Science.gov

Sample records for sugarcane bagasse ash

  1. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  2. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  3. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.

    PubMed

    Sales, Almir; Lima, Sofia Araújo

    2010-06-01

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement. PMID:20163947

  4. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel.

    PubMed

    Teixeira, S R; Pena, A F V; Miguel, A G

    2010-05-01

    Brazil is the largest worldwide producer of alcohol and sugar from sugar-cane and has an extensive alternative program for car fuel which is unique. The objective of this work is to offer one management option of a solid residue produced by this industrial segment. The pressed sugar-cane bagasse is burned to produce steam and electricity by cogeneration. The combustion yields both bottom and fly ashes which contain high amounts of silicon oxide as a major component. Fly ash which contains a high volume (>30% by weight) of charcoal was used in this work. The ash was sieved to separate the thick charcoal from inorganic materials which are concentrated in the thinner fraction. The briquettes were hand pressed using charcoal mixed with a binder (starch) obtained from cassava flour (a tropical root). The results (density, mechanical resistance) obtained with 8% by weight of starch binder are presented here. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to characterize the ashes and the briquettes. The results show that sugar-cane bagasse fly ash (SCBFA) can be used to produce briquettes with an average density of 1.12gcm(-3) and an average calorific value of 25,551kJ/kg. PMID:20133118

  5. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  6. Bagasse production from high fibre sugarcane hybrids

    SciTech Connect

    Giamalva, M.J.; Clarke, S.; Bischoff, K.

    1981-08-01

    Since 1975, 90% of the sugarcane bagasse produced by the Louisiana sugar industry is now used as a fuel for raw sugar production. Two sugarcane hybrid varieties which are too low in sucrose to be acceptable as commercial sugarcane varieties were tested for their biomass yield. Yields of over 100 tons of total biomass were obtained, resulting in over 30 tons of dry matter per acre per year, using conventional practices. This material could be grown on sub-optimal land in sufficient quantities to meet part of the needs of the sugarcane by-product industries who have been deprived of their source of bagasse.

  7. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  8. Growth of cellulolytic bacteria on sugarcane bagasse

    SciTech Connect

    Enriquez, A.

    1981-07-01

    The growth behavior of Cellulomonas has been examined in fermentation systems using alkali pretreated sugarcane bagasse. During the batch operation diauxic growth was found which would not seem to be explained by catabolic repression. The relative variation of cellulose and hemicellulose during the fermentation process suggests the initial utilization of easily degradable substrate, i.e., hemicellulose and amorphous cellulose, until their concentration becomes limiting, followed by utilization of the crystalline cellulose. The conversion of substrate was 70% with a yield of 0.355 g of biomass per gram of bagasse feed. (Refs. 13).

  9. Fed-batch cultivation of Cellulomonas on sugarcane bagasse pith

    SciTech Connect

    Rodriguez, H.; Enriquez, A.

    1985-02-01

    A high biomass concentration (19.9 g/L) was obtained with the fed-batch cultivation of Cellulomonas on pretreated sugarcane bagasse pith. Similar results in biomass concentration, yield, and substrate consumption were obtained with the discontinuous feed of bagasse as with discontinuous feed supplemented with a partial continuous addition of salts. Two or more growth phases were detected, probably caused by the differential utilization of bagasse components. An acceptably low content of bagasse components remained in the biomass after separation.

  10. An experimental electrical generating unit using sugarcane bagasse as fuel

    SciTech Connect

    Elkoury, J.M.

    1980-12-01

    The purpose of this paper is to present the alternatives that exist within the Puerto Rico Electric Power Authority to develop an experimental electrical generating unit which would use sugarcane bagasse as fuel. The study includes a comparison between the sugarcane bagasse and other fuels, the location of an experimental electrical generating unit with respect to the sugarcane fields, the transportation of the bagasse and the generating equipment available for this project in terms of its fisical condition. This latter part would include any modifications in the equipment which we would have to undertake in order to carry out the study.

  11. Ozone decay on stainless steel and sugarcane bagasse surfaces

    NASA Astrophysics Data System (ADS)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  12. Optimizing hydrothermal pretreatment of sugarcane bagasse using response surface methodology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse was characterized as a feedstock for production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160-200 deg C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohy...

  13. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC. PMID:24156757

  14. Isolation of a gastroprotective arabinoxylan from sugarcane bagasse.

    PubMed

    Mellinger-Silva, Caroline; Simas-Tosin, Fernanda F; Schiavini, Daniele N; Werner, Maria Fernanda; Baggio, Cristiane H; Pereira, Isabela T; da Silva, Luisa M; Gorin, Philip A J; Iacomini, Marcello

    2011-11-01

    After industrial processing, one-third of sugarcane culms is converted into residual bagasse. The xylan-rich hemicellulose components of the bagasse were extracted with hot aqueous alkali (AX-CRUDE). Approximately 82% of the extracted hemicelluloses was precipitated with ethanol (AX-PET). Both AX-CRUDE and AX-PET contained an arabinoxylan as confirmed by 13C NMR and methylation analysis. Fraction AX-PET was fed to female Wistar rats with ethanol-induced gastric lesions. Oral administrations of 30, 100, and 300 mg/kg reduced the gastric lesion area by over 50%, and replenished ethanol-induced depletion of glutathione. The polysaccharide also increased mucus production by over 70%, indicating its cytoprotective action on experimentally induced gastric ulcers. These findings are significant, since a biologically active compound can be extracted in high yields from an abundant, readily available residue. PMID:21945160

  15. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). PMID:26210150

  16. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.

    PubMed

    Zhao, Yi; Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2015-10-15

    Sugarcane bagasse contains natural compositions that can significantly inhibit food-borne pathogens growth. In the present study, the phenolic content in sugarcane bagasse was detected as higher than 4 mg/g dry bagasse, with 470 mg quercetin/g polyphenol. The sugarcane bagasse extract showed bacteriostatic activity against the growth of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salomonella typhimurium. Additionally, the sugarcane bagasse extract can increase the electric conductivity of bacterial cell suspensions causing cellular leaking of electrolytes. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis suggested the antibacterial mechanism was probably due to the damaged cellular proteins by sugarcane bagasse extract. The results of scanning electron microscopy and transmission electron microscopy showed that the sugarcane bagasse extract might change cell morphology and internal structure. PMID:25952848

  17. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose. PMID:26241838

  18. Study of structural modification of sugarcane bagasse employing hydrothermal treatment followed by atmospheric pressure plasmas treatment

    NASA Astrophysics Data System (ADS)

    Amorim, Jayr; Pimenta, Maria Teresa; Gurgel, Leandro; Squina, Fabio; Souza-Correa, Jorge; Curvelo, Antonio

    2009-10-01

    Nowadays, the cellulosic ethanol is an important alternative way to many liquid biofuels using renewable biomass rich in polysaccharides. To be used as feedstock for ethanol production, the bagasse needs to be pretreated in order to expose its main constitutive. The present work proposes the use of different pretreatment processes to better expose the cellulose for hydrolysis and fermentation. In the present paper the sugarcane bagasse was submitted to a hydrothermal pretreatment followed by atmospheric pressure plasmas (APPs). An RF microplasma torch was employed as APPs in Ar and Ar/O2 mixing. The bagasse was treated in discharge and post-discharge regions. The position and time of treatment was varied as well as the gas mixture. The quantity of polysaccharides was determined by using high performance liquid chromatography. It was observed the release of a fraction of the hemicelluloses in the sugarcane bagasse. Modifications in the surface of the sugarcane fibers were monitored by employing scanning electron microscopy.

  19. The surface reactivity and implied toxicity of ash produced from sugarcane burning.

    PubMed

    Le Blond, Jennifer S; Tomatis, Maura; Horwell, Claire J; Dunster, Christina; Murphy, Fiona; Corazzari, Ingrid; Grendene, Francesca; Turci, Francesco; Gazzano, Elena; Ghigo, Dario; Williamson, Ben J; Oppenheimer, Clive; Fubini, Bice

    2014-05-01

    Sugarcane combustion generates fine-grained particulate that has the potential to be a respiratory health hazard because of its grain size and composition. In particular, conversion of amorphous silica to crystalline forms during burning may provide a source of toxic particles. In this study, we investigate and evaluate the toxicity of sugarcane ash and bagasse ash formed from commercial sugarcane burning. Experiments to determine the main physicochemical properties of the particles, known to modulate biological responses, were combined with cellular toxicity assays to gain insight into the potential reactions that could occur at the particle-lung interface following inhalation. The specific surface area of the particles ranged from ?16 to 90 m(2) g(-1) . The samples did not generate hydroxyl- or carbon-centered radicals in cell-free tests. However, all samples were able to 'scavenge' an external source of hydroxyl radicals, which may be indicative of defects on the particle surfaces that may interfere with cellular processes. The bioavailable iron on the particle surfaces was low (2-3 ?mol m(-2) ), indicating a low propensity for iron-catalyzed radical generation. The sample surfaces were all hydrophilic and slightly acidic, which may be due to the presence of oxygenated (functional) groups. The ability to cause oxidative stress and membrane rupture in red blood cells (hemolysis) was found to be low, indicating that the samples are not toxic by the mechanisms tested. Cytotoxicity of sugarcane ash was observed, by measuring lactate dehydrogenase release, after incubation of relatively high concentrations of ash with murine alveolar macrophage cells. All samples induced nitrogen oxide release (although only at very high concentrations) and reactive oxygen species generation (although the bagasse samples were less potent than the sugarcane ash). However, the samples induced significantly lower cytotoxic effects and nitrogen oxide generation when compared with the positive control. PMID:22431484

  20. Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis.

    PubMed

    Braga, Cleiton Márcio Pinto; Delabona, Priscila da Silva; Lima, Deise Juliana da Silva; Paixão, Douglas Antônio Alvaredo; Pradella, José Geraldo da Cruz; Farinas, Cristiane Sanchez

    2014-10-01

    Accessory enzymes that assist biomass degradation could be used to improve the recovery of fermentable sugar for use in biorefineries. In this study, different fungal strains isolated from the Amazon rainforest were evaluated in terms of their ability to produce feruloyl esterase (FAE) and xylanase enzymes, and an assessment was made of the contributions of the enzymes in the hydrolysis of pretreated sugarcane bagasse. In the selection step, screening using plate assays was followed by shake flask submerged cultivations. After carbon source selection and cultivation in a stirred-tank bioreactor, Aspergillusoryzae P21C3 proved to be a promising strain for production of the enzymes. Supplementation of a commercial enzyme preparation with 30% (v/v) crude enzymatic complex from A. oryzae P21C3 increased the conversion of cellulose derived from pretreated sugarcane bagasse by 36%. Supplementation with FAE and xylanase enzymes produced on-site can therefore be used to improve the hydrolysis of sugarcane bagasse. PMID:25151076

  1. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse.

    PubMed

    Griffin, G J

    2011-09-01

    Experiments were conducted by thermal gravimetric analysis (TGA) and cone calorimetry to measure the affect of three fire retardants (ammonium sulphate, boric acid and borax) on the mass-loss rate and combustion characteristics of sugar-cane bagasse. Compared with untreated bagasse, bagasse impregnated with aqueous solutions of 0.1-0.5M fire retardants exhibited an increase in char mass production from 16% up to 41% when pyrolysed and up to a 41% reduction in total heat release (THR) during combustion. Char mass production was only a weak function of additive concentration over the range of concentrations (0.1-0.5M) used. Combining the additives did not show any synergistic effects for char production or heat release rate (HRR). Treatment of bagasse by these chemicals could be useful to enhance biochar yields in pyrolysis processes or to reduce flammability risk in composites containing bagasse. PMID:21680181

  2. Compressive strength and interfacial transition zone of sugar cane bagasse ash concrete: A comparison to the established pozzolans

    NASA Astrophysics Data System (ADS)

    Hussein, Asma Abd Elhameed; Shafiq, Nasir; Nuruddin, Muhd Fadhil

    2015-05-01

    Agricultural and industrial by-products are commonly used in concrete production as cement replacement materials (CRMs) or as admixtures to enhance both fresh and hardened properties of concrete as well as to save the environment from the negative effects caused by their disposal. Sugar Cane Bagasse Ash (SCBA) is one of the promising CRMs, it is used as a partial replacement of cement for producing concrete; properties of such concrete depend on the chemical composition, fineness, and burning temperature of SCBA. Approximately 1500 Million tons of sugarcane are annually produced over all the world which leave about 40-45% bagasse after juice crushing for sugar industry giving an average annual production of about 600 Million tons of bagasse as a waste material. This paper presents some findings on the effect of SCBA on workability, compressive strength and microstructure of interfacial zone of concrete and its performance is compared to some of the established CRMs namely Densified Silica Fume, Fly Ash and Microwave Incinerated Rice Husk Ash.

  3. PROCESS DESCRIPTION AND PRODUCT COST TO MANUFACTURE SUGARCANE BAGASSE-BASED GRANULAR ACTIVATED CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process flow diagrams and manufacturing costs were developed to convert sugarcane bagasse to granular activated carbon. Unit operations in the conversion process consisted of milling, pelletization, pyrolysis/activation, washing with acid and water, and drying/screening/collecting of the final prod...

  4. Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse was characterized as a feedstock for production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160-200 deg C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohy...

  5. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis.

    PubMed

    de Almeida, Maíra Nicolau; Guimarães, Valéria Monteze; Bischoff, Kenneth M; Falkoski, Daniel Luciano; Pereira, Olinto Liparini; Gonçalves, Dayelle S P O; de Rezende, Sebastião Tavares

    2011-09-01

    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L -arabinose, D -xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest ?-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using D -xylose as carbon source. A. zeae EA0802 has highest ?-arabinofuranosidase and ?-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, ?-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. ?-Arabinofuranosidase and ?-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose. PMID:21573756

  6. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L-arabinose, D-xylose, oat spelt xylan, sugarcane bagasse, or...

  7. Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose at Varying Solids Concentration

    E-print Network

    California at Riverside, University of

    Xylose Monomer and Oligomer Yields for Uncatalyzed Hydrolysis of Sugarcane Bagasse Hemicellulose is mostly lignin plus lesser amounts of minerals, oils, and other com- pounds.4 Enzymatic hydrolysis chemicals.3,5 Pretreatment is essential to realize high enzymatic hydrolysis yields. Although no one

  8. Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification

    SciTech Connect

    Morjanoff, P.J.; Gray, P.P.

    1987-04-01

    The technique of autohydrolysis steam explosion was examined as a means for pretreatment of sugarcane bagasse. Treatment conditions were optimized so that following enzymatic hydrolysis, pretreated bagasse would give 65.1 g sugars/100 g starting bagasse. Released sugars comprised 38.9 g glucose, 0.6 g cellobiose, 22.1 g xylose, and 3.5 g arabinose, and were equivalent to 83% of the anhydroglucan and 84% of the anhydroxylan content of untreated bagasse. Optimum conditions were treatment for 30 s with saturated steam at 220/sup 0/C with a water-to-solids ratio of 2 and the addition of 1 g H/sub 2/SO/sub 4//100 g dry bagasse. Bagasse treated in this manner was not inhibitory to fermentation by Saccharomyces uvarum except at low inoculum levels when fermentation time was extended by up to 24 h. Pretreated saccharified bagasse was inhibitory to Pachysolen tannophilus and this was attributed to the formation of acetate from the hydrolysis of acetyl groups present in the hemicullulose. The major advantage of the pretreatment is the achievement of high total sugar yield with moderate enzyme requirement and only minor losses due to sugar decomposition.

  9. Potential of sugarcane bagasse (agro-industrial waste) for the production of Bacillus thuringiensis israelensis.

    PubMed

    Poopathi, S; Mani, C; Rajeswari, G

    2013-09-01

    Sugarcane bagasse is a renewable resource that can be used to produce biopesticide for the control of mosquito vectors. In the present study, we demonstrated that cane processed bagasse could be used to produce Bacillus thuringiensis serovar israelensis (Bti) for control of mosquito vectors viz: Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Biochemical studies indicated that the Bti spore/crystal toxins produced from the test culture medium (Bagasse, BG + Soybean, SB) are higher than that from the conventional medium (Nutrient Yeast Extract Salt Medium, NYSM). The bacteria produced in these media (NYSM, BG, SB, BG+SB) were bioassayed against the mosquito species and the toxic effect was found to be effective. Cost-effective analysis indicates that the use of BG and SB, as bacterial culture medium, is successful and economical, for production of this mosquito pathogenic bacillus. PMID:24189680

  10. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse.

    PubMed

    Ashfaque, Mohammad; Solomon, Sushil; Pathak, Neelam

    2014-01-01

    Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5. PMID:25489168

  11. Study of thermal treatment combined with radiation on the decomposition of polysaccharides in sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Ribeiro, M. A.; Oikawa, H.; Mori, M. N.

    2013-03-01

    Sugarcane bagasse pretreatment is a physical and chemical process that reduces the crystalline structure and disrupts the hydrogen bonding of cellulose to improve the accessibility to hydrolytic depolymerization reactions. The combination of pretreatment technologies intends to decrease the severity of the processes and to avoid excessive sugar degradation and formation of toxic by-products. An effective pretreatment preserves the pentose fractions and limits the formation of degradation products that inhibits the growth of fermentative microorganisms. This study presents the evaluation of the cleavage of polysaccharides from sugarcane bagasse using ionizing radiation combined with thermal and diluted acid treatment to further enzymatic or chemical hydrolysis of cellulose. Samples of sugarcane bagasse were irradiated using a Radiation Dynamics electron beam accelerator with 1.5 MeV and 37 kW, with different absorbed doses, and then were submitted to thermal and acid (0.1% sulfuric acid, m/m) hydrolysis for 10, 20 and 40 min at 180 °C. Taking into account the sugars and by-products liberated in these treatments the conversion rates of cellulose and hemicelluloses were calculated.

  12. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse

    PubMed Central

    Ashfaque, Mohammad; Solomon, Sushil; Pathak, Neelam

    2014-01-01

    Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5. PMID:25489168

  13. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  14. Construction of individual, fused, and co-expressed proteins of endoglucanase and ?-glucosidase for hydrolyzing sugarcane bagasse.

    PubMed

    Kurniasih, Sari Dewi; Alfi, Almasul; Natalia, Dessy; Radjasa, Ocky Karna; Nurachman, Zeily

    2014-01-01

    At least a combination of endoglucanase (EglII) and ?-glucosidase (BglZ) is required for hydrolyzing crystalline cellulose. To understand the catalytic efficiency of combination enzymes for converting biomass to sugars, EglII and BglZ were constructed in the form of individual, fused as well as co-expression proteins, and their activities for hydrolyzing sugarcane bagasse were evaluated. The genes, eglII isolated from Bacillus amyloliquefaciens PSM3.1 earlier and bglZ from B. amyloliquefaciens ABBD, were expressed extracellularly in Bacillus megaterium MS941. EglII exhibited both exoglucanase and endoglucanase activities, and BglZ belonging to the glycoside hydrolase 1 family (GH 1) showed ?-glucosidase activity. A combination of EglII and BglZ showed activity on substrates Avicel, CMC and sugarcane bagasse. Specifically for hydrolyzing sugarcane bagasse, fused protein (fus-EglII+BglZ), co-expression protein (coex-BglZ+EglII), and mixed-individual protein (mix-EglII+BglZ) produced cellobiose as the main product, along with a small amount of glucose. The amount of reducing sugars released from the hydrolyzing bleached sugarcane bagasse (BSB) using fus-EglII+BglZ and mix-EglII+BglZ was 2.7- and 4.2-fold higher, respectively, than steamed sugarcane bagasse (SSB), indicating the synergetic enzymes worked better on treated sugarcane bagasse. Compared with fus-EglII+BglZ and mix-EglII+BglZ, coex-BglZ+EglII released more mol reducing sugars from SSB, indicating the enzymes were potential for biomass conversion. Additionally, coex-BglZ+EglII acted on BSB 2.5-fold faster than fus-EglII+BglZ. Thus, coex-bglZ+eglII expression system was the best choice to produce enzymes for hydrolyzing sugarcane baggase. PMID:24598011

  15. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

    PubMed Central

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials. PMID:25763056

  16. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract.

    PubMed

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH?)?SO?; peptone and yeast extract; (NH?)?SO?, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH?)?SO?, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH?)?SO? and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH?)?SO? was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials. PMID:25763056

  17. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities.

