wolf-Hirschhorn syndrome (WHS) patients coincides with the currently proposed WHS critical region (WHSCR), but some anomalies commonly seen in WHS appear to map outside of the WHSCR. The observation of clinodactyly in 2 patients with nonoverlapping deletions allows assignment of these defects to at least 2 separate regions in 4p16. These initial observations and attempts at genotype/phenotype correlation lay the groundwork for identifying the genetic basis of these malformations, a common objective of gene mapping efforts and chromosome deletion studies. 12 refs., 2 figs., 1 tab.

  20. Aggressive juvenile polyposis in children with chromosome 10q23 deletion.

    PubMed

    Septer, Seth; Zhang, Lei; Lawson, Caitlin E; Cocjin, Jose; Attard, Thomas; Ardinger, Holly H

    2013-01-01

    Juvenile polyps are relatively common findings in children, while juvenile polyposis syndrome (JPS) is a rare hereditary syndrome entailing an increased risk of colorectal cancer. Mutations in BMPR1A or SMAD4 are found in roughly half of patients diagnosed with JPS. Mutations in PTEN gene are also found in patients with juvenile polyps and in Bannayan-Riley-Ruvalcaba syndrome and Cowden syndrome. Several previous reports have described microdeletions in chromosome 10q23 encompassing both PTEN and BMPR1A causing aggressive polyposis and malignancy in childhood. These reports have also described extra-intestinal findings in most cases including cardiac anomalies, developmental delay and macrocephaly. In this report we describe a boy with a 5.75 Mb deletion of chromosome 10q23 and a 1.03 Mb deletion within chromosome band 1p31.3 who displayed aggressive juvenile polyposis and multiple extra-intestinal anomalies including macrocephaly, developmental delay, short stature, hypothyroidism, atrial septal defect, ventricular septal defect and hypospadias. He required colectomy at six years of age, and early colectomy was a common outcome in other children with similar deletions. Due to the aggressive polyposis and reports of dysplasia and even malignancy at a young age, we propose aggressive gastrointestinal surveillance in children with 10q23 microdeletions encompassing the BMPR1A and PTEN genes to include both the upper and lower gastrointestinal tracts, and also include a flowchart for an effective genetic testing strategy in children with juvenile polyposis. PMID:23599658

  1. Tourette Syndrome

    MedlinePLUS

    What Is Tourette Syndrome? Tourette syndrome is a condition that affects a person's central nervous system and causes tics. Tics are ... few months or a year. Continue Who Gets Tourette Syndrome? Tourette syndrome can affect people of all ...

  2. Tourette Syndrome

    MedlinePLUS

    NINDS Tourette Syndrome Information Page Condensed from Tourette Syndrome Fact Sheet Table of Contents (click to jump to sections) ... Trials Organizations Additional resources from MedlinePlus What is Tourette Syndrome? Tourette syndrome (TS) is a neurological disorder ...

  3. Fanconi syndrome

    MedlinePLUS

    De Toni-Fanconi syndrome ... Fanconi syndrome can be caused by faulty genes, or it may result later in life due to kidney damage. Sometimes the cause of Fanconi syndrome is unknown. Common causes of Fanconi syndrome ...

  4. Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1.

    PubMed

    El Khattabi, Laïla; Guimiot, Fabien; Pipiras, Eva; Andrieux, Joris; Baumann, Clarisse; Bouquillon, Sonia; Delezoide, Anne-Lise; Delobel, Bruno; Demurger, Florence; Dessuant, Hélène; Drunat, Séverine; Dubourg, Christelle; Dupont, Céline; Faivre, Laurence; Holder-Espinasse, Muriel; Jaillard, Sylvie; Journel, Hubert; Lyonnet, Stanislas; Malan, Valérie; Masurel, Alice; Marle, Nathalie; Missirian, Chantal; Moerman, Alexandre; Moncla, Anne; Odent, Sylvie; Palumbo, Orazio; Palumbo, Pietro; Ravel, Aimé; Romana, Serge; Tabet, Anne-Claude; Valduga, Mylène; Vermelle, Marie; Carella, Massimo; Dupont, Jean-Michel; Verloes, Alain; Benzacken, Brigitte; Delahaye, Andrée

    2015-08-01

    6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei. The size of the deletion in the 14 living patients ranged from 1.73 to 7.84?Mb, and the fetus had the largest deletion (14?Mb). Genotype-phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype. Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1 haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to 6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the 6q16.2q16.3-deletion phenotype is discussed. PMID:25351778

  5. Unusual presentation of Kearns-Sayre syndrome in early childhood

    Microsoft Academic Search

    Eliane M Simaan; Mohamad A Mikati; Elias H Touma; Agnes Rötig

    1999-01-01

    Congenital glaucoma and insulin-dependent diabetes mellitus were the predominant presenting signs in a patient with Kearns-Sayre syndrome. Thereafter, he developed short stature, pigmentary retinopathy, progressive external ophthalmoplegia, and ataxia. The diagnosis was confirmed by detecting a deletion of mitochondrial DNA in muscle, thus demonstrating that Kearns-Sayre syndrome can have the unusual presenting signs described above.

  6. Genetics Home Reference: 1p36 deletion syndrome

    MedlinePLUS

    ... of Health National Human Genome Research Institute: Chromosome Abnormalities Educational resources - Information pages (4 links) Patient support - For patients and families (4 links) You may also be interested in ...

  7. A Prenatally Ascertained De Novo Terminal Deletion of Chromosomal Bands 1q43q44 Associated with Multiple Congenital Abnormalities in a Female Fetus

    PubMed Central

    Christopoulou, Georgia; Donoghue, Jacqueline; Konstantinidou, Anastasia E.; Velissariou, Voula

    2015-01-01

    Terminal deletions in the long arm of chromosome 1 result in a postnatally recognizable disorder described as 1q43q44 deletion syndrome. The size of the deletions and the resulting phenotype varies among patients. However, some features are common among patients as the chromosomal regions included in the deletions. In the present case, ultrasonography at 22 weeks of gestation revealed choroid plexus cysts (CPCs) and a single umbilical artery (SUA) and therefore amniocentesis was performed. Chromosomal analysis revealed a possible terminal deletion in 1q and high resolution array CGH confirmed the terminal 1q43q44 deletion and estimated the size to be approximately 8?Mb. Following termination of pregnancy, performance of fetopsy allowed further clinical characterization. We report here a prenatal case with the smallest pure terminal 1q43q44 deletion, that has been molecularly and phenotypically characterized. In addition, to our knowledge this is the first prenatal case reported with 1q13q44 terminal deletion and Pierre-Robin sequence (PRS). Our findings combined with review data from the literature show the complexity of the genetic basis of the associated syndrome. PMID:25722899

  8. Hereditary spherocytic anemia with deletion of the short arm of chromosome 8

    SciTech Connect

    Okamoto, Nobuhiko; Wada, Yoshinao; Nakamura, Yoich [Osaka Medical Center and Research Inst. for Maternal and Child Health, Tokyo (Japan)] [and others

    1995-09-11

    We describe a 30-month-old boy with multiple anomalies and mental retardation with hereditary spherocytic anemia. His karyotype was 46,XYdel(8)(p11.23p21.1). Genes for ankyrin and glutathione reductase (GSR) were localized to chromosome areas 8p11.2 and 8p21.1, respectively. Six patients with spherocytic anemia and interstitial deletion of 8p- have been reported. In these patients, severe mental retardation and multiple anomalies are common findings. This is a new contiguous gene syndrome. Lux established that ankyrin deficiency and associated deficiencies of spectrin and protein 4.2 were responsible for spherocytosis in this syndrome. We reviewed the manifestations of this syndrome. Patients with spherocytic anemia and multiple congenital anomalies should be investigated by high-resolution chromosomal means to differentiate this syndrome. 14 refs., 3 figs., 2 tabs.

  9. A COL4A3 gene mutation and post-transplant anti-?3(IV) collagen alloantibodies in Alport syndrome

    Microsoft Academic Search

    Raghu Kalluri; L. P. van den Heuvel; H. J. M. Smeets; C. H. Schroder; H. H. Lemmink; Ariel Boutaud; Eric G Neilson; Billy G Hudson

    1995-01-01

    A COL4A3 gene mutation and post-transplant anti-?3(IV) collagen alloantibodies in Alport syndrome. The X-linked Alport syndrome is associated with mutations and deletions in COL4A5 gene, one of six genes which constitute the ?-chains of type IV collagen in basement membranes. The autosomal recessive form of Alport syndrome is characterized by mutations and deletions in the COL4A3 and COL4A4 genes. A

  10. Deletion of (11)(q24.2) in a mother and daughter with similar phenotypes

    SciTech Connect

    Neavel, C.B.; Soukup, S. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)

    1994-12-01

    A del(11) (q24.2) was ascertained in a 2-year-old child and subsequently in her 20-year-old mother. Both mother and daughter had developmental delay, short stature, and {open_quotes}coarse{close_quotes} facial appearance. We compare our patients` manifestations to those associated with the distal 11q2 deletion phenotype ({open_quotes}Jacobsen{close_quotes} syndrome), and to the one other reported case of del(11)(q24.2). Our patients did not resemble this latter case, but had some findings in common with Jacobsen syndrome. We present our findings in order to contribute to the information on 11q2 deletions. 13 refs., 3 figs., 1 tab.

  11. Deletion in the FMR1 gene in a fragile-X male

    SciTech Connect

    Mannermaa, A.; Pulkkinen, L.; Kajanoja, E. [Kuopio Univ., Hospital (Finland)] [and others] [Kuopio Univ., Hospital (Finland); and others

    1996-08-09

    The pathogenesis of fragile-X syndrome is a consequence of absence of the FMR1 gene product associated with expansion of the CGG repeat and abnormal methylation of this and a CpG island 250 hp proximal to the CGG repeat located at exon 1 in the FMR1 gene. While this is usually the case, some suspected fragile-X syndrome patients have been described with a mutation other than CGG expansion. We describe here an affected fragile-X male, who was found to be mosaic of a full mutation of the CGG expansion and a deletion in the FMR1 gene. The patient`s phenotype is probably mainly due to the effect of the full mutation of the repeat sequence. Thus, the influence of the deletion is difficult to evaluate. 20 refs., 2 figs.

  12. Disease progression in patients with single, large-scale mitochondrial DNA deletions

    PubMed Central

    Grady, John P.; Campbell, Georgia; Ratnaike, Thiloka; Blakely, Emma L.; Falkous, Gavin; Nesbitt, Victoria; Schaefer, Andrew M.; McNally, Richard J.; Gorman, Grainne S.; Taylor, Robert W.

    2014-01-01

    Single, large-scale deletions of mitochondrial DNA are a common cause of mitochondrial disease and cause a broad phenotypic spectrum ranging from mild myopathy to devastating multi-system syndromes such as Kearns-Sayre syndrome. Studies to date have been inconsistent on the value of putative predictors of clinical phenotype and disease progression such as mutation load and the size or location of the deletion. Using a cohort of 87 patients with single, large-scale mitochondrial DNA deletions we demonstrate that a variety of outcome measures such as COX-deficient fibre density, age-at-onset of symptoms and progression of disease burden, as measured by the Newcastle Mitochondrial Disease Adult Scale, are significantly (P < 0.05) correlated with the size of the deletion, the deletion heteroplasmy level in skeletal muscle, and the location of the deletion within the genome. We validate these findings with re-analysis of 256 cases from published data and clarify the previously conflicting information of the value of these predictors, identifying that multiple regression analysis is necessary to understand the effect of these interrelated predictors. Furthermore, we have used mixed modelling techniques to model the progression of disease according to these predictors, allowing a better understanding of the progression over time of this strikingly variable disease. In this way we have developed a new paradigm in clinical mitochondrial disease assessment and management that sidesteps the perennial difficulty of ascribing a discrete clinical phenotype to a broad multi-dimensional and progressive spectrum of disease, establishing a framework to allow better understanding of disease progression. PMID:24277717

  13. The 22Q11.2 Deletion in Children: High Rate of Autistic Disorders and Early Onset of Psychotic Symptoms

    ERIC Educational Resources Information Center

    Vorstman, Jacob A. S.; Morcus, Monique E. J.; Duijff, Sasja N.; Klaassen, Petra W. J.; Heineman-de, Josien A.; Beemer, Frits A.; Swaab, Hanna; Kahn, Rene S.; van Engeland, Herman

    2006-01-01

    Objective: To examine psychopathology and influence of intelligence level on psychiatric symptoms in children with the 22q11.2 deletion syndrome (22q11DS). Method: Sixty patients, ages 9 through 18 years, were evaluated. Assessments followed standard protocols, including structured and semistructured interviews of parents, videotaped psychiatric…

  14. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo

    PubMed Central

    Abdel-Wahab, Omar; Gao, Jie; Adli, Mazhar; Dey, Anwesha; Trimarchi, Thomas; Chung, Young Rock; Kuscu, Cem; Hricik, Todd; Ndiaye-Lobry, Delphine; LaFave, Lindsay M.; Koche, Richard; Shih, Alan H.; Guryanova, Olga A.; Kim, Eunhee; Li, Sheng; Pandey, Suveg; Shin, Joseph Y.; Telis, Leon; Liu, Jinfeng; Bhatt, Parva K.; Monette, Sebastien; Zhao, Xinyang; Mason, Christopher E.; Park, Christopher Y.; Bernstein, Bradley E.

