Science.gov

Sample records for sugarcane bagasse ash

  1. Post-processing, energy production use of sugarcane bagasse ash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse ash (SBA) is a multi-process by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 2.7 mt of bagasse each year. In ...

  2. Post-processing, energy production use of sugarcane bagasse ash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse ash (SBA) is a multi-processed by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 3 million tons of bagasse each...

  3. Sugarcane bagasse ash as a seedling growth media component

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014, the eleven sugarcane mills in Louisiana processed 153,783 ha and 11.6 million mt of milable sugarcane, producing 1.3 million mt of raw sugar, and an estimated 2.7 million mt bagasse. Louisiana sugarcane mills use a portion of the sugarcane bagasse for fuel producing over 20,411 mt of sugarc...

  4. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    PubMed

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. PMID:21733619

  5. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    PubMed

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. PMID:24463731

  6. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  7. Recycling of sugarcane bagasse ash waste in the production of clay bricks.

    PubMed

    Faria, K C P; Gurgel, R F; Holanda, J N F

    2012-06-30

    This work investigates the recycling of sugarcane bagasse ash waste as a method to provide raw material for clay brick bodies, through replacement of natural clay by up 20 wt.%. Initially, the waste sample was characterized by its chemical composition, X-ray diffraction, differential thermal analysis, particle size, morphology and pollution potential. Clay bricks pieces were prepared, and then tested, so as to determine their technological properties (e.g., linear shrinkage, water absorption, apparent density, and tensile strength). The sintered microstructure was evaluated by scanning electron microscopy (SEM). It was found that the sugarcane bagasse ash waste is mainly composed by crystalline silica particles. The test results indicate that the sugarcane bagasse ash waste could be used as a filler in clay bricks, thus enhancing the possibility of its reuse in a safe and sustainable way. PMID:22387325

  8. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  9. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.

    PubMed

    Sales, Almir; Lima, Sofia Araújo

    2010-06-01

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement. PMID:20163947

  10. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel.

    PubMed

    Teixeira, S R; Pena, A F V; Miguel, A G

    2010-05-01

    Brazil is the largest worldwide producer of alcohol and sugar from sugar-cane and has an extensive alternative program for car fuel which is unique. The objective of this work is to offer one management option of a solid residue produced by this industrial segment. The pressed sugar-cane bagasse is burned to produce steam and electricity by cogeneration. The combustion yields both bottom and fly ashes which contain high amounts of silicon oxide as a major component. Fly ash which contains a high volume (>30% by weight) of charcoal was used in this work. The ash was sieved to separate the thick charcoal from inorganic materials which are concentrated in the thinner fraction. The briquettes were hand pressed using charcoal mixed with a binder (starch) obtained from cassava flour (a tropical root). The results (density, mechanical resistance) obtained with 8% by weight of starch binder are presented here. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to characterize the ashes and the briquettes. The results show that sugar-cane bagasse fly ash (SCBFA) can be used to produce briquettes with an average density of 1.12gcm(-3) and an average calorific value of 25,551kJ/kg. PMID:20133118

  11. Char from sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unused sugarcane bagasse represents an underutilized resource in sugarcane growing regions of the world. This is a renewable resource that can be used in a thermochemical process to create chars, which could be incorporated back into agricultural activities. The practice is likely to improve soil ...

  12. Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, Pitchai Kasinatha

    2016-06-01

    The study investigated the potential of lime in the manufacture of stabilized soil blocks and the valorisation of a solid waste, Bagasse Ash (BA), in its manufacture. A locally available soil was collected from a field and characterized in the soil laboratory as a clay of intermediate plasticity. This soil was stabilized using lime, the quantity of which was determined from the Eades and Grim pH test. The soil was stabilized using this lime content, amended with various BA contents during mixing, and moulded into blocks of 19 cm x 9 cm x 9 cm. The blocks were then moist cured for a period of 28 days, following which they were subjected to compressive strength, water absorption and efflorescence tests. The results of the tests revealed that the addition of BA resulted in enhanced compressive strength of the blocks, increased the water absorption marginally, and resulted in no efflorescence in any of the combinations, although the limited combinations in the study could not produce enough strength to meet the specifications of the Bureau of Indian Standards. The study revealed that BA can be effectively valorised in the manufacture of stabilized soil blocks.

  13. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  14. Bagasse production from high fibre sugarcane hybrids

    SciTech Connect

    Giamalva, M.J.; Clarke, S.; Bischoff, K.

    1981-08-01

    Since 1975, 90% of the sugarcane bagasse produced by the Louisiana sugar industry is now used as a fuel for raw sugar production. Two sugarcane hybrid varieties which are too low in sucrose to be acceptable as commercial sugarcane varieties were tested for their biomass yield. Yields of over 100 tons of total biomass were obtained, resulting in over 30 tons of dry matter per acre per year, using conventional practices. This material could be grown on sub-optimal land in sufficient quantities to meet part of the needs of the sugarcane by-product industries who have been deprived of their source of bagasse.

  15. Biochar from anaerobically digested sugarcane bagasse.

    PubMed

    Inyang, Mandu; Gao, Bin; Pullammanappallil, Pratap; Ding, Wenchuan; Zimmerman, Andrew R

    2010-11-01

    This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes. PMID:20634061

  16. Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse is a potential source for commercially-viable products such as animal feed, mulch, or fuel. The applications will be determined by the levels of moisture, ash and beneficial chemicals in the bagasse. Manufacturing value-added products will be impacted by microbes, and may require m...

  17. Low tech use of post-harvest/processed sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted in 2015 to investigate the use of sugarcane bagasse as a natural mulch for vegetable production. Louisiana processed 11.6 million mt of sugarcane in 2014, producing 1.36 million mt of raw sugar and an estimated 2.7 million mt of bagasse. Bagasse is the fibrous material remaini...

  18. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  19. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    PubMed

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion. PMID:19000863

  20. Fed-batch cultivation of Cellulomonas on sugarcane bagasse pith

    SciTech Connect

    Rodriguez, H.; Enriquez, A.

    1985-02-01

    A high biomass concentration (19.9 g/L) was obtained with the fed-batch cultivation of Cellulomonas on pretreated sugarcane bagasse pith. Similar results in biomass concentration, yield, and substrate consumption were obtained with the discontinuous feed of bagasse as with discontinuous feed supplemented with a partial continuous addition of salts. Two or more growth phases were detected, probably caused by the differential utilization of bagasse components. An acceptably low content of bagasse components remained in the biomass after separation.

  1. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study.

    PubMed

    Shah, Bhavna; Mistry, Chirag; Shah, Ajay

    2013-04-01

    Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)-an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer-Emmett-Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions. PMID:22739768

  2. An experimental electrical generating unit using sugarcane bagasse as fuel

    SciTech Connect

    Elkoury, J.M.

    1980-12-01

    The purpose of this paper is to present the alternatives that exist within the Puerto Rico Electric Power Authority to develop an experimental electrical generating unit which would use sugarcane bagasse as fuel. The study includes a comparison between the sugarcane bagasse and other fuels, the location of an experimental electrical generating unit with respect to the sugarcane fields, the transportation of the bagasse and the generating equipment available for this project in terms of its fisical condition. This latter part would include any modifications in the equipment which we would have to undertake in order to carry out the study.

  3. Low tech use of post-harvest, processed sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted in 2015 to investigate the use of sugarcane bagasse as a natural mulch for vegetable production. Louisiana processed 12.8 million tons (11.6 million mt) of sugarcane in 2014, producing 1.5 million tons (1.36 million mt) of raw sugar and an estimated 3 million tons (2.7 million...

  4. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    PubMed

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse. PMID:23334836

  5. Ozone decay on stainless steel and sugarcane bagasse surfaces

    NASA Astrophysics Data System (ADS)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  6. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    PubMed

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs. PMID:27115746

  7. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    PubMed Central

    2011-01-01

    Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol. PMID:22008461

  8. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained

  9. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). PMID:26210150

  10. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.

    PubMed

    Zhao, Yi; Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2015-10-15

    Sugarcane bagasse contains natural compositions that can significantly inhibit food-borne pathogens growth. In the present study, the phenolic content in sugarcane bagasse was detected as higher than 4 mg/g dry bagasse, with 470 mg quercetin/g polyphenol. The sugarcane bagasse extract showed bacteriostatic activity against the growth of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salomonella typhimurium. Additionally, the sugarcane bagasse extract can increase the electric conductivity of bacterial cell suspensions causing cellular leaking of electrolytes. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis suggested the antibacterial mechanism was probably due to the damaged cellular proteins by sugarcane bagasse extract. The results of scanning electron microscopy and transmission electron microscopy showed that the sugarcane bagasse extract might change cell morphology and internal structure. PMID:25952848

  11. Dilute-acid pretreated sugarcane bagasse with fungal treatment and fermentable by Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recovering fermentable sugars from sugarcane bagasse requires a pretreatment followed by enzymatic saccharification. During pretreatment inhibitory compounds are often formed that impede fermenting microorganisms. Biological detoxification has been identified as a potential method to prepare biomass...

  12. Catalytic pyrolysis of sugarcane bagasse by using microwave heating.

    PubMed

    Kuan, Wen-Hui; Huang, Yu-Fong; Chang, Chi-Cheng; Lo, Shang-Lien

    2013-10-01

    The aim of this study was to research the catalytic effects on the microwave pyrolysis of sugarcane bagasse and thus to discuss the reaction performance, product distribution, and kinetic analysis. With the addition of metal-oxides served as catalysts, reaction results such as mass reduction ratio and reaction rate increased, even the maximum temperature decreased. Adding either NiO or CaO slightly increased the production of H2, while adding either CuO or MgO slightly decreased it. The addition of either CaO or MgO enhanced the gaseous production, and either NiO or CuO addition enhanced the liquid production. There could be several secondary reactions such as self-gasification and interactions among the gases originally produced during the pyrolysis stage to alter the composition of gaseous product and the final three-phase product distribution. The catalyst addition slightly increased the activation energy but greatly increased the pre-exponential factor. PMID:23948270

  13. Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis.

    PubMed

    Braga, Cleiton Márcio Pinto; Delabona, Priscila da Silva; Lima, Deise Juliana da Silva; Paixão, Douglas Antônio Alvaredo; Pradella, José Geraldo da Cruz; Farinas, Cristiane Sanchez

    2014-10-01

    Accessory enzymes that assist biomass degradation could be used to improve the recovery of fermentable sugar for use in biorefineries. In this study, different fungal strains isolated from the Amazon rainforest were evaluated in terms of their ability to produce feruloyl esterase (FAE) and xylanase enzymes, and an assessment was made of the contributions of the enzymes in the hydrolysis of pretreated sugarcane bagasse. In the selection step, screening using plate assays was followed by shake flask submerged cultivations. After carbon source selection and cultivation in a stirred-tank bioreactor, Aspergillusoryzae P21C3 proved to be a promising strain for production of the enzymes. Supplementation of a commercial enzyme preparation with 30% (v/v) crude enzymatic complex from A. oryzae P21C3 increased the conversion of cellulose derived from pretreated sugarcane bagasse by 36%. Supplementation with FAE and xylanase enzymes produced on-site can therefore be used to improve the hydrolysis of sugarcane bagasse. PMID:25151076

  14. The surface reactivity and implied toxicity of ash produced from sugarcane burning.

    PubMed

    Le Blond, Jennifer S; Tomatis, Maura; Horwell, Claire J; Dunster, Christina; Murphy, Fiona; Corazzari, Ingrid; Grendene, Francesca; Turci, Francesco; Gazzano, Elena; Ghigo, Dario; Williamson, Ben J; Oppenheimer, Clive; Fubini, Bice

    2014-05-01

    Sugarcane combustion generates fine-grained particulate that has the potential to be a respiratory health hazard because of its grain size and composition. In particular, conversion of amorphous silica to crystalline forms during burning may provide a source of toxic particles. In this study, we investigate and evaluate the toxicity of sugarcane ash and bagasse ash formed from commercial sugarcane burning. Experiments to determine the main physicochemical properties of the particles, known to modulate biological responses, were combined with cellular toxicity assays to gain insight into the potential reactions that could occur at the particle-lung interface following inhalation. The specific surface area of the particles ranged from ∼16 to 90 m(2) g(-1) . The samples did not generate hydroxyl- or carbon-centered radicals in cell-free tests. However, all samples were able to 'scavenge' an external source of hydroxyl radicals, which may be indicative of defects on the particle surfaces that may interfere with cellular processes. The bioavailable iron on the particle surfaces was low (2-3 μmol m(-2) ), indicating a low propensity for iron-catalyzed radical generation. The sample surfaces were all hydrophilic and slightly acidic, which may be due to the presence of oxygenated (functional) groups. The ability to cause oxidative stress and membrane rupture in red blood cells (hemolysis) was found to be low, indicating that the samples are not toxic by the mechanisms tested. Cytotoxicity of sugarcane ash was observed, by measuring lactate dehydrogenase release, after incubation of relatively high concentrations of ash with murine alveolar macrophage cells. All samples induced nitrogen oxide release (although only at very high concentrations) and reactive oxygen species generation (although the bagasse samples were less potent than the sugarcane ash). However, the samples induced significantly lower cytotoxic effects and nitrogen oxide generation when compared with the

  15. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse.

    PubMed

    Griffin, G J

    2011-09-01

    Experiments were conducted by thermal gravimetric analysis (TGA) and cone calorimetry to measure the affect of three fire retardants (ammonium sulphate, boric acid and borax) on the mass-loss rate and combustion characteristics of sugar-cane bagasse. Compared with untreated bagasse, bagasse impregnated with aqueous solutions of 0.1-0.5M fire retardants exhibited an increase in char mass production from 16% up to 41% when pyrolysed and up to a 41% reduction in total heat release (THR) during combustion. Char mass production was only a weak function of additive concentration over the range of concentrations (0.1-0.5M) used. Combining the additives did not show any synergistic effects for char production or heat release rate (HRR). Treatment of bagasse by these chemicals could be useful to enhance biochar yields in pyrolysis processes or to reduce flammability risk in composites containing bagasse. PMID:21680181

  16. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. PMID:22019267

  17. Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse was characterized as a feedstock for production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160-200 deg C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohy...

  18. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support.

    PubMed

    Chen, Pengcheng; Tao, Shengtao; Zheng, Pu

    2016-07-01

    Here we reported an endeavor in making full use of sugarcane bagasse for biological production of succinic acid. Through NaOH pre-treatment and multi-enzyme hydrolysis, a reducing sugar solution mainly composed of glucose and xylose was obtained from the sugarcane bagasse. By optimizing portions of cellulase, xylanase, β-glucanase and pectinase in the multi-enzyme "cocktail", the hydrolysis percentage of the total cellulose in pre-treated sugarcane bagasse can be as high as 88.5%. A. succinogenes CCTCC M2012036 was used for converting reducing sugars into succinic acid in a 3-L bioreactor with a sugar-fed strategy to prevent cell growth limitation. Importantly, cells were found to be adaptive on the sugarcane bagasse residue, offering possibilities of repeated batch fermentation and replacement for MgCO3 with soluble NaHCO3 in pH modulation. Three cycles of fermentation without activity loss were realized with the average succinic acid yield and productivity to be 80.5% and 1.65g·L(-1)·h(-1). PMID:27035471

  19. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L-arabinose, D-xylose, oat spelt xylan, sugarcane bagasse, or...

  20. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis.

    PubMed

    de Almeida, Maíra Nicolau; Guimarães, Valéria Monteze; Bischoff, Kenneth M; Falkoski, Daniel Luciano; Pereira, Olinto Liparini; Gonçalves, Dayelle S P O; de Rezende, Sebastião Tavares

    2011-09-01

    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L -arabinose, D -xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using D -xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose. PMID:21573756

  1. Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse.

    PubMed

    Wallace, Joshua; Brienzo, Michel; García-Aparicio, María P; Görgens, Johann F

    2016-05-25

    The enzymatic hydrolysis (EH) rate normally decreases during the hydrolysis, leaving unhydrolyzed material as residue. This phenomenon occurs during the hydrolysis of both cellulose (avicel) and lignocellulosic material, in nature or even pretreated. The progression of EH of steam pretreated sugarcane bagasse was associated with an initial (fast), intermediate (slower) and recalcitrant (slowest) phases, at glucan to glucose conversion yields of 61.7, 81.6 and 86%, respectively. Even though the EH of avicel as a simpler material than steam pretreated sugarcane bagasse, EH slowdown was present. The less thermo-stable endo-xylanase lost 58% of initial enzyme activity, followed by β-glucosidase that lost 16%, culminating in FPase activity loss of 30% in the first 24hours. After 72hours of EH the total loss of FPase activity was 40% compared to the initial activity. Analysis of the solid residue from EH showed that lignin content, phenolic compounds and ash increased while glucan decreased as hydrolysis progressed. During the initial fast phase of EH, the total solid residue surface area consisted predominantly of internal surface area. Thereafter, in the intermediate and recalcitrant phases of EH, the ratio of external:internal surface area increased. The proposed fiber damage and decrease in internal surface area, probably by EH action, was visualized by scanning electron microscopy imagery. The higher lignin/glucan ratio as EH progressed and enzyme deactivation by thermo instability were the main effects observed, respectively to substrate and enzyme. PMID:26820122

  2. Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification

    SciTech Connect

    Morjanoff, P.J.; Gray, P.P.

    1987-04-01

    The technique of autohydrolysis steam explosion was examined as a means for pretreatment of sugarcane bagasse. Treatment conditions were optimized so that following enzymatic hydrolysis, pretreated bagasse would give 65.1 g sugars/100 g starting bagasse. Released sugars comprised 38.9 g glucose, 0.6 g cellobiose, 22.1 g xylose, and 3.5 g arabinose, and were equivalent to 83% of the anhydroglucan and 84% of the anhydroxylan content of untreated bagasse. Optimum conditions were treatment for 30 s with saturated steam at 220/sup 0/C with a water-to-solids ratio of 2 and the addition of 1 g H/sub 2/SO/sub 4//100 g dry bagasse. Bagasse treated in this manner was not inhibitory to fermentation by Saccharomyces uvarum except at low inoculum levels when fermentation time was extended by up to 24 h. Pretreated saccharified bagasse was inhibitory to Pachysolen tannophilus and this was attributed to the formation of acetate from the hydrolysis of acetyl groups present in the hemicullulose. The major advantage of the pretreatment is the achievement of high total sugar yield with moderate enzyme requirement and only minor losses due to sugar decomposition.

