Science.gov

Sample records for subtropical north pacific

  1. Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer

    NASA Astrophysics Data System (ADS)

    Paek, Houk; Yu, Jin-Yi; Zheng, Fei; Lu, Mong-Ming

    2016-07-01

    This study examines the interannual variability of the North Pacific high during boreal summer of 1979-2008 to understand how its leading modes are related to the two types of El Niño-Southern Oscillation (ENSO). In the observations, the first empirical orthogonal function mode (EOF1) is characterized by an in-phase variation between the western Pacific subtropical high (WPSH) and the northeastern Pacific subtropical high (NPSH), while the second mode (EOF2) is characterized by an out-of-phase WPSH-NPSH variation. The EOF1 mode dominates during the post early-1990s period and is a forced response to sea surface temperature (SST) variations over the maritime continent and tropical central Pacific (CP) regions related to developing CP ENSOs. Its in-phase WPSH-NPSH relationship is established through the ENSO-induced meridional atmospheric circulation, Pacific-North American pattern and eddy-zonal flow interaction over the North Pacific. In contrast, the EOF2 mode dominates prior to the early-1990s and is partially a forced response to tropical Indian Ocean (IO) and eastern Pacific (EP) SST variations related to decaying EP ENSOs and partially a coupled atmosphere-ocean response to western North Pacific SST variations. Of the 28 Atmospheric Model Intercomparison Project models, most (71 %) realistically simulate the EOF1 mode but only a few (14 %) simulate the EOF2 mode. The roughly 50 % underestimation in the strength of the EOF2 mode is due to model deficiencies in properly representing the atmospheric circulation responses to the IO and EP SST variations. This deficiency may be related to underestimations of the strength of the mean Walker circulation in the models.

  2. The annual silica cycle of the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Krause, Jeffrey W.; Church, Matthew J.; Karl, David M.; Li, Binglin; Jones, Janice L.; Updyke, Brett

    2011-10-01

    Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 μM, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L -1 and 81 nmol Si L -1 d -1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L -1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates. Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m -2 a -1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems

  3. Variability of chromophytic phytoplankton in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Li, Binglin; Karl, David M.; Letelier, Ricardo M.; Bidigare, Robert R.; Church, Matthew J.

    2013-09-01

    Eukaryotic phytoplankton play important roles in regulating productivity and material export in oligotrophic ocean ecosystems. In this study, we examined the vertical and temporal variability in planktonic Chromalveolate (hereafter chromophyte) assemblages over a 2-year period (2007-2009) at Station ALOHA (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Polymerase chain reaction (PCR) amplification, cloning, and sequencing of form ID rbcL genes from samples collected at nearly monthly intervals provided information on the diversity, abundances, and variability associated with chromophytic phytoplankton. Despite persistently oligotrophic conditions, the euphotic zone of this habitat supported a phylogenetically diverse assemblage of chromophytic algae, including representatives of various genera of diatoms, pelagophytes, prymnesiophytes, and dinoflagellates. Quantitative PCR (qPCR) amplification of diatom, prymnesiophyte, and pelagophyte rbcL phylotypes revealed that the population structure of these assemblages was highly variable in time, with gene abundances often varying more than an order of magnitude between successive months. Diatom rbcL genes were typically the most abundant in both the upper and lower regions of the euphotic zone, while rbcL gene abundances of the prymnesiophytes and pelagophytes were significantly greater (One-way ANOVA, P<0.05) in the lower regions of the euphotic zone (75-125 m) than in the upper euphotic zone (5-45 m). Similarly, we observed elevated concentrations of 19-hexanoxyfucoxanthin and 19-butanoxyfucoxanin (diagnostic pigments of prymnesiophytes and pelagophytes, respectively) in the lower euphotic zone, while concentrations of fucoxanthin (a diagnostic diatom pigment) demonstrated less vertical structure. Analyses of samples collected using sediment traps deployed at 150 m revealed that members of diatoms, prymnesiophytes, and pelagophytes all contributed to material export out of the upper ocean. None of the

  4. Local stratification control of marine productivity in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Lozier, M. Susan

    2010-12-01

    Strengthened stratification of the upper ocean due to global warming is generally expected to inhibit marine primary productivity in the subtropics, based on the supposition that increased water column stability will decrease vertical mixing and consequently the entrainment of deep nutrients into the euphotic zone. A recent analysis of observational data from the subtropical North Atlantic, however, demonstrates that productivity in this region is not correlated with stratification on interannual time scales over the modern observational record, but is instead impacted by other dynamics that affect vertical mixing and nutrient supply. Herein, we examine data from the Hawaiian Ocean Time series program's Station ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the subtropical North Pacific. We find that stratification and productivity are not strongly correlated at this location over the observational record. In contrast to the North Atlantic, the weakness of correlation observed at ALOHA may reflect the strongly stratified ecosystem of the eastern subtropical North Pacific and a lack of sufficiently strong interannual forcing in this region. Although basin-wide climate processes (namely El Niño-Southern Oscillation and Pacific Decadel Oscillation) have previously been suggested to impact local stratification and vertical nutrient supply at ALOHA, we find no evidence of a strong or consistent linkage. Comparing local ecosystem variability to the recently identified North Pacific Gyre Oscillation, however, we observe a correlation with local subsurface productivity and salinity. The correlations have similar structure in both space (i.e., depth) and time and are possibly linked to dynamics associated with the formation and advection of water masses in the central gyre.

  5. Nitrogen fixation by Trichodesmium spp. and unicellular diazotrophs in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Sohm, Jill A.; Subramaniam, Ajit; Gunderson, Troy E.; Carpenter, Edward J.; Capone, Douglas G.

    2011-09-01

    Nitrogen (N2) fixation is an important process that fuels export production in the North Pacific Ocean, as evidenced by seasonally low δ15N of sinking organic nitrogen (N) at the Hawaii Ocean Time series station. However, relatively few direct measurements of N2 fixation exist across the North Pacific. On two cruises there in fall 2002 and summer 2003, the abundance and N2 fixation rate of Trichodesmium spp. and Richelia, as well as bulk water samples, were measured. Trichodesmium spp. were only detected in the area near the Hawaiian Islands, in similar densities on both cruises. Despite similar densities, the areal N2 fixation rate of Trichodesmium spp. in fall 2002 was nearly four times greater than in summer 2003 at stations proximal to the Hawaiian Islands. In the central North Pacific Gyre far from the Hawaiian Islands, where Trichodesmium spp. was not present, whole water N2 fixation rates were relatively high (˜100 μmol N m-2 d-1). Presumably unicellular diazotrophs were responsible for activity there. Our studies show a geographical variation in the dominant diazotroph in the North Pacific Subtropical Gyre in the summer with Trichodesmium being dominant around the Hawaiian Islands, Richelia associated with diatoms to be found in high numbers to the south of the islands while unicellular diazotrophs dominated to the west, away from the islands and evidence from the literature suggests iron may play a role.

  6. Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Levine, Naomi M.

    2016-02-01

    Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.

  7. Seasonal variability in the phytoplankton community of the North Pacific Subtropical Gyre

    SciTech Connect

    Winn, C.D.; Campbell, L.; Christian, J.R.

    1995-12-01

    This study was performed to assess seasonal cycles in fluorescence and chlorophyll concentrations in the North Pacific Subtropical Gyre. Flow cytometry and continuous in situ flash fluorescence were used to measureme in situ fluorescence, extracted chlorophyll a, primary productivity, extracted adenosine 5-triphosphate, and fluorescence per cell. Chlorophyll a concentrations increased in winter and decreased in summer in the upper euphotic zone. In the lower euphotic zone, however, chlorophyll a concentrations increased in spring and decreased in fall. The winter increase in the upper zone appeared to be caused by photoadaptation to decreased light intensity. The seasonal variation in the lower zone was indicative of a change in primary production rate and phytoplankton biomass due to increased light intensity. Based on the similarities of these observations to satellite data and other regional data, the seasonal patterns identified in this study may be common to large areas of subtropical oceans. 52 refs., 7 figs., 2 tabs.

  8. Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change

    NASA Astrophysics Data System (ADS)

    Choi, Jung; Lu, Jian; Son, Seok-Woo; Frierson, Dargan M. W.; Yoon, Jin-Ho

    2016-01-01

    This study examines future projections of sea level pressure change in the North Pacific and its impact on winter precipitation changes in California. The multimodel analysis, based on the Coupled Model Intercomparison Project phase 5 models under the Representative Concentration Pathway 8.5 scenario, shows a robust sea level pressure change in the late 21st century over the western North Pacific in which both the Aleutian Low and the North Pacific subtropical high (NPSH) shift poleward in concert with a widening of the Hadley cell. This change is partly explained by a systematic increase of static stability in the subtropics. Despite its robustness, the projected NPSH changes over the eastern North Pacific exhibit a substantial intermodel spread, contributing as a cause for uncertain projections of precipitation changes in California. This intermodel spread in the eastern North Pacific is associated with a Pacific Decadal Oscillation-like surface temperature change in the western North Pacific and the resulting meridional temperature gradient change. This study points to a major source of uncertainty for the response of winter precipitation to global warming over the West Coast of North America: atmosphere-ocean coupling in the North Pacific.

  9. Summer Diatom Blooms in the North Pacific Subtropical Gyre: 2008–2009

    PubMed Central

    Villareal, Tracy A.; Brown, Colbi G.; Brzezinski, Mark A.; Krause, Jeffrey W.; Wilson, Cara

    2012-01-01

    The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 102–103 fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22–34°N occur within a broader temperature range (21–26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 102–103 over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40–90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the

  10. Response of North Pacific eastern subtropical mode water to greenhouse gas versus aerosol forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Yiyong

    2016-04-01

    Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.

  11. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  12. How can anomalous western North Pacific Subtropical High intensify in late summer?

    NASA Astrophysics Data System (ADS)

    Xiang, Baoqiang; Wang, Bin; Yu, Weidong; Xu, Shibin

    2013-05-01

    The western North Pacific (WNP) Subtropical High (WNPSH) is a controlling system for East Asian Summer monsoon and tropical storm activities, whereas what maintains the anomalous summertime WNPSH has been a long-standing riddle. Here we demonstrate that the local convection-wind-evaporation-SST (CWES) feedback relying on both mean flows and mean precipitation is key in maintaining the WNPSH, while the remote forcing from the development of the El Niño/Southern Oscillation is secondary. Strikingly, the majority of strong WNPSH cases exhibit anomalous intensification in late summer (August), which is dominantly determined by the seasonal march of the mean state. That is, enhanced mean precipitation associated with strong WNP monsoon trough in late summer makes atmospheric response much more sensitive to local SST forcing than early summer.

  13. The Relationship between the Western North Pacific Subtropical High and the East Asian Surface Ozone

    NASA Astrophysics Data System (ADS)

    Wie, Jieun; Kim, Ga-Young; Moon, Byung-Kwon

    2016-04-01

    The tropospheric ozone is known as one of the short-lived climate pollutants and the greenhouse gases, but little is known about it. The purpose of this study is to diagnose the relationship between the western North Pacific subtropical high and the East Asian surface ozone. For the study, we used the trajectory enhanced tropospheric ozone residual (TTOR) for 9 years (2005-2013) and GEOS-Chem model data for 41 years (1971-2011). Despite the short period, the observation well shows the ozone concentration changes according to the WNPSH strength and the model as well. WNPSH enhances the convection along the East Asian monsoon band and the surface ozone concentration decreases. The ozone concentration increases in the area around the rainband. Depending on the location of the rain band, the ozone concentration changes. This study indicates that the ozone concentration is affected by not only the emission of ozone precursors and but also the meteorological condition.

  14. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-01-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies. PMID:26608354

  15. Diatoms in the desert: Plankton community response to a mesoscale eddy in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Brown, Susan L.; Landry, Michael R.; Selph, Karen E.; Jin Yang, Eun; Rii, Yoshimi M.; Bidigare, R. R.

    2008-05-01

    As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80-100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l -1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.

  16. Relationships between the tropical SST and summertime subtropical high over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Chung, Pei-Hsuan; Sui, Chung-Hsiung; Li, Tim

    2010-05-01

    The interannual variability of the western North Pacific Subtropical High (WNPSH) in summer is investigated with the use of the NCEP/NCAR reanalysis data for the period of 1958-2005. The most significant change appears at the western edge of WNPSH, with dominant 2-3-yr and 3-5-yr power spectrum peaks. The 2-3-yr oscillation of WNPSH and associated circulation and sea surface temperature (SST) patterns possess a coherent eastward-propagating feature, with a warm SST anomaly (SSTA) and anomalous ascending motion migrating from the tropical Indian Ocean in the preceding winter to the maritime continent in the concurrent summer of a strong WNPSH. A strong WNPSH is characterized by anomalous anticyclonic circulation and maximum subsidence in the western North Pacific (WNP). The anomalous WNPSH circulation has an equivalent barotropic vertical structure and resides in the sinking branch of local Hadley circulation, triggered by enhanced convection over the maritime continent in the summer. A heat budget analysis reveals that WNPSH is maintained by radiative cooling, which overcomes the decent induced adiabatic warming. The 3-5-yr oscillation of WNPSH exhibits a quasi stationary feature, with a warm SSTA (anomalous ascending motion) located in the equatorial central-eastern Pacific and Indian Ocean and a cold SSTA (anomalous descending motion) located in the western Pacific. The anomaly pattern persists from the preceding winter to the concurrent summer of a high WNPSH. The maximum descent is located to the east of the anomalous anticyclone center, where a baroclinic vertical structure is identified. The anomalous anticyclone on this timescale is a Rossby wave response to a negative convective heating associated with the local cold SSTA.

  17. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre

    PubMed Central

    Goodwin, Deborah S.

    2013-01-01

    Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem. PMID:24167779

  18. Summer diatom blooms in the North Pacific subtropical gyre: 2008-2009.

    PubMed

    Villareal, Tracy A; Brown, Colbi G; Brzezinski, Mark A; Krause, Jeffrey W; Wilson, Cara

    2012-01-01

    The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the

  19. Biogenic silica cycling during summer phytoplankton blooms in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Krause, Jeffrey W.; Brzezinski, Mark A.; Villareal, Tracy A.; Wilson, Cara

    2013-01-01

    Biogenic silica (bSiO2) cycling, diatom abundance and floristics were examined within summer-period diatom blooms in the North Pacific Subtropical Gyre (NPSG) in 2008 and 2009. Hemiaulus hauckii was the most abundant diatom observed in an expansive (100,000 km2) bloom near the subtropical front in the northeastern NPSG in 2008 and the small pennate diatom Mastogloia woodiana dominated a smaller (30,000 km2) bloom sampled in 2009 in the gyre interior. In both blooms, the bSiO2 stock and production rates were up to an order of magnitude higher relative to non-bloom areas. Remnants of a bSiO2 export event was sampled in the H. hauckii bloom area where the export rate at 300 m exceeded that at 150 m, and was among the highest values recorded in the NPSG. The M. woodiana bloom was very active with specific bSiO2 production rates of 0.50-0.75 d-1 and net bSiO2 production rates were among the highest observed in any subtropical-gyre diatom bloom to date. Net silica production rates in the euphotic zone were strongly positive within blooms and near zero outside of blooms, consistent with an important role for blooms in bSiO2 export. The difference in the areal extent of the H. hauckii and M. woodiana blooms was consistent with remote-sensing observations that blooms in the northeastern portion of the NPSG, near the subtropical front, are typically more extensive than those in the gyre interior near Hawaii Ocean Time-series station ALOHA. Initial estimates suggest that blooms in the northeast region produced 3-25 times more bSiO2 in 2008 and 2009, respectively, than did blooms in the gyre interior; and due to the large areal extent these blooms, their area-integrated production of bSiO2 is similar to intense diatom blooms coastal upwelling systems (e.g. Monterey Bay, Santa Barbara Channel) despite significantly lower production rates and standing stock.

  20. Scale interaction between typhoons and the North Pacific subtropical high and associated remote effects during the Baiu/Meiyu season

    NASA Astrophysics Data System (ADS)

    Hirata, Hidetaka; Kawamura, Ryuichi

    2014-05-01

    The interaction between typhoons and the North Pacific subtropical high and the associated remote impact on East Asian and North Pacific anomalous weather during the Baiu/Meiyu season have been investigated using the Japanese long-term Reanalysis project data aided by the Japan Meteorological Agency Climate Data Assimilation System. The typhoons that appeared in July have been categorized into two primary tracks, the Hainan Island course (HC) and the Okinawa Island course (OC). A typhoon gives rise to negative absolute vorticity advection along its eastern periphery, which locally reinforces the western ridge of the North Pacific subtropical high, whereas the resultant anomalous high stimulates the westward (northward) migration of the HC (OC) typhoon through its combination with the background flow. A combined effect of the typhoon and its induced anomalous anticyclonic circulation increases the transportation of moisture into the Baiu/Meiyu frontal zone in the vicinity of Japan. Over the East China Sea and the Sea of Japan, northward or northeastward moisture flux is pronounced along the western periphery of the typhoon-induced anticyclonic circulation anomaly in the HC category, triggering heavy rainfall on central Japan's Sea of Japan coast. Similar remote effects also operate in the OC category, which is responsible for the occurrence of extremely heavy rainfall along the Pacific coast of western Japan. When an OC typhoon approaches the Asian jet, it is capable of giving rise to anticyclonic vorticity within the jet, leading to the downstream development of stationary Rossby wave packets via the North Pacific waveguide.

  1. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

    NASA Astrophysics Data System (ADS)

    Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.

    2015-05-01

    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.

  2. Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Luo, Ya-Wei; Ducklow, Hugh W.; Friedrichs, Marjorie A. M.; Church, Matthew J.; Karl, David M.; Doney, Scott C.

    2012-09-01

    The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991-1998, significantly increased in 1999-2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.

  3. Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean.

    PubMed

    Rabouille, Sophie; Edwards, Christopher A; Zehr, Jonathan P

    2007-10-01

    A simple model was developed to examine the vertical distribution of Prochlorococcus and Synechococcus ecotypes in the water column, based on their adaptation to light intensity. Model simulations were compared with a 14-year time series of Prochlorococcus and Synechococcus cell abundances at Station ALOHA in the North Pacific Subtropical Gyre. Data were analysed to examine spatial and temporal patterns in abundances and their ranges of variability in the euphotic zone, the surface mixed layer and the layer in the euphotic zone but below the base of the mixed layer. Model simulations show that the apparent occupation of the whole euphotic zone by a genus can be the result of a co-occurrence of different ecotypes that segregate vertically. The segregation of ecotypes can result simply from differences in light response. A sensitivity analysis of the model, performed on the parameter alpha (initial slope of the light-response curve) and the DIN concentration in the upper water column, demonstrates that the model successfully reproduces the observed range of vertical distributions. Results support the idea that intermittent mixing events may have important ecological and geochemical impacts on the phytoplankton community at Station ALOHA. PMID:17803782

  4. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Guilderson, Thomas P.; Batista, Fabian C.; Schiff, John T.; McCarthy, Matthew D.

    2014-01-01

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific 15N/14N isotopic ratios (δ15N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ15N decreases between 1850 and the present. The total shift in δ15N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ15N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  5. Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic north pacific subtropical gyre.

    PubMed

    Varaljay, Vanessa A; Gifford, Scott M; Wilson, Samuel T; Sharma, Shalabh; Karl, David M; Moran, Mary Ann

    2012-04-01

    Dimethylsulfoniopropionate (DMSP) is an organic sulfur compound that is rapidly metabolized by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methiolpropionate. The abundance and diversity of genes encoding bacterial DMS production (dddP) and demethylation (dmdA) were measured in the North Pacific subtropical gyre (NPSG) between May 2008 and February 2009 at Station ALOHA (22°45'N, 158°00'W) at two depths: 25 m and the deep chlorophyll maximum (DCM; ∼100 m). The highest abundance of dmdA genes was in May 2008 at 25 m, with ∼16.5% of cells harboring a gene in one of the eight subclades surveyed, while the highest abundance of dddP genes was in July 2008 at 25 m, with ∼2% of cells harboring a gene. The dmdA gene pool was consistently dominated by homologs from SAR11 subclades, which was supported by findings in metagenomic data sets derived from Station ALOHA. Expression of the SAR11 dmdA genes was low, with typical transcript:gene ratios between 1:350 and 1:1,400. The abundance of DMSP genes was statistically different between 25 m and the DCM and correlated with a number of environmental variables, including primary production, photosynthetically active radiation, particulate DMSP, and DMS concentrations. At 25 m, dddP abundance was positively correlated with pigments that are diagnostic of diatoms; at the DCM, dmdA abundance was positively correlated with temperature. Based on gene abundance, we hypothesize that SAR11 bacterioplankton dominate DMSP cycling in the oligotrophic NPSG, with lesser but consistent involvement of other members of the bacterioplankton community. PMID:22327587

  6. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA)

    NASA Astrophysics Data System (ADS)

    White, Angelicque E.; Letelier, Ricardo M.; Whitmire, Amanda L.; Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.

    2015-11-01

    The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of 14C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 μm particles.

  7. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Church, Matthew J.; Mahaffey, Claire; Letelier, Ricardo M.; Lukas, Roger; Zehr, Jonathan P.; Karl, David M.

    2009-06-01

    Dinitrogen (N2) fixing microorganisms (termed diazotrophs) exert important control on the ocean carbon cycle. However, despite increased awareness on the roles of these microorganisms in ocean biogeochemistry and ecology, the processes controlling variability in diazotroph distributions, abundances, and activities remain largely unknown. In this study, we examine 3 years (2004-2007) of approximately monthly measurements of upper ocean diazotroph community structure and rates of N2 fixation at Station ALOHA (22°45'N, 158°W), the field site for the Hawaii Ocean Time-series program in the central North Pacific subtropical gyre (NPSG). The structure of the N2-fixing microorganism assemblage varied widely in time with unicellular N2-fixing microorganisms frequently dominating diazotroph abundances in the late winter and early spring, while filamentous microorganisms (specifically various heterocyst-forming cyanobacteria and Trichodesmium spp.) fluctuated episodically during the summer. On average, a large fraction (˜80%) of the daily N2 fixation was partitioned into the biomass of <10 μm microorganisms. Rates of N2 fixation were variable in time, with peak N2 fixation frequently coinciding with periods when heterocystous N2-fixing cyanobacteria were abundant. During the summer months when sea surface temperatures exceeded 25.2°C and concentrations of nitrate plus nitrite were at their annual minimum, rates of N2 fixation often increased during periods of positive sea surface height anomalies, as reflected in satellite altimetry. Our results suggest mesoscale physical forcing may comprise an important control on variability in N2 fixation and diazotroph community structure in the NPSG.

  8. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    PubMed Central

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-01-01

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid

  9. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre.

    PubMed

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-06-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces. PMID:26645474

  10. What factors are driving summer phytoplankton blooms in the North Pacific Subtropical Gyre?

    NASA Astrophysics Data System (ADS)

    White, Angelicque E.; Spitz, Yvette H.; Letelier, Ricardo M.

    2007-12-01

    Annually recurrent summer to fall surface blooms of the dinitrogen (N2) fixing genera Trichodesmium and Richelia have a significant impact on biogeochemical cycling in the North Pacific Subtropical Gyre (NPSG). Yet the environmental determinants of these blooms have not been thoroughly resolved. Here, we combine remote sensing of ocean color, sea surface temperature (SST), sea surface height anomalies (SSHa), wind forcing, and integrated irradiance with the vessel-based time series of the Hawaii Ocean Time-series (HOT) program at Station ALOHA (22.75°N, 158.00°W) and mooring data derived from the National Data Buoy Center (NDBC) buoy 51001 (23.42°N, 162.2°W). With these data sets we attempt to constrain the environmental window under which blooms of large cell-sized N2 fixing organisms increase in abundance in NPSG surface waters using phycoerythrin (PE) as a proxy. For identified blooms, our analyses indicate that these events are confined to the months of June-October, SST in the range of 25°-27°C, and mixed layer depths less than 70 m. Neither wind forcing nor SSHa are correlated (directly or time-lagged) with increases in PE concentrations. Furthermore, blooms do not consistently result in increases of in situ or remotely sensed chlorophyll a. Additional higher-resolution data sets of physical forcing, diazotroph abundance, and biochemical properties, sampled on the timescale of bloom development (days-weeks), will be necessary to the environmental conditions supporting annual summer-fall blooms.

  11. Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Hannides, Cecelia C. S.; Landry, Michael R.; Benitez-Nelson, Claudia R.; Styles, Renée M.; Montoya, Joseph P.; Karl, David M.

    2009-01-01

    Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45'N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C 51:N 12:P 1) relative to sinking particles (C 250:N 31:P 1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C 88:N 18:P 1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.

  12. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGESBeta

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as

  13. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    SciTech Connect

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as

  14. Particle distributions and dynamics in the euphotic zone of the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.; Letelier, Ricardo M.; White, Angelicque E.

    2015-05-01

    During the summer of 2012, we used laser diffractometry to investigate the temporal and vertical variability of the particle size spectrum (1.25-100 µm in equivalent diameter) in the euphotic zone of the North Pacific Subtropical Gyre. Particles measured with this optical method accounted for ˜40% of the particulate carbon stocks (<202 µm) in the upper euphotic zone (25-75 m), as estimated using an empirical formula to transform particle volume to carbon concentrations. Over the entire vertical layer considered (20-180 m), the largest contribution to particle volume corresponded to particles between 3 and 10 µm in diameter. Although the exponent of a power law parameterization suggested that larger particles had a lower relative abundance than in other regions of the global ocean, this parameter and hence conclusions about relative particle abundance are sensitive to the shape of the size distribution and to the curve fitting method. Results on the vertical distribution of particles indicate that different size fractions varied independently with depth. Particles between 1.25 and 2 µm reached maximal abundances coincident with the depth of the chlorophyll a maximum (averaging 121 ± 10 m), where eukaryotic phytoplankton abundances increased. In contrast, particles between 2 and 20 µm tended to accumulate just below the base of the mixed layer (41 ± 14 m). Variability in particle size tracked changes in the abundance of specific photoautotrophic organisms (measured with flow cytometry and pigment concentration), suggesting that phytoplankton population dynamics are an important control of the spatiotemporal variability in particle concentration in this ecosystem.

  15. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Jones, David R.; Karl, David M.; Laws, Edward A.

    1996-10-01

    In field work conducted at 26°N, 155°W, in the North Pacific subtropical gyre, phytoplankton growth rates μp estimated from 14C labeling of chlorophyll a (chl a) averaged approximately one doubling per day in the euphotic zone (0-150 m). Microbial (microalgal plus heterotrophic bacterial) growth rates μm calculated from the incorporation of 3H-adenine into DNA were comparable to or exceeded phytoplankton growth rates at most depths in the euphotic zone. Photosynthetic rates averaged 727 mg C m -2 day -1 Phytoplankton carbon biomass, calculated from 14C labeling of chl a, averaged 7.2 mg m -3 in the euphotic zone. Vertical profiles of particulate DNA and ATP suggested that no more than 15% of particulate DNA was associated with actively growing cells. Heterotrophic bacterial carbon biomass was estimated from a two-year average at station ALOHA (22°45'N, 158°W) of flow cytometric counts of unpigmented, bacteria-size particles which bound DAPI on the assumption that 15% of the particles were actively growing cells and that heterotrophic bacterial cells contained 20 fg C cell -1 The heterotrophic bacterial carbon so calculated averaged 1.1 mg m -3 in the euphotic zone. Heterotrophic bacterial production was estimated to be 164 mg C m -2 day -1 or 23% of the calculated photosynthetic rate. Estimated heterotrophic bacterial growth rates averaged 0.97 day -1 in the euphotic zone and reached 4.7 day - at a depth of 20 m. Most heterotrophic bacterial production occurred in the upper 40 m of the euphotic zone, suggesting that direct excretion by phytoplankton, perhaps due to photorespiration or ultraviolet light effects, was a significant source of dissolved organic carbon for the bacteria.