    2013-01-01

    Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10–30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesis. PMID:24218140

  15. A novel 506kb deletion causing ???? thalassemia.

    PubMed

    Rooks, Helen; Clark, Barnaby; Best, Steve; Rushton, Peter; Oakley, Matthew; Thein, Onn Shaun; Cuthbert, Ann C; Britland, Alison; Ruf, Afruj; Thein, Swee Lay

    We describe a novel deletion causing ???? thalassemia in a Pakistani family. The Pakistani deletion is 506kb in length, and the second largest ???? thalassemia deletion reported to date. It removes the entire ? globin gene (HBB) cluster, extending from 431kb upstream to 75kb downstream of the ? globin gene (HBE). The breakpoint junction occurred within a 160bp palindrome embedded in LINE/LTR repeats, and contained a short (9bp) region of direct homology which may have contributed to the recombination event. Characterization of the deletion breakpoints has been particularly challenging due to the complexity of DNA deletion, insertion and inversion, involving a multitude of methodologies, mirroring the changing DNA analysis technologies. PMID:22677107

  16. Molecular and clinical study of 61 Angelman syndrome patients

    SciTech Connect

    Saitoh, Shinji; Harada, Naoki; Jinno, Yoshihiro; Niikawa, Norio [Nagasaki Univ. School of Medicine (Japan); Imaizumi, Kiyoshi; Kuroki, Yoshikazu; Fukushima; Yoshimitsu; Sugimoto, Tateo; Renedo, Monica

    1994-08-15

    We analyzed 61 Angelman syndrome (AS) patients by cytogenetic and molecular techniques. On the basis of molecular findings, the patients were classified into the following 4 groups: familial cases without deletion, familial cases with submicroscopic deletion, sporadic cases with deletion, and sporadic cases without deletion. Among 53 sporadic cases, 37 (70%) had molecular deletion, which commonly extended from D15S9 to D15S12, although not all deletions were identical. Of 8 familial cases, 3 sibs from one family had a molecular deletion involving only 2 loci, D15S10 and GABRB3, which define the critical region for AS phenotypes. The parental origin of deletion, both in sporadic and familial cases, was exclusively maternal and consistent with a genomic imprinting hypothesis. Among sporadic and familial cases without deletion, no uniparental disomy was found and most of them were shown to inherit chromosomes 15 from both parents (biparental inheritance). A discrepancy between cytogenetic and molecular deletion was observed in 14 (26%) of 53 patients in whom cytogenetic analysis could be performed. Ten (43%) of 23 patients with a normal karyotype showed a molecular deletion, and 4 (13%) of 30 patients with cytogenetic deletion, del(15) (q11q13), showed no molecular deletion. Most clinical manifestations, including neurological signs and facial characteristics, were not distinct in each group except for hypopigmentation of skin or hair. Familial cases with submicroscopic deletion were not associated with hypopigmentation. These findings suggested that a gene for hypopigmentation is located outside the critical region of AS and is not imprinted. 37 refs., 2 figs., 4 tabs.

  17. Deletion of MAP2K2/MEK2: A novel mechanism for a RASopathy?

    PubMed Central

    Nowaczyk, Ma?gorzata J.M.; Thompson, Brandi A.; Zeesman, Susan; Moog, Ute; Sanchez-Lara, Pedro A.; Magoulas, Pilar L.; Falk, Rena E.; Fong, Julie Hoover; Batista, Denise A.S.; Amudhavalli, Shivarajan M.; White, Sue M.; Graham, Gail E.; Rauen, Katherine A.

    2015-01-01

    RASopathies are a class of genetic syndromes caused by germline mutations in genes encoding Ras/MAPK pathway components. Cardio-facio-cutaneous (CFC) syndrome is a RASopathy characterized by distinctive craniofacial features, skin and hair abnormalities, and congenital heart defects caused by activating mutations of BRAF, MEK1, MEK2, and KRAS. We define the phenotype of seven patients with de novo deletions of chromosome 19p13.3 including MEK2; they present with a distinct phenotype but have overlapping features with CFC syndrome. Phenotypic features of all seven patients include tall forehead, thick nasal tip, underdeveloped cheekbones, long midface, sinuous upper vermilion border, tall chin, angular jaw, and facial asymmetry. Patients also have developmental delay, hypotonia, heart abnormalities, failure to thrive, obstructive sleep apnea, GE reflux and integument abnormalities. Analysis of EGF stimulated fibroblasts revealed that P-MEK1/2 was ~50% less abundant in cells carrying the MEK2 deletion compared to the control. Significant differences in total MEK2 and Sprouty1 abundance were also observed. Our cohort of seven individuals with MEK2 deletions has overlapping features associated with RASopathies. This is the first report suggesting that, in addition to activating mutations, MEK2 haploinsufficiency can lead to dysregulation of the MAPK pathway. PMID:23379592

  18. Recent Advances in the 5q- Syndrome

    PubMed Central

    Pellagatti, Andrea; Boultwood, Jacqueline

    2015-01-01

    The 5q- syndrome is the most distinct of the myelodysplastic syndromes (MDS) and patients with this disorder have a deletion of chromosome 5q [del(5q)] as the sole karyotypic abnormality. Several genes mapping to the commonly deleted region of the 5q- syndrome have been implicated in disease pathogenesis in recent years. Haploinsufficiency of the ribosomal gene RPS14 has been shown to cause the erythroid defect in the 5q- syndrome. Loss of the microRNA genes miR-145 and miR-146a has been associated with the thrombocytosis observed in 5q- syndrome patients. Haploinsufficiency of CSNK1A1 leads to hematopoietic stem cell expansion in mice and may play a role in the initial clonal expansion in patients with 5q- syndrome. Moreover, a subset of patients harbor mutation of the remaining CSNK1A1 allele. Mouse models of the 5q- syndrome, which recapitulate the key features of the human disease, indicate that a p53-dependent mechanism underlies the pathophysiology of this disorder. Importantly, activation of p53 has been demonstrated in the human 5q- syndrome. Recurrent TP53 mutations have been associated with an increased risk of disease evolution and with decreased response to the drug lenalidomide in del(5q) MDS patients. Potential new therapeutic agents for del(5q) MDS include the translation enhancer L-leucine. PMID:26075044

  19. Annotation: Velo-Cardio-Facial Syndrome

    ERIC Educational Resources Information Center

    Murphy, K. C.

    2005-01-01

    Background: Velo-cardio-facial syndrome (VCFS), the most frequent known interstitial deletion identified in man, is associated with chromosomal microdeletions in the q11 band of chromosome 22. Individuals with VCFS are reported to have a characteristic behavioural phenotype with high rates of behavioural, psychiatric, neuropsychological and…

  20. Clinical and molecular characterization of patients with Jacobsen syndrome

    SciTech Connect

    Penny, L.A.; Aquila, M.; Iones, O.W. [Univ. of California San Diego, La Jolla, CA (United States)] [and others

    1994-09-01

    Jacobsen (11q-) syndrome is caused by segmental aneusomy for the distal end of the long arm of chromosome 11. Typical features include mental retardation, trigonocephaly, facial dysmorphism, cardiac defects and thrombocytopenia, among others. We studied 14 Jacobsen syndrome patients with de novo terminal deletions of 11q. The deletions were characterized in a loss of heterozygosity analysis using polymorphic dinucleotide repeats. There was no preference in the parental origin of the deleted chromosome. Seven patients with the largest deletions, extending from 11q23.3-qter, appear to share the same breakpoint, between D11S924 and D11S1341. Terminal deletions extending proximal to this common breakpoint may be lethal. The remaining seven patients had various smaller deletions of 11q23.3, 11q24 or 11q25. Three patients with small terminal deletions had several major features of Jacobsen syndrome, including facial dysmorphism, cardiac defects and thrombocytopenia, suggesting that the genes responsible for these features lie near the end of the chromosome. These three patients did not have trigonocephaly, suggesting that, if hemizygosity for a single gene is responsible, it may lie proximal to D11S934.

  1. Encephalopathy and bilateral cataract in a boy with an interstitial deletion of Xp22 comprising the CDKL5 and NHS genes.

    PubMed

    Van Esch, Hilde; Jansen, Anna; Bauters, Marijke; Froyen, Guy; Fryns, Jean-Pierre

    2007-02-15

    We describe a male patient with a deletion at Xp22, detected by high resolution X-array CGH. The clinical phenotype present in this infant boy, consists of severe encephalopathy, congenital cataracts and tetralogy of Fallot and can be attributed to the deletion of the genes within the interval. Among these deleted genes are the gene for Nance-Horan syndrome and the cyclin-dependent kinase-like 5 gene (CDKL5), responsible for the early seizure variant of Rett syndrome. This is the first description of a male patient with a deletion of these genes, showing the involvement of CDKL5 in severe epileptic encephalopathy in males. Moreover it illustrates the added value of high resolution array-CGH in molecular diagnosis of mental retardation-multiple congenital anomaly cases. PMID:17256798

  2. Breakpoint determination of 15 large deletions in Peutz-Jeghers subjects.

    PubMed

    Resta, Nicoletta; Giorda, Roberto; Bagnulo, Rosanna; Beri, Silvana; Della Mina, Erika; Stella, Alessandro; Piglionica, Marilidia; Susca, Francesco Claudio; Guanti, Ginevra; Zuffardi, Orsetta; Ciccone, Roberto

    2010-10-01

    The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype. PMID:20623358

  3. Tourette Syndrome

    MedlinePLUS

    ... first described the condition in 1885. What Is Tourette Syndrome? Tourette syndrome (TS) is a neurological disorder ... is still being studied. Back Continue Dealing With Tourette Syndrome Many people don't understand what TS ...

  4. Dravet Syndrome

    MedlinePLUS

    NINDS Dravet Syndrome Information Page Synonym(s): Severe Myoclonic Epilepsy of Infancy (SMEI) Table of Contents (click to ... Dravet Syndrome? Dravet syndrome, also called severe myoclonic epilepsy of infancy (SMEI), is a severe form of ...

  5. Down Syndrome

    MedlinePLUS

    ... NICHD Research Information Clinical Trials Resources and Publications Down Syndrome: Condition Information Skip sharing on social media links Share this: Page Content What is Down syndrome? Down syndrome describes a set of cognitive and ...

  6. Usher Syndrome

    MedlinePLUS

    ... for Usher syndrome. The best treatment involves early identification so that educational programs can begin as soon ... syndrome. Other areas of study include the early identification of children with Usher syndrome, treatment strategies such ...

  7. Metabolic Syndrome

    MedlinePLUS

    ... page from the NHLBI on Twitter. What Is Metabolic Syndrome? Metabolic (met-ah-BOL-ik) syndrome is the ... three metabolic risk factors to be diagnosed with metabolic syndrome. A large waistline. This also is called abdominal ...

  8. Metabolic syndrome

    MedlinePLUS

    Metabolic syndrome is a name for a group of risk factors that occur together and increase the chance ... Metabolic syndrome is becoming very common in the United States. Doctors are not sure whether the syndrome is ...

  9. Acute lymphoblastic leukemia in Weaver syndrome.

    PubMed

    Basel-Vanagaite, Lina

    2010-02-01

    Weaver syndrome comprises pre- and postnatal overgrowth, accelerated osseous maturation, characteristic craniofacial appearance and developmental delay; it is a generally sporadic disorder, although autosomal dominant inheritance has been reported. Some of the manifestations characterize both the Weaver and Sotos syndrome, and distinction between the two is mainly by clinical examination and molecular testing. Most of the patients with Sotos syndrome have NSD1 gene deletions or mutations; however, the molecular basis of most of the Weaver syndrome patients is unknown. Patients with overgrowth syndromes have an increased frequency of tumors; the risk in Sotos syndrome patients has been estimated to be about 2-3%, with leukemia and lymphoma accounting for 44% of the malignancies. We report on a 4(1/2)-year-old girl with typical Weaver syndrome who developed acute lymphoblastic leukemia, an association not previously reported, and review the reported cases of Weaver syndrome patients who developed malignancies. Malignancy in Weaver syndrome has been reported previously in six patients. While searching the literature for all reported cases with Weaver syndrome and counting the cases with malignancy, we found that the frequency of tumors or hematologic malignancy was 10.9%. This is likely to be an overestimate, biased by failure to report cases without tumors and by over-reporting cases with this rare association. While the presence of acute lymphoblastic leukemia in our patient might be incidental, we cannot exclude a possible causative association between Weaver syndrome and hematologic malignancy. PMID:20101679

  10. Molecular cytogenetic characterization of the DiGeorge syndrome region using fluorescence in situ hybridization

    Microsoft Academic Search

    E. A. Lindsay; S. Halford; R. Wadey; P. J. Scambler; A. Baldini

    1993-01-01

    DiGeorge syndrome (DGS) is a developmental defect characterized by cardiac defects, facial dysmorphism, and mental retardation. Several studies have described a critical region for DGS at 22q11, within which the majority of DGS patients have deletions. The authors have isolated nine cosmid and three YAC clones using previously described and newly isolated probes that have been shown to be deleted

  11. 22q11 DS: genomic mechanisms and gene function in DiGeorge\\/velocardiofacial syndrome

    Microsoft Academic Search

    Thomas M Maynard; Gloria T Haskell; Jeffrey A Lieberman; Anthony-Samuel LaMantia

    2002-01-01

    22q11 deletion syndrome (22qDS), also known as DiGeorge or velocardiofacial syndrome (DGS\\/VCFS), is a relatively common genetic anomaly that results in malformations of the heart, face and limbs. In addition, patients with 22qDS are at significant risk for psychiatric disorders as well, with one in four developing schizophrenia, and one in six developing major depressive disorders. Like several other deletion

  12. 75 FR 19945 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ...End of Certification The following services are proposed for deletion from the Procurement List: Services Service Type/Location: Catering Service, San Antonio Detention Center, 8940 Fourwinds Dr., San Antonio, TX. NPA: Goodwill...

  13. Mowat-Wilson syndrome

    PubMed Central

    Garavelli, Livia; Mainardi, Paola Cerruti

    2007-01-01

    Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome characterized by a distinct facial phenotype (high forehead, frontal bossing, large eyebrows, medially flaring and sparse in the middle part, hypertelorism, deep set but large eyes, large and uplifted ear lobes, with a central depression, saddle nose with prominent rounded nasal tip, prominent columella, open mouth, with M-shaped upper lip, frequent smiling, and a prominent but narrow and triangular pointed chin), moderate-to-severe intellectual deficiency, epilepsy and variable congenital malformations including Hirschsprung disease (HSCR), genitourinary anomalies (in particular hypospadias in males), congenital heart defects, agenesis of the corpus callosum and eye anomalies. The prevalence of MWS is currently unknown, but 171 patients have been reported so far. It seems probable that MWS is under-diagnosed, particularly in patients without HSCR. MWS is caused by heterozygous mutations or deletions in the Zinc finger E-box-binding homeobox 2 gene, ZEB2, previously called ZFHX1B (SIP1). To date, over 100 deletions/mutations have been reported in patients with a typical phenotype; they are frequently whole gene deletions or truncating mutations, suggesting that haploinsufficiency is the main pathological mechanism. Studies of genotype-phenotype analysis show that facial gestalt and delayed psychomotor development are constant clinical features, while the frequent and severe congenital malformations are variable. In a small number of patients, unusual mutations can lead to an atypical phenotype. The facial phenotype is particularly important for the initial clinical diagnosis and provides the hallmark warranting ZEB2 mutational analysis, even in the absence of HSCR. The majority of MWS cases reported so far were sporadic, therefore the recurrence risk is low. Nevertheless, rare cases of sibling recurrence have been observed. Congenital malformations and seizures require precocious clinical investigation with intervention of several specialists (including neonatologists and pediatricians). Psychomotor development is delayed in all patients, therefore rehabilitation (physical therapy, psychomotor and speech therapy) should be started as soon as possible. PMID:17958891

  14. Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury

    PubMed Central

    Yoshioka, Jun; Chutkow, William A.; Lee, Samuel; Kim, Jae Bum; Yan, Jie; Tian, Rong; Lindsey, Merry L.; Feener, Edward P.; Seidman, Christine E.; Seidman, Jonathan G.; Lee, Richard T.