  3. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    NASA Astrophysics Data System (ADS)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  4. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  5. Improvement of hydrolysis and fermentation of sugarcane bagasse by soaking in aqueous ammonia and methanolic ammonia.

    PubMed

    Hedayatkhah, Abolghasem; Motamedi, Hossein; Najafzadeh Varzi, Hossein; Ghezelbash, Gholamreza; Amopour Bahnamiry, Mostafa; Karimi, Keikhosro

    2013-01-01

    Sugarcane bagasse was pretreated by soaking it in aqueous ammonia (SAA) and methanolic aqueous ammonia (SMAA) at 70 °C for 12 h. Then the pretreated as well as untreated bagasse was subjected to enzymatic hydrolysis at 50 °C for 72 h by 15 FPU cellulase and 30 CBU cellobiase per g of substrate. The hydrolysis of SAA-pretreated bagasse with a solid to liquid (S:L) ratio of 1:10 resulted in 95.9% of the maximum theoretical yield. The production yield for SMAA at an S:L ratio of 1:6 with 15% methanol was 88.6%, while it was only 21.3% for the untreated bagasse. Ethanol production by simultaneous saccharification and fermentation was conducted at 37 °C for 72 h. The results revealed that the ethanol production yield was improved from 12.7% for the untreated bagasse to 92.45% and 90.8% for the SAA and the SMAA pretreated bagasse, respectively. The compositional and chemical structural analysis suggested that lignin removal and crystallinity reduction were responsible for the hydrolysis and SSF improvements. PMID:23832329

  6. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.

    PubMed

    Chen, Wei-Hsin; Ye, Song-Ching; Sheen, Herng-Kuang

    2012-08-01

    Hydrothermal carbonization of sugarcane bagasse using wet torrefaction is studied. The biomass is torrefied in water or dilute sulfuric acid solution and microwaves are employed to heat the solutions where the reaction temperature is fixed at 180 °C. The effects of acid concentration, heating time and solid-to-liquid ratio on the performance of wet torrefaction are investigated. It is found that the addition of sulfuric acid and increasing heating time are conducive to carbonizing bagasse. The calorific value of bagasse can be increased up to 20.3% from wet torrefaction. With the same improvement in calorific value, the temperature of wet torrefaction is lower than that of dry torrefaction around 100 °C, revealing that wet torrefaction is a promising method to upgrade biomass as fuel. The calorific value of torrefied biomass can be predicted well based on proximate, elemental or fiber analysis, and the last one gives the best estimation. PMID:22705524

  7. Potential of sugarcane bagasse (agro-industrial waste) for the production of Bacillus thuringiensis israelensis.

    PubMed

    Poopathi, S; Mani, C; Rajeswari, G

    2013-09-01

    Sugarcane bagasse is a renewable resource that can be used to produce biopesticide for the control of mosquito vectors. In the present study, we demonstrated that cane processed bagasse could be used to produce Bacillus thuringiensis serovar israelensis (Bti) for control of mosquito vectors viz: Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Biochemical studies indicated that the Bti spore/crystal toxins produced from the test culture medium (Bagasse, BG + Soybean, SB) are higher than that from the conventional medium (Nutrient Yeast Extract Salt Medium, NYSM). The bacteria produced in these media (NYSM, BG, SB, BG+SB) were bioassayed against the mosquito species and the toxic effect was found to be effective. Cost-effective analysis indicates that the use of BG and SB, as bacterial culture medium, is successful and economical, for production of this mosquito pathogenic bacillus. PMID:24189680

  8. Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of moisture in the ozonation process.

    PubMed

    Souza-Corrêa, J A; Oliveira, C; Wolf, L D; Nascimento, V M; Rocha, G J M; Amorim, J

    2013-09-01

    Sugarcane bagasse samples were pretreated with ozone via atmospheric O2 pressure plasma. A delignification efficiency of approximately 80 % was observed within 6 h of treatment. Some hemicelluloses were removed, and the cellulose was not affected by ozonolysis. The quantity of moisture in the bagasse had a large influence on delignification and saccharification after ozonation pretreatment of the bagasse, where 50 % moisture content was found to be best for delignification (65 % of the cellulose was converted into glucose). Optical absorption spectroscopy was applied to determine ozone concentrations in real time. The ozone consumption as a function of the delignification process revealed two main reaction phases, as the ozone molecules cleave the strong carbon-carbon bonds of aromatic rings more slowly than the weak carbon-carbon bonds of aliphatic chains. PMID:23817790

  9. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw.

    PubMed

    Mahmood-ul-Hassan, M; Suthar, V; Rafique, E; Ahmad, R; Yasin, M

    2015-07-01

    In this study, cadmium (Cd), chromium (Cr), and lead (Pb) adsorption potential of unmodified and modified sugarcane bagasse and ground wheat straw was explored from aqueous solution through batch equilibrium technique. Both the materials were chemically modified by treating with sodium hydroxide (NaOH) alone and in combination with nitric acid (HNO3) and sulfuric acid (H2SO4). Two kinetic models, pseudo-first order and pseudo-second order were used to follow the adsorption process and reaction fallowed the later model. The Pb removal by both the materials was highest and followed by Cr and Cd. The chemical treatment invariably increased the adsorption capacity and NaOH treatment proved more effective than others. Langmuir maximum sorption capacity (q m) of Pb was utmost (12.8-23.3 mg/g of sugarcane bagasse, 14.5-22.4 mg/g of wheat straw) and of Cd was least (1.5-2.2 mg/g of sugarcane bagasse, 2.5-3.8 mg/g of wheat straw). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. Results demonstrate that agricultural waste materials used in this study could be used to remediate the heavy metal-polluted water. PMID:26116198

  10. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  11. Construction of individual, fused, and co-expressed proteins of endoglucanase and β-glucosidase for hydrolyzing sugarcane bagasse.

    PubMed

    Kurniasih, Sari Dewi; Alfi, Almasul; Natalia, Dessy; Radjasa, Ocky Karna; Nurachman, Zeily

    2014-01-01

    At least a combination of endoglucanase (EglII) and β-glucosidase (BglZ) is required for hydrolyzing crystalline cellulose. To understand the catalytic efficiency of combination enzymes for converting biomass to sugars, EglII and BglZ were constructed in the form of individual, fused as well as co-expression proteins, and their activities for hydrolyzing sugarcane bagasse were evaluated. The genes, eglII isolated from Bacillus amyloliquefaciens PSM3.1 earlier and bglZ from B. amyloliquefaciens ABBD, were expressed extracellularly in Bacillus megaterium MS941. EglII exhibited both exoglucanase and endoglucanase activities, and BglZ belonging to the glycoside hydrolase 1 family (GH 1) showed β-glucosidase activity. A combination of EglII and BglZ showed activity on substrates Avicel, CMC and sugarcane bagasse. Specifically for hydrolyzing sugarcane bagasse, fused protein (fus-EglII+BglZ), co-expression protein (coex-BglZ+EglII), and mixed-individual protein (mix-EglII+BglZ) produced cellobiose as the main product, along with a small amount of glucose. The amount of reducing sugars released from the hydrolyzing bleached sugarcane bagasse (BSB) using fus-EglII+BglZ and mix-EglII+BglZ was 2.7- and 4.2-fold higher, respectively, than steamed sugarcane bagasse (SSB), indicating the synergetic enzymes worked better on treated sugarcane bagasse. Compared with fus-EglII+BglZ and mix-EglII+BglZ, coex-BglZ+EglII released more mol reducing sugars from SSB, indicating the enzymes were potential for biomass conversion. Additionally, coex-BglZ+EglII acted on BSB 2.5-fold faster than fus-EglII+BglZ. Thus, coex-bglZ+eglII expression system was the best choice to produce enzymes for hydrolyzing sugarcane baggase. PMID:24598011

  12. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

    PubMed Central

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials. PMID:25763056

  13. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    PubMed Central

    2011-01-01

    Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that the activity against commercial substrates, such as carboxymethylcellulose, does not always correspond to the activity against the natural lignocellulosic material. Besides that, the macroscopic characteristics of the raw material, such as insolubility and heterogeneity, hinder its use for high throughput screenings. Results In this paper, we present the preparation of a colloidal suspension of particles obtained from sugarcane bagasse, with minimal chemical change in the lignocellulosic material, and demonstrate its use for high throughput assays of hydrolases using Brazilian termites as the screened organisms. Conclusions Important differences between the use of the natural substrate and commercial cellulase substrates, such as carboxymethylcellulose or crystalline cellulose, were observed. This suggests that wood feeding termites, in contrast to litter feeding termites, might not be the best source for enzymes that degrade sugarcane biomass. PMID:22081987

  14. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    PubMed

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield. PMID:26572403

  15. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  16. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as

  17. Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup

    SciTech Connect

    Saska, M.; Ozer, E.

    1995-03-20

    At the optimum level of severity, the aqueous extraction of sugarcane bagasse, an abundant agricultural residue, gave, depending on the degree of comminution, 60% to 89% yield of xylose, most of it in the form of a water soluble xylan. A process for producing xylose-rich syrups was conceived and tested, consisting of aqueous extraction, acid hydrolysis of the concentrated aqueous extract, centrifugal clarification of the hydrolysate, and recovery of the acid by continuous ion exclusion. The cost estimate indicates operating costs on the order of $0.12 to $0.15/kg xylose, in the form of xylose-rich molasses.

  18. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents. PMID:22629620

  19. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura.

    PubMed

    Benoliel, Bruno; Torres, Fernando Araripe Gonçalves; de Moraes, Lidia Maria Pepe

    2013-01-01

    Brazil is a major producer of agro-industrial residues, such as sugarcane bagasse, which could be used as raw material for microbial production of cellulases as an important strategy for the development of sustainable processes of second generation ethanol production. For this purpose, this work aimed at screening for glycosyl hydrolase activities of fungal strains isolated from the Brazilian Cerrado. Among 13 isolates, a Trichoderma harzianum strain (L04) was identified as a promising candidate for cellulase production when cultured on in natura sugarcane bagasse. Strain L04 revealed a well-balanced cellulolytic complex, presenting fast kinetic production of endoglucanases, exoglucanases and β-glucosidases, achieving 4,022, U.L(-1) (72 h), 1,228 U.L(-1) (120 h) and 1,968 U.L(-1) (48 h) as the highest activities, respectively. About 60% glucose yields were obtained from sugarcane bagasse after 18 hours hydrolysis. This new strain represents a potential candidate for on-site enzyme production using sugarcane bagasse as carbon source. PMID:24349958

  20. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi. PMID:24078146

  1. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH.

    PubMed

    Bi, Shuaizhu; Peng, Lincai; Chen, Keli; Zhu, Zhengliang

    2016-08-01

    Sugarcane bagasse pretreated by combining O2 and NaOH with different variables was conducted to improve its enzymatic digestibility and sugar recovery, and the results were compared with sole NaOH pretreatment. Lignin removal for O2-NaOH pretreatment was around 10% higher than that for sole NaOH pretreatment under the same conditions, and O2-NaOH pretreatment resulted in higher glucan recovery in the solid remain. Subsequently, O2-NaOH pretreated sugarcane bagasse presented more efficient enzymatic digestibility than sole NaOH pretreatment. Under the moderate pretreatment conditions of combining 1% NaOH and 0.5MPa O2 at 80°C for 120min, a high glucan conversion of 95% was achieved after 48h enzymatic hydrolysis. Coupled with the operations of pretreatment and enzymatic hydrolysis, an admirable total sugar recovery of 89% (glucose recovery of 93% and xylose recovery of 84%) was obtained. The susceptibility of the substrates to enzymatic digestibility was explained by their physical and chemical characteristics. PMID:27208740

  2. Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal

    SciTech Connect

    Bonelli, P.R.; Buonomo, E.L.; Cukierman, A.L.

    2007-07-01

    Physicochemical properties of the charcoal arising from pyrolysis of sugarcane bagasse at 600{sup o}C and 800{sup o}C were determined to evaluate potentialities for specific end uses. The charcoals were found fairly adequate as solid bio-fuels. Their quality was comparable to charcoals obtained from some other agro-industrial by-products, reportedly proposed as substitutes of wood-based ones. Surface properties of the charcoal generated at the higher temperature indicated that it is reasonably suited for potential use as low-cost rough adsorbent, soil amender, and/or for further upgrading to activated carbon. Moreover, kinetic measurements for pyrolysis of the sugarcane bagasse individually and mixed with an Argentinean subbituminous coal in equal proportions were conducted by thermogravimetry for the range 25 -900{sup o}C. Data modeling accounting for variations in the activation energy with process evolution provided a proper description of pyrolysis and co-pyrolysis over the entire temperature range.

  3. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    NASA Astrophysics Data System (ADS)

    Hussain, Ali; Qazi, Javed Iqbal

    2016-06-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.

  4. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    NASA Astrophysics Data System (ADS)

    Hussain, Ali; Qazi, Javed Iqbal

    2014-09-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.

  5. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw.

    PubMed

    Moretti, Marcia Maria de Souza; Perrone, Olavo Micali; Nunes, Christiane da Costa Carreira; Taboga, Sebastião; Boscolo, Maurício; da Silva, Roberto; Gomes, Eleni

    2016-11-01

    The present work aimed to study the effect of the pretreatment of sugarcane bagasse and straw with microwave irradiation in aqueous and acid glycerol solutions on their chemical composition, fiber structure and the efficiency of subsequent enzymatic hydrolysis. Thermogravimetric analysis showed that the pretreatment acted mainly on the lignin and hemicellulose fractions of the bagasse, whereas, in the straw, lesser structural and chemical changes were observed. The images from transmission electron microscopy (TEM) revealed that treating bagasse and straw with acid glycerol solution loosened the cell walls and there was a breakdown in the pit membrane. The treated material was submitted to hydrolysis for 72h and higher yields of reducing sugars were observed compared to the untreated material (250.9mg/g from straw and 197.4mg/g from bagasse). TEM images after hydrolysis confirmed the possible points of access of the enzymes to the secondary cell wall region of the pretreated biomass. PMID:27578061

  6. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.

    PubMed

    Machado, Daniele Longo; Moreira Neto, João; da Cruz Pradella, José Geraldo; Bonomi, Antonio; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-01-01

    Although adsorption is an essential step in the enzymatic hydrolysis of lignocellulosic materials, literature reports controversial results in relation to the adsorption of the cellulolitic enzymes on different biomasses/pretreatments, which makes difficult the description of this phenomenon in hydrolysis mathematical models. In this work, the adsorption of these enzymes on Avicel and sugarcane bagasse pretreated by the hydrothermal bagasse (HB) and organosolv bagasse (OB) methods was evaluated. The results have shown no significant adsorption of β-glucosidase on Avicel or HB. Increasing solids concentration from 5% (w/v) to 10% (w/v) had no impact on the adsorption of cellulase on the different biomasses if stirring rates were high enough (>100 rpm for Avicel and >150 rpm for HB and OB). Adsorption equilibrium time was low for Avicel (10 Min) when compared with the lignocellulosic materials (120 Min). Adsorption isotherms determined at 4 and 50 °C have shown that for Avicel there was a decrease in the maximum adsorption capacity (Emax) with the temperature increase, whereas for HB increasing temperature increased Emax . Also, Emax increased with the content of lignin in the material. Adsorption studies of cellulase on lignin left after enzymatic digestion of HB show lower but significant adsorption capacity (Emax = 11.92 ± 0.76 mg/g). PMID:25322902

  7. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    PubMed

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes. PMID:20156678

  8. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible?

    PubMed Central

    2013-01-01

    Background Sugarcane is the most efficient crop for production of (1G) ethanol. Additionally, sugarcane bagasse can be used to produce (2G) ethanol. However, the manufacture of 2G ethanol in large scale is not a consolidated process yet. Thus, a detailed economic analysis, based on consistent simulations of the process, is worthwhile. Moreover, both ethanol and electric energy markets have been extremely volatile in Brazil, which suggests that a flexible biorefinery, able to switch between 2G ethanol and electric energy production, could be an option to absorb fluctuations in relative prices. Simulations of three cases were run using the software EMSO: production of 1G ethanol + electric energy, of 1G + 2G ethanol and a flexible biorefinery. Bagasse for 2G ethanol was pretreated with a weak acid solution, followed by enzymatic hydrolysis, while 50% of sugarcane trash (mostly leaves) was used as surplus fuel. Results With maximum diversion of bagasse to 2G ethanol (74% of the total), an increase of 25.8% in ethanol production (reaching 115.2 L/tonne of sugarcane) was achieved. An increase of 21.1% in the current ethanol price would be enough to make all three biorefineries economically viable (11.5% for the 1G + 2G dedicated biorefinery). For 2012 prices, the flexible biorefinery presented a lower Internal Rate of Return (IRR) than the 1G + 2G dedicated biorefinery. The impact of electric energy prices (auction and spot market) and of enzyme costs on the IRR was not as significant as it would be expected. Conclusions For current market prices in Brazil, not even production of 1G bioethanol is economically feasible. However, the 1G + 2G dedicated biorefinery is closer to feasibility than the conventional 1G + electric energy industrial plant. Besides, the IRR of the 1G + 2G biorefinery is more sensitive with respect to the price of ethanol, and an increase of 11.5% in this value would be enough to achieve feasibility. The ability of the flexible biorefinery to take

  9. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    PubMed

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards. PMID:26093343

  10. Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries.