    PubMed

    Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R

    2016-01-01

    This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the ?-glucosidase or ?-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65mgphenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. PMID:26364828

  18. Non-cellulosic heteropolysaccharides from sugarcane bagasse - sequential extraction with pressurized hot water and alkaline peroxide at different temperatures.

    PubMed

    Banerjee, Protibha Nath; Pranovich, Andrey; Dax, Daniel; Willför, Stefan

    2014-03-01

    The xylan-rich hemicellulose components of sugarcane bagasse were sequentially extracted with pressurized hot-water extraction (PHWE) and alkaline peroxide. The hemicelluloses were found to contain mainly arabinoxylans with varying substitutions confirmed by different chemical and spectroscopic methods. The arabinoxylans obtained from PHWE were found to be more branched compared to those obtained after alkaline extraction. Sequential extraction could be useful for the isolation of hemicelluloses with different degree of branching, molar mass, and functional groups from sugarcane bagasse, which can be of high potential use for various industrial applications. PMID:24495799

  19. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    PubMed

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield. PMID:26572403

  20. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v) or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process), the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse) to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between neighboring cell walls, as well as by changes in the inner cell wall structure, such as damaging, hole formation and loss of mechanical resistance, facilitating liquid and enzyme access to crystalline cellulose. Conclusions The results presented herewith show the efficiency of the proposed method for improving the enzymatic digestibility of sugarcane bagasse and provide understanding of the pretreatment action mechanism. Combining the different techniques applied in this work warranted thorough information about the undergoing morphological and chemical changes and was an efficient approach to understand the morphological effects resulting from sample delignification and its influence on the enhanced hydrolysis results. PMID:22122978

  1. Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup

    SciTech Connect

    Saska, M.; Ozer, E.

    1995-03-20

    At the optimum level of severity, the aqueous extraction of sugarcane bagasse, an abundant agricultural residue, gave, depending on the degree of comminution, 60% to 89% yield of xylose, most of it in the form of a water soluble xylan. A process for producing xylose-rich syrups was conceived and tested, consisting of aqueous extraction, acid hydrolysis of the concentrated aqueous extract, centrifugal clarification of the hydrolysate, and recovery of the acid by continuous ion exclusion. The cost estimate indicates operating costs on the order of $0.12 to $0.15/kg xylose, in the form of xylose-rich molasses.

  2. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus.

    PubMed

    Brienzo, Michel; Carvalho, Walter; Milagres, Adriane M F

    2010-10-01

    Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 2(2) factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides. PMID:20066571

  3. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    NASA Astrophysics Data System (ADS)

    Hussain, Ali; Qazi, Javed Iqbal

    2014-09-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.

  4. Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal

    SciTech Connect

    Bonelli, P.R.; Buonomo, E.L.; Cukierman, A.L.

    2007-07-01

    Physicochemical properties of the charcoal arising from pyrolysis of sugarcane bagasse at 600{sup o}C and 800{sup o}C were determined to evaluate potentialities for specific end uses. The charcoals were found fairly adequate as solid bio-fuels. Their quality was comparable to charcoals obtained from some other agro-industrial by-products, reportedly proposed as substitutes of wood-based ones. Surface properties of the charcoal generated at the higher temperature indicated that it is reasonably suited for potential use as low-cost rough adsorbent, soil amender, and/or for further upgrading to activated carbon. Moreover, kinetic measurements for pyrolysis of the sugarcane bagasse individually and mixed with an Argentinean subbituminous coal in equal proportions were conducted by thermogravimetry for the range 25 -900{sup o}C. Data modeling accounting for variations in the activation energy with process evolution provided a proper description of pyrolysis and co-pyrolysis over the entire temperature range.

  5. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents. PMID:22629620

  6. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible?

    PubMed Central

    2013-01-01

    Background Sugarcane is the most efficient crop for production of (1G) ethanol. Additionally, sugarcane bagasse can be used to produce (2G) ethanol. However, the manufacture of 2G ethanol in large scale is not a consolidated process yet. Thus, a detailed economic analysis, based on consistent simulations of the process, is worthwhile. Moreover, both ethanol and electric energy markets have been extremely volatile in Brazil, which suggests that a flexible biorefinery, able to switch between 2G ethanol and electric energy production, could be an option to absorb fluctuations in relative prices. Simulations of three cases were run using the software EMSO: production of 1G ethanol + electric energy, of 1G + 2G ethanol and a flexible biorefinery. Bagasse for 2G ethanol was pretreated with a weak acid solution, followed by enzymatic hydrolysis, while 50% of sugarcane trash (mostly leaves) was used as surplus fuel. Results With maximum diversion of bagasse to 2G ethanol (74% of the total), an increase of 25.8% in ethanol production (reaching 115.2 L/tonne of sugarcane) was achieved. An increase of 21.1% in the current ethanol price would be enough to make all three biorefineries economically viable (11.5% for the 1G + 2G dedicated biorefinery). For 2012 prices, the flexible biorefinery presented a lower Internal Rate of Return (IRR) than the 1G + 2G dedicated biorefinery. The impact of electric energy prices (auction and spot market) and of enzyme costs on the IRR was not as significant as it would be expected. Conclusions For current market prices in Brazil, not even production of 1G bioethanol is economically feasible. However, the 1G + 2G dedicated biorefinery is closer to feasibility than the conventional 1G + electric energy industrial plant. Besides, the IRR of the 1G + 2G biorefinery is more sensitive with respect to the price of ethanol, and an increase of 11.5% in this value would be enough to achieve feasibility. The ability of the flexible biorefinery to take advantage of seasonal fluctuations does not make up for its higher investment cost, in the present scenario. PMID:24088415

  7. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.

    PubMed

    Krishnan, Chandraraj; Sousa, Leonardo da Costa; Jin, Mingjie; Chang, Linpei; Dale, Bruce E; Balan, Venkatesh

    2010-10-15

    Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is approximately 1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was approximately 85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95-98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34-36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. PMID:20521302

  8. Kinetics of ethanol production from sugarcane bagasse enzymatic hydrolysate concentrated with molasses under cell recycle.

    PubMed

    de Andrade, Rafael Ramos; Maugeri Filho, Francisco; Maciel Filho, Rubens; da Costa, Aline Carvalho

    2013-02-01

    In this work, a kinetic model for ethanol fermentation from sugarcane bagasse enzymatic hydrolysate concentrated with molasses was developed. A model previously developed for fermentation of pure molasses was modified by the inclusion of a new term for acetic acid inhibition on microorganism growth rate and the kinetic parameters were estimated as functions of temperature. The influence of the hydrolysate on the kinetic parameters is analyzed by comparing with the parameters from fermentation of pure molasses. The impact of cells recycling in the kinetic parameters is also evaluated, as well as on the ethanol yield and productivity. The model developed described accurately most of the fermentations performed in several successive batches for temperatures from 30 to 38°C. PMID:23313680

  9. Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase.

    PubMed

    Li, Jingbo; Zhou, Pengfei; Liu, Hongmei; Wu, Kejing; Xiao, Wenjuan; Gong, Yingxue; Lin, Jianghai; Liu, Zehuan

    2014-07-01

    Xylan was always extracted as the feedstock for xylooligosaccharides production. The xylan-removed residue may contain high content of cellulose and thus had a possibility to be converted into ethanol. After soaked in 12% of NaOH at room temperature overnight, solubilization of cellulose, xylan, and lignin was 4.64%, 72.06%, and 81.87% respectively. The xylan-removed sugarcane bagasse (XRSB) was enzymatically hydrolyzed by using decreased cellulase loadings. The results showed that 7.5 FPU/g cellulose could obtain a cellulose conversion yield of 82%. Increasing the cellulase loading did not result in higher yield. Based on this, bioethanol production was performed using 7.5 FPU/g cellulose by employing fed-batch fermentation mode. The final ethanol concentration reached 40.59 g/L corresponding to 74.2% of the theoretical maximum. The high titer ethanol and low cellulase loading may reduce the overall cost. PMID:24841492

  10. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized ?-glucosidase.

    PubMed

    Borges, Diogo Gontijo; Baraldo, Anderson; Farinas, Cristiane Sanchez; Giordano, Raquel de Lima Camargo; Tardioli, Paulo Waldir

    2014-09-01

    The ?-glucosidase (BG) enzyme plays a vital role in the hydrolysis of lignocellulosic biomass. Supplementation of the hydrolysis reaction medium with BG can reduce inhibitory effects, leading to greater conversion. In addition, the inclusion of immobilized BG can be a useful way of increasing enzyme stability and recyclability. BG was adsorbed on polyacrylic resin activated by carboxyl groups (BG-PC) and covalently attached to glyoxyl-agarose (BG-GA). BG-PC exhibited similar behavior to soluble BG in the hydrolysis of cellobiose, while BG-GA hydrolyzed the same substrate at a lower rate. However, the thermal stability of BG-GA was higher than that of free BG. Hydrolysis of pretreated sugarcane bagasse catalyzed by soluble cellulase supplemented with immobilized BG improved the conversion by up to 40% after 96 h of reaction. Both derivatives remained stable up to the third cycle and losses of activity were less than 50% after five cycles. PMID:24983691

  11. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water.

    PubMed

    Liu, Cong; Ngo, Huu Hao; Guo, Wenshan; Tung, Kuo-Lun

    2012-09-01

    In this study, three agro-waste materials were used as biosorbents for removal of copper (Cu) from water. This work aims to optimise conditions for preparation of these materials to obtain maximum Cu adsorption capacity. The optimal conditions were determined in terms of Cu removal efficiency and/or energy consumption. The results indicate that banana peels dried at 120°C for 2h and ground into powder form led to a better performance in terms of both copper removal efficiency and energy consumption. For sugarcane bagasse and watermelon rind, 120°C was the suitable drying temperature. However, the best drying time was 1h for sugarcane bagasse and 3h for watermelon rind. The powder form with size of <150 ?m was optimal for all biosorbents in terms of removal efficiency and equilibration time. The findings are beneficial to the application of these agro-waste materials for Cu removal from water and wastewater treatment. PMID:22750502

  12. Mathematical modeling of enzyme production using Trichoderma harzianum P49P11 and sugarcane bagasse as carbon source.

    PubMed

    Gelain, Lucas; da Cruz Pradella, José Geraldo; da Costa, Aline Carvalho

    2015-12-01

    A mathematical model to describe the kinetics of enzyme production by the filamentous fungus Trichoderma harzianum P49P11 was developed using a low cost substrate as main carbon source (pretreated sugarcane bagasse). The model describes the cell growth, variation of substrate concentration and production of three kinds of enzymes (cellulases, beta-glucosidase and xylanase) in different sugarcane bagasse concentrations (5; 10; 20; 30; 40gL(-1)). The 10gL(-1) concentration was used to validate the model and the other to parameter estimation. The model for enzyme production has terms implicitly representing induction and repression. Substrate variation was represented by a simple degradation rate. The models seem to represent well the kinetics with a good fit for the majority of the assays. Validation results indicate that the models are adequate to represent the kinetics for a biotechnological process. PMID:26378961

  13. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield.

    PubMed

    Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin

    2015-01-01

    Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for ?-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. PMID:25846186

  14. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%)?=?[C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation. PMID:22920045

  15. One-Pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse.

    PubMed

    Sambusiti, C; Licari, A; Solhy, A; Aboulkas, A; Cacciaguerra, T; Barakat, A

    2015-04-01

    The aim of this study was the application of an innovative dry chemo-mechanical pretreatment using different mechanical stresses to produce bioethanol from sugarcane bagasse (SB). The effect of different milling methods on physicochemical composition, enzymatic hydrolysis, bioethanol production and energy efficiency was also evaluated. SB was pretreated with NaOH and H3PO4 at high materials concentration (5 kg/L). Results indicate that vibratory milling (VBM) was more effective in the reduction of particles size and cellulose crystallinity compared to centrifugal (CM) and ball (BM) milling. NaOH pretreatment coupling to BM and VBM was preferred to enhance glucose yields and bioethanol production, while CM consumed less energy compared to BM and VBM. Moreover, the highest energy efficiency (?=0.116 kg glucose/kWh) was obtained with NaOH-CM. Therefore, the combination of dry NaOH and CM appears the most suitable and interesting pretreatment for the production of bioethanol from SB. PMID:25656863

  16. Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production.

    PubMed

    Brienzo, Michel; Tyhoda, Luvuyo; Benjamin, Yuda; Görgens, Johann

    2015-03-25

    The structural and physicochemical characteristics are associated with resistance of plant cell walls to saccharification by enzymes. The effect of physicochemical properties on glucose yield of bagasse from different varieties of sugarcane at low and high enzyme dosages was investigated. The result showed that glucose yield at low enzyme dosage was positively linear correlated with the yield at high enzyme dosage, for both the untreated and pretreated materials. The pretreatment significantly increased the accessibility of substrates by enzyme due to the increase of internal and external surface area. Glucose yield also showed a linear correlation with dye adsorption. However, the increase in glucose yield as a result of pretreatment did not correlate with the increases in crystallinity index and decreases in degree of polymerization. The Principal Component Analysis of infrared data indicated that lignin was the main component that differentiated the varieties before and after pretreatment. These results suggested that the key differences in pretreatment responses among varieties could be mainly attributed to their differences in the internal and external surface area after pretreatment. PMID:25576176

  17. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production

    PubMed Central

    dos Santos, Bruna Silveira Lamanes; Gomes, Arthur Filipe Sousa; Franciscon, Emanuele Giuliane; de Oliveira, Jean Maikon; Baffi, Milla Alves

    2015-01-01

    Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3), A. sydowii (SBCM7) and A. fumigatus (SBC4). The best ?-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g). For ?-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g) and 4.0 (573 U/g), respectively. All these crude enzymes presented stability around pH 3.0–8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors. PMID:26413077

  18. Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept.

    PubMed

    Baêta, Bruno Eduardo Lôbo; Lima, Diego Roberto Sousa; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-01-01

    This study aimed to optimize through design of experiments, the process variables (temperature - T, time - t and solid-to-liquid ratio - SLR) for sugarcane bagasse (SB) autohydrolysis (AH) to obtain hemicellulose hydrolyzates (HH) prone to anaerobic digestion (AD) and biochemical methane production (BMP). The results indicated that severe AH conditions, which lead to maximum hemicelluloses dissolution and sugar content in the HH, were not the best for BMP, probably due to the accumulation of toxic/recalcitrant compounds (furans and lignin). Mild AH conditions (170°C, 35min and SLR=0.33) led to the highest BMP (0.79Nm(3)kg TOC(-1)), which was confirmed by the desirability tool. HH produced by AH carried out at the desired condition DC2 (178.6°C, 43.6min and SLR=0.24) showed the lowest accumulation of inhibitory compounds and volatile fatty acids (VFA) and highest BMP (1.56Nm(3)kg TOC(-1)). The modified Gompertz model best fit the experimental data and led to a maximum methane production rate (R) of 2.6mmol CH4d(-1) in the best condition. PMID:26476615

  19. Isolation of sugarcane bagasse hydrolyzate-tolerant yeast mutants by continuous selection

    SciTech Connect

    Lodics, T.A.; Gong, C.S.

    1984-01-01

    Hemicellulose, one of the major constituents of plant cell-wall materials, comprises up to 40% of agricultural residues and hardwoods. Upon hydrolysis, hemicellulose yields a mixture of carbohydrates of which D-xylose is the major component. Hemicellulose-derived carbohydrates can easily be obtained by use of dilute acids under mild hydrolysis conditions. These sugars as well as cellulose-derived carbohydrates, are potential substrates for ethanol production. Often during acid hydrolysis many potentially toxic chemicals are formed which have been found to inhibit yeast growth and ethanol production. It is, therefore, necessary to overcome the inhibitory effect before a fermentation can be implemented. In addition to these fermentation inhibitors, salts formed as a result of neutralization of acid hydrolyzate can also affect the yeasts, thereby decreasing the fermentation rate. Previously, we have shown that ethanol can be produced from sugarcane bagasse hemicellulose hydrolyzate by a xylose-fermentating yeast, Candida species XF217, after the hydrolyzate had been treated with ion-exchange resins. This communication describes the isolation of hydrolyzate-tolerant yeast strains by a continuous adaptation and selection technique and also the growth and fermentative abilities of the strain, P11-20 in neutralized hydrolyzate.

  20. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.

    PubMed

    Tian, Qing-Qing; Liang, Lei; Zhu, Ming-Jun

    2015-12-01

    Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose. PMID:26356113

  1. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production.

    PubMed

    Dos Santos, Bruna Silveira Lamanes; Gomes, Arthur Filipe Sousa; Franciscon, Emanuele Giuliane; de Oliveira, Jean Maikon; Baffi, Milla Alves

    2015-01-01

    Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3), A. sydowii (SBCM7) and A. fumigatus (SBC4). The best ?-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g). For ?-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g) and 4.0 (573 U/g), respectively. All these crude enzymes presented stability around pH 3.0-8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors. PMID:26413077

  2. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    PubMed

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. PMID:26150018

  3. Fractionation of sugarcane bagasse using a combined process of dilute acid and ionic liquid treatments.

    PubMed

    Diedericks, Danie; van Rensburg, Eugéne; Görgens, Johann F

    2012-08-01

    Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH(3)COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO(4)). Constituents were isolated from the reaction mixture with the anti-solvents acetone (?), acetone-water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH(3)COO treatment. PMID:22639365

  4. Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites.

    PubMed

    Abdelwahab, N A; Shukry, N

    2015-01-22

    Sugarcane bagasse (SCB) was grafted with acrylamide (AAm) and glycidyl methacrylate (GMA) by chemical oxidation method. The effect of monomer/initiator molar ratio, reaction time, reaction temperature and material to liquor ratio on the degree of grafting was investigated. The optimum conditions for grafting were: monomer/initiator molar ratio 1 for AAm and 2 for GMA, reaction time 4h, reaction temperature 80°C and materials to liquor ratio 1:20. Silver nanoparticles (AgNPs) were prepared and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ungrafted SCB, SCB-g-AAm and SCB-g-GMA were impregnated into silver (Ag) nanoparticles colloidal solution. The ungrafted SCB, grafted SCB and their nanocomposites with Ag nanoparticles were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The grafted SCB/Ag nanoparticles exhibit better antimicrobial activity against Escherichia coli as the model Gram-negative bacteria, Staphylococcus aureus as the model Gram-positive bacteria and Aspergillus flavus and Candida albicans (yeasts) than ungrafted SCB/AgNPs. PMID:25439896

  5. Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands.

    PubMed

    Kamat, Srijay; Khot, Mahesh; Zinjarde, Smita; RaviKumar, Ameeta; Gade, Wasudeo Namdeo

    2013-05-01

    This work evaluates sugarcane bagasse (SCB) conversion, in a biorefinery approach, to coproduce biodiesel and high value products using two novel mangrove fungi. On acid pre-treatment, sugarcane bagasse hydrolysate (SCBH) resulted in a xylitol yield of 0.51 g/g xylose consumed in 72 h by Williopsis saturnus. After SCB pretreatment, sugarcane bagasse residue (SCBR) was utilized using Aspergillus terreus for production of xylanase (12.74 U/ml) and cell biomass (9.8 g/L) which was extracted for single cell oil (SCO; 0.19 g/g) and transesterified to biodiesel. The FAME profile exhibited long chain SFAs and PUFAs with predicted biodiesel properties lying within the range specified by international standards. This biorefining approach of SCB utilization for co-production of xylitol, xylanase and SCO gains importance in terms of sustainability and eco-friendliness. PMID:23260270

  6. Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process.

    PubMed

    Geddes, C C; Mullinnix, M T; Nieves, I U; Hoffman, R W; Sagues, W J; York, S W; Shanmugam, K T; Erickson, J E; Vermerris, W E; Ingram, L O

    2013-01-01

    A process was developed for seed culture expansion (3.6 million-fold) using 5% of the hemicellulose hydrolysate from dilute acid pretreatment as the sole organic nutrient and source of sugar. Hydrolysate used for seed growth was neutralized with ammonia and combined with 1.0mM sodium metabisulfite immediately before inoculation. This seed protocol was tested with phosphoric acid pretreated sugarcane and sweet sorghum bagasse using a simplified process with co-fermentation of fiber, pentoses, and hexoses in a single vessel (SScF). A 6h liquefaction (L) step improved mixing prior to inoculation. Fermentations (L+SScF process) were completed in 72 h with high yields (>80 gal/US ton). Ethanol titers for this L+SScF process ranged from 24 g/L to 32 g/L, and were limited by the bagasse concentration (10% dry matter). PMID:23375156

  7. Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse.