    2011-01-01

    Classic therapeutics for ischemic heart disease are less effective in individuals with the metabolic syndrome. As the prevalence of the metabolic syndrome is increasing, better understanding of cardiac metabolism is needed to identify potential new targets for therapeutic intervention. Thioredoxin-interacting protein (Txnip) is a regulator of metabolism and an inhibitor of the antioxidant thioredoxins, but little is known about its roles in the myocardium. We examined hearts from Txnip-KO mice by polony multiplex analysis of gene expression and an independent proteomic approach; both methods indicated suppression of genes and proteins participating in mitochondrial metabolism. Consistently, Txnip-KO mitochondria were functionally and structurally altered, showing reduced oxygen consumption and ultrastructural derangements. Given the central role that mitochondria play during hypoxia, we hypothesized that Txnip deletion would enhance ischemia-reperfusion damage. Surprisingly, Txnip-KO hearts had greater recovery of cardiac function after an ischemia-reperfusion insult. Similarly, cardiomyocyte-specific Txnip deletion reduced infarct size after reversible coronary ligation. Coordinated with reduced mitochondrial function, deletion of Txnip enhanced anaerobic glycolysis. Whereas mitochondrial ATP synthesis was minimally decreased by Txnip deletion, cellular ATP content and lactate formation were higher in Txnip-KO hearts after ischemia-reperfusion injury. Pharmacologic inhibition of glycolytic metabolism completely abolished the protection afforded the heart by Txnip deficiency under hypoxic conditions. Thus, although Txnip deletion suppresses mitochondrial function, protection from myocardial ischemia is enhanced as a result of a coordinated shift to enhanced anaerobic metabolism, which provides an energy source outside of mitochondria. PMID:22201682

  15. Co-occurrence of Prader-Willi and Sotos syndromes.

    PubMed

    Okamoto, Nobuhiko; Akimaru, Noriko; Matsuda, Keiko; Suzuki, Yasuhiro; Shimojima, Keiko; Yamamoto, Toshiyuki

    2010-08-01

    A patient with atypical phenotypes of Prader-Willi syndrome (PWS) was subjected to investigate genomic copy numbers by microarray-based comparative genomic hybridization analysis. Severe developmental delay, relative macrocephaly, protruding forehead, cardiac anomalies, and hydronephrosis were atypical for PWS. Concurrent deletions of 15q11-13 and 5q35 regions were revealed and identified as paternally derived. The sizes and locations of the two deletions were typical for both deletions. Although each deletion independently contributed to the clinical features, developmental disturbance was very severe, suggesting combined effects. This is the first report of co-occurrence of PWS and STS. The co-occurrence of two syndromes is likely incidental. PMID:20635407

  16. Genome-Wide DNA Methylation Analysis Identifies Novel Hypomethylated Non-Pericentromeric Genes with Potential Clinical Implications in ICF Syndrome

    PubMed Central

    Gatto, S.; Gagliardi, M.; Crujeiras, A. B.; Matarazzo, M. R.; Esteller, M.; Sandoval, J.

    2015-01-01

    Introduction and Results Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disease, characterized by severe hypomethylation in pericentromeric regions of chromosomes (1, 16 and 9), marked immunodeficiency and facial anomalies. The majority of ICF patients present mutations in the DNMT3B gene, affecting the DNA methyltransferase activity of the protein. In the present study, we have used the Infinium 450K DNA methylation array to evaluate the methylation level of 450,000 CpGs in lymphoblastoid cell lines and untrasformed fibroblasts derived from ICF patients and healthy donors. Our results demonstrate that ICF-specific DNMT3B variants A603T/STP807ins and V699G/R54X cause global DNA hypomethylation compared to wild-type protein. We identified 181 novel differentially methylated positions (DMPs) including subtelomeric and intrachromosomic regions, outside the classical ICF-related pericentromeric hypomethylated positions. Interestingly, these sites were mainly located in intergenic regions and inside the CpG islands. Among the identified hypomethylated CpG-island associated genes, we confirmed the overexpression of three selected genes, BOLL, SYCP2 and NCRNA00221, in ICF compared to healthy controls, which are supposed to be expressed in germ line and silenced in somatic tissues. Conclusions In conclusion, this study contributes in clarifying the direct relationship between DNA methylation defect and gene expression impairment in ICF syndrome, identifying novel direct target genes of DNMT3B. A high percentage of the DMPs are located in the subtelomeric regions, indicating a specific role of DNMT3B in methylating these chromosomal sites. Therefore, we provide further evidence that hypomethylation in specific non-pericentromeric regions of chromosomes might be involved in the molecular pathogenesis of ICF syndrome. The detection of DNA hypomethylation at BOLL, SYCP2 and NCRNA00221 may pave the way for the development of specific clinical biomarkers with the aim to facilitate the identification of ICF patients. PMID:26161907

  17. Cri du Chat syndrome

    PubMed Central

    Cerruti Mainardi, Paola

    2006-01-01

    The Cri du Chat syndrome (CdCS) is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-). The incidence ranges from 1:15,000 to 1:50,000 live-born infants. The main clinical features are a high-pitched monochromatic cry, microcephaly, broad nasal bridge, epicanthal folds, micrognathia, abnormal dermatoglyphics, and severe psychomotor and mental retardation. Malformations, although not very frequent, may be present: cardiac, neurological and renal abnormalities, preauricular tags, syndactyly, hypospadias, and cryptorchidism. Molecular cytogenetic analysis has allowed a cytogenetic and phenotypic map of 5p to be defined, even if results from the studies reported up to now are not completely in agreement. Genotype-phenotype correlation studies showed a clinical and cytogenetic variability. The identification of phenotypic subsets associated with a specific size and type of deletion is of diagnostic and prognostic relevance. Specific growth and psychomotor development charts have been established. Two genes, Semaphorin F (SEMAF) and ?-catenin (CTNND2), which have been mapped to the "critical regions", are potentially involved in cerebral development and their deletion may be associated with mental retardation in CdCS patients. Deletion of the telomerase reverse transcriptase (hTERT) gene, localised to 5p15.33, could contribute to the phenotypic changes in CdCS. The critical regions were recently refined by using array comparative genomic hybridisation. The cat-like cry critical region was further narrowed using quantitative polymerase chain reaction (PCR) and three candidate genes were characterised in this region. The diagnosis is based on typical clinical manifestations. Karyotype analysis and, in doubtful cases, FISH analysis will confirm the diagnosis. There is no specific therapy for CdCS but early rehabilitative and educational interventions improve the prognosis and considerable progress has been made in the social adjustment of CdCS patients. PMID:16953888

  18. Upper limb malformations in DiGeorge syndrome

    SciTech Connect

    Cormier-Daire, V.; Iserin, L.; Sidi, D. [and others

    1995-03-13

    We report on upper limb anomalies in two children with a complete DiGeorge sequence: conotruncal defects, hypocalcemia, thymic aplasia, and facial anomalies. One child had preaxial polydactyly, and the other had club hands with hypoplastic first metacarpal. In both patients, molecular analysis documented a 22q11 deletion. To our knowledge, limb anomalies have rarely been reported in DiGeorge syndrome, and they illustrate the variable clinical expression of chromosome 22q11 deletions. 13 refs., 2 figs.

  19. Metabolic Syndrome

    MedlinePLUS

    ... you know? One in five Americans has the metabolic syndrome. WhO is At risk fOr the metAbOlic syndrOme? The syndrome runs in families and is more ... High blood pressure Most people who have the metabolic syndrome feel healthy and may not have any signs ...

  20. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    SciTech Connect

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-08-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted (del(5q)) in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint (del(5)(q13q33.3)), and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33(del(5)(q14q33.3)). Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q).

  1. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis.

    PubMed

    Calva-Cerqueira, D; Chinnathambi, S; Pechman, B; Bair, J; Larsen-Haidle, J; Howe, J R

    2009-01-01

    Juvenile polyposis (JPS) is an autosomal dominant syndrome that predisposes individuals to develop gastrointestinal polyps and cancer. Germline point mutations in SMAD4 and BMPR1A have been identified as causing JPS in approximately 40-60% of patients, but few studies have looked at the rate of large deletions. In this study, we determined the overall prevalence of genetic changes of SMAD4 and BMPR1A by sequencing and by screening for larger deletions. DNA was extracted from 102 JPS probands, and each exon and intron-exon boundary of SMAD4 and BMPR1A were sequenced. Coding and non-coding exons of SMAD4 and BMPR1A were screened for deletions with multiplex ligation-dependent probe amplification (MLPA). By sequencing, 20 probands had point mutations of SMAD4 and 22 of BMPR1A. By MLPA, one proband had deletion of most of SMAD4, one of both BMPR1A and PTEN, one of the 5' end of BMPR1A, and another of the 5' end of SMAD4. The overall prevalence of SMAD4 and BMPR1A point mutations and deletions in JPS was 45% in the largest series of patients to date. Large deletions are less frequent in JPS patients, but represent other heritable causes of JPS, which should be screened for in pre-symptomatic genetic testing. PMID:18823382

  2. Overlapping submicroscopic deletions in Xq28 in two unrelated boys with developmental disorders: Identification of a gene near FRAXE

    SciTech Connect

    Gedeon, A.K.; Sutherland, G.R. [Women`s and Children`s Hospital, North Adelaide (Australia)]|[Univ. of Adelaide (Australia); Ades, L.C.; Gecz, J.; Baker, E.; Mulley, J.C. [Women`s and Children`s Hospital, North Adelaide (Australia); Keinaenen, M. [Clinical Laboratory Medix, Espoo (Finland); Kaeaeriaeinen, H. [Univ. of Helsinki (Finland)

    1995-04-01

    Two unrelated boys are described with delay in development and submicroscopic deletions in Xq28, near FRAXE. Molecular diagnosis to exclude the fragile X (FRAXA) syndrome used the direct probe pfxa3, together with a control probe pS8 (DXS296), against PstI restriction digests of DNA. Deletions were detected initially by the control probe pS8, which is an anonymous fragment subcloned from YAC 539, within 1 Mb distal to FRAXA. Further molecular analyses determined that the maximum size of the deletion is <100 kb in one boy (MK) and is wholly overlapped by the deletion of up to {approximately}200 kb in the other (CB). These deletions lie between the sequences detected by the probe VK21C (DXS296) and a dinucleotide repeat VK18AC (DXS295). The patient MK had only speech delay with otherwise normal development, while patient CB had global developmental delay that included speech delay. Detection of overlapping deletions in these two cases led to speculation that coding sequences of a gene(s) important in language development may be affected. Hybridization of the pS8 and VK21A probes to zooblots revealed cross-species homology. This conservation during evolution suggested that this region contains sequences with functional significance in normal development. The VK21A probe detected a 9.5-kb transcript in placenta and brain and a smaller, 2.5-kb, transcript in other tissues analyzed. 26 refs., 6 figs.

  3. Deletion of the entire NF1 gene detected by FISH: Four deletion patients associated with severe manifestations

    Microsoft Academic Search

    Bai-Lin Wi; Michele A. Austin; Gretchen H. Schneider; Richard G. Boles; Bruce R. Korf

    1995-01-01

    Genetic analysis of NF1 has indicated a wide diversity of mutations, including chromosome rearrangements, deletions, insertions, duplications, and point mutations. Recently, five severely affected individuals have been found by Kayes et al. to have deletions encompassing the entire gene. These deletions were detected by quantitative Southern analysis. To simplify deletion detection, we have employed fluorescence in situ hybridization (FISH) using

  4. OEIS complex associated with chromosome 1p36 deletion: a case report and review.

    PubMed

    El-Hattab, Ayman W; Skorupski, Josh C; Hsieh, Michael H; Breman, Amy M; Patel, Ankita; Cheung, Sau Wai; Craigen, William J

    2010-02-01

    OEIS complex (Omphalocele, Exstrophy of the cloaca, Imperforate anus, and Spine abnormalities) is a rare defect with estimated incidence of 1 in 200,000 live births. Most cases are sporadic, with no obvious cause. However, it has been rarely reported in patients with family members having similar malformations or with chromosomal anomalies. In addition, OEIS complex has been observed in association with environmental exposures, twinning, and in vitro fertilization. Monosomy 1p36 is the most common terminal deletion syndrome, with a prevalence of 1 in 5,000 newborns. It is characterized by specific facial features, developmental delay, and heart, skeletal, genitourinary, and neurological defects. We describe an infant with OEIS complex and 1p36 deletion who had features of both disorders, including omphalocele, cloacal exstrophy, imperforate anus, sacral multiple segmentation, renal malposition and malrotation, genital anomalies, diastasis of the symphysis pubis, microbrachycephaly, large anterior fontanel, cardiac septal defects, rib fusion, a limb deformity, developmental delay, and typical facial features. Chromosomal microarray analysis detected a 2.4 Mb terminal deletion of chromosome 1p. This is the first reported case with OEIS complex in association with a chromosome 1p36 deletion. PMID:20101692

  5. Cayler Cardio-Facial Syndrome: An Uncommon Condition in Newborns

    PubMed Central

    Pawar, Sunil Jayaram; Sharma, Deepak Kumar; Srilakshmi, Sela; Reddy Chejeti, Suguna; Pandita, Aakash

    2015-01-01

    Introduction: Cayler cardio-facial syndrome is a rare syndrome associated with asymmetric crying faces with congenital heart disease. We report a newborn that was diagnosed as case of Cayler Cardio-facial syndrome based on clinical features and was confirmed with FISH analysis. Case Presentation: A term male baby, born to non-consanguineous couple through normal vaginal delivery was diagnosed to have asymmetric crying faces with deviation of angle of mouth to left side at the time of birth. The baby had normal faces while sleeping or silent. Mother was known case of hypothyroidism and was on treatment. Baby was diagnosed as case of Cayler Cardio-facial Syndrome and was investigated with echocardiogram, brain ultrasound, total body X-ray examination, X-ray of cervico-thoracic vertebral column and fundus examination. Echocardiogram showed muscular VSD, brain ultrasound was normal and fundus examination showed tortuous retinal vessels. Whole body X-ray and lateral X-ray of cervico-thoracic vertebral column were not suggestive of any skeletal abnormalities. The other associated malformation was right ear microtia. Baby FISH karyotype analysis showed deletion of 22q11.2 deletion. Baby was discharged and now on follow-up. Conclusions: Cayler syndrome is a rare syndrome which must be suspected if a baby has asymmetrical cry pattern and normal facies when baby sleeps. Patient must be evaluated with echocardiography to find out associated cardiac malformations. These infants should undergo FISH analysis for 22q11.2 deletion syndrome. PMID:26196008

  6. Greig cephalopolysyndactyly syndrome: altered phenotype of a microdeletion syndrome due to the presence of a cytogenetic abnormality.