    PubMed

    Terán Hilares, Ruly; Dos Santos, Júlio César; Ahmed, Muhammad Ajaz; Jeon, Seok Hwan; da Silva, Silvio Silvério; Han, Jong-In

    2016-08-01

    Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass. PMID:27183237

  11. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501.

    PubMed

    Chandel, Anuj Kumar; Kapoor, Rajeev Kumar; Singh, Ajay; Kuhad, Ramesh Chander

    2007-07-01

    Sugarcane bagasse hydrolysis with 2.5% (v/v) HCl yielded 30.29g/L total reducing sugars along with various fermentation inhibitors such as furans, phenolics and acetic acid. The acid hydrolysate when treated with anion exchange resin brought about maximum reduction in furans (63.4%) and total phenolics (75.8%). Treatment of hydrolysate with activated charcoal caused 38.7% and 57.5% reduction in furans and total phenolics, respectively. Laccase reduced total phenolics (77.5%) without affecting furans and acetic acid content in the hydrolysate. Fermentation of these hydrolysates with Candida shehatae NCIM 3501 showed maximum ethanol yield (0.48g/g) from ion exchange treated hydrolysate, followed by activated charcoal (0.42g/g), laccase (0.37g/g), overliming (0.30g/g) and neutralized hydrolysate (0.22g/g). PMID:17011776

  12. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  13. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse.

    PubMed

    Slavutsky, Aníbal M; Bertuzzi, María A

    2014-09-22

    Water transport in edible films based on hydrophilic materials such as starch, is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure. Cellulose nanocrystals (CNC) were obtained from sugarcane bagasse. Starch and starch/CNC films were formulated and their water barrier properties were studied. The measured film solubility, contact angle, and water sorption isotherm indicated that reinforced starch/CNC films have a lower affinity to water molecules than starch films. The effects that the driving force and the water activity (aw) values at each side of the film have on permeability were analyzed. Permeability, diffusivity, and solubility coefficients indicated that the permeation process depends mostly on the tortuous pathway formed by the incorporation of CNC and therefore were mainly controlled by water diffusion. The interaction between CNC and starch chain is favoured by the chemical similarities of both molecules. PMID:24906728

  14. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach.

    PubMed

    Velmurugan, Rajendran; Muthukumar, Karuppan

    2011-07-01

    In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB. PMID:21570831

  15. Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures.

    PubMed

    Li, Zhili; Ge, Yuanyuan

    2012-12-01

    Lignin was extracted from sugarcane bagasse via different chemical procedures with ethanol and alkaline solutions. The products (EL, AL) were characterized by UV, FT-IR, (13)C NMR, TGA, GPC and potentiometric titration. The results indicated AL had more phenolic hydroxyl (PhOH) and methoxyl groups (OCH(3)), and larger molecular mass and better thermal stability than EL. The lignins were further evaluated as potential antioxidants. The results demonstrated the radical scavenging activity (RSA) of AL was 79.0%, 91.3% higher than EL at the concentration of 300 mg L(-1). The stronger antioxidant activity of AL was due to its higher quantities of PhOH and OCH(3) groups. PMID:22982809

  16. Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture.

    PubMed

    Luo, Shihe; Chen, Siyu; Chen, Shuixia; Zhuang, Linzhou; Ma, Nianfang; Xu, Teng; Li, Qihan; Hou, Xunan

    2016-03-01

    A low-cost solid amine adsorbent for CO2 capture was prepared by using sugarcane bagasse (SB), a dominant agro-industrial residue in the sugar and alcohol industry as raw materials. In this preparation process, acrylamide was grafted on SB, and the grafted fiber was then aminated with different type of amine reagents to introduce primary and secondary amine groups onto the surface of SB fibers. The graft and amination conditions were optimized. The prepared solid amine adsorbent showed remarkable CO2 adsorption capacity and the adsorption capacity of the solid amine adsorbent could reach 5.01 mmol CO2/g at room temperature. The comparison of adsorption capacities of amine fibers aminated with various amination agents demonstrated that fibers aminated with triethylenetetramine would obtain higher adsorption capacities and higher amine efficiency. These adsorbents also showed good regeneration performance, the regenerated adsorbent could maintain almost the same adsorption capacity for CO2 after 10 recycles. PMID:26706226

  17. Clean energy from sugarcane waste: feasibility study of an innovative application of bagasse and barbojo

    NASA Astrophysics Data System (ADS)

    Dellepiane, Daniela; Bosio, Barbara; Arato, Elisabetta

    Due to the existing difficulty of finding energy sources and reducing pollution, the use of renewable sources and highly efficient technologies for electrical energy production stands out as one of the promising solutions for the future. This paper shows the results of the combination of these two aspects, namely, a molten carbonate fuel cell system fed with biomass derived syngas. In particular, the biogas comes from bagasse and barbojo, the sugarcane residues. So far in developing countries they have been wasted or partly used with poorly efficient technology. The feasibility of such an application is studied by means of the process simulator Aspen Plus © in which a detailed Fortran model has been integrated for the electrochemical reactor simulation. The results of the predictive model are presented and discussed; in particular, the substantial economic and environmental advantages obtainable by applying the technical solution here proposed to the Peruvian energy scenario, are shown.

  18. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.

    PubMed

    Jafari, Omid; Zilouei, Hamid

    2016-08-01

    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis. PMID:27208737

  19. Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1,3-dimethylimadazolium dimethyl phosphate.

    PubMed

    Bahrani, Samaneh; Raeissi, Sona; Sarshar, Mohammad

    2015-06-01

    In this study, an imidazolium-based ionic liquid (IL), 1,3-dimethylimidazolium dimethyl phosphate ([Mmim][DMP]), was applied for pretreating sugarcane bagasse to produce bioethanol. The main goal of this study was to investigate the feasibility of bagasse pretreatment with this IL, and to verify the effect of different operational parameters on the pretreatment process. Results indicated that temperature and duration of IL-pretreatment have optimum values. Within the range investigated, a maximum fermentable sugar conversion of 70.38% was achieved with this IL at 120°C and 120min. The corresponding value was 28.65% for the untreated biomass. The main cause for the observed enhancement in enzymatic hydrolysis was the reduction of cellulose crystallinity in the IL-pretreated biomass, as compared to the untreated sample, because it resulted in higher accessibility of the enzymes to the biomass after pretreatment. Moreover, the results indicated that aqueous [Mmim][DMP] mixtures are not as effective for pretreatment as the pure IL. PMID:25804532

  20. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170.

    PubMed

    Nieves, I U; Geddes, C C; Mullinnix, M T; Hoffman, R W; Tong, Z; Castro, E; Shanmugam, K T; Ingram, L O

    2011-07-01

    Microaeration (injecting air into the headspace) improved the fermentation of hemicellulose hydrolysates obtained from the phosphoric acid pretreatment of sugarcane bagasse at 170°C for 10 min. In addition, with 10% slurries of phosphoric acid pretreated bagasse (180°C, 10 min), air injection into the headspace promoted xylose utilization and increased ethanol yields from 0.16 to 0.20 g ethanol/g bagasse dry weight using a liquefaction plus simultaneous saccharification and co-fermentation process (L+SScF). This process was scaled up to 80 L using slurries of acid pretreated bagasse (96 h incubation; 0.6L of air/min into the headspace) with ethanol yields of 312-347 L (82-92 gal) per tone (dry matter), corresponding to 0.25 and 0.27 g/g bagasse (dry weight). Injection of small amounts of air into the headspace may provide a convenient alternative to subsurface sparging that avoids problems of foaming, sparger hygiene, flotation of particulates, and phase separation. PMID:21531547

  1. Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: Enzymatic and structural analysis.

    PubMed

    Kumar, Madan; Singhal, Anjali; Thakur, Indu Shekhar

    2016-03-01

    Pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB was evaluated under submerged (SmF) and solid state (SSF) culture conditions. Number of bacteria was 2.7 times higher in SmF as compared with SSF. Enzymes produced under SmF were xylanase, LiP, MnP and laccase. In SSF xylanase and laccase were detected. CMCase, FPase and β-glucosidase were not detected. Delignification was highest in SmF with 19.94% and 10.43% removal of hemicelluloses and lignin, respectively. FTIR analysis suggested the degradation of lignin/hemicellulose component. SEM analysis showed pores were three times bigger in SmF as compared with raw bagasse. Maximum CR dye was absorbed by treated SmF bagasse. Enzymatic saccharification increased by 3.7 times after SmF treatment in comparison to raw bagasse. Pretreatment of bagasse by Pandoraea sp. ISTKB was more efficient under SmF than SSF. High negative correlation between saccharification vs lignin/hemicelluloses content justified the need for pretreatment of lignocellulosic waste before saccharification. PMID:26720135

  2. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil.

    PubMed

    Lara, Carla A; Santos, Renata O; Cadete, Raquel M; Ferreira, Carla; Marques, Susana; Gírio, Francisco; Oliveira, Evelyn S; Rosa, Carlos A; Fonseca, César

    2014-06-01

    In this study, yeasts associated with lignocellulosic materials in Brazil, including decaying wood and sugarcane bagasse, were isolated, and their ability to produce xylanolytic enzymes was investigated. A total of 358 yeast isolates were obtained, with 198 strains isolated from decaying wood and 160 strains isolated from decaying sugarcane bagasse samples. Seventy-five isolates possessed xylanase activity in solid medium and were identified as belonging to nine species: Candida intermedia, C. tropicalis, Meyerozyma guilliermondii, Scheffersomyces shehatae, Sugiyamaella smithiae, Cryptococcus diffluens, Cr. heveanensis, Cr. laurentii and Trichosporon mycotoxinivorans. Twenty-one isolates were further screened for total xylanase activity in liquid medium with xylan, and five xylanolytic yeasts were selected for further characterization, which included quantitative analysis of growth in xylan and xylose and xylanase and β-D-xylosidase activities. The yeasts showing the highest growth rate and cell density in xylan, Cr. laurentii UFMG-HB-48, Su. smithiae UFMG-HM-80.1 and Sc. shehatae UFMG-HM-9.1a, were, simultaneously, those exhibiting higher xylanase activity. Xylan induced the highest level of (extracellular) xylanase activity in Cr. laurentii UFMG-HB-48 and the highest level of (intracellular, extracellular and membrane-associated) β-D-xylosidase activity in Su. smithiae UFMG-HM-80.1. Also, significant β-D-xylosidase levels were detected in xylan-induced cultures of Cr. laurentii UFMG-HB-48 and Sc. shehatae UFMG-HM-9.1a, mainly in extracellular and intracellular spaces, respectively. Under xylose induction, Cr. laurentii UFMG-HB-48 showed the highest intracellular β-D-xylosidase activity among all the yeast tested. C. tropicalis UFMG-HB 93a showed its higher (intracellular) β-D-xylosidase activity under xylose induction and higher at 30 °C than at 50 °C. This study revealed different xylanolytic abilities and strategies in yeasts to metabolise xylan and

  3. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved

  4. Fixed-Bed Adsorption Study of Metal Ions on Bagasse Fly Ash (BFA)

    NASA Astrophysics Data System (ADS)

    Purnomo, Chandra Wahyu; Prasetya, Agus

    2008-05-01

    Bagasse fly ash (BFA) has become a prospective low cost adsorbent preference for remediating wastewater containing many types of contaminant from organic compounds to toxic metal ions. The abundant availability and its unique characteristics such as large surface area and mesoporous pore size become the major reasons for utilizing BFA as adsorbents. In this paper, the continuous adsorption of Cr(VI), Cu(II) and Ni(II) into fixed bed column of bagasse fly ash (BFA) at room temperature were conducted. The experimental data are represented by breakthrough curves. Fundamental constants which govern the rate of adsorption, such as effective diffusivity of metal ions, have estimated by fitting the data with a breakthrough curve model. The effective diffusivity can be used to predict breakthrough curves in any other adsorption conditions. Meanwhile, the intensive material characterizations have been conducted before the adsorption experiments which successfully reveal the material uniqueness.

  5. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment.

    PubMed

    Gonçalves, Suely Patrícia C; Strauss, Mathias; Delite, Fabrício S; Clemente, Zaira; Castro, Vera L; Martinez, Diego Stéfani T

    2016-09-15

    Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5nm, and surface area between 1200 and 1400m(2)g(-1) that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35nm (0.81wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag(0) (93.60wt.%) and ionic/Ag(+) states (6.40wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94mgL(-1)), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles. PMID:27039274

  6. Evaluation of Pb (II) biosorption utilizing sugarcane bagasse colonized by Basidiomycetes.

    PubMed

    Palin, D; Rufato, K B; Linde, G A; Colauto, N B; Caetano, J; Alberton, O; Jesus, D A; Dragunski, D C

    2016-05-01

    The contamination of water resources by metallic ions is a serious risk to public health and the environment. Therefore, a great emphasis has been given to alternative biosorption methods that are based on the retention of aqueous-solution pollutants; in the last decades, several agricultural residues have been explored as low-cost adsorbent. In this study, the ability of Pb (II) biosorption using sugarcane bagasse modified by different fungal species was evaluated. The presence of carbonyl, hydroxyl, and carboxyl groups in the biosorbent was observed by spectroscopy in the infrared region. By scanning electron microscopy, changes in the morphology of modified material surfaces were observed. The highest adsorption capacity occurred at pH 5.0, while the shorter adsorbate-adsorbent equilibrium was at 20 min, and the system followed the pseudo-second-order model. The maximum biosorption in isotherms was found at 58.34 mg g(-1) for modified residue by Pleurotus ostreatus U2-11, and the system followed the Langmuir isotherm. The biosorption process was energetically spontaneous with low desorption values. This modification showed great potential for filters to remove Pb (II) and provide the preservation of water resources and animal health. PMID:27063515

  7. Comparative study of different alcoholate pretreatments for enhanced enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Huang, Qing; Yan, Qiuli; Fu, Jing; Lv, Xiaojing; Xiong, Chunjiang; Lin, Jianghai; Liu, Zehuan

    2016-07-01

    Pretreatment of sugarcane bagasse (SCB) with alcoholates, sodium methoxide (CH3ONa), potassium methoxide (CH3OK) and sodium ethoxide (C2H5ONa), was investigated. Analyses of lignocellulose composition and enzymatic saccharification indicated that C2H5ONa showed the highest enzymatic efficiency of 102.1%. The response surface optimization of C2H5ONa pretreatment showed that under optimal conditions (4% of C2H5ONa, 121°C, 1h), 65.4% of lignin was removed and the enzymatic efficiency reached 105.2%. Hydrolysis of SCB with cellulases and xylanase at a ratio of 4:1 showed the strongest synergism with reducing sugar production of 21g/L and conversion rates of cellulose and xylan reaching 110.4% and 94.5%, respectively. These results indicated that C2H5ONa is a promising alkali to pretreat SCB and the synergism between cellulases and xylanase has a significant effect on enzymatic saccharification of the pretreated SCB. PMID:27035479

  8. Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Corrêa, Luciano Jacob; Badino, Alberto Colli; Cruz, Antonio José Gonçalves

    2016-05-01

    The minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems. In this study, one batch and four fed-batch strategies for solids and/or enzyme feeding during the enzymatic hydrolysis of sugarcane bagasse were evaluated. Determinations of glucose concentration, power consumption, and apparent viscosity were made throughout the experiments, and the different strategies were compared in terms of energy efficiency (mass of glucose produced according to the energy consumed). The best energy efficiency was obtained for the strategy in which substrate and enzyme were added simultaneously (0.35 kg(glucose) kWh⁻¹). This value was 52% higher than obtained in batch operation. PMID:26899602

  9. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2016-10-01

    The composting of lignocellulosic waste into compost is a potential way of sustainably disposing of a waste while generating a useful product. The current study determined whether the addition of sugarcane bagasse (SCB) (at 0, 15, and 25%) and/or exhausted grape marc (EGM) (at 0, 10, and 20%) improved the two-stage composting of green waste (GW). The combined addition of SCB and EGM improved composting conditions and the quality of the compost product in terms of temperature, water-holding capacity, particle-size distribution, coarseness index, pH, electrical conductivity, water-extractable organic carbon and nitrogen, microbial numbers, enzymatic activities, polysaccharide and lignin content, nutrient content, respiration, and phytotoxicity. The optimal two-stage composting and the best quality compost were obtained with the combined addition of 15% SCB and 20% EGM. With the optimized two-stage composting method, the compost matured in only 21days rather than in the 90-270days required for traditional composting. PMID:27376832

  10. Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith.

    PubMed

    Krishnan, K Anoop; Sreejalekshmi, K G; Baiju, R S

    2011-11-01

    Bioavailability of Nickel in the form of hydrated Nickel(II) attributes to its toxicological effects and hence its removal from aqueous solution is of great concern. Adsorption is used as an efficient technique for the removal of Nickel(II), hereafter Ni(II), from water and wastewaters. Activated carbon obtained from sugarcane bagasse pith (SBP-AC), a waste biomass collected from juice shops in Sarkara Devi Temple, Chirayinkeezhu, Trivandrum, India during annual festival, is used as adsorbent in the study. The process of adsorption is highly dependent on solution pH, and maximum removal occurs in the pH range of 4.0-8.0. Moreover, the amount of Ni(II) adsorbed onto SBP-AC increased with the time increase and reached equilibrium at 4h. Adsorption kinetic and equilibrium data were analyzed for determining the best fit kinetic and isotherm models. The overall study reveals the potential value of steam pyrolysed SBP-AC as a possible commercial adsorbent in wastewater treatment strategies. PMID:21924900

  11. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    PubMed

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. PMID:26150018

  12. Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept.