    PubMed

    Martins, Luiza Helena da Silva; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-09-01

    This work evaluated ethanol production from sugarcane bagasse at high solids loadings in the pretreatment (20-40% w/v) and hydrolysis (10-20% w/v) stages. The best conditions for diluted sulfuric acid, AHP and Ox-B pretreatments were determined and mass balances including pretreatment, hydrolysis and fermentation were calculated. From a technical point of view, the best pretreatment was AHP, which enabled the production of glucose concentrations near 8% with high productivity (3.27 g/Lh), as well as ethanol production from 100.9 to 135.4 kg ethanol/ton raw bagasse. However, reagent consumption for acid pretreatment was much lower. Furthermore, for processes that use pentoses and hexoses separately, this pretreatment produces the most desirable pentoses liquor, with higher xylose concentration in the monomeric form. PMID:26004382

  8. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. PMID:25643957

  9. Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF.

    PubMed

    da Cruz, Sandra Helena; Dien, Bruce S; Nichols, Nancy N; Saha, Badal C; Cotta, Michael A

    2012-03-01

    Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria. PMID:22080307

  10. Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes.

    PubMed

    Gomes, Katiana R; Chimphango, Annie F A; Görgens, Johann F

    2015-10-20

    ?-l-Arabinofuranosidase (AbfB) and novel ?-d-glucuronidase (Agu1B) enzymes were applied for selective hydrolysis of beechwood (Fagus sylvatica) xylan (Sigma-Aldrich) as well as xylans extracted from Eucalyptus grandis and sugarcane (Saccharum officinarum L.) bagasse, leading to precipitation of these carbohydrate biopolymers. Hemicellulose extraction was performed with two mild-alkali methods, Höije and Pinto. Precipitation occurred after removal of 67, 40 and 16% 4-O-methyl-d-glucuronic acid (MeGlcA) present in polymeric xylans from beechwood, E. grandis (Pinto) and E. grandis (Höije), respectively. Precipitation was maximized at Agu1B levels of 3.79-7.53mg/gsubstrate and hemicellulose concentrations of 4.5-5.0% (w/v). Polymeric xylan from sugarcane bagasse precipitated after removal of 48 and 22% of arabinose and MeGlcA, respectively, at optimal AbfB and Agu1B dosages of 9.0U/g and 6.4mg/g, respectively. Both the purity of polymeric xylans and structure thereof had a critical impact on the propensity for precipitation, and morphology of the resulting precipitate. Nano-to micro-meter precipitates were produced, with potential for carbohydrate nanotechnology applications. PMID:26256174

  11. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation.

    PubMed

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 ?M, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  12. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    PubMed Central

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4?g/L, 172.6??M, and 1.86?mM, respectively. Experimentally, the maximum laccase activity of 151.6?U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  13. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production.

    PubMed

    Rattanapoltee, Panida; Kaewkannetra, Pakawadee

    2014-07-01

    The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production. PMID:24817554

  14. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...entry into Guam of bagasse and related sugarcane products. 319.15a Section 319...AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions...entry into Guam of bagasse and related sugarcane products. Bagasse and related...

  15. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...entry into Guam of bagasse and related sugarcane products. 319.15a Section 319...AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions...entry into Guam of bagasse and related sugarcane products. Bagasse and related...

  16. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...entry into Guam of bagasse and related sugarcane products. 319.15a Section 319...AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions...entry into Guam of bagasse and related sugarcane products. Bagasse and related...

  17. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...entry into Guam of bagasse and related sugarcane products. 319.15a Section 319...AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions...entry into Guam of bagasse and related sugarcane products. Bagasse and related...

  18. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...entry into Guam of bagasse and related sugarcane products. 319.15a Section 319...AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions...entry into Guam of bagasse and related sugarcane products. Bagasse and related...

  19. Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim] [Ac]).

    PubMed

    Sant'Ana da Silva, Ayla; Lee, Seung-Hwan; Endo, Takashi; Bon, Elba P S

    2011-11-01

    In this study, sugarcane bagasse was pretreated by six ionic liquids (ILs) using a bagasse/IL ratio of 1:20 (wt%). The solubilization of bagasse in the ILs was followed by water precipitation. On using 1-ethyl-3-methylimidazolium acetate [Emim] [Ac] at 120 °C for 120 min, 20.7% of the bagasse components remained dissolved and enzymatic saccharification experiments resulted on 80% glucose yield within 6h, which evolved to over 90% within 24 h. Moreover, FE-SEM analysis of the precipitated material indicated a drastic lignin extraction and the exposure of nanoscopic cellulose microfibrils with widths of less than 100 nm. The specific surface area (SSA) of the pretreated bagasse (131.84 m2/g) was found to be 100 times that of untreated bagasse. The ability of [Emim] [Ac] to simultaneously increase the SSA and to decrease the biomass crystallinity is responsible for the improved bagasse enzymatic saccharification rates and yields obtained in this work. PMID:21925878

  20. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    SciTech Connect

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  1. Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis

    PubMed Central

    2013-01-01

    Background Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils. Results In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of ?-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g). Conclusions SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level. PMID:23856012

  2. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor.

    PubMed

    Reddy, Prashant; Lekha, Prabashni; Reynolds, Wienke; Kirsch, Christian

    2015-05-01

    Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) were used to investigate changes in the residues, in particular due to the fate of lignin. FEG-SEM results show that the LHW treatment modified the surface morphology of the pretreated bagasse with lignin droplets being observed on the fibre surface. TEM showed an increase in the plant cell wall porosity and lignin migration across the plant cell wall. Increases in pretreatment temperature were observed to increase the average size and density of lignin droplets on the fibre surface. The results provide evidence that for LHW flow-through treatment, just as for batch treatment, lignin repolymerisation and deposition on the surface of pretreated sugarcane bagasse is an important consideration. PMID:25728342

  3. Sugarcane juice extraction and preservation, and long-term lime pretreatment of bagasse 

    E-print Network

    Granda Cotlear, Cesar Benigno

    2005-02-17

    of bagasse showed two delignification phases: bulk (rapid) and residual (slow). These were modeled by two simultaneous first-order reactions. Treatments with air purging and higher temperatures (50 ? 57oC) delignified more effectively, especially during...

  4. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.

    PubMed

    Valix, M; Cheung, W H; McKay, G

    2004-08-01

    Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification. PMID:15212915

  5. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar.

    PubMed

    Gitifar, Vahid; Eslamloueyan, Reza; Sarshar, Mohammad

    2013-11-01

    In this study, pretreatment of sugarcane bagasse and subsequent enzymatic hydrolysis is investigated using two categories of pretreatment methods: dilute acid (DA) pretreatment and combined DA-ozonolysis (DAO) method. Both methods are accomplished at different solid ratios, sulfuric acid concentrations, autoclave residence times, bagasse moisture content, and ozonolysis time. The results show that the DAO pretreatment can significantly increase the production of glucose compared to DA method. Applying k-fold cross validation method, two optimal artificial neural networks (ANNs) are trained for estimations of glucose concentrations for DA and DAO pretreatment methods. Comparing the modeling results with experimental data indicates that the proposed ANNs have good estimation abilities. PMID:24035818

  6. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products.

    PubMed

    Aristizábal M, Valentina; Gómez P, Álvaro; Cardona A, Carlos A

    2015-11-01

    This work presents a techno-economic and environmental assessment for a biorefinery based on sugarcane bagasse (SCB), and coffee cut-stems (CCS). Five scenarios were evaluated at different levels, conversion pathways, feedstock distribution, and technologies to produce ethanol, octane, nonane, furfural, and hydroxymethylfurfural (HMF). These scenarios were compared between each other according to raw material, economic, and environmental characteristics. A single objective function combining the Net Present Value and the Potential Environmental Impact was used through the Analytic Hierarchy Process approach to understand and select the best configurations for SCB and CCS cases. The results showed that the configuration with the best economic and environmental performance for SCB and CCS is the one that considers ethanol, furfural, and octane production (scenario 1). The global economic margin was 62.3% and 61.6% for SCB and CCS respectively. The results have shown the potential of these types of biomass to produce fuels and platform products. PMID:26280100

  7. Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters using Different Optimization Tools

    NASA Astrophysics Data System (ADS)

    Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash

    2015-04-01

    The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.

  8. Direct Ethanol Production from Lignocellulosic Sugars and Sugarcane Bagasse by a Recombinant Trichoderma reesei Strain HJ48

    PubMed Central

    Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo

    2014-01-01

    Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing. PMID:24995362

  9. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of ?-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. PMID:24412855

  10. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.

    PubMed

    Pereira, Leonardo Tupi Caldas; Pereira, Lucas Tupi Caldas; Teixeira, Ricardo Sposina Sobral; Bon, Elba Pinto da Silva; Freitas, Suely Pereira

    2011-08-01

    The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, ?-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45°) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion. PMID:20844924

  11. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD).

    PubMed

    Pereira, Flaviane Vilela; Gurgel, Leandro Vinícius Alves; Gil, Laurent Frédéric

    2010-04-15

    This work describes the preparation of a new chelating material derived from wood sawdust, Manilkara sp., and not only the use of a new support, but also a chemically modified sugarcane bagasse synthesized in our previous work to remove Zn(2+) from aqueous solutions and electroplating wastewater. The first part describes the chemical modification of wood sawdust and sugarcane bagasse using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent in order to introduce carboxylic acid and amine functional groups into these materials. The obtained materials such as the modified sugarcane bagasse, EB, and modified wood sawdust, ES were then characterized by infrared spectroscopy (IR) and CHN. The second part evaluates the adsorption capacity of Zn(2+) by EB and ES from aqueous single metal solutions and real electroplating wastewater, which concentration was determined through direct titration with EDTA and inductively coupled plasma (ICP-OES). Adsorption isotherms were developed using Langmuir model. Zn(2+) adsorption capacities were found to be 80 mg/g for ES and 105 mg/g for EB whereas for the industrial wastewater these values were found to be 47 mg/g for ES and 45 mg/g for EB. Zn(2+) adsorption in the wastewater was found to be lower than in Zn(2+) spiked solution due to the competition between other cations and/or interference of other ions, mainly Ca(2+) and Cl(-) that were present in the wastewater. PMID:20047793

  12. High-value zeolitic material from bagasse fly ash: utilization for dye elimination.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Patel, Harendra D; Mistry, Chirag B

    2013-06-01

    Bagasse fly ash (BFA), a sugar industry waste, was used to prepare zeolitic material (ZFA) by means of alkaline hydrothermal treatment. ZFA showed improved morphology as a result of this treatment. The adsorption of the reactive dyes turquoise blue (TB) and brilliant magenta (BM), on both BFA and ZFA, was investigated in a batch contact system. A series of batch experiments revealed that optimal dye removal occurs at a 200 mg/L to 300 mg/L solute concentration, 60 minutes of agitation time, 5 g/L to 10 g/L adsorbent dose, a pH level of 2 to 4, and a temperature of 298 K. ZFA showed enhanced adsorption capacity as compared to BFA. According to the Langmuir equation, the maximum adsorption capacity was 12.66 mg/g and 45.45 mg/g for turquoise blue and brilliant magenta dyes, respectively, on BFA; and 21.74 mg/g and 100.00 mg/g for turquoise blue and brilliant magenta dyes, respectively, on ZFA. Kinetic studies showed that the correlation coefficients best fit with the pseudo-second-order kinetic model, confirming that the adsorption rate was controlled by a hemisorptions process. PMID:23833819

  13. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Sugarcane Bagasse Paper versus Wheat Straw Paper

    E-print Network

    versus Wheat Straw Paper Omar Omari, Marcus Cheung, Robert Chen, Hugo Chen University of British Columbia://kids-myshot.nationalgeographic.com/photos/view/60175/wheat-shot-by-paper-clip-girl http://bgbarman.bg/%D0%95%D0%BD%D1%86%D0%B8%D0%BA%D0%BB%D0%BE%D0%BF Bagasse Paper versus Wheat Straw Paper prepared by Omar Omari 54434105 Marcus Cheung 82207101 Robert Chen

  14. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    PubMed

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils. PMID:26337896

  15. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ?S 0), heat of adsorption ( ?H 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  16. Simultaneous removal of cationic and anionic dyes by the mixed sorbent of magnetic and non-magnetic modified sugarcane bagasse.

    PubMed

    Yu, Jun-xia; Zhu, Jing; Feng, Li-yuan; Chi, Ru-an

    2015-08-01

    Magnetic carboxyl groups modified (MMS) and non-magnetic amine groups modified (AMS) sugarcane bagasse were prepared and mixed to remove cationic and anionic dye simultaneously from aqueous solution. For comparison, the adsorption performances of MMS, AMS and the mixed sorbent for basic magenta (cationic dye) and congo red (anionic dye) were investigated in the binary system. Zeta potential analysis showed that MMS was negatively charged and AMS was positively charged in the investigated pH range. The adsorption capacities of MMS for basic magenta and congo red were 1.24 and 0.04mmolg(-1), while those of AMS were 0.04 and 1.55mmolg(-1), respectively. Both of MMS and AMS had high adsorption capacity and affinity toward opposite-charged dye but low adsorption capacity and affinity toward similar-charged dye. Adsorption experiments in the binary system showed that only the mixed sorbent could remove the two dyes simultaneously from aqueous solution (removal efficiencies >90%). The amounts of basic magenta and congo red absorbed on the mixed sorbent both increased linearly with the increase of their initial concentrations in the investigated range. The dye loaded mixed magnetic and non-magnetic sorbents could be separated by a magnet. MMS and AMS could be regenerated by using acid and alkaline eluents, respectively. After regeneration, the MMS and AMS could be mixed again and used repeatedly. The mixed sorbent had great potential in practical dye waste water treatment. PMID:25897851

  17. Diversity of Fungi on Decomposing Leaf Litter in a Sugarcane Plantation and Their Response to Tillage Practice and Bagasse Mulching: Implications for Management Effects on Litter Decomposition.

    PubMed

    Miura, Toshiko; Niswati, Ainin; Swibawa, I G; Haryani, Sri; Gunito, Heru; Shimano, Satoshi; Fujie, Koichi; Kaneko, Nobuhiro

    2015-10-01

    To minimize the degradation of soil organic matter (SOM) content in conventional sugarcane cropping, it is important to understand how the fungal community contributes to SOM dynamics during the decomposition of sugarcane leaf litter. However, our knowledge of fungal diversity in tropical agroecosystems is currently limited. Thus, we determined the fungal community structure on decomposing sugarcane leaf litter and their response to different soil management systems using the internal transcribed spacer region 1 (ITS1) amplicon sequencing method afforded by Ion Torrent Personal Genome Machine (PGM). The results indicate that no-tillage had positive effects on the relative abundance of Zygomycota and of some taxa that may prefer a moist environment over conventional tillage, whereas bagasse mulching decreased the richness of operational taxonomic units (OTUs) and had positive effect on the relative abundance of slow-growing taxa, which may prefer poor nutrient substrates. Furthermore, a combination of no-tillage and bagasse mulching increased the abundance of unique OTUs. We suggest that the alteration of fungal communities through the changes in soil management practices produces an effect on litter decomposition. PMID:25933637

  18. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    PubMed

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. PMID:26384901

  19. Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180.

    PubMed

    Geddes, Ryan; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2015-08-01

    Inhibitory side products from dilute acid pretreatment is a major challenge for conversion of lignocellulose into ethanol. Six strategies to detoxify sugarcane hydrolysates were investigated alone, and in combinations (vacuum evaporation of volatiles, high pH treatment with ammonia, laccase, bisulfite, microaeration, and inoculum size). High pH was the most beneficial single treatment, increasing the minimum inhibitory concentration (measured by ethanol production) from 15% (control) to 70% hydrolysate. Combining treatments provided incremental improvements, consistent with different modes of action and multiple inhibitory compounds. Screening toxicity using tube cultures proved to be an excellent predictor of relative performance in pH-controlled fermenters. A combination of treatments (vacuum evaporation, laccase, high pH, bisulfite, microaeration) completely eliminated all inhibitory activity present in hydrolysate. With this combination, fermentation of hemicellulose sugars (90% hydrolysate) to ethanol was complete within 48 h, identical to the fermentation of laboratory xylose (50 g/L) in AM1 mineral salts medium (without hydrolysate). PMID:25864026

  20. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. PMID:26642223

  1. The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions

    NASA Astrophysics Data System (ADS)

    Gonçalves, Márcia Monteiro Machado; de Mello, Luiz Antonio Oliveira; da Costa, Antonio Carlos Augusto

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  2. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil. PMID:24561631

  3. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  4. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  5. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  6. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  7. 7 CFR 319.15a - Administrative instructions and interpretation relating to entry into Guam of bagasse and related...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... relating to entry into Guam of bagasse and related sugarcane products. 319.15a Section 319.15a Agriculture..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Sugarcane § 319.15a Administrative instructions and interpretation relating to entry into Guam of bagasse and related sugarcane products. Bagasse and...

  8. SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first successful report of transgenic sugarcane less than 20 years ago, this technology has advanced rapidly and been adopted by sugar industries and research organizations worldwide. Research into a range of input traits such as pest and disease resistance, sugar quality, and shoot archit...

  9. Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is one of the most important crops globally, providing most of the world’s sugar and bio-energy (ethanol and electricity). This contribution has been underpinned by the successful introgression of genes from wild germplasm, particularly from Saccharum spontaneum, by breeders in the early 1...

  10. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We hypothesized that consecutive dilute sulfuric acid-dilute sodium hydroxide pretreatment would overcome the native recalcitrance of sugarcane bagasse (SB) by enhancing cellulase accessibility of the embedded cellulosic microfibrils. Results SB hemicellulosic hydrolysate after concentration by vacuum evaporation and detoxification showed 30.89 g/l xylose along with other products (0.32 g/l glucose, 2.31 g/l arabinose, and 1.26 g/l acetic acid). The recovered cellulignin was subsequently delignified by sodium hydroxide mediated pretreatment. The acid–base pretreated material released 48.50 g/l total reducing sugars (0.91 g sugars/g cellulose amount in SB) after enzymatic hydrolysis. Ultra-structural mapping of acid–base pretreated and enzyme hydrolyzed SB by microscopic analysis (scanning electron microcopy (SEM), transmitted light microscopy (TLM), and spectroscopic analysis (X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy) elucidated the molecular changes in hemicellulose, cellulose, and lignin components of bagasse. The detoxified hemicellulosic hydrolysate was fermented by Scheffersomyces shehatae (syn. Candida shehatae UFMG HM 52.2) and resulted in 9.11 g/l ethanol production (yield 0.38 g/g) after 48 hours of fermentation. Enzymatic hydrolysate when fermented by Saccharomyces cerevisiae 174 revealed 8.13 g/l ethanol (yield 0.22 g/g) after 72 hours of fermentation. Conclusions Multi-scale structural studies of SB after sequential acid–base pretreatment and enzymatic hydrolysis showed marked changes in hemicellulose and lignin removal at molecular level. The cellulosic material showed high saccharification efficiency after enzymatic hydrolysis. Hemicellulosic and cellulosic hydrolysates revealed moderate ethanol production by S. shehatae and S. cerevisiae under batch fermentation conditions. PMID:24739736

  11. Efficient Open Fermentative Production of Polymer-Grade L-Lactate from Sugarcane Bagasse Hydrolysate by Thermotolerant Bacillus sp. Strain P38

    PubMed Central

    Guo, Ling; Wang, Limin; Yu, Bo; Ma, Yanhe

    2014-01-01

    Lactic acid is one of the top 30 potential building-block chemicals from biomass, of which the most extensive use is in the polymerization of lactic acid to poly-lactic-acid (PLA). To reduce the cost of PLA, the search for cheap raw materials and low-cost process for lactic acid production is highly desired. In this study, the final titer of produced L-lactic acid reached a concentration of 185 g·L?1 with a volumetric productivity of 1.93 g·L?1·h?1 by using sugarcane bagasse hydrolysate as the sole carbon source simultaneously with cottonseed meal as cheap nitrogen sources under the open fed-batch fermentation process. Furthermore, a lactic acid yield of 0.99 g per g of total reducing sugars was obtained, which is very close to the theoretical value (1.0 g g?1). No D-isomer of lactic acid was detected in the broth, and thereafter resulted in an optical purity of 100%, which exceeds the requirement of lactate polymerization process. To our knowledge, this is the best performance of fermentation on polymer-grade L-lactic acid production totally using lignocellulosic sources. The high levels of optically pure l-lactic acid produced, combined with the ease of handling and low costs associated with the open fermentation strategy, indicated the thermotolerant Bacillus sp. P38 could be an excellent candidate strain with great industrial potential for polymer-grade L-lactic acid production from various cellulosic biomasses. PMID:25192451

  12. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse

    PubMed Central

    2013-01-01

    Background The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF). Results Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had significantly higher hemicellulase and ?-glucosidase enzyme activities. Liquid chromatography tandem mass spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and 397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains. In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and ?-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome. Conclusions In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for lignocellulosic feedstock hydrolysis. PMID:24286470

  13. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. PMID:23324164

  14. Effects of glycerol on enzymatic hydrolysis and ethanol production using sugarcane bagasse pretreated by acidified glycerol solution.