    PubMed

    Williams, P G; Hersh, J H; Yen, F F; Barch, M J; Kleinert, H E; Kunz, J; Kalff-Suske, M

    1997-12-01

    A male had several features of Greig cephalopolysyndactyly syndrome (GCPS) and significant developmental delay. He was found to have a de novo chromosomal deletion of chromosome no. 7 involving p13; this resulted in loss of the zinc finger gene, GLI3, which is the candidate gene in this syndrome. Modification of the CGPS phenotype in a sporadic case emphasizes the importance of searching for a chromosomal origin of this autosomal dominant disorder. Detection of a chromosomal deletion in these patients may be associated with a poor prognosis from the standpoint of cognitive development, and the potential for other structural abnormalities not normally associated with GCPS. PMID:9520255

  7. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J. (Bellport, NY); Quesada, Mark A. (Horseheads, NY); Randesi, Matthew (New York, NY)

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  8. A unique de novo interstitial deletion of chromosome 17, del(17)(q23.2q24.3) in a female newborn with multiple congenital anomalies

    SciTech Connect

    Levin, M.L.; Shaffer, L.G.; Lewis, R.A. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Contiguous gene or microdeletion syndromes occurring on chromosome 17p include the Smith-Magenis and Miller-Dieker syndromes associated with interstitial deletions of 17p11.2 and 17p13.3, respectively. Other cytogenetically visible interstitial deletions on chromosome 17 are quite rare or unique. We describe a newborn with a novel interstitial deletion of the long arm of chromosome 17 [del(17)(q23.2q24.3)] who died on day of life 17 during a recurrent apneic episode. We have compared our patient`s phenotype and karyotype to two reported patients with deletion 17q with minor clinical overlap. The most striking clinical features of this patient were severe intrauterine growth retardation, widespread skeletal malformations (split sutures, hypoplastic acetabulae and scapulae, vertebral anomalies, and digital hypoplasia), cutis verticis gyrata, dysmorphic facial features, and oropharyngeal malformations (absent uvula and submucous cleft palate). Mild congenital heart disease and anomalous optic nerves were also present. Parental karyotyps were normal. DNA from parents and patient has been collected and cell lines established on both parents. Genes which have been previously mapped to the region that is apparently deleted in this patient include: chorionic somatomammotropin A, growth hormone (normal), acid alpha-glucosidase, apolipoprotein H, and the alpha peptide of type 4 voltage gated sodium channel. As in other clinical cytogenetic syndromes, further descriptions of patients with similar or overlapping rearrangements in this region will be necessary to delineate genotype/phenotype correlations for chromosome 17.

  9. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice.

    PubMed

    Xu, Pin; Grueter, Brad A; Britt, Jeremiah K; McDaniel, Latisha; Huntington, Paula J; Hodge, Rachel; Tran, Stephanie; Mason, Brittany L; Lee, Charlotte; Vong, Linh; Lowell, Bradford B; Malenka, Robert C; Lutter, Michael; Pieper, Andrew A

    2013-06-25

    Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normalize compulsive grooming and striatal electrophysiologic impairments in synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3)-null mice, a model of human obsessive-compulsive disorder. Unexpectedly, genetic deletion of SAPAP3 restores normal weight and metabolic features of MC4R-null mice, a model of human obesity. Our findings offer insights into the pathophysiology and treatment of both compulsive behavior and eating disorders. PMID:23754400

  10. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice

    PubMed Central

    Xu, Pin; Grueter, Brad A.; Britt, Jeremiah K.; McDaniel, Latisha; Huntington, Paula J.; Hodge, Rachel; Tran, Stephanie; Mason, Brittany L.; Lee, Charlotte; Vong, Linh; Lowell, Bradford B.; Malenka, Robert C.; Lutter, Michael; Pieper, Andrew A.

    2013-01-01

    Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normalize compulsive grooming and striatal electrophysiologic impairments in synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3)-null mice, a model of human obsessive-compulsive disorder. Unexpectedly, genetic deletion of SAPAP3 restores normal weight and metabolic features of MC4R-null mice, a model of human obesity. Our findings offer insights into the pathophysiology and treatment of both compulsive behavior and eating disorders. PMID:23754400

  11. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations.

    PubMed

    Gammage, Payam A; Rorbach, Joanna; Vincent, Anna I; Rebar, Edward J; Minczuk, Michal

    2014-04-01

    We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the "common deletion" (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species. PMID:24567072

  12. 2q34-qter duplication and 4q34.2-qter deletion in a patient with developmental delay.

    PubMed

    Rashidi-Nezhad, Ali; Parvaneh, Nima; Farzanfar, Farideh; Azimi, Cyrus; Harewood, Louise; Akrami, Seyed Mohammad; Reymond, Alexandre

    2012-03-01

    The 2q3 duplication and 4q3 deletion syndromes are two conditions with variable phenotypes including Pierre-Robin sequence (PRS), limb anomalies, congenital heart defects (CHD), developmental delays and intellectual disabilities. We describe a patient born to a mother with a balanced t(2; 4) translocation who combines both a 2q34-qter duplication and a 4q34.2-qter deletion through inheritance of the derivative chromosome 4 (der(4)). He showed developmental delay, growth retardation, hearing problems, minor facial and non-facial anomalies, such as bilateral fifth finger shortness and clinodactyly, but no PRS or CHD. The comparison of his features with those of 46 and 65 published cases of 2q3 duplication and 4q3 deletion, respectively, allows us to further restrict the size of the proposed critical intervals for PRS and CHD on chromosome 4. PMID:22370062

  13. Congenital diaphragmatic hernia in a case of patau syndrome: a rare association.

    PubMed

    A, Jain; P, Kumar; A, Jindal; Yk, Sarin

    2015-01-01

    Congenital diaphragmatic hernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions.. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities. PMID:26034714

  14. Comparing ADHD in Velocardiofacial Syndrome to Idiopathic ADHD: A Preliminary Study

    ERIC Educational Resources Information Center

    Antshel, Kevin M.; Faraone, Stephen V.; Fremont, Wanda; Monuteaux, Michael C.; Kates, Wendy R.; Doyle, Alysa; Mick, Eric; Biederman, Joseph

    2007-01-01

    Objective: Background: Children with velocardiofacial syndrome (VCFS), a contiguous deletion syndrome, have an increased prevalence of attention deficit/hyperactivity disorder (ADHD). Method: The authors compared youth with VCFS+ADHD (from the SUNY Upstate VCFS Research Program) to those with ADHD but not VCFS (from the Massachusetts General…

  15. Congenital Diaphragmatic Hernia in a Case of Patau Syndrome: A Rare Association

    PubMed Central

    A, Jain; P, Kumar; A, Jindal; Yk, Sarin

    2015-01-01

    Congenital diaphragmatic hernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions.. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities.

  16. Learning about Down Syndrome

    MedlinePLUS

    ... genetic terms used on this page Learning About Down Syndrome What is Down syndrome? What are the symptoms ... syndrome Additional Resources for Down Syndrome What is Down syndrome? Down syndrome is a chromosomal condition related to ...

  17. Impact of a novel 14?bp MEN1 deletion in a patient with hyperparathyroidism and gastrinoma

    PubMed Central

    Birla, Shweta; P Jyotsna, Viveka; Singla, Rajiv; Tripathi, Madhavi

    2015-01-01

    Summary Multiple endocrine neoplasia type 1 (MEN-1) is a rare autosomal-dominant disease characterized by tumors in endocrine and/or non endocrine organs due to mutations in MEN1 encoding a nuclear scaffold protein‘menin’ involved in regulation of different cellular activities. We report a novel 14?bp MEN1 deletion mutation in a 35-year-old female with history of recurrent epigastric pain, vomiting, loose stools and weight loss. On evaluation she was diagnosed to have multifocal gastro-duodenal gastrinoma with paraduodenal lymph nodes and solitary liver metastasis. She was also found to have primary hyperparathyroidism with bilateral inferior parathyroid adenoma. Pancreatico-duodenectomy with truncalvagotomy was performed. Four months later, radiofrequency ablation (RFA) of segment 4 of the liver was done followed by three and a half parathyroidectomy. MEN1 screening was carried out for the patient and her family members. MEN-1 sequencing in the patient revealed a heterozygous 14?bp exon 8 deletion. Evaluation for pathogenicity and protein structure prediction showed that the mutation led to a frameshift thereby causing premature termination resulting in a truncated protein. To conclude, a novel pathogenic MEN1 deletion mutation affecting its function was identified in a patient with hyperparathyroidism and gastrinoma. The report highlights the clinical consequences of the novel mutation and its impact on the structure and function of the protein. It also provides evidence for co-existence of pancreatic and duodenal gastrinomas in MEN1 syndrome. MEN1 testing provides important clues regarding etiology and therefore should be essentially undertaken in asymptomatic first degree relatives who could be potential carriers of the disease. Learning points Identification of a novel pathogenic MEN1 deletion mutation. MEN1 mutation screening in patients with pituitary, parathyroid and pancreatic tumors, and their first degree relatives gives important clues about the etiology.Pancreatic and duodenal gastrinomas may co-exist simultaneously in MEN1 syndrome. PMID:26191410

  18. The importance of using fluorescence in situ hybridization for the diagnosis of Smith-Magenis syndrome

    SciTech Connect

    Juyal, R.C.; Greenberg, F.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable multiple congenital anomaly/mental retardation syndrome associated with deletion of chromosome 17p11.2. Quality metaphase preparations are required for unambiguous detection of the deletion. We and others have reported cases of SMS due to mosaicism for del(17)(p11.2). Examination of peripheral blood lymphocyte cultures of a patient with the SMS phenotype at 850 band level of resolution revealed a low level mosaicism (11%) for the deletion. Examination of fibroblasts at relatively low resolution revealed the deletion in all cells. In a second study, we reported molecular evidence for mosaicism in the unaffected mother of an SMS patient who demonstrated mosaicism (55%) for the deletion at a resolution level of < 500 bands. We now report a different SMS patient who was initially diagnosed as mosaic del(17)(p11.2) in two different cytogenetic laboratories. A third blinded cytogenetic study yielded a questionable diagnosis. Fluorescence in situ hybridization (FISH) conducted in two different laboratories with two different markers shown to be within the deletion region and a control marker from chromosome 17 demonstrated a deletion in 20/20 and 25/25 metaphases scored, respectively. It appears the latter patient may harbor a very small deletion and that FISH is a more reliable test for the Smith-Magenis deletion. Furthermore, FISH should be used to confirm or refute mosaicism seen in routine cytogenetics studies.

  19. Kousseff syndrome: A fifth case?

    SciTech Connect

    Laux, R.A. [Foundation for Blood Research, Portland, ME (United States); Hamilton, W.; Pinette, M. [Maine Medical Center, Portland, ME (United States)] [and others

    1994-09-01

    Kousseff originally described three siblings with an open sacral myelomeningocele, conotruncal cardiac malformations, low-set, posteriorly rotated ears, retrognathia, a short neck with a low posterior hairline, and renal agenesis as a new autosomal recessive condition. Open neural tube lesions and complex conotruncal cardiac defects are relatively common malformations, both as isolated defects and individually as components of syndromes, but they have been found together only rarely, as part of chromosomal syndromes or following maternal exposures. Toriello et al. reported a fourth case and suggested the eponym Kousseff syndrome for myelomeningcocele, conotruncal defects and minor facial abnormalies. We report a fifth probable case. This male infant was born by spontaneous vaginal delivery at 38 weeks gestation to a 23-year-old G{sub 2}P{sub 1001} mother. Pregnancy was complicated by an elevated alpha-fetoprotein at 16 weeks gestation, followed by an ultrasound diagnosis of an open disease. After birth, physical examination also revealed dysmorphic facies, with a bulbous nose and low-set, posteriorly rotated ears, bilateral 5th finger clinodactyly and hypotonia. Echocardiogram demonstrated complex conotruncal malformations. The patient underwent closure of the myelomeningocele but died at one month of age. Chromosomal analysis was normal (46,XY). Because conotruncal heart defects have been associated with deletions on chromosome 22, FISH analysis using a probe for the DiGeorge syndrome on the long arm of chromosome 22 was performed. It indicated no detectable deletion within this critical region on 22q11. Nonetheless there remains the possibility of a gene (or genes) located on 22q that could produce findings of this rare multiple congenital anomaly syndrome when disrupted. Therefore, further investigation on this chromosome is warranted.

  20. Premenstrual syndrome

    MedlinePLUS

    Brown I, O'Brien PMS, Marjoribanks I, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2009;2:CD001396. Lentz GM. Primary and secondary dysmenorrhea, premenstrual syndrome, and ...

  1. Tourette Syndrome

    MedlinePLUS

    If you have Tourette syndrome, you make unusual movements or sounds, called tics. You have little or no control over them. Common tics ... words, spin, or, rarely, blurt out swear words. Tourette syndrome is a disorder of the nervous system. ...

  2. Rett Syndrome

    MedlinePLUS

    ... is Rett Syndrome? Rett syndrome is a childhood neurodevelopmental disorder that affects females almost exclusively. The child ... antiepileptic drugs may be used to control seizures. Occupational therapy, physiotherapy, and hydrotherapy may prolong mobility. Some children ...

  3. Metabolic Syndrome

    MedlinePLUS

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  4. Klinefelter syndrome

    MedlinePLUS

    47 X-X-Y syndrome ... have two XX chromosomes. Boys normally have an X and a Y chromosome. Klinefelter syndrome is when ... boy is born with at least one extra X chromosome. Usually, this occurs due to one extra ...

  5. Asperger Syndrome

    MedlinePLUS

    ... have certain genetic or chromosomal conditions, such as fragile X syndrome  or tuberous sclerosis . 11-14 When taken ... and autistic behavior in children and adolescents with fragile X syndrome. Am J Ment Retard. 2008; 113(1): 44- ...

  6. Hunter syndrome

    MedlinePLUS

    ... Mild to no mental deficiency Both forms: Carpal tunnel syndrome Coarse features of the face Deafness (gets ... Airway obstruction Carpal tunnel syndrome Hearing loss that gets worse over time Loss of ability to complete daily living activities Joint stiffness that ...

  7. Goodpasture syndrome

    MedlinePLUS

    Goodpasture syndrome is a rare disease that can involve quickly worsening kidney failure and lung disease. Some ... Goodpasture syndrome is an autoimmune disorder . It occurs when the immune system mistakenly attacks and destroys healthy ...