    PubMed

    Baêta, Bruno Eduardo Lôbo; Lima, Diego Roberto Sousa; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-01-01

    This study aimed to optimize through design of experiments, the process variables (temperature - T, time - t and solid-to-liquid ratio - SLR) for sugarcane bagasse (SB) autohydrolysis (AH) to obtain hemicellulose hydrolyzates (HH) prone to anaerobic digestion (AD) and biochemical methane production (BMP). The results indicated that severe AH conditions, which lead to maximum hemicelluloses dissolution and sugar content in the HH, were not the best for BMP, probably due to the accumulation of toxic/recalcitrant compounds (furans and lignin). Mild AH conditions (170°C, 35min and SLR=0.33) led to the highest BMP (0.79Nm(3)kg TOC(-1)), which was confirmed by the desirability tool. HH produced by AH carried out at the desired condition DC2 (178.6°C, 43.6min and SLR=0.24) showed the lowest accumulation of inhibitory compounds and volatile fatty acids (VFA) and highest BMP (1.56Nm(3)kg TOC(-1)). The modified Gompertz model best fit the experimental data and led to a maximum methane production rate (R) of 2.6mmol CH4d(-1) in the best condition. PMID:26476615

  13. Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production.

    PubMed

    Brienzo, Michel; Tyhoda, Luvuyo; Benjamin, Yuda; Görgens, Johann

    2015-03-25

    The structural and physicochemical characteristics are associated with resistance of plant cell walls to saccharification by enzymes. The effect of physicochemical properties on glucose yield of bagasse from different varieties of sugarcane at low and high enzyme dosages was investigated. The result showed that glucose yield at low enzyme dosage was positively linear correlated with the yield at high enzyme dosage, for both the untreated and pretreated materials. The pretreatment significantly increased the accessibility of substrates by enzyme due to the increase of internal and external surface area. Glucose yield also showed a linear correlation with dye adsorption. However, the increase in glucose yield as a result of pretreatment did not correlate with the increases in crystallinity index and decreases in degree of polymerization. The Principal Component Analysis of infrared data indicated that lignin was the main component that differentiated the varieties before and after pretreatment. These results suggested that the key differences in pretreatment responses among varieties could be mainly attributed to their differences in the internal and external surface area after pretreatment. PMID:25576176

  14. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Kaur, Harleen

    2011-12-01

    Present study explores the potentiality of locally available cellulose, hemicellulose and lignin-rich agricultural by-product sugarcane bagasse (SB) for the removal of erythrosin B (EB) and methylene blue (MB) from aqueous waste. The SB has been characterized by Fourier transform infrared and scanning electron microscopy analytical techniques. Batch experiments have been carried out to determine the influence of parameters like initial dye concentration, pH of the medium, contact time between the adsorbate and adsorbent, weight of adsorbent and system temperature on the removal of EB and MB. Optimum conditions for adsorption are found to be pH 9, temperature 308 K and an equilibration time of 1 h. Under these conditions equilibrium isotherms have been analysed by Langmuir and Freundlich isotherm equations. Based on the Langmuir adsorption isotherm model, the predicted maximum monolayer adsorption capacities of SB for EB and MB are found to be 500 mg g-1 (at 328 K) and 1,000 mg g-1 (at 308 K), respectively. The separation factor reveals the favourable nature of the isotherm for the studied dyes—SB system. The thermodynamic study indicates that the adsorptions of dyes are spontaneous and endothermic process. High temperatures favour EB adsorption whereas optimum temperature for MB adsorption is 318 K.

  15. Sugarcane bagasse derivative-based superabsorbent containing phosphate rock with water-fertilizer integration.

    PubMed

    Zhong, Kang; Zheng, Xi-Liang; Mao, Xiao-Yun; Lin, Zuan-Tao; Jiang, Gang-Biao

    2012-10-01

    To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated. The maximum swelling capacity in distilled water and 0.9 wt.% (weight percent) NaCl solution reached 414 gg(-1) and 55 gg(-1) (water/prepared SAP), respectively. The available NPK contents of the combination system were 15.13 mgg(-1), 6.93 mgg(-1) and 52.05 mgg(-1), respectively. Moreover, the release behaviors of NPK in the MSB/PAA/PHR were also studied. The results showed that the MSB/PAA/PHR has outstanding sustained-release plant nutrients property. PMID:22840007

  16. Isolation of sugarcane bagasse hydrolyzate-tolerant yeast mutants by continuous selection

    SciTech Connect

    Lodics, T.A.; Gong, C.S.

    1984-01-01

    Hemicellulose, one of the major constituents of plant cell-wall materials, comprises up to 40% of agricultural residues and hardwoods. Upon hydrolysis, hemicellulose yields a mixture of carbohydrates of which D-xylose is the major component. Hemicellulose-derived carbohydrates can easily be obtained by use of dilute acids under mild hydrolysis conditions. These sugars as well as cellulose-derived carbohydrates, are potential substrates for ethanol production. Often during acid hydrolysis many potentially toxic chemicals are formed which have been found to inhibit yeast growth and ethanol production. It is, therefore, necessary to overcome the inhibitory effect before a fermentation can be implemented. In addition to these fermentation inhibitors, salts formed as a result of neutralization of acid hydrolyzate can also affect the yeasts, thereby decreasing the fermentation rate. Previously, we have shown that ethanol can be produced from sugarcane bagasse hemicellulose hydrolyzate by a xylose-fermentating yeast, Candida species XF217, after the hydrolyzate had been treated with ion-exchange resins. This communication describes the isolation of hydrolyzate-tolerant yeast strains by a continuous adaptation and selection technique and also the growth and fermentative abilities of the strain, P11-20 in neutralized hydrolyzate.

  17. One-Pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse.

    PubMed

    Sambusiti, C; Licari, A; Solhy, A; Aboulkas, A; Cacciaguerra, T; Barakat, A

    2015-04-01

    The aim of this study was the application of an innovative dry chemo-mechanical pretreatment using different mechanical stresses to produce bioethanol from sugarcane bagasse (SB). The effect of different milling methods on physicochemical composition, enzymatic hydrolysis, bioethanol production and energy efficiency was also evaluated. SB was pretreated with NaOH and H3PO4 at high materials concentration (5 kg/L). Results indicate that vibratory milling (VBM) was more effective in the reduction of particles size and cellulose crystallinity compared to centrifugal (CM) and ball (BM) milling. NaOH pretreatment coupling to BM and VBM was preferred to enhance glucose yields and bioethanol production, while CM consumed less energy compared to BM and VBM. Moreover, the highest energy efficiency (η=0.116 kg glucose/kWh) was obtained with NaOH-CM. Therefore, the combination of dry NaOH and CM appears the most suitable and interesting pretreatment for the production of bioethanol from SB. PMID:25656863

  18. Enhancement of the enzymatic digestibility of sugarcane bagasse by steam pretreatment impregnated with hydrogen peroxide.

    PubMed

    Rabelo, Sarita Cândida; Vaz Rossell, Carlos Eduardo; de Moraes Rocha, George Jackson; Zacchi, Guido

    2012-01-01

    Sugarcane bagasse was subjected to steam pretreatment impregnated with hydrogen peroxide. Analyses were performed using 2(3) factorial designs and enzymatic hydrolysis was performed at two different solid concentrations and with washed and unwashed material to evaluate the importance of this step for obtaining high cellulose conversion. Similar cellulose conversion were obtained at different conditions of pretreatment and hydrolysis. When the cellulose was hydrolyzed using the pretreated material in the most severe conditions of the experimental design (210 °C, 15 min and 1.0% hydrogen peroxide), and using 2% (w/w) water-insoluble solids (WIS), and 15 FPU/g WIS, the cellulose conversion was 86.9%. In contrast, at a milder pretreatment condition (190 °C, 15 min and 0.2% hydrogen peroxide) and industrially more realistic conditions of hydrolysis (10% WIS and 10 FPU/g WIS), the cellulose conversion reached 82.2%. The step of washing the pretreated material was very important to obtain high concentrations of fermentable sugars. PMID:22753357

  19. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.

    PubMed

    Tian, Qing-Qing; Liang, Lei; Zhu, Ming-Jun

    2015-12-01

    Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose. PMID:26356113

  20. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase.

    PubMed

    Delabona, Priscila da Silva; Cota, Júnio; Hoffmam, Zaira Bruna; Paixão, Douglas Antonio Alvaredo; Farinas, Cristiane Sanchez; Cairo, João Paulo Lourenço Franco; Lima, Deise Juliana; Squina, Fábio Marcio; Ruller, Roberto; Pradella, José Geraldo da Cruz

    2013-03-01

    Supplementation of cellulase cocktails with accessory enzymes can contribute to a higher hydrolytic capacity in releasing fermentable sugars from plant biomass. This study investigated which enzymes were complementary to the enzyme set of Trichoderma harzianum in the degradation of sugarcane bagasse. Specific activities of T. harzianum extract on different substrates were compared with the extracts of Penicillium echinulatum and Trichoderma reesei, and two commercial cellulase preparations. Complementary analysis of the secretome of T. harzianum was also used to identify which enzymes were produced during growth on pretreated sugarcane bagasse. These analyses enabled the selection of the enzymes pectinase and α-L-arabinofuranosidase (AF) to be further investigated as supplements to the T. harzianum extract. The effect of enzyme supplementation on the efficiency of sugarcane bagasse saccharification was evaluated using response surface methodology. The supplementation of T. harzianum enzymatic extract with pectinase and AF increased the efficiency of hydrolysis by up to 116%. PMID:23391738

  1. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160.

    PubMed

    Geddes, C C; Mullinnix, M T; Nieves, I U; Peterson, J J; Hoffman, R W; York, S W; Yomano, L P; Miller, E N; Shanmugam, K T; Ingram, L O

    2011-02-01

    Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L+SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190°C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180°C). PMID:21111615

  2. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli.

    PubMed

    Nieves, I U; Geddes, C C; Miller, E N; Mullinnix, M T; Hoffman, R W; Fu, Z; Tong, Z; Ingram, L O

    2011-04-01

    The addition of reduced sulfur compounds (thiosulfate, cysteine, sodium hydrosulfite, and sodium metabisulfite) increased growth and fermentation of dilute acid hydrolysate of sugarcane bagasse by ethanologenic Escherichia coli (strains LY180, EMFR9, and MM160). With sodium metabisulfite (0.5mM), toxicity was sufficiently reduced that slurries of pretreated biomass (10% dry weight including fiber and solubles) could be fermented by E. coli strain MM160 without solid-liquid separation or cleanup of sugars. A 6-h liquefaction step was added to improve mixing. Sodium metabisulfite also caused spectral changes at wavelengths corresponding to furfural and soluble products from lignin. Glucose and cellobiose were rapidly metabolized. Xylose utilization was improved by sodium metabisulfite but remained incomplete after 144 h. The overall ethanol yield for this liquefaction plus simultaneous saccharification and co-fermentation process was 0.20 g ethanol/g bagasse dry weight, 250 L/tonne (61 gal/US ton). PMID:21353535

  3. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    PubMed

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  4. Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse.

    PubMed

    Martins, Luiza Helena da Silva; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-09-01

    This work evaluated ethanol production from sugarcane bagasse at high solids loadings in the pretreatment (20-40% w/v) and hydrolysis (10-20% w/v) stages. The best conditions for diluted sulfuric acid, AHP and Ox-B pretreatments were determined and mass balances including pretreatment, hydrolysis and fermentation were calculated. From a technical point of view, the best pretreatment was AHP, which enabled the production of glucose concentrations near 8% with high productivity (3.27 g/Lh), as well as ethanol production from 100.9 to 135.4 kg ethanol/ton raw bagasse. However, reagent consumption for acid pretreatment was much lower. Furthermore, for processes that use pentoses and hexoses separately, this pretreatment produces the most desirable pentoses liquor, with higher xylose concentration in the monomeric form. PMID:26004382

  5. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. PMID:25643957

  6. Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF.

    PubMed

    da Cruz, Sandra Helena; Dien, Bruce S; Nichols, Nancy N; Saha, Badal C; Cotta, Michael A

    2012-03-01

    Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing

  7. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production

    PubMed Central

    dos Santos, Bruna Silveira Lamanes; Gomes, Arthur Filipe Sousa; Franciscon, Emanuele Giuliane; de Oliveira, Jean Maikon; Baffi, Milla Alves

    2015-01-01

    Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3), A. sydowii (SBCM7) and A. fumigatus (SBC4). The best β-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g). For β-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g) and 4.0 (573 U/g), respectively. All these crude enzymes presented stability around pH 3.0–8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors. PMID:26413077

  8. Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration.

    PubMed

    Corrêa, Luciano Jacob; Badino, Alberto Colli; Cruz, Antonio José Gonçalves

    2016-02-01

    One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical-economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96 h, using 10 % (m/v) SCB, pH 4.8, 50 °C, 10 FPU/g biomass, 470 rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed. PMID:26650719

  9. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater.

    PubMed

    Saeed, Tanveer; Sun, Guangzhi

    2013-01-01

    This paper reports the pollutant removal efficiencies of two lab-scale hybrid wetland systems treating a textile wastewater. The two systems had identical configurations, each consisting of a vertical flow (VF) and a horizontal flow (HF) wetland that were filled with organic sugarcane bagasse and sylhet sand as the main media. The systems were operated under high hydraulic loading (HL) (566-5660 mm/d), and inorganic nitrogen (254-508 gN/m(2) d) and organics loadings (9840-19680 g COD/m(2) d and 2154-4307 g BOD(5)/m(2) d). Simultaneous removals of BOD(5) (74-79%) and ammonia (59-66%) were obtained in the first stage VF wetlands, demonstrating the efficiency of the media for oxygen transfer to cope with the high pollutant loads. The organic carbon (C) content of sugarcane bagasse facilitated denitrification in the VF wetlands. Second stage HF wetlands provided efficient color removal under predominantly anaerobic condition. Overall, the wetland systems showed stable removal performances under high, and unsteady, pollutant loadings. PMID:23201526

  10. Selection and identification of fungi isolated from sugarcane bagasse and their application for phenanthrene removal from soil.

    PubMed

    Cortés-Espinosa, D V; Fernández-Perrino, F J; Arana-Cuenca, A; Esparza-García, F; Loera, O; Rodríguez-Vázquez, R

    2006-01-01

    This work investigated the identification and selection of fungi isolated from sugarcane bagasse and their application for phenanthrene (Phe) removal from soil. Fungi were identified by PCR amplification of ITS regions as Aspergillus terrus, Aspergillus fumigatus and Aspergillus niger, Penicillium glabrum and Cladosporium cladosporioides. A primary selection of fungi was accomplished in plate, considering Phe tolerance of every strain in two different media: potato dextrose agar (PDA) and mineral medium (MM). The radial extension rate (r(r)) in PDA exhibited significant differences (p<0.05) at 200 and 400 ppm of Phe. A secondary selection of A. niger, C. cladosporoides, and P. glabrum sp. was achieved based on their tolerance to 200, 400, 600 and 800 ppm of Phe, in solid culture at a sugarcane bagasse/contaminated soil ratio of 95:5, in Toyamas, Czapeck and Wunder media. Under these conditions, a maximum (70%) Phe removal by A. niger was obtained. In addition C. cladosporioides and A. niger were able to remove high (800 ppm) Phe concentrations. PMID:16484077

  11. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation.

    PubMed

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  12. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation

    PubMed Central

    Miranda-Miranda, Estefan; Sánchez-Reyes, Ayixón; Cuervo-Soto, Laura; Aceves-Zamudio, Denise; Atriztán-Hernández, Karina; Morales-Herrera, Catalina; Rodríguez-Hernández, Rocío; Folch-Mallol, Jorge

    2014-01-01

    A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications. PMID:25162614

  13. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    PubMed Central

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  14. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water.

    PubMed

    Liu, Cong; Ngo, Huu Hao; Guo, Wenshan; Tung, Kuo-Lun

    2012-09-01

    In this study, three agro-waste materials were used as biosorbents for removal of copper (Cu) from water. This work aims to optimise conditions for preparation of these materials to obtain maximum Cu adsorption capacity. The optimal conditions were determined in terms of Cu removal efficiency and/or energy consumption. The results indicate that banana peels dried at 120°C for 2h and ground into powder form led to a better performance in terms of both copper removal efficiency and energy consumption. For sugarcane bagasse and watermelon rind, 120°C was the suitable drying temperature. However, the best drying time was 1h for sugarcane bagasse and 3h for watermelon rind. The powder form with size of <150 μm was optimal for all biosorbents in terms of removal efficiency and equilibration time. The findings are beneficial to the application of these agro-waste materials for Cu removal from water and wastewater treatment. PMID:22750502

  15. Synthesis of Silica Aerogel from Bagasse Ash by Ambient Pressure Drying

    NASA Astrophysics Data System (ADS)

    Setyawan, Nazriati Heru; Winardi, Sugeng

    2011-12-01

    Silica aerogels having very high surface area and pore volume have been succesfully synthesized from bagasse ash by ambient pressure drying (APD) method. Silica in bagasse ash was extracted by alkali extraction to produce sodium silicate solution. This is done by boiling bagasse ash in 2 N NaOH solution under continuous stirring for 1 h. To avoid the collapse of gel structure during drying at ambient pressure condition, the silica surface was modified with alkyl functional groups by a single step sol-gel process. Silicic acid produced by exchanging Na+ ions in dilute sodium silicate solution with H+ ions from cation resin was added with trimethylchlorosilane (TMCS) and let the reaction of TMCS with water pore proceeds for several minutes to produce hexamethyldisilazane (HMDS) and HCl. Then, HMDS was added to allow the modification of silica surface in which the silanol groups were exchanged with alkyl groups originating from HMDS. The solution pH was then adjusted to 8-9 by adding NH4OH solution to induce gel formation. The hydrogel was aged at 40 °C for 18 h and at 60 °C for 1 h. Then, it was dried at 80 °C at ambient pressure condition. The silica aerogels obtained have specific surface, as measured by BET method, ranging from 450.2 to 1360.4 m2/g depending on the synthesis condition. The pore volume was ranging from 0.7 to 1.9 cm3/g. It seems that silica aerogels with very high surface area and pore volume can be obtained if the silanols group in the silica surface was exchanged succesfully with alkyl groups from HMDS.

  16. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar.