  16. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre.

    PubMed

    Björkman, Karin M; Church, Matthew J; Doggett, Joseph K; Karl, David M

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using (14)C-bicarbonate and (3)H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0-175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (E k) for leucine incorporation was reached at approximately half the light intensity required for light saturation of (14)C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar E k values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using (3)H-leucine, whether or not the incubations are conducted in the dark or light, and this should

  17. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ascani, François; Richards, Kelvin J.; Firing, Eric; Grant, Scott; Johnson, Kenneth S.; Jia, Yanli; Lukas, Roger; Karl, David M.

    2013-09-01

    Vertical profiles of nitrate down to 1000 m depth were obtained about every 5 days and over several years by four profiling floats deployed near Station ALOHA in the North Pacific subtropical gyre. As a first step, we study the episodic and rapid (10-30 days) changes in the depth of constant-nitrate surfaces observed in the float records. These changes are in general correlated with similar changes in the depth of isopycnal surfaces and have a small horizontal scale (horizontal wavelength less than 2°). They are furthermore observed over the whole water column sampled by the floats and throughout the year, with no apparent seasonal cycle. Using these characteristics as well as a 7-year high-resolution time series of potential density at Station ALOHA and a high-resolution numerical simulation of the circulation around the station, we conclude that these episodic changes correspond to the depth anomalies associated with the rapid changes and/or small-scale features of the eddy field. Large vertical velocities associated with submesoscale frontal processes are confined to the surface mixed layer (SML) and play no role in the episodic nitrate events except, perhaps, in late winter to early spring when the SML reaches the top of the nutricline. As a second step, we study the variations of nitrate concentration along isopycnal surfaces, which enables us to isolate the effects of biological processes. In the lower euphotic zone (125-200 m), the nitrate variations reflect the response of the ecosystem to the eddy variability: the shallower the isopycnal surface, the lower the nitrate concentration, and conversely, with nitrate varying in Redfield stoichiometric proportions with oxygen anomaly (defined here as dissolved oxygen minus oxygen saturation). In the upper euphotic zone (0-125 m), in contrast, eddy-induced variations in along-isopycnal oxygen anomaly do not conform with current knowledge about supply and variability of nitrate, ammonium and dissolved organic

  18. Anomalous chlorofluorocarbons at the bottom of the eastern subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Min, D.; Bullister, J. L.; Fine, R. A.; Mecking, S.; Smethie, W. M., Jr.; Swift, J. H.

    2014-12-01

    Chlorofluorocarbons (CFCs) are man-made compounds which have been widely used as decadal-scale transient tracers for ocean circulation and ventilation processes. These compounds have well-known atmospheric histories and solubilities. Information derived from CFC concentration and ratio measurements in the global ocean allows us to infer the past history of deep water formation and the rates of spreading and mixing processes. These tracers have also been extensively used to compare and calibrate large-scale ocean circulation models and to estimate the oceanic uptake of anthropogenic CO2. During the P02 CLIVAR/CO2 Repeat Hydrography section along 30°N in 2004, low but detectable levels (>0.005 picomole kg-1) of CFCs (esp. CFC-12) were unexpectedly observed in deep waters (>3000-4000m) along an extensive area between Hawaii and California in the subtropical North Pacific Ocean. Near-bottom CFC concentrations tended to be higher toward the California outer continental shelf region (i.e. Southern California Borderland Basins or SCBB). Potential analytical errors or sampling contamination possibilities were carefully checked during the expedition. These anomalous bottom CFC features were observed again in the same region during the P02 revisit cruise in 2013 by an independent group. The presence of CFCs at the levels measured is inconsistent with presently understood rates and pathways of deep ventilation processes in this region. Potential mechanisms for generating these anomalous features will be discussed, including: a) previously unknown deep ventilation processes in this region; b) release of CFCs from sunken ships or other objects; c) spreading of high-CFC content deep waters from the SCBB along the continental slope; d) vertical transport of CFCs by adsorption/uptake by sinking particulates (including particulate organic matter and/or plastic debris) originating in the surface ocean and re-release in the bottom waters. Studies of sediment trap, sediment cores

  19. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin M.; Church, Matthew J.; Doggett, Joseph K.; Karl, David M.

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using 14C-bicarbonate and 3H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0–175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (Ek) for leucine incorporation was reached at approximately half the light intensity required for light saturation of 14C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar Ek values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using 3H-leucine, whether or not the incubations are conducted in the dark or light, and this should be

  20. Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Chung, Pei-Hsuan; Sui, Chung-Hsiung; Li, Tim

    2011-07-01

    The interannual variability of the Western North Pacific Subtropical High (WNPSH) in boreal summer is investigated with the use of the NCEP/NCAR Reanalysis Data. The most significant change of the 500 hPa geopotential height field appears at the western edge of the WNPSH, with dominant 2-3 year and 3-5 year power spectrum peaks. The 2-3 year oscillation of the WNPSH and associated circulation and sea surface temperature (SST) patterns possess a coherent eastward propagating feature, with a warm SST anomaly (SSTA) and anomalous ascending motion migrating from the tropical Indian Ocean in the preceding autumn to the maritime continent in the concurrent summer of a strong WNPSH. A strong WNPSH is characterized by anomalous anticyclonic circulation and maximum subsidence in the western North Pacific (WNP). The anomalous WNPSH circulation has an equivalent barotropic vertical structure and resides in the sinking branch of the local Hadley circulation, triggered by enhanced convection over the maritime continent. A heat budget analysis reveals that the WNPSH is maintained by radiative cooling. The 3-5 year oscillation of the WNPSH exhibits a quasi-stationary feature, with a warm SSTA (anomalous ascending motion) located in the equatorial central eastern Pacific and Indian Ocean and a cold SSTA (anomalous descending motion) located in the western Pacific. The anomaly pattern persists from the preceding winter to the concurrent summer of a high WNPSH. The greatest descent is located to the southeast of the anomalous anticyclone center, where a baroclinic vertical structure is identified. The zonal phase difference and the baroclinic vertical structure suggest that the anomalous anticyclone on this timescale is a Rossby wave response to a negative latent heating associated with the persistent local cold SSTA. ECHAM4 model experiments further confirm that the 2-3 year mode is driven by the SSTA forcing over the maritime continent, while the 3-5 year mode is driven by the

  1. The impact of meso-scale eddies on the Subtropical Mode Water in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Liu, Cong; Li, Peiliang

    2013-06-01

    Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The `trapped depth' of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.

  2. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    McMahon, Kelton W.; McCarthy, Matthew D.; Sherwood, Owen A.; Larsen, Thomas; Guilderson, Thomas P.

    2015-12-01

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ13C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations.

  3. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    PubMed

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. PMID:26612834

  4. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Li, Chaolun; Yang, Guang; Sun, Xiaoxia

    2016-03-01

    Horizontal changes in mesozooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012 were evaluated by ZooScan measurement on samples collected by net towing from 23 stations. Zooplankton abundance and biovolume ranged from 35.1 to 456.8 ind. m- 3 and 4.3 to 231.7 mm3 m- 3, respectively. Copepoda were the most dominant species, followed by Chaetognatha and Tunicata. According to the Bray-Curtis cluster analysis based on biovolume of zooplankton size classes of each taxonomic group at intervals of 1 (log2 mm3 ind.- 1) between - 6 and 12 and considering the effect of regional factors, zooplankton communities were classified into four groups, which basically coincided with the geographical patterns of different currents: the North Equatorial Current (NEC), the North Equatorial Counter Current (NECC), the Kuroshio Current (KC), and the Mindanao Eddy (ME), respectively. The largest and lowest biovolumes were observed in the NECC region and the NEC region, respectively, and both were dominated by the 0.3 to 1 mm equivalent spherical diameter (ESD) size class, while the ME region was dominant by the 1 to 2 mm ESD size class. The slopes of the normalized biovolume size spectra for each group were slightly lower than - 1 (range from - 0.85 to - 0.92), which indicates that zooplankton communities in the study area were characterized by low productivity and high energy transfer efficiency.

  5. Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Baldwin, R. J.; Karl, D. M.; Boetius, A.

    2002-06-01

    Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.

  6. Effect of horizontal grid resolution on simulations of the subtropical mode water in the North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jin; Yeop Kim, Sang; Lee, Kyung Eun

    2016-04-01

    We investigate how the Subtopical Mode Water (STMW) can be simulated differently in the North Pacific using a global Ocean General Circulation Model (OGCM) with non-eddying and eddy permitting resolution. The OGCM used in this study is the MOM version 4.1 and has a total of 50 levels along the vertical direction with enhanced resolution near the surface. The CORE version 2 (normal year forcing) data derived from the air-sea flux climatology averaged over 60 years (1948‑2007) are used to calculate heat, salt and momentum fluxes with a bulk formula at the sea surface. The sea surface salinity is restored to the climatological monthly mean surface salinity of the Polar Science Center Hydrographic Climatology on a 60-day timescale, to make up the fresh water flux at the sea surface. Two models that have horizontal resolutions of 1° and 1/4 °, respectively, are integrated during 50 years. The inter-annual variation of the STMW volume was well reproduced with the eddy-permitting grid resolution although the model was forced by a climatological atmospheric forcing. The annual formation and erosion volume of STMW varies by 7% and 9% of the mean volume, respectively.

  7. GROWTH AND CARBON CONTENT OF THREE DIFFERENT-SIZED DIAZOTROPHIC CYANOBACTERIA OBSERVED IN THE SUBTROPICAL NORTH PACIFIC(1).

    PubMed

    Goebel, Nicole L; Edwards, Christopher A; Carter, Brandon J; Achilles, Katherine M; Zehr, Jonathan P

    2008-10-01

    To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst-forming Trichodesmium and unicellular Groups A and B. Growth-irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d(-1) ), half-light saturation (73 ± 29 vs. 66 ± 37 μmol quanta · m(-2)  · s(-1) ), and photoinhibition (0 and 0.00043 ± 0.00087 [μmol quanta · m(-2)  · s(-1) ](-1) ). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d(-1) ) and carbon content (480 fg C · μm(-3) ) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence-activated cell sorting and real-time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean. PMID:27041718

  8. Relationship between the seasonal change in fluorescent dissolved organic matter and mixed layer depth in the subtropical western North Pacific

    NASA Astrophysics Data System (ADS)

    Omori, Yuko; Hama, Takeo; Ishii, Masao; Saito, Shu

    2010-06-01

    Spatial and temporal distributions of marine humic-like fluorescent dissolved organic matter (FDOMM) were determined in the subtropical western North Pacific to evaluate the controlling factors of FDOMM behaviors. The observations were conducted at 4 stations (15-30°N) along 137°E in a subtropical area between January 2006 and April 2007. The florescence intensity of FDOMM was low (0.14-0.25 quinine sulfate units (QSU)) in the surface layer probably due to photodegradation, and increased with depth (0.90-1.10 QSU at 1000 m), irrespective of season and station. In the surface layer, the thickness of the water mass with low fluorescence intensity (<0.3 QSU) showed the seasonal change by being deeper in winter and shallower in summer, depending on the mixed layer depth (MLD). The average fluorescence intensity within the mixed layer also varied seasonally at midlatitudes; the intensity in summer was 40.8-53.8% of that in winter. Since the MLD was very much shallower in summer than in winter, FDOMM in the mixed layer would be kept within a shallow depth during the summer where intensive photodegradation could occur. The concentration of total organic carbon (TOC) was at its maximum at the water surface and decreased with depth, being adverse to FDOMM. Thus, the ratio of fluorescence intensity to TOC concentration was lowest (0.002-0.003) in surface water, which implies that FDOMM is not quantitatively important to the dissolved organic carbon pool. However, considering the possible difference in the stabilities of FDOMM against photochemical and microbial degradation, it is conceivable that photobleached FDOMM is one of the important organic groups constituting marine dissolved organic matter.

  9. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen

    NASA Astrophysics Data System (ADS)

    Casciotti, K. L.; Trull, T. W.; Glover, D. M.; Davies, D.

    2008-07-01

    Nitrogen supply to surface waters can play an important role in the productivity and ecology of subtropical ecosystems. As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we examined the fluxes of nitrogen into and out of the euphotic zone at station ALOHA in the North Pacific Subtropical Gyre using natural abundance stable isotopic measurements of nitrate ( δN and δO), as well as sinking and suspended particulate nitrogen (δ 15N PN). Paralleling the steep gradient in nitrate concentration in the upper thermocline at ALOHA, we observed a steep gradient in δN, decreasing from a maximum of +7.1‰ at 500 meters (m) to +1.5-2.4‰ at 150 m. δO values also decreased from +3.0‰ at 300 m to +0.7-0.9‰ at 150 m. The decreases in both δN and δO require inputs of isotopically "light" nitrate to balance the upward flux of nitrate with high δN (and δO). We conclude that both nitrogen fixation and diagenetic alteration of the sinking flux contribute to the decrease in δN and δO in the upper thermocline at station ALOHA. While nitrogen fixation is required to explain the nitrogen isotope patterns, the rates of nitrogen fixation may be lower than previously estimated. By including high-resolution nitrate isotope measurements in the nitrogen isotope budget for the euphotic zone at ALOHA, we estimate that approximately 25%, rather than 50%, of export production was fueled by N 2 fixation during our study. On the other hand, this input of N 2-derived production accumulates in the upper thermocline over time, playing a significant role in subtropical nutrient cycling through maintenance of the subsurface nitrate pool. An increase in sinking δ 15N PN between 150 and 300 m, also suggests that fractionation during remineralization contributed to the low δN values observed in this depth range by introducing a subsurface nitrate source that is 0.5‰ lower in δ 15N than the particle flux exported from the euphotic zone. While the time scale of these

  10. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Steinberg, Deborah K.; Cope, Joseph S.; Wilson, Stephanie E.; Kobari, T.

    2008-07-01

    Mesopelagic mesozooplankton communities of an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) and a mesotrophic (Japanese time-series station K2) environment in the North Pacific Ocean are compared as part of a research program investigating the factors that control the efficiency of particle export to the deep sea (VERtical Transport In the Global Ocean—VERTIGO). We analyzed zooplankton (>350 μm) collected from net tows taken between 0 and 1000 m at each site to investigate the biomass size structure and the abundance of the major taxonomic groups in discrete depth intervals throughout the water column. Biomass of zooplankton at K2 over all depths was approximately an order of a magnitude higher than at ALOHA, with a significantly higher proportion of the biomass at K2 in the larger (>2 mm) size classes. This difference was mostly due to the abundance at K2 of the large calanoid copepods Neocalanus spp. and Eucalanus bungii, which undergo ontogenetic (seasonal) vertical migration. The overall strength of diel vertical migration was higher at K2, with a mean night:day biomass ratio in the upper 150 m of 2.5, vs. a ratio of 1.7 at ALOHA. However, the amplitude of the diel migration (change in weighted mean depth between day and night) was higher at ALOHA for all biomass size classes, perhaps due to deeper light penetration causing deeper migration to avoid visual predators. A number of taxa known to feed on suspended or sinking detritus showed distinct peaks in the mesopelagic zone, which affects particle transport efficiency at both sites. These taxa include calanoid and poecilostomatoid (e.g., Oncaea spp.) copepods, salps, polychaetes, and phaeodarian radiolaria at K2, harpacticoid copepods at ALOHA, and ostracods at both sites. We found distinct layers of carnivores (mainly gelatinous zooplankton) in the mesopelagic at K2 including chaetognaths, hydrozoan medusae, polychaetes, and gymnosome pteropods, and, in the upper mesopelagic zone, of

  11. Use of Satellite-Derived Water Vapor Data to Investigate Northwestward Expansion of North Pacific Subtropical High During 1995 Summer: Westward Propagating Moisture Pattern

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Chung, Hyo-Sang; Kim, Do-Hyung; Perkey, Donald; Robertson, Franklin R.; Smith, Eric A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The spatial and temporal evolution of the moisture field over the subtropical northwest Pacific during the summer of 1995 is investigated using daily total precipitable water from combined SSM/I-TOVS data and pentad upper tropospheric humidity (UTH) data, in conjunction with NCEP reanalysis data. From analysis of the combined water vapor field, the westward movement of a dry airmass is observed along the 20-30 degrees N latitude zone from near the dateline to the south of Japan throughout the summer of 1995. Extended EOF analysis of total precipitable water reveals that the westward moving pattern takes place in conjunction with an expanding North Pacific subtropical high maintaining an oscillatory component exhibiting a period of some 15-25 days. A concomitant dipole-like oscillating anomalous circulation with approximately a 20-day period between the South China Sea and south of Japan appears to influence the westward expansion of the subtropical high. The analysis also suggests that the fluctuations of the North Pacific high are in response to a local Hadley-type circulation which is induced by westward-moving anomalous convection episodes along 10-20 degrees N.

  12. Biogeochemical Evidence of Large Vertical Eddy Diffusivity Associated With Subtropical Mode Water of the North Pacific

    NASA Astrophysics Data System (ADS)

    Suga, T.; Sukigara, C.; Saino, T.; Toyama, K.; Yanagimoto, D.; Hanawa, K.; Shikama, N.; Ishizu, M.

    2008-12-01

    Based on the extensive profiling float observation carried out as part of the Kuroshio Extension System Study (KESS), Qiu et al. (2006) reported large vertical eddy diffusivity (2-5 x10-4 m2s-1) near the upper boundary of Subtropical Mode Water (STMW). This large diffusivity possibly have an impact on subsurface redistribution of heat, nutrients and dissolved gas components, etc., in the subtropical ocean. On the other hand, recent measurement of turbulent kinetic energy dissipation rate by Mori et al. (2008) indicates much smaller vertical eddy diffusivity (10-7 - 10-5 m2s-1) over the whole depth range of STMW. However, the direct comparison between the estimation by Qiu et al. and that by Mori et al. is possibly inappropriate because the former is based on the PV change over a couple of months and the latter on the instantaneous turbulent measurements. We carried out physical and biogeochemical observation to examine the vertical diffusivity near the top of STMW using a profiling float. The profiling float, which was equipped with a fluorometer and a dissolved oxygen sensor along with temperature and salinity sensors, was deployed in the STMW formation region and acquired quasi-Lagrangian, 5-day-interval time-series records from March to July in 2006. The time-series distribution of chl.a showed a sustained and sizable deep chlorophyll maximum just above the upper boundary of the STMW throughout early summer. Vertically integrated chlorophyll in this period was consistently ranging from 15-30 mgm-2, indicating sustained primary production and a continuous supply of nutrients ranging from 10-20 mgNm-2day-1. The time-series data indicate no sporadic events to supply nutrients and instead support, along with vertical profiles of nitrate obtained by ship-board measurements near the float, the large vertical diffusivity reported by Qiu et al. Since our estimation of vertical diffusivity is based on temporal evolution of primary production over several weeks, it is

  13. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?

    NASA Astrophysics Data System (ADS)

    Guidi, Lionel; Calil, Paulo H. R.; Duhamel, Solange; BjöRkman, Karin M.; Doney, Scott C.; Jackson, George A.; Li, Binglin; Church, Matthew J.; Tozzi, Sasha; Kolber, Zbigniew S.; Richards, Kelvin J.; Fong, Allison A.; Letelier, Ricardo M.; Gorsky, Gabriel; Stemmann, Lars; Karl, David M.

    2012-06-01

    In the North Pacific Subtropical Gyre (NPSG), the regular occurrence of summer phytoplankton blooms contributes to marine ecosystem productivity and the annual carbon export. The mechanisms underlying the formation, maintenance, and decay of these blooms remain largely unknown; nitrogen fixation, episodic vertical mixing of nutrients, and meso- (<100 km) and submesoscale (<10 km) physical processes are all hypothesized to contribute to bloom dynamics. In addition, zones of convergence in the ocean's surface layers are known to generate downwelling and/or converging currents that affect plankton distributions. It has been difficult to quantify the importance of these convergence zones in the export flux of particulate organic carbon (POC) in the open ocean. Here we use two high-resolution ocean transects across a pair of mesoscale eddies in the vicinity of Station ALOHA (22° 45'N, 158° 00'W) to show that horizontal turbulent stirring may have been a dominant control on the spatial distribution of the nitrogen fixing cyanobacteriumTrichodesmium spp. Fast repetition rate fluorometry measurements suggested that this distribution stimulated new primary production; this conclusion was not confirmed by 14C-based measurements, possibly because of different sampling scales for the two methods. Our observations of particle size distributions along the two transects showed that stretching by the mesoscale eddy field produced submesoscale features that mediated POC export via frontogenetically generated downwelling currents. This study highlights the need to combine high-resolution biogeochemical and physical data sets to understand the links betweenTrichodesmium spp. surface distribution and POC export in the NPSG at the submesoscale level.

  14. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  15. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hebel, Dale V.; Karl, David M.

    The mean distributions of particulate carbon (PC), nitrogen (PN) and phosphorus (PP) in the euphotic zone (EZ) at Sta. ALOHA (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG) reveal a two-layered system with distinct upper (0-75 m) and lower (75-175 m) EZ dynamics. Particulate matter mean concentrations in the upper EZ were relatively constant with depth, and those in the lower EZ decreased significantly with increasing water depth. The vertical partitioning of particulate matter was approximately 60% in the upper EZ and 40% in the lower EZ. Significant temporal variability, both seasonal and interannual, was observed within both regions. PC and PN inventories in the upper EZ displayed a distinct annual cycle with variable interannual amplitude. The annual cycle was characterized by PC and PN maxima in summer and fall, and minima in winter. PP exhibited a smaller variation with season but also had a distinct wintertime minimum. These variations in particulate matter concentrations were accompanied by seasonal changes in elemental composition; summer and fall conditions were characterized by high C : P and N : P ratios exceeding 140 : 1 and 20 : 1, respectively. It is hypothesized that these concentration and composition patterns result from a net seasonal accumulation of non-living particulate matter throughout the summer and fall periods, and a rapid export during transition to winter conditions. Data also suggest that PN inventories in the NPSG have increased during the past three decades in response to changes in habitat, community composition or both. These temporally decoupled seasonal, interannual and decadal-scale ecological processes will complicate attempts to achieve mass balance or to derive mechanistic biogeochemical models.

  16. Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Wilson, S. E.; Steinberg, D. K.; Chu, F.-L. E.; Bishop, J. K. B.

    2010-10-01

    Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone -1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100-300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments

  17. Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during strong La Niña conditions: relationship between distribution and hydrological conditions

    NASA Astrophysics Data System (ADS)

    Girault, M.; Arakawa, H.; Barani, A.; Ceccaldi, H. J.; Hashihama, F.; Gregori, G.

    2014-11-01

    The spatial distribution of heterotrophic prokaryotes was investigated during the Tokyo-Palau cruise in the western part of the North Pacific subtropical gyre (NPSG) along a north-south transect between 33.60 and 13.25° N. The cruise was conducted in three different hydrological areas identified as the Kuroshio region, the Subtropical gyre area and the Transition zone. Two eddies were crossed along the transect: one cold core cyclonic eddy and one warm core anticyclonic eddy and distributions of the heterotrophic prokaryotes were recorded. By using analytical flow cytometry and a nucleic acid staining protocol, heterotrophic prokaryotes were discriminated into three subgroups depending on their nucleic acid content (low, high and very high nucleic acid contents labeled LNA, HNA and VHNA, respectively). Statistical analyses performed on the dataset showed that LNA, mainly associated with temperature and salinity, were dominant in all the hydrological regions. In contrast, HNA distribution seemed to be associated with temperature, salinity, Chl a and silicic acid. A latitudinal increase in the HNA / LNA ratio was observed along the north-south transect and was related to higher phosphate and nitrate concentrations. In the Kuroshio Current, it is suggested that the high concentration of heterotrophic prokaryotes observed at station 4 was linked to the path of the cold cyclonic eddy core. In contrast, it is thought that low concentrations of heterotrophic prokaryotes in the warm core of the anticyclonic gyre (Sta. 9) are related to the low nutrient concentrations measured in the seawater column. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both on the mesoscale structures and the oligotrophic gradient.

  18. Distribution of sei whales (Balaenoptera borealis) in the subarctic-subtropical transition area of the western North Pacific in relation to oceanic fronts

    NASA Astrophysics Data System (ADS)

    Murase, Hiroto; Hakamada, Takashi; Matsuoka, Koji; Nishiwaki, Shigetoshi; Inagake, Denzo; Okazaki, Makoto; Tojo, Naoki; Kitakado, Toshihide

    2014-09-01

    The subarctic-subtropical transition area of the western North Pacific is an important summer feeding grounds of sei whales. The oceanographic structure and circulation of this area are largely determined by strong oceanic fronts and associated geostrophic currents, namely the Polar Front (PF), Subarctic Front (SAF) and Kuroshio Extension Front (KEF). The relationship between the distribution of sei whales and oceanographic fronts was investigated using a generalized additive model (GAM), and the cetacean sighting survey data and oceanographic observations in July from 2000 to 2007 were used in the analysis. The number of individual sei whales was used as the response variable while the distances from the PF, SAF, and KEF to the whales were used as explanatory variables along with the longitude values. Sei whales were concentrated north and south of the SAF and the areas from 250 to 300 km north and from 100 to 200 km south of the SAF were estimated as high-density areas of sei whales. The entire inter-frontal zone between the PF and SAF featured an elevated concentration of sei whales, and the area south of the PF and along the SAF was identified as an important feeding ground of sei whales in July from 2000 to 2007.

  19. Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre.

    PubMed

    Eiler, Alexander; Hayakawa, Darin H; Church, Matthew J; Karl, David M; Rappé, Michael S

    2009-09-01

    A quantitative PCR assay for the SAR11 clade of marine Alphaproteobacteria was applied to nucleic acids extracted from monthly depth profiles sampled over a 3-year period (2004-2007) at the open-ocean Station ALOHA (A Long-term Oligotrophic Habitat Assessment; 22 degrees 45'N, 158 degrees 00'W) in the oligotrophic North Pacific Ocean. This analysis revealed a high contribution (averaging 36% of 16S rRNA gene copies) of SAR11 to the total detected 16S rRNA gene copies over depths ranging from the surface layer to 4000 m, and revealed consistent spatial and temporal variation in the relative abundance of SAR11 16S rRNA gene copies. On average, a higher proportion of SAR11 rRNA gene copies were detected in the photic zone (< 175 m depth; mean = 38%) compared with aphotic (> 175 m depth; mean = 30%), and in the winter months compared with the summer (mean = 44% versus 33%, integrated over 175 m depth). Partial least square to latent structure projections identified environmental variables that correlate with variation in the absolute abundance of SAR11, and provided tools for developing a predictive model to explain time and depth-dependent variations in SAR11. Moreover, this information was used to hindcast temporal dynamics of the SAR11 clade between 1997 and 2006 using the existing HOT data set, which suggested that interannual variations in upper ocean SAR11 abundances were related to ocean-climate variability such as the El Niño Southern Oscillation. PMID:19490029

  20. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    NASA Astrophysics Data System (ADS)

    Bibby, T. S.; Moore, C. M.