  8. Joubert Syndrome

    MedlinePLUS

    ... sponsored a symposium on Joubert syndrome in 2002. Research priorities for the disorder were outlined at this meeting. NIH Patient Recruitment for Joubert Syndrome Clinical Trials At NIH Clinical Center Throughout the U.S. ...

  9. Metabolic syndrome.

    PubMed

    Cho, L W

    2011-11-01

    Metabolic syndrome is a clustering of different risk factors that collectively increases the risk of developing cardiovascular disease and type 2 diabetes mellitus. The syndrome itself is associated with various metabolic abnormalities, including insulin resistance, non-alcoholic fatty liver disease, obstructive sleep apnoea, male hypogonadism and polycystic ovary syndrome. This review aims to discuss recent developments related to the syndrome, including the associated metabolic complications and goals for therapeutic strategies. PMID:22173246

  10. Deletion of 4q28.3-31.23 in the background of multiple malformations with pulmonary hypertension

    PubMed Central

    2014-01-01

    The 4q deletion syndrome shows a broad spectrum of clinical manifestations consisting of key features comprising growth failure, developmental delay, craniofacial dysmorphism, digital anomalies, and cardiac and skeletal defects. We have identified a de novo interstitial distal deletion in a 9 month-old girl with growth failure, developmental delay, ventricular septum defect in the subaortic region, patent foramen ovale and patent ductus arteriosus, vascular malformation of the lung, dysgenesis of the corpus callosum and craniofacial dysmorphism using array-comparative genomic hybridization. This de novo deletion is located at 4q28.3-31.23 (136,127,048 - 150,690,325), its size is 14.56 Mb, and contains 8 relevant genes (PCDH18, SETD7, ELMOD2, IL15, GAB1, HHIP, SMAD1, NR3C2) with possible contributions to the phenotype. Among other functions, a role in lung morphogenesis and tubulogenesis can be attributed to the deleted genes in our patient, which may explain the unique feature of vascular malformation of the lung leading to pulmonary hypertension. With the detailed molecular characterization of our case with 4q- syndrome we hope to contribute to the elucidation of the genetic spectrum of this disorder. PMID:24959202

  11. Deletion 5q35.3

    SciTech Connect

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G. [Univ. of Texas Health Science Center, San Antonio, TX (United States); Young, R.S. [Central Texas Perinatal Associates, Austin, TX (United States)

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  12. Deletion of GPIHBP1 causing severe chylomicronemia.

    PubMed

    Rios, Jonathan J; Shastry, Savitha; Jasso, Juan; Hauser, Natalie; Garg, Abhimanyu; Bensadoun, André; Cohen, Jonathan C; Hobbs, Helen H

    2012-05-01

    Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1. PMID:22008945

  13. Sotos syndrome.

    PubMed

    Juneja, A; Sultan, A

    2011-12-01

    Sotos syndrome is a well-defined childhood overgrowth syndrome characterized by pre- and postnatal overgrowth, developmental delay, advanced bone age, and a typical facial gestalt including macrodolichocephaly with frontal bossing, frontoparietal sparseness of hair, apparent hypertelorism, downslanting palpebral fissures, and facial flushing. This report presents a case of Sotos syndrome in a 5½-year-old child. PMID:22169837

  14. Aase syndrome

    MedlinePLUS

    Aase-Smith syndrome; Hypoplastic anemia/Triphalangeal thumb syndrome ... Jones KL, ed. Aase syndrome. In: Smith's Recognizable Patterns Of Human Malformation. 6th ed. Saunders. 2005. Clinton C, Gazda HT. Diamond-Blackfan Anemia. 2009 Jun 25 [Updated 2013 Jul ...

  15. Velocardiofacial Syndrome

    ERIC Educational Resources Information Center

    Gothelf, Doron; Frisch, Amos; Michaelovsky, Elena; Weizman, Abraham; Shprintzen, Robert J.

    2009-01-01

    Velocardiofacial syndrome (VCFS), also known as DiGeorge, conotruncal anomaly face, and Cayler syndromes, is caused by a microdeletion in the long arm of Chromosome 22. We review the history of the syndrome from the first clinical reports almost half a century ago to the current intriguing molecular findings associating genes from the…

  16. Down syndrome

    MedlinePLUS

    Down syndrome is a genetic condition in which a person has 47 chromosomes instead of the usual 46. ... In most cases, Down syndrome occurs when there is an extra copy of chromosome 21. This form of Down syndrome is called Trisomy 21. ...

  17. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease

    Microsoft Academic Search

    Stéphanie A. Backman; Vuk Stambolic; Akira Suzuki; Jillian Haight; Andrew Elia; James Pretorius; Ming-Sound Tsao; Patrick Shannon; Brad Bolon; Gwen O. Ivy; Tak W. Mak

    2001-01-01

    Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3?-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous

  18. MEN1 Syndrome and Hibernoma: An Uncommonly Recognised Association?

    PubMed

    Hedayati, Venus; Thway, Khin; Thomas, J Meirion; Moskovic, Eleanor

    2014-01-01

    MEN1 syndrome is known to classically result in parathyroid, pituitary, and pancreatic islet cell tumours. However, the potential association of MEN1 syndrome with hibernoma, a benign tumour with differentiation towards brown fat, is far less well known, despite their genetic profile both being linked to deletion of the MEN1 gene. Herein, we describe a case with its key radiological and pathological findings. PMID:25309600

  19. Expanding the Spectrum of Rearrangements Involving Chromosome 19: A Mild Phenotype Associated with a 19p13.12–p13.13 Deletion

    PubMed Central

    Marangi, Giuseppe; Orteschi, Daniela; Vigevano, Federico; Felie, Jillian; Walsh, Christopher A; Manzini, M Chiara; Neri, Giovanni

    2012-01-01

    We report on a patient with a 1.2 Mb 19p13.12–p13.13 deletion. Compared to previously reported individuals with partially overlapping deletions, the propositus presented with a less severe phenotype, consisting of mild intellectual disability and behavior anomalies, with episodes of simple febrile seizures and without significant physical anomalies or major malformations. The deleted region includes 29 coding genes, some of which have already been demonstrated to be involved in cognitive processes. Mutations in two of them, CC2D1A and TECR, were recently reported to be responsible for non-syndromal, autosomal recessive intellectual disability. The residual alleles of all of these genes were submitted to sequence analysis. No sequence variants were found that could be considered pathogenic. This patient constitutes a further example of the wide phenotypic variability associated with chromosomal rearrangements, likely due to the different size of deleted/duplicated segments. © 2012 Wiley Periodicals, Inc. PMID:22419660

  20. Poxvirus deletion mutants: virulence and immunogenicity.

    PubMed

    Edwards, K M; Andrews, T C; Van Savage, J; Palmer, P S; Moyer, R W

    1988-05-01

    Post-vaccinial encephalitis and disseminated vaccinia are major concerns with the use of vaccinia virus recombinants as immunization vectors in man. To identify and characterize possible attenuated poxvirus vectors, rabbitpox virus (RPV) (closely related to vaccinia) and four deletion mutants of RPV were studied for organ tropism, neurovirulence, and protection from wild-type challenge in BALB/c mice. Intraperitoneal (IP) inoculation with 10(7) PFU wild-type (wt) RPV or with two mutants 8 sm and 28 (containing approximately 12 kilobase deletions) showed titers of greater than 10(3) PFU/g tissue in multiple organs. In contrast, IP inoculation of 10(7) PFU of mutants 31 or 23 (containing approximately 30 kilobase deletions) showed markedly reduced growth in all organs. Neurovirulence of wt and mutant RPV was determined by intracerebral (IC) inoculation of mice. Wt and mutants 8 sm, and 28 RPV had LD50 less than 10(2) PFU; in contrast, 31 and 23 had LD50 greater than 10(5) PFU. Finally, 10(6) PFU of mutants 31 or 23, were administered to mice by scarification, the normal route of vaccinia immunization. Both 31 and 23 grew locally in the skin and protected mice challenged IC at 21 days with 100 LD50 of wt RPV, while all unimmunized controls died. We conclude that deletion mutants 31 and 23 demonstrate markedly reduced invasiveness and neurovirulence while retaining immunogenicity. Similar deletion mutations in vaccinia may create avirulent, but effective vaccine vectors for man. PMID:2853813

  1. SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia.

    PubMed

    Baker, Matt; Strongosky, Audrey J; Sanchez-Contreras, Monica Y; Yang, Shan; Ferguson, Will; Calne, Donald B; Calne, Susan; Stoessl, A Jon; Allanson, Judith E; Broderick, Daniel F; Hutton, Michael L; Dickson, Dennis W; Ross, Owen A; Wszolek, Zbigniew K; Rademakers, Rosa

    2014-03-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by bilateral calcification of the basal ganglia associated with a spectrum of neuropsychiatric and motor syndromes. In this study, we set out to determine the frequency of the recently identified IBGC gene SLC20A2 in 27 IBGC cases from the Mayo Clinic Florida Brain Bank using both Sanger sequencing and TaqMan copy number analysis to cover the complete spectrum of possible mutations. We identified SLC20A2 pathogenic mutations in two of the 27 cases of IBGC (7 %). Sequencing analysis identified a p.S113* nonsense mutation in SLC20A2 in one case. TaqMan copy number analysis of SLC20A2 further revealed a genomic deletion in a second case, which was part of a large previously reported Canadian IBGC family with dystonia. Subsequent whole-genome sequencing in this family revealed a 563,256-bp genomic deletion with precise breakpoints on chromosome 8 affecting multiple genes including SLC20A2 and the known dystonia-related gene THAP1. The deletion co-segregated with disease in all family members. The deletion of THAP1 in addition to SLC20A2 in the Canadian IBGC family may contribute to the severe and early onset dystonia in this family. The identification of an SLC20A2 genomic deletion in a familial form of IBGC demonstrates that reduced SLC20A2 in the absence of mutant protein is sufficient to cause neurodegeneration and that previously reported SLC20A2 mutation frequencies may be underestimated. PMID:24135862

  2. An association of 19p13.2 microdeletions with Malan syndrome and Chiari malformation.

    PubMed

    Shimojima, Keiko; Okamoto, Nobuhiko; Tamasaki, Akiko; Sangu, Noriko; Shimada, Shino; Yamamoto, Toshiyuki

    2015-04-01

    Patients with microdeletions in the 19p13.2 chromosomal region show developmental delays, overgrowth, and distinctive features with big head appearances. These manifestations are now recognized as Sotos syndrome-like features (Sotos syndrome 2) or Malan syndrome. We identified three female patients with 19p13.2 deletions involving NFIX, a gene responsible for Malan syndrome. We compared the genotypic and phenotypic data of these patients with those of the patients previously reported. The most of the clinical features were found to overlap; however, Chiari malformation type I was observed in two of the three patients evaluated in this study. Because Chiari malformation type I has never been reported in the patients with NSD1-related Sotos syndrome, this finding indicates the possible role of 19p13.2 deletion in patients with mimicking features of Sotos syndrome but have negative NSD1 testing results. PMID:25736188

  3. 24 CFR 990.155 - Addition and deletion of units.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Addition and deletion of units. 990.155 Section 990.155 Housing...Operating Subsidy; Computation of Eligible Unit Months § 990.155 Addition and deletion of units. (a) Changes in public housing unit...

  4. Deletions of 16p11.2 and 19p13.2 in a family with intellectual disability and generalized epilepsy

    PubMed Central

    Bassuk, Alexander G.; Geraghty, Eileen; Wu, Shu; Mullen, Saul A.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2014-01-01

    Rare copy number variants (CNVs) have been established as an important cause of various neurodevelopmental disorders, including intellectual disability (ID) and epilepsy. In some cases, a second CNV may contribute to a more severe clinical presentation. Here we present two siblings and their mother who have mild ID, short stature, obesity and seizures. Array CGH studies show that each affected individual has two large, rare CNVs. The first is a deletion of chromosome 16p11.2, which has been previously associated with ID and autism. The second is a 0.9 Mb deletion of 19p13.2, which results in the deletion of a cluster of zinc finger genes. We suggest that, while the 16p11.2 deletion is likely the primary cause of the obesity and ID in this family, the 19p13.2 deletion may act as a modifier of the epilepsy phenotype, which is not a core feature of the 16p11.2 deletion syndrome. We investigate the potential role of ZNF44, a gene within the deleted region, in a cohort of patients with generalized epilepsy. PMID:23686817

  5. Identification and characterization of three large deletions and a deletion/polymorphism in the CFTR gene.

    PubMed

    Chevalier-Porst, F; Souche, G; Bozon, D

    2005-05-01

    Cystic fibrosis (CF) is mainly caused by small molecular lesions of the CFTR gene; mutation detection methods based on conventional PCR do not allow the identification of all CF alleles in a population and large deletions may account for a number of these unidentified molecular lesions. It is only recently that the availability of quantitative PCR methodologies made the search for large gene rearrangements easier in autosomal diseases. Using a combination of different methods, nine of the 37 unidentified CF alleles (24%) were found to harbor large deletions in our cohort of 1600 CF alleles. Three are new deletions, and we report the breakpoints of the previously described EX4_EX10del40kb deletion. An intronic deletion polymorphism affecting intron 17b was also found on almost 1% of "normal" chromosomes. Examination of the breakpoint sequences confirmed that intron 17b is indeed a hot spot for deletions, and that most of these rearrangements are caused by non-homologous recombination. PMID:15841482

  6. Asymptotically Good Codes Correcting Insertions, Deletions, and Transpositions

    E-print Network

    Schulman, Leonard

    exponential error probability in a stochastic model of insertion­deletion. Keywords: error correcting codesAsymptotically Good Codes Correcting Insertions, Deletions, and Transpositions Leonard J. Schulman are asymptotically good for channels allowing insertions, deletions and transpositions. As a corollary, they achieve

  7. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  8. Even Faster Parameterized Cluster Deletion and Cluster Editing

    E-print Network

    Damaschke, Peter

    Even Faster Parameterized Cluster Deletion and Cluster Editing Sebastian B¨ocker Lehrstuhl f¨oteborg, Sweden ptr@chalmers.se Abstract Cluster Deletion and Cluster Editing ask to transform a graph by at most k edge deletions or edge edits, respectively, into a cluster graph, i.e., disjoint union of cliques

  9. Investigation of NRXN1 deletions: clinical and molecular characterization.

    PubMed

    Dabell, Mindy Preston; Rosenfeld, Jill A; Bader, Patricia; Escobar, Luis F; El-Khechen, Dima; Vallee, Stephanie E; Dinulos, Mary Beth Palko; Curry, Cynthia; Fisher, Jamie; Tervo, Raymond; Hannibal, Mark C; Siefkas, Kiana; Wyatt, Philip R; Hughes, Lauren; Smith, Rosemarie; Ellingwood, Sara; Lacassie, Yves; Stroud, Tracy; Farrell, Sandra A; Sanchez-Lara, Pedro A; Randolph, Linda M; Niyazov, Dmitriy; Stevens, Cathy A; Schoonveld, Cheri; Skidmore, David; MacKay, Sara; Miles, Judith H; Moodley, Manikum; Huillet, Adam; Neill, Nicholas J; Ellison, Jay W; Ballif, Blake C; Shaffer, Lisa G

    2013-04-01

    Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10(-7) ), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1. PMID:23495017

  10. [Kearns-Sayre syndrome: ophthalmic manifestations].