    PubMed

    Zhang, Zhanying; Wong, Heng H; Albertson, Peter L; Harrison, Mark D; Doherty, William O S; O'Hara, Ian M

    2015-09-01

    In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility was reduced by 4.5% and 11.0%, respectively. However, glycerol did not irreversibly inhibit cellulase enzymes. Ethanol fermentation was not affected by glycerol up to 5.0 wt%, but was inhibited slightly at 10.0 wt% glycerol, resulting in reduction in ethanol yield from 86.0% in the absence of glycerol to 83.7% (20 h). Based on the results of laboratory and pilot-scale experiments, it was estimated that 0.142 kg ethanol can be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution. PMID:26056778

  15. Volatile fatty acid fermentation of lime-treated bagasse by rumen microorganisms 

    E-print Network

    Lee, Chang-Ming

    1993-01-01

    This thesis describes the design and operation of a batch, anaerobic, in vitro fermentation of sugarcane bagasse by a mixed culture of ruminal microflora. The bagasse was supplemented with a small amount of alfalfa (0.16 g alfalfa/g bagasse...

  16. Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production.

    PubMed

    Zhao, Xuebing; Song, Yuanquan; Liu, Dehua

    2011-09-10

    The enzymatic digestibility of alkali/peracetic acid (PAA)-pretreated bagasse was systematically investigated. The effects of initial solid consistency, cellulase loading and addition of supplemental ?-glucosidase on the enzymatic conversion of glycan were studied. It was found the alkali-PAA pulp showed excellent enzymatic digestibility. The enzymatic glycan conversion could reach about 80% after 24 h incubation when enzyme loading was 10 FPU/g solid. Simultaneous saccharification and fermentation (SSF) results indicated that the pulp could be well converted to ethanol. Compared with dilute acid pretreated bagasse (DAPB), alkali-PAA pulp could obtain much higher ethanol and xylose concentrations. The fermentation broth still showed some cellulase activity so that the fed pulp could be further converted to sugars and ethanol. After the second batch SSF, the fermentation broth of alkali-PAA pulp still kept about 50% of initial cellulase activity. However, only 21% of initial cellulase activity was kept in the fermentation broth of DAPB. The xylose syrup obtained in SSF of alkali-PAA pulp could be well converted to 2,3-butanediol by Klebsiella pneumoniae CGMCC 1.9131. PMID:22112569

  17. Fast pyrolysis of sweet soghum bagasse in a fluidized bed

    SciTech Connect

    Palm, M.; Peacocke, C.; Bridgewater, A.V.; Piskorz, J.; Scott, D.S.

    1993-12-31

    Samples of Italian sorghum bagasse were dried and ground and then pyrolyzed in the Waterloo Fast Pyrolysis bench scale reactor unit. Results were typical of agricultural grasses of this kind, and resembled those obtained from similar tests of sugar cane bagasse. A maximum liquid yield (dry feed basis) of 68% by weight of dry feed was achieved, with a corresponding char yield (ash included) of 16%. The high ash content of the bagasse (9.2%) gave a char with a very high ash content ({approx}50%), with calcium as the most abundant cation. Yields of hydroxyacetaldehyde were comparable to those obtained from softwoods. Deionized bagasse gave significant yields of anhydrosugars on pyrolysis. Sorghum bagasse appears to be a suitable feedstock, either for pyrolysis to yield an alternative fuel oil, or after pretreatment and pyrolysis, to yield a solution of fermentable sugars.

  18. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  19. Design of a bagasse charcoal briquette-making device for use in Haiti

    E-print Network

    Vechakul, Jessica

    2005-01-01

    Charcoal made from bagasse, the fibrous remains of sugarcane production, has the potential to serve as an alternate cooking fuel in Haiti, where the reliance on wood has led to severe deforestation. Current production ...

  20. Author's personal copy Pyrolytic temperatures impact lead sorption mechanisms by bagasse

    E-print Network

    Ma, Lena

    Author's personal copy Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars of Environmental Engineering, Chongqing University, Chongqing 400045, China b Department of Soil and Water Science t s Sugarcane bagasse biochars were effective in removing Pb from aqueous solution. Pyrolytic temperatures

  1. Sugarcane as a renewable resource

    SciTech Connect

    Clarke, M.A.; Edye, L.A.

    1995-12-01

    Sugarcane (Saccharum officinarum) is grown, generally as a perennial crop, in tropical and subtropical areas; some 750 million tonnes are produced each year. Food, feed and energy are the major products of the sugarcane plant; sugarcane fiber, bagasse, fuels the cane processing plants and provides electricity to local grids through cogeneration. A range of chemicals and polymers is available from process streams and sugars. Microbial products are discussed in the comparison paper on sugarbeet. Chemical transformations reviewed herein include production of sucrose mono-, di- and poly-esters, polyurethanes, carboxylic acid derivatives, and thermally stable polymers. Processes and product will be reviewed.

  2. Effects of aminopropyltriethoxysilane (?-APS) on tensile properties and morphology of polypropylene (PP), recycle acrylonitrile butadiene rubber (NBRr) and sugarcane bagasse (SCB) composites

    NASA Astrophysics Data System (ADS)

    Santiagoo, Ragunathan; Omar, Latifah; Zainal, Mustaffa; Ting, Sam Sung; Ismail, Hanafi

    2015-07-01

    The performance of sugarcane baggase (SCB) treated with ?-APS filled polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) biocomposites were investigated. The composites with different filler loading ranging from 5 to 30 wt % were prepared using heated two roll mill by melt mixing at temperature of 180 °C. Tensile properties of the PP/NBRr/SCB composites which is tensile strength, Young Modulus and elongation at break were investigated. Increasing of treated SCB filler loading in PP/NBRr/SCB composites have increased the Young modulus however decreased the tensile strength and elongation at break of the PP/NBRr/SCB composites. From the results, ?-APS treated SCB composites shown higher tensile strength and Young Modulus but lower elongation at break when compared to the untreated SCB composites. This is due to the stronger bonding between ?-APS treated SCB with PP/NBRr matrices. These findings was supported by micrograph pictures from morphological study. SCB filler treated with ?-APS has improved the adhesion as well as gave strong interfacial bonding between SCB filler and PP/NBRr matrices which results in good tensile strength of PP/NBRr/SCB composites.

  3. Sugarcane rice residue biochars and their applications

    NASA Astrophysics Data System (ADS)

    Wang, J. J.

    2014-12-01

    Sugarcane production in U.S. involves either pre-harvest burning or after-harvest burning of the residue. Approximately 70-90% of the dry matter of harvested sugarcane trash is lost through open field burning. This practice has caused considerable concerns over air quality and soil sustainability. We propose an alternative conservation approach to convert the sugarcane residue to biochar and used as soil amendment to conserve carbon and potentially improve soil fertility. In this study, fundamental properties of biochars made from sugarcane residue along with rice residues were tested for agronomic and environmental benefits. Sugarcane and rice harvest residues and milling processing byproducts bagasse and rice husk were converted to biochars at different pyrolysis temperatures and characterized. In general, sugarcane leave biochar contained more P, K, Ca and Mg than sugarcane bagasse biochar. Rice straw biochar had more S, K Ca but less P than rice husk biochar. Both biochars had higher available fraction of total P than that of total K. Sugarcane leave biochar converted at 450oC was dominated with various lignin derived phenols as well as non-specific aromatic compounds whereas bagasse biochar was with both lignin derived phenol and poly aromatic hydrocarbon (PAH). Rice straw char was dominated with non-specific aromatic compounds. At 750oC, charred material was dominated with aromatic ethers while losing the aromatic C=C structures. These molecular and surface property differences likely contributed to the difference in water holding capacities observed with these biochars. On the other hand, rice straw biochars produced at different pyrolysis temperatures had no significant effect on rice germination. Soils treated with sugarcane leave/trash biochar significantly enhanced sugarcane growth especially the root length. Treating soil with either sugarcane leave or bagasse char also enhanced soil adsorption capacity of atrazine; a common herbicide used in sugarcane production, and reduced greenhouse gas emission. Overall, the conversion of sugarcane harvest residue to biochar as soil amendment improves sugarcane production for both agronomic and environmental benefits. Sugarcane residue biochar also showed the potential of other environmental use for remediation of petroleum hydrocarbons.

  4. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  5. Sugarcane and pinewood biochar effects on activity and aerobic soil dissipation of metribuzin and pendimethalin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars were produced by pyrolysis of sugarcane bagasse (350°C and 700°C) and pine wood (400°C) and are abbreviated BC350, BC700, and WC400, respectively. Metribuzin adsorption by batch equilibrium showed that BC700 had the greatest adsorption capacity followed by BC350 and WC400. The bagasse bioch...

  6. Enhancement of enzymatic hydrolysis of sugar cane bagasse by steam explosion pretreatment

    SciTech Connect

    Kling, S.H.; Neto, C.C.; Ferrara, M.A.; Torres, J.C.R.; Magalhaes, D.B.; Ryu, D.D.Y.

    1987-01-01

    In this study, the possibility of applying a steam explosion pretreatment process to sugarcane bagasse was investigated, and the effectiveness of the pretreatment in terms of hemicellulose solubilization and enhancement of enzymatic hydrolysis was determined. The steam requirement for the pretreatment was also investigated at the pilot-plant scale, and these results are presented.

  7. Composition of Residue from Sugarcane and Related Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Louisiana, a facility near Jennings will produce cellulosic ethanol from sugarcane (Saccharum spp. hybrids) bagasse and “energy canes”. This study was done to obtain basic information on the composition of the cell wall residue left after expressing the juice in different Saccharum genotypes. Fou...

  8. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane

    PubMed Central

    2014-01-01

    Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol production from bagasse can be achieved without adversely affecting juice ethanol and cane yield, thus maintaining first generation ethanol production levels while maximizing second generation ethanol production. PMID:24725458

  9. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.

    PubMed

    Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian

    2015-10-01

    Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. PMID:26196420

  10. Bagasse utilization in Cuba

    SciTech Connect

    Not Available

    1981-11-01

    Fluctuations in world sugar prices retard economic development in sugar-producing countries like Cuba, and so there is a pressing need to find alternative uses for sugar cane through the industrialization of its by-products, such as bagasse. In 1971 the United Nations Development Program began a cooperative venture with the Cuban Research Institute for Sugar Cane Derivatives to develop methods of making newsprint from bagasse. An experimental plant - Cuba 9, located 35 kilometers south of Havana, was inaugurated in May 1981. It is semi-commercial in character and has a daily capacity of 34 tonnes of newsprint and five tonnes of dissolving pulp. Pilot plants for the production of furfural and for the production of reconstituted panelboard are in operation.

  11. Seasonal variations of sugarcane stalk and extraneous matter on pH, color and ash as they affect the production of high quality raw sugars (Part II)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a trend in the U.S. and world-wide to produce very high pol (VHP) and very low color (VLC) raw sugars for new refineries. In Louisiana (LA), a new refinery is requesting VHP/VLC sugar with lower ash concentrations for liquid sugar manufacture and short, medium, and long-term refinery strat...

  12. Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions 

    E-print Network

    Fu, Zhihong

    2009-05-15

    . In contrast, the patented MixAlco process requires no enzymes or sterility, making it attractive to convert lignocellulosic biomass to transportation fuels and valuable chemicals. This study focuses on pretreatment and thermophilic fermentation in the Mix...Alco process. Ammonium bicarbonate (NH 4 HCO 3 ) was discovered to be a better pH buffer than previously widely used calcium carbonate (CaCO 3 ) in anaerobic fermentations under thermophilic conditions (55?C). The desired pH should be controlled within 6...

  13. Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.).

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2014-01-01

    The effects of three sugarcane waste-products from an ethanol production plant on the fractionation of Cd and Zn in high Cd and Zn contaminated soil and metal accumulation in sugarcane (Saccharum officinarum L.) were studied, using the BCR sequential extraction and aqua regia extraction procedures. A pot experiment was performed for 4 months with four treatments: no-amendments (control), boiler ash (3% w/w), filter cake (3% w/w) and a combination of boiler ash and vinasse (1.5% + 1.5%, w/w). The results showed that all treatments reduced the most bioavailable concentrations of Cd and Zn (BCR1 + 2) in soils (4.0-9.6% and 5.5-6.3%, respectively) and metal uptake (?g) in the aboveground part of the sugarcane (up to 62% and 54% for Cd and Zn, respectively) as compared to the control. No visual symptoms of metal toxicity and no positive effect on the biomass production of sugarcane were observed. Both Cd and Zn were accumulated mainly in the underground parts of the sugarcane (root > shoot ? underground sett > leaf; and root > underground sett > shoot > leaf, respectively) and the translocation factors were below 1, indicating low metal uptake. The results suggested that even though sugarcane waste-products insignificantly promote sugarcane growth, they can be used in agriculture due to the low metal accumulation in sugarcane and the reduction in metal bioavailability in the soil. PMID:24217524

  14. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content

    PubMed Central

    Vicentini, Renato; Bottcher, Alexandra; Brito, Michael dos Santos; dos Santos, Adriana Brombini; Creste, Silvana; Landell, Marcos Guimarães de Andrade; Cesarino, Igor; Mazzafera, Paulo

    2015-01-01

    Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome. PMID:26241317

  15. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    PubMed

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 ?m) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP). PMID:24607160

  16. Sugarcane pests and their management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter discusses sugarcane culture and history, describes arthropod biologies and injury, and identifies sugarcane pest management factors to consider for people interested in commercial sugarcane production. Arthropod groups include 10 orders and 40 families. Sugarcane pest management ...

  17. The development of multi-objective optimization model for excess bagasse utilization: A case study for Thailand

    SciTech Connect

    Buddadee, Bancha Wirojanagud, Wanpen Watts, Daniel J. Pitakaso, Rapeepan

    2008-08-15

    In this paper, a multi-objective optimization model is proposed as a tool to assist in deciding for the proper utilization scheme of excess bagasse produced in sugarcane industry. Two major scenarios for excess bagasse utilization are considered in the optimization. The first scenario is the typical situation when excess bagasse is used for the onsite electricity production. In case of the second scenario, excess bagasse is processed for the offsite ethanol production. Then the ethanol is blended with an octane rating of 91 gasoline by a portion of 10% and 90% by volume respectively and the mixture is used as alternative fuel for gasoline vehicles in Thailand. The model proposed in this paper called 'Environmental System Optimization' comprises the life cycle impact assessment of global warming potential (GWP) and the associated cost followed by the multi-objective optimization which facilitates in finding out the optimal proportion of the excess bagasse processed in each scenario. Basic mathematical expressions for indicating the GWP and cost of the entire process of excess bagasse utilization are taken into account in the model formulation and optimization. The outcome of this study is the methodology developed for decision-making concerning the excess bagasse utilization available in Thailand in view of the GWP and economic effects. A demonstration example is presented to illustrate the advantage of the methodology which may be used by the policy maker. The methodology developed is successfully performed to satisfy both environmental and economic objectives over the whole life cycle of the system. It is shown in the demonstration example that the first scenario results in positive GWP while the second scenario results in negative GWP. The combination of these two scenario results in positive or negative GWP depending on the preference of the weighting given to each objective. The results on economics of all scenarios show the satisfied outcomes.

  18. Lignification in Sugarcane: Biochemical Characterization, Gene Discovery, and Expression Analysis in Two Genotypes Contrasting for Lignin Content1[W

    PubMed Central

    Bottcher, Alexandra; Cesarino, Igor; Brombini dos Santos, Adriana; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Antonio dos Anjos, Ivan; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-01-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  19. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content.

    PubMed

    Bottcher, Alexandra; Cesarino, Igor; Santos, Adriana Brombini dos; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Anjos, Ivan Antonio dos; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-12-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  20. Experimental assessment of the accuracy of genomic selection in sugarcane.

    PubMed

    Gouy, M; Rousselle, Y; Bastianelli, D; Lecomte, P; Bonnal, L; Roques, D; Efile, J-C; Rocher, S; Daugrois, J; Toubi, L; Nabeneza, S; Hervouet, C; Telismart, H; Denis, M; Thong-Chane, A; Glaszmann, J C; Hoarau, J-Y; Nibouche, S; Costet, L

    2013-10-01

    Sugarcane cultivars are interspecific hybrids with an aneuploid, highly heterozygous polyploid genome. The complexity of the sugarcane genome is the main obstacle to the use of marker-assisted selection in sugarcane breeding. Given the promising results of recent studies of plant genomic selection, we explored the feasibility of genomic selection in this complex polyploid crop. Genetic values were predicted in two independent panels, each composed of 167 accessions representing sugarcane genetic diversity worldwide. Accessions were genotyped with 1,499 DArT markers. One panel was phenotyped in Reunion Island and the other in Guadeloupe. Ten traits concerning sugar and bagasse contents, digestibility and composition of the bagasse, plant morphology, and disease resistance were used. We used four statistical predictive models: bayesian LASSO, ridge regression, reproducing kernel Hilbert space, and partial least square regression. The accuracy of the predictions was assessed through the correlation between observed and predicted genetic values by cross validation within each panel and between the two panels. We observed equivalent accuracy among the four predictive models for a given trait, and marked differences were observed among traits. Depending on the trait concerned, within-panel cross validation yielded median correlations ranging from 0.29 to 0.62 in the Reunion Island panel and from 0.11 to 0.5 in the Guadeloupe panel. Cross validation between panels yielded correlations ranging from 0.13 for smut resistance to 0.55 for brix. This level of correlations is promising for future implementations. Our results provide the first validation of genomic selection in sugarcane. PMID:23907359

  1. Self-heating and drying in two-dimensional bagasse piles

    NASA Astrophysics Data System (ADS)

    Sexton, M. J.; Macaskill, C.; Gray, B. F.

    2001-12-01

    This paper describes a two-dimensional model for self-heating and changes in water levels in bagasse piles of constant rectangular or triangular cross section. (Bagasse is the residue, mainly cellulose, that remains after sugar has been extracted from sugar-cane.) After milling, the bagasse has almost 50% water by weight, as hot water is used to remove the last of the sugar. The bagasse can be used as fuel in electrical power stations, but needs to be dried out before use. This paper discusses the way in which the drying out of a pile depends on the ambient conditions, and the shape and size of the pile. Accordingly, the energy equation, and equations for liquid water, water vapour and oxygen are solved numerically using the method of lines. The equations include terms describing heat conduction, diffusion of water vapour and oxygen, condensation and evaporation and an Arrhenius self-heating term. In addition, recent measurements show that there is also self-heating due to the presence of water in the bagasse, with a maximum effect near 60 °C, which is modelled by a modified Arrhenius expression. The local maximum in the heat release curve for the problem leads to approximate steady-state behaviour on short time scales that eventually is lost as the pile dries out. This interesting physical behaviour motivates an approximate analytical model for the rate at which liquid water is reduced in the pile. Analytical and numerical results are presented for a variety of pile configurations and some fairly general conclusions are drawn.

  2. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods.