    2011-03-01

    Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic) and the waters off Hawai'i (Pacific), alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS) over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si*) in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE) in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW) with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  1. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    NASA Astrophysics Data System (ADS)

    Bibby, T. S.; Moore, C. M.

    2010-10-01

    Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response by which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies are therefore important in driving export in oligotrophic regions of the modern ocean. The character and magnitude of the biological response sustained by eddies are, however, variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic) and the waters off Hawai'i (Pacific), alongside mesoscale events that affected the Bermuda Atlantic Time Series (BATS) over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si*) in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE) in the Sargasso Sea upwell locally formed waters with high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed abundance of large-diatom species in MWE and small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, cyclonic eddies in waters off Hawai'i induce North Pacific Intermediate Water (NPIW) that has high Si* and therefore also appears capable of establishing diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may not be directly related to the physical nature of the eddy but rather to the chemical composition of the upwelled waters. This paper links the biological production and export efficiency of mesoscale eddies to events in spatially and temporally disparate locations.

  2. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Kunwar, Bhagawati

    2015-06-01

    Primary biological aerosol particles (PBAPs) play an important role in affecting atmospheric physical and chemical properties. Aerosol samples were collected at Cape Hedo, Okinawa Island, Japan, from October 2009 to February 2012 and analyzed for five primary saccharides and four sugar alcohols as PBAP tracers. We detected high levels of sucrose in spring when blossoming of plants happens and prolifically emits pollen to the air. Concentrations of glucose, fructose, and trehalose showed levels higher than the other saccharides in spring in 2010. In comparison, primary saccharide levels were mutually comparable in spring, summer, and autumn in 2011, indicating the interannual variability of their local production in subtropical forests, which is driven by local temperature and radiation. High trehalose events were found to be associated with Asian dust outflows, indicating that Asian dust also contributes to PBAPs at Okinawa. Sugar alcohols peaked in summer and correlated with local precipitation and temperature, indicating high microbial activities. Positive matrix factorization analysis confirmed that the PBAPs are mainly derived from local vegetation, pollen, and fungal spores. A higher contribution of PBAP tracers to water-soluble organic carbon (WSOC) was found in summer (14.9%). The annual mean ambient loadings of fungal spores and PBAPs were estimated as 0.49 µg m-3 and 4.12 µg m-3, respectively, using the tracer method. We report, for the first time, year-round biomarkers of PBAP and soil dust and their contributions to WSOC in the subtropical outflow region of the Asian continent.

  3. Millennial scale oscillations in bulk δ15N and δ13C over the Mid- to Late Holocene seen in proteinaceous corals from the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Glynn, D. S.; Mccarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2014-12-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet and is an important regulator of biogeochemical cycling and carbon sequestration. With evidence of its expansion in a warming climate, it is necessary to develop a more complete understanding of the variability in productivity and nutrient dynamics in this important ecosystem through time. We constructed a long-term, high resolution record of bulk record of stable nitrogen (δ15N) and carbon isotopes (δ13C) from multiple proteinaceous deep sea corals around Hawaii extending back ~5300 years with few gaps. Our data confirms the decreasing trend in δ15N since the Little Ice Age (1850s), which matches previously published results in part attributed to anthropogenic climate change (e.g. Sherwood et al. 2014). However, while the rate of change since the Little Ice Age (δ15N declines ~1‰ over ~150yrs) remains by far the most rapid throughout the longer record, there also appear to be longer-term (near-millennial scale) climatic oscillations of even greater magnitude (δ15N shifts ~1.5-2‰ over ~1000yrs). After removal of the Seuss Effect, δ13C values also declined ~1.5‰ since the Little Ice Age. Furthermore, there also appear to be oscillations in δ13C of ~1-2‰ over millennial timescales. These results reveal the existence of previously unrecognized long-term oscillations in NPSG biogeochemical cycles, which are likely linked to changes in phytoplankton species composition, food web dynamics, and/or variability in source nutrients and productivity possibly caused by changes in climate. This study provides insight into nutrient dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current anthropogenic climate forcing.

  4. Ocean noise in the tropical and subtropical Pacific Ocean.

    PubMed

    Sirović, Ana; Wiggins, Sean M; Oleson, Erin M

    2013-10-01

    Ocean ambient noise is well studied in the North Pacific and North Atlantic but is poorly described for most of the worlds' oceans. Calibrated passive acoustic recordings were collected during 2009-2010 at seven locations in the central and western tropical and subtropical Pacific. Monthly and hourly mean power spectra (15-1000 Hz) were calculated in addition to their skewness, kurtosis, and percentile distributions. Overall, ambient noise at these seven sites was 10-20 dB lower than reported recently for most other locations in the North Pacific. At frequencies <100 Hz, spectrum levels were equivalent to those predicted for remote or light shipping. Noise levels in the 40 Hz band were compared to the presence of nearby and distant ships as reported to the World Meteorological Organization Voluntary Observing Ship Scheme (VOS) project. There was a positive, but nonsignificant correlation between distant shipping and low frequency noise (at 40 Hz). There was a seasonal variation in ambient noise at frequencies >200 Hz with higher levels recorded in the winter than in the summer. Several species of baleen whales, humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (B. physalus) whales, also contributed seasonally to ambient noise in characteristic frequency bands. PMID:24116406

  5. Spatial and Temporal Variability in the Concentration and Turnover of the Inorganic Phosphate and Adenosine-5'-triphosphate pools in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Björkman, Karin; Church, Matthew; Karl, David

    2015-04-01

    The microbial community's utilization of inorganic phosphate (Pi) and adenosine-5'-triphosphate (ATP) as a function of the Pi pool concentration was studied over a multi-year period at Station ALOHA (22.75˚N, 158˚W) in the North Pacific Subtropical Gyre (NPSG). Additionally, the spatial variability in these same properties was investigated along an east-west transect from California to Hawaii in the Fall of 2014. We used radiotracer techniques to determine the turnover times of the Pi or ATP pools respectively, and assessed the net production of dissolved organic phosphorus, and Pi hydrolysis rate from ATP. Pi concentrations in the upper water column at Station ALOHA are temporally highly dynamic, with periods of <10 nM-P to near 200 nM-P recorded within the top 50 m over the past decades of observations. During the California to Hawaii transect Pi concentrations showed a similarly large range (<10 to >200 nM-P), emphasizing the spatially and temporally mosaic nature of the upper ocean of this large biome. The Pi-pool turnover time ranged from a few hours to several weeks, and was strongly correlated with measured Pi pool concentrations (r2=0.8; n=30 Station ALOHA; n=15 transect). The calculated Pi uptake rates at Station ALOHA averaged 3.7±1.3 nM-P d-1 (n=30), reflecting the typically low maximum Pi uptake rates of the Prochlorococcus dominated community and the predominantly non-limiting Pi conditions. The Pi uptake rates along the transect were more variable than Station ALOHA (averaging 9.2±4.7 nM=P d-1, n=15), possibly due to a more diverse planktonic community structure, including stations with elevated concentrations of chlorophyll and primary productivity. The turnover time of the dissolved ATP pool was typically substantially shorter than for the Pi-pool (2-5 days at Station ALOHA; 0.3-2.5 days along the transect), likely reflecting its low nanomolar to picomolar ambient pool concentrations. However, at stations with the lowest SRP concentrations the

  6. Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions

    NASA Astrophysics Data System (ADS)

    Girault, M.; Arakawa, H.; Barani, A.; Ceccaldi, H. J.; Hashihama, F.; Gregori, G.

    2015-06-01

    The spatial distribution of heterotrophic prokaryotes was investigated during the Tokyo-Palau cruise in the western part of the North Pacific subtropical gyre (NPSG) along a north-south transect between 33.60 and 13.25° N. The cruise was conducted in three different hydrological areas identified as the Kuroshio region, the subtropical gyre area and the transition zone. Two eddies were crossed along the transect: one cold-core cyclonic eddy and one warm-core anticyclonic eddy and distributions of the heterotrophic prokaryotes were recorded. By using analytical flow cytometry and a nucleic acid staining protocol, heterotrophic prokaryotes were discriminated into three subgroups depending on their nucleic acid content (low, high and very high nucleic acid contents labelled LNA, HNA and VHNA, respectively). Statistical analyses performed on the data set showed that LNA, mainly associated with low temperature and low salinity, were dominant in all the hydrological regions. In contrast, HNA distribution seemed to be associated with temperature, salinity, Chl a and silicic acid. A latitudinal increase in the HNA / LNA ratio was observed along the north-south transect and was related to higher phosphate and nitrate concentrations. However, the opposite relationship observed for the VHNA / HNA ratio suggested that the link between nucleic acid content and oligotrophic conditions is not linear, underlying the complexity of the biodiversity in the VHNA, HNA and LNA subgroups. In the Kuroshio Current, it is suggested that the high concentration of heterotrophic prokaryotes observed at station 4 was linked to the path of the cold cyclonic eddy core. In contrast, it is thought that low concentrations of heterotrophic prokaryotes in the warm core of the anticyclonic gyre (Sta. 9) are related to the low nutrient concentrations measured in the seawater column. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both

  7. North Pacific Acoustic Laboratory.

    PubMed

    Worcester, Peter F; Spindel, Robert C

    2005-03-01

    A series of long-range acoustic propagation experiments have been conducted in the North Pacific Ocean during the last 15 years using various combinations of low-frequency, wide-bandwidth transmitters and horizontal and vertical line array receivers, including a 2-dimensional array with a maximum vertical aperture of 1400 m and a horizontal aperture of 3600 m. These measurements were undertaken to further our understanding of the physics of low-frequency, broadband propagation and the effects of environmental variability on signal stability and coherence. In this volume some of the results are presented. In the present paper the central issues these experiments have addressed are briefly summarized. PMID:15810685

  8. The North Pacific Gyre Mode

    NASA Astrophysics Data System (ADS)

    Schneider, N.; di Lorenzo, E.

    2007-12-01

    Discussion of North Pacific Decadal decadal variability has focused primarily on the Pacific Decadal Oscillation, the leading mode of sea surface temperature anomalies north of the tropics. The PDO appears to result from a superposition of SST pattern forced by the North Pacific atmosphere due to its intrinsic dynamics and teleconnected from the tropics, with a regional impact of the ocean circulation in the frontal regions associated with the Kuroshio/Oyashio and their extensions into the interior. Recent modeling, however, suggest that previously unexplained decadal changes of salinity, nutrient upwelling and chlorophyl in the California Current are not dominated by the PDO. Rather, these are associated with a mode of variability associated with wind driven changes of the North Pacific Gyre. Consideration of this mode variability may thus be important to understand present and future variations of the North Pacific ecosystem, and in the interpretation of climate proxies.

  9. Identifying role of subtropical southeast Pacific SST anomalies on precipitation dynamics in Central Chile

    NASA Astrophysics Data System (ADS)

    Bozkurt, D.; Garreaud, R.

    2014-12-01

    Central Chile (CC, western South America coasts, 28°S- 38°S) is the heartland of Chile with the highest population and important economic activities. The region is characterized by semiarid Mediterranean climate with a marked precipitation gradient along the coast from north to south, mostly due to the positioning of the South Pacific Subtropical Anticyclone and the midlatitude westerlies belt. Although there are several diagnostic studies that focus on the impact of tropical Pacific SST on CC precipitation variability via atmospheric teleconnections, less attention has been placed on impacts of subtropical southeast (SE) Pacific SST on precipitation. The later region is immediately adjacent to CC and it interferes with the overpassing atmospheric systems. In particular we want to assess the impact of a consistent cooling over the SE Pacific during the last 30 years. This study is being tackled by a combination of observational and reanalysis datasets together with numerical simulations. Observational dataset includes gridded dataset of CRU, TRMM and GPCP. Moreover, Reynolds SST data V2 based on AVHRR infrared satellite SST data is used for analyzing spatial and temporal changes in SST. Current modelling experiment includes a control simulation, used as reference, and sensitivity simulation that involves perturbations to SST over subtropical SE Pacific for a normal year austral winter (2001) season. A number of simulations with different initial conditions have been carried out by employing ICTP-RegCM4. The domain for simulations was centered at 82oW and 32oW with 288x288 grid cells on 20 km spatial resolution. Preliminary results indicate that the response of precipitation in CC to SST anomalies in the subtropical SE Pacific exhibits more or less linear behavior. In the colder SST experiments, drier conditions dominate over CC, which is possibly related with the intensification of South Pacific Subtropical Anticyclone (SPSA) or a reduction in the available

  10. Late Holocene Plankton Domain Shifts in the North Pacific Subtropical Gyre Revealed by Amino Acid Specific δ13C and δ15N Records from Proteinaceous Deep-Sea Corals

    NASA Astrophysics Data System (ADS)

    Sherwood, O.; McMahon, K.; Guilderson, T. P.; Mccarthy, M. D.

    2014-12-01

    Recent observations from station ALOHA have framed a new paradigm about the dynamic nature of subtropical ocean gyres. These vast regions are now known to vary physically and biologically, over a range of timescales, with important implications for the export of carbon to the deep ocean. In the largest of these gyres, the North Pacific subtropical gyre (NPSG), primary production has increased in recent decades despite a reduction in nutrient supply to surface waters. This is thought to be the result of a shift in plankton community structure from mostly eukaryotes to mostly dinitrogen-fixing prokaryotes. It remains uncertain, however, whether the recent plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. To establish historical trends, we analyzed nitrogen (δ15N) and carbon (δ13C) isotopic records preserved in the skeletons of extraordinarily long-lived, proteinaceous deep-sea corals, which feed on, and therefore serve as a proxy for, exported productivity. Specimens of Hawaiian gold coral (Kulamanamana haumeaae) were collected from the Hawaiian archipelago and sampled across the skeletal growth rings to generate high-resolution (5 yr), millennial-length records of "bulk" δ15N and δ13C. After a millennium of relatively minor fluctuation, δ15N decreased by up to 2 per mil between 1850 and the present. Analysis of amino-acid-specific δ15N on a subset of the samples, combined with isotopic mass balance between nitrate and nitrogen fixation, implied a 17 to 27 % increase in nitrogen fixation as the underlying cause for the observed trends. This interpretation is supported by analysis of the δ13C of essential amino acids, which serve as isotopic fingerprints of primary producer origin. Together, these independent lines of evidence describe a domain shift from a dominantly eukaryotic to dinitrogen-fixing prokaryotic plankton community. This shift has been ongoing since the end of the Little Ice Age

  11. Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre.

    PubMed

    Konstantinidis, Konstantinos T; Braff, Jennifer; Karl, David M; DeLong, Edward F

    2009-08-01

    The deep sea (water depth of >2,000 m) represents the largest biome on Earth. Yet relatively little is known about its microbial community's structure, function, and adaptation to the cold and deep biosphere. To provide further genomic insights into deep-sea planktonic microbes, we sequenced a total of approximately 200 Mbp of a random whole-genome shotgun (WGS) library from a microbial community residing at a depth of 4,000 m at Station ALOHA in the Pacific Ocean and compared it to other available WGS sequence data from surface and deep waters. Our analyses indicated that the deep-sea lifestyle is likely facilitated by a collection of very subtle adaptations, as opposed to dramatic alterations of gene content or structure. These adaptations appear to include higher metabolic versatility and genomic plasticity to cope with the sparse and sporadic energy resources available, a preference for hydrophobic and smaller-volume amino acids in protein sequences, unique proteins not found in surface-dwelling species, and adaptations at the gene expression level. The deep-sea community is also characterized by a larger average genome size and a higher content of "selfish" genetic elements, such as transposases and prophages, whose propagation is apparently favored by more relaxed purifying (negative) selection in deeper waters. PMID:19542347

  12. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Stephanie E.; Steinberg, Deborah K.; Buesseler, Ken O.

    2008-07-01

    We investigated how fecal pellet characteristics change with depth in order to quantify the extent of particle repackaging by mesopelagic zooplankton in two contrasting open-ocean systems. Material from neutrally buoyant sediment traps deployed in the summer of 2004 and 2005 at 150, 300, and 500 m was analyzed from both a mesotrophic (Japanese time-series station K2) and an oligotrophic (Hawaii Ocean Time series—HOT station ALOHA) environment in the Pacific Ocean as part of the VERtical Transport In the Global Ocean (VERTIGO) project. We quantified changes in the flux, size, shape, and color of particles recognizable as zooplankton fecal pellets to determine how these parameters varied with depth and location. Flux of K2 fecal pellet particulate organic carbon (POC) at 150 and 300 m was four to five times higher than at ALOHA, and at all depths, fecal pellets were two to five times larger at K2, reflective of the disparate zooplankton community structure at the two sites. At K2, the proportion of POC flux that consisted of fecal pellets generally decreased with depth from 20% at 150 m to 5% at 500 m, whereas at ALOHA this proportion increased with depth (and was more variable) from 14% to 35%. This difference in the fecal fraction of POC with increasing depth is hypothesized to be due to differences in the extent of zooplankton-mediated fragmentation (coprohexy) and in zooplankton community structure between the two locations. Both regions provided indications of sinking particle repackaging and zooplankton carnivory in the mesopelagic. At ALOHA, this was reflected in a significant increase in the mean flux of larvacean fecal pellets from 150 to 500 m of 3-46 μg C m -2 d -1, respectively, and at K2 a large peak in larvacean mean pellet flux at 300 m of 3.1 mg C m -2 d -1. Peaks in red pellets produced by carnivores occurred at 300 m at K2, and a variety of other fecal pellet classes showed significant changes in their distribution with depth. There was also

  13. Measurement of dark, particle-generated superoxide and hydrogen peroxide production and decay in the subtropical and temperate North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Roe, Kelly L.; Schneider, Robin J.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    chemiluminescence detection, using dark incubations of unfiltered water samples to simultaneously determine production and decay rates. H2O2 concentrations at Station ALOHA ranged from 7 to 88 nM. Dark production rates and decay rate coefficients were low (mostly <1.5 nM hr-1 and <0.03 h-1, respectively); higher values were detected when biota were pre-concentrated with net tows. These rates of ROS production are lower than those reported by previous studies in other regions of the Pacific Ocean, but could still be significant compared to photochemical production.

  14. Causes of Decadal Climate Variability over the North Pacific and North America.

    PubMed

    Latif, M; Barnett, T P

    1994-10-28

    The cause of decadal climate variability over the North Pacific Ocean and North America is investigated by the analysis of data from a multidecadal integration with a state-of-the-art coupled ocean-atmosphere model and observations. About one-third of the low-frequency climate variability in the region of interest can be attributed to a cycle involving unstable air-sea interactions between the subtropical gyre circulation in the North Pacific and the Aleutian low-pressure system. The existence of this cycle provides a basis for long-range climate forecasting over the western United States at decadal time scales. PMID:17793457

  15. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Liu, Qinyu; Lu, Yiqun

    2016-04-01

    The mechanisms behind the seasonal deepening of the mixed layer (ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML (more than 175 m) was found in the region of (22°-30°S, 105°-90°W), reaching its maximum depth (~200 m) near (27°-28°S, 100°W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent (STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.

  16. Paleoceanography/climate and taphonomy at intermediate water depth in the Subtropical Western North Pacific Ocean over the last 1 Ma from IODP Exp 350 Sites U1436C and U1437B, Izu arc area.

    NASA Astrophysics Data System (ADS)

    Vautravers, Maryline

    2015-04-01

    IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing

  17. Thousand Year Archives of the Bulk and Compound-Specific δ15N of Export Production From the North Pacific Subtropical Gyre Indicate Increasing Nitrogen Fixation Over the Past 150 Years

    NASA Astrophysics Data System (ADS)

    Sherwood, O.; Batista, F. C.; Brown, J. T.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Stable nitrogen isotopic analysis of amino acids (δ15N-AA) preserved in proteins has emerged as a powerful new tool to explore trophic levels and nutrient cycling in nature. To date, little has been done to explore δ15N-AA in paleo-studies of the marine nitrogen cycle. We analysed the bulk and AA-specific δ15N in the long-lived, deep-sea, proteinaceous coral Gerardia. By feeding on sinking particulate organic matter, proteinaceous corals integrate the biogeochemical signature of recently exported production within discrete skeletal growth layers. Sub-decadal resolution time-series records spanning the time period 1000 AD to present were generated from specimens of Gerardia collected from the main Hawaiian Islands, Cross Seamount, and French Frigate Shoals in the North Pacific Subtropical Gyre (NPSG). Records of bulk δ15N from the three different locations, geographically separated by up to 1000 km, showed remarkably similar long term trends. Bulk δ15N remained relatively stable from ~1000-1850 years AD, and then decreased by a total of 2 ‰ from ~1850 AD to the present. The δ15N-AA of the "trophic" group of amino acids indicated no significant changes in trophic level or microbial re-synthesis of export production over this time period. The δ15N of "source" amino acids was significantly correlated with corresponding values of bulk δ15N, with the δ15N of phenylalanine decreasing from 4.2 to 2.1‰. The latter value is similar to recent measurements of subsurface nitrate δ15N near Hawaii, suggesting that the δ15N of phenylalanine may be used to quantitatively track changes in the isotopic signature of nitrate at the base of the food web. Using a simple isotopic mass balance between upwelled nitrate and nitrogen fixation we calculate a 30% increase in nitrogen fixation in the NPSG since ~1850. These results provide invaluable long-term context for recent observations, and highlight profound changes in the marine biogeochemical cycling of nitrogen over the

  18. The subsurface water in the North Pacific tropical gyre

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Li, Yuanlong; Zhang, Yanhui; Hu, Dunxin

    2013-05-01

    The subsurface water (22.5-25.5 σθ) in the North Pacific tropical gyre (NPTG; 130°E-150°W, 5°-10°N), addressed as the North Pacific tropical subsurface water (TSSW), features a lateral salinity minimum and vertical salinity maximum in the western and central Pacific Ocean. In this study this water body is investigated using Argo float profiles and Word Ocean Atlas 2009 (WOA09) dataset. Comparing with the North Pacific Tropical water (NPTW), the TSSW is of lower salinity, lower oxygen, higher nutrient concentration, and denser vertical salinity maximum Smax. Subtropical ventilation and local ocean dynamics are both important in setting up its unique characteristics. Our analysis shows that its properties, structure, and seasonal variations are diverse at different longitudes. In the western Pacific, the TSSW is mainly of North Pacific water origin. Its high salinity core is formed by the southward intrusion of the NPTW. Diapycnal mixing with the surface-layer fresh water reduces its salinity and lowers its Smax to denser isopycnals. The TSSW in the western Pacific can be regarded as a diluted portion of the NPTW. In the central Pacific, advection of salty water masses from both hemispheres and westward invasion of the eastern Pacific fresh water are all important in regulating its characteristics. The TSSW in the central Pacific is a mixture of various water sources formed under highly variable flow pattern and intensive mixing. The TSSW should be regarded as an important subsurface water body connecting North/South Pacific thermocline water, although it might not be a water mass by traditional definition.

  19. Silicon isotope fractionation during nutrient utilization in the North Pacific

    NASA Astrophysics Data System (ADS)

    Reynolds, Ben C.; Frank, M.; Halliday, A. N.

    2006-04-01

    The distribution of silicon in the North Pacific is controlled by the utilization of silicic acid by diatoms, a process that fractionates silicon (Si) isotopic compositions. Silicon isotope variations are presented for six water column profiles from the surface mixed layer down to the deep waters of the North Pacific Ocean. Although the observed Si isotopic variations display an apparently simple inverse relationship with dissolved nutrient concentrations, in fact they reflect mixing of surface waters undergoing active Si isotope fractionation and deep-waters with more uniform concentrations and isotope compositions. Samples from the surface of the subtropical gyre have the lowest dissolved Si concentrations and heaviest Si isotope compositions of marine waters measured thus far. Fractionation in the surface waters follows a typical Rayleigh-type distillation curve for a 'closed' surface water reservoir resulting from stratification of the surface layer in the subarctic region. In contrast, an 'open' system prevails within the subtropical gyre where there is significant recycling of silicic acid in the upper water column and lateral transport of silicon within surface currents. For deep waters, the Si isotope composition distinguishes between the northern North Pacific Deep Water (NPDW) and the southerly-derived bottom water. The relatively light Si isotope compositions measured from waters within the subarctic gyre provides evidence for isolation of the nutrient pool in the North Pacific.

  20. The pathway and circulation of North Pacific Intermediate Water

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2003-12-01

    It has been speculated that the subtropical North Pacific Intermediate Water (NPIW) was formed by a shortcut of Okhotsk Sea source into the western subtropical gyre because this is the geographically shortest distance, and based on incomplete data. This mechanism is contradictory to the distribution of seawater properties, and, dynamically, is inconsistent with a basin-wide distribution of NPIW and associated gyre circulation. A lengthy transpacific pathway has been identified for the transformed NPIW source waters that first enter the eastern subtropical gyre, which is robust in a water-mass age distribution. Using an updated hydrography and a water-mass mixing scheme combining property distribution with flow streamfunction the present study establishes a dynamically self-consistent gyre circulation of NPIW and its pathway from the subpolar formation regions (source) to the Indonesian Throughflow (sink).

  1. Eastern tropical north Pacific coral radiocarbon reveals North Pacific Gyre Oscillation variability

    NASA Astrophysics Data System (ADS)

    Rafter, P. A.; Ferguson, J. E.; Sanchez, S. C.; Druffel, E. R. M.; Southon, J. R.; Graven, H. D.; Carriquiry, J. D.

    2015-12-01

    The North Pacific Oscillation (NPO) is possibly a major influence on global climate through its influence on the El Niño-Southern Oscillation (ENSO), but the decadal-scale cyclicity and limited observations (≈50 years) of the NPO make it difficult to explore this relationship. One approach to this problem is to use marine archives (e.g., corals and sediments) to build significantly longer records of the oceanic expression of the NPO—the North Pacific Gyre Oscillation (NPGO). For example, the strengthened winds associated with positive NPO sea level pressure distributions increase gyre circulation, increasing upwelling in the coastal northeastern Pacific and equatorward flow of the California Current. However, marine archives along the coast are potentially influenced by both NPGO and ENSO and are not ideal. Here we demonstrate that corals from the Revillagigedo Islands—in the Eastern Tropical North Pacific (ETNP)—provide a relatively "clean" record of NPGO variability. In particular, coral Δ14C and δ18O show fluctuations between salty / Δ14C "young" waters (native to the ETNP) and fresh / Δ14C "old" waters (similar to those upwelled off the California margin). This variability is highly coherent and consistent with the NPGO index, such that positive NPGO (and therefore NPO) corresponds to a increased presence of California Current waters in the ETNP. ENSO appears to have little influence on this record, probably because of minimal change in seawater Δ14C associated with the poleward propagating Kelvin waves associated with ENSO. Pre-instrumental records of NPGO, like these from the Revillagigedo Island corals, are necessary to begin understanding the tropical-subtropical drivers of NPO, ENSO, and other ocean-atmosphere climate phenomena.