    PubMed

    Bande Rodriguez, M; Pose Bazarra, S; Treus Suarez, A; Abraldes Lopez-Veiga, M; Fernandez Rodriguez, M I; Rodriguez Cid, M J

    2015-01-01

    The clinical case and genetic diagnosis of Kearns-Sayre syndrome (KSS) is described in a young patient. The findings included: ptosis, ocular motility disturbances, pigmentary retinopathy, as well as mitral insufficiency. A muscle biopsy revealed mitochondrial cytopathyand heteroplasmic mitochondrial DNA deletions. KSS is a rare neuromuscular disorder defined by a characteristic triad of progressive external ophthalmoplegia, pigmentary retinopathy and atrioventricular block. Early detection is essential to avoid potential cardiac complications. PMID:25441208

  11. Pulmonary arterial hypertension in a patient with Cowden syndrome and the PTEN mutation

    PubMed Central

    Mester, Jessica; Eng, Charis; Farha, Samar

    2014-01-01

    Abstract The pathogenesis of pulmonary arterial hypertension (PAH) exhibits many neoplastic-like features. Cowden syndrome is a difficult-to-recognize heritable cancer syndrome caused by a germline mutation in the phosphatase-and-tensin homolog deleted on the chromosome 10 (PTEN) gene. PTEN regulation has been implicated in cancer development and, more recently, PAH pathogenesis. Here we report a case of PAH in a patient with Cowden syndrome and the response to pulmonary vasodilators. PMID:25610608

  12. Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis

    Microsoft Academic Search

    Wendy R Kates; Courtney P Burnette; Ethylin W Jabs; Julie Rutberg; Anne M Murphy; Marco Grados; Michael Geraghty; Walter E Kaufmann; Godfrey D Pearlson

    2001-01-01

    Background: Velocardiofacial syndrome, caused by a microdeletion on chromosome 22q.11, is associated with craniofacial anomalies, cardiac defects, learning disabilities, and psychiatric disorders. To understand how the 22q.11 deletion affects brain development, this study examined gray and white matter volumes in major lobar brain regions of children with velocardiofacial syndrome relative to control subjects.Methods: Subjects were ten children with velocardiofacial syndrome

  13. Upper limb malformations in chromosome 22q11 deletions

    SciTech Connect

    Shalev, S.A.; Dar, H.; Barel, H.; Borochowitz, Z. [Bnai Zion Medical Center, Haifa (Israel)

    1996-03-29

    We read with interest the report of Cormier-Daire et al. in a recent issue of the journal, describing upper limb malformations in DiGeorge syndrome. We observed a family with this group of rare clinical expression of chromosome 22q11 deletions. The proposita was examined in our clinic when she was 4 years old. She was mildly mentally retarded. Clinical evaluation showed normal growth, long thin nose with squared tip, nasal speech, and abundant scalp hair and no cardiac anomalies. The girl was accompanied by her mother. Facial similarities were noted between the two. The mother reported to be treated with oral calcium due to hypoparathyroidism, diagnosed several years ago. Clinical evaluation showed wide flat face, short stature, mild mental retardation, slight hypertelorism, peculiar nose similar to her daughter`s, and nasal speech. No cardiac anomalies were found. Recently, a brother was born. Clinical examination documented large ventriculo-septal defect, retrognathia, narrow palpebral fissures, and long thin nose with squared tip. 1 ref.

  14. Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of SMN gene deletion findings.

    PubMed

    Rudnik-Schöneborn, S; Forkert, R; Hahnen, E; Wirth, B; Zerres, K

    1996-02-01

    With the evidence of deletions in the region responsible for autosomal recessive spinal muscular atrophy (SMA) on chromosome 5, it is now possible to further clarify the clinical and diagnostic findings in proximal SMA. Homozygous deletions of the survival motor neuron (SMN) gene can be detected in about 95% of patients with early onset SMA. In a series of more than 200 patients, we tested 31 patients with atypical features of SMA who fulfilled at least one exclusion criterion according to the diagnostic criteria of the International SMA Consortium for the presence of SMN gene deletions. The patients were subdivided into two groups: 1. Seven index patients being not deleted for the SMN gene who belonged to a well-defined SMA plus variant that has already been shown to be unlinked with chromosome 5q markers: diaphragmatic SMA, SMA plus olivopontocerebellar hypoplasia, SMA with congenital arthrogryposis and bone fractures. 2. Twenty-four patients with clinical signs of SMA and neurogenic findings in EMG/muscle biopsy who had unusual features or other organ involvement. In order to structure this heterogeneous group, each patient was assigned to a subgroup according to the leading atypical feature. In 5 out of 8 unrelated patients with a history of preterm birth and/or perinatal asphyxia leading to a picture of severe SMA in combination with respiratory distress and/or cerebral palsy, no deletion of the SMN gene could be detected. There were five unrelated patients with extended central nervous system involvement (cerebral atrophy, EEG abnormalities, pyramidal tract signs, evidence of cerebellar involvement). Most of these patients (4/5) proved to belong to SMA 5q on the basis of SMN gene deletion findings. The same applied to a group of three patients with classical SMA in association with congenital malformations (mainly heart defect). A fourth group of three patients was characterized mainly by an unusual improvement of the condition; in these patients no SMN gene deletions were present. In three index patients a more complex syndrome of the CNS and other organs was suggested, but the detection of SMN gene deletions in two of them made a coincidence of features more likely. In addition, SMN gene deletions were found in two patients with evidence of congenital fibre type dysproportion in one and extremely raised CK activity ( > 10fold) in the other. While the confirmation of SMN gene deletions is very useful in cases with diagnostic doubts, caution is required when offering prenatal prediction with regard to SMA 5q in families with atypical features. There is strong evidence that there are clinical entities resembling SMA which most likely have another pathogenetic background. PMID:8677029

  15. The aetiology of the cat eye syndrome reconsidered

    Microsoft Academic Search

    G Guanti

    1981-01-01

    The cat eye syndrome (CES), usually ascribed to the presence of a deleted supernumerary 22 chromosome, is characterised by a typical clinical picture including anal atresia, ocular coloboma, preauricular tags or sinuses, congenital heart defects, urinary tracts anomalies, and mental and physical retardation. An analysis of published reports revealed that of the 57 reported cases, only 21 showed the complete

  16. Genetics and Mathematics: Evidence from Prader-Willi Syndrome

    ERIC Educational Resources Information Center

    Semenza, Carlo; Pignatti, Riccardo; Bertella, Laura; Ceriani, Francesca; Mori, Ileana; Molinari, Enrico; Giardino, Daniela; Malvestiti, Francesca; Grugni, Graziano

    2008-01-01

    Mathematical abilities were tested in people with Prader-Willi syndrome (PWS), using a series of basic mathematical tasks for which normative data are available. The difference between the deletion and the disomy variants of this condition was explored. While a wide phenotypic variation was found, some basic findings emerge clearly. As expected…

  17. Duplication/deletion of chromosome 8p

    SciTech Connect

    Priest, J.H. [Shodair Hospital Dept. of Medical Genetics, Helena, MT (United States)

    1995-09-11

    The article by Guo et al. provides evidence for deletion of D8S596 loci (assigned to 8p23) in at least some patients with inverted duplications of 8p. Cytogenetic break points forming the inverted duplication are remarkably similar among most of their patients and those reported previously, suggesting a common mechanism for this interesting rearrangement. Why should similar breaks occur in 8p and why is a FISH signal absent in the distal short arm when the ONCOR digoxigenin-labeled probe for loci D8S596 is used? Other studies also indicate that duplication for the region 8p12-p22 is associated with a deletion distal to the duplication itself. 4 refs.

  18. An environment-mediated quantum deleter

    E-print Network

    R. Srikanth; Subhashish Banerjee

    2007-04-24

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters.

  19. Experimental quantum deletion in an NMR quantum information processor

    NASA Astrophysics Data System (ADS)

    Long, Yu; Feng, GuanRu; Pearson, Jasong; Long, GuiLu

    2014-07-01

    We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database. Unlike classical deletion, where search and deletion are equivalent, quantum deletion can be implemented with only a single query, which achieves exponential speed-up compared to the optimal classical analog. In the experimental realization, the GRAPE algorithm was used to obtain an optimized NMR pulse sequence, and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.

  20. Mitochondrial DNA deletions and the aging heart.

    PubMed

    Mohamed, Salah A; Hanke, Thorsten; Erasmi, Armin W; Bechtel, Mathias J F; Scharfschwerdt, Michael; Meissner, C; Sievers, Hans H; Gosslau, Alexander

    2006-05-01

    Mitochondrial DNA (mtDNA) mutations appear to be associated with a wide spectrum of human disorders and proposed to be a potential contributor of aging. However, in an age-dependent increase of the common 4977 bp deletion of human mtDNA still many unanswered questions remain. Comparing mtDNA copy levels in different tissues revealed that cardiac muscle had the highest, while the cortex cerebelli showed the lowest copy number of mtDNA in every donor. Intriguingly, mtDNA copy number showed no changes during aging. In heart tissue, the amount of 4977 bp mtDNA deletion increased in an age-dependent manner showing significant differences at the age of 40 years and older (p<0.005). In vitro studies analyzing human normal cells transfected with telomerase (BJ-T) revealed that oxidative stress (OS)--a well accepted promoter of aging--induced 4977 bp deletion and point mutations as demonstrated by real-time PCR and DHPLC analysis. Interestingly, OS induced apoptosis only in transformed human fibroblasts by activation of the intrinsic (mitochondrial-mediated) signalling pathway as indicated by morphological damage of mitochondria, DNA laddering and increase of the Bax/Bcl-2 ratio. In conclusion, in heart tissue, the amount of the 4977 bp deletion increased in an age-dependent manner and it was more detectable after the 4th decade of life, although there was some scatter in the data. Since, apoptosis was induced by the mitochondria-mediated pathway only in transformed cells, the role for apoptosis in normal tissue of the aging heart remains unclear. PMID:16632292

  1. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    PubMed

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5?Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP. © 2015 Wiley Periodicals, Inc. PMID:25807935

  2. Homozygous PLCB1 Deletion Associated with Malignant Migrating Partial Seizures in Infancy

    PubMed Central

    Poduri, Annapurna; Chopra, Sameer S.; Neilan, Edward G.; Elhosary, P. Christina; Kurian, Manju A.; Meyer, Esther; Barry, Brenda J.; Khwaja, Omar S.; Salih, Mustafa A. M.; Sci, Dr Med; Stödberg, Tommy; Scheffer, Ingrid E.; Maher, Eamonn R.; Sahin, Mustafa; Wu, Bai-Lin; Med, M; Berry, Gerard T.; Walsh, Christopher A.; Picker, Jonathan; Kothare, Sanjeev V.

    2013-01-01

    Summary Malignant migrating partial seizures in infancy (MMPEI) is an early onset epileptic encephalopathy with few known etiologies. We sought to identify a novel cause of MMPEI in a child with MMPEI whose healthy parents were consanguineous. We used array comparative genomic hybridization (CGH) to identify copy number variants (CNVs) genome-wide and long-range PCR to further delineate the breakpoints of a deletion found by CGH. The proband had an inherited homozygous deletion of chromosome 20p13, disrupting the promoter region and first three coding exons of the gene PLCB1. Additional MMPEI cases were screened for similar deletions or mutations in PLCB1 but did not harbor mutations. Our results suggest that loss of PLC?1 function is one cause of MMPEI, consistent with prior studies in a Plcb1 knockout mouse model that develops early onset epilepsy. We provide novel insight into the molecular mechanisms underlying MMPEI and further implicate PLCB1 as a candidate gene for severe childhood epilepsies. This work highlights the importance of pursuing genetic etiologies for severe early onset epilepsy syndromes. PMID:22690784

  3. A human laterality disorder associated with a homozygous WDR16 deletion.

    PubMed

    Ta-Shma, Asaf; Perles, Zeev; Yaacov, Barak; Werner, Marion; Frumkin, Ayala; Rein, Azaria Jjt; Elpeleg, Orly

    2014-12-01

    The laterality in the embryo is determined by left-right asymmetric gene expression driven by the flow of extraembryonic fluid, which is maintained by the rotary movement of monocilia on the nodal cells. Defects manifest by abnormal formation and arrangement of visceral organs. The genetic etiology of defects not associated with primary ciliary dyskinesia is largely unknown. In this study, we investigated the cause of situs anomalies, including heterotaxy syndrome and situs inversus totalis, in a consanguineous family. Whole-exome analysis revealed a homozygous deleterious deletion in the WDR16 gene, which segregated with the phenotype. WDR16 protein was previously proposed to play a role in cilia-related signal transduction processes; the rat Wdr16 protein was shown to be confined to cilia-possessing tissues and severe hydrocephalus was observed in the wdr16 gene knockdown zebrafish. The phenotype associated with the homozygous deletion in our patients suggests a role for WDR16 in human laterality patterning. Exome analysis is a valuable tool for molecular investigation even in cases of large deletions.European Journal of Human Genetics advance online publication, 3 December 2014; doi:10.1038/ejhg.2014.265. PMID:25469542

  4. HIV with multiple gene deletions as a live attenuated vaccine for AIDS.

    PubMed

    Desrosiers, R C

    1992-03-01

    Most viral vaccines currently in use in humans are live attenuated strains of virus that lack pathogenic potential. In general, such live attenuated vaccines induce the strongest longest-lasting immunity. Live attenuated strains of human immunodeficiency virus type 1 (HIV-1) have not been previously considered as vaccines for acquired immunodeficiency syndrome (AIDS) because of an inability to envision how their safety could be adequately assured. This report describes a means for making live, nonpathogenic strains of SIVmac and HIV-1 that cannot revert to a virulent form and a stepwise scheme for demonstrating their safety. Replication-competent, multiply deleted derivatives that are currently being tested are missing combinations of auxiliary genes (nef, vpr, vif, vpx, vpu) and certain control elements in the negative regulatory element (NRE) of the long terminal repeat (LTR). Since these genomic regions are in large part conserved among the SIVs and HIVs, they are likely to be important for the virus life cycle in vivo. Consistent with this line of reasoning, a replication-competent nef deletion mutant of SIVmac apparently has lost most or all of its pathogenic potential, yet it still induces strong immune responses. Multiply deleted derivatives of SIVmac and HIV-1 will have to be extensively tested in animal models prior to moving a promising HIV-1 candidate to initial trials in high-risk human volunteers. Definitive evidence for safety and general acceptance for this approach can only evolve gradually over a prolonged period of time. PMID:1571200

  5. Two new cases of FMR1 deletion associated with mental impairment.

    PubMed Central

    Hirst, M; Grewal, P; Flannery, A; Slatter, R; Maher, E; Barton, D; Fryns, J P; Davies, K

    1995-01-01

    Screening of families clinically ascertained for the fragile X syndrome phenotype revealed two mentally impaired males who were cytogenetically negative for the fragile X chromosome. In both cases, screening for the FMR1 trinucleotide expansion mutation revealed a rearrangement within the FMR1 gene. In the first case, a 660-bp deletion is present in 40% of peripheral lymphocytes. PCR and sequence analysis revealed it to include the CpG island and the CGG trinucleotide repeat, thus removing the FMR1 promoter region and putative mRNA start site. In the second case, PCR analysis demonstrated that a deletion extended from a point proximal to FMR1 to 25 kb into the gene, removing all the region 5' to exon 11. The distal breakpoint was confirmed by Southern blot analysis and localized to a 600-bp region, and FMR1-mRNA analysis in a cell line established from this individual confirmed the lack of a transcript. These deletion patients provide further confirmatory evidence that loss of FMR1 gene expression is indeed responsible for mental retardation. Additionally, these cases highlight the need for the careful examination of the FMR1 gene, even in the absence of cytogenetic expression, particularly when several fragile X-like clinical features are present. Images Figure 2 Figure 6 PMID:7825604

  6. Learning about Velocardiofacial Syndrome

    MedlinePLUS

    ... terms used on this page. Learning About Velocardiofacial Syndrome What is velocardiofacial syndrome (VCFS)? What are the ... Syndrome Additional Resources for VCFS What is velocardiofacial syndrome? Velocardiofacial syndrome (VCFS) is a genetic condition that ...