    PubMed

    Dias, Marina O S; da Cunha, Marcelo Pereira; Maciel Filho, Rubens; Bonomi, Antonio; Jesus, Charles D F; Rossell, Carlos E V

    2011-08-01

    Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive. PMID:20838849

  3. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  4. Economic feasibility of bagasse charcoal in Haiti

    E-print Network

    Kamimoto, Lynn K. (Lynn Kam Oi)

    2005-01-01

    The economics of implementing bagasse-based charcoal manufacturing in Haiti was investigated. From these main inputs, three different manufacturing economic scenarios were modeled using a simple, dynamic excel spreadsheet. ...

  5. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments.

    PubMed

    Zhang, Xin; Zhu, Yongguan; Zhang, Yuebin; Liu, Yunxia; Liu, Shaochun; Guo, Jiawen; Li, Rudan; Wu, Songlin; Chen, Baodong

    2014-05-01

    A pot experiment was conducted to investigate the feasibility of growing energy sugarcane (Saccharum spp.) in three different metal mine tailings (Cu, Sn and Pb/Zn tailings) amended with uncontaminated soil at different mixing ratios. The results indicated that sugarcane was highly tolerant to tailing environments. Amendments of 20% soil to Sn tailings and 30% soil to Cu tailings could increase the biomass of cane-stem for use as the raw material for bioethanol production. Heavy metals were mostly retained in roots, which indicated that sugarcane was useful for the stabilization of the tailings. Bagasse and juice, as the most valuable parts to produce bioethanol, only accounted for 0.6%-3% and 0.6%-7% of the total metal content. Our study supported the potential use of sugarcane for tailing phytostabilization and bioenergy production. PMID:25079638

  6. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.

    PubMed

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  7. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    PubMed Central

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM?1), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  8. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.

    PubMed

    Ding, Wenchuan; Dong, Xiaoling; Ime, Inyang Mandu; Gao, Bin; Ma, Lena Q

    2014-06-01

    The characteristics and mechanisms of Pb sorption by biochars produced from sugarcane bagasse at 250, 400, 500, and 600 °C were examined. The Pb sorption isotherms, kinetics and desorption were investigated. All biochars were effective in Pb sorption and were well described by Langmuir isotherm model and pseudo-second-order kinetic model. The maximum sorption capacity decreased from 21 to 6.1 mg g(-1) as temperature increased from 250 to 600 °C. The Pb sorption was rapid initially, probably controlled by cation exchange and complexation and then slowed down, which might be due to intraparticle diffusions. FTIR data and kinetic models suggested that oxygen functional groups were probably responsible for the high Pb sorption onto low temperature biochars (250 and 400 °C) whereas intraparticle diffusion was mainly responsible for low Pb sorption onto high temperature biochars (500 and 600 °C). Decreased phosphorus concentration indicated that P-induced Pb precipitation was also responsible for Pb sorption. Pyrolysis temperature significantly affected biochar properties and played an important role in Pb sorption capacity and mechanisms by biochars. PMID:24393563

  9. Sugarcane and Energycane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Energycane” is a term that is used to describe sugarcane grown solely for the production of renewable energy. A Type I energycane has somewhat lower sugar content (10-14%) and higher fiber content (14-20%) than a commercial sugarcane cultivar bred for sugar production. In contrast, a Type II energy...

  10. Sugarcane borer in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane borer, Diatraea saccharalis, is one of the most important of the above-ground pests of sugarcane in Florida. This article presents information pertaining to the borer’s biology, damage to cane, scouting, biological control, cultural control and chemical control. ...

  11. Categorizing Sugarcane Cultivar Resistance to the Sugarcane Aphid and Yellow Sugarcane Aphid (Hemiptera: Aphidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...

  12. Categorizing sugarcane cultivar resistance to the sugarcane aphid and yellow sugarcane aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in the U.S. is chiefly colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari, and the yellow sugarcane aphid, Sipha flava, which vector economically important viruses of the crop. Greenhouse experiments were conducted to categorize commercial sugarcane cultivars for the...

  13. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization.

    PubMed

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2013-05-01

    Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil. PMID:23511210

  14. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C. P.; Umar, Ahmad

    2014-09-01

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03574g

  15. Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment

    SciTech Connect

    Encinar, J.M.; Beltran, F.J.; Ramiro, A.; Gonzalez, J.F.

    1997-10-01

    Catalyzed pyrolysis of grape and olive bagasse under different experimental conditions has been studied. Variables investigated were temperature and type and concentration of catalysts. Experiments were carried out in an isothermal manner. Products of pyrolysis are gases (H{sub 2}, CO, CO{sub 2}, and CH{sub 4}), liquids (methanol, acetone, furfurylic alcohol, phenol, furfural, naphthalene, and o-cresol), and solids (chars). Temperature is a significant variable, yielding increases of fixed carbon content, gases, and to a lesser extent, ash percentage. Catalyst presence also yields increases of solid phase content, but the amount of liquid components decrease. Among catalysts applied those of Fe and Zn are the most advisable to obtain gases. Chemical treatment of bagasses with sulfuric or phosphoric acid washing leads to lower char yields, although fixed carbon content is higher and ash presence diminishes with respect to catalyst pyrolysis without chemical pretreatment. A pyrolysis kinetic study based on gas generation from thermal decomposition of residues has been carried out. From the model proposed, rate constants for the formation of each gas, reaction order of the catalyst, and activation energies were determined.

  16. Sugarcane response to bermudagrass interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted with the objectives of determining differences in the competitiveness of three phenotypically different sugarcane cultivars, ‘CP 70-321’, ‘HoCP 85-845’, and ‘LCP 85-384’, with bermudagrass, and the effects of bermudagrass interference on sugarcane. Sugarcane was planted at tw...

  17. Herbicides as ripeners for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the start of the sugarcane harvest season in Louisiana, late-September or early-October, sucrose content in sugarcane is relatively low compared to late in the harvest season. In order for early-harvested sugarcane to be profitable, chemicals, primarily herbicides, have been evaluated for their e...

  18. Techno-economic analysis for a sugarcane biorefinery: Colombian case.

    PubMed

    Moncada, Jonathan; El-Halwagi, Mahmoud M; Cardona, Carlos A

    2013-05-01

    In this paper a techno-economic analysis for a sugarcane biorefinery is presented for the Colombian case. It is shown two scenarios for different conversion pathways as function of feedstock distribution and technologies for sugar, fuel ethanol, PHB, anthocyanins and electricity production. These scenarios are compared with the Colombian base case which simultaneously produce sugar, fuel ethanol and electricity. A simulation procedure was used in order to evaluate biorefinery schemes for all the scenarios, using Aspen Plus software, that include productivity analysis, energy calculations and economic evaluation for each process configuration. The results showed that the configuration with the best economic, environmental and social performance is the one that considers fuel ethanol and PHB production from combined cane bagasse and molasses. This result served as the basis to draw recommendations on technological and economic feasibility as well as social aspects for the implementation of such type of biorefinery in Colombia. PMID:23021947

  19. Development of the Cuban bagasse boiler practice

    SciTech Connect

    Lora, E.S.

    1995-11-01

    This paper shows how Cuban bagasse boiler practice began simultaneously with the design of the spreader-stoker boilers RETO and the retrofitting of the horse-shoe furnace German boilers into the RETAL ones. Now the main trend is the retrofitting of the boilers RETO for suspension burning using two systems: the vertical swirl or tangenital fired furnace; and the horizontal swirl furnace. In this paper the main technical characteristics and parameters are presented, as well as the results of the tests with different boilers. Data about temperature gas concentration profiles are different furnaces are also included. The conclusion is that the horizontal swirl furnace is actually the most promising technical solution for the suspension burning of a coarse and polidispersed bagasse like the Cuban one. The generalization of the bagasse suspension burning in horizontal swirl furnace boilers by retrofitting of the existing ones is a present task for the Cuban sugar industry, as well as the design of new high steam parameter boilers using this combustion system.

  20. Sugarcane Rust Inoculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane rusts, brown (caused by Puccinia melanocephala) and orange (caused by P. kuehnii), are agronomically important diseases in Florida. Cultivar resistance is the best means of managing these diseases. Unfortunately, natural infection of brown rust is not always efficient in determining resist...

  1. Herbicide effects on sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of all the areas of the world where sugarcane is grown, Louisiana lies furthest from the Equator. As such, its growing season is the shortest as it is affected by frost in the late–winter (February/March) at the start of the growing season and the fear of freezing temperatures during the harvest se...

  2. Improving Sugarcane Flood Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) in the Everglades Agricultural Area (EAA) of Florida is often exposed to high water tables and periodic floods. Growers are concerned that elevated water tables for prolonged periods and during certain phases of growth reduce yields. However, these wet conditions help co...

  3. Biomass energy opportunities on former sugarcane plantations in Hawaii

    SciTech Connect

    Phillips, V.D.; Tvedten, A.E.; Lu, W.

    1995-11-01

    Electricity produced from burning sugarcane bagasse has provided as much as 10 percent of Hawaii`s electricity supply in the past. As sugarcane production has ceased on the islands of Oahu and Hawaii and diminished on Maui and Kauai, the role of biomass energy will be reduced unless economically viable alternatives can be identified. An empirical biomass yield and cost system model linked to a geographical information system has been developed at the University of Hawaii. This short-rotation forestry decision support system was used to estimate dedicated biomass feedstock supplies and delivered costs of tropical hardwoods for ethanol, methanol, and electricity production. Output from the system model was incorporated in a linear programming optimization model to identify the mix of tree plantation practices, wood processing technologies, and end-products that results in the highest economic return on investment under given market situations. An application of these decision-support tools is presented for hypothetical integrated forest product systems established at two former sugarcane plantations in Hawaii. Results indicate that the optimal profit opportunity exists for the production of medium density fibreboard and plywood, with annual net return estimates of approximately $3.5 million at the Hamakua plantation on the island of Hawaii and $2.2 million at the Waialua plantation on Oahu. Sensitivity analyses of the effects of different milling capacities, end-product market prices, increased plantation areas, and forced saw milling were performed. Potential economic credits for carbon sequestration and wastewater effluent management were estimated. While biofuels are not identified as an economical viable component, energy co-products may help reduce market risk via product diversification in such forestry ventures.

  4. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and ?-glucan (that compose the most external part of the cell wall in sugarcane) are likely the first to be released and assimilated by both species of fungi. At all time points tested, A. niger produced more enzymes (quantitatively and qualitatively) than T. reesei. However, the most important enzymes related to biomass degradation, including cellobiohydrolases, endoglucanases, ?-glucosidases, ?-xylosidases, endoxylanases, xyloglucanases, and ?-arabinofuranosidases, were identified in both secretomes. We also noticed that the both fungi produce more enzymes when grown in culm as a single carbon source. Conclusion Our work provides a detailed qualitative and semi-quantitative secretome analysis of A. niger and T. reesei grown on sugarcane biomass. Our data indicate that a combination of enzymes from both fungi is an interesting option to increase saccharification efficiency. In other words, these two fungal species might be combined for their usage in industrial processes. PMID:26053961

  5. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  6. Life cycle assessment of bagasse waste management options.

    PubMed

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative. PMID:19136243

  7. Sugarcane Improvement Through Breeding and Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  8. Registration of ‘Ho 02-113’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ho 02-113’ sugarcane was released by the USDA-ARS Sugarcane Research Unit working cooperatively with the Louisiana State University Agricultural Center, and the American Sugarcane League of the U.S.A. This high-fiber sugarcane variety was released for use as a biofuel feedstock to fill the rising i...

  9. Sugarcane smut and its control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane smut, caused by Sporisoriom scitamineum, is a major disease of sugarcane that is controlled by cultivar resistance. However the level of resistance must be higher in hot dry environments such as in Okinawa, Japan for adequate control. Since smut is favored by the hot dry weather, the br...

  10. Phylogenetic relationships of sugarcane fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylogenetic positions of Puccinia spp. infecting sugarcane (a complex hybrid of Saccharum spp.) was determined using 42 newly generated rust sequences and 25 sequences from Genbank. Rust specimens on sugarcane were collected from 161 locations in 25 countries and identified based on light micro...

  11. Olive bagasse and nutshell as gamma shielding material

    SciTech Connect

    ?naç, Esra; Bayta?, A. Filiz

    2013-12-16

    Gamma ray linear attenuation coefficients have been measured experimentally for olive bagasse and nutshell by using narrow beam geometry for Co-60 and the values have been compared with soil. These values have been used calculate mean free path, half value layer and tenth value layer parameters. Besides, effect of multi-layered systems (soil + olive bagasse and soil + nutshell) has been analyzed in terms of half value layer.

  12. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.

    PubMed

    Jeong, Chang Yoon; Dodla, Syam K; Wang, Jim J

    2016-01-01

    Biochar conversion of sugarcane and rice harvest residues provides an alternative for managing these crop residues that are traditionally burned in open field. Sugarcane leaves, bagasse, rice straw and husk were converted to biochar at four pyrolysis temperatures (PTs) of 450°C, 550°C, 650°C, and 750°C and evaluated for various elemental, molecular and surface properties. The carbon content of biochars was highest for those produced at 650-750°C. Biochars produced at 550°C showed the characteristics of biochar that are commonly interpreted as being stable in soil, with low H/C and O/C ratios and pyrolysis fingerprints dominated by aromatic and polyaromatic hydrocarbons. At 550°C, all biochars also exhibited maximum CEC values with sugarcane leaves biochar (SLB) > sugarcane bagasse biochar (SBB) > rice straw biochar (RSB) > rice husk biochar (RHB). The pore size distribution of biochars was dominated by pores of 20nm and high PT increased both smaller and larger than 50nm pores. Water holding capacity of biochars increased with PT but the magnitude of the increase was limited by feedstock types, likely related to the hydrophobicity of biochars as evident by molecular composition, besides pore volume properties of biochars. Py-GC/MS analysis revealed a clear destruction of lignin with decarboxylation and demethoxylation at 450°C and dehydroxylation at above 550°C. Overall, biochar molecular compositions became similar as PT increased, and the biochars produced at 550°C demonstrated characteristics that have potential benefit as soil amendment for improving both C sequestration and nutrient dynamics. PMID:26058554

  13. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Ribeiro, M. A.; Oikawa, H.; Mori, M. N.; Napolitano, C. M.; Galvão, C. A.

    2012-08-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH.

  14. Application of tetra-n-methylammonium hydroxide on cellulose dissolution and isolation from sugarcane bagasse.

    PubMed

    Zhong, Chao; Wang, Chunming; Wang, Fengxue; Jia, Honghua; Wei, Ping; Zhao, Yin

    2016-01-20

    Cellulose isolation, a promising way for lignocellulosic biomass utilization, is always restricted by the poor solubility of cellulose. In this paper, tetra-n-methylammonium hydroxide (TMAH) was confirmed to be capable of readily dissolving/regenerating cellulose without chemical modification at room temperature. Meanwhile, cellulose isolation from lignocellulosic biomass by initially dissolving the biomass in TMAH followed by cellulose precipitation was proposed, and the isolated substance with average cellulose purity of 92.1±0.3% could be obtained throughout this process under the optimum conditions: temperature 52°C, time 60min, and loading ratio of TMAH/biomass (w/w) 7.2:1. Besides, high efficiency cellulose isolation (i.e. >70% cellulose purity) could be continuously remained during 4-round cycles by using the recycled TMAH solvent without distinct activity loss. PMID:26572437

  15. Sugarcane bagasse and pine wood biochar effects on aerobic soil dissipation of metribuzin and pendimethalin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable interest in biochar use as an agricultural soil amendment. Available data indicate that there is potential for both positive and negative impact. On the positive side are increased organic matter, increased herbicide persistence, and improved soil physical properties. Negative ...

  16. Ash leachate test on Redoubt ash

    USGS Multimedia Gallery

    Undergraduate student Janelle Dyer (USGS ARRA student appointment) performs an ash leachate test on Redoubt ash in the Alaska Tephra Laboratory and Data Center in Anchorage, Alaska. This test is done to analyze the geochemical reaction between volcanic ash and drinking water sources during eruptions...

  17. Host plants of the sugarcane root weevil (Coleoptera: Curculionidae) in Florida sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse study was conducted to evaluate adult sugarcane root weevil (Diaprepes abbreviatus) residence (location), feeding damage, and oviposition choice on four sugarcane varieties and five weed species found in Florida sugarcane. Sugarcane varieties were CP 89-2143, CP 88-1762, CP 80-1743, and...

  18. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED

    E-print Network

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL SOILS IN FLORIDA 1/11/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL

  19. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE

    E-print Network

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC SOILS IN FLORIDA 1/15/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC

  20. Sugarcane Log Turning Ltd. Business Plan

    E-print Network

    Sugarcane Log Turning Ltd. Business Plan Prepared by: Jordan Barlow Sarah Saddler Kimberley LeDrew Morgan Kennah WOOD 465 April 14, 2004 #12;ii EXECUTIVE SUMMARY Sugarcane Log Turning (SCLT) is a unique

  1. Ash utilisation This lecture

    E-print Network

    Zevenhoven, Ron

    ­ Higher content unburnt organic material Bottom ash from grid boilers Fly ash from CFB and spread stoker.varmeforsk.se/files/program/askor/Korpijrvi_workshop_Finland.pdf #12;Different boilers produce different types of ash Boiler Bottom ash (%) Fly ash (%) Grid 70-80 20-30 Spread Stoker 40-50 50-60 CFB 10-20 80-90 #12;http://www

  2. Conversion of bagasse cellulose into ethanol

    SciTech Connect

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  3. Registration of ‘CPCL 00-4111’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of ‘CPCL 00-4111’ sugarcane (a complex hybrid of Saccharum spp.) is the latest in a series of commercial sugarcane cultivar releases originating from the United States Sugar Corporation (USSC) and completed by the cooperative Canal Point sugarcane breeding and selection program which inc...

  4. Managing damaging freeze events in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of sugarcane to damaging frosts occurs in approximately 25% of the sugarcane producing countries of the world, but is most frequent on the mainland of the United States, especially in the state of Louisiana. The frequent winter freezes that occur in the sugarcane areas of Louisiana have fo...

  5. Registration of ‘CPCL 95-2287’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of ‘CPCL 95-2287’ sugarcane (a complex hybrid of Saccharum spp.) is the latest in a series of commercial sugarcane cultivar releases originating from the United States Sugar Corporation (USSC) and completed by the cooperative Canal Point sugarcane breeding and selection program which inc...

  6. Catalytic steam gasification of bagasse for the production of methanol

    SciTech Connect

    Baker, E.G.; Brown, M.D.

    1983-12-01

    Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

  7. Prediction of the degradability of sugarcane cellulosic residues by indirect methods

    SciTech Connect

    Cabello, A.; Conde, J.; Otero, M.A.

    1981-12-01

    The effect of mild NaOH treatments on sugarcane cellulosic wastes (bagasse, pith, and straw) to increase their biological degradability has been studied. At a level of 8% NaOH (on a dry matter basis) 60% digestibility measured by the in vitro technique was achieved for all materials tested. Indirect methods to predict the digestibility of treated materials such as the bacterial degradability, enzymatic degradability, hot-water solubility, and chemical oxygen demand were tried as alternative methods to the rumen fluid technique. High correlation coefficients for all materials were obtained with all alternative techniques. The minimal r value was 0.96 while the highest was 0.99. An important reduction of time and reagents is achieved by the utilization of the solubility and chemical oxygen demand tests. (Refs. 8).

  8. High-Yield Endoglucanase Production by Trichoderma harzianum IOC-3844 Cultivated in Pretreated Sugarcane Mill Byproduct

    PubMed Central

    de Castro, Aline Machado; Ferreira, Marcela Costa; da Cruz, Juliana Cunha; Pedro, Kelly Cristina Nascimento Rodrigues; Carvalho, Daniele Fernandes; Leite, Selma Gomes Ferreira; Pereira, Nei

    2010-01-01

    The low-cost production of cellulolytic complexes presenting high action at mild conditions and well-balanced cellulase activities is one of the major bottlenecks for the economical viability of the production of cellulosic ethanol. In the present paper, the filamentous fungus Trichoderma harzianum IOC-3844 was used for the production of cellulases from a pretreated sugarcane bagasse (namely, cellulignin), by submerged fermentation. This fungal strain produced high contents of endoglucanase activity (6,358 U·L?1) after 72 hours of process, and further relevant ?-glucosidase and FPase activities (742 and 445 U·L?1, resp.). The crude enzyme extract demonstrated appropriate characteristics for its application in cellulose hydrolysis, such as high thermal stability at up to 50°C, accessory xylanase activity, and absence of proteolytic activity towards azocasein. This strain showed, therefore, potential for the production of complete cellulolytic complexes aiming at the saccharification of lignocellulosic materials. PMID:21048871

  9. Alpha ash transport and ash control

    SciTech Connect

    Miley, G.H.; Hu, S.C.; Varadarajan, V.