  2. Plastic pollution in the South Pacific subtropical gyre.

    PubMed

    Eriksen, Marcus; Maximenko, Nikolai; Thiel, Martin; Cummins, Anna; Lattin, Gwen; Wilson, Stiv; Hafner, Jan; Zellers, Ann; Rifman, Samuel

    2013-03-15

    Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489 km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333 μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898 particles km(-2) and 70.96 g km(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342 particles km(-2) occurring near the center of the predicted accumulation zone. PMID:23324543

  3. Wet Mercury Deposition to a Remote Islet (Pengjiayu) in the Subtropical Northwest Pacific Ocean in 2009-2013

    NASA Astrophysics Data System (ADS)

    Sheu, G. R.; Lin, N. H.

    2014-12-01

    One hundred and ninety-one weekly rainwater samples were collected between 2009 and 2013 at a weather station (25º37'46"N, 122º4'16.5"E, 101.7 m a.s.l.) in Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean with an area of 1.14 km2, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is likely one of the longest dataset concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 1.32 to 49.56 ng L-1, with an overall volume-weighted mean (VWM) concentration of 7.78 ng L-1. The annual VWM Hg concentrations were 8.85, 9.16, 7.08, 8.01 and 5.78 ng L-1 for 2009, 2010, 2011, 2012 and 2013, respectively. The annual wet Hg deposition fluxes were 13.54, 20.19, 10.84, 15.57 and 11.46 μg m-2, respectively, about 2.7-5 times the fluxes measured at sites on the Pacific coast of the USA and 1.5-2.8 times the flux measured in Bermuda, indicating higher wet Hg deposition to the NW Pacific Ocean than to the NE Pacific Ocean and the North Atlantic Ocean.

  4. 76 FR 58472 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... National Oceanic and Atmospheric Administration RIN 0648-XA716 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting of the North Pacific Fishery Management Council's (Council) Pacific Northwest Crab Industry Advisory Committee. SUMMARY: The Pacific...

  5. Mesoscale eddies in the NE Pacific tropical-subtropical zone.

    NASA Astrophysics Data System (ADS)

    Kurczyn, J. A.; Beier, E.; Lavín, M. F.; Chaigneau, A.

    2012-04-01

    Mesoscale eddy characteristics in the NE Pacific tropical-subtropical zone (16-30N) are analyzed using nearly 20 years of satellite altimetry maps and an automated eddy detection algorithm known as "the closed contours of sea-level anomaly (SLA)". The mean eddy characteristics of the study region are described based on the analysis of 1055 anticyclonic and 1097 cyclonic eddy trajectories. Eddies are preferentially formed near the coast in three main subregions: Punta Eugenia, Cabo San Lucas and Cabo Corrientes. The seasonally highest eddy generation occurs during spring in the three subregions, when surface winds are upwelling-favorable and strong upwelling events occur, thus promoting strong vertical shear between currents. Being highly non-linear and propagating toward the open ocean, mesoscale eddies can thus transport near-coastal seawater properties and plankton toward remote regions. In general, Punta Eugenia and Cabo San Lucas show the highest eddy occurrence. Long-lived eddies, having a life span greater than 16 weeks, are preferentially formed in Punta Eugenia. On average, eddy radii are larger than the Rossby internal radius of deformation, probably due to an up-scale energy cascade of geostrophic turbulence. Mean eddy propagation speeds in Cabo San Lucas and Punta Eugenia regions show higher values than the first baroclinic Rossby waves, while eddies south of ~19N travel slightly slower. The seasonal eddy generation and the eddy-prolific areas can be explained by the climatology of surface currents, where the eddy-prolific areas coincide with sites of strongest surface speeds, and the timing of the highest seasonal eddy generation corresponds with the strongest seasonal surface currents. Although relatively strong interannual variability is observed in terms of the local eddy activity index, no clear correlation is observed between eddy-generation events and large-scale climate indices such as the Pacific Decadal Oscillation index or the Multivariate

  6. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century

    NASA Astrophysics Data System (ADS)

    Tian, Yongjun; Ueno, Yasuhiro; Suda, Maki; Akamine, Taturo

    2004-12-01

    Pacific saury ( Cololabis saira) is one of the most important, small-sized, pelagic fishes in the North Pacific. Using correlation analysis and principal component analysis (PCA), we examined the relationships between climatic/oceanographic indices (Asian monsoon index (MOI), Southern Oscillation Index (SOI), North Pacific Index (NPI), Arctic Oscillation Index (AOI), Pacific Decadal Oscillation (PDO) index, air temperature, wind velocity, sea surface temperature (SST), and surface current velocity (SCV) in the Kuroshio axis), and abundance/biological indices of Pacific saury (adult catch, catch per unit effort, i.e., CPUE, condition factor, and body length and larval density) in order to detect the response of Pacific saury abundance to the recent climatic/oceanic regime shifts (1976/1977, 1987/1988, and 1997/1998). Our oceanographic analyses show that notable regime shifts occurred in 1987/1988 and possibly 1997/1998 in the Kuroshio region, while the same kind of regime shift was not readily apparent there in 1976/1977. Results of our oceanographic/biological analyses show that the decadal-scale variation pattern in Pacific saury abundance responded well to the regime shifts of 1987/1988 and 1997/1998. These results indicate that only the regime shifts which occurred in the Kuroshio region can affect Pacific saury abundance. Our results also showed that the abundance and biological indices of saury significantly correlated with both the SSTs in the northwestern Kuroshio waters and the SCV in the Kuroshio axis in winter. These correlations suggest that winter oceanographic conditions in the Kuroshio region strongly affect the early survival process and determine the recruitment success of Pacific saury. The abundance of other major small pelagic species also changed greatly around 1989, suggesting that the regime shift in the late 1980s occurred in the pelagic ecosystem basin. We concluded that Pacific saury could be used as a bio-indicator of regime shifts in the

  7. 77 FR 29593 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... National Oceanic and Atmospheric Administration RIN 0648-XC027 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management... Harbor Convention Center, 236 Rezanof Drive, Kodiak, AK. Council address: North Pacific...

  8. 75 FR 1752 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XT68 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings of the North Pacific Fishery Management Council Ecosystem Committee. SUMMARY: The North Pacific Fishery Management Council (Council)...

  9. 78 FR 4391 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XC447 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Meetings of the North Pacific Fishery Management Council and its advisory committees. SUMMARY: The North Pacific Fishery Management Council (Council) and its...

  10. 77 FR 14350 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... National Oceanic and Atmospheric Administration RIN 0648-XB072 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of meetings of the North Pacific Fishery Management Council Individual Fishing Quota (IFQ) Implementation Team. SUMMARY: The North Pacific Fishery Management...

  11. The role of the cold Okhotsk Sea in the strengthening the Pacific subtropical high and Baiu precipitation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Kenta; Tachibana, Yoshihiro; Nakamura, Tetsu; Yamazaki, Koji; Kodera, Kunihiko

    2016-04-01

    It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean. The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.

  12. Decadal variability of the Pacific Subtropical Cells and its relevance to the sea surface height in the western tropical Pacific during recent decades

    NASA Astrophysics Data System (ADS)

    Yamanaka, Goro; Tsujino, Hiroyuki; Nakano, Hideyuki; Hirabara, Mikitoshi

    2015-01-01

    variability of the Pacific Subtropical Cells (STCs) and associated sea surface height (SSH) in the western tropical Pacific during recent decades are examined by using an historical OGCM simulation. The model represents decadal variations of the STCs concurrent with tropical Pacific thermal anomalies: the eastern tropical Pacific is warmer when the STCs are weaker and cooler when they are stronger. The spatial patterns of the SSH in the western tropical Pacific show different features, depending on events associated with decadal variability. During the warm phase (1977-1987), the SSH anomalies exhibit deviations from a meridionally symmetric distribution, with weakly positive (strongly negative) anomalies in the western tropical North (South) Pacific. Analysis of the heat budget in the upper tropical Pacific indicates that the termination of the warm phase around 1985 results from a poleward heat transport anomaly that is induced by a horizontal gyre associated with the SSH anomalies. During the cold phase (1996-2006), in contrast, the SSH anomalies are nearly meridionally symmetric, with positive anomalies in both hemispheres. Enhanced easterly wind anomalies contribute to the development of the cold phase after the late 1990s.

  13. Massive icebergs & freshening of the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Condron, A.

    2013-12-01

    New evidence from high-resolution seafloor bathymetry and a state-of-the-art numerical ocean circulation model shows that a significant amount of iceberg-laden meltwater flowed south from northern hemisphere ice sheets in a narrow coastal boundary current along the U.S. Atlantic margin, to the southern tip of Florida, following the Last Glacial Maximum (LGM). It is commonly assumed that meltwater would freshen the subpolar North Atlantic (50° - 70°N), but have little or no penetration to subtropical latitudes, south of 40°N. Using a combination of high-resolution multibeam bathymetry data and a state-of-the-art, high-resolution numerical ocean model, we are able to trace the pathway of icebergs and meltwater released from the Laurentide Ice Sheet (LIS) along the southern U.S. Atlantic margin. The bathymetry data show numerous well-defined relict iceberg scours from Cape Hatteras to the southern tip of Florida (~24.5°N) in water depths of 170 - 380 m, and are traceable for more than 30 km along the margin, suggesting that icebergs up to 300m thick reached these subtropical locations. The scour marks are oriented SSW along regional bathymetric contours and decrease in size and abundance moving south along the margin, concordant with increased iceberg melt as the distance from the ice calving margin increased. Our numerical model simulations confirm that iceberg laden meltwater can penetrate into the subtropical North Atlantic by flowing south, inshore of the Gulf Stream, as a narrow coastal boundary current that can significantly freshen this region and reduce the northward heat transport of the Gulf Stream. This evidence suggests a stronger influence of cold meltwater in the southern latitudes than previously recognized and highlights a distinct shift in paleocirculation patterns, including major adjustments in the Gulf Stream, since the LGM. Our findings strongly indicate that the freshening of the subtropical North Atlantic by icebergs and meltwater played an

  14. Heat and salt transport throughout the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  15. Plastic Accumulation in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.

    2010-09-01

    Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

  16. Two different deglaciation processes in the subtropical Pacific at MIS 5/6 and 1/2

    NASA Astrophysics Data System (ADS)

    Ujiie, Y.; Asahi, H.

    2011-12-01

    Deglaciation process is one of the results that the tropical climate forcing impact on the global changes by its large heat capacity. However, the deglacial fluctuation has poorly been explored in the tropical Pacific area due to less resolution records from the marine deposits. The Okinawa region is available to represent the high-resolution paleocenographic records of the tropical-subtropical Pacific during the late Quaternary, because of the oscillation between the Kuroshio Current continuing from the North Equatorial Current and central water of the subtropical gyre in this region. Two IMAGES cores were collected from the Okinawa Trough (under the Kuroshio Current) and Ryukyu Trench (under the central water of the subtropical gyre), respectively. Both cores MD982196 (Okinawa Trough) and MD012398 (Ryukyu Trench) covered over the records until Marine Isotope Stage (MIS) 7. Here, we aim to demonstrate the deglacial fluctuations of the surface and intermediate waters during two glacial-interglacial shifts, MIS 6 to 5 and MIS 2 to 1, based on the comprehensive analyses of the oxygen isotopes, Mg/Ca ratios of two planktic foraminiferal faunas (surface and upper intermediate species), and faunal assemblages of planktic foraminifera. The glacial-interglacial cycles were clearly confirmed in whole of the Okinawa region by the planktic δ18O curves. Surface Mg/Ca paleo-temperature showed a same trend as the δ18O curve. However, the paleo-temperature of the upper intermediate water showed unique fluctuation: temperature increased from late MIS 6 to 5e, whereas decreased from MIS 2 to Holocene. Moreover, the temperature difference (dT) between the surface and intermediate layers defined these phenomena. Fast warming of intermediate layer proitor to the deglaciation MIS 5/6 delayed a stratification of water column, while cooling of this layer make a large dT during MIS 1/2. Intriguingly, the faunal compositions of planktic foraminifera changed through the shifts of the

  17. Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-04-01

    In the present study, the fact that strong positive correlations have existed between East Asian summer monsoons (EASMs) and western North Pacific tropical cyclone (TC) genesis frequency over the last 37 years was found. To figure out the cause of these correlations, 7 years (positive East Asian summer monsoon index (EASMI) phase) that have the highest values and 7 years (negative EASMI phase) that have the lowest values in the normalized EASM index were selected and the differences in averages between the two phases were analyzed. In the positive EASMI phase, TCs mainly occurred in the northwestern waters of the tropical and subtropical western North Pacific and showed a tendency to move from the far eastern waters of the Philippines, pass the East China Sea, and move northward toward Korea and Japan. On the 500 hPa streamline, whereas anomalous anticyclones developed in the East Asia middle-latitude region, anomalous cyclones developed in the tropical and subtropical western North Pacific. Therefore, in this phase, whereas EASMs were weakened, western North Pacific summer monsoons (WNPSMs) were strengthened so that some more TCs could occur. In addition, in the case of the East China Sea and the southern waters of Japan located between the two anomalous pressure systems, TCs could move some more toward the East Asia middle-latitude region in this phase. According to an analysis of the 850 hPa relative vorticity, negative anomalies were strengthened in the East Asia middle-latitude region while positive anomalies were strengthened in the region south to 25 N. Therefore, in the positive EASMI phase, whereas EASMs were weakened, WNPSMs were strengthened so that some more TCs could occur. According to an analysis of the 850 and 200 hPa horizontal divergence, whereas anomalous downward flows were strengthened in the East Asia middle-latitude region, anomalous upward flows were strengthened in the tropical and subtropical western North Pacific. According to an analysis

  18. Tropospheric Ozone Over the North Pacific from Ozonesdonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Voemel, H.; Chan, C. Y.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.

    2003-01-01

    As part of the TRACE-P mission, ozone vertical profile measurements were made at a number of locations in the North Pacific. At most of the sites there is also a multi-year record of ozonesonde observations. From seven locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, HI), and a site on the west coast of the U.S. (Trinidad Head, CA) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. At all of the sites there is a pronounced spring maximum through the troposphere. There are, however, differences in the timing and strength of this feature. Over Japan the northward movement of the jet during the spring and summer influences the timing of the seasonal maximum. The ozone profiles suggest that transport of ozone rich air from the stratosphere plays a strong role in the development of this maximum. During March and April at Hong Kong ozone is enhanced in a layer that extends from the lower free troposphere into the upper troposphere that likely has its origin in biomass burning in northern Southeast Asia and equatorial Africa. During the winter the Pacific subtropical sites (latitude -25N) are dominated by air with a low-latitude, marine source that gives low ozone amounts particularly in the upper troposphere. In the summer in the boundary layer at all of the sites marine air dominates and ozone amounts are generally quite low (less than 25 ppb). The exception is near large population centers (Tokyo and Taipei but not Hong Kong) where pollution events can give amounts in excess of 80 ppb. During the TRACE-P intensive campaign period (February-April 2001) tropospheric ozone amounts were rather typical of those seen in the long-term records of the stations with multi-year soundings.

  19. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Li, Peiliang; Xu, Lixiao; Li, Cheng; Zhao, Wei; Tian, Jiwei; Qu, Tangdong

    2015-08-01

    In Spring 2014, two subthermocline eddies (STEs) were observed by rapid-sampling Argo floats in the subtropical northwestern Pacific (STNWP). The first one is a warm, salty, and oxygen-poor lens, with its temperature/salinity /dissolved oxygen (T/S/DO) anomalies reaching 1.16°C/0.21 practical salinity unit (psu)/-29.9 µmol/kg, respectively, near the 26.62σ0 surface. The other is a cold, fresh, and oxygen-rich lens, with its T/S/DO anomalies reaching -1.95°C/-0.34 psu/88.0 µmol/kg, respectively, near the 26.54σ0 surface. The vertical extent of the water mass anomalies in the warm (cold) STE is about 190 m (150 m), and its horizontal length scale is 22 ± 7 km (18 ± 10 km). According to their water mass properties, we speculate that the warm and cold STEs are generated in the North Pacific Subtropical and Subarctic Front region, respectively. The observed STEs may play an important role in modifying the intermediate-layer water properties in the STNWP, and this needs to be confirmed by more focused observations in the future.

  20. Spin-up of South Pacific Subtropical Gyre Freshens and Cools the Upper Layer of the Eastern South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Schneider, W.; Fukasawa, M.; Garcés-Vargas, J.; Bravo, L.

    2007-05-01

    The general circulation in the South Pacific Ocean is dominated by the subtropical gyre, which manifests itself through elevated mean dynamic topography at its center. Gyre circulation consists of the westward South Equatorial Current, a narrow poleward western boundary current, the East Australian current, the eastward South Pacific Current streaming along the South Tropical Front (centered at around 40°S in the western ocean basin and at 30-35°S in the eastern basin), and the Humboldt Current System, a broad equatorward eastern boundary current, (in the literature, also referred to as the Peru/Chile Current) (Tomczak and Godfrey 1994; Levitus 1982; Reid 1986). The volume transport of upper water (700 m) between the Pacific coast of South America and the East Pacific Rise amounted to 18 Sv across 32.5°S (WOCE section P06) and 14 Sv across 17°S (WOCE section P21) (Tsimplis et al. 1998), emphasizing the importance of equatorward transport by this eastern boundary current system. This boundary current also plays a vital role in the fresh water budget by advecting fresher Subantarctic Surface Water northward thus forming Eastern South Pacific Transition Water (Emery and Meincke 1986). Here, temperature and salinity from the upper 200 m of the water column in the South Pacific Ocean were compared basin wide along 32°30'S between 2003 and 1992, based on two vertically and horizontally high resolution hydrographic repeat-sections involving 227 station pairs (WOCE, BEAGLE). Additionally, the seasonal cycles of the upper water column temperature and salinity between 90- 140°W and 30-35°S were established utilizing more than 1500 ARGO profiles from 2003 to 2006. The surface waters (0-200 m) of the eastern South Pacific Ocean, on average and seasonally adjusted, were clearly fresher in 2003 by 0.14 PSU. The seasonally adjusted, depth integrated temperature was 0.25°C colder in the same region. We further concluded a spin-up of the South Pacific subtropical gyre

  1. Geological history of the western North Pacific

    USGS Publications Warehouse

    Fischer, A.G.; Heezen, B.C.; Boyce, R.E.; Bukry, D.; Douglas, R.G.; Garrison, R.E.; Kling, S.A.; Krasheninnikov, V.; Lisitzin, A.P.; Pimm, A.C.

    1970-01-01

    A considerable portion of the abyssal floor of the western North Pacific was already receiving pelagic sediment in late Jurassic time. Carbonate sediments were later replaced by abyssal clays as the basin deepened and bottom waters became more aggressive. The resulting facies boundary, which can be recognized on seismic profiles, is broadly transgressive; it ranges in age from mid-Cretaceous in the western Pacific to Oligocene in the central Pacific. Cherts are encountered at and below the major facies boundary and appear to have been formed by postdepositional processes.

  2. 77 FR 49781 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... Lion Protection Measures EIS (77 FR 22750, April 17, 2012). Information on EIS development, potential... National Oceanic and Atmospheric Administration North Pacific Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice of a public committee meeting. SUMMARY: The North Pacific Fishery...

  3. 78 FR 13867 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XC524 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management Council (Council) Ecosystem Committee will meet by teleconference in Anchorage, AK. DATES:...

  4. 77 FR 2961 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XA945 North Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Meeting of the North Pacific Fishery Management Council Golden King...

  5. 77 FR 65535 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... National Oceanic and Atmospheric Administration RIN 0648-XC314 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  6. 77 FR 67633 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC349 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  7. SeaWiFS: North Pacific Storm

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An extratropical storm can be seen swirling over the North Pacific just south of Alaska. This SeaWiFS image was collected yesterday at 23:20 GMT. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Interannual variability in the North Pacific meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Zhang, Qilong; Hou, Yijun; Duan, Yongliang

    2013-05-01

    We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958-2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Niño-Southern Oscillation). The TC northward, southward, upward, and downward transports all weaken in El Niños and strengthen in La Niñas. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the tropics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong El Niños and increase during strong La Niñas. DTC upward and downward transports are not strongly correlated with the Niño-3 index and may not be completely controlled by ENSO.

  9. 77 FR 67342 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... National Oceanic and Atmospheric Administration RIN 0648-XC339 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery.... Council address: North Pacific Fishery Management Council, 605 W. 4th Ave., Suite 306, Anchorage, AK...

  10. 78 FR 6811 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... National Oceanic and Atmospheric Administration RIN 0648-XC472 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery... Hall, 403 Marina Way, Kodiak, AK. Council address: North Pacific Fishery Management Council, 605 W....

  11. 76 FR 53416 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... National Oceanic and Atmospheric Administration RIN 0648-XA667 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting of the North Pacific Fishery Management.... Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage,...

  12. 77 FR 56611 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC230 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management... the Anchorage Hilton Hotel, 500 W. 3rd Avenue, Anchorage, AK. Council address: North Pacific...

  13. 77 FR 35359 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... National Oceanic and Atmospheric Administration North Pacific Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery Management Council's (Council) Golden King Crab Price Formula Committee is holding a meeting at the North Pacific...

  14. 78 FR 54239 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... National Oceanic and Atmospheric Administration RIN 0648-XC845 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management... address: North Pacific Fishery Management Council, 605 W. 4th Ave., Suite 306, Anchorage, AK...

  15. 78 FR 54240 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... National Oceanic and Atmospheric Administration RIN 0648-XC844 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery..., Seattle, WA. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite...

  16. 78 FR 8110 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... National Oceanic and Atmospheric Administration RIN 0648-XC483 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public workshop. SUMMARY: The North Pacific Fishery..., Birch/Willow room, 500 West 3rd Avenue, Anchorage, AK. Council address: North Pacific Fishery...

  17. 75 FR 7233 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... National Oceanic and Atmospheric Administration RIN 0648-XU43 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery...: North Pacific Fishery Management Council, 605 W. 4th Ave., Suite 306, Anchorage, AK 99501-2252....

  18. 77 FR 14351 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... National Oceanic and Atmospheric Administration RIN 0648-XB071 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of meetings of the North Pacific Fishery Management Council and its advisory committees. SUMMARY: The North Pacific Fishery Management Council (Council) and...

  19. 78 FR 15934 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC557 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management.... Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage,...

  20. 75 FR 2111 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... National Oceanic and Atmospheric Administration RIN 0648-XT73 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management... Benson Hotel, 309 SW Broadway, Portland, OR 97205. Council address: North Pacific Fishery...

  1. 76 FR 23996 - North Pacific Fishery Management Council Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... National Oceanic and Atmospheric Administration North Pacific Fishery Management Council Public Meeting ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management Council (Council) and.... Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage,...

  2. 75 FR 69632 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... National Oceanic and Atmospheric Administration RIN 0648-XA037 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management..., AK. Council address: North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite...

  3. 76 FR 13360 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... National Oceanic and Atmospheric Administration RIN 0648-XA283 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management... Hotel, 500 West 3rd Avenue, Anchorage, AK. Council address: North Pacific Fishery Management...

  4. A Subtropical North Atlantic Regional Atmospheric Moisture Budget

    NASA Astrophysics Data System (ADS)

    Bingham, F.; D'Addezio, J. M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the SPURS (Salinity Processes in the Upper Ocean Regional Study) region in the subtropical North Atlantic (15-30°N, 30-45°W) the ideal location for the world's highest open ocean sea surface salinity. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/day with a standard deviation of 1.2 mm/day and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/day but only a mean rate of 1.37 mm/day with a standard deviation of 1.46 mm/day. The resulting E-P variable has a mean rate of 3.50 mm/day with a standard deviation of 1.92 mm/day and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water northward to the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for almost half of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  5. A subtropical North Atlantic regional atmospheric moisture budget

    NASA Astrophysics Data System (ADS)

    D'Addezio, Joseph M.; Bingham, Frederick M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the Salinity Processes in the Upper Ocean Regional Study (SPURS-1) region in the subtropical North Atlantic (15-30°N, 30-45°W) the natural location for the world's highest open ocean SSS maximum. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS-1 region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/d with a standard deviation of 1.2 mm/d and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/d but only a mean rate of 1.37 mm/d with a standard deviation of 1.46 mm/d. The resulting E-P variable has a mean rate of 3.50 mm/d with a standard deviation of 1.92 mm/d and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water toward the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for about one third of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  6. Salinity Exchange through the Quasi-Stationary Jet from the Subtropical to the Subpolar Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Miyama, T.; Mitsudera, H.

    2014-12-01

    It is known that a quasi-stationary jet-like current [referred to as J1 in Isoguchi et al. (2006)] flows along the northern part of the Kuroshio/Oyashio mixed water region in the western Pacific Ocean. Observations (Isoguchi et al. 2006, Wagawa et al. 2014) have shown that the jet transports saline water in the subtropical Pacific Ocean to the subpolar region. To investigate how the subtropical water is transported through the quasi-stationary jet, numerical particle were tracked using a high resolution ocean reanalysis dataset, the Japan Coastal Ocean Predictability Experiment (JCOPE2). Particle released from the region near the quasi-stationary jet (152-158°E, 42-45°N) are tracked for one year from 15th day of every month and every year (1993-2013) with daily velocity of the JCOPE2 reanalysis at 30 m depth. Backward particle tracking shows that the particles near the jet come from wide southward area, which suggests that eddies are important in the transport process of the saline subtropical water. The number of particles that go back to the region south of 36°N within one year varies greatly in time, from 0.002% to 20% of the total particles. Forward particle tracking shows that the part of particles flows northeastward, which indicates the western subpolar gyre, while part of the particles are trapped in another jet-like current [referred to as J2 in Isoguchi et al. (2006)].

  7. Characteristics and mechanism of sub-seasonal zonal oscillation of western Pacific subtropical high and South Asian high

    NASA Astrophysics Data System (ADS)

    Ren, Xuejuan

    2016-04-01

    The Asian monsoon circulations, like the western Pacific subtropical high (WPSH) at 500hPa and South Asian high (SAH) in the upper level, demonstrate sub-seasonal zonal oscillation. The WPSH is characterized by anomalously westward extension of its western edge with anomalous low-level anti-cyclonic circulation over the coastal region prior and eastward retreat with low-level cyclonic anomalies afterward, contributing persistent heavy rainfall over the Middle-lower reaches of the Yangtze River Valley. The coastal SST anomalies linked with zonal movement of WPSH shows cooling phase to warming phase variations. A local air-sea interaction on sub-seasonal time-scale in the western North Pacific region, which may be responsible for generating WPSH's sub-seasonal zonal oscillation. The SAH's eastward extension is featured by eastward propagation of wavetrain across the Eurasian continent. When the SAH extends to its easternmost position, a strong negative PV (positive geopotential height) center prevails to the east of the Tibetan Plateau at 200hPa. The causes of SAH's eastward extension are examined by performing potential vorticity (PV) diagnosis with emphasis on the joint role of diabatic heating feedback/rainfall and midlatitude wavetrain. The PV diagnosis indicates that the anomalous heating/rainfall and ascending motion generate negative PV anomalies at 200hPa directly over north China-east Mongolia. While anomalous cooling and descending motion produce positive PV anomalies over south China. Those south/north dipolar structure of PV generation indicates large value of meridional gradient of PV anomalies. As a consequence, the negative PV anomalies over the north lobe are transported southwardly by the advection of climatological northerly located to the east and southeast of the Tibetan Plateau.