    PubMed

    Gitifar, Vahid; Eslamloueyan, Reza; Sarshar, Mohammad

    2013-11-01

    In this study, pretreatment of sugarcane bagasse and subsequent enzymatic hydrolysis is investigated using two categories of pretreatment methods: dilute acid (DA) pretreatment and combined DA-ozonolysis (DAO) method. Both methods are accomplished at different solid ratios, sulfuric acid concentrations, autoclave residence times, bagasse moisture content, and ozonolysis time. The results show that the DAO pretreatment can significantly increase the production of glucose compared to DA method. Applying k-fold cross validation method, two optimal artificial neural networks (ANNs) are trained for estimations of glucose concentrations for DA and DAO pretreatment methods. Comparing the modeling results with experimental data indicates that the proposed ANNs have good estimation abilities. PMID:24035818

  17. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    PubMed

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-07-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h. PMID:26596497

  18. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products.

    PubMed

    Aristizábal M, Valentina; Gómez P, Álvaro; Cardona A, Carlos A

    2015-11-01

    This work presents a techno-economic and environmental assessment for a biorefinery based on sugarcane bagasse (SCB), and coffee cut-stems (CCS). Five scenarios were evaluated at different levels, conversion pathways, feedstock distribution, and technologies to produce ethanol, octane, nonane, furfural, and hydroxymethylfurfural (HMF). These scenarios were compared between each other according to raw material, economic, and environmental characteristics. A single objective function combining the Net Present Value and the Potential Environmental Impact was used through the Analytic Hierarchy Process approach to understand and select the best configurations for SCB and CCS cases. The results showed that the configuration with the best economic and environmental performance for SCB and CCS is the one that considers ethanol, furfural, and octane production (scenario 1). The global economic margin was 62.3% and 61.6% for SCB and CCS respectively. The results have shown the potential of these types of biomass to produce fuels and platform products. PMID:26280100

  19. Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters using Different Optimization Tools

    NASA Astrophysics Data System (ADS)

    Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash

    2015-04-01

    The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.

  20. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae.

    PubMed

    de Almeida, Maíra N; Guimarães, Valéria M; Falkoski, Daniel L; Visser, Evan M; Siqueira, Germano A; Milagres, Adriane M F; de Rezende, Sebastião T

    2013-10-10

    Production of ethanol with two corn endophytic fungi, Fusarium verticillioides and Acremonium zeae, was studied. The yield of ethanol from glucose, xylose and a mixture of both sugars were 0.47, 0.46 and 0.50g/g ethanol/sugar for F. verticillioides and 0.37, 0.39 and 0.48g/g ethanol/sugar for A. zeae. Both fungi were able to co-ferment glucose and xylose. Ethanol production from 40g/L of pre-treated sugarcane bagasse was 4.6 and 3.9g/L for F. verticillioides and A. zeae, respectively, yielding 0.31g/g of ethanol per consumed sugar. Both fungi studied were capable of co-fermenting glucose and xylose at high yields. Moreover, they were able to produce ethanol directly from lignocellulosic biomass, demonstrating to be suitable microorganisms for consolidated bioprocessing. PMID:23942376

  1. Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production.

    PubMed

    Pereira, Josiani de Cassia; Travaini, Rodolfo; Marques, Natalia Paganini; Bolado-Rodríguez, Silvia; Martins, Daniela Alonso Bocchini

    2016-03-01

    The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%. PMID:26773948

  2. Cellulose triacetate films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems.

    PubMed

    Ribeiro, Sabrina Dias; Guimes, Rodrigues Filho; Meneguin, Andréia Bagliotti; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cury, Beatriz Stringhetti Ferreira; Gremião, Maria Palmira Daflon

    2016-11-01

    Cellulose triacetate (CTA) films were produced from cellulose extracted from sugarcane bagasse. The films were characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), mechanical properties (MP), enzymatic digestion (ED), and mucoadhesive properties evaluation (MPE). WVP showed that more concentrated films have higher values; asymmetric films had higher values than symmetric films. MP showed that symmetric membranes are more resistant than asymmetric ones. All films presented high mucoadhesiveness. From the WVP and MP results, a symmetric membrane with 6.5% CTA was selected for the coating of gellan gum (GG) particles incorporating ketoprofen (KET). Thermogravimetric analysis (TGA) showed that the CTA coating does not influence the thermal stability of the particles. Coated particles released 100% of the KET in 24h, while uncoated particles released the same amount in 4h. The results highlight the CTA potential in the development of new controlled oral delivery systems. PMID:27516328

  3. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    PubMed

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup. PMID:22391588

  4. High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation.

    PubMed

    Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong

    2016-10-01

    The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. PMID:27474958

  5. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %. PMID:26718203

  6. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  7. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies.

    PubMed

    Neves, P V; Pitarelo, A P; Ramos, L P

    2016-05-01

    The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion. PMID:26943936

  8. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  9. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    SciTech Connect

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  10. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. PMID:24412855

  11. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD).

    PubMed

    Pereira, Flaviane Vilela; Gurgel, Leandro Vinícius Alves; Gil, Laurent Frédéric

    2010-04-15

    This work describes the preparation of a new chelating material derived from wood sawdust, Manilkara sp., and not only the use of a new support, but also a chemically modified sugarcane bagasse synthesized in our previous work to remove Zn(2+) from aqueous solutions and electroplating wastewater. The first part describes the chemical modification of wood sawdust and sugarcane bagasse using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent in order to introduce carboxylic acid and amine functional groups into these materials. The obtained materials such as the modified sugarcane bagasse, EB, and modified wood sawdust, ES were then characterized by infrared spectroscopy (IR) and CHN. The second part evaluates the adsorption capacity of Zn(2+) by EB and ES from aqueous single metal solutions and real electroplating wastewater, which concentration was determined through direct titration with EDTA and inductively coupled plasma (ICP-OES). Adsorption isotherms were developed using Langmuir model. Zn(2+) adsorption capacities were found to be 80 mg/g for ES and 105 mg/g for EB whereas for the industrial wastewater these values were found to be 47 mg/g for ES and 45 mg/g for EB. Zn(2+) adsorption in the wastewater was found to be lower than in Zn(2+) spiked solution due to the competition between other cations and/or interference of other ions, mainly Ca(2+) and Cl(-) that were present in the wastewater. PMID:20047793

  12. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.

    PubMed

    Pereira, Leonardo Tupi Caldas; Pereira, Lucas Tupi Caldas; Teixeira, Ricardo Sposina Sobral; Bon, Elba Pinto da Silva; Freitas, Suely Pereira

    2011-08-01

    The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, β-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45°) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion. PMID:20844924

  13. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept.

    PubMed

    Rabelo, S C; Carrere, H; Maciel Filho, R; Costa, A C

    2011-09-01

    The potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1 Lmethane/kgbagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone. PMID:21689929

  14. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.

    PubMed

    Valix, M; Cheung, W H; McKay, G

    2004-08-01

    Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification. PMID:15212915

  15. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.

    PubMed

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-11-01

    In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. PMID:20589841

  16. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    PubMed

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils. PMID:26337896

  17. The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: A comparative study.

    PubMed

    Maitan-Alfenas, Gabriela Piccolo; Visser, Evan Michael; Alfenas, Rafael Ferreira; Nogueira, Bráulio Ris G; de Campos, Guilherme Galvão; Milagres, Adriane Ferreira; de Vries, Ronald P; Guimarães, Valéria Monteze

    2015-09-01

    Biomass enzymatic hydrolysis depends on the pretreatment methods employed, the composition of initial feedstock and the enzyme cocktail used to release sugars for subsequent fermentation into ethanol. In this study, sugarcane bagasse was pretreated with 1% H2SO4 and 1% NaOH and the biomass saccharification was performed with 8% solids loading using 10 FPase units/g of bagasse of the enzymatic extract from Chrysoporthe cubensis and three commercial cocktails for a comparative study. Overall, the best glucose and xylose release was obtained from alkaline pretreated sugarcane bagasse. The C. cubensis extract promoted higher release of glucose (5.32 g/L) and xylose (9.00 g/L) than the commercial mixtures. Moreover, the C. cubensis extract presented high specific enzyme activities when compared to commercial cocktails mainly concerning to endoglucanase (331.84 U/mg of protein), β-glucosidase (29.48 U/mg of protein), β-xylosidase (2.95 U/mg of protein), pectinase (127.46 U/mg of protein) and laccase (2.49 U/mg of protein). PMID:26094192

  18. Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis-steam explosion

    SciTech Connect

    Dekker, R.F.H.; Wallis, A.F.A.

    1983-12-01

    Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a commercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogeneous ..beta..-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lower conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h); both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulase preparations with A. niger ..beta..-glucosidases was effective in promoting the conversion of cellulose into glucose. A ratio of FPU to ..beta..-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode. (Refs. 30).

  19. Effect of treating sugarcane bagasse with urea and calcium hydroxide on feed intake, digestibility, and rumen fermentation in beef cattle.

    PubMed

    Gunun, Nirawan; Wanapat, Metha; Gunun, Pongsatorn; Cherdthong, Anusorn; Khejornsart, Pichad; Kang, Sungchhang

    2016-08-01

    Four beef cattle with initial body weight of 283 ± 14 kg were randomly allocated according to a 4 × 4 Latin square design to study on the effect of feeding sugarcane bagasse (SB) treated with urea and/or calcium hydroxide (Ca(OH)2) on feed intake, digestibility, and rumen fermentation. The treatments were as follows: rice straw (RS), untreated SB (SB), 4 % urea-treated SB (SBU), and 2 % urea + 2 % Ca(OH)2-treated SB (SBUC), respectively. The results revealed that cattle fed with SBU and SBUC had higher feed intake and apparent digestibility. Ammonia nitrogen and blood urea nitrogen were increased in cattle fed with SB as roughage source (P < 0.05). Feeding SBU and SBUC to cattle resulted in higher propionic acid and lower acetic acid, acetic to propionic ratio, and methane production (P < 0.05). Moreover, the number of fungi was increased in SBU- and SBUC-fed groups while protozoa population was unchanged. This study concluded that the nutritive value of SB was improved by urea and/or Ca(OH)2 treatment, and feeding treated SB could increase feed intake, digestibility, and rumen fermentation. This study suggested that SB treated with 2 % urea + 2 % Ca(OH)2 could be used as an alternative roughage source for ruminant feeding. PMID:27139254

  20. Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-08-01

    A L9(3)(4) orthogonal array (OA) experimental design was applied to study the four parameters considered most important in the ozonolysis pretreatment (moisture content, ozone concentration, ozone/oxygen flow and particle size) on ethanol production from sugarcane bagasse (SCB). Statistical analysis highlighted ozone concentration as the highest influence parameter on reaction time and sugars release after enzymatic hydrolysis. The increase on reaction time when decreasing the ozone/oxygen flow resulted in small differences of ozone consumptions. Design optimization for sugars release provided a parameters combination close to the best experimental run, where 77.55% and 56.95% of glucose and xylose yields were obtained, respectively. When optimizing the grams of sugar released by gram of ozone, the highest influence parameter was moisture content, with a maximum yield of 2.98gSUGARS/gO3. In experiments on hydrolysates fermentation, Saccharomyces cerevisiae provided ethanol yields around 80%, while Pichia stipitis was completely inhibited. PMID:27132222

  1. Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2016-08-01

    A study on the synergistic pretreatment of sugarcane bagasse (SCB) using Fenton reaction and NaOH extraction was conducted. The optimized process conditions for Fenton pretreatment were 10% (w/w) of H2O2, 20mM of Fe(2+), pH 2.5, pretreatment time 6h, and pretreatment temperature 55°C. Sequential pretreatments were performed in combination with NaOH extraction (NaOH 1% (w/w), 80°C, 5% of solid loading, 1h). Among all the pretreatments, Fenton pretreatment followed by NaOH extraction had the highest efficiency of 64.7% and 108.3% for enzymolysis and simultaneous saccharification fermentation (SSF) with an ethanol concentration of 17.44g/L. The analyses by the scanning electron microscopy, X-ray diffraction and confocal laser scanning microscopy revealed that Fenton pretreatment disrupts the structure of SCB to facilitate the degradation of lignin by NaOH. The overall data suggest that this combinatorial strategy is a promising process for SCB pretreatment. PMID:27213578

  2. Streptomyces misionensis PESB-25 Produces a Thermoacidophilic Endoglucanase Using Sugarcane Bagasse and Corn Steep Liquor as the Sole Organic Substrates

    PubMed Central

    Rezende, Raquel de Carvalho; Gravina-Oliveira, Mônica Pires; Pereira, Pedro Henrique Freitas; do Nascimento, Rodrigo Pires; Bon, Elba Pinto da Silva; Macrae, Andrew; Coelho, Rosalie Reed Rodrigues

    2013-01-01

    Streptomyces misionensis strain PESB-25 was screened and selected for its ability to secrete cellulases. Cells were grown in a liquid medium containing sugarcane bagasse (SCB) as carbon source and corn steep liquor (CSL) as nitrogen source, whose concentrations were optimized using response surface methodology (RSM). A peak of endoglucanase accumulation (1.01 U·mL−1) was observed in a medium with SCB 1.0% (w/v) and CSL 1.2% (w/v) within three days of cultivation. S. misionensis PESB-25 endoglucanase activity was thermoacidophilic with optimum pH and temperature range of 3.0 to 3.6 and 62° to 70°C, respectively. In these conditions, values of 1.54 U mL−1 of endoglucanase activity were observed. Moreover, Mn2+ was demonstrated to have a hyperactivating effect on the enzyme. In the presence of MnSO4 (8 mM), the enzyme activity increased threefold, up to 4.34 U·mL−1. Mn2+ also improved endoglucanase stability as the catalyst retained almost full activity upon incubation at 50°C for 4 h, while in the absence of Mn2+, enzyme activity decreased by 50% in this same period. Three protein bands with endoglucanase activity and apparent molecular masses of 12, 48.5 and 119.5 kDa were detected by zymogram. PMID:23586048

  3. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process.

    PubMed

    Baêta, Bruno Eduardo Lobo; Lima, Diego Roberto Sousa; Filho, José Gabriel Balena; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-10-01

    This study aimed at optimizing the net energy recovery from hydrogen and methane production through anaerobic digestion of the hemicellulose hydrolysate (HH) obtained by desirable conditions (DC) of autohydrolysis pretreatment (AH) of sugarcane bagasse (SB). Anaerobic digestion was carried out in a two-stage (acidogenic-methanogenic) batch system where the acidogenic phase worked as a hydrolysis and biodetoxification step. This allowed the utilization of more severe AH pretreatment conditions, i.e. T=178.6°C and t=55min (DC3) and T=182.9°C and t=40.71min (DC4). Such severe conditions resulted in higher extraction of hemicelluloses from SB (DC1=68.07%, DC2=48.99%, DC3=77.40% and DC4=73.90%), which consequently improved the net energy balance of the proposed process. The estimated energy from the combustion of both biogases (H2 and CH4) accumulated during the two-stage anaerobic digestion of HH generated by DC4 condition was capable of producing a net energy of 3.15MJ·kgSB(-1)dry weight. PMID:27393834

  4. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor.

    PubMed

    Wei, Dong; Liu, Xiaoguang; Yang, Shang-Tian

    2013-02-01

    A fermentation process using Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor (FBB) was developed for butyric acid production from sugarcane bagasse (SCB) hydrolysate. SCB was first treated with dilute acid and then hydrolyzed with cellulases. The hydrolysate containing glucose and xylose was used as carbon source for the fermentation without detoxification. The bacterium was able to grow at a specific growth rate of ∼0.06 h(-1) in media containing 15-20% (w/v) SCB in serum bottles. In batch cultures in the FBB, both glucose and xylose in the SCB hydrolysate were simultaneously converted to butyrate with a high yield (0.45-0.54 g/gsugar) and productivity (0.48-0.60 g/Lh). A final butyrate concentration of 20.9 g/L was obtained in a fed-batch culture, with an overall productivity of 0.51 g/Lh and butyrate yield of 0.48 g/g sugar consumed. This work demonstrated the feasibility of using SCB as a low-cost feedstock to produce butyric acid. PMID:23270719

  5. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    PubMed Central

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell

  6. High-value zeolitic material from bagasse fly ash: utilization for dye elimination.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Patel, Harendra D; Mistry, Chirag B

    2013-06-01

    Bagasse fly ash (BFA), a sugar industry waste, was used to prepare zeolitic material (ZFA) by means of alkaline hydrothermal treatment. ZFA showed improved morphology as a result of this treatment. The adsorption of the reactive dyes turquoise blue (TB) and brilliant magenta (BM), on both BFA and ZFA, was investigated in a batch contact system. A series of batch experiments revealed that optimal dye removal occurs at a 200 mg/L to 300 mg/L solute concentration, 60 minutes of agitation time, 5 g/L to 10 g/L adsorbent dose, a pH level of 2 to 4, and a temperature of 298 K. ZFA showed enhanced adsorption capacity as compared to BFA. According to the Langmuir equation, the maximum adsorption capacity was 12.66 mg/g and 45.45 mg/g for turquoise blue and brilliant magenta dyes, respectively, on BFA; and 21.74 mg/g and 100.00 mg/g for turquoise blue and brilliant magenta dyes, respectively, on ZFA. Kinetic studies showed that the correlation coefficients best fit with the pseudo-second-order kinetic model, confirming that the adsorption rate was controlled by a hemisorptions process. PMID:23833819

  7. Diversity of Fungi on Decomposing Leaf Litter in a Sugarcane Plantation and Their Response to Tillage Practice and Bagasse Mulching: Implications for Management Effects on Litter Decomposition.