    1990-01-01

    This paper discusses: thermal {alpha}-particle transport is a crucial issue in ash buildup. The transport will determine if buildup prevents ignition and if external control is necessary. Due to uncertainties in the transport coefficients, 1-1/2-D sensitivity study of the influence on the fusion power density is done using the BALDUR code. The Baldur simulations with varying diffusion coefficients for ash plasma are performed. The results of ash transport in the presence of sawteeth and varying edge conditions are discussed. Also, the nature of the fishbone oscillation in the presence of two hot species consisting of hot alphas and beam injected ions is discussed. The sawteeth and fishbones can be potential mechanisms for enhanced ash transport; the latter will indirectly influence the ash transport.

  10. VIEW OF FORMER STACK WITH 1955 STEAM GENERATOR BEHIND. BAGASSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FORMER STACK WITH 1955 STEAM GENERATOR BEHIND. BAGASSE CONVEYORS TO LEFT WITH BOILER HOUSE WING?S GABLE END IN LEFT BACKGROUND. A CONDENSATE TANK IS TO THE RIGHT, WITH BOILING HOUSE GABLE END IN THE BACKGROUND. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  11. California Dust and Ash

    Atmospheric Science Data Center

    2014-05-15

    article title:  Airborne Dust and Ash over Southern California     ... during late fall and winter swept large amounts of dust and ash across the skies of San Diego and over the Pacific Ocean on ... while a 3-D stereo anaglyph image (right) accentuates the dust and indicates the relative height above the surface of the dust and ash ...

  12. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOEpatents

    Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2014-01-01 false Sugarcane crop insurance provisions. 457.116...CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011...

  15. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 false Proportionate shares for sugarcane producers. 1435.311 Section 1435...1435.311 Proportionate shares for sugarcane producers. (a) Proportionate shares...through 1435.316 apply only to Louisiana sugarcane farms. (b) CCC will...

  16. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 false Proportionate shares for sugarcane producers. 1435.311 Section 1435...1435.311 Proportionate shares for sugarcane producers. (a) Proportionate shares...through 1435.316 apply only to Louisiana sugarcane farms. (b) CCC will...

  17. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 false Proportionate shares for sugarcane producers. 1435.311 Section 1435...1435.311 Proportionate shares for sugarcane producers. (a) Proportionate shares...through 1435.316 apply only to Louisiana sugarcane farms. (b) CCC will...

  18. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Sugarcane crop insurance provisions. 457.116...CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011...

  19. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Sugarcane crop insurance provisions. 457.116...CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011...

  20. Emergy Analysis of Sugarcane (energy crop) Water Management

    E-print Network

    Ma, Lena

    Emergy Analysis of Sugarcane (energy crop) Water Management HENDRY COUNTY SUSTAINABLE BIOFUELS is being approached by businesses with technologies that convert agronomic crops into energy: Sugarcane (Climate change Issues) · Biodiversity · Food Competition · Water (Sugarcane) Quality (Contamination

  1. Sugarcane Variety Census: Florida 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida sugarcane industry produces about 25% of all sugar produced in the U.S. Varieties originate from two sources, a private breeding and selection program of the United States Sugar Corporation in Clewiston, Florida and a public program at Canal Point, Florida supported by the USDA-Agricultu...

  2. SUGARCANE VARIETY CENSUS FLORIDA 2002

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida sugarcane industry produces about 25% of all sugar produced in the U.S. Cultivars originate from two sources, a private breeding and selection program of the United States Sugar Corporation in Clewiston, Florida and a public program at Canal Point, Florida supported by USDA-ARS, the Univ...

  3. Advanced ash management technologies for CFBC ash.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2003-01-01

    The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view. PMID:12909091

  4. Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome

    PubMed Central

    Paixão, Douglas A. A.; Gonçalves, Thiago A.; Franco Cairo, João Paulo L.; Almeida, Rodrigo Ferreira; de Oliveira Pereira, Isabela; Jackson, George; Cota, Junio; Büchli, Fernanda; Citadini, Ana Paula; Ruller, Roberto; Polo, Carla Cristina; de Oliveira Neto, Mario; Murakami, Mário T.; Squina, Fabio M.

    2013-01-01

    Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (?/?)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. PMID:23922891

  5. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-01-01

    Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. PMID:24600872

  6. Potential effect of sugarcane yellow leaf virus infection on yield of leading sugarcane cultivars in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the potential effect of Sugarcane yellow leaf virus (ScYLV) infection on cane and sucrose yield of four sugarcane cultivars (LCP 85-384, Ho 95-988, HoCP 96-540 and L 97-128) that occupied a combined total of 93% of the sugarcane production area in Louisi...

  7. Screening for Sugarcane Brown Rust in First Clonal Stage of the Canal Point Sugarcane Breeding Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) brown rust (caused by Puccinia melanocephala H. & P. Sydow) was first reported in the United States in 1978 and is still one of great challenges for sugarcane production. A better understanding of sugarcane genotypic variation in response to brown rust will help optimize b...

  8. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  9. Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane.

    PubMed

    Ming, R.; Wang, -W.; Draye, X.; Moore, H.; Irvine, E.; Paterson, H.

    2002-08-01

    Mapping quantitative trait loci (QTLs) for sugar yield and related traits will provide essential information for sugarcane improvement through marker-assisted selection. Two sugarcane segregating populations derived from interspecific crosses between Saccharum offinarum and Saccharum spontaneum with 264 and 239 individuals, respectively, were evaluated in three replications each for field performance from 1994 to 1996 at Weslaco, Texas. These two populations were analyzed for a total of 735 DNA marker loci to seek QTLs for sugar yield, pol, stalk weight, stalk number, fiber content and ash content. Among the 102 significant associations found between these six traits and DNA markers, 61 could be located on sugarcane linkage maps, while the other 41 were associated with unlinked DNA markers. Fifty of the 61 mapped QTLs were clustered in 12 genomic regions of seven sugarcane homologous groups. Many cases in which QTLs from different genotypes mapped to corresponding locations suggested that at least some of the QTLs on the same cluster might be different allelic forms of the same genes. With a few exceptions that explained part of the transgressive segregation observed for particular traits, the allele effects of most QTLs were consistent with the parental phenotype from which the allele was derived. Plants with a high sugar yield possessed a large number of positive QTLs for sugar yield components and a minimal number of negative QTLs. This indicates the potential effectiveness of marker-assisted selection for sugar yield in sugarcane. PMID:12582536

  10. A report on the transmissibility of Sugarcane mosaic virus and Sugarcane yellow leaf virus through seed in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, exotic germplasm of sugarcane (Saccharum spp.) is mainly received as vegetative cuttings because the extensive actions required to meet existing APHIS (Animal and Plant Health Inspection Service) permit conditions make the importation of sugarcane seed impractical. While taking...

  11. Biochemical genetic markers in sugarcane.

    PubMed

    Glaszmann, J C; Fautret, A; Noyer, J L; Feldmann, P; Lanaud, C

    1989-10-01

    Isozyme variation was used to identify biochemical markers of potential utility in sugarcane genetics and breeding. Electrophoretic polymorphism was surveyed for nine enzymes among 39 wild and noble sugarcane clones, belonging to the species most closely related to modern varieties. Up to 114 distinct bands showing presence versus absence type of variation were revealed and used for qualitative characterization of the materials. Multivariate analysis of the data isolated the Erianthus clone sampled and separated the Saccharum spontaneum clones from the S. robustum and S. officinarum clones; the latter two were not differentiated from one another. The analysis of self-progenies of a 2n=112 S. spontaneum and of a commercial variety showed examples of mono- and polyfactorial segregations. Within the progeny of the variety, co-segregation of two isozymes frequent in S. spontaneum led to them being assigned to a single chromosome initially contributed by a S. spontaneum donor. This illustrates how combined survey of ancestral species and segregation analysis in modern breeding materials should permit using the lack of interspecific cross-over to establish linkage groups in a sugarcane genome. PMID:24225682

  12. Leaching of Mixtures of Biochar and Fly Ash

    SciTech Connect

    Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph; Amonette, J. E.; Drake, Meghan M; Brown, Steven D; Schadt, Christopher Warren

    2009-01-01

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.

  13. Evaluation of aphid resistance among sugarcane cultivars in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane, interspecific hybrids of Saccharum spp., in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). Five sugarcane cultivars, LCP 85-384, HoCP 91-555, Ho 95-988, HoCP 96-540, and L 97-128, rep...

  14. SUGARCANE EMERGENCE AFTER LONG DURATION UNDER WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing water storage in the Everglades Agricultural Area of Florida would improve conservation of the region's organic soils but reduce yields of the major crop, sugarcane. Growers in Florida normally apply a soil insecticide when planting sugarcane to limit wireworm damage to buds of planted st...

  15. Registration of ‘CP 00-1101’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane grown in a concentrated region near Lake Okeechobee in Florida produces 25% of the sugar produced in the U.S. The development of a constant supply of new sugarcane cultivars helps growers to respond to economic, pathological, and ecological pressures. The purpose of this research was to te...

  16. Genetic Diversity and Genome Complexity of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) as a C4 plant, is one of the most efficient crops in converting solar energy into chemical energy. Sugarcane cultivar improvement programs have not yet systematically utilized the most of the genetic sources of yield potential and resistance to stresses that may exist in t...

  17. Registration of ‘CPCL 99-4455’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane grown in a concentrated region near Lake Okeechobee in Florida produces 25% of the sugar produced in the U.S. The development of a constant supply of new sugarcane cultivars helps growers to respond to economic, pathological, and ecological pressures. The objectives of this research were t...

  18. Exploring Broad Genetic Resources Available to Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) is used for sugar and energy. It has a high photosynthetic efficiency and is one of the most productive crops globally. Breeders of energycane and sugarcane have overlapping goals in creating cultivars that resist biotic and abiotic stresses. The World Collection of Sugarc...

  19. Registration of ‘Ho 00-961’ sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ho 00-961’ (Reg. No., PI) sugarcane (a complex hybrid of Saccharum officinarum L., S. spontaneum L., S. barberi Jeswiet, and S. sinense Roxb. amend. Jeswiet) was selected by the USDA-ARS Sugarcane Research Unit, and evaluated cooperatively with the Louisiana State University Agricultural Center, an...

  20. Registration of 'CP 98-1029' Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane grown in a concentrated region near Lake Okeechobee in Florida produces 25% of the sugar produced in the U.S. The development of a constant supply of new sugarcane cultivars helps growers to respond to economic, pathological, and ecological pressures. The purpose of this research was to te...

  1. Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products.

    PubMed

    Cole, Marsha R; Eggleston, Gillian; Gilbert, Audrey; Chung, Yoo Jin

    2016-01-01

    A rapid research method using microwave-assisted probe ultrasonication was developed to quantify total, insoluble, and soluble starch in various sugar crop products. Several variables affecting starch solubilisation were evaluated, (1) heating method, (2) boiling time, (3) probe ultrasonication time, (4) water loss, (5) concentration, (6) sample colour, and (7) sample. The optimised method solubilises < 40,000 ppm insoluble starch with microwave-assisted sonication in 6 min, has acceptable precision (<6% CV), accuracy (? 95%), uses a corn starch reference, and incorporates a colour blank to remove contribution from natural colourants found in industrial samples. This method was validated using factory samples and found applicable to sugarcane and sweet sorghum bagasse (3% CV), mixed juices (2%), massecuites (4%), molasses (7%), and raw sugars (12%), 100% satisfactory performance z-scores were also obtained. Total starch values obtained with this method were significantly higher than those measured using other methods presently accepted by the sugar industry. PMID:26212940

  2. Elimination of five sugarcane viruses from sugarcane using in vitro culture of axillary bud and apical meristem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus el...

  3. Production of compost with bagasse and vinasses for cane crop in Brazil

    SciTech Connect

    Park, Y.K.; Castro Gomez, R.J.H.

    1982-10-01

    Recent laboratory experiments have shown that a mixture of bagasse, animal manure and vinasse can be transformed into compost suitable for agriculture. The factors necessary for good composting are discussed, these include the carbon-nitrogen ratio, moisture, aeration and temperature. A mixture of 300 kg cane bagasse and 38 kg poultry manure moistened with vinasse gave the best results.

  4. Sugar cane bagasse: an alternative fuel in the Brazilian citrus industry

    SciTech Connect

    Guerra, J.L.; Steger, E.

    1988-05-01

    This article will briefly discuss the production of sugar cane bagasse and advantages for using it as an alternative fuel. In particular, this article will focus on how Citrosuco Paulista, (a multi-plant producer of citrus concentrates), modified its existing boilers and dryers to accommodate the new sugar cane bagasse fuel.

  5. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Feng, Haobin; Hu, Hang; Dong, Hanwu; Xiao, Yong; Cai, Yijin; Lei, Bingfu; Liu, Yingliang; Zheng, Mingtao

    2016-01-01

    Bagasse-derived hierarchical structured carbon (BDHSC) with tunable porosity and improved electrochemical performance is prepared via simple and efficient hydrothermal carbonization combined with KOH activation. Experimental results show that sewage sludge acts as a cheap and efficient structure-directing agent to regulate the morphology, adjust the porosity, and thus improve the supercapacitive performance of BDHSC. The as-resulted BDHSC exhibits an interconnected framework with high specific surface area (2296 m2 g-1), high pore volume (1.34 cm3 g-1), and hierarchical porosity, which offer a more favorable pathway for electrolyte penetration and transportation. Compared to the product obtained from bagasse without sewage sludge, the unique interconnected BDHSC exhibits enhanced supercapacitive performances such as higher specific capacitance (320 F g-1), and better rate capability (capacitance retention over 70.8% at a high current density of 50 A g-1). Moreover, the BDHSC-based symmetric supercapacitor delivers a maximum energy density of over 20 Wh kg-1 at 182 W kg-1 and presents an excellent long-term cycling stability. The developed approach in the present work can be useful not only in production of a variety of novel hierarchical structured carbon with promising applications in high-performance energy storage devices, but also in high-value utilization of biomass wastes and high-ash-content sewage sludge.

  6. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    PubMed Central

    2011-01-01

    Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse) in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass) of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages) varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment. Conclusion Some of the experimental sugarcane hybrids did have the combined characteristics of high biomass and high sucrose production with low lignin content. Conversion of glucan to glucose by commercial cellulases was increased in the samples with low lignin content. Chemical delignification further increased the cellulose conversion to values of more than 80%. Thus, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during the enzymatic treatment. PMID:22145819

  7. Response of Sugarcane and Sugarcane Stalk Borers Sesamia spp. (Lepidoptera: Noctuidae) to Calcium Silicate Fertilization.

    PubMed

    Nikpay, A; Soleyman-Nejadian, E; Goldasteh, S; Farazmand, H

    2015-10-01

    Sugarcane is grown extensively throughout the world including more than 100,000 ha in Khuzestan province, Iran. The pink stalk borers Sesamia are key pests of sugarcane in this region, while other stalk borers will occur in sugarcane worldwide. Application of silicon as a soil amendment has provided plant mitigation to both biotic and abiotic stresses. Silicon has been shown to enhance resistance of sugarcane against stalk borers. Field trials were conducted to determine the effects of calcium silicate against infestations of stalk borers Sesamia spp. and on yield quality. Experiments were conducted with three sugarcane varieties CP69-1062, IRC99-01, and SP70-1143 and two rates of calcium silicate (400 and 800 kg/ha). Percentage of stalk damaged, percentage of bored internodes, length of borer tunnel (mm), number of larvae?+?pupae per 100 stalks, number of exit holes, and cane yield quality were determined. We demonstrate significant reduction on borer population and damage under silicon treatment, but greater reduction in the percentages of stalk damage, bored internodes, moth exit holes, and length of borer tunnel and number of larvae and pupae per 100 stalks were observed in the susceptible variety CP69-1062. Silicon treatment positively affected cane and sugarcane juice quality of for the variety CP69-1062, but not for SP70-1143. We conclude that the benefits of silicon to sugarcane quality and sugarcane resistance to stalk borers are dependent on the sugarcane variety. PMID:26243329

  8. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and 100% are predicted for some cycles with the addition of optimum heat recovery systems.

  9. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  10. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

    PubMed Central

    Canilha, Larissa; Chandel, Anuj Kumar; Suzane dos Santos Milessi, Thais; Antunes, Felipe Antônio Fernandes; Luiz da Costa Freitas, Wagner; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  11. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    NASA Astrophysics Data System (ADS)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  12. Pretreated sugar cane bagasse as a model for cattle feeding

    SciTech Connect

    Fontana, J.D.; Ramos, L.P.; Deschamps, F.C.

    1995-12-31

    Pretreatment under mild conditions in the presence of water (solvolysis) or aqueous orthophosphoric acid (phosphorolysis) was used to increase the nutritional value of sugar cane bagasse for cattle feeding. The best pretreatment conditions were defined as those in which the highest in situ degradability rates (ruminal digestion) were achieved with the least energy consumption and/or production of inhibitory products. Heating sugar cane bagasse up to 197{degrees}C (13.5 atm) at a 4:1 (w/w) water ratio was shown to be a compromised condition for solvolysis, as higher temperatures would require more energy consumption without adding too much to the already high 60% ruminal degradability of the residue in relation to its dry weight. These rates of degradability were shown to be further enhanced to almost 70% by adding 2.9% (w/w) orthophosphoric acid as an acid catalyst. A mathematical treatment of the kinetic data describing ruminal digestion of each of the pretreated residues was also developed in this study.

  13. Florida's sugarcane industry and the role of the USDA-ARS Sugarcane Field Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida’s sugarcane (Saccharum spp.) industry of 420,000 acres produces 1.9 million tons of sugar annually, approximately 20 percent of the yearly sugar consumption in the United States. Canal Point sugarcane cultivars produced by the cooperative program of the USDA-ARS, the University of Florida, a...

  14. Seasonal timing of glyphosate ripener application affects sugarcane’s response in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is applied as a ripener to ratoon sugarcane in Louisiana to increase theoretically recoverable sugar (TRS) in harvested sugarcane. While glyphosate is applied as a ripener throughout the harvest season, recommendations for these applications have been based primarily on the response of s...

  15. The effect of sugarcane yellow leaf virus infection on yield of Sugarcane in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of field experiment were conducted to determine the effect of SCYLV infection on cane and sugar yield of four commercial sugarcane cultivars (LCP 85-384, Ho 95-988, HoCP 96-540 and L 97-128) that occupied 93% of the sugarcane production area in Louisiana in 2006. The experiments were harve...

  16. Effects of Sugarcane yellow leaf virus infection on sugarcane in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symptoms of Sugarcane yellow leaf virus (SCYLV) infection on sugarcane typically appear late in the growing season. In Louisiana, infected plants may be harvested before symptoms develop or late-season symptoms may be masked by the effects of chemical ripener or freezing temperatures. In a field exp...

  17. PCDD and PCDF Emissions from Simulated Sugarcane Field Burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emissions from simulated sugarcane (Saccharum officinarum) field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass densit...

  18. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    EPA Science Inventory

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  19. Pretreatment and Fermentation of Sugarcane Trash to Carboxylic Acids 

    E-print Network

    Nachiappan, Balasubraman

    2010-01-14

    The rising price of oil is hurting consumers all over the world. There is growing interest in producing biofuels from non-food crops, such as sugarcane trash. Lignocellulosic biomass (e.g., sugarcane trash) is an abundant, ...

  20. Chemical and gamma-ray-modified bagasse as substrates for bioproduction of cellulases and protein

    SciTech Connect

    Lillehoj, E.B.; Han, Y.W.