  8. 75 FR 11134 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... National Oceanic and Atmospheric Administration RIN 0648-XU98 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ] ACTION: Notice of a public meeting of the North Pacific Fishery Management... Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252. FOR...

  9. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    PubMed Central

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10–25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  10. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    NASA Astrophysics Data System (ADS)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  11. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  12. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    NASA Astrophysics Data System (ADS)

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

  13. Evaluating the impacts of eastern North Pacific tropical cyclones on North America utilizing remotely-sensed and reanalysis data

    NASA Astrophysics Data System (ADS)

    Wood, Kimberly M.

    The eastern North Pacific Ocean has the highest density of tropical cyclone genesis events of any tropical basin in the world, and many of these systems form near land before moving westward. However, despite the level of tropical cyclone activity in this basin, and the proximity of the main genesis region to land, tropical cyclone behavior in the eastern North Pacific has been relatively unexplored. When synoptic conditions are favorable, moisture from northward-moving tropical cyclones can be advected into northern Mexico and the southwestern United States, often leading to the development of summertime thunderstorms during the North American monsoon season. An interaction with a mid-latitude trough produces the most rainfall, and the spatial variability of precipitation is greatly affected by the complex topography of the region. Moisture can be advected from a tropical cyclone around the subtropical ridge in place for much of the eastern North Pacific hurricane season and contribute to precipitation. This ridge, when it extends westward over the Pacific Ocean, can also prevent tropical cyclone moisture from impacting the southwestern United States. Northward-moving tropical cyclones often enter an environment with decreasing sea surface temperatures, increasing vertical wind shear, and meridional air temperature and moisture gradients. These key ingredients for extratropical transition are generally present in the eastern North Pacific, but the subtropical ridge prevents many named systems from moving northward, and only 9% of eastern North Pacific tropical cyclones from 1970 to 2011 complete ET according to cyclone phase space. However, over half of the systems that do not complete ET dissipate as cold core cyclones, a structural change that has yet to be explored in other tropical basins. It is difficult to estimate tropical cyclone intensity in a vast ocean area with few direct measurements available. The deviation angle variance technique, an objective

  14. Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.

    PubMed

    Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J

    2006-10-01

    Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions. PMID:17024090

  15. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sheu, Guey-Rong; Lin, Neng-Huei

    2013-10-01

    Thirty-four weekly rainwater samples were collected in 2009 at Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is the first study concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 2.25 to 22.33 ng L-1, with a volume-weighted mean (VWM) concentration of 8.85 ng L-1. The annual wet Hg deposition flux was 10.18 μg m-2, about 2.5 times the fluxes measured at sites on the Pacific coast of the USA, supporting the hypothesis that deposition is higher in the western than in the eastern Pacific. Seasonal VWM concentrations were 7.23, 11.58, 7.82, and 9.84 ng L-1, whereas seasonal wet deposition fluxes were 2.14, 3.45, 2.38, and 2.21 μg m-2, for spring, summer, fall and winter, respectively. Higher summer wet Hg deposition was a function of both higher rainwater Hg concentration and greater rainfall. The seasonal pattern of rainwater Hg concentrations was the opposite of the general seasonal pattern of the East Asian air pollutant export. Since there is no significant anthropogenic Hg emission source on the islet of Pengjiayu, the observed high summertime rainwater Hg concentration hints at the importance of Hg0 oxidation and/or scavenging of upper-altitude reactive gaseous Hg (RGM) by deep convection. Direct anthropogenic RGM emissions from the East Asian continent may not contribute significantly to the rainwater Hg concentrations, but anthropogenic Hg0 emissions could be transported to the upper troposphere or marine boundary layer (MBL) where they can be oxidized to produce RGM, which will then be effectively scavenged by cloud water and rainwater.

  16. Relationship Between Intraseasonal Oscillation and Subtropical Wind Maxima Over the South Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Hurrell, James W.; Speth, P.; Sperling, T.; Funk, A.; Zube, S.

    1991-01-01

    The significance of tropical heat sources on higher latitude jet streams has been examined by numerous investigators. Hurrell and Vincent (1990) provide a summary of many of these investigations in their observational case study of the relationship between tropical heating and subtropical wind maxima in the Southern Hemisphere during SOP-1, FGGE. They showed that the divergent outflow from tropical heating associated with the South Pacific Convergence Zone (SPCZ), acted on by the coriolis force, was an important factor in maintaining the subtropical jet on the poleward side of the SPCZ during the period, 6-20 January 1979. They found a similar, but weaker relationship, over the southern Indian Ocean from 3-17 February 1979, a period when the SPCZ heating was greatly reduced and the jet was essentially non-existent. Since their findings were based on a case study and involved the use of the highly-specialized FGGE data set, the natural questions which arose were: (1) Is this relationship a regular feature of the circulation over the South Pacific? and, (2) If so, can it be detected with a routine data set? Another question posed by Hurrell and Vincent in their papers was:(3) How important was the intraseasonal oscillation in causing the enhanced heating and divergent outflow in the Pacific Ocean in January and southern Indian Ocean in February? The purpose of the present paper is to address the answer to these three questions. To accomplish this, some circulation features for an entire warm season in the Southern Hemisphere were examined. The year selected was 1984-85, and the warm season consisted of the 6-month period, 1 November 1984 - 30 April 1985. This period was chosen because there were numerous cases of the westerly wind maxima over the South Pacific and the intraseasonal oscillation was well documented.

  17. 77 FR 12814 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... National Oceanic and Atmospheric Administration RIN 0648-XB055 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a meeting of the North Pacific Fishery Management Council (Council) and Alaska Board of Fisheries (AK BOF) Joint Protocol Committee. SUMMARY: The North...

  18. 76 FR 22677 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XA388 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery... Science Center (AFSC), Traynor Room, 7600 Sand Point Way NE., Seattle, WA. Council address: North...

  19. BrO in the Tropical and Subtropical UTLS: Longitudinal Gradients over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Volkamer, R. M.; Dix, B. K.; Baidar, S.; Koenig, T. K.; Coburn, S.; Ortega, I.; Chen, D.; Huey, L. G.; Tanner, D.; Sherwen, T.; Evans, M. J.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.; Hills, A. J.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Pierce, R. B.; Schmidt, J.; Jacob, D. J.; Atlas, E. L.; Pan, L.; Salawitch, R. J.

    2014-12-01

    Bromine oxide (BrO) is a halogen radical that catalytically destroys ozone, modifies the oxidative capacity of the atmosphere and oxidizes atmospheric mercury. About 75% of the global tropospheric ozone loss occurs at tropical latitudes, where the ozone radiative forcing is most sensitive to changes in the ozone concentration. Here we report on BrO observations in the tropical and sub-tropical free troposphere and UTLS. Airborne measurements of BrO vertical profiles were performed by the University of Colorado Airborne Multi Axis DOAS (CU AMAX-DOAS) instrument aboard the NSF/NCAR GV aircraft. We compare BrO profiles measured at tropical and subtropical latitudes over the Western Pacific (CONvective TRansport of Active Species in the Tropics, CONTRAST, field campaign) with tropical BrO profiles measured over the Central (Mauna Loa Observatory fly-by) and Eastern Pacific ocean (Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC, TORERO, experiment). For selected case studies we compare BrO profiles from three independent instruments, i.e., CU AMAX-DOAS, mountain-top MAX-DOAS at Mauna Loa Observatory, and Chemical Ionization Mass Spectrometry and BrO predictions from global models (CAM-Chem, GEOS-Chem and RAQMS).

  20. Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Kimoto, K.; Itaki, T.; Yokoyama, Y.; Miyairi, Y.; Matsuzaki, H.

    2015-06-01

    To understand bottom water variability in the subtropical northwestern Pacific, bottom water temperatures (BWTs), carbon isotopes (δ13C), and oxygen isotopes of seawater (δ18Ow) at a water depth of 1166 m were reconstructed from 26 kyr BP to present. A new regional Mg / Ca calibration for the benthic foraminifera Cibicidoides wuellerstorfi (type B) was established to convert the benthic Mg / Ca value to BWT, based on 26 surface sediment samples and two core-top samples retrieved around Okinawa Island. During the Last Glacial Maximum (LGM), the δ18Ow in the intermediate water in the northwestern South Pacific was ~0.4‰ lower than in the deep South Pacific, indicating a greater vertical salinity gradient than at present. This salinity (and probably density) structure would have led to stratification in the intermediate and deep Pacific, which would, in turn, have greatly influenced carbon storage during the glacial time. The benthic Mg / Ca and δ18Ow records suggest changes that seem to follow Heinrich event 1 (H1) and the Bølling-Alleød (B/A) and Younger Dryas (YD) intervals, with BWT higher during H1 (~17 kyr BP) and YD (~12 kyr BP) and lower during B/A (~14 kyr BP). The warming in the bottom water during H1 suggests increased contribution of North Pacific Intermediate Water (NPIW) to the subtropical northwestern Pacific and decreased upwelling of cooler waters from the abyssal North Pacific. During the interval from 17 to 14.5 kyr BP, the BWT tended to decrease successively in association with a decrease in δ13C values, presumably as a result of increased upwelling of the abyssal waters to the intermediate depths of the North Pacific caused by shoaling and enhancement of the southward return flow of Pacific Deep Water (PDW). During the Holocene, the millennial- to sub-millennial-scale variations in the BWT generally correlate with the sea surface temperatures in the Okhotsk Sea, the source region of the NPIW, suggesting that changes in the BWT are linked

  1. Orbital control of the western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Chiang, John C. H.; Hsu, Huang-Hsiung; Lee, Shih-Yu

    2016-02-01

    Orbital forcing exerts a strong influence on global monsoon systems, with higher summer insolation leading to stronger summer monsoons in the Northern Hemisphere. However, the associated regional and seasonal changes, particularly the interaction between regional monsoon systems, remain unclear. Simulations using the Community Earth System Model demonstrate that the western North Pacific (WNP) summer monsoon responds to orbital forcing opposite to that of other major Northern Hemisphere monsoon systems. Compared with its current climate state, the simulated WNP monsoon and associated lower-tropospheric trough is absent in the early Holocene when the precession-modulated Northern Hemisphere summer insolation is higher, whereas the summer monsoons in South and East Asia are stronger and shift farther northward. We attribute the weaker WNP monsoon to the stronger diabatic heating of the summer Asian monsoon—in particular over the southern Tibetan Plateau and Maritime Continent—that in turn strengthens the North Pacific subtropical high through atmospheric teleconnections. By contrast, the impact of the midlatitude circulation changes on the WNP monsoon is weaker when the solar insolation is higher. Prior to the present WNP monsoon onset, the upper-tropospheric East Asian jet stream weakens and shifts northward; the monsoon onset is highly affected by the jet-induced high potential vorticity intrusion. In the instance of the extreme perihelion-summer, the WNP monsoon is suppressed despite a stronger midlatitude precursor than present-day, and the midlatitude circulation response to the enhanced South Asian precipitation is considerable. These conditions indicate internal monsoon interactions of an orbital scale, implying a potential mechanistic control of the WNP monsoon.

  2. What drives seasonal change in oligotrophic area in the subtropical North Atlantic?

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Barton, Andrew D.; Lozier, M. Susan; McKinley, Galen A.

    2015-06-01

    The oligotrophic regions of the subtropical gyres cover a significant portion of the global ocean, and exhibit considerable but poorly understood intraseasonal, interannual, and longer-term variations in spatial extent. Here using historical observations of surface ocean nitrate, wind, and currents, we have investigated how horizontal and vertical supplies of nitrate control seasonal changes in the size and shape of oligotrophic regions of the subtropical North Atlantic. In general, the oligotrophic region of the subtropical North Atlantic is associated with the region of weak vertical supply of nitrate. Though the total vertical supply of nitrate here is generally greater than the total horizontal supply, we find that seasonal expansion and contraction of the oligotrophic region is consistent with changes in horizontal supply of nitrate. In this dynamic periphery of the subtropical gyre, the seasonal variations in chlorophyll are linked to variations in horizontal nitrate supply that facilitate changes in intracellular pigment concentrations, and to a lesser extent, phytoplankton biomass. Our results suggest that horizontal transports of nutrient are crucial in setting seasonal cycles of chlorophyll in large expanses of the subtropical North Atlantic, and may play a key and underappreciated role in regulating interannual variations in these globally important marine ecosystems.

  3. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Chisato; Makabe, Akiko; Shiozaki, Takuhei; Toyoda, Sakae; Yoshida, Osamu; Furuya, Ken; Yoshida, Naohiro

    2015-05-01

    Nitrogen isotopic ratios of nitrate (δ15N-NO3-) were analyzed above 1000 m water depth along 17°S in the subtropical South Pacific during the revisit WOCE P21 cruise in 2009. The δ15N-NO3- and N* values were as high as 17‰ and as low as -18 μmol N L-1, respectively, at depths around 250 m east of 115°W, but were as low as 5‰ and as high as +1 μmol N L-1, respectively, in subsurface waters west of 170°W. The relationships among NO3- concentrations, N* values, δ15N-NO3- values, and oxygen and nitrite concentrations suggest that a few samples east of 90°W were from suboxic and nitrite-accumulated conditions and were possibly affected by in situ water column denitrification. Most of the high-δ15N-NO3- and negative-N* waters were probably generated by mixing between Subantarctic Mode Water from the Southern Ocean and Oxygen Deficit Zone Water from the eastern tropical South Pacific, with remineralization of organic matter occurring during transportation. Moreover, the relationship between δ15N-NO3- and N* values, as well as Trichodesmium abundances and size-specific nitrogen fixation rates at the surface, suggest that the low-δ15N-NO3- and positive-N* subsurface waters between 160°E and 170°W were generated by the input of remineralized particles created by in situ nitrogen fixation, mainly by Trichodesmium spp. Therefore, the δ15N values of sediments in this region are expected to reveal past changes in nitrogen fixation or denitrification rates in the subtropical South Pacific. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  4. Ocean salinity changes in the northwest Pacific subtropical gyre: The quasi-decadal oscillation and the freshening trend

    NASA Astrophysics Data System (ADS)

    Nan, Feng; Yu, Fei; Xue, Huijie; Wang, Ran; Si, Guangcheng

    2015-03-01

    Ocean salinity changes play an important role in modulating ocean and climate variability. Analyses of the repeating observations along PN, TK, and 137°E sections reveal that both surface and subsurface salinity in the Northwest Pacific Subtropical Gyre (NPSG) had clear quasi-decadal oscillation (QDO) of ˜10 year and a sustained freshening trend during 1987-2012. Surface salinity in the NPSG troughed in 1989, 1999, and 2008, and peaked in 1993, and 2003. The peak-to-tough range of surface salinity oscillation can reach 0.3 psu. Meanwhile, surface salinity decreased about 0.10 psu from 1987 to 2012 with a freshening trend of -0.0042 psu yr-1. These surface salinity anomalies were subducted into the subsurface layer mainly in the ventilated zone along the Kuroshio Extension, and advected over the NPSG. The QDO of the subsurface salinity maximum (Smax) lagged that of the surface salinity by about 1˜2 years. Both the peak-to-tough range of the Smax oscillation (0.15 psu) and its freshening trend (-0.0036 psu yr-1) are smaller than those of the surface salinity. Salinity changes in the NPSG likely began in the mid-1970s associated with the North Pacific regime shift during 1976/1977. Analyses of mixed layer salinity budget indicated that air-sea freshwater flux change in the NPSG is the leading factor controlling the surface salinity anomalies, while change of large-scale ocean circulation (Geostrophic advection) also plays a minor role. Salinity and air-sea freshwater flux changes in the NPSG are all closely related to the Pacific Decadal Oscillation, indicating the large-scale ocean-atmosphere interaction.

  5. Holocene precipitation in the subtropical Pacific inferred from the carbon isotope composition of Melaleuca quinquenervia (The Broad-leaved Paper Bark tree) leaves

    NASA Astrophysics Data System (ADS)

    Tibby, John; Barr, Cameron; Henderson, Andrew; Leng, Melanie; Marshall, Jon; McGregor, Glenn

    2013-04-01

    Holocene records of the amounts of subtropical precipitation are rare, particularly in the Southern Hemisphere. Yet such information is vital for a comprehensive understanding of global climate system dynamics. We present a precipitation record inferred from the δ13C composition of Melaleuca quinquenervia leaves retrieved from the Holocene sediments of Swallow Lagoon, North Stradbroke Island, in the subtropics of Australia. The modern relationship between rainfall and δ13C was quantified using a collection of monthly leaf falls between 1992 and 2003 and climate data. We then used the calibration to reconstruct precipitation variability from 7500 to 600 cal. yr BP. Dry phases at Swallow Lagoon in the early to mid Holocene are correlated with cooling in the North Atlantic Ocean (i.e. "Bond" events). This relationship breaks down after ~3500 cal. yr BP. From 3500 cal. yr BP there is increased aridity (and variability) associated with the mid- to late Holocene establishment of modern El Niño Southern Oscillation conditions. Overall, these data show linkages between precipitation in the low latitudes of the Southern Hemisphere and Northern Hemisphere cooling events, with a shift to internal forcing of subtropical climate via the Pacific Ocean in the late Holocene.

  6. Superoxide production and decay in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Roe, K.; Voelker, B. M.; Hansel, C. M.

    2012-12-01

    Reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, can be generated through photochemical reactions or biological activity in seawater. The generation of ROS, especially superoxide, by photochemical or biological processes can influence trace metal speciation and cycling in the ocean since superoxide can react quickly with metals (Cu and Fe) and is capable of both oxidation and reduction of trace metals. In this study superoxide was detected and measured in the oligotrophic waters at station ALOHA by a MCLA chemiluminescence flow injection method. The superoxide concentrations ranged between 0.037-0.099 nM, had observed decay rates of 0.004-0.014 s-1, and production rates of 0.88-4.81 nM hr-1 during a 16 day period during July 2012. The influence of biological activity vs photochemical production on superoxide concentration, decay and production rates are discussed.

  7. From the subtropics to the equator in the Southwest Pacific: Continental material fluxes quantified using neodymium data along modeled thermocline water pathways

    NASA Astrophysics Data System (ADS)

    Grenier, Mélanie; Jeandel, Catherine; Cravatte, Sophie

    2014-06-01

    The southwestern tropical Pacific, part of a major pathway for waters feeding the Equatorial Undercurrent, is a region of important geochemical enrichment through land-ocean boundary exchange. Here we develop an original method based on the coupling between dynamical modeling and geochemical tracer data to identify regions of enrichment along the water pathways from the subtropics to the equator, and to allow a refined quantification of continental material fluxes. Neodymium data are interpreted with the help of modeled Lagrangian trajectories of an Ocean General Circulation Model. We reveal that upper and lower thermocline waters have different pathways together with different geochemical evolutions. The upper thermocline waters entering the Solomon Sea mainly originate from the central subtropical gyre, enter the Coral Sea in the North Vanuatu Jet and likely receive radiogenic neodymium from the basaltic island margins encountered along their route. The lower thermocline waters entering the Solomon Sea mainly originate from northeast of New Zealand and enter the Coral Sea in the North Caledonian Jet. Depletion of their neodymium content likely occurs when flowing along the Australian and Papua coasts. Downstream from the Solomon Sea, waters flowing along the Papua New Guinea margins near the Sepik river mouth become surprisingly depleted in their neodymium content in the upper thermocline while enriched in the lower thermocline. This coupled approach is proposed as strong support to interpret the origin of the equatorial Pacific natural fertilization through a better understanding of the circulation, important objectives of the international GEOTRACES and SPICE programs, respectively.

  8. Impact of the winter North-Atlantic weather regimes on subtropical sea-surface height variability

    NASA Astrophysics Data System (ADS)

    Barrier, Nicolas; Treguier, Anne-Marie; Cassou, Christophe; Deshayes, Julie

    2013-09-01

    Interannual variability of subtropical sea-surface-height (SSH) anomalies, estimated by satellite and tide-gauge data, is investigated in relation to wintertime daily North-Atlantic weather regimes. Sea-level anomalies can be viewed as proxies for the subtropical gyre intensity because of the intrinsic baroclinic structure of the circulation. Our results show that the strongest correlation between SSH and weather regimes is found with the so-called Atlantic-Ridge (AR) while no significant values are obtained for the other regimes, including those related to the North Atlantic Oscillation (NAO), known as the primary actor of the Atlantic dynamics. Wintertime AR events are characterized by anticyclonic wind anomalies off Europe leading to a northward shift of the climatological wind-stress curl. The latter affects subtropical SSH annual variability by altered Sverdrup balance and ocean Rossby wave dynamics propagating westward from the African coast towards the Caribbean. The use of a simple linear planetary geostrophic model allows to quantify those effects and confirms the primary importance of the winter season to explain the largest part of SSH interannual variability in the Atlantic subtropical gyre. Our results open new perspectives in the comprehension of North-Atlantic Ocean variability emphasizing the role of AR as a driver of interannual variability at least of comparable importance to NAO.

  9. 77 FR 38773 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... meeting will occur during the scoping period for the Steller Sea Lion Protection Measures EIS (77 FR 22750... National Oceanic and Atmospheric Administration North Pacific Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice of committee meeting. SUMMARY: The North Pacific Fishery Management...

  10. 78 FR 29116 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... National Oceanic and Atmospheric Administration RIN 0648-XC679 North Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Meeting of the North Pacific Fishery Management Council (Council) and... Management Council Joint Protocol ] Committee of the AK B0F and Council will meet in Juneau, AK. DATES:...

  11. 78 FR 13867 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XC530 North Pacific Fishery Management Council... Management Council's (Council) Steller Sea Lion Mitigation Committee (SSLMC) will meet in Anchorage, AK..., Anchorage, AK. Council address: North Pacific Fishery Management Council, 605 W. 4th Ave., Suite...

  12. Fishery-Induced Changes in the Subtropical Pacific Pelagic Ecosystem Size Structure: Observations and Theory

    PubMed Central

    Polovina, Jeffrey J.; Woodworth-Jefcoats, Phoebe A.

    2013-01-01

    We analyzed a 16-year (1996–2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch. PMID:23620824

  13. Fishery-induced changes in the subtropical Pacific pelagic ecosystem size structure: observations and theory.

    PubMed

    Polovina, Jeffrey J; Woodworth-Jefcoats, Phoebe A

    2013-01-01

    We analyzed a 16-year (1996-2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch. PMID:23620824

  14. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  15. Atmospheric Mercury Deposition to a Remote Islet in the Subtropical Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sheu, G.; Lin, N.

    2013-12-01

    Thirty-four weekly rainwater samples were collected in 2009 at Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean with an area of 1.14 km^2, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is the first study concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 2.25 to 22.33 ng L^-1, with a volume-weighted mean (VWM) concentration of 8.85 ng L^-1. The annual wet Hg deposition flux was 10.18 μg m^-2, about 2.5 times the fluxes measured at sites on the Pacific coast of the USA, supporting the hypothesis that deposition is higher in the western than in the eastern Pacific. Seasonal VWM concentrations were 7.23, 11.58, 7.82, and 9.84 ng L^-1, whereas seasonal wet deposition fluxes were 2.14, 3.45, 2.38, and 2.21 μg m^-2, for spring, summer, fall and winter, respectively. Higher summer wet Hg deposition was a function of both higher rainwater Hg concentration and greater rainfall. The seasonal pattern of rainwater Hg concentrations was the opposite of the general seasonal pattern of the East Asian air pollutant export. Since there is no significant anthropogenic Hg emission source on the islet of Pengjiayu, the observed high summertime rainwater Hg concentration hints at the importance of Hg(0) oxidation and/or scavenging of upper-altitude reactive gaseous Hg (RGM) by deep convection. Direct anthropogenic RGM emissions from the East Asian continent may not contribute significantly to the rainwater Hg concentrations, but anthropogenic Hg(0) emissions could be transported to the upper troposphere or marine boundary layer where they can be oxidized to produce RGM, which will then be effectively scavenged by cloud water and rainwater.

  16. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  17. Latitudinal variation in the recruitment dynamics of small pelagic fishes in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshiro

    2007-07-01

    The subarctic Oyashio Current flows south-westward and the subtropical Kuroshio Current flows north-eastward in the western North Pacific, converging in the waters off northern Japan to form the Kuroshio-Oyashio transition region. Some small pelagic fishes inhabit the subarctic or subtropical waters, and others seasonally migrate north and south across the major ocean fronts. Environmental conditions in the subarctic and transition waters are variable, whereas in the subtropical Kuroshio waters conditions are relatively stable. Latitudinally different environmental conditions may affect vital parameters and recruitment variability of small pelagic fishes inhabiting the various waters. Pacific saury Cololabis saira migrate seasonally from the Kuroshio to Oyashio waters and spawn in the transition waters in autumn and spring and in the Kuroshio waters in winter. During 1990-1999, the coefficients of variation (CVs) of daily growth rates (G) and instantaneous mortality coefficients (M) were large for larvae and juveniles spawned in the northern transition waters, but relatively small for those from the southern Kuroshio waters. The Pacific stock of chub mackerel Scomber japonicus spawns in the Kuroshio waters in spring and early summer and migrates to the subarctic Oyashio waters in summer for feeding, whereas the Tsushima Warm Current stock spawns in the East China Sea in spring and fish remain in the subtropical warm waters throughout their lifetime. The Pacific stock had CVs > 100% for the fish aged 0-5 during 1970-2002. In contrast, the Tsushima Warm Current stock had CVs of 34-40% during 1973-2002. Pacific herring Clupea pallasii, which inhabits subarctic waters, had CVs of 118-178% for the fish aged 3-8 y during 1910-1954. Japanese sardine Sardinops melanostictus, which spawn in the subtropical Kuroshio waters and migrate to the subarctic Oyashio waters in summer for feeding, had CVs > 120% for the fish aged 0-4 during 1976-2003. Contrasting with these subarctic

  18. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  19. Ventilation time scales of the North Atlantic subtropical cell revealed by coral radiocarbon from the Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Lapen, Thomas J.; Andreasen, Rasmus; Swart, Peter K.; White, Christopher D.; Rosenheim, Brad E.