    PubMed

    Miura, Toshiko; Niswati, Ainin; Swibawa, I G; Haryani, Sri; Gunito, Heru; Shimano, Satoshi; Fujie, Koichi; Kaneko, Nobuhiro

    2015-10-01

    To minimize the degradation of soil organic matter (SOM) content in conventional sugarcane cropping, it is important to understand how the fungal community contributes to SOM dynamics during the decomposition of sugarcane leaf litter. However, our knowledge of fungal diversity in tropical agroecosystems is currently limited. Thus, we determined the fungal community structure on decomposing sugarcane leaf litter and their response to different soil management systems using the internal transcribed spacer region 1 (ITS1) amplicon sequencing method afforded by Ion Torrent Personal Genome Machine (PGM). The results indicate that no-tillage had positive effects on the relative abundance of Zygomycota and of some taxa that may prefer a moist environment over conventional tillage, whereas bagasse mulching decreased the richness of operational taxonomic units (OTUs) and had positive effect on the relative abundance of slow-growing taxa, which may prefer poor nutrient substrates. Furthermore, a combination of no-tillage and bagasse mulching increased the abundance of unique OTUs. We suggest that the alteration of fungal communities through the changes in soil management practices produces an effect on litter decomposition. PMID:25933637

  8. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  9. Generation of crystalline silica from sugarcane burning.

    PubMed

    Le Blond, Jennifer S; Horwell, Claire J; Williamson, Ben J; Oppenheimer, Clive

    2010-07-01

    Sugarcane leaves contain amorphous silica, which may crystallise to form crystalline silica polymorphs (cristobalite or quartz), during commercial sugarcane harvesting where sugarcane plants are burned. Respirable airborne particulate containing these phases may present an occupational health hazard. Following from an earlier pilot study (J. S. Le Blond, B. J. Williamson, C. J. Horwell, A. K. Monro, C. A. Kirk and C. Oppenheimer, Atmos. Environ., 2008, 42, 5558-5565) in which experimental burning of sugarcane leaves yielded crystalline silica, here we report on actual conditions during sugarcane burning on commercial estates, investigate the physico-chemical properties of the cultivated leaves and ash products, and quantify the presence of crystalline silica. Commercially grown raw sugarcane leaf was found to contain up to 1.8 wt% silica, mostly in the form of amorphous silica bodies (with trace impurities e.g., Al, Na, Mg), with only a small amount of quartz. Thermal images taken during several pre-harvest burns recorded temperatures up to 1056 degrees C, which is sufficient for metastable cristobalite formation. No crystalline silica was detected in airborne particulate from pre-harvest burning, collected using a cascade impactor. The sugarcane trash ash formed after pre-harvest burning contained between 10 and 25 wt% SiO(2), mostly in an amorphous form, but with up to 3.5 wt% quartz. Both quartz and cristobalite were identified in the sugarcane bagasse ash (5-15 wt% and 1-3 wt%, respectively) formed in the processing factory. Electron microprobe analysis showed trace impurities of Mg, Al and Fe in the silica particles in the ash. The absence of crystalline silica in the airborne emissions and lack of cristobalite in trash ash suggest that high temperatures during pre-harvest burning were not sustained long enough for cristobalite to form, which is supported by the presence of low temperature sylvite and calcite in the residual ash. The occurrence of quartz and

  10. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    PubMed

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. PMID:26384901

  11. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  12. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin.

    PubMed

    A L Rocha, Vanessa; N Maeda, Roberto; Pereira, Nei; F Kern, Marcelo; Elias, Luisa; Simister, Rachael; Steele-King, Clare; Gómez, Leonardo D; McQueen-Mason, Simon J

    2016-03-01

    This study demonstrates the production of an active enzyme cocktail produced by growing Trichoderma harzianum on sugarcane bagasse. The component enzymes were identified by LCMS-MS. Glycosyl hydrolases were the most abundant class of proteins, representing 67% of total secreted protein. Other carbohydrate active enzymes involved in cell wall deconstruction included lytic polysaccharide mono-oxygenases (AA9), carbohydrate-binding modules, carbohydrate esterases and swollenin, all present at levels of 1%. In total, proteases and lipases represented 5 and 1% of the total secretome, respectively, with the rest of the secretome being made up of proteins of unknown or putative function. This enzyme cocktail was efficient in catalysing the hydrolysis of sugarcane bagasse cellulolignin to fermentable sugars for potential use in ethanol production. Apart from mapping the secretome of T. harzianum, which is a very important tool to understand the catalytic performance of enzyme cocktails, the gene coding for T. harzianum swollenin was expressed in Aspergillus niger. This novel aspect in this work, allowed increasing the swollenin concentration by 95 fold. This is the first report about the heterologous expression of swollenin from T. harzianum, and the findings are of interest in enriching enzyme cocktail with this important accessory protein which takes part in the cellulose amorphogenesis. Despite lacking detectable glycoside activity, the addition of swollenin of T. harzianum increased by two-fold the hydrolysis efficiency of a commercial cellulase cocktail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:327-336, 2016. PMID:26697775

  13. Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin.

    PubMed

    de Castro, Aline Machado; Pedro, Kelly Cristina Nascimento Rodrigues; da Cruz, Juliana Cunha; Ferreira, Marcela Costa; Leite, Selma Gomes Ferreira; Pereira, Nei

    2010-11-01

    Sugarcane bagasse is an agroindustrial residue generated in large amounts in Brazil. This biomass can be used for the production of cellulases, aiming at their use in second-generation processes for bioethanol production. Therefore, this work reports the ability of a fungal strain, Trichoderma harzianum IOC-4038, to produce cellulases on a novel material, xylan free and cellulose rich, generated from sugarcane bagasse, named partially delignified cellulignin. The extract produced by T. harzianum under submerged conditions reached 745, 97, and 559 U L(-1) of β-glucosidase, FPase, and endoglucanase activities, respectively. The partial characterization of this enzyme complex indicated, using a dual analysis, that the optimal pH values for the biocatalysis ranged from 4.9 to 5.2 and optimal temperatures were between 47 and 54 °C, depending on the activity studied. Thermal stability analyses revealed no significant decrease in activity at 37 °C during 23 h of incubation. When compared to model strains, Aspergillus niger ATCC-16404 and Trichoderma reesei RutC30, T. harzianum fermentation was faster and its extract showed a better balanced enzyme complex, with adequate characteristics for its application in simultaneous saccharification and fermentation processes. PMID:20455032

  14. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE).

    PubMed

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-09-01

    This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (-1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production. PMID:27093970

  15. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.

    PubMed

    Martini, Cristina; Tauk-Tornisielo, Sâmia Maria; Codato, Carolina Brito; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina

    2016-05-01

    The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed. PMID:27038950

  16. Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180.

    PubMed

    Geddes, Ryan; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2015-01-01

    Inhibitory side products from dilute acid pretreatment is a major challenge for conversion of lignocellulose into ethanol. Six strategies to detoxify sugarcane hydrolysates were investigated alone, and in combinations (vacuum evaporation of volatiles, high pH treatment with ammonia, laccase, bisulfite, microaeration, and inoculum size). High pH was the most beneficial single treatment, increasing the minimum inhibitory concentration (measured by ethanol production) from 15% (control) to 70% hydrolysate. Combining treatments provided incremental improvements, consistent with different modes of action and multiple inhibitory compounds. Screening toxicity using tube cultures proved to be an excellent predictor of relative performance in pH-controlled fermenters. A combination of treatments (vacuum evaporation, laccase, high pH, bisulfite, microaeration) completely eliminated all inhibitory activity present in hydrolysate. With this combination, fermentation of hemicellulose sugars (90% hydrolysate) to ethanol was complete within 48 h, identical to the fermentation of laboratory xylose (50 g/L) in AM1 mineral salts medium (without hydrolysate). PMID:25864026

  17. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  18. Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate.

    PubMed

    Perrone, Olavo Micali; Colombari, Felippe Mariano; Rossi, Jessika Souza; Moretti, Marcia Maria Souza; Bordignon, Sidnei Emilio; Nunes, Christiane da Costa Carreira; Gomes, Eleni; Boscolo, Mauricio; Da-Silva, Roberto

    2016-10-01

    Sugarcane bagasse (SCB) was treated in three stages using ozone oxidation (O), washing in an alkaline medium (B) and ultrasonic irradiation (U). The impact of each pretreatment stage on the physical structure of the SCB was evaluated by its chemical composition, using an infrared technique (FTIR-ATR), and using thermogravimetric analysis (TGA/DTG). The pretreatment sequence O, B, U provided a significant reduction of lignin and hemicellulose, which was confirmed by changes in the absorption bands corresponding to these compounds, when observed using infrared. Thermogravimetric analysis confirmed an increased thermal stability in the treated sample due to the removal of hemicellulose and extractives during the pretreatment. This pretreatment released 391mg glucose/g from treated SCB after the enzymatic hydrolysis, corresponding to a yield of 94% of the cellulose available. PMID:27347800

  19. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. PMID:26642223

  20. The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions

    NASA Astrophysics Data System (ADS)

    Gonçalves, Márcia Monteiro Machado; de Mello, Luiz Antonio Oliveira; da Costa, Antonio Carlos Augusto

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  1. Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse.

    PubMed

    Vasconcellos, V M; Tardioli, P W; Giordano, R L C; Farinas, C S

    2016-05-25

    High activity and stability are essential for (hemi)cellulolytic enzymes used in biomass conversion, while non-productive binding of cellulases to lignin reduces saccharification efficiency and needs to be avoided. One potential strategy is the addition of inexpensive metal ions. This paper describes the influence of divalent metal ions on the activity, thermostability, and saccharification efficiency of (hemi)cellulolytic enzymes produced in-house by Aspergillus niger under solid-state fermentation (SSF). The use of Mn(2+) provided the best (hemi)cellulolytic activity and stability, with an increase in endoglucanase activity of up to 57%. The use of Mn(2+) was then investigated in the saccharification of sugarcane bagasse submitted to acid, steam-explosion, and hydrothermal pretreatments. The addition of Mn(2+) ions at 10mM in the saccharification of acid-pretreated bagasse resulted in a 34% increase in glucose release. These positive effects appeared to be due to a reduction in non-productive enzyme adsorption. The findings suggest that the addition of inexpensive metal ions can help to improve activity, thermostability, and saccharification efficiency of (hemi)cellulolytic enzymes. PMID:26709004

  2. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    PubMed

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate. PMID:27350392

  3. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse.

    PubMed

    Chen, Cheng-Yu; Hsieh, Zhi-Shen; Cheepudom, Jatuporn; Yang, Chao-Hsun; Meng, Menghsiao

    2013-10-01

    Thermobifida fusca is a moderately thermophilic soil bacterium belonging to Actinobacteria. It has been known for its capability to degrade plant cell wall polymers except lignin and pectin. To know whether it can produce enzymes to facilitate lignin degradation, the extracellular proteins bound to sugarcane bagasse were harvested and identified by liquid chromatography tandem mass spectrometry. Among the identified proteins, a putative copper-containing polyphenol oxidase of 241 amino acids, encoded by the locus Tfu_1114, was thought to presumably play a role in lignin degradation. This protein (Tfu1114) was thus expressed in E. coli and characterized. Similarly to common laccases, Tfu1114 is able to catalyze the oxidation reaction of phenolic and nonphenolic lignin related compounds such as 2,6-dimethoxyphenol and veratryl alcohol. More interestingly, it can significantly enhance the enzymatic hydrolysis of bagasse by xylanase and cellulase. Tfu1114 is stable against heat, with a half-life of 4.7 h at 90 °C, and organic solvents. It is sensitive to ethylenediaminetetraacetic acid and reducing agents but resistant to sodium azide, a potent inhibitor of laccases. Atomic absorption spectroscopy indicated that the ratio of copper to the protein monomer is 1, instead of 4, a feature of classical laccases. All these data suggest that Tfu1114 is a novel oxidase with laccase-like activity, potentially useful in biotechnology application. PMID:23377789

  4. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  5. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  6. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  7. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  8. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  9. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Nikolausz, Marcell; Radetski, Claudemir M; Nelles, Michael; Stinner, Walter

    2016-02-01

    The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option. PMID:26584558

  10. Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is one of the most important crops globally, providing most of the world’s sugar and bio-energy (ethanol and electricity). This contribution has been underpinned by the successful introgression of genes from wild germplasm, particularly from Saccharum spontaneum, by breeders in the early 1...

  11. SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first successful report of transgenic sugarcane less than 20 years ago, this technology has advanced rapidly and been adopted by sugar industries and research organizations worldwide. Research into a range of input traits such as pest and disease resistance, sugar quality, and shoot archit...

  12. Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: Parametric, kinetic and equilibrium modelling, disposal studies.

    PubMed

    Kushwaha, Jai Prakash; Srivastava, Vimal Chandra; Mall, Indra Deo

    2010-05-01

    Present study reports treatment of synthetic dairy wastewater (SDW) in terms of chemical oxygen demand (COD) removal by means of adsorption onto activated carbon-commercial grade (ACC) and bagasse fly ash (BFA). Optimum conditions for SDW treatment were found to be: initial pH approximately 4.8, adsorbent dose of 20g/l for ACC and 10g/l for BFA and contact time approximately 8h. Pseudo-second-order kinetic model was found to fit the kinetic data and Redlich-Peterson isotherm model was generally found to best represent the equilibrium data for SDW treatment by ACC and BFA. The change in entropy and enthalpy for SDW adsorption onto ACC and BFA were estimated as 125.85kJ/molK and 91.53kJ/mol; and 25.71kJ/molK and 17.26kJ/mol, respectively. The negative values of change in Gibbs free energy indicate the feasibility and spontaneous nature of the adsorptive treatment. PMID:20097555

  13. Biochar and Mill Ash Use as Soil Amendments to Grow Sugarcane in Sandy Soils of South Florida

    NASA Astrophysics Data System (ADS)

    Alvarez-Campos, O.; Lang, T. A.; Bhadha, J. H.; McCray, M.; Gao, B.; Glaz, B.; Daroub, S. H.

    2015-12-01

    The use of agricultural and urban organic residues as amendments provides an option to improve sugarcane production in sandy soils located northwest of the Everglades Agricultural Area, while reducing waste. This study was conducted to determine the effect of mill ash and three biochars on sugarcane yield and sandy soil properties. Mill ash and biochars produced from hardwood yard waste (HY), barn shavings with horse manure (HM), and rice hulls (RH) were incorporated at 1% and 2% (by weight) to sandy soils in a lysimeter experiment. A control without amendment and an often-used commercial practice of mill ash applied at 6% (AS6) were also included. Results showed that RH2 and AS6 produced greater biomass and sucrose yield compared with the control. According to critical nutrient level analysis, RH and AS amendments also resulted in the highest silicon content, which had a positive correlation with increasing sugarcane yield. In addition, RH2 and AS6 increased total phosphorus, Mehlich-3 phosphorus, and cation exchange capacity (CEC) compared with the control. While CEC remained constant with AS2 and AS6 applications, CEC significantly increased over time with RH2. Moreover, higher amendment applications increased soil organic matter compared with the control and did not decrease over time, which suggests a positive influence for long term carbon sustainability and nutrient cycling in sandy soils. Overall, RH2 and AS6 have the most potential to be used as amendments in sandy soils of South Florida due to their positive effects on soil properties, which improved sugarcane yield. However, no negative consequences were found with the application of any other amendment in terms of sugarcane growth and soil quality. Future research should focus on the use of RH and AS amendments on long-term field-scale studies, and the economic feasibility of a single year application on plant and ratoon cane yields.

  14. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation.

    PubMed

    Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Crestana, Silvio; Farinas, Cristiane Sanchez

    2014-03-01

    The enzymatic cocktail of cellulases is one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels and other chemicals. Here, the influence of liquid hot water, dilute acid, alkali, and combined acid/alkali pretreatments on sugarcane bagasse (SCB) used for cellulase production was investigated by means of spectroscopic and imaging techniques. Chemical composition and structural characteristics, such as crystallinity (determined by X-ray diffraction), functional groups (Fourier transform infrared spectroscopy), and microstructure (scanning electron microscopy), were used to correlate SCB pretreatments with enzymatic biosynthesis by a strain of the filamentous fungus Aspergillus niger under solid-state fermentation. The combined acid/alkali pretreatment resulted in a SCB with higher cellulose content (86.7%). However, the high crystallinity (74%) of the resulting biomass was detrimental to microbial uptake and enzyme production. SCB pretreated with liquid hot water yielded the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase), and xylanase activities (0.4, 14.9, and 26.1 U g(-1), respectively). The results showed that a suitable pretreatment for SCB to be used as a substrate for cellulase production should avoid severe conditions in order to preserve amorphous cellulose and to enhance the physical properties that assist microbial access. PMID:24363237

  15. Low cost CaCl₂ pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation.

    PubMed

    Kadam, Avinash A; Lade, Harshad S; Patil, Swapnil M; Govindwar, Sanjay P

    2013-03-01

    Pretreatments to sugarcane bagasse (SCB) such as CaCl2, alkali, ammonia, steam and milling showed 91%, 46%, 47%, 42% and 56% adsorption of Solvent Red 5B (SR5B); 92%, 57%, 58%, 56% and 68% adsorption of simulated dyes mixture (SDM), and 86%, 45%, 49%, 44% and 56% adsorption of a real textile effluent (RTE), respectively. However, the untreated SCB showed 32%, 38% and 30% adsorption of SR5B, SDM and RTE, respectively. Adsorption of SR5B on CaCl2 pretreated SCB follows pseudo-second order kinetics. SEM and FTIR analysis reveals the delignification of CaCl2 pretreated SCB. SR5B, SDM and RTE adsorbed on CaCl2, alkali, ammonia, steam and milling pretreated SCB were decolorized under solid state fermentation using isolated Providencia staurti strain EbtSPG. Tray bioreactor study showed 86% American Dye Manufacturers Institute (ADMI) removal of RTE in 72h. Biodegradation of adsorbed SR5B was confirmed using FTIR, HPLC and HPTLC. PMID:23411459

  16. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil. PMID:24561631

  17. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.

    PubMed

    Terán-Hilares, R; Reséndiz, A L; Martínez, R T; Silva, S S; Santos, J C

    2016-03-01

    A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio. PMID:26720138

  18. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate.