    1983-08-01

    Production of enzymes in the cellulolytic complex was determined in culture filtrates of six fungal isolates grown on chemically treated or gamma-irradiated bagasse. The enzymatic activities of the filtrates were determined by measurement of glucose release from cotton, filter paper, carboxymethylcellulose, cellobiose, and cellobiose octaacetate. Cultures grown on basetreated and gamma-irradiated plus acid-treated bagasse provided culture filtrates with the highest enzymatic activities whereas alpha-cellulose, untreated, and acid-treated bagasse were the poorest substrates for enzyme production. Filtrates of trichoderma reesei QM 9414 yielded the highest cellulolytic activity in all test media. The largest accumulation of fungal-derived, extracellular protein was observed in media containing gamma-irradiated bagasse as the carbon substrate. (14 Refs.)

  1. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications

    NASA Astrophysics Data System (ADS)

    Du, Fengyi; Zhang, Miaomiao; Li, Xiaofeng; Li, Jianan; Jiang, Xinyi; Li, Zhang; Hua, Ye; Shao, Genbao; Jin, Jie; Shao, Qixiang; Zhou, Ming; Gong, Aihua

    2014-08-01

    Carbon quantum dots (CDs) are promising nanomaterials in biomedical, photocatalytical and photoelectronic applications. However, determining how to explore an ideal precursor for a renewable carbon resource is still an interesting challenge. Here, for the first time, we report that renewable wastes of bagasse as a new precursor were prepared for fluorescent CDs by a hydrothermal carbonization (HTC) process. The characterization results show that such bagasse-derived CDs are monodispersed, contain quasi spherical particles with a diameter of about 1.8 nm and exhibit favorable photoluminescence properties, super-high photostability and good dispersibility in water. Most importantly, bagasse-derived CDs have good biocompatibility and can be easily and quickly internalized by living cancer cells; they can also be used for multicolour biolabeling and bioimaging in cancer cells. It is suggested that bagasse-derived CDs might have potential applications in biomedical and photoelectronic fields.

  2. Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation

    SciTech Connect

    Azzam, A.M. )

    1989-01-01

    Pretreatment of the agrocellulosic waste, cane bagasse with alkaline hydrogen peroxide greatly enhances its susceptibility to enzymatic cellulolysis and thus the ethanol production from it. Various process conditions have been studied to optimize the enzymate effectiveness. These conditions include the contact time, the hydrogen peroxide concentration and the pretreatment temperature. Results obtained show, that about 50% of lignin and most of hemicellulose content of can bagasse was solubilized, by 2% alkaline hydrogen peroxide at 30{sup 0}C within 8 h. The cellulose content was consequently increased from 42% in the original cane bagasse to 75% in the oxidized pulp. Saccharification of this pulp residue with cellulase from Trichorderma viride at 45{sup 0}C for 24 h, yielded glucose with 95% efficiency. The efficiency of ethanol production from the insoluble fraction with S. cervisiae was 90% compared to about 50% for untreated cane bagasse.

  3. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production.

    PubMed

    Wu, Long; Arakane, Mitsuhiro; Ike, Masakazu; Wada, Masahisa; Takai, Tomoyuki; Gau, Mitsuru; Tokuyasu, Ken

    2011-04-01

    A low temperature alkali pretreatment method was proposed for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass for ethanol production. The effects of the pretreatment on the composition, structure and enzymatic digestibility of sweet sorghum bagasse were investigated. The mechanisms involved in the digestibility improvement were discussed with regard to the major factors contributing to the biomass recalcitrance. The pretreatment caused slight glucan loss but significantly reduced the lignin and xylan contents of the bagasse. Changes in cellulose crystal structure occurred under certain treatment conditions. The pretreated bagasse exhibited greatly improved enzymatic digestibility, with 24-h glucan saccharification yield reaching as high as 98% using commercially available cellulase and ?-glucosidase. The digestibility improvement was largely attributed to the disruption of the lignin-carbohydrate matrix. The bagasse from a brown midrib (BMR) mutant was more susceptible to the pretreatment than a non-BMR variety tested, and consequently gave higher efficiency of enzymatic hydrolysis. PMID:21316955

  4. Relationship between sugarcane rust severity and soil properties in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the extent of temporal and spatial variability of sugarcane rust (Puccinia melanocephala) present in commercially cultivated sugarcane (interspecific hybrids of Saccharum spp., cv ‘LCP 85-384’) grown in South Louisiana. Sugarcane fields at two locations in Ghee...

  5. Sugarcane yield response to soybean double-cropping in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interruption of continuous sugarcane plantings with a soybean (Glycine max) crop during the spring/summer fallow period between sugarcane plantings represents an economical opportunity for sugarcane growers in Louisiana. The objective of the experiment was to determine if soybeans grown in the u...

  6. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Instead of reporting your sugarcane production for the previous...crop insured will be all the sugarcane in the county for which a... (2) That is grown for processing for sugar or for seed; and...we will not insure any sugarcane: (1) That was...

  7. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Instead of reporting your sugarcane production for the previous...crop insured will be all the sugarcane in the county for which a... (2) That is grown for processing for sugar or for seed; and...we will not insure any sugarcane: (1) That was...

  8. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Proportionate shares for sugarcane producers. 1435... Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane producers. (a... sugarcane farms. (b) CCC will determine whether Louisiana sugar production, in the absence of...

  9. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  10. Wildlife in Sugarcane Fields of the Everglades Agricultural Area

    E-print Network

    Mazzotti, Frank

    Wildlife in Sugarcane Fields of the Everglades Agricultural Area Elise V. Pearlstine, Michelle L to growers and public #12;Lake Okeechobee Everglades Agricultural Area #12;Sugarcane Characteristics · Grown · Limited access Sugarcane Edge Water Road #12;ARM Loxahatchee NWR Interior Water Edge Road · Managed

  11. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Proportionate shares for sugarcane producers. 1435... Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane producers. (a... sugarcane farms. (b) CCC will determine whether Louisiana sugar production, in the absence of...

  12. Comparative properties of sugarcane rind and wood strands

    E-print Network

    Comparative properties of sugarcane rind and wood strands for structural composite manufacturing Guangping Han Qinglin Wu Sugarcane is an important agricul- tural crop in the southern United States the inner pith that con- tains most of the sucrose is separated from sugarcane. Comrind with a high content

  13. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2004 and succeeding crop years are as...

  14. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Proportionate shares for sugarcane producers. 1435... Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane producers. (a... sugarcane farms. (b) CCC will determine whether Louisiana sugar production, in the absence of...

  15. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  16. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Proportionate shares for sugarcane producers. 1435... Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane producers. (a... sugarcane farms. (b) CCC will determine whether Louisiana sugar production, in the absence of...

  17. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Proportionate shares for sugarcane producers. 1435... Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane producers. (a... sugarcane farms. (b) CCC will determine whether Louisiana sugar production, in the absence of...

  18. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  19. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  20. Virus Strains Causing Mosaic in Louisiana and Florida Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosaic caused by Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV), respectively, affects sugarcane in Louisiana and Florida. Between 2004 and 2007, surveys were conducted in both states to determine which virus and virus strains were causing mosaic of sugarcane. In Louisiana, leaf sam...

  1. SUPPLEMENTING NATIVE SUGARCANE BORER INFESTATIONS BY ARTIFICIAL INFESTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When conducting assessments of the response of sugarcane varieties to feeding by the sugarcane borer (Diatraea saccharalis), we routinely intercrop sugarcane (interspecific hybrids of Saccharum spp.) rows with a row of corn (Zea mays) and infest these corn plants with laboratory reared, first-instar...

  2. Estimation of sugarcane sucrose and biomass with remote sensing techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing techniques were used to predict sucrose levels (TRS) and gross cane yield in field-grown sugarcane. To estimate sucrose levels, leaves were collected from plant-cane and first-ratoon sugarcane plants from the variety maturity studies conducted at the USDA-ARS-SRRC, Sugarcane Research...

  3. Physiological Responses of Sugarcane to Orange Rust Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane orange rust, caused by Puccinia kuehnii, is a relatively new disease in the United States that substantially reduces yields in susceptible sugarcane cultivars in Florida. The objective of this study was to determine physiological responses of sugarcane to orange rust infection by quantifyi...

  4. Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Billion Ton Study is in need of updating and a focus change from strategic assessment to a comprehensive resource assessment to address issues raised since the 2005 publication and assist the bioenergy and bioproducts industries as they project biomass supplies into the future. With yield ...

  5. Challenges and Opportunities Associated with Simultaneous Energy Cane and Sugarcane Genetic Improvement -- Results of a Survey of International Sugarcane Breeders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following Brazil's dramatic success in utilizing sugarcane (Saccharum spp.) for large-scale ethanol production, and with a growing interest in energy crops worldwide, sugarcane breeders have been charged with genetically improving cane as an energy crop. We conducted a survey of sugarcane breeders i...

  6. Detecting sugarcane yellow leaf virus in asymptomatic sugarcane leaves with hyperspectral remote sensing and associated leaf pigment changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane yellow leaf caused by Sugarcane yellow leaf virus (SCYLV) does not produce visual symptoms in most susceptible sugarcane plants until late in the growing season. High-resolution, hyperspectral reflectance data from SCYLV-infected and non-infected leaves of two cultivars, LCP 85-384 and Ho...

  7. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  8. Using frozen sugarcane for alcohol production

    SciTech Connect

    Irvine, J.E.

    1980-01-01

    The three areas that produce sugarcane in the mainland US are subject to crop-damaging freezes. Florida has fewer freezes. Texas and Louisiana are hurt frequently. Hard freezes end processing for sugar production when dextrans form and prevent crystallization. Dextran is formed from sugar by bacteria. Work at the Audubon Sugar Institute, LSU, has shown that crystallization of sucrose can be achieved with juice from frozen sugarcane when enzymes are used to reduce the size of the dextran molecule. Frozen cane may also be processed for alcohol production. How long the cane would be suitable as feedstock was questioned; its use would depend on sugar content. Sugarcane has been tested for post-freeze deterioration at the US Sugarcane Field Laboratory for over 50 years, and the emphasis has been on the response of varieties selected for sugar production in post-freeze deterioration. The data indicated that juice from frozen sugarcane in any of the tests would be adequate for alcohol production; fermentation based on mash with a sugar content of 9 to 11% for rum, and 15% for industrial alcohol. Total fermentable carbohydrates in frozen cane would be even higher since the data did not include invert sugars or starch. 1 table. (DP)

  9. Sugarcane and other crops as fuel feedstocks

    SciTech Connect

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fiber in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)

  10. Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves.

    PubMed

    Roselló, Josefa; Soriano, Lourdes; Santamarina, M Pilar; Akasaki, Jorge L; Melges, José Luiz P; Payá, Jordi

    2015-10-01

    Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350-850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications. PMID:26343378

  11. Brazil's sugarcane boom could affect regional temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-04-01

    With the world seeking to cut its dependence on fossil fuels, the use of bioethanol and other biofuels is on the rise. In Brazil, the second largest producer and consumer of bioethanol, this has led to a boom in sugarcane production. Based on new laws and trade agreements, researchers expect Brazil's production of sugarcane-derived ethanol to increase tenfold over the next decade, with considerable land being converted for growing sugarcane. Much of this expansion is expected to come at a loss of some of the country's cerrado savannas. So while a major aim of the turn to biofuels is to reduce the transfer of carbon to the atmosphere and mitigate global climate change, the shifting agricultural activity could have direct consequences on Brazil's climate by changing the region's physical and biogeochemical properties.

  12. Quantification of sugarcane yellow leaf virus in sugarcane following transmission through aphid vector, Melanaphis sacchari.

    PubMed

    Chinnaraja, C; Viswanathan, R

    2015-12-01

    Yellow leaf caused by Sugarcane yellow leaf virus (SCYLV) is a serious constraint to sugarcane production in India and currently the disease epidemics occur on many of the susceptible varieties under field conditions. Studies were conducted on the virus transmission by sugarcane aphid Melanaphis sacchari in sugarcane by inoculating virus-free meristem derived from micro- propagated plants of sugarcane cv Co 86032 with viruliferous aphids. Virus transmission was confirmed through RT-PCR assays and subsequently SCYLV population was established through RT-qPCR. A maximum of 22.3 × 10(3), 3.16 × 10(6) and 4.78 × 10(6) copies of SCYLV-RNA targets were recorded in the plants after 7, 180 and 300 days, respectively. This study showed that the aphid species M. sacchari acts as an effective vector of SCYLV. The relative standard curve method in RT-qPCR efficiently detected the increment in SCYLV copy numbers in sugarcane following transmission through M. sacchari. PMID:26645033

  13. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  14. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  15. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes

    PubMed Central

    2010-01-01

    Background Sugarcane (Saccharum spp.) has become an increasingly important crop for its leading role in biofuel production. The high sugar content species S. officinarum is an octoploid without known diploid or tetraploid progenitors. Commercial sugarcane cultivars are hybrids between S. officinarum and wild species S. spontaneum with ploidy at ~12×. The complex autopolyploid sugarcane genome has not been characterized at the DNA sequence level. Results The microsynteny between sugarcane and sorghum was assessed by comparing 454 pyrosequences of 20 sugarcane bacterial artificial chromosomes (BACs) with sorghum sequences. These 20 BACs were selected by hybridization of 1961 single copy sorghum overgo probes to the sugarcane BAC library with one sugarcane BAC corresponding to each of the 20 sorghum chromosome arms. The genic regions of the sugarcane BACs shared an average of 95.2% sequence identity with sorghum, and the sorghum genome was used as a template to order sequence contigs covering 78.2% of the 20 BAC sequences. About 53.1% of the sugarcane BAC sequences are aligned with sorghum sequence. The unaligned regions contain non-coding and repetitive sequences. Within the aligned sequences, 209 genes were annotated in sugarcane and 202 in sorghum. Seventeen genes appeared to be sugarcane-specific and all validated by sugarcane ESTs, while 12 appeared sorghum-specific but only one validated by sorghum ESTs. Twelve of the 17 sugarcane-specific genes have no match in the non-redundant protein database in GenBank, perhaps encoding proteins for sugarcane-specific processes. The sorghum orthologous regions appeared to have expanded relative to sugarcane, mostly by the increase of retrotransposons. Conclusions The sugarcane and sorghum genomes are mostly collinear in the genic regions, and the sorghum genome can be used as a template for assembling much of the genic DNA of the autopolyploid sugarcane genome. The comparable gene density between sugarcane BACs and corresponding sorghum sequences defied the notion that polyploidy species might have faster pace of gene loss due to the redundancy of multiple alleles at each locus. PMID:20416060

  16. Effects of Johnsongrass Density and Pre-Harvest Burning on Sugarcane Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Johnsongrass interference with sugarcane results in substantial yield losses. However, light infestations are sometimes overlooked due to the cost and difficulty of controlling rhizomatous johnsongrass in sugarcane. Studies were conducted to examine the effect of johnsongrass density and sugarcane h...

  17. VIRTUAL SUGARCANE BIOREFINERY: A TOOL TO COMPARE THE SUSTAINABILITY OF DIFFERENT

    E-print Network

    Grossmann, Ignacio E.

    VIRTUAL SUGARCANE BIOREFINERY: A TOOL TO COMPARE THE SUSTAINABILITY Angra dos Reis, RJ, Brazil ­ July 2011 #12;Concept Virtual Sugarcane Biorefinery routes. In all routes sugarcane agricultural technologies are included VSB #12

  18. Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, ?-Glucosidase, and Hemicellulase Preparations

    NASA Astrophysics Data System (ADS)

    Prior, Bernard A.; Day, Donal F.

    Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, ?-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and ?-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.

  19. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse.

    PubMed

    Li, Zhixia; Cao, Jiangfei; Huang, Kai; Hong, Yaming; Li, Cunlong; Zhou, Xinxin; Xie, Ning; Lai, Fang; Shen, Fang; Chen, Congjin

    2015-02-01

    Bagasse liquefaction (BL) in water, tetralin, and water/tetralin mixed solvents (WTMS) was investigated, and effects of tetralin content in WTMS, temperature, and alkaline pretreatment of bagasse on liquefaction efficiency were studied. At 300°C, bagasse conversion in WTMS with tetralin content higher than 50 wt% was 86-87 wt%, whereas bagasse conversion in water or tetralin was 67 wt% or 84 wt%, respectively. Because the solid conversion from liquefaction in WTMS with tetralin content higher than 50 wt% was always higher than that in water or tetralin at temperatures between 250 and 300°C, a synergic effect between water and tetralin is suggested. Alkaline pretreatment of bagasse resulted in significantly higher conversion and heavy oil yield from BL in water or WTMS. The effect of deoxygenation by the present liquefaction method is demonstrated by lower oxygen contents (16.01-19.59 wt%) and higher heating values (31.9-34.8 MJ/kg) in the produced oils. PMID:25485736

  20. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  1. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to investigate the sintering process of volcanic ash. In order to analyze the mineral transformation and microstructure evolution, the qualitative as well as quantitative crystalline phase analysis of volcanic ash samples directly taken from furnace by per 100 oC in the range of between 100 and 1400 oC as well as evaluation of microstructure of volcanic ash taken from from furnace by per 20 oC in the range of between 1000 and 1300 oC has been made by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). Finally, we obtain the viscosity temperature curve for volcanic ash during melting process on the basis of the characteristic temperature obtained by HSM.

  2. Registration of ‘CP 03-1912’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CP 03-1912’ (Reg. No. ; PI ) sugarcane (a complex hybrid of Saccharum spp.) was developed through cooperative research conducted by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc., and was released to growers in Florida in April 2011. CP 03-1912 was selected fr...

  3. Sugarcane yield loss due to ratoon stunt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yield response of recently released CP-cultivars to ratoon stunt has not been determined. Cane and sugar yields of Liefsonia xyli subsp. xyli (Lxx)-infected and healthy sugarcane plants of cultivars that are currently major commercial cultivars that have not been in prior tests as well as former...

  4. Biological nitrogen fixation in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) is a major input for sugarcane with crops in Louisiana receiving between 90 and 180 kg/ha with the cost of N increasing 75% in the last decade. Biological N fixation (BNF) may be a viable alternative to fertilizer N. The process relies on endophytic bacteria (bacteria that live among th...

  5. Registration of ‘CP 88-1165’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane grown in a concentrated region near Lake Okeechobee in Florida produces 25% of the sugar produced in the U.S. A cooperative program among the USDA-Agricultural Research Service (ARS), the University of Florida, and the Florida Sugar Cane League, Inc. located at an ARS facility in Canal Poi...

  6. Registration of ‘CP 05-1526’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CP 05-1526’ sugarcane (a complex hybrid of Saccharum spp.) was developed through cooperative research conducted by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc., and released to growers for organic and sand soils in Florida in October 2012. CP 05-1526 was selected...

  7. Sugarcane Rusts and Cultivar Options in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane Rusts and Cultivar Options in Florida In late June 2007, an outbreak of rust was observed in Florida on CP 80-1743, a variety previously resistant to brown rust caused by Puccinia melanocephala. The rust appeared only on the upper leaves and the pustules were all young actively sporulati...

  8. Registration of ‘CP 07-2137’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CP 07-2137’ (Reg. No.__; PI__) sugarcane (a complex hybrid of Saccharum spp.) was released in September 2014 to be cultivated on sandy (mineral) soils in Florida. CP 07-2137 was developed through a collaborative cultivar development program of the USDA-ARS, the University of Florida, and the Florid...

  9. REMOTE SENSING RESEARCH IN LOUISIANA SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana’s sugarcane producers and millers have been under increased economic pressure for the past several years. If the industry is to survive in the long term, then new technologies that maximize productivity and profitability must be identified and adopted. Several tests were initiated in 200...

  10. Registration of ‘CP 06-2400’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: ‘CP 06-2400’ (Reg. No. ; PI 670018) sugarcane (a complex hybrid of Saccharum spp.) was developed through cooperative research conducted by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc. and released to growers for organic (muck) soils in Fl...

  11. Registration of ‘CPCL 05-1102’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CPCL 05-1102’ sugarcane (a complex hybrid of Saccharum spp.) is the product of research initiated by the United States Sugar Corporation (USSC), and completed cooperatively by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc. CPCL 05-1102 was released to growers in Fl...

  12. Registration of ‘CPCL 05-1201’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CPCL 05-1201 is a sugarcane (Saccharum spp.) hybrid bred by US Sugar Corporation in 2002 and tested for seven years through the cooperative breeding program led by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, before its release to Florida growers in Oct. 2012. CPCL 05-...