    2015-07-01

    We present coral- and sclerosponge-based reconstructions of the 14C content in North Atlantic dissolved inorganic carbon (DIC) during the last ~100 years from the subtropical cells (STCs). These waters are sensitive to the dynamics of the shallow overturning meridional circulation that transports heat and water masses from the subtropics to the tropics. We use these records to investigate the circulation patterns of the off-equatorial upwelling regions of the STCs, which are not well understood. Coral and sclerosponge skeletons provide long time series of ocean DIC 14C content, a tracer of oceanic circulation, effectively extending the observational record back in time. Sclerosponge data from the Bahamas were used to extend the existing subtropical 14C time series to the 21st century. Coral 14C data from the Cape Verde Islands (1890-2002) captured the 14C signature of water brought to the surface in the off-equatorial regions of the STC present near the West African coast. We observe a unique postbomb trend at Cape Verde that is similar to the upwelling regions in the Pacific, and we interpret this trend as the result of the slow penetration of bomb 14C into the interior ocean as part of the STC circulation. Using a multibox mixing model we constrain the time history of bomb 14C in the eastern tropical Atlantic, and we estimate a 20 year time scale for ventilation of the thermocline in this area of the ocean. The similarity between the Atlantic and Pacific 14C-based records of upwelling suggests that both are caused by bomb 14C penetration rather than more complex explanations that invoke changes in thermocline depth (e.g., related to El Niño-Southern Oscillation variability) or changes in the strength of the subtropical cells. Our results offer constraints for models of tropical ocean circulation and anthropogenic CO2 uptake that attempt to reproduce the characteristics of the shallow wind-driven circulation in the Atlantic.

  20. Possible influence of western North Pacific monsoon on TC activity in mid-latitudes of East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study analyzed the correlation between tropical cyclone (TC) frequency and the Western North Pacific monsoon index (WNPMI), which have both been influential in East Asia's mid-latitude regions during the summer season over the past 37 years (1977-2013). A high positive correlation existed between these two variables, which was not reduced even if El Niño-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during a nine-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference of the two phases between the 850 and 500-hPa streamlines, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East Asia's mid-latitude regions, which played a role in the anomalous steering flows that moved TCs into these regions. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase. Both the lower and upper tropospheric layers had warm anomalies

  1. An oceanic mechanism for decadal variability in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Stevens, David; Matthews, Adrian

    2013-04-01

    Many studies have noted decadal scale sea surface temperature (SST) variability in the North Pacific Ocean. The spatial SST pattern has a cold anomaly in the central North Pacific that extends to the Pacific western boundary and resembles a broader and weaker El Nino signal in the tropics. This pattern of variability is often referred to as the Pacific Decadal Oscillation (PDO). Despite extensive research, the nature of the apparent oscillation between warm and cold SST anomalies in the central North Pacific is still surrounded by much uncertainty. A generally agreed upon point is that decadal-scale SST variability appears to be somehow linked to El Nino. However, the mechanism by which such variability is generated, be it an independent dynamical process or a stochastic reddening of other climate signals, is not well understood. Decadal variability in the North Pacific has impacts both locally and remotely. Temperature changes in the North Pacific can have a significant effect on the local ecosystem. Remote effects of the PDO include changes to the surface climate (e.g., temperature and precipitation) in Australia, South and North America, the Russian Far East, much of eastern Asia, and the maritime continent. Improved understanding of decadal variability in the North Pacific could lead to a better understanding of climate variability in these remote regions. Here we use a state-of-the-art high-resolution coupled climate model, HiGEM, to show that anomalous ocean transport in the North Pacific can largely account for the decadal-scale SST variability. We also demonstrate that it is likely that the same mechanism occurs in the real ocean, and therefore that internal ocean dynamics play a key role in regulating decadal-scale variability in the North Pacific.

  2. Mesoscale contribution to salinity transport in the North Atlantic subtropics (2011-2013)

    NASA Astrophysics Data System (ADS)

    Reverdin, Gilles; Boutin, Jacqueline; Centurioni, Luca; Hormann, Verena; Kolodziejczyk, Nicolas; Font, Jordi; Salvador, Joaquin; Sommer, Anna; Martin, Nicolas; Morisset, Simon

    2014-05-01

    Mesoscale activity is expected to contribute to transport salt horizontally out of the region of maximum salinity of the North Atlantic subtropical gyre. Using in situ and satellite observations, we investigate the contribution of mesoscale activity to the salinity budget in the central part of the subtropical gyre. Surface current data originate from close to 150 surface drifters deployed for SPURS, as well as satellite altimetry from Aviso products, and salinity data originate mostly from Argo floats, over 100 drifters and thermosalinographs, in particular from the SSS observing system ships Coriolis and Toucan (www.legos.obs-mip.fr/fr/soa/ore-sss/distribution). The period investigated is from 2011 to 2013. Near 30°N, north of the subtropics, as well as near 20°N, SMOS data indicate significant meridional transport, despite the large noise on the data, and the filtering of the smaller scales (100 km) of the transport. Closer to the core of the subtropical gyre, we find evidence in the drifter data of significant meridional transport, but that is highly irregular in time, as it seems associated with a few specific events. Whether this is due to the inhomogneous and Lagrangian nature of the sampling is discussed. We also check the budget at a smaller spatial scale using a dedicated meso-scale cruise (Strasse) in August 2012.

  3. Will the western Pacific subtropical high constantly intensify in the future?

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Li, Xiaofan; Wang, Huijun

    2016-07-01

    The western Pacific subtropical high (WPSH) features lower-level southerlies or southwesterlies at its western and southern edges that transport amount of water vapor into East Asia, and it exerts a large influence on the East Asian summer climate. This paper evaluates the historical (1950-2005) spatial distribution and variability in the summer WPSH at 850 hPa using 28 general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) relative to the NCEP-NCAR reanalysis data. To avoid the artificial influence caused by global warming, this study primarily investigates the 850-hPa eddy geopotential height and the horizontal winds. The results show that most of the CMIP5 models reliably reproduce the geographical distribution and spatial variability in the WPSH. Four models (bcc-csm1-1, CESM1-CAM5, GFDL-ESM2G and inmcm4) generally perform well in simulating the eastward-recessed interdecadal variation in the WPSH during 1979-2005 relative to 1950-1978, with a significant cyclone anomaly appearing over the western Pacific and a decreasing trend in the WPSH index. Based on these four models, a multi-model ensemble projects a weaker WPSH during 2026-2070 relative to 2010-2025 and 2071-2100 under the representative concentration pathway 8.5 scenario.

  4. Will the western Pacific subtropical high constantly intensify in the future?

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Li, Xiaofan; Wang, Huijun

    2015-10-01

    The western Pacific subtropical high (WPSH) features lower-level southerlies or southwesterlies at its western and southern edges that transport amount of water vapor into East Asia, and it exerts a large influence on the East Asian summer climate. This paper evaluates the historical (1950-2005) spatial distribution and variability in the summer WPSH at 850 hPa using 28 general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) relative to the NCEP-NCAR reanalysis data. To avoid the artificial influence caused by global warming, this study primarily investigates the 850-hPa eddy geopotential height and the horizontal winds. The results show that most of the CMIP5 models reliably reproduce the geographical distribution and spatial variability in the WPSH. Four models (bcc-csm1-1, CESM1-CAM5, GFDL-ESM2G and inmcm4) generally perform well in simulating the eastward-recessed interdecadal variation in the WPSH during 1979-2005 relative to 1950-1978, with a significant cyclone anomaly appearing over the western Pacific and a decreasing trend in the WPSH index. Based on these four models, a multi-model ensemble projects a weaker WPSH during 2026-2070 relative to 2010-2025 and 2071-2100 under the representative concentration pathway 8.5 scenario.

  5. A decadal precession of atmospheric pressures over the North Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Gianotti, Daniel J. S.; Furtado, Jason C.; Di Lorenzo, Emanuele

    2016-04-01

    Sustained droughts over the Northwestern U.S. can alter water availability to the region's agricultural, hydroelectric, and ecosystem service sectors. Here we analyze decadal variations in precipitation across this region and reveal their relation to the slow (~10 year) progression of an atmospheric pressure pattern around the North Pacific, which we term the Pacific Decadal Precession (PDP). Observations corroborate that leading patterns of atmospheric pressure variability over the North Pacific evolve in a manner consistent with the PDP and manifest as different phases in its evolution. Further analysis of the data indicates that low-frequency fluctuations of the tropical Pacific Ocean state energize one phase of the PDP and possibly the other through coupling with the polar stratosphere. Evidence that many recent climate variations influencing the North Pacific/North American sector over the last few years are consistent with the current phase of the PDP confirms the need to enhance our predictive understanding of its behavior.

  6. NO2 seasonal evolution in the north subtropical free troposphere

    NASA Astrophysics Data System (ADS)

    Gil-Ojeda, M.; Navarro-Comas, M.; Gómez-Martín, L.; Adame, J. A.; Saiz-Lopez, A.; Cuevas, C. A.; González, Y.; Puentedura, O.; Cuevas, E.; Lamarque, J.-F.; Kinninson, D.; Tilmes, S.

    2015-09-01

    Three years of multi-axis differential optical absorption spectroscopy (MAXDOAS) measurements (2011-2013) have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W). The method is based on horizontal path calculation from the O2-O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2 column density, and is applicable under low aerosol-loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of marine boundary layer (MBL) air masses from thermally forced upwelling breeze during middle hours of the day. Comparisons with in situ observations show that during most of the measuring period, the MAXDOAS is insensitive or very slightly sensitive to the upwelling breeze. Exceptions are found for pollution events during southern wind conditions. On these occasions, evidence of fast, efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 volume mixing ratio (vmr), representative of the remote free troposphere, is in the range of 20-45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña.

  7. Fluctuating sea surface temperatures in the subtropical North Atlantic during Oceanic Anoxic Event 1a at DSDP Site 398 and ODP Site 641

    NASA Astrophysics Data System (ADS)

    Hofmann, P.; Wiegand, R.; Handley, L.; Wagner, T.; Talbot, H. M.; Mcanena, A.

    2012-04-01

    The early Aptian is characterized by a perturbation of the global carbon cycle which occurred during Oceanic Anoxic Event 1a (OAE 1a, Selli-Event, ca. 120 Ma). OAE 1a is well documented by organic carbon-rich sediments from marine and terrestrial localities worldwide. The trigger mechanism and the environmental consequences of OAE 1a are still under dispute. Here we present sea surface temperature estimates based on TEX 86 measurements (tetraether index of tetraethers containing 86 carbons) from the Galicia Margin (subtropical North Atlantic) at DSDP Site 398 and ODP Site 641C. The investigated sites are approximately 350 km apart and located on the slope of the Vigo seamount (Site 398) and the Galicia Bank (Site 641). Sea surface temperature (SST) records at both Sites suggest a significant and sustained warming of the Galica Margin surface waters during OAE 1a. The observed warming during OAE 1a is disrupted by several SST decreases which vary in magnitude from site to site. Similar surface water cooling episodes but with different magnitudes have been reported from the central Pacific region. The exact nature and timing of these intermittent cooling periods remains to be discovered but the occurrence in both the North Atlantic and Pacific may point towards a global trigger mechanism. We speculate that the thermal development of the surface waters of the subtropical North Atlantic during OAE 1a may reflect global fluctuations in pCO2 in response to variations in the intensity of Pacific volcanic activity in the Pacific Ontong Java area with superimposed local adjustments in the oceanic circulation pattern of the North Atlantic.

  8. The response of winter Pacific North American pattern to strong volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Yoshimura, Kei; Buenning, Nikolaus H.; Jian, Zhimin; Zhao, Liang

    2016-07-01

    The impact of volcanic eruptions on large-scale atmospheric circulation patterns has been well studied, but very little effort has been made on relating the response of Pacific North American (PNA) pattern to strong volcanic eruptions. Here we investigate the response of winter PNA to the largest volcanic eruptions using three different reanalysis datasets. We demonstrate a significant positive PNA circulation response to strong volcanic forcing in the first winter following the eruptions. This circulation pattern is associated with enhanced southwesterly winds advecting warm air from the tropical/subtropical Pacific into northwestern North America and leads to a significant warming in the region. However, no significant PNA signal is found for the second post-eruption winter. The PNA responses to volcanic forcing depend partly upon the modulation of the El Niño Southern Oscillation (ENSO) events. When the ENSO influence is linearly removed, this positive PNA signal is still robust during the first post-eruption winter, albeit with slightly decreased magnitude and significance. Our findings provide new evidence for volcanic forcing of the Pacific and North American climates. The results presented here may contribute to deconvolving modern and past continental-scale climate changes over North America.

  9. Response of the subtropical North Atlantic surface hydrography on deglacial and Holocene AMOC changes

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Weinelt, Mara; Kinkel, Hanno; Andersen, Nils; Garbe-Schönberg, Dieter; Schwab, Christian

    2015-05-01

    The North Atlantic subtropical gyre (STG) circulates warm waters between 10 and 40°N and is a potential area of heat storage during periods of reduced North Atlantic Meridional Overturning Circulation (AMOC), when warm salt-rich waters are retained in the subtropics. In this study, we investigated multicentennial to millennial scale changes in subtropical North Atlantic hydrography in response to AMOC changes during the last deglaciation and early Holocene, using sediment cores MD08-3180 and GEOFAR KF16. The coring site (38°N) is situated near the boundary between transitional eastern North Atlantic waters and STG waters that is formed by the Azores Front. Hydrographic changes are reconstructed using new stable isotope data of benthic and subsurface dwelling planktonic foraminifera, Mg/Ca measurements on planktonic foraminifera, and planktonic foraminifera abundances that are supplemented with published sea surface temperature and stable isotope data. These multiproxy data indicate a close coupling between the latitudinal position of the northern STG boundary and deglacial AMOC modes. During weak AMOC phases (Heinrich event 1, Younger Dryas (YD), 8.2 ka event), Northern Hemisphere subpolar water reached down to the northern STG boundary, displacing the boundary southward. During the Bølling-Allerød warm period, a strong warming trend of the subtropical region to 19°C is observed. A cooling of the sea surface temperature by 6°C during the YD is accompanied by ongoing northward transport of warm subsurface water that might have contributed to the restart of AMOC.

  10. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  11. Sea-air of CO2 in the North Pacific using shipboard and satellite data

    NASA Technical Reports Server (NTRS)

    Stephens, Mark P.; Samuels, Geoffrey; Olson, Donald B.; Fine, Rana A.; Takahashi, Taro

    1995-01-01

    A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.

  12. Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology

    NASA Astrophysics Data System (ADS)

    Wright, W. E.; Guan, B. T.; Tseng, Y.-H.; Cook, E. R.; Wei, K.-Y.; Chang, S.-T.

    2015-03-01

    The East Asian subtropical jet (EAJ) and the closely related Western Pacific pattern (WP) are among the most important features in global atmospheric dynamics, but little is known about their long-term variability. This study presents reconstructions of the Spring EAJ index (EAJI) and the Spring WP index (WPI) based on significant relationships identified between mean values for these features and a millennial length tree-ring width chronology of Chamaecyparis obtusa var. formosana, a high-mountain cloud forest species from northeastern Taiwan. Tree-ring based reconstructions of high pass filtered versions of the EAJI and WPI (EAJI 5YR and WPI 5YR) presented herein explain 42 and 31 % of the WPI 5YR and EAJI 5YR, respectively, and display acceptable reliability back to A.D. 1237. A significant trend present in the long-term variance of the reconstructed EAJI and WPI after A.D. 1860 suggests long-term increasing variability in the spring mean latitudinal placement and/or the strength/breadth of the EAJ core region near Taiwan and Japan and in the trajectory of the EAJ over the North Pacific. Related features affected by changes in the EAJ include the North Pacific storm track and Asian Dust transport.

  13. Assemblages of phytoplankton pigments along a shipping line through the North Atlantic and tropical Pacific

    NASA Astrophysics Data System (ADS)

    Dandonneau, Yves; Niang, Awa

    2007-05-01

    A set of phytoplankton pigment measurements collected on eight quarterly transects from France to New Caledonia is analyzed in order to identify the main assemblages of phytoplankton and to relate their occurrence to oceanic conditions. Pigment concentrations are first divided by the sum [monovinyl chlorophyll a plus divinyl chlorophyll a] to remove the effect of biomass, and second are normalized to give an equal weight to all pigments. The resulting 17 pigments × 799 observations matrix is then classified into 10 clusters using neural methodology. Eight out of these 10 clusters have a well marked regional or seasonal character, thus evidencing adapted responses of the phytoplankton communities. The main gradient opposes two clusters with high fucoxanthin and chlorophyll c1+2 in the North Atlantic in January, April and July, to three clusters in the South Pacific Subtropical Gyre with high divinyl chlorophyll a, zeaxanthin and phycoerythrin. One of the clusters in the South Pacific Subtropical Gyre has relatively high zeaxanthin and phycoerythrin contents and dominates in November and February (austral summer), while another with relatively high divinyl chlorophylls a and b dominates in May and August (austral winter). The third one in the South Pacific is characterized by high carotene concentration and its occurrence peaks in February and May. In the equatorial current system, one cluster, rich in chlorophylls b and c1+2, is strictly located in a narrow zone centred at the equator, while another with relatively high violaxanthin concentration is restricted to the high nutrient - low chlorophyll waters in only the southern part of the South Equatorial Current. One cluster with relatively high prasinoxanthin content has a spatial distribution spanning the entire South Equatorial Current. Two clusters have a ubiquitous distribution: one in the equatorial Pacific, the Carribbean Sea and the North Atlantic during summer has pigment concentrations close to the

  14. Peat Formation on Minjerribah (North Stradbroke Island), subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Moss, Patrick; Tibby, John; Barr, Cameron; Weerensena, Chagi; Gontz, Allen; Petherick, Lynda

    2016-04-01

    Minjerribah (North Stradbroke Island) is the second largest sand island in the world and contains extensive peat dominated wetlands, comprising ~20% of the total area of the island. These wetland systems include large areas of estuarine swamps [mainly mangrove forest (~16% of the island's wetland area)], freshwater swamps [both herb (~58% of the island's wetland area) and tree dominated (~20% of the island's wetland area)] and numerous lake systems [both perched and window lakes (~2% of the island's wetland area)]. This presentation will examine peat formation processes at four wetland sites: a late Holocene prograding beach system (Flinders Beach); a 150,000 year lacustrine system (Welsby Lagoon 1), as well as a late Holocene lacustrine/palustrine system (Welsby Lagoon 2); and a late Quaternary lacustrine/palustrine system (Tortoise Lagoon), as well as discussing broader environmental characteristics of Minjerribah's nationally and internationally important wetland systems.

  15. Communicating Volcanic Hazards in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  16. Along-isopycnal variability of spice in the North Pacific

    NASA Astrophysics Data System (ADS)

    Klymak, Jody M.; Crawford, William; Alford, Matthew H.; MacKinnon, Jennifer A.; Pinkel, Robert

    2015-03-01

    Two hydrographic surveys in the Gulf of Alaska and the North Pacific subtropical gyre are presented. Both surveys are roughly perpendicular to lateral temperature gradients, and were collected in the summer when there was a shallow mixed layer and a seasonal thermocline. Isopycnal displacements and horizontal velocities are dominated by internal waves. Spice anomalies along isopycnals are examined to diagnose lateral stirring mechanisms. The spectra of spice anomaly gradients along near-surface isopycnals roughly follow power laws of ˜kx0.6±0.2 (variance spectra power laws of ˜kx-1.4±0.2), and in most cases, the spectra become redder at depth. The near-surface spectra are possibly consistent with the predictions of quasi-geostrophic turbulence theory (when surface buoyancy effects are accounted for), but the spectra at depth are inconsistent with any quasi-geostrophic theory. Probability distributions of spice gradients exhibit a large peak at low gradients and long tails for large gradients, symptomatic of fronts. Vertical coherence of the spice signal falls off with a decorrelation depth scale that has a maximum of about 80 m at 100 km wavelengths and depends on horizontal wavelength with a power law of approximately kx-1/2. Lateral decorrelation length scales are 20-40 km, close to the baroclinic Rossby radius. Lateral stirring occurs over large scales, with average lateral displacements of about 200 km in the upper 75 m, decreasing to 100 km at greater depths. The depth variation of the statistics indicates that time history of tracer stirring on each isopycnal is important, or that there are unconsidered depth-dependent stirring mechanisms.

  17. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific

    NASA Astrophysics Data System (ADS)

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-02-01

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium (137Cs and 134Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October-November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived 134Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October-November 2012. This amount of 134Cs corresponds to 22-28% of the total amount of 134Cs released to the Pacific Ocean.

  18. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific.

    PubMed

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-01-01

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium ((137)Cs and (134)Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October-November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived (134)Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October-November 2012. This amount of (134)Cs corresponds to 22-28% of the total amount of (134)Cs released to the Pacific Ocean. PMID:26915424

  19. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific

    PubMed Central

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-01-01

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium (137Cs and 134Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October–November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived 134Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October–November 2012. This amount of 134Cs corresponds to 22–28% of the total amount of 134Cs released to the Pacific Ocean. PMID:26915424

  20. 75 FR 53951 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Council;s Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BS/AI) Groundfish Plan Teams will meet in... (GOA Plan Team) and Traynor Room (BS/AI Plan Team), Seattle, WA. Council address: North Pacific...

  1. 76 FR 71321 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... Anchorage Hilton Hotel. DATES: The Council will begin its plenary session at 8 a.m. on Wednesday, December 7... Hilton Hotel, 500 West Third Avenue, Anchorage, AK. Council address: North Pacific Fishery...

  2. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Yu, Jinhua; Li, Tim; Tan, Zhemin; Zhu, Zhiwei

    2016-02-01

    The tropical cyclone genesis number (TCGN) in July-October (JASO) over the western North Pacific (WNP) exhibits a robust interannual variation. It shows a longitudinally tri-pole pattern with a high in the eastern WNP and South China Sea (SCS) and a low in the western WNP, which explain 42.2 and 23.4 % of total TCGN variance in the eastern WNP and SCS, respectively. The high-low-high pattern is similar to that derived from a TC genesis potential index (GPI). To understand the cause of the longitudinal distribution of the dominant interannual mode, we examine the contributions of environmental parameters associated with GPI. It is found that relative humidity and relative vorticity are important factors responsible for TC variability in the SCS, while vertical shear and relative vorticity are crucial in determining TC activity in eastern WNP. A simultaneous correlation analysis shows that the WNP TCGN in JASO is significantly negatively correlated (with a correlation coefficient of -0.5) with sea surface temperature anomalies (SSTA) in the tropical North Atlantic (TNA). The longitudinal distribution of TC genesis frequency regressed onto TNA SSTA resembles that regressed upon the WNP TCGN series. The spatial patterns of regressed environmental variables onto the SSTA over the TNA also resemble those onto TCGN in the WNP, that is, an increase of relative humidity in the SCS and a weakening of vertical shear in the eastern WNP are all associated with cold SSTA in the TNA. Further analyses show that the cold SSTA in the TNA induce a negative heating in situ. In response to this negative heating, a low (upper)-level anomalous aniti-cyclonic (cyclonic) flows appear over the subtropical North Atlantic and eastern North Pacific, and to east of the cold SSTA, anomalous low-level westerlies appear in the tropical Indian Ocean. Given pronounced mean westerlies in northern Indian Ocean in boreal summer, the anomalous westerly flows increase local surface wind speed and surface

  3. Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja

    2015-12-01

    Intraseasonal monsoon prediction is the most imperative task, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): pre-Meiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. Here, we use stepwise regression to determine the predictors for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the sea surface temperature (SST)/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the El Niño Southern Oscillation (ENSO) and the ocean and land surface anomalous conditions. For the pre-Meiyu&Baiu mode, the SST cooling tendency over the western North Pacific (WNP), which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode is related to the WNP subtropical high, induced by the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.

  4. 76 FR 22081 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XA380 North Pacific Fishery Management Council... Fishery Management Council's (NPFMC) Crab Plan Team (CPT) will meet in Juneau, AK. DATES: The meeting will... Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252. FOR...

  5. NORTH PACIFIC SALMON MONITORING WORKSHOP I - SUMMARY REPORT

    EPA Science Inventory

    The intent of the first North Pacific Salmon Monitoring Workshop was to initiate development of an economically feasible monitoring strategy that could serve as a warning system for detecting changes in the status of Pacific Rim salmon. This is a summary of the workshop held Fe...

  6. Abyssal echinoid and asteroid fauna of the North Pacific

    NASA Astrophysics Data System (ADS)

    Mironov, A. N.; Minin, K. V.; Dilman, A. B.

    2015-01-01

    Echinoidea and Asteroidea collected in the Kuril-Kamchatka Trench area by the KuramBio Expedition were examined. Altogether 20 species belonging to 16 genera were found, among them six species and two genera were recorded in the North Pacific for the first time. Morphological variability of Abyssaster tara suggests that this species is congeneric with Styracaster transitivus and Styracaster paucispinus. Complete age series of the echinoid Echinosigra amphora and the asteroid Eremicaster crassus are described. The juveniles of E. amphora (>0.5 mm in length) are characterized by unique ophicephalous pedicellaria in the centre of aboral side of the test. The abyssal echinoid and asteroid fauna of the North Pacific (north of 30°N and deeper than 3000 m) comprises 62 species of 36 genera; 22 species (35%) and 3 genera are endemic to this region. Global distribution patterns of genera support the hypothesis that there were two stages of dispersal from the Antarctic to the North Pacific: at earlier stage the dispersal occurred via the East Pacific and at the later stage - via the West Pacific. The genera that had dispersed at earlier stage are represented only in the North and East Pacific and Antarctic. Distribution ranges of these genera in the East Pacific are limited to the narrow zone extending meridionally along the base of the American continental slope. Genera with such distribution pattern are likely adapted to highly eutrophic conditions.

  7. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact.

    PubMed

    Povinec, Pavel P; Hirose, Katsumi; Aoyama, Michio

    2012-09-18

    The impact of the Fukushima-derived radiostrontium ((90)Sr and (89)Sr) on the western North Pacific Ocean has not been well established, although (90)Sr concentrations recorded in surface seawater offshore of the damaged Fukushima Dai-ichi nuclear power plant were in some areas comparable to or even higher than (as those in December 2011 with 400 kBq m(-3)(90)Sr) the (137)Cs levels. The total amount of (90)Sr released to the marine environment in the form of highly radioactive wastewater could reach about 1 PBq. Long-term series (1960-2010) of (90)Sr concentration measurements in subtropical surface waters of the western North Pacific indicated that its concentration has been decreasing gradually with a half-life of 14 y. The pre-Fukushima (90)Sr levels in surface waters, including coastal waters near Fukushima, were estimated to be 1 Bq m(-3). To better assess the impact of about 4-5 orders of magnitude increased radiostrontium levels on the marine environment, more detail measurements in seawater and biota of the western North Pacific are required. PMID:22873743

  8. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre

    PubMed Central

    Ribalet, Francois; Swalwell, Jarred; Clayton, Sophie; Jiménez, Valeria; Sudek, Sebastian; Lin, Yajuan; Johnson, Zackary I.; Worden, Alexandra Z.; Armbrust, E. Virginia

    2015-01-01

    Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean. PMID:26080407

  9. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre.

    PubMed

    Ribalet, Francois; Swalwell, Jarred; Clayton, Sophie; Jiménez, Valeria; Sudek, Sebastian; Lin, Yajuan; Johnson, Zackary I; Worden, Alexandra Z; Armbrust, E Virginia

    2015-06-30

    Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean. PMID:26080407

  10. An interdecadal change in the relationship between January-March Arctic Oscillation and North Pacific Precipitation

    NASA Astrophysics Data System (ADS)

    Hu, Miao

    2014-05-01

    An analysis of variability in the relationships between the winter (January-March) Arctic Oscillation and precipitation over the Northern Pacific during the period of 1979 to 2011 is presented based on the monthly precipitation data (CMAP) and NCEP/NCAR Reanalysis, after subtracting ENSO signals from all datasets. The sliding correlation analysis demonstrates there is a prominent weakening in the AO-precipitation relation around the early 1990s. In the total 33 years a high (low) AO phase more likely accompanies with a stronger (weaker) precipitation in the subtropical Pacific, and the mainly significant correlation area ranges from 10°-30°N,150°E-190°W. During the year 1979 to 1989, the positive correlations over the tropical Pacific are significant and widely-ranged; however, the correlations weaken over the whole region and even negative over the central Pacific after the early 1990s. In addition, the Model BCCR-BCM2 is capable of simulating the correct overall AO-precipitation relation over North Pacific.

  11. Circum-North Pacific tectonostratigraphic terrane map

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Baranov, Boris B.; Byalobzhesky, Stanislav G.; Bundtzen, Thomas K.; Feeney, Tracey D.; Fujita, Kazuya; Gordey, Steven P.; Grantz, Arthur; Khanchuk, Alexander I.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W., Jr.; Plafker, George; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.; Wakita, Koji

    1994-01-01

    after accretion of most terranes in the region; (2) Cenozoic and Mesozoic basinal deposits that occur within a terrane or on the craton; (3) plutonic rocks. The postaccretion igneous units are identified by age-lithologic abbreviations and by name. These overlap assemblages and basinal deposits formed mainly during sedimentation and magmatism that occurred after accretion of terranes to each other or to a continental margin. Overlap assemblages provide minimum ages on the timing of accretion of terranes. Some Cenozoic and Mesozoic overlap assemblages and basinal deposits, as well as fragments of terranes, are extensively offset by movement along postaccretion faults. In addition, in onshore areas, the map depicts major preaccretion plutonic rocks that are limited to individual terranes. and in offshore areas. the map depicts major oceanic plates,-ocean floor magnetic lineations. oceanic spreading ridges, and seamounts. The map consists of five sheets. Sheets I and 2 depict, at a scale of I :5.000.000. the tectonostratigraphic terranes. preaccretion plutonic rocks, and postaccretion Cenozoic and Mesozoic overlap sedimentary, volcanic. and plutonic assemblages, and basinal deposits for the Circum- orth Pacific including the Russian Far East, northern Hokkaido Island of Japan, Alaska. the Canadian Cordillera, part of the U.S.A. Pacific Northwest. and adjacent offshore areas. Sheet 3 provides the list of map units for Sheets I and 2. Sheet 4 is a index map showing generalized onshore terranes and overlap assemblages for onshore parts of the Circum-North Pacific at a scale of I: I 0,000,000. Sheet 4 is a guide to the more complicated onshore features depicted on Sheets I and 2. Sheet 5 is an index map showing the major geographic regions for the Circum-North Pacific. Significant differences exist between the representation of onshore and offshore geology on Sheets I and 2. These are: (I) compared to the onshore part of the map, the offshore part is depicted in a more

  12. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping; Tseng, Yu-heng

    2015-04-01

    Previous studies suggest that North Pacific extratropical atmospheric variability influences ENSO via the seasonal footprinting mechanism (SFM). This study confirms that quadrapole sea surface temperature (SST) variability in the extratropical South Pacific triggered by mid-latitude South Pacific atmospheric variability may also have an additional influence on ENSO. The response of the evolution of the ENSO-related zonal wind and SST anomalies in the tropics to the South Pacific extratropical forcing is consistent with the SFM hypothesis. That is, the Pacific-South American (PSA) pattern of the South Pacific extratropical sea level pressure (SLP) anomalies imparts an SST footprint (i.e., a quadrapole SST pattern) onto the ocean during austral summer. This SST footprint subsequently forces the zonal wind anomalies along the equator in the following austral winter that ultimately result in ENSO events during the following austral summer via ocean-atmosphere coupling in the tropics. The present study demonstrates that the influences of extratropical atmospheric variability in the South Pacific and North Pacific on ENSO are different and relatively independent. It is possible that they may, together or separately, influence the occurrence of ENSO events, and the importance of the South Pacific forcing in initiating ENSO events is comparable with that of the North Pacific forcing. An empirical model was established to predict the Niño3.4 index based on the combined South Pacific and North Pacific signals, and results show that it can be used to produce skillful forecasts of the Niño3.4 index with a leading time of up to 1 year.

  13. Surface heat storage in the subtropical North Atlantic during the LGM

    NASA Astrophysics Data System (ADS)

    Repschlaeger, Janne; Weinelt, Mara; Garbe-Schönberg, Dieter; Andersen, Nils; Schneider, Ralph

    2016-04-01

    The transport of warm saline waters from the subtropical into the subpolar North Atlantic plays a major role in the stabilization of AMOC. During the Late Pleistocene this system experienced millennial scale variability with weak AMOC phases that are associated with heat and salt storage within the subtropics. The subsequent onset of AMOC is supposed to be fueled by the release and transport of the warm saline water into the northern hemisphere deepwater convection sites. Despite this conceptual model, contradicting reconstructions for such warm water storage exist for the Deglaciation to early Holocene and full glacial periods, either asserting a southward movement of the Subtropical gyre (STG) and subsurface heat storage or northward extension of the STG with warming of the surface waters. Here we investigate the heat and salt storage patterns and extension of the warm subtropical gyre (STG) during MIS 2 well into MIS 3 (16- 30 ka BP) at centennial scale resolution using sediment core MD08-3181 (38°N; 31.13°W, 3060 m w.d.) retrieved immediately east of the Mid Atlantic Ridge south of the Azores Islands with sedimentation rates up to 100 cm/ ka. At present, this site is located at the northern rim of the Azores Current, which delineates the STG, recirculating warm waters of the North Atlantic Current. Due to its position at the boundary between temperate Northeast Atlantic waters and warm STG waters, the coring site is ideal to trace past changes in the influence of both water masses. Parallel stable-oxygen isotope and Mg/Ca temperature records of surface-water dwelling foraminifera Globigerina bulloides (habitat depth 0-200 m) and subsurface dweller Globorotalia inflata (habitat depth 100-300 m) and foraminiferal transfer functions are used to reconstruct the temperature and salinity structure of the mixed layer. Additionally, the AF position is reconstructed using the abundance of the tropical to subtropical species Globigerinoides ruber white. Preliminary

  14. North Pacific climate variability and Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Linkin, Megan E.

    Boreal winter North Pacific climate variability strongly influences North American hydroclimate and Arctic sea ice distribution in the marginal Arctic seas. Two modes of atmospheric variability explaining 53% of the variance in the Pacific Ocean sea level pressure (SLP) field are extracted and identified: the Pacific-North American (PNA) teleconnection and the North Pacific Oscillation/West Pacific (NPO/WP) teleconnection. The NPO/WP, a dipole in North Pacific SLP and geopotential heights, is affiliated with latitudinal displacements of the Asian Pacific jet and an intensification of the Pacific stormtrack. The North American hydroclimate impacts of the NPO/WP are substantial; its impact on Alaska, Pacific Northwest and Great Plains precipitation is more influential than both the PNA and the El Nino-Southern Oscillation (ENSO). The NPO/WP is also strongly associated with a contemporaneous extension of the marginal ice zone (MIZ) in the western Bering Sea and Sea of Okhotsk and MIZ retreat in the eastern Bering Sea. Wintertime climate variability also significantly impacts the distribution of Arctic sea ice during the subsequent summer months, due to the hysteretic nature of the ice cap. The North Atlantic Oscillation (NAO) is known for its effects on summer sea ice distribution; this study extends into the Pacific and finds that circulation anomalies related to Pacific sea surface temperature (SST) variability also strongly impact summer Arctic sea ice. The NAO and ENSO are related to sea ice decline in the Eastern Siberian Sea, where the linear trend since 1979 is 25% per decade. PDV affects sea ice in the eastern Arctic, a region which displays no linear trend since 1979. The low frequency of PDV variability and the persistent positive NAO during the 1980s and 1990s results in natural variability being aliased into the total linear trend in summer sea ice calculated from satellite-based sea ice concentration. Since 1979, natural variability accounts for 30% of

  15. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    SciTech Connect

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  16. A reassessment of the integrated impact of tropical cyclones on surface chlorophyll in the western subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, L. Ruby

    2015-02-01

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998-2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally averaged (June-November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  17. Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Pastor, M. V.; Palter, J. B.; Pelegrí, J. L.; Dunne, J. P.

    2013-08-01

    Interannual chlorophyll variability and its driving mechanisms are evaluated in the eastern subtropical North Atlantic, where elevated surface chlorophyll concentrations regularly extend more than 1500 km into the central subtropical North Atlantic and modulate the areal extent of the North Atlantic's lowest chlorophyll waters. We first characterize the considerable interannual variability in the size of the high chlorophyll region using SeaWiFS satellite data. We then evaluate the relationship between satellite chlorophyll and sea surface height (SSH), which are anticorrelated in the study region, most likely as a result of the inverse relationship between SSH and nutricline depth. To put these results in a longer temporal context, we study a hindcast simulation of a global ocean model with biogeochemistry (GFDL's MOM4.1 with TOPAZ biogeochemistry), after evaluating the model's skill at simulating chlorophyll and SSH relative to observations. In the simulation, the variability seen during the satellite era appears to be imbedded in a much larger multidecadal modulation. The drivers of such variability are assessed by evaluating all the terms in the nutrient budget of the euphotic zone. Because diffusive processes are not a dominant control on nutrient supply, stratification is not a good indicator of nutrient supply. Rather, vertical advection of nutrients, strongly tied to Ekman pumping, is the leading driver of variability in the size of the high chlorophyll region and the productivity within the study area.

  18. The change features of the west boundary bifurcation line of the North Equatorial Current in the Pacific

    NASA Astrophysics Data System (ADS)

    Guo, Junru; Liu, Yulong; Song, Jun; Bao, Xianwen; Li, Yan; Chen, Shaoyang; Yang, Jinkun

    2015-12-01

    The equatorial Current in the North Pacific (NEC) is an upper layer westward ocean current, which flows to the west boundary of the ocean, east of the Philippines, and bifurcates into the northerly Kuroshio and the main body of the southerly Mindanao current. Thus, NEC is both the south branch of the Subtropical Circulation and the north branch of the Tropical Circulation. The junction of the two branches extends to the west boundary to connect the bifurcation points forming the bifurcation line. The position of the North Pacific Equatorial Current bifurcation line of the surface determines the exchange between and the distribution of subtropical and tropical circulations, thus affecting the local or global climate. A new identification method to track the line and the bifurcation channel was used in this study, focusing on the climatological characteristics of the western boundary of the North Equatorial Current bifurcation line. The long-term average NEC west boundary bifurcation line shifts northwards with depth. In terms of seasonal variation, the average position of the western boundary of the bifurcation line is southernmost in June and northernmost in December, while in terms of interannual variation, from spring to winter in the years when ENSO is developing, the position of the west boundary bifurcation line of NEC is relatively to the north (south) in EI Niño (La Niña) years as compared to normal years.

  19. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    PubMed

    Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu

    2013-01-01

    A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54-0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas. PMID:23460892

  20. Variability in the Correlation between Asian Dust Storms and Chlorophyll a Concentration from the North to Equatorial Pacific

    PubMed Central

    Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu

    2013-01-01

    A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas. PMID:23460892

  1. The Latitudinal and Vertical Thermal Distribution Change from the Last Glacial Maximum in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Sagawa, T.; Murayama, M.; Ikehara, M.; Okamura, K.; Oba, T.

    2008-12-01

    We conducted multi-species analysis of planktonic foraminiferal oxygen isotope and Mg/Ca in the tropical and subtropical western North Pacific sediment core in order to investigate latitudinal and vertical thermal structure change from the LGM. A box core 3cBX was collected from the west Caroline Basin (8 01 N, 139 38 E), and a piston core ASM5 was collected from the Amami Sea Mount (28 23 N, 132 45 E). Eight and seven species of planktonic foraminifera were picked from 3cBX and ASM5, respectively, in order to analyze oxygen isotope. In the tropics, the glacial-interglacial amplitude of G. ruber oxygen isotope was approximately 1.0 per mil between LGM and Holocene. On the other hand, the amplitude in the subtropics was approximately 1.5per mil. Because G. ruber prefers summer warmest temperature, the oxygen isotope difference suggested that the latitudinal summer surface temperature/salinity gradient in the last glacial period was steeper than that of modern. Multi-species approach reveals that the vertical thermal structure variations in the North Pacific. The vertical thermal gradient in the subtropic region was gentler in the LGM and steeper in the last deglaciation than modern condition. We will discuss about Mg/Ca temperature and salinity variation in the presentation.

  2. What Maintains the Central North Pacific Genetic Discontinuity in Pacific Herring?

    PubMed Central

    Liu, Ming; Lin, Longshan; Gao, Tianxiang; Yanagimoto, Takashi; Sakurai, Yasunori; Grant, W. Stewart

    2012-01-01

    Pacific herring show an abrupt genetic discontinuity in the central North Pacific that represents secondary contact between refuge populations previously isolated during Pleistocene glaciations. Paradoxically, high levels of gene flow produce genetic homogeneity among ocean-type populations within each group. Here, we surveyed variability in mtDNA control-region sequences (463 bp) and nine microsatellite loci in Pacific herring from sites across the North Pacific to further explore the nature of the genetic discontinuity around the Alaska Peninsula. Consistent with previous studies, little divergence (ΦST  = 0.011) was detected between ocean-type populations of Pacific herring in the North West Pacific, except for a population in the Yellow Sea (ΦST  = 0.065). A moderate reduction in genetic diversity for both mtDNA and microsatellites in the Yellow Sea likely reflects founder effects during the last colonization of this sea. Reciprocal monophyly between divergent mtDNA lineages (ΦST  = 0.391) across the Alaska Peninsula defines the discontinuity across the North Pacific. However, microsatellites did not show a strong break, as eastern Bering Sea (EBS) herring were more closely related to NE Pacific than to NW Pacific herring. This discordance between mtDNA and microsatellites may be due to microsatellite allelic convergence or to sex-biased dispersal across the secondary contact zone. The sharp discontinuity between Pacific herring populations may be maintained by high-density blocking, competitive exclusion or hybrid inferiority. PMID:23300525

  3. High-resolution migration history of the Subtropical High/Trade Wind system of the northeastern Pacific during the last ~55 years: Implications for glacial atmospheric reorganization

    NASA Astrophysics Data System (ADS)

    Cheshire, Heather; Thurow, Juergen

    2013-06-01

    Guaymas Basin, Gulf of California, is a restricted basin located under the present-day wet/dry subtropical divide (~27°N) and is ideally circumstanced for detecting variations in the North Pacific Subtropical High (NPSH)/Trade Wind system. Controlled by climate cell boundary displacement, NPSH midwinter location was the primary influence on timing and intensity of upwelling seasons in Guaymas Basin. Analysis of high-resolution X-ray fluoresence data and sediment fabric log from 75% laminated Core MD02-2517/2515, western Guaymas Basin, reveals systematic changes in NPSH behavior over the last ~55 kyr BP. Southward displacement of the wet/dry subtropical divide controlled upwelling-related diatom productivity, while sea level and regional rainfall controlled terrigenous supply. The basin was oxic during the glacial, and preservation was ensured by high burial rate due to the increased deposition of terrigenous sediment. Sediment fabric style (number and/or thickness of laminae, plus color banding and homogeneous intervals) changes systematically through the core and gives insights into the number of seasons occurring in Guaymas Basin, and the occurrence and intensity of the upwelling season. Five millennial-scale low flux events with close timing to Heinrich events and ten decadal/centennial-scale low biogenic silica events occurring in the interval ~33-16.5000 years Before Present (kyr BP) are interpreted as times of extreme aridity. At ~16.5 kyr BP, a regime shift from terrigenous-dominated oxic to evenly balanced biogenic-terrigenous dysoxic conditions occurred. Although there was a further extreme arid event at ~11.5 kyr BP, ~16.5 kyr BP was essentially the beginning of the interglacial.

  4. Late Tectonic history of Beaufort Sea - North Pacific area

    SciTech Connect

    McWhae, J.R.H.

    1985-02-01

    The Kaltag fault (and its northern associated splay, the Rapid fault array) is the sheared suture between the Eurasian-Alaskan plate and the North American plate in the area between the Mackenzie Delta and the Alaskan Border. This condition has been maintained throughout considerable additional phases of faulting and folding from mid-Cretaceous to the present. Previously, the Alaskan plate had been the northwestern nose of the North America plate. The interplate suture was deflected to the north as the Canadian Shield was approached. The Kaltag fault continued northeastward 2000 km seaward of the Sverdrup rim, northwest of the Canadian Arctic Island, and north of Greenland. The driving force was directed from the southwest by the Eurasian plate after its collision in Early Cretaceous (Hauterivian) with the North American plate and the docking of north-moving exotic terranes from the Pacific. During the early Tertiary, perhaps in concert with the accretion of the Okhotsk block to the Asian plate north of Japan, the northern Pacific subduction zone jumped southward to the Aleutian Arc where it has persisted until today. A distance of 800 km separates the stable shelf of the Canadian craton, at the Alberta Foothills thrust belt, from the subduction zone off Vancouver Island. The foreland thrust belt and the accretion of exotic terranes in Mesozoic and Tertiary times extended the continental crust of the North American plate westward to the present active transform margin with the Pacific plate along the Queen Charlotte fault zone.

  5. Legacy and contemporary persistent organic pollutants in North Pacific albatross.

    PubMed

    Harwani, Suhash; Henry, Robert W; Rhee, Alexandra; Kappes, Michelle A; Croll, Donald A; Petreas, Myrto; Park, June-Soo

    2011-11-01

    Here we report the first measurements of polybrominated diphenyl ethers (PBDE 47, 99, and 153) alongside 11 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in the plasma of albatross from breeding colonies distributed across a large spatial east-west gradient in the North Pacific Ocean. North Pacific albatross are wide-ranging, top-level consumers that forage in pelagic regions of the North Pacific Ocean, making them an ideal sentinel species for detection and distribution of marine contaminants. Our work on contaminant burdens in albatross tissue provides information on transport of persistent organic pollutants (POPs) to the remote North Pacific and serves as a proxy for regional environmental quality. We sampled black-footed (Phoebastria nigripes; n = 20) and Laysan albatross (P. immutabilis; n = 19) nesting on Tern Island, Hawaii, USA, and Laysan albatross (n = 16) nesting on Guadalupe Island, Mexico. Our results indicate that North Pacific albatross are highly exposed to both PCBs and OCPs, with levels ranging from 8.8 to 86.9 ng/ml wet weight and 7.4 to 162.3 ng/ml wet weight, respectively. A strong significant gradient exists between Laysan albatross breeding in the Eastern Pacific, having approximately 1.5-fold and 2.5-fold higher levels for PCBs and OCPs, respectively, compared to those from the Central Pacific. Interspecies levels of contaminants within the same breeding site also showed high variation, with Tern black-footed albatross having approximately threefold higher levels of both PCBs and OCPs than Tern Laysan albatross. Surprisingly, while PBDEs are known to travel long distances and bioaccumulate in wildlife of high trophic status, we detected these three PBDE congeners only at trace levels ranging from not detectable (ND) to 0.74 ng/ml wet weight in these albatross. PMID:21898564

  6. Different responses of Sea Surface Temperature in the North Pacific to greenhouse gas and aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Liyi; Liu, Qinyu

    2015-12-01

    The responses of Sea Surface Temperature (SST) to greenhouse gas (GHG) and anthropogenic aerosol in the North Pacific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). During 1860-2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension (KE) region during 1950-2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG (aerosol) forcing is to enhance (weaken) the Subtropical Gyre. Then the SST warming (cooling) lies on the zonal band of 40°N because of the increased (reduced) KE warm advection effect in the GHG (aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG (aerosol) forcing simulations, corresponding to warming (cooling) SST in the KE region, the weakened (enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the responses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.

  7. Late Neogene changes in diatom sedimentation in the North Pacific

    USGS Publications Warehouse

    Barron, J.A.

    1998-01-01

    During the late Neogene, North Pacific diatom sedimentation underwent major changes in response to high-latitude cooling and changes in surface and deep water circulation. At 9 Ma diatom mass accumulation rates (MARs) increased in the NW Pacific and off northeast Japan, possibly due to shoaling of the Isthmus of Panama, which lead to an enrichment of nutrients in North Pacific deep waters. During the latest Miocene, diatom MARs increased progressively off southern California (6.5 Ma), at high latitudes of the North Pacific (6.2 Ma), and off northeastern Japan (5.5 Ma), presumably in response to high latitude cooling. At about 4.5 Ma diatom sedimentation abruptly increased in the NW Pacific but declined off Japan and California, coincident with the onset of a prolonged period of high-latitude warmth. Enhanced upwelling of nutrient-rich deep waters in the NW Pacific probably stimulated diatom production there. A major step in high latitude cooling at 2.7 Ma caused a reversal of these mid Pliocene diatom sedimentation patterns. Upwelling of deep, nutrient-rich waters waned at higher latitudes, leading to a decline in diatom productivity; while wind-driven, coastal upwelling increased off southern California and stimulated diatom growth.

  8. The cycle of atmospheric cadmium in the remote North Pacific

    SciTech Connect

    Patterson, T.L.

    1989-01-01

    Bulk aerosol, cascade impactor, rain and seawater samples were specially collected for cadmium, lead, aluminum and sodium measurements during the spring season. The samples were collected during the SEAREX (Sea-Air Exchange) Program's North Pacific Westerlies Cruises and at the SEAREX Asian Dust Sampling network station on the island of Oahu, Hawaii. Aerosol samples were also collected at a third station located on the Pacific Coast of the Olympic Peninsula in the state of Washington. The data indicate that the most likely primary source of cadmium over the central North Pacific is pollutant aerosol produced in Asia that has been rapidly transported through the upper troposphere to the remote North Pacific boundary layer. The deposition rate of atmospheric cadmium was estimated using wet and dry deposition models coupled with cadmium concentration data. Based on these estimates, the net deposition of pollutant cadmium comprises between 90 and 100% of the gross flux, and wet deposition represents between 80 and 90% of the flux. The flux of cadmium from the atmosphere to the ocean during the spring is estimated to be an insignificant source of cadmium in the surface waters of the central North Pacific Ocean compared to the horizontal and vertical advection and diffusion of dissolved cadmium. The dissolvability of cadmium from aerosols into seawater was also measured as a part of this research. Based on the results of a limited number of replicate experiments, greater than approximately 90% of the cadmium in the bulk aerosol dissolves in seawater within six hours.

  9. Conservation of native Pacific trout diversity in western North America

    USGS Publications Warehouse

    Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.

  10. Simulation and Prediction of North Pacific Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lienert, Fabian

    The first part of this thesis is an assessment of the ability of global climate models to reproduce observed features of the leading Empirical Orthogonal Function (EOF) mode of North Pacific sea surface temperature (SST) anomalies known as the Pacific Decadal Oscillation (PDO). My results are that 1) the models as group produce a realistic pattern of the PDO. The simulated variance of the PDO index is overestimated by roughly 30%. 2) The tropical influence on North Pacific SSTs is biased systematically in these models. The simulated response to El Nino-Southern Oscillation (ENSO) forcing is delayed compared to the observed response. This tendency is consistent with model biases toward deeper oceanic mixed layers in winter and spring and weaker air-sea feedbacks in the winter half-year. Model biases in mixed layer depths and air-sea feedbacks are also associated with a model mean ENSO-related signal in the North Pacific whose amplitude is overestimated by roughly 30%. Finally, model power spectra of the PDO signal and its ENSO-forced component are "redder" than observed due to errors originating in the tropics and extratropics. 3) The models are quite successful at capturing the influence of both the tropical Pacific related and the extratropical part of the PDO on North American surface temperature. 4) The models capture some of the influence of the PDO on North American precipitation mainly due to its tropical Pacific related part. In the second part of this thesis, I investigate the ability of one such coupled ocean-atmosphere climate model, carefully initialized with observations, to dynamically predict the future evolution of the PDO on seasonal to decadal time scales. I find that 1) CHFP2 is successful at predicting the PDO at the seasonal time scale measured by mean-square skill score and correlation skill. Weather "noise" unpredictable at the seasonal time scale generated by substantial North Pacific storm track activity that coincides with a shallow oceanic

  11. Modeling the drift of massive icebergs to the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Condron, A.; Hill, J. C.

    2013-12-01

    New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are

  12. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.

    2015-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  13. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    NASA Astrophysics Data System (ADS)

    Svendsen, J. I.; Briner, J. P.; Mangerud, J.; Hughes, A. L. C.; Young, N. E.; Vasskog, K.

    2014-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  14. Albatross species demonstrate regional differences in North Pacific marine contamination

    USGS Publications Warehouse

    Finkelstein, M.; Keitt, B.S.; Croll, D.A.; Tershy, B.; Jarman, Walter M.; Rodriguez-Pastor, S.; Anderson, D.J.; Sievert, P.R.; Smith, D.R.

    2006-01-01

    Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Paci.c are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans. ?? 2006 by the Ecological Society of America.

  15. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    NASA Astrophysics Data System (ADS)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  16. Regional variations of heavy metal concentrations in tissues of barnacles from the subtropical Pacific Coast of Mexico

    SciTech Connect

    Paez-Osuna, F.; Bojorquez-Leyva, H.; Ruelas-Inzunza, J.

    1999-07-01

    Concentrations of Cd, Cu, Cr, Fe, Mn, Ni, Ag, Pb, and Zn in soft and hard tissues of barnacles from eight sampling sites in six harbors on the subtropical Pacific Coast of Mexico were determined by atomic absorption spectrophotometry. Some inter-regional differences in metal concentrations, especially concerning Zn, Mn, Fe, Cd, and Pb, were identified. The lowest concentrations of Cu, Cr, Fe, and Ag were observed in the barnacle populations from Ceuta Lagoon, an uncontaminated site with rural agriculture and semi-intensive shrimp farms in the surroundings. Conversely, the highest concentrations of: (1) Zn, Cu, and Ag were found in the soft tissues of Balanus eburneus from Mazatlan piers; (2) Pb, Ni, and Cd in the soft tissue of Megabalanus coccopoma from Puerto Vallarta; (3) Fe in the hard tissue of Balanus sp. from Guaymas Harbour; and (4) Mn in the hard tissue of M. coccopoma from Mazatlan Harbour. Inter-comparison of the present data indicates that the soft (mainly Cd, Cu, Pb, and Zn) and the hard (mainly for Fe and Mn) tissues are useful in detecting areas of selected metallic contaminants. Barnacles such as B. eburneus, M. coccopoma, and Fistulobalanus dentivarians appear to be convenient biomonitors for identification of coastal waters exposed to Cd, Pb, Cu, Zn, Ni, Mn, Fe, and Ag in the American region of the subtropical Pacific.

  17. 77 FR 51521 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Science Center, 7600 Sand Point Way NE., Building 4, National Marine Mammal Lab Room 2039 (GOA Plan Team) and Traynor Room 2076 (BS/AI Plan Team), Seattle, WA. Council address: North Pacific Fishery... interpretation or other auxiliary aids should be directed to Gail Bendixen, (907) 271-2809, at least 5...