  7. Combined 22q11.1-q11.21 deletion with 15q11.2-q13.3 duplication identified by array-CGH in a 6 years old boy

    Microsoft Academic Search

    Emmanouil Manolakos; Catherine Sarri; Annalisa Vetro; Konstantinos Kefalas; Eleni Leze; Christalena Sofocleus; George Kitsos; Konstantina Merou; Haris Kokotas; Anna Papadopoulou; Achilleas Attilakos; Michael B Petersen; Sofia Kitsiou-Tzeli

    2011-01-01

    Background  Deletions of chromosome 22q11 are present in over 90% of cases of DiGeorge or Velo-Cardio-Facial syndrome (DGS\\/VCFS). 15q11-q13\\u000a duplication is another recognized syndrome due to rearrangements of several genes, belonging to the category of imprinted\\u000a genes. The phenotype of this syndrome varies but has been clearly associated with developmental delay and autistic spectrum\\u000a disorders. Co-existence of the two syndromes has

  8. [Capgras' syndrome].

    PubMed

    Ben-Zion, I Z; Levine, K; Shiber, A

    1997-09-01

    We present 3 cases of Capgras' syndrome-a delusional disorder in which the patient believes that 1 (or more) of his acquaintances has been replaced by an imposter who appears as a double. 2 were schizophrenics and 1 had depression with psychotic features. This syndrome is rare in our practice, but we do not know if this is due to lack of awareness of the condition, or to the possibility that it is a culture-related syndrome. We suggest that although the syndrome has lost some of it's significance, it is still worth making the diagnosis because of the medical and psychological implications this condition carries. PMID:9461686

  9. Analysis of a terminal Xp22.3 deletion in a patient with six monogenic disorders: implications for the mapping of X linked ocular albinism.

    PubMed Central

    Meindl, A; Hosenfeld, D; Brückl, W; Schuffenhauer, S; Jenderny, J; Bacskulin, A; Oppermann, H C; Swensson, O; Bouloux, P; Meitinger, T

    1993-01-01

    The molecular characterisation of chromosomal aberrations in Xp22.3 has established the map position of several genes with mutations resulting in diverse phenotypes such as short stature (SS), chondrodysplasia punctata (CDPX), mental retardation (MRX), ichthyosis (XLI), and Kallmann syndrome (KAL). We describe the clinical symptoms of a patient with a complex syndrome compatible with all these conditions plus ocular albinism (OA1). He has a terminal Xp deletion of at least 10 Mb of DNA. Both the mother and sister of the patient are carriers of the deletion and show a number of traits seen in Turner's syndrome. The diagnosis of ocular albinism was confirmed in the patient and his mother, who shows iris translucency, patches and streaks of hypopigmentation in the fundus, and macromelanosomes in epidermal melanocytes. By comparative deletion mapping we can define a deletion interval, which locates the OA1 gene proximal to DXS143 and distal to DXS85, with the breakpoints providing valuable starting points for cloning strategies. Images PMID:8230160

  10. Breakpoint analysis of Turner patients with partial Xp deletions: implications for the lymphoedema gene location

    PubMed Central

    Boucher, C.; Sargent, C.; Ogata, T.; Affara, N.

    2001-01-01

    BACKGROUND—Turner syndrome is characterised by a 45,X karyotype and a variety of skeletal, lymphoedemic, and gonadal anomalies. Genes involved in the Turner phenotype are thought to be X/Y homologous with the X genes escaping X inactivation. Haploinsufficiency of the SHOX gene has been reported to cause the short stature seen in Turner syndrome patients. More recently, mutations of this gene have been shown to be associated with other skeletal abnormalities, suggesting that haploinsufficiency of SHOX causes all the Turner skeletal anomalies. No such gene has yet been identified for the lymphoedemic features.?METHODS—Fluorescence in situ hybridisation (FISH) analysis with PAC clones on nine patients with partially deleted X chromosomes was performed.?RESULTS/DISCUSSION—The Turner syndrome stigmata for each patient are described and correlation between the breakpoint and the phenotype discussed. A lymphoedema critical region in Xp11.4 is proposed and its gene content discussed with respect to that in the previously reported Yp11.2 lymphoedema critical region.???Keywords: Turner syndrome; lymphoedema; Xp11.4 PMID:11546827

  11. Down Syndrome What causes Down syndrome?

    E-print Network

    Palmeri, Thomas

    04/13 Down Syndrome What causes Down syndrome? Individuals with Down syndrome usually have an extra chromosome 21. Down syndrome occurs in about 1 in every 700 to 1,000 births. The chance of giving birth to a baby with Down syndrome increases if the mother is over 35 years old. Down syndrome affects both males

  12. Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on

    E-print Network

    Bellugi, Ursula

    7q11.23 Hamao Hirota, MD, PhD1,2 , Rumiko Matsuoka, MD, PhD1 , Xiao-Ning Chen, MD2 , Lora S functioning. Genet Med 2003:5(4):311­321. Key Words: Williams Syndrome, atypical deletion, chromosome 7q11), Williams syndrome (WS), to explore the genetic basis of human cogni- tion and behavior. WS

  13. Clinical Features: Baraitser-Winter syndrome [BRWS, OMIM #243310 and 614583] is a rare developmental disorder characterized

    E-print Network

    Ober, Carole

    Laboratories Genetic Testing for Baraitser-Winter syndrome #12;1/13 Baraitser Winter syndrome Deletion to be unique to BRWS. Molecular Genetics: Using exome sequencing, Riviere et al. identified de-novo missense progressive deafness only. These have been missense mutations in actin binding domains of the ACTG1 protein [2

  14. Velopharyngeal incompetence diagnosed in a series of cardiac patients prompted by the finding of a 22q11.2 deletion

    SciTech Connect

    Driscoll, D.A.; Emanuel, B.S.; Goldmuntz, E. [The Children`s Hospital of Philadelphia, PA (United States)] [and others

    1994-09-01

    Congenital heart disease is very common and may occur as an isolated malformation or as part of a well-defined syndrome. In some syndromes, specific types are overrepresented as compared to their incidence in the general population. Conotruncal anomalies are one such example where they are seen as part of DiGeorge syndrome (DGS) and Velo-Cardio-Facial syndrome (VCFS). Often, the diagnosis of VCFS is not suspected because mild facial dysmorphia is frequently not appreciated in the newborn period. While overt cleft palate, a characteristic finding in VCFS, would be detected early, a submucousal cleft palate or velopharyngeal incompetence (VPI) may go unrecognized in the pre-verbal child and may remain undiagnosed in the older patient who is not referred for a palatal evaluation. In patients with either DGS or VCFS, microdeletions of chromosome 22q11.2 have been demonstrated in almost 90% of patients. As part of our ongoing study, twenty patients with a conotruncal cardiac anomaly, without an overt cleft palate, were referred for 22q11.2 deletion analysis. 13/20 patients were found to have a deletion. All 13 deleted patients underwent palatal evaluations by a plastic surgeon and speech pathologist. 7 patients were noted to have VPI. Intervention including speech therapy and/or posterior pharyngeal flap surgery for these previously undiagnosed abnormalities is underway. These results suggest that palatal abnormalities are underdiagnosed in a significant proportion of patients with conotruncal cardiac defects. We therefore propose deletion studies in these patients followed by prompt palatal evaluations when the deletion is present. Early diagnosis of VPI and submucousal cleft palate should lead to early intervention and appropriate management of the speech difficulties encountered by these individuals.

  15. Male with typical fragile X phenotype is deleted for part of the FMR1 gene and for about 100 kb of upstream region

    SciTech Connect

    Trottier, Y.; Imbert, G.; Mandel, J.L. [Institut de Chimie Biologique, Strasbourg (France); Fryns, J.P. [Universitaire Ziekenhuizen, Leuven (Belgium); Poustka, A. [Institut 06, Heidelberg (Germany)

    1994-07-15

    We report on a patient with moderate mental retardation and a typical fragile X phenotype, with no family history and no fragile X site on cytogenetic analysis. The patient was found to have a deletion encompassing part of the FMR1 gene and a 70-100 kb region upstream of the FMR1 promotor region. This deletion is smaller than those previously reported and confirms that FMR1 is the major and probably the only gene implicated in the phenotype of the fragile X syndrome. 16 refs., 3 figs.

  16. Headbobber: A Combined Morphogenetic and Cochleosaccular Mouse Model to Study 10qter Deletions in Human Deafness

    PubMed Central

    Buniello, Annalisa; Hardisty-Hughes, Rachel E.; Pass, Johanna C.; Bober, Eva; Smith, Richard J.; Steel, Karen P.

    2013-01-01

    The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter deletion syndrome. PMID:23457544

  17. Klinefelter Syndrome

    MedlinePLUS

    ... Is It? Klinefelter syndrome can cause problems with learning and sexual development in guys. It's a genetic condition (meaning a person is born with it). Klinefelter syndrome only affects males. It happens because of a difference deep inside the body's cells, in microscopic centers called ...

  18. HELLP Syndrome

    MedlinePLUS

    ... have your baby. HELLP stands for Hemolysis, Elevated Liver enzyme levels and a Low Platelet count. These are problems that can occur in women who have this syndrome. Women who have HELLP syndrome may have bleeding problems, liver problems and blood pressure problems that can hurt ...

  19. LGR4/GPR48 Inactivation Leads to Aniridia-Genitourinary Anomalies-Mental Retardation Syndrome Defects*

    PubMed Central

    Yi, Tingfang; Weng, Jinsheng; Siwko, Stefan; Luo, Jian; Li, Dali; Liu, Mingyao

    2014-01-01

    AGR syndrome (the clinical triad of aniridia, genitourinary anomalies, and mental retardation, a subgroup of WAGR syndrome for Wilm's tumor, aniridia, genitourinary anomalies, and mental retardation) is a rare syndrome caused by a contiguous gene deletion in the 11p13–14 region. However, the mechanisms of WAGR syndrome pathogenesis are elusive. In this study we provide evidence that LGR4 (also named GPR48), the only G-protein-coupled receptor gene in the human chromosome 11p12–11p14.4 fragment, is the key gene responsible for the diseases of AGR syndrome. Deletion of Lgr4 in mouse led to aniridia, polycystic kidney disease, genitourinary anomalies, and mental retardation, similar to the pathological defects of AGR syndrome. Furthermore, Lgr4 inactivation significantly increased cell apoptosis and decreased the expression of multiple important genes involved in the development of WAGR syndrome related organs. Specifically, deletion of Lgr4 down-regulated the expression of histone demethylases Jmjd2a and Fbxl10 through cAMP-CREB signaling pathways both in mouse embryonic fibroblast cells and in urinary and reproductive system mouse tissues. Our data suggest that Lgr4, which regulates eye, kidney, testis, ovary, and uterine organ development as well as mental development through genetic and epigenetic surveillance, is a novel candidate gene for the pathogenesis of AGR syndrome. PMID:24519938

  20. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl.

    PubMed

    Boutry-Kryza, Nadia; Ville, Dorothée; Labalme, Audrey; Calender, Alain; Dupont, Jean-Michel; Touraine, Renaud; Edery, Patrick; des Portes, Vincent; Sanlaville, Damien; Lesca, Gaetan

    2014-08-01

    Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene. PMID:24715584

  1. An Xp22 microdeletion associated with ocular albinism and ichthyosis: approximation of breakpoints and estimation of deletion size by using cloned DNA probes and flow cytometry.

    PubMed Central

    Schnur, R E; Trask, B J; van den Engh, G; Punnett, H H; Kistenmacher, M; Tomeo, M A; Naids, R E; Nussbaum, R L

    1989-01-01

    Ocular albinism of the Nettleship-Falls type (OA1) and X-linked ichthyosis (XI) due to steroid sulfatase (STS) deficiency are cosegregating in three cytogenetically normal half-brothers. The mother has patchy fundal hypopigmentation consistent with random X inactivation in an OA1 carrier. Additional phenotypic abnormalities that have been observed in other STS "deletion syndromes" are not present in this family. STS is entirely deleted on Southern blot in the affected males, but the loci MIC2X, DXS31, DXS143, DXS85, DXS43, DXS9, and DXS41 are not deleted. At least part of DXS278 is retained. Flow cytometric analysis of cultured lymphoblasts from one of the XI/OA1 males and his mother detected a deletion of about 3.5 million bp or about 2% of the X chromosome. Southern blot and RFLP analysis in the XI/OA1 family support the order tel-[STS-OA1-DXS278]-DXS9-DXS41-cen. An unrelated patient with the karyotype 46,X,t(X;Y) (p22;q11) retains the DXS143 locus on the derivative X chromosome but loses DXS278, suggesting that DXS278 is the more distal locus and is close to an XI/OA1 deletion boundary. If a contiguous gene deletion is responsible for the observed XI/OA1 phenotype, it localizes OA1 to the Xp22.3 region. Images Figure 3 Figure 4 PMID:2573275

  2. Isolation of a gene encoding an integral membrane protein from the vicinity of a balanced translocation breakpoint associated with DiGeorge syndrome.