  13. Registration of ‘CP 04-1566’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CP 04-1566’ sugarcane (a complex hybrid of Saccharum spp.) was developed through cooperative research conducted by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc., and was released to growers in Florida on 30 Sept. 2011. CP 04-1566 was selected from the cross X01-024...

  14. Registration of ‘CPCL 02-6848’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of 'CPCL 02-6848' (Reg. No. 667596; PI), sugarcane (a complex hybrid of Saccharum spp.) was initiated by the United States Sugar Corporation (USSC) and completed by collaborative research of the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc. The female paren...

  15. Registration of ‘CP 04-1844’ Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘CP 04-1844’ sugarcane (a complex hybrid of Saccharum spp.) was developed through cooperative research conducted by the USDA-ARS, the University of Florida, and the Florida Sugar Cane League, Inc., and was released to growers in Florida on 20 Sept. 2011. CP 04-1844 was selected from the cross X01-03...

  16. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect, climate/meteorological conditions after the ash spread/fire and soil background characteristics. In addition, after the fire heating can change soil original properties increasing the complexity of the ash effects on soil properties. After fire, ash is highly dynamic and very easily transported by wind until the first rains. When wetted, ash compacts and binds onto soil surface, and wind has low capacity to transport it. The post-rain ash dynamic is influenced by water erosion (in slope areas), infiltration into soil profile and vegetation recuperation. This means that ash produced in one place will have implications in other areas, including not burned areas (e.g wind transport and water erosion). This is a clear indication that ash effects go much further than the fire affected area. Due the heterogeneity of soil and ash properties and their dynamic across the landscape, the impacts of ash on soil system can be diverse, producing a mosaic of different effects and responses after ash treatment and/ or fire. In this communication it will be presented and discussed the advances and scientific development of ash effects and dynamic in soil system.

  17. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  18. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    NASA Astrophysics Data System (ADS)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  19. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    SciTech Connect

    Drummond, A.R.F.; Drummond, I.W.

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  20. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content.

    PubMed

    Matsakas, Leonidas; Christakopoulos, Paul

    2013-01-01

    The ability of sweet sorghum bagasse to be utilized as feedstock for ethanol production at high initial dry matter concentration was investigated. In order to achieve high enzymatic hydrolysis yield, a hydrothermal pretreatment prior to liquefaction and saccharification was applied. Response surface methodology had been employed in order to optimize the pretreatment step, taking into account the yield of cellulose hydrolysis. Liquefaction of the pretreated bagasse was performed at a specially designed liquefaction chamber at 50 °C for either 12 or 24h using an enzyme loading of 10 FPU/g · DM and 18% DM. Fermentation of liquefacted bagasse was not affected by liquefaction duration and leaded to an ethanol production of 41.43 g/L and a volumetric productivity of 1.88 g/Lh. The addition of extra enzymes at the start up of SSF enhanced both ethanol concentration and volumetric productivity by 16% and 17% after 12 and 24h saccharification, respectively. PMID:23131642

  1. Modification of sandy soil hydrophysical environment through bagasse additive under laboratory experiment

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, A. A.; Kumlung, Arunsiri

    2015-01-01

    Until now sandy soils can be considered as one roup having common hydrophysical problems. Therefore, a laboratory experiment was conducted to evaluate the influence of bagasse as an amendment to improve hydrophysical properties of sandy soil, through the determination of bulk density, aggregatesize distribution, total porosity, hydraulic conductivity, pore-space structure and water retention. To fulfil this objective, sandy soils were amended with bagasse at the rate of 0, 0.5, 1, 2, 3 and 4% on the dry weight basis. The study results demonstrated that the addition of bagasse to sandy soils in between 3 to 4% on the dry weight basis led to a significant decrease in bulk density, hydraulic conductivity, and rapid-drainable pores, and increase in the total porosity, water-holding pores, fine capillary pores, water retained at field capacity, wilting point, and soil available water as compared with the control treatment

  2. SO3H-functionalized ionic liquid: efficient catalyst for bagasse liquefaction.

    PubMed

    Long, Jinxing; Guo, Bin; Teng, Junjiang; Yu, Yinghao; Wang, Lefu; Li, Xuehui

    2011-11-01

    Liquefaction is a process for the production of biofuel or value-added biochemicals from non-food biomass. SO(3)H-, COOH-functionalized and HSO(4)-paired imidazolium ionic liquids were shown to be efficient catalysts for bagasse liquefaction in hot compressed water. Using SO(3)H-functionalized ionic liquid, 96.1% of bagasse was liquefied and 50.6% was selectively converted to low-boiling biochemicals at 543 K. The degree of liquefaction and selectivity for low-boiling products increased and the average molecular weight of the tetrahydrofuran soluble products decreased with increasing acidic strength of ionic liquids. Analysis of products and comparative characterization of raw materials and residues suggested that both catalytic liquefaction and hydrolysis processes contribute to the high conversion of bagasse. A possible liquefaction mechanism based on the generation of 3-cyclohexyl-1-propanol, one of the main products, is proposed. PMID:21906936

  3. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse.

    PubMed

    Zhang, Jingzhi; Ma, Xingxing; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2011-03-01

    Four pretreatment processes including ionic liquids, steam explosion, lime, and dilute acid were used for enzymatic hydrolysis of sweet sorghum bagasse. Compared with the other three pretreatment approaches, steam-explosion pretreatment showed the greatest improvement on enzymatic hydrolysis of the bagasse. The maximum conversion of cellulose and the concentration of glucose obtained from enzymatic hydrolysis of steam explosion bagasse reached 70% and 25 g/L, respectively, which were both 2.5 times higher than those of the control (27% and 11 g/L). The results based on the analysis of SEM photos, FTIR, XRD and NMR detection suggested that both the reduction of crystallite size of cellulose and cellulose degradation from the I? and I? to the Fibril surface cellulose and amorphous cellulose were critical for enzymatic hydrolysis. These pretreatments disrupted the crystal structure of cellulose and increased the available surface area, which made the cellulose better accessible for enzymatic hydrolysis. PMID:21256001

  4. Insect fauna associated with sugarcane plantations in Sri Lanka.

    PubMed

    Kumarasinghe, N C

    2003-10-01

    A survey conducted over 13 years (1986-1999) in sugarcane plantations in Sri Lanka to identify insects associated with sugarcane recorded a total of 103 insect species comprising Coleoptera (31 spp.), Dictyoptera (2 spp.), Diptera (5 spp.), 12 Heteroptera (12 spp.), Homoptera (18 spp.), Hymenoptera (7 spp.), Isoptera (3 spp.), Lepidoptera (13 spp.), Orthoptera (9 spp.), and one species each of Thysanoptera, Nuroptera and Trichoptera. Among them were forty-six species of sugarcane pests. In addition, 27 species of natural enemies of sugarcane pests belonging to the orders Coleoptera, Diptera and Hymenoptera were identified Epiricania melanoleuca (Fletcher) introduced into Sri Lanka from Pakistan in 1991 for the control of the sugarcane planthopper was also recorded. Five new pest species previously not recorded from sugarcane in Sri Lanka have been identified. PMID:15248647

  5. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands evaluated here. Infiltration reductions and increases in runoff in these systems are more likely caused by the hydrologic effects of the textural interface between ash and soil, or by other fire-induced changes such as vegetation removal, decrease in roughness, and changes in soil water repellency. This is important information for determining the desired focus of post-fire management activities.

  6. Influence of pectinolyttic and cellulotyc enzyme complexes on cashew bagasse maceration in order to obtain carotenoids.

    PubMed

    Macedo, Manuella; Robrigues, Renata Débora Pinto; Pinto, Gustavo Adolfo Saavedra; de Brito, Edy Sousa

    2015-06-01

    Cashew apple bagasse is a byproduct of cashew peduncle juice processing. Such waste is a source of carotenoids, but it is usually discarded after the juice extraction. The objective of this work was to study the influence of pectinolytic and cellulolytic enzyme complexes on cashew bagasse maceration in order to obtain carotenoids. It was observed that maceration with the enzymatic complex Pectinex Batch AR showed a higher content of carotenoids, with an overall gain of 79 % over the control carried out without enzyme complex addition. PMID:26028752

  7. Sugarcane Elongin C is involved in infection by sugarcane mosaic disease pathogens.

    PubMed

    Zhai, Yushan; Deng, Yuqing; Cheng, Guangyuan; Peng, Lei; Zheng, Yanru; Yang, Yongqing; Xu, Jingsheng

    2015-10-23

    Sugarcane (Saccharum sp. hybrid) provides the main source of sugar for humans. Sugarcane mosaic disease (SMD) is a major threat to sugarcane production. Currently, control of SMD is mainly dependent on breeding resistant cultivars through hybridization, which is time-consuming. Understanding the mechanism of viral infection may facilitate novel strategies to breed cultivars resistant to SMD and to control the disease. In this study, a wide interaction was detected between the viral VPg protein and host proteins. Several genes were screened from sugarcane cDNA library that could interact with Sugarcane streak mosaic virus VPg, including SceIF4E1 and ScELC. ScELC was predicted to be a cytoplasmic protein, but subcellular localization analysis showed it was distributed both in cytoplasmic and nuclear, and interactions were also detected between ScELC and VPg of SCMV or SrMV that reveal ScELC was widely used in the SMD pathogen infection process. ScELC and VPgs interacted in the nucleus, and may function to enhance the viral transcription rate. ScELC also interacted with SceIF4E2 both in the cytoplasm and nucleus, but not with SceIF4E1 and SceIF4E3. These results suggest that ScELC may be essential for the function of SceIF4E2, an isomer of eIF4E. PMID:26362180

  8. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  9. Emerald Ash Borer (Coleoptera: Buprestidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  10. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  11. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  12. Agro-industry sugarcane residues disposal: the trends of their conversion into energy carriers in Cuba.

    PubMed

    Alonso Pippo, W; Garzone, P; Cornacchia, G

    2007-01-01

    The goal of the present work was to carry out a review of the disposal practices for the agro-industry's sugarcane residue and the trends of energy use in Cuba. The lack of an alternative energy carrier to electricity with storage capability for use in off-season has to date been an unsolvable question. The improvement of cogeneration capacity via implementation of CEST or BIG/GTCC and the barriers for their implementation, the introduction of a medium size (3 ton/h) fast pyrolysis module (FPM3) as a solution for off-season energy demand in the agro-industry, and an assessment of the energy required to do so, were also analyzed. Bio-oil production from bagasse and sugarcane agriculture residues (SCAR) and their particularities at the sugar mill are treated. The influence of sugar facility production process configuration is analyzed. The fast pyrolysis products and the trends of their end uses in Cuba are presented. The production cost of a ton of Bio-oil for FPM3 conditions was calculated at 155 USD/ton and the payback time as a function of selling price between 160 and 110 USD/ton was estimated to be from 1.5 to 4 years. The economic feasibility of the FPM3 was estimated, comparing the added values for three scenarios: 1st case, currently-used sugar production, 16.5 USD/ton of cane; 2nd case, factoring in the cogeneration improvement, 27 USD/ton of cane; and 3rd case, with cogeneration improvement and Bio-oil production, 40 USD/ton of cane. The energy use of SCAR and the introduction of FPM3 in the sugar mill are promising improvements that could result in a potential surplus of 80 kWh(e)/ton of cane in-season, or 6 x 10(6)ton of Bio-oil (LHV=15 MJ/kg) for use off-season in a milling season of 4 million tons of raw sugar. PMID:16797957

  13. Energy-dense liquid fuel intermediates by pyrolysis of guayule (Parthenium argentatum) shrub and bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guayule is a perennial shrub grown in the southwestern United States that is used to produce high quality, natural rubber latex. However, only about 10% of the plant material is used for latex production; the remaining biomass, called bagasse, can be used for renewable fuel production. Fast pyroly...

  14. Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol.

    PubMed

    Zhang, Hairong; Luo, Jun; Li, Yingying; Guo, Haijun; Xiong, Lian; Chen, Xinde

    2013-08-01

    Bagasse was subjected to a liquefaction process with polyethylene glycol/glycerol using sulfuric acid as catalyst. The effects of various liquefaction conditions, such as reaction time, liquefaction temperature, catalyst content, and liquid ratio (liquefaction solvents/bagasse), on the liquefied residue (LR) content and hydroxyl and acid numbers of liquefied products were investigated. The preferred liquefaction condition of bagasse was determined through orthogonal experiments. The results showed that the catalyst content and reaction time have a greater influence than liquid ratio and liquefaction temperature on the percentage of LR. The hydroxyl and acid numbers of the liquefied products were influenced by many factors, including liquefaction temperature, reaction time, acid content, and liquid ratio. The hydroxyl number of liquefied products decreased as the liquefaction reaction progressed, but the acid number of liquefied products increased. Based on the obtained data, the kinetics for liquefaction was modeled using the first-order reaction rate law and the apparent activation energy for the liquefaction of bagasse was estimated to be 38.30 kJ mol(-1). PMID:23740473

  15. Bagasse Pretreated with Hot Water 921 Applied Biochemistry and Biotechnology Vols. 98100, 2002

    E-print Network

    California at Riverside, University of

    Bagasse Pretreated with Hot Water 921 Applied Biochemistry and Biotechnology Vols. 98­100, 2002 and Biotechnology Vols. 98­100, 2002 922 Bigelow and Wyman environmental, and strategic advantages (1). Cellulose of modern genetics and other tools from the rapidly advancing field of biotechnology, the cost of producing

  16. Molecular characterization and phylogenetic analysis of sugarcane yellow leaf virus isolates from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane yellow leaf virus (SCYLV), the causal agent of sugarcane yellow leaf disease (YLD), was first reported in China in 2006. In order to determine the distribution existence of SCYLV in major sugarcane-growing provinces in China, leaf samples were collected from 22 sugarcane clones (Saccharum ...

  17. Soil health for increasing sugarcane yield and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil health can be defined as the capacity of the soil to continually produce high yields of sugarcane. Soil organic matter, native fertility, adequate moisture and drainage, soil workability, and high levels of beneficial microorganisms all contribute to soil health. Sugarcane growers in Louisiana ...

  18. Preliminary observations of sugarcane trash degradation for repurposing as mulch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential use for sugarcane trash is to convert it to mulch. This study was undertaken to evaluate whether a compost enhancer or nitrogen would accelerate degradation of leaf trash. Trash was obtained from a sugarcane grower, and was treated with water only, a commercial compost starter composed o...

  19. Dealing with plant stress in Louisiana sugarcane production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane can encounter several grower-induced stresses during the early part of the growing season. The purpose of this article is to transfer research findings in the area of crop stress physiology and in particular in the area of residue removal in an effort to communicate how Louisiana sugarcan...

  20. Repeatability of Sugarcane Selection on Sand and Organic Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Canal Point (CP) Sugarcane Cultivar Development Program (a cooperative program between the USDA-ARS, the University of Florida and the Florida Sugarcane League) has been more successful at breeding for cultivars adapted to organic soils (muck) than for those adapted to sand soils. Currently, onl...

  1. Sugarcane Post-Harvest Residue Management in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failure to remove sugarcane post-harvest residue often reduces ratoon crop yields in temperate climates. A series of experiments was conducted to determine the effects of various residue management practices on sugarcane yield. For the first experiment, timing of post-harvest residue was based on th...

  2. Potential of diazotrophic bacteria associated with sugarcane for energycane production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crosses between sugarcane and wild species of Saccharum and other closely related genera are made to introgress new genes from the wild species into sugarcane. Characteristics of the progeny from these crosses may include increased biomass and the ability to be grown in a broader geographical range ...

  3. NDVI to detect sugarcane aphid injury to grain sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. The purpose of this report is to describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants i...

  4. Isolation and screening of glycolipid biosurfactant producers from sugarcane.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Hirose, Naoto; Kitamoto, Dai

    2012-01-01

    Forty-three fungal producers for glycolipid biosurfactants, mannosylerythritol lipids (MELs), were isolated from leaves and smuts of sugarcane plants. These isolates produced MELs with sugarcane juice as nutrient source. The strains were taxonomically categorized into the genera Pseudozyma and Ustilago on the basis of partial sequences of the ribosomal RNA gene. PMID:22972331

  5. Variable Rate Lime Application in Louisiana Sugarcane Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. The utility of variable-rate (VR) lime application in the initial production year (plant cane) of a 3-yr sugarcane crop cyc...

  6. Sugarcane yield and morphological responses to long-term flooding.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in south Florida is often subjected to flooding in the summer months or following hurricanes. While there has been considerable research on the response of sugarcane cultivars to high water tables, there is a lack of information on cultivar morphological adaptation and yield response to l...

  7. Sugarcane Response to Month and Duration of Preharvest Flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Florida growers apply 1-day floods about 3 weeks prior to harvest to prevent fires that may ignite on organic soils during preharvest burning of sugarcane (Saccharum spp.). Extending these flood durations could improve sugarcane insect control, freeze protection, soil conservation, and reduce u...

  8. Systematics of rust and associated fungi from sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The systematic positions of rust pathogens infecting sugarcane (a complex hybrid of Saccharum spp.) were determined using independent and combined sequence data. Rust specimens on sugarcane were sent from 175 locations in 25 countries. In all collections except one, the morphology and nuclear large ...

  9. Sugarcane Genotype Response to Flooding soon after Planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has shown that rapidly growing sugarcane (Saccharum spp.) tolerates short-duration flooding well during the summer in Florida. However, little is known about the reaction of young, recently planted, or recently ratooned sugarcane during spring months. The purpose of this study was to test t...

  10. Sugarcane Responses to Water-Table Depth and Periodic Flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) is routinely exposed to periodic floods and shallow water tables in Florida’s Everglades Agricultural Area (EAA). The purpose of this study was to examine the yields and juice quality of four sugarcane cultivars (CP 88-1762, CP 89-2143, CP 89-2376, and CP 96-1252) maintain...

  11. MicroRNAs and drought responses in sugarcane

    PubMed Central

    Gentile, Agustina; Dias, Lara I.; Mattos, Raphael S.; Ferreira, Thaís H.; Menossi, Marcelo

    2015-01-01

    There is a growing demand for renewable energy, and sugarcane is a promising bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane plantations are expanding into areas where severe droughts are common. Recent evidence has highlighted the role of miRNAs in regulating drought responses in several species, including sugarcane. This review summarizes the data from miRNA expression profiles observed in a wide array of experimental conditions using different sugarcane cultivars that differ in their tolerance to drought. We uncovered a complex regulation of sugarcane miRNAs in response to drought and discussed these data with the miRNA profiles observed in other plant species. The predicted miRNA targets revealed different transcription factors, proteins involved in tolerance to oxidative stress, cell modification, as well as hormone signaling. Some of these proteins might regulate sugarcane responses to drought, such as reduction of internode growth and shoot branching and increased leaf senescence. A better understanding on the regulatory network from miRNAs and their targets under drought stress has a great potential to contribute to sugarcane improvement, either as molecular markers as well as by using biotechnological approaches. PMID:25755657

  12. Prospects of Breeding for Low Starch Content in Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of sugarcane germplasm for juice quality traits such as starch content could encourage their use for germplasm enhancement. Starch content among sugarcane germplasm was evaluated in three experiments. Experiment I had 49 accessions including 5 Saccharum spontaneum, 13 S. barberi, ...

  13. Sugarcane postharvest residue management in a temperate climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue often reduces subsequent ratoon crop yields in Louisiana. Experiments were conducted to determine the effects of different removal methods and removal timings on sugarcane growth and yield and to determine if...

  14. Identifying a new causal agent of mosaic in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane mosaic virus (SCMV) is a pathogen of economic concern that infects maize, sorghum, and sugarcane worldwide. It is a member of the genus Potyvirus in the family Potyviridae and contains a linear, positive sense ssRNA genome 10 kb long. It is transmitted non-persistently via aphids and ...

  15. Part II: Dealing with Plant Stress in Louisiana Sugarcane Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane can encounter several grower-induced stresses during the later part of the growing season. The purpose of this article is to transfer research findings in the areas of cultivation, planting practices, and ripener usage in an effort to communicate how Louisiana sugarcane producers can more...

  16. DIVERSITY AMONG MAINLAND USA SUGARCANE CULTIVARS EXAMINED BY SSR GENOTYPING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SSR’