  18. 75 FR 20566 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XV88 North Pacific Fishery Management Council... Management Council's Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI) groundfish plan teams will meet via teleconference May 6, 2010, 12:30 p.m. Alaska Standard Time (AST) to review proposals...

  19. 75 FR 35443 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XX01 North Pacific Fishery Management Council... Management Council's Scientific and Statistical Committee (SSC), and Groundfish Plan Team members will hold a workshop via Web-Ex, July 8, 2010, beginning at 12:30 p.m. Alaska Standard Time (AST) to review methods...

  20. 77 FR 53179 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... National Oceanic and Atmospheric Administration RIN 0648-XC195 North Pacific Fishery Management Council... Management Council's (NPFMC) Crab Plan Team (CPT) will meet in Seattle, WA. DATES: The meeting will be held... Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252. FOR FURTHER INFORMATION...

  1. 75 FR 23244 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ...; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: North Pacific Fishery Management... 305(c) of the Magnuson-Stevens Act, provided the public has been notified of the Council's intent...

  2. Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, Meghan F.; Pelland, Noel A.; Emerson, Steven R.; Crawford, William R.

    2015-11-01

    Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20 m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1 × 10-4 m2/s during summer, increasing to ˜3 × 10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivities are found based upon the mixed layer heat budget: ˜ 3 × 10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.

  3. Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, M. F.; Pelland, N.; Emerson, S. R.; Crawford, W. R.

    2015-12-01

    Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20-m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1×10-4 m2/s during summer, increasing to ~3×10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivity are found based upon the mixed layer heat budget: ~ 3×10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.

  4. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E

    2015-04-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  5. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.

    2015-01-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  6. Eolian dust input to the Subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Hayes, Christopher T.; McGee, David; Machalett, Björn; Ren, Haojia; Straub, Susanne M.; Gersonde, Rainer; Haug, Gerald H.

    2014-02-01

    Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ∼4 μm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of

  7. Abstracting the Pacific Ocean's Impact on North Atlantic Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Faghmous, J.; Le, M.; Liess, S.; Mesquita, M.; Kumar, V.

    2012-12-01

    The warming anomalies of sea surface temperatures (SSTs) along the near- equatorial Pacific Ocean (ENSO) have well documented global long-range weather teleconnections from rainfall in southern India to mudslides in the western United States. In this work, we focus on ENSO's teleconnections with North Atlantic tropical cyclone (TC) activity. Traditionally, ENSO's impact on Atlantic TCs has been abstracted by monitoring the warming of static regions along the equatorial Pacific Ocean. We propose that the spatial distribution of Pacific Ocean warming might provide better predictive insights into ENSO-Atlantic TC impact than warming anomalies alone. We present a distance-based ENSO index (S-ENSO for spatial ENSO) that tracks the location of the maximum near-tropical Pacific warming anomaly instead the absolute warming of a static region. Our spatial ENSO index correlates better with seasonal TC activity than standard ENSO indices, especially with increased lead times.

  8. Glider observations of the North Equatorial Current in the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Schönau, Martha C.; Rudnick, Daniel L.

    2015-05-01

    The North Equatorial Current (NEC) of the Pacific Ocean advects subtropical, subpolar, and tropical water masses. Repeat underwater glider observations of the NEC from June 2009 to January 2014 along 134.3°E provide absolute zonal geostrophic velocity, transport, and water mass structure at length scales of 10-1000 km. The NEC is strongest near the surface and persistent eastward undercurrents are identified deeper than potential density surface 26 kg m-3 at 9.6°N and 13.1°N. Mean transport from the surface to 27.3 kg m-3 and 8.5°N-16.5°N is 37.6 Sv (106 m3 s-1), with a standard deviation of 15.6 Sv. The transport variability is greatest deeper than 26 kg m-3 due to undercurrent variability. Wavelet analysis at scales of 10-80 km reveals extrema of fine-scale salinity variance along isopycnals (spice variance). High spice variance is found in the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW), with a spice variance minimum between water masses at 25.5 kg m-3. A horizontal Cox number, CH, relates salinity variance at fine scales (10-80 km) to that at greater length scales (120-200 km). As a function of density, CH is nearly vertically uniform, indicating that the stirring of mean salinity gradients enhances fine-scale salinity variance. NPTW, with an estimated horizontal eddy diffusivity of order 104 m s-2, is a useful tracer for the region and may be used to relate the fine-scale salinity variance to an eddy diffusivity.

  9. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2015-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean

  10. Microphysical properties of low clouds over the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maruyama, Takumi; Hayasaka, Tadahiro

    2012-11-01

    Low clouds are widespread over the North Pacific Ocean during summer. Past ship observations, which were carried out in the western region of the North Pacific Ocean, suggested that low clouds (stratus and fog) are likely to occur when sea surface temperature (SST) is lower than surface air temperature (SAT). In this study, we investigated the SST-SAT relationship and microphysical properties of low clouds for the first step of understanding the mechanism of cloud occurrence, maintenance and disappearance by using MODIS satellite observations, JAMSTEC ship observations and MERRA reanalysis data. We divided the North Pacific into four regions according to meteorological condition and made basic statistical analysis about cloud properties in each region by using monthly mean data for July 2011. The statistical analysis indicates that in the central region of the North Pacific where SST-SAT value is negative and the difference is the largest, cloud effective particle radius (re) is larger than those in other regions. We also used ship observation data and simultaneous satellite observation data to examine the relationship between SST-SAT and cloud microphysical properties in detail. This analysis indicates that re in the positive SST-SAT area is larger than that in the negative SSTSAT area. This feature is opposite to the monthly mean results. It suggests that other factors such as humidity and aerosols as well as SST-SAT have to be taken into account, although the SST-SAT relationship can be one of the important factors determining cloud microphysical properties in the summer North Pacific region.

  11. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow:...

  12. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow:...

  13. Climatic Variation in the Western Part of Subtropical North America during Late Last Glacial and Deglaciation: Some New Records and a Synthesis

    NASA Astrophysics Data System (ADS)

    Roy, P. D.; Quiroz-Jiménez, J. D.; Chávez Lara, C. M.; Sánchez Zavala, J. L.; Lozano-Santacruz, R.; Lopez-Balbiaux, N.

    2014-12-01

    Late Quaternary climate of western subtropical North America is related to the dynamics of summer as well as winter precipitation. During the last glacial maximum, it was hypothesized that the frequent winter storms provided more precipitation (COHMAP members, 1988) as the southern branch of the jet streams carried more moisture into the region (Kutzbach and Wright, 1985). However, the new global climate simulations do not provide indication of the jet stream split and some even suggest that the southern branch of the jet was weaker (Kim et al., 2008; Toracinta et al., 2004). In the last few years, the proxy records from the region have provided new information and suggested new hypothesis (Barron et al., 2012; Lyle et al., 2012; Roy et al., 2013). We present some new records of paleohydrological changes occurred over the late last glacial and deglaciation from the northwestern México. A compilation of all the important records from the region provides information about the geographic coverage of summer and winter precipitation. Minimal influence of summer as well as winter precipitation caused drier conditions over a large part of northern and northwestern Mexico (i.e. 29°-31°N) during the late last glacial (27-18 cal ka BP). Summer precipitation was restricted to the southern part of subtropical North America during >18 cal ka BP and it expanded to higher latitudes and covered different regions over the deglaciation (18-10 cal ka BP). We relate the different geographical coverage of summer precipitation to moisture flow sourced from the tropical and subtropical Pacific and Gulf of California during different intervals.

  14. Eolian inputs of lead to the North Pacific

    SciTech Connect

    Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M.

    2000-04-01

    The authors evaluate the importance of natural eolian Pb to the dissolved oceanic Pb budget by measuring the isotopic composition of Pb in 35 Holocene and late Quaternary sediment samples from the North Pacific and in 10 samples of Chinese loess. When the Pacific is divided into sediments provinces based on published {var_epsilon}{sub Nd} and sedimentological data, Pb from the central North Pacific tends to be the most radiogenic and homogeneous due to the dominance of eolian Chinese loess. Lead from the marginal North Pacific and the sparsely sampled regions south of 5{degree}N are less radiogenic and more variable owing to hemipelagic inputs from various volcanic arcs and older continental crust located around the Pacific Rim. {sup 208}Pb/{sup 204}Pb ratios provide the most distinctive provenance information due to the relatively high ratios in Chinese loess. The Chinese loess samples come from 3 localities and span up to 2 Myr of time. Acetic-acid leachate, bulk loess, and loess silicate fractions were analyzed separately. Leachate Pb is considerably less radiogenic than silicate Pb. The isotopic composition of the silicate component closely matches the sediment data from the central North Pacific, confirming the dominance of eolian loess in this region. The authors divided up a suite of published hydrogenous Pb-isotope data from the Pacific Ocean according to their locations within the three independently defined sediment provinces. These data define three distinct fields differentiated primarily by their {sup 206}Pb/{sup 204}Pb ratios, which increase going form the Central to Southern to Marginal provinces. This relationship with sediment province strongly suggests that natural eolian and probably hemipelagic inputs significantly impact the seawater Pb budget. Direct support for the dominance of eolian Chinese loess in the central North Pacific dissolved Pb budget comes from the close match between loess leachate Pb and the Central Province hydrogenous Pb data

  15. Subtropical iceberg scours: Tracking the path of meltwater in the deglacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Condron, A.

    2015-12-01

    Over 700 individual iceberg scours have been identified in seafloor bathymetry spanning the southern U.S. Atlantic margin, from Cape Hatteras, North Carolina to the Florida Keys, in water depths from 170-380m. These iceberg scours represent the plowing path of iceberg keels transported southward along the margin in a cold, coastal boundary current derived from the Laurentide Ice Sheet. Despite limited regional multibeam bathymetry data, the scours are traceable along the seafloor for >30 km and exhibit characteristic morphology of iceberg keel marks documented along glaciated continental margins. Many of the scours are flanked by lateral berms that are several meters high and often terminate in semi-circular pits ringed by several meter high ridges (i.e. grounding pits or iceberg plow ridges). The scours decrease in size and abundance moving southward, in accordance with increased iceberg melting farther from the ice calving margin. For example, the scours offshore of South Carolina (~32.5°N) are ~10-100m wide and incised 10-20m into the sediment, whereas scours off the Florida margin (31°N- 24.5°N) are narrower (10-50m wide) and incised 2-5m into the sea floor. Icebergs at these subtropical latitudes would likely have been comparable in size (up 300 m thick) to those calving from the modern-day Greenland Ice Sheet margin. Results from numerical simulations using MITgcm, a high-resolution, eddy-permitting, coupled ice-ocean model configured for the LGM suggest that cold, freshwater and small (≤90m thick) icebergs could have seasonally drifted to South Carolina, but iceberg transport to southern Florida requires much larger (5Sv) meltwater floods to overcome the northward flowing Gulf Stream. These meltwater flood events would most likely have been short-lived (<1 yr), but may have diverted a significant volume of freshwater away from the subpolar regions into the subtropical North Atlantic.

  16. Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Morgan-Smith, Danielle; Clouse, Melissa A.; Herndl, Gerhard J.; Bochdansky, Alexander B.

    2013-08-01

    Employing a combination of 4',6-diamidino-2-phenylindole and fluorescein isothiocyanate (DAPI-FITC) staining and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), we distinguished a variety of taxonomic and morphological types of eukaryotic microbes in the central and deep water masses of the tropical and subtropical North Atlantic Ocean. Samples were taken along a transect across the tropical Atlantic, along the equatorial upwelling and into the West-African upwelling region. Samples were collected as deep as 7000 m in the Romanche Fracture Zone within the Mid-Atlantic Ridge. Approximately 50-70% of FISH-identified eukaryotes in deep water masses belong to one of seven groups: kinetoplastids, labyrinthulomycetes, fungi, diplonemids, group II alveolates, MAST 4 (stramenopiles), and an unidentified organism with a peculiar nuclear morphology. A smaller percentage of total eukaryotes was identified in the Central Water, especially in the oxygen minimum zone, than in deep water masses. CARD-FISH probes designed to identify broad taxonomic groups revealed kinetoplastids and fungi were more abundant than noted in previous studies employing 18S rRNA gene clone libraries. Group II alveolates, in contrast, were much less prevalent than previously reported. On a second survey, eukaryotic microbes were enumerated in the deep-sea basins below the North Atlantic subtropical gyre including the Vema Fracture Zone, which is another prominent trench in the Mid-Atlantic Ridge. The abundance of eukaryotes and chlorophyll concentrations were significantly different between the two cruises, which covered very different hydrographic regimes with associated high and low levels of primary production, respectively.

  17. Persistent millennial-scale climate variability in the eastern tropical North Pacific over the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Arellano-Torres, Elsa; Ganeshram, Raja S.; Pichevin, Laetitia E.; Salas-de-Leon, David Alberto

    2015-06-01

    High-resolution sediment records from the eastern tropical North Pacific (ETNP) spanning the last ~240 ka B.P. were studied to document the nature of millennial-scale climatic events in the tropical Pacific and to investigate teleconnection mechanisms. We present organic carbon (%OC) and diffuse spectral reflectivity records as indicative of upwelling and productivity changes off NW Mexico over the middle to late Pleistocene. The new productivity records document the persistence of abrupt millennial-scale changes over the last two glacial cycles. Detailed spectral and wavelet time series analyses show the predominance of longer climatic cycles (2-6 ka) during the last and the penultimate glacial periods. The persistence of millennial variability during the penultimate glacial, in absence of large ice rafted debris events in the North Atlantic, suggests that freshwater input through ice sheet dynamics is not essential for millennial-scale climate variability. Given the worldwide emerging picture of remarkable similar millennial-scale records over long time periods, we suggest that the pacing of this climate variability may represent a natural resonance in the climate system, amplified by a tightly coupled oceanic and atmospheric teleconnection processes. We present a schematic scenario of millennial-scale climate change depicting the role of the tropical Pacific in this global teleconnection system by linking productivity and upwelling changes in the ETNP with shifts in the position of the Intertropical Convergence Zone and the strength of the subtropical North Pacific High.

  18. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean

    PubMed Central

    Shih, Yung-Yen; Hung, Chin-Chang; Gong, Gwo-Ching; Chung, Wan-Chen; Wang, Yu-Huai; Lee, I-Huan; Chen, Kuo-Shu; Ho, Chuang-Yi

    2015-01-01

    Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of warm eddy were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83–115 mg-C m−2 d−1) were also observed at the boundary of mesoscale eddies in the WNP. The enhanced POC flux at the edge of eddies was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale eddies in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the eddy edge is a crucial conduit in carbon sequestration to deep waters. PMID:26171611

  19. Detecting the progression of ocean acidification from the saturation state of CaCO3 in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Murata, Akihiko; Hayashi, Kazuhiko; Kumamoto, Yuichiro; Sasaki, Ken-ichi

    2015-04-01

    Progression of ocean acidification in the subtropical South Pacific was investigated by using high-quality data from trans-Pacific zonal section at 17°S (World Ocean Circulation Experiment section P21) collected in 1994 and 2009. During this 15 year period, the CaCO3 saturation state of seawater with respect to calcite (Ωcal) and aragonite (Ωarg) in the upper water column (<400 dbar) decreased at rates of 0.037 a-1 and 0.025 a-1, respectively, east of 145°W longitude; these rates are among the fastest in the world's oceans. In contrast, at longitudes 170°E-145°W, Ωcal and Ωarg decreased relatively slowly, at 0.008 a-1 and 0.005 a-1, respectively. The Ωarg saturation horizon occurred at a depth of about 1200 dbar at the westernmost end of the section and shoaled eastward to about 20 dbar. From 1994 to 2009, it migrated upward at a rate of 5.2 dbar a-1 west of 145°W. Decomposition of the temporal changes of Ω (ΔΩ) showed that the accumulation of anthropogenic CO2 in the ocean accounted for more than half of ΔΩ. The more rapid rate of decline of Ω in the eastern section was attributable to a relatively large contribution of organic matter remineralization, whereas the slower rate in the central section was attributed to a decrease of anthropogenic CO2 uptake caused by rising water temperatures. An important finding of this study was that acidification of the upper water column was enhanced by processes related to the oxygen minimum zone in the eastern subtropical South Pacific Ocean.

  20. Mapping the Origins of Chromophoric Dissolved Organic Matter in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    McDonald, N.; Logendran, V.; Evans, D. G.; Peters, A.; Nelson, N. B.

    2010-12-01

    The chromophoric or "light-absorbing" fraction of dissolved organic matter plays a significant role in the regulation of the underwater light field. In the North Atlantic subtropical gyre, it's origins vary, and include contributions from both terrestrial and marine sources. Furthermore, within the fraction of marine-origin CDOM, there are distinctions between that of local origin and that coming from other regions via transport through water masses or through atmospheric deposition. As the optical and chemical properties of CDOM depend largely on its source, an analysis of its origins could lead to a better understanding of processes in the North Atlantic subtropical gyre. For this analysis, we have used absorption data from CDOM measurements collected repeatedly for a number of years at the BATS site in the Sargasso Sea. Samples have been collected at the same series of depths ranging from surface waters to 4200 meters. The samples were analyzed using a dual beam spectrophotometer to obtain absorption spectra. The slope parameter, S, provides more in depth information about the source of CDOM than does the absorption spectra alone, and thus we have used it as well as the slope ratio, Sr, for differentiating between different types of CDOM. Slope ratios were obtained by selecting portions of the spectral slope at wavelength ranges, which have been found to be indicative of CDOM originating from a particular source. For example, it can be used to distinguish marine CDOM formed locally in the Sargasso Sea from that which has been formed further north in the Atlantic and then subducted and transported to the Sargasso. There are various other methods for ascertaining the sources of CDOM, and the most comprehensive model for CDOM in the North Atlantic is likely obtained using a combination of all of them. Excitation-emission matrix spectra (EEMS) have been performed on samples from the same site in the Sargasso Sea to corroborate findings from the S and Sr analyses

  1. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    USGS Publications Warehouse

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  2. Variation of the Tropical Upper-tropospheric Trough and Its Linkage to the Asian-Pacific-North American Summer Climate

    NASA Astrophysics Data System (ADS)

    Deng, Kaiqiang; Yang, Song

    2016-04-01

    The tropical upper-tropospheric trough (TUTT) is one of the most prominent features in Northern Hemisphere (NH) summer, which peaks at 200-150 hPa in July and August. It is found that the TUTT varies largely from year to year, which indicates that the TUTT may exert great effects on the NH summer climate. In order to explore the causes that lead to the interannual variations of the TUTT, an area-weighted empirical orthogonal function decomposition analysis was applied to. The first mode reflects the northeastward-southwestward displacement of the TUTT, which is significantly related to the planetary wave originating from the Indo-western Pacific during a developing La Niña. The second mode presents the intensity change of the TUTT, which is attributed to the enhanced convection over the central Pacific where the anomalous warming sea surface temperature is appearing. The third mode shows the northwestward-southeastward displacement of the TUTT, which is correlated well with the north-south direction shift of east Asian westerly jet. Anomalous warming over the midlatitudes and cooling over the subtropics suggests a decreased meridional temperature gradient, which results in the northward displacement of westerly jet. The variations of TUTT's location and strength have distinct effects on the variation of South Asian high, the northwestern Pacific subtropical high, and the Mexican high, which subsequently modulate the climate anomalies in different regions.

  3. Longitudinal variability of organic nutrients in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Landolfi, A.; Dietze, H.; Volpe, G.

    2016-05-01

    We combine modelled timescales of ocean circulation with satellite-retrieved and in situ biogeochemical observations collected in spring along 24.5°N in the subtropical North Atlantic. Longitudinal gradients in the distribution of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) and in other biogeochemical parameters are associated with the longitudinal variability in physical forcing and in the eastward increase of the timescale of advective transport. The western (West of 70°W) and eastern (East of 30°W) margins of the subtropical gyre appear influenced by the productive regions of the Gulf Stream and upwelling zones off Africa, respectively. Within the oligotrophic zone between 70 and 31°W, at approximately 46°W there is a change in the nutrient-controlling factors from the western ultraoligotrophic with barely any seasonal cycle to an eastern oligotrophic environment with a more intense mixed layer dynamics. The allochthonous supply of semilabile-DOP may be important in the western sector of the oligotrophic gyre (approx. 70-46°W) where, together with the combination of shallow mixed layers, almost permanent stratification and high water temperatures create a niche for the growth of diazotrophs, which we detect from space. Turnover estimates exceeding 3 yr suggest that even reactive fractions of DON are unlikely to be a significant N source. In the eastern sector of the oligotrophic gyre (46-31°W), transit timescales longer than 3 years suggest that the allochthonous supply of the semilabile DOP is negligible due to its exhaustion. Here, an intense mixed layer dynamics favours nutrient supply from below the mixed layer. We speculate that longitudinal variability in physical forcing and gradients in the timescale of advection, combined with distinct turnover timescales of reactive fractions of DON and DOP, drive diverse phytoplankton assemblages and surface nitrogen fixation gradients across our region of investigation.

  4. The biogeography of the North Pacific right whale ( Eubalaena japonica)

    NASA Astrophysics Data System (ADS)

    Gregr, Edward J.; Coyle, Kenneth O.

    2009-03-01

    The eastern North Pacific population of right whales ( Eubalaena japonica) is among the most endangered whale populations, with an estimated size of only 10s of individuals. The effectiveness of measures (e.g., protected areas, abundance surveys) intended to promote recovery of this population will be enhanced by understanding its distribution, habitat use, and habitat characteristics. In order to facilitate such understanding, we summarized relevant right whale biology, reviewed the life history of their zooplankton prey species, and related North Pacific oceanography to the production, distribution, and concentration of these prey at three scales of variability. We discuss how ocean processes may drive zooplankton distribution and concentration, and present hypotheses about how prey patches suitable for right whale foraging might be formed. Such hypotheses, combined with available distributional data and descriptions of the ocean environment, would be suitable for predicting potential right whale foraging habitat.

  5. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  6. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along

  7. Inter-comparison of deep convection over the Tibetan Plateau-Asian Monsoon Region and subtropical North America in boreal summer using CloudSat/CALIPSO data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2010-12-01

    Deep convection at the Tibetan Plateau-Southern Asian Monsoon Region (TP-SAMR) is analyzed using CloudSat and CALIPSO data for the boreal summer season (June-August) from 2006 to 2009. Three sub-regions - the Tibetan Plateau (TP), southern slope of the Plateau (PSS), and southern Asian monsoon region (SAMR) - are defined and deep convection properties are compared among these sub-regions. To cast them in a broader context, we also bring in four additional regions that bear some similarity to the TP-SAMR: East Asia (EA), tropical northwestern Pacific (NWP), west and east North America (WNA, ENA). The principal findings are as follows: 1) Compared to the other two sub-regions of the TP-SAMR, deep convection at the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection at the TP are closely related to the significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context where all seven regions are brought together, deep convection at the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. Similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo, and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed. Hence, the difference between TP and SAMR is more of a general contrast between subtropical land regions and tropical oceanic regions during the boreal summer. 3) Deep convection at the PSS possesses some uniqueness of its own because of the distinctive terrain (slopes) and moist low-level monsoon flow. 4) Results from comparison between the daytime and the

  8. Intercomparison of Deep Convection over the Tibetan Plateau-Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2012-04-01

    Deep convection in the Tibetan Plateau-southern Asian monsoon region (TP-SAMR) is analyzed using CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (June-August) from 2006 to 2009. Three subregions are defined—the TP, the southern slope of the plateau (PSS), and the SAMR—and deep convection properties (such as occurrence frequency, internal vertical structure, system size, and local environment) are compared among these subregions. To cast them in a broader context, four additional regions that bear some similarity to the TP-SAMR are also discussed: East Asia (EA), tropical northwestern Pacific (NWP), and western and eastern North America (WNA and ENA, respectively). The principal findings are as follows: 1) Compared to the other two subregions of the TP-SAMR, deep convection over the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection over the TP are closely related to the unique local environment, namely, a significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context in which all seven regions are brought together, deep convection in the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. A similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo (e.g., 0 and 10 dBZ), and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed.Hence, the difference between the TP and SAMRismore of a general contrast between subtropical land regions and tropical oceanic regions during the

  9. Seasonal Variations in Alkenone Concentration and Production in the Oligotrophic North Pacific

    NASA Astrophysics Data System (ADS)

    Popp, B.; Prahl, F.; Sparrow, M.; Rust, T.

    2003-04-01

    Since its introduction in 1986, the alkenone unsaturation index (UK37) has been used extensively by the paleoceanographic community to determine variations in past sea-surface temperature (SST). Despite this widespread use, however, surprisingly little is yet known about where and when the UK37 signal exported to sediments is produced in the euphotic zone. Independent lines of empirical evidence suggest subsurface production within the euphotic zone to be an important source of alkenone export in subtropical regions of the Pacific and perhaps other oligotrophic parts of the world ocean. In the present study, we examined evidence for subsurface alkenone production in the oligotrophic subtropical North Pacific gyre at the Hawaii Ocean Time-series station ALOHA (22o 45N, 158oW) in three different seasons. Highest alkenone production rates, as determined by uptake of 13C-labeled inorganic carbon into alkenones during 24-hour in situ incubations, and highest alkenone standing stocks were found within (Spring, Fall) or just below (Summer) the surface mixed layer. Lowest alkenone standing stocks and lowest production rates were found within the deep chlorophyll maximum (DCM). Measured UK37 values were converted into growth temperature (gT) estimates using a culture-based calibration equation (UK37 = 0.034 T + 0.039; Prahl et al., 1988) and compared with water temperatures actually measured by CTD at the depth of sample collection. In most cases, alkenone gT under-estimated actual water temperature by 2-3oC when alkenone production rates were high and over-estimated actual water temperature by 3-4oC when production rates were low. These results suggest a non-thermal, physiological control on alkenone unsaturation and indicate that light-limited alkenone production at the DCM in the oligotrophic North Pacific is quantitatively unimportant. The physiological mechanisms responsible for these observations and the implication of these results for improved confidence in UK37

  10. Venereal diseases in the islands of the North Pacific.

    PubMed Central

    Willcox, R R

    1980-01-01

    Apart from the Japanese islands, and those of Karabati (lately Gilbert Islands), which lie just north of the equator, the islands of the northern Pacific Ocean are either American owned or otherwise administered. Even the Japanese islands were controlled by the USA for varying numbers of years after the second world war. Venereal disease statistics from Guam, the Trust Territory of the Pacific Islands, and the Gilbert Islands have been collated by the South Pacific Commission and will be presented in a second paper. Those from the Hawaiian Islands (the fiftieth state of the USA) are published by the United States Public Health Service and include those from Honolulu, the capital. While the rates per 100 000 for both syphilis and gonorrhoea are lower than those for the USA as a whole, the trends since 1970 have been less satisfactory in the state of Hawaii than for the whole of the United States. While the disturbing increasing incidence of primary and secondary syphilis was checked in 1977, that of gonorrhoea has continued to rise. The number of cases of gonorrhoea also increased in Guam and the Trust Territory of the Pacific Islands but there has been a recent fall from earlier peak figures. The pattern of venereal disease in the most developed Pacific islands is thus gradually approaching what may be expected elsewhere in modern western society and it would seem logical to expect that this trend will continue. PMID:6893564