    PubMed

    Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P; York, Sean W; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2016-01-01

    Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. PMID:26826228

  19. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We hypothesized that consecutive dilute sulfuric acid-dilute sodium hydroxide pretreatment would overcome the native recalcitrance of sugarcane bagasse (SB) by enhancing cellulase accessibility of the embedded cellulosic microfibrils. Results SB hemicellulosic hydrolysate after concentration by vacuum evaporation and detoxification showed 30.89 g/l xylose along with other products (0.32 g/l glucose, 2.31 g/l arabinose, and 1.26 g/l acetic acid). The recovered cellulignin was subsequently delignified by sodium hydroxide mediated pretreatment. The acid–base pretreated material released 48.50 g/l total reducing sugars (0.91 g sugars/g cellulose amount in SB) after enzymatic hydrolysis. Ultra-structural mapping of acid–base pretreated and enzyme hydrolyzed SB by microscopic analysis (scanning electron microcopy (SEM), transmitted light microscopy (TLM), and spectroscopic analysis (X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy) elucidated the molecular changes in hemicellulose, cellulose, and lignin components of bagasse. The detoxified hemicellulosic hydrolysate was fermented by Scheffersomyces shehatae (syn. Candida shehatae UFMG HM 52.2) and resulted in 9.11 g/l ethanol production (yield 0.38 g/g) after 48 hours of fermentation. Enzymatic hydrolysate when fermented by Saccharomyces cerevisiae 174 revealed 8.13 g/l ethanol (yield 0.22 g/g) after 72 hours of fermentation. Conclusions Multi-scale structural studies of SB after sequential acid

  20. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. PMID:23324164

  1. Characterization of a Thermotolerant Phytase Produced by Rhizopus microsporus var. microsporus Biofilm on an Inert Support Using Sugarcane Bagasse as Carbon Source.

    PubMed

    Sato, Vanessa Sayuri; Jorge, João Atílio; Guimarães, Luis Henrique Souza

    2016-06-01

    The Rhizopus microsporus var. microsporus biofilm was able to produce increased levels of an extracellular thermotolerant phytase using polyethylene and viscose as an inert support in both modified NBRIP medium and modified Khanna medium containing sugarcane bagasse as the carbon source. The enzyme production was strictly regulated by the phosphorus content with optimal production at 0.5 mM of sodium phytate and KH2PO4. The extracellular phytase, RMPhy1, was purified 4.18-fold with 4.78 % recovery using DEAE-cellulose and CM-cellulose. A single protein band with a molecular mass of 35.4 kDa was obtained when the samples were subjected to 10 % SDS-PAGE. The optimum temperature for activity was 55 °C and the optimum pH was 4.5. R. microsporus var. microsporus phytase exhibited high stability at 30 and 40 °C with a half-life of 115 min at 60 °C. The enzyme activity increased in the presence of Ca (2+) and was inhibited by Zn(2+), arsenate, and sodium phosphate. Phytase demonstrated high substrate specificity for sodium phytate with K m = 0.72 mM and V max = 94.55 U/mg of protein and for p-NPP with K m = 0.04 mM and V max = 106.38 U/mg of protein. The enzyme also hydrolyzed ATP, AMPc, glucose 6-phosphate, glucose 1-phosphate, and UDPG. This is the first report on phytase characterization delivered with biofilm technology. The properties of the enzyme account for its high potential for use in biotechnology and the possibility of application in different industrial sectors as feed in the future. PMID:26906117

  2. Efficient Open Fermentative Production of Polymer-Grade L-Lactate from Sugarcane Bagasse Hydrolysate by Thermotolerant Bacillus sp. Strain P38

    PubMed Central

    Guo, Ling; Wang, Limin; Yu, Bo; Ma, Yanhe

    2014-01-01

    Lactic acid is one of the top 30 potential building-block chemicals from biomass, of which the most extensive use is in the polymerization of lactic acid to poly-lactic-acid (PLA). To reduce the cost of PLA, the search for cheap raw materials and low-cost process for lactic acid production is highly desired. In this study, the final titer of produced L-lactic acid reached a concentration of 185 g·L−1 with a volumetric productivity of 1.93 g·L−1·h−1 by using sugarcane bagasse hydrolysate as the sole carbon source simultaneously with cottonseed meal as cheap nitrogen sources under the open fed-batch fermentation process. Furthermore, a lactic acid yield of 0.99 g per g of total reducing sugars was obtained, which is very close to the theoretical value (1.0 g g−1). No D-isomer of lactic acid was detected in the broth, and thereafter resulted in an optical purity of 100%, which exceeds the requirement of lactate polymerization process. To our knowledge, this is the best performance of fermentation on polymer-grade L-lactic acid production totally using lignocellulosic sources. The high levels of optically pure l-lactic acid produced, combined with the ease of handling and low costs associated with the open fermentation strategy, indicated the thermotolerant Bacillus sp. P38 could be an excellent candidate strain with great industrial potential for polymer-grade L-lactic acid production from various cellulosic biomasses. PMID:25192451

  3. Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate.

    PubMed

    Soares, Luma C S R; Chandel, Anuj K; Pagnocca, Fernando C; Gaikwad, Swapnil C; Rai, Mahendra; da Silva, Silvio S

    2016-06-01

    Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1'a, Y1'b and Y3' showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1'a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1'a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 2(2) full factorial design was performed considering the variables-pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1'a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively. PMID:27570309

  4. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. PMID:27403861

  5. Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14.

    PubMed

    He, Yu-Cai; Zhang, Dan-Ping; Di, Jun-Hua; Wu, Yin-Qi; Tao, Zhi-Cheng; Liu, Feng; Zhang, Zhi-Jun; Chong, Gang-Gang; Ding, Yun; Ma, Cui-Luan

    2016-07-01

    In this study, sugarcane bagasse (SB) was pretreated with combination pretreatment (e.g., sequential KOH extraction and ionic liquid soaking, sequential KOH extraction and Fenton soaking, or sequential KOH extraction and glycerol soaking). After the enzymatic hydrolysis of pretreated SBs, it was found that all these three concentrated hydrolyzates could be used for the asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Compared with glucose, arabinose and cellobiose couldn't promote the initial reaction rate, and xylose could increase the intracellular NADH content. Moreover, it was the first report that hydrolyzates could be used for the effective biosynthesis of (S)-CHBE (∼500g/L; 98.0% yield) from 3000 COBE by whole cells of Escherichia coli CCZU-K14 in the presence of β-CD (0.4mol β-CD/mol COBE), l-glutamine (200mM) and glycine (500mM). In conclusion, it is a new alternative to utilize bioresource for the synthesis of key chiral intermediate (S)-CHBE. PMID:27060248

  6. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    PubMed

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB. PMID:27089425

  7. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR. PMID:27428302

  8. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  9. Bagasse-assisted bioremediation of ammonia from shrimp farm wastewater.

    PubMed

    Krishnani, Kishore K; Parimala, V; Gupta, B P; Azad, I S; Meng, Xiaoguang; Abraham, M

    2006-09-01

    Development of new economically feasible ecofriendly products from agricultural wastes or byproducts for shrimp farm wastewater treatment is the objective of our continued research. Ammonia is a nitrogenous toxicant, which is commonly found in wastewater from shrimp farms. In the present study, we explored the possibility of the use of simply and inexpensively prepared bagasse products so that this abundant crop byproduct could be used to remove ammonia from shrimp farm wastewater. Bagasse, a natural highly fibrous lignocellulosic byproduct of sugarcane, was converted into five different products. Experimental results have shown that ammonia is efficiently removed from wastewater by four bagasse products with a dose of 1 to 6 g/L within 24 hours. The effect of bagasse products on other water quality parameters and growth kinetics of biofilm bacteria onto bagasse fiber have also been studied. Efficacies of products were compared by using statistical analysis. Products developed from bagasse are useful and economical. PMID:17120454

  10. Fast pyrolysis of sweet soghum bagasse in a fluidized bed

    SciTech Connect

    Palm, M.; Peacocke, C.; Bridgewater, A.V.; Piskorz, J.; Scott, D.S.

    1993-12-31

    Samples of Italian sorghum bagasse were dried and ground and then pyrolyzed in the Waterloo Fast Pyrolysis bench scale reactor unit. Results were typical of agricultural grasses of this kind, and resembled those obtained from similar tests of sugar cane bagasse. A maximum liquid yield (dry feed basis) of 68% by weight of dry feed was achieved, with a corresponding char yield (ash included) of 16%. The high ash content of the bagasse (9.2%) gave a char with a very high ash content ({approx}50%), with calcium as the most abundant cation. Yields of hydroxyacetaldehyde were comparable to those obtained from softwoods. Deionized bagasse gave significant yields of anhydrosugars on pyrolysis. Sorghum bagasse appears to be a suitable feedstock, either for pyrolysis to yield an alternative fuel oil, or after pretreatment and pyrolysis, to yield a solution of fermentable sugars.

  11. Sugarcane as a renewable resource

    SciTech Connect

    Clarke, M.A.; Edye, L.A.

    1995-12-01

    Sugarcane (Saccharum officinarum) is grown, generally as a perennial crop, in tropical and subtropical areas; some 750 million tonnes are produced each year. Food, feed and energy are the major products of the sugarcane plant; sugarcane fiber, bagasse, fuels the cane processing plants and provides electricity to local grids through cogeneration. A range of chemicals and polymers is available from process streams and sugars. Microbial products are discussed in the comparison paper on sugarbeet. Chemical transformations reviewed herein include production of sucrose mono-, di- and poly-esters, polyurethanes, carboxylic acid derivatives, and thermally stable polymers. Processes and product will be reviewed.

  12. Effects of aminopropyltriethoxysilane (γ-APS) on tensile properties and morphology of polypropylene (PP), recycle acrylonitrile butadiene rubber (NBRr) and sugarcane bagasse (SCB) composites

    NASA Astrophysics Data System (ADS)

    Santiagoo, Ragunathan; Omar, Latifah; Zainal, Mustaffa; Ting, Sam Sung; Ismail, Hanafi

    2015-07-01

    The performance of sugarcane baggase (SCB) treated with γ-APS filled polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) biocomposites were investigated. The composites with different filler loading ranging from 5 to 30 wt % were prepared using heated two roll mill by melt mixing at temperature of 180 °C. Tensile properties of the PP/NBRr/SCB composites which is tensile strength, Young Modulus and elongation at break were investigated. Increasing of treated SCB filler loading in PP/NBRr/SCB composites have increased the Young modulus however decreased the tensile strength and elongation at break of the PP/NBRr/SCB composites. From the results, γ-APS treated SCB composites shown higher tensile strength and Young Modulus but lower elongation at break when compared to the untreated SCB composites. This is due to the stronger bonding between γ-APS treated SCB with PP/NBRr matrices. These findings was supported by micrograph pictures from morphological study. SCB filler treated with γ-APS has improved the adhesion as well as gave strong interfacial bonding between SCB filler and PP/NBRr matrices which results in good tensile strength of PP/NBRr/SCB composites.

  13. Sugarcane rice residue biochars and their applications

    NASA Astrophysics Data System (ADS)

    Wang, J. J.

    2014-12-01

    Sugarcane production in U.S. involves either pre-harvest burning or after-harvest burning of the residue. Approximately 70-90% of the dry matter of harvested sugarcane trash is lost through open field burning. This practice has caused considerable concerns over air quality and soil sustainability. We propose an alternative conservation approach to convert the sugarcane residue to biochar and used as soil amendment to conserve carbon and potentially improve soil fertility. In this study, fundamental properties of biochars made from sugarcane residue along with rice residues were tested for agronomic and environmental benefits. Sugarcane and rice harvest residues and milling processing byproducts bagasse and rice husk were converted to biochars at different pyrolysis temperatures and characterized. In general, sugarcane leave biochar contained more P, K, Ca and Mg than sugarcane bagasse biochar. Rice straw biochar had more S, K Ca but less P than rice husk biochar. Both biochars had higher available fraction of total P than that of total K. Sugarcane leave biochar converted at 450oC was dominated with various lignin derived phenols as well as non-specific aromatic compounds whereas bagasse biochar was with both lignin derived phenol and poly aromatic hydrocarbon (PAH). Rice straw char was dominated with non-specific aromatic compounds. At 750oC, charred material was dominated with aromatic ethers while losing the aromatic C=C structures. These molecular and surface property differences likely contributed to the difference in water holding capacities observed with these biochars. On the other hand, rice straw biochars produced at different pyrolysis temperatures had no significant effect on rice germination. Soils treated with sugarcane leave/trash biochar significantly enhanced sugarcane growth especially the root length. Treating soil with either sugarcane leave or bagasse char also enhanced soil adsorption capacity of atrazine; a common herbicide used in sugarcane

  14. Sugarcane and pinewood biochar effects on activity and aerobic soil dissipation of metribuzin and pendimethalin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars were produced by pyrolysis of sugarcane bagasse (350°C and 700°C) and pine wood (400°C) and are abbreviated BC350, BC700, and WC400, respectively. Metribuzin adsorption by batch equilibrium showed that BC700 had the greatest adsorption capacity followed by BC350 and WC400. The bagasse bioch...

  15. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  16. Enhancement of enzymatic hydrolysis of sugar cane bagasse by steam explosion pretreatment

    SciTech Connect

    Kling, S.H.; Neto, C.C.; Ferrara, M.A.; Torres, J.C.R.; Magalhaes, D.B.; Ryu, D.D.Y.

    1987-01-01

    In this study, the possibility of applying a steam explosion pretreatment process to sugarcane bagasse was investigated, and the effectiveness of the pretreatment in terms of hemicellulose solubilization and enhancement of enzymatic hydrolysis was determined. The steam requirement for the pretreatment was also investigated at the pilot-plant scale, and these results are presented.

  17. Composition of Residue from Sugarcane and Related Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Louisiana, a facility near Jennings will produce cellulosic ethanol from sugarcane (Saccharum spp. hybrids) bagasse and “energy canes”. This study was done to obtain basic information on the composition of the cell wall residue left after expressing the juice in different Saccharum genotypes. Fou...

  18. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane

    PubMed Central

    2014-01-01

    Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol

  19. Sugarcane vinasse: environmental implications of its use.

    PubMed

    Christofoletti, Cintya Aparecida; Escher, Janaína Pedro; Correia, Jorge Evangelista; Marinho, Julia Fernanda Urbano; Fontanetti, Carmem Silvia

    2013-12-01

    The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical-chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal. PMID:24084103

  20. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.

    PubMed

    Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian

    2015-10-01

    Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. PMID:26196420

  1. Bagasse utilization in Cuba

    SciTech Connect

    Not Available

    1981-11-01

    Fluctuations in world sugar prices retard economic development in sugar-producing countries like Cuba, and so there is a pressing need to find alternative uses for sugar cane through the industrialization of its by-products, such as bagasse. In 1971 the United Nations Development Program began a cooperative venture with the Cuban Research Institute for Sugar Cane Derivatives to develop methods of making newsprint from bagasse. An experimental plant - Cuba 9, located 35 kilometers south of Havana, was inaugurated in May 1981. It is semi-commercial in character and has a daily capacity of 34 tonnes of newsprint and five tonnes of dissolving pulp. Pilot plants for the production of furfural and for the production of reconstituted panelboard are in operation.

  2. The Penicillium echinulatum Secretome on Sugar Cane Bagasse

    PubMed Central

    Ribeiro, Daniela A.; Cota, Júnio; Alvarez, Thabata M.; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M. P.; Pauletti, Bianca A.; Jackson, George; Pimenta, Maria T. B.; Murakami, Mario T.; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J. P.; Pradella, Jose G. C.; Paes Leme, Adriana F.; Squina, Fabio M.

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated. PMID:23227186

  3. The Penicillium echinulatum secretome on sugar cane bagasse.

    PubMed

    Ribeiro, Daniela A; Cota, Júnio; Alvarez, Thabata M; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M P; Pauletti, Bianca A; Jackson, George; Pimenta, Maria T B; Murakami, Mario T; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J P; Pradella, Jose G C; Paes Leme, Adriana F; Squina, Fabio M

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated. PMID:23227186

  4. Seasonal variations of sugarcane stalk and extraneous matter on pH, color and ash as they affect the production of high quality raw sugars (Part II)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a trend in the U.S. and world-wide to produce very high pol (VHP) and very low color (VLC) raw sugars for new refineries. In Louisiana (LA), a new refinery is requesting VHP/VLC sugar with lower ash concentrations for liquid sugar manufacture and short, medium, and long-term refinery strat...

  5. Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.).

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2014-01-01

    The effects of three sugarcane waste-products from an ethanol production plant on the fractionation of Cd and Zn in high Cd and Zn contaminated soil and metal accumulation in sugarcane (Saccharum officinarum L.) were studied, using the BCR sequential extraction and aqua regia extraction procedures. A pot experiment was performed for 4 months with four treatments: no-amendments (control), boiler ash (3% w/w), filter cake (3% w/w) and a combination of boiler ash and vinasse (1.5% + 1.5%, w/w). The results showed that all treatments reduced the most bioavailable concentrations of Cd and Zn (BCR1 + 2) in soils (4.0-9.6% and 5.5-6.3%, respectively) and metal uptake (μg) in the aboveground part of the sugarcane (up to 62% and 54% for Cd and Zn, respectively) as compared to the control. No visual symptoms of metal toxicity and no positive effect on the biomass production of sugarcane were observed. Both Cd and Zn were accumulated mainly in the underground parts of the sugarcane (root > shoot ≥ underground sett > leaf; and root > underground sett > shoot > leaf, respectively) and the translocation factors were below 1, indicating low metal uptake. The results suggested that even though sugarcane waste-products insignificantly promote sugarcane growth, they can be used in agriculture due to the low metal accumulation in sugarcane and the reduction in metal bioavailability in the soil. PMID:24217524

  6. Sugarcane pests and their management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter discusses sugarcane culture and history, describes arthropod biologies and injury, and identifies sugarcane pest management factors to consider for people interested in commercial sugarcane production. Arthropod groups include 10 orders and 40 families. Sugarcane pest management ...