    PubMed

    Wadey, R; Daw, S; Taylor, C; Atif, U; Kamath, S; Halford, S; O'Donnell, H; Wilson, D; Goodship, J; Burn, J

    1995-06-01

    Deletions within 22q11 have been associated with a wide variety of birth defects embraced by the acronym CATCH22 and including the DiGeorge syndrome, Shprintzen syndrome (velocardiofacial syndrome) and congenital heart disease. It is not known how many genes contribute to this phenotype. Previous studies have shown that a balanced translocation disrupts sequences within the shortest region of deletion overlap for DiGeorge syndrome. A P1 clone was isolated which spans this breakpoint and used to isolate a cDNA encoding a transmembrane protein expressed in a wide variety of tissues. This gene (called IDD) is not disrupted by the translocation, but maps within 10 kb of the breakpoint. Mutation analysis of five affected cases with no previously identified chromosome 22 deletion was negative, but a potential protein polymorphism was discovered. No deletions or rearrangements were detected in these patients following analysis with markers closely flanking the breakpoint, data which emphasize that large (i.e. over 1 Mb) interstitial deletions are the rule in DiGeorge syndrome. The proximity of IDD to the balanced translocation breakpoint and its position within the shortest region of deletion overlap indicate that this gene may have a role, along with other genes, in the CATCH22 haploinsufficiency syndromes. PMID:7655455

  3. Genetics Home Reference: Noonan syndrome

    MedlinePLUS

    ... use for Noonan syndrome? familial Turner syndrome Female Pseudo-Turner Syndrome Male Turner Syndrome Noonan-Ehmke syndrome pseudo-Ullrich-Turner syndrome Turner-like syndrome Turner's phenotype, ...

  4. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice

    Microsoft Academic Search

    Elizabeth A. Lindsay; Francesca Vitelli; Hong Su; Masae Morishima; Tuong Huynh; Tiziano Pramparo; Vesna Jurecic; George Ogunrinu; Helen F. Sutherland; Peter J. Scambler; Allan Bradley; Antonio Baldini

    2001-01-01

    DiGeorge syndrome is characterized by cardiovascular, thymus and parathyroid defects and craniofacial anomalies, and is usually caused by a heterozygous deletion of chromosomal region 22q11.2 (del22q11) (ref. 1). A targeted, heterozygous deletion, named Df(16)1, encompassing around 1 megabase of the homologous region in mouse causes cardiovascular abnormalities characteristic of the human disease. Here we have used a combination of chromosome

  5. The phenotypic expression of three MSH2 mutations in large Newfoundland families with Lynch syndrome

    Microsoft Academic Search

    Susan Stuckless; Patrick S. Parfrey; Michael O. Woods; Janet Cox; G. William Fitzgerald; Jane S. Green; Roger C. Green

    2007-01-01

    To compare the phenotypic expression of three different MSH2 mutations causing Lynch syndrome, 290 family members at 50% risk of inheriting a mutation were studied. Two truncating mutations\\u000a of the MSH2 gene have been identified in Newfoundland: an exon 8 deletion in five families (N=74 carriers) and an exon 4–16 deletion in one family (N=65 carriers). The third mutation was

  6. Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients.

    PubMed

    Friedl, W; Kruse, R; Uhlhaas, S; Stolte, M; Schartmann, B; Keller, K M; Jungck, M; Stern, M; Loff, S; Back, W; Propping, P; Jenne, D E

    1999-08-01

    Familial juvenile polyposis (FJP) is a hamartomatous polyposis syndrome characterized by the appearance of juvenile polyps in the gastrointestinal tract. Patients with this syndrome are at an increased risk for cancer of the colon, stomach, and pancreas. Recently, germline mutations in the SMAD4/DPC4 gene (official symbol MADH4) have been found in the majority of patients suffering from FJP. We have examined 11 unrelated patients with FJP for MADH4 germline mutations by direct sequencing of genomic DNA encompassing all 11 exons of the gene. Besides a novel mutation (959-960delAC at codon 277, exon 6) in one patient, we observed a 4-bp deletion (1372-1375delACAG) in exon 9 in two unrelated patients. Examination with microsatellite markers flanking MADH4 supports an independent origin of the mutation in these two families. The same 4-bp deletion in exon 9 has previously been described in three out of nine patients examined for MADH4 mutations. Our results combined with these previous data demonstrate that a unique 4-bp deletion in exon 9 of MADH4 accounts for about 25% of all FJP cases and that other MADH4 mutations occur in an additional 15% of patients. Genes Chromosomes Cancer 25:403-406, 1999. PMID:10398437

  7. Assessing Trace Evidence Left by Secure Deletion Programs

    NASA Astrophysics Data System (ADS)

    Burke, Paul; Craiger, Philip

    Secure deletion programs purport to permanently erase files from digital media. These programs are used by businesses and individuals to remove sensitive information from media, and by criminals to remove evidence of the tools or fruits of illegal activities. This paper focuses on the trace evidence left by secure deletion programs. In particular, five Windows-based secure deletion programs are tested to determine if they leave identifiable signatures after deleting a file. The results show that the majority of the programs leave identifiable signatures. Moreover, some of the programs do not completely erase file metadata, which enables forensic investigators to extract the name, size, creation date and deletion date of the "deleted" files.

  8. Williams syndrome: from genotype through to the cognitive phenotype.

    PubMed

    Donnai, D; Karmiloff-Smith, A

    2000-01-01

    Williams syndrome, due to a contiguous gene deletion at 7q11.23, is associated with a distinctive facial appearance, cardiac abnormalities, infantile hypercalcemia, and growth and developmental retardation. The deletion is approximately 1.5Mb and includes approximately 17 genes. Large repeats containing genes and pseudogenes flank the deletion breakpoints, and the mutation mechanism commonly appears to be unequal meiotic recombination. Elastin hemizygosity is associated with supravalvular aortic stenosis and other vascular stenoses. LIM Kinase 1 hemizygosity may contribute to the characteristic cognitive profile. The relationship of the other deleted genes to phenotypic features is not known. People with Williams syndrome tend to be over friendly-though anxious-and lack social judgement skills. They exhibit an uneven cognitive-linguistic profile together with mild to severe mental retardation. Analysis of the cognitive phenotype based on analyses of the mental processes underlying overt behavior demonstrates major differences between normal and WS subjects although for some areas, such as face processing, WS subjects can achieve near normal scores. Cognitive analysis of patients with small deletions in 7q11.23 which include elastin and LIM Kinase 1 have revealed varying results and it is premature to draw genotype-phenotype correlations. PMID:11180224

  9. Detection of TRIM32 deletions in LGMD patients analyzed by a combined strategy of CGH array and massively parallel sequencing.

    PubMed

    Nectoux, Juliette; de Cid, Rafael; Baulande, Sylvain; Leturcq, France; Urtizberea, Jon Andoni; Penisson-Besnier, Isabelle; Nadaj-Pakleza, Aleksandra; Roudaut, Carinne; Criqui, Audrey; Orhant, Lucie; Peyroulan, Delphine; Ben Yaou, Raba; Nelson, Isabelle; Cobo, Anna Maria; Arné-Bes, Marie-Christine; Uro-Coste, Emmanuelle; Nitschke, Patrick; Claustres, Mireille; Bonne, Gisèle; Lévy, Nicolas; Chelly, Jamel; Richard, Isabelle; Cossée, Mireille

    2015-07-01

    Defects in TRIM32 were reported in limb-girdle muscular dystrophy type 2H (LGMD2H), sarcotubular myopathies (STM) and in Bardet-Biedl syndrome. Few cases have been described to date in LGMD2H/STM, but this gene is not systematically analysed because of the absence of specific signs and difficulties in protein analysis. By using high-throughput variants screening techniques, we identified variants in TRIM32 in two patients presenting nonspecific LGMD. We report the first case of total inactivation by homozygous deletion of the entire TRIM32 gene. Of interest, the deletion removes part of the ASTN2 gene, a large gene in which TRIM32 is nested. Despite the total TRIM32 gene inactivation, the patient does not present a more severe phenotype. However, he developed a mild progressive cognitive impairment that may be related to the loss of function of ASTN2 because association between ASTN2 heterozygous deletions and neurobehavioral disorders was previously reported. Regarding genomic characteristics at breakpoint of the deleted regions of TRIM32, we found a high density of repeated elements, suggesting a possible hotspot. These observations illustrate the importance of high-throughput technologies for identifying molecular defects in LGMD, confirm that total loss of function of TRIM32 is not associated with a specific phenotype and that TRIM32/ASTN2 inactivation could be associated with cognitive impairment. PMID:25351777

  10. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J. (Bellport, NY); Quesada, Mark A. (Middle Island, NY); Randesi, Matthew (Upton, NY)

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  11. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  12. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  13. FISH detection of Wolf-Hirschhorn syndrome: Exclusion of D4F26 as critical site

    SciTech Connect

    Johnson, V.P.; Altherr, M.R.; Blake, J.M.; Keppen, L.D.

    1994-08-01

    Wolf-Hirschhorn syndrome (WHS) is due to a deletion in the terminal band of 4p16.3. Among loci that have been involved in deletions are D4S95, D4S125, D4F26, as shown by PCR typing, Southern blot hybridization, and/or fluorescent in situ hybridization (FISH). Currently, FISH detection of WHS is predicated upon the deletion of the D4F26 locus with failure to hybridize to pC847.351, a commercially available cosmid probe. A WHS patient is shown to have an interstitial deletion, by hemizygosity at D4S98 and D4F26. This suggests that the tip of 4p, specifically D4F26, is not a critical deletion site for WHS. 19 refs., 4 figs.

  14. 46 CFR 67.171 - Deletion; requirement and procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DOCUMENTATION AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Validity of Certificates of Documentation; Renewal of Endorsement; Requirement for Exchange, Replacement, Deletion,...

  15. 46 CFR 67.171 - Deletion; requirement and procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DOCUMENTATION AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Validity of Certificates of Documentation; Renewal of Endorsement; Requirement for Exchange, Replacement, Deletion,...

  16. 46 CFR 67.171 - Deletion; requirement and procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DOCUMENTATION AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Validity of Certificates of Documentation; Renewal of Endorsement; Requirement for Exchange, Replacement, Deletion,...

  17. 46 CFR 67.171 - Deletion; requirement and procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DOCUMENTATION AND MEASUREMENT OF VESSELS DOCUMENTATION OF VESSELS Validity of Certificates of Documentation; Renewal of Endorsement; Requirement for Exchange, Replacement, Deletion,...

  18. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ? editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the ? polymerase (dnaE), the ? clamp loader complex (holC, dnaX), and the ? clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  19. Deletions in the 5' region of dystrophin and resulting phenotypes.

    PubMed

    Muntoni, F; Gobbi, P; Sewry, C; Sherratt, T; Taylor, J; Sandhu, S K; Abbs, S; Roberts, R; Hodgson, S V; Bobrow, M

    1994-11-01

    Deletions in the dystrophin gene give rise to both Duchenne and Becker muscular dystrophies. Good correlation is generally found between the severity of the phenotype and the effect of the deletion on the reading frame: deletions that disrupt the reading frame result in a severe phenotype, while in frame deletions are associated with a milder disease course. Rare exceptions to this rule, mainly owing to frameshift mutations in the 5' region of the gene (in particular deletions involving exons 3 to 7) which are associated with a milder than expected phenotype, have been reported previously. In order to characterise better the relationship between genotype and phenotype as a result of mutations arising in the 5' region of the gene, we have studied a large cohort of patients with small in frame and out of frame deletions in the first 13 exons of the dystrophin gene. Fifty-five patients with a deletion in this area were identified; approximately one third of them had a phenotype different from that theoretically expected. Patients were divided into two groups: (1) patients with a severe clinical phenotype despite the presence of a small, in frame deletion and (2) patients with a mild phenotype and an out of frame deletion. Noticeable examples observed in the first group were Duchenne boys with a deletion of exon 5, of exon 3, and of exons 3-13. In the second group we observed several patients with an intermediate or Becker phenotype and out of frame deletions involving not only the usual exons 3-7 but also 5-7 and 3-6. These data indicate that a high proportion of patients with a deletion in the 5' end of the gene have a phenotype that is not predictable on the basis of the effect of the deletion on the reading frame. The N-terminus of dystrophin has at least one actin binding domain that might be affected by the small, in frame deletions in this area. The effect of the in frame deletions of exon 3, 5, and 3-13 on this domain might account for the severe phenotype observed in these patients. Other mechanisms, such as unexpected effect of the deletion on splicing behaviour, might, however, also be implicated in determining the phenotype outcome. PMID:7853367

  20. Prenatal Diagnosis of a Female Fetus with Ring Chromosome 9, 46,XX,r(9)(p24q34), and a de novo Interstitial 9p Deletion.

    PubMed

    Penacho, Vanessa; Galán, Francisco; Martín-Bayón, Tina-A; Mayo, Sonia; Manchón, Irene; Carrasco, Alfonso; Martínez-Castellano, Francisco; Alcaraz, Luis A

    2014-01-01

    Ring chromosomes are circular structures formed as a result of breaks in the chromosome arms and the fusion of the proximal broken ends with a loss of distal material, or by fusion of dysfunctional telomeres without any loss. The mechanism underlying this process has not yet been sufficiently explained. Commonly, rings occur as acquired genetic abnormalities; however, sometimes they are found as constitutional aberrations with a prevalence of around 1:50,000 live births. Here, we present a new case of r(9) in a female fetus with intrauterine growth retardation and slight craniofacial dysmorphisms. Both parents had a normal phenotype. Amniotic fluid karyotype showed r(9)(p24q34). An array CGH revealed 3 deletion segments: a ring chromosome with a 2.57-Mb deletion at 9pterp24.2 (chr9:163,131-2,729,722), a 2.60-Mb deletion at 9q34.3qter (chr9:138,523,302-141,122,055), and also a 0.15-Mb interstitial deletion at 9p24.1 (chr9:5,090,443-5,235,765). These deletions overlap with proposed regions for the 9p24.3 deletion and Kleefstra syndrome. Segregation analysis revealed a maternal origin of the rearranged chromosome. We conclude that both the ring chromosome and the interstitial deletion occurred de novo. This last deletion has not been reported before. Prenatal array CGH, combined with fine mapping of breakpoints contributes to the assessment of genotype-phenotype correlations. © 2015 S. Karger AG, Basel. PMID:25722017