  7. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content

    PubMed Central

    Vicentini, Renato; Bottcher, Alexandra; Brito, Michael dos Santos; dos Santos, Adriana Brombini; Creste, Silvana; Landell, Marcos Guimarães de Andrade; Cesarino, Igor; Mazzafera, Paulo

    2015-01-01

    Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome. PMID:26241317

  8. Lignification in Sugarcane: Biochemical Characterization, Gene Discovery, and Expression Analysis in Two Genotypes Contrasting for Lignin Content1[W

    PubMed Central

    Bottcher, Alexandra; Cesarino, Igor; Brombini dos Santos, Adriana; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Antonio dos Anjos, Ivan; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-01-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  9. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    PubMed

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP). PMID:24607160

  10. Effects of bagasse-charcoal addition to soil on nitrate leaching in calcaric soils

    NASA Astrophysics Data System (ADS)

    Kameyama, K.; Miyamoto, T.; Shinogi, Y.

    2009-12-01

    Nitrate leaching in soils is often an important aspect in agriculture. Nitrate is leached from the root zone, where plants can utilize them, by surplus rainfall because little nitrate is absorbed by soil colloids. Miyako Island (target area) is located in the subtropical zone and comprised of coral limestone with high permeability. Land surface is covered with calcaric dark red soil that is called “Shimajiri-Maji”. Since the soil has low water- and fertilizer-retaining capacity, fertilizer-derived nitrogen easily leaches from the root zone during surplus rainfall and the nitrogen utilization efficiency of crops is relatively low. Biochars, charcoal produced from pyrolysis of biomass, are known to adsorb dissolved nitrate. Sugarcane bagasse is the main biomass resource on the island because agriculture is the main industry on the island and sugarcane is cultivated in approximately 70% of the farmland. However, the adsorption characteristics of bagasse-charcoals for nitrate have not yet been clarified. The objective of this study was to evaluate the dependency of carbonization temperatures on the nitrate adsorption properties of bagasse-charcoals and the effects of bagasse-charcoal addition to the soil on NO3-N transport in the soil for optimal use of bagasse-charcoal as a soil amendment in Miyako Island. Sugarcane bagasse were air-dried and heated in a batch-type carbonization furnace at five different carbonization temperatures (400, 500, 600, 700 and 800°C) with a holding time of 2 h. Nitrate adsorption by soil and bagasse-charcoals at each carbonization temperature was measured by the batch equilibrium technique. NO3-N transport behavior in charcoal-amended soils (rates of charcoal addition: 0, 5 and 10 wt %) was evaluated in the column experiments. The breakthrough curves of NO3-N concentrations in the effluents from the bottom of the columns were analyzed with a convective-dispersion model. The model described one-dimensional transport of a sorbing solute

  11. Sugarcane ripener update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical sugarcane ripeners glyphosate and trinexapac-ethyl play an important role in the Louisiana sugarcane industry. Their use allows for earlier starts to the sugarcane harvest season, increase recoverable sucrose (TRS) at the mill, and increases harvest efficiency. Response to ripeners oft...

  12. Exploiting sugarcane for energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energycane can be described as sugarcane varieties with fiber content that is higher than the level seen in sugarcane varieties used for commercial sugar production. This fiber content is composed of cellulose, hemicellulose, and lignin. Approximately 70 percent of the dry weight of sugarcane is cel...

  13. The development of multi-objective optimization model for excess bagasse utilization: A case study for Thailand

    SciTech Connect

    Buddadee, Bancha Wirojanagud, Wanpen Watts, Daniel J. Pitakaso, Rapeepan

    2008-08-15

    In this paper, a multi-objective optimization model is proposed as a tool to assist in deciding for the proper utilization scheme of excess bagasse produced in sugarcane industry. Two major scenarios for excess bagasse utilization are considered in the optimization. The first scenario is the typical situation when excess bagasse is used for the onsite electricity production. In case of the second scenario, excess bagasse is processed for the offsite ethanol production. Then the ethanol is blended with an octane rating of 91 gasoline by a portion of 10% and 90% by volume respectively and the mixture is used as alternative fuel for gasoline vehicles in Thailand. The model proposed in this paper called 'Environmental System Optimization' comprises the life cycle impact assessment of global warming potential (GWP) and the associated cost followed by the multi-objective optimization which facilitates in finding out the optimal proportion of the excess bagasse processed in each scenario. Basic mathematical expressions for indicating the GWP and cost of the entire process of excess bagasse utilization are taken into account in the model formulation and optimization. The outcome of this study is the methodology developed for decision-making concerning the excess bagasse utilization available in Thailand in view of the GWP and economic effects. A demonstration example is presented to illustrate the advantage of the methodology which may be used by the policy maker. The methodology developed is successfully performed to satisfy both environmental and economic objectives over the whole life cycle of the system. It is shown in the demonstration example that the first scenario results in positive GWP while the second scenario results in negative GWP. The combination of these two scenario results in positive or negative GWP depending on the preference of the weighting given to each objective. The results on economics of all scenarios show the satisfied outcomes.

  14. Self-heating and drying in two-dimensional bagasse piles

    NASA Astrophysics Data System (ADS)

    Sexton, M. J.; Macaskill, C.; Gray, B. F.

    2001-12-01

    This paper describes a two-dimensional model for self-heating and changes in water levels in bagasse piles of constant rectangular or triangular cross section. (Bagasse is the residue, mainly cellulose, that remains after sugar has been extracted from sugar-cane.) After milling, the bagasse has almost 50% water by weight, as hot water is used to remove the last of the sugar. The bagasse can be used as fuel in electrical power stations, but needs to be dried out before use. This paper discusses the way in which the drying out of a pile depends on the ambient conditions, and the shape and size of the pile. Accordingly, the energy equation, and equations for liquid water, water vapour and oxygen are solved numerically using the method of lines. The equations include terms describing heat conduction, diffusion of water vapour and oxygen, condensation and evaporation and an Arrhenius self-heating term. In addition, recent measurements show that there is also self-heating due to the presence of water in the bagasse, with a maximum effect near 60 °C, which is modelled by a modified Arrhenius expression. The local maximum in the heat release curve for the problem leads to approximate steady-state behaviour on short time scales that eventually is lost as the pile dries out. This interesting physical behaviour motivates an approximate analytical model for the rate at which liquid water is reduced in the pile. Analytical and numerical results are presented for a variety of pile configurations and some fairly general conclusions are drawn.

  15. Storage and conservation of bagasse

    SciTech Connect

    Cusi, D.S.

    1980-08-01

    Storage of bagasse produced at harvest time becomes necessary when it is used for operations that are carried out continuously throughout the year, such as pulp and paper production. The sugar cane tissues suffer severe mechanical treatment in the sugar mills crushers, are further damaged in depithers and in many cases degraded while in storage. The processes of degradation are examined and handling and storage procedures are discussed which will minimize the quality and material losses.

  16. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods.

    PubMed

    Dias, Marina O S; da Cunha, Marcelo Pereira; Maciel Filho, Rubens; Bonomi, Antonio; Jesus, Charles D F; Rossell, Carlos E V

    2011-08-01

    Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive. PMID:20838849

  17. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGESBeta

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  18. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    PubMed

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. PMID:25563958

  19. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  20. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    PubMed

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  1. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    PubMed Central

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM−1), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  2. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.

    PubMed

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  3. Herbicides as ripeners for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical ripening of sugarcane is an important component to profitable sugar production in the U.S. as well as other sugarcane industries throughout the world. Harvesting of sugarcane often begins before the sugarcane reaches a desirable level of maturity. This is especially true in the Louisiana ...

  4. Sugarcane and Energycane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Energycane” is a term that is used to describe sugarcane grown solely for the production of renewable energy. A Type I energycane has somewhat lower sugar content (10-14%) and higher fiber content (14-20%) than a commercial sugarcane cultivar bred for sugar production. In contrast, a Type II energy...

  5. Sugarcane Rusts in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane orange rust symptoms were first observed in Florida in June 2007 on cultivar CP 80-1743. The causal agent, Puccinia kuehnii, was subsequently verified morphologically and molecularly constituting the first confirmed report of sugarcane orange rust in the Western Hemisphere. Orange rust was...

  6. Sugarcane insect update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect are an important group of pests affecting sugarcane production. Agricultural consultants play an important role is assisting sugarcane farmers to choose the most appropriated means of managing damaging infestations of insects in their crop. In this presentation, information will be presented ...

  7. Categorizing sugarcane cultivar resistance to the sugarcane aphid and yellow sugarcane aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in the U.S. is chiefly colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari, and the yellow sugarcane aphid, Sipha flava, which vector economically important viruses of the crop. Greenhouse experiments were conducted to categorize commercial sugarcane cultivars for the...

  8. Categorizing Sugarcane Cultivar Resistance to the Sugarcane Aphid and Yellow Sugarcane Aphid (Hemiptera: Aphidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...

  9. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.

    PubMed

    Ding, Wenchuan; Dong, Xiaoling; Ime, Inyang Mandu; Gao, Bin; Ma, Lena Q

    2014-06-01

    The characteristics and mechanisms of Pb sorption by biochars produced from sugarcane bagasse at 250, 400, 500, and 600 °C were examined. The Pb sorption isotherms, kinetics and desorption were investigated. All biochars were effective in Pb sorption and were well described by Langmuir isotherm model and pseudo-second-order kinetic model. The maximum sorption capacity decreased from 21 to 6.1 mg g(-1) as temperature increased from 250 to 600 °C. The Pb sorption was rapid initially, probably controlled by cation exchange and complexation and then slowed down, which might be due to intraparticle diffusions. FTIR data and kinetic models suggested that oxygen functional groups were probably responsible for the high Pb sorption onto low temperature biochars (250 and 400 °C) whereas intraparticle diffusion was mainly responsible for low Pb sorption onto high temperature biochars (500 and 600 °C). Decreased phosphorus concentration indicated that P-induced Pb precipitation was also responsible for Pb sorption. Pyrolysis temperature significantly affected biochar properties and played an important role in Pb sorption capacity and mechanisms by biochars. PMID:24393563

  10. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization.

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2013-05-01

    Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil. PMID:23511210

  11. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  12. Herbicides as ripeners for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the start of the sugarcane harvest season in Louisiana, late-September or early-October, sucrose content in sugarcane is relatively low compared to late in the harvest season. In order for early-harvested sugarcane to be profitable, chemicals, primarily herbicides, have been evaluated for their e...

  13. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C. P.; Umar, Ahmad

    2014-09-01

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon

  14. Determining seed transmission of sugarcane mosaic virus and sugarcane yellow leaf virus in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importation of sugarcane germplasm is essential to diversify sugarcane germplasm used in United States breeding programs. Foreign germplasm is received primarily as vegetative cuttings. Current permit requirements for importing sugarcane seed into the United States are impractical and limit the ...

  15. Techno-economic analysis for a sugarcane biorefinery: Colombian case.

    PubMed

    Moncada, Jonathan; El-Halwagi, Mahmoud M; Cardona, Carlos A

    2013-05-01

    In this paper a techno-economic analysis for a sugarcane biorefinery is presented for the Colombian case. It is shown two scenarios for different conversion pathways as function of feedstock distribution and technologies for sugar, fuel ethanol, PHB, anthocyanins and electricity production. These scenarios are compared with the Colombian base case which simultaneously produce sugar, fuel ethanol and electricity. A simulation procedure was used in order to evaluate biorefinery schemes for all the scenarios, using Aspen Plus software, that include productivity analysis, energy calculations and economic evaluation for each process configuration. The results showed that the configuration with the best economic, environmental and social performance is the one that considers fuel ethanol and PHB production from combined cane bagasse and molasses. This result served as the basis to draw recommendations on technological and economic feasibility as well as social aspects for the implementation of such type of biorefinery in Colombia. PMID:23021947

  16. Improving Sugarcane Flood Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) in the Everglades Agricultural Area (EAA) of Florida is often exposed to high water tables and periodic floods. Growers are concerned that elevated water tables for prolonged periods and during certain phases of growth reduce yields. However, these wet conditions help co...

  17. Sugarcane Rust Inoculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane rusts, brown (caused by Puccinia melanocephala) and orange (caused by P. kuehnii), are agronomically important diseases in Florida. Cultivar resistance is the best means of managing these diseases. Unfortunately, natural infection of brown rust is not always efficient in determining resist...

  18. Herbicide effects on sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of all the areas of the world where sugarcane is grown, Louisiana lies furthest from the Equator. As such, its growing season is the shortest as it is affected by frost in the late–winter (February/March) at the start of the growing season and the fear of freezing temperatures during the harvest se...

  19. Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment

    SciTech Connect

    Encinar, J.M.; Beltran, F.J.; Ramiro, A.; Gonzalez, J.F.

    1997-10-01

    Catalyzed pyrolysis of grape and olive bagasse under different experimental conditions has been studied. Variables investigated were temperature and type and concentration of catalysts. Experiments were carried out in an isothermal manner. Products of pyrolysis are gases (H{sub 2}, CO, CO{sub 2}, and CH{sub 4}), liquids (methanol, acetone, furfurylic alcohol, phenol, furfural, naphthalene, and o-cresol), and solids (chars). Temperature is a significant variable, yielding increases of fixed carbon content, gases, and to a lesser extent, ash percentage. Catalyst presence also yields increases of solid phase content, but the amount of liquid components decrease. Among catalysts applied those of Fe and Zn are the most advisable to obtain gases. Chemical treatment of bagasses with sulfuric or phosphoric acid washing leads to lower char yields, although fixed carbon content is higher and ash presence diminishes with respect to catalyst pyrolysis without chemical pretreatment. A pyrolysis kinetic study based on gas generation from thermal decomposition of residues has been carried out. From the model proposed, rate constants for the formation of each gas, reaction order of the catalyst, and activation energies were determined.

  20. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  1. Biomass energy opportunities on former sugarcane plantations in Hawaii

    SciTech Connect

    Phillips, V.D.; Tvedten, A.E.; Lu, W.

    1995-11-01

    Electricity produced from burning sugarcane bagasse has provided as much as 10 percent of Hawaii`s electricity supply in the past. As sugarcane production has ceased on the islands of Oahu and Hawaii and diminished on Maui and Kauai, the role of biomass energy will be reduced unless economically viable alternatives can be identified. An empirical biomass yield and cost system model linked to a geographical information system has been developed at the University of Hawaii. This short-rotation forestry decision support system was used to estimate dedicated biomass feedstock supplies and delivered costs of tropical hardwoods for ethanol, methanol, and electricity production. Output from the system model was incorporated in a linear programming optimization model to identify the mix of tree plantation practices, wood processing technologies, and end-products that results in the highest economic return on investment under given market situations. An application of these decision-support tools is presented for hypothetical integrated forest product systems established at two former sugarcane plantations in Hawaii. Results indicate that the optimal profit opportunity exists for the production of medium density fibreboard and plywood, with annual net return estimates of approximately $3.5 million at the Hamakua plantation on the island of Hawaii and $2.2 million at the Waialua plantation on Oahu. Sensitivity analyses of the effects of different milling capacities, end-product market prices, increased plantation areas, and forced saw milling were performed. Potential economic credits for carbon sequestration and wastewater effluent management were estimated. While biofuels are not identified as an economical viable component, energy co-products may help reduce market risk via product diversification in such forestry ventures.

  2. Unique cover crops for Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane production practices provide a tremendous opportunity for the use of cover crops following the final sugarcane harvest in the fall of one year and prior to replanting sugarcane during the summer of the next year. A Louisiana sugarcane field is typically replanted every four years...

  3. Sugarcane Improvement Through Breeding and Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  4. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  5. Breeding sugarcane for cold climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Sugarcane Research Unit’s variety development program provides the local sugarcane industry with early maturing varieties containing the “Ho” designations that are adapted to the temperate climate of the region. In recent studies, we have used a growth chamber to expose diverse wild va...

  6. Registration of "CPSG-3481 Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CPSG-3481’ (Reg. No. , PI 676023) sugarcane (a complex hybrid of Saccharum spp.) was a new cultivar developed through cooperative research conducted by the Shakarganj Sugar Research Institute in Pakistan and the USDA-ARS Sugarcane Field Station in USA, and released to growers for loam soils...

  7. Sugarcane Diseases: Futuristic Management Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane pathology and disease control practices are changing due to social, economic and technological events. Sugarcane is becoming more important economically because of the increasing price and demand for sugar and its use for bio-energy. These pressures make the control of diseases more import...

  8. Sugarcane smut and its control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane smut, caused by Sporisoriom scitamineum, is a major disease of sugarcane that is controlled by cultivar resistance. However the level of resistance must be higher in hot dry environments such as in Okinawa, Japan for adequate control. Since smut is favored by the hot dry weather, the br...

  9. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods

    NASA Astrophysics Data System (ADS)

    Rahimi Kord Sofla, M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J.

    2016-09-01

    This study compared the fundamental properties of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) extracted from sugarcane bagasse. Conventional hydrolysis was used to extract CNC while ball milling was used to extract CNF. Images generated by scanning electron microscope and transmission electron microscope showed CNC was needle-like with relatively lower aspect ratio and CNF was rope-like in structure with higher aspect ratio. Fourier-transformed infrared spectra showed that the chemical composition of nanocellulose and extracted cellulose were identical and quite different from bagasse. Dynamic light scattering studies showed that CNC had uniform particle size distribution with a median size of 148 nm while CNF had a bimodal size distribution with median size 240 ± 12 nm and 10 μm. X-ray diffraction showed that the amorphous portion was removed during hydrolysis; this resulted in an increase in the crystalline portion of CNC compared to CNF. Thermal degradation of cellulose initiated at a much lower temperature, in the case of the nanocrystals while the CNF prepared by ball milling were not affected, indicating higher thermal stability.

  10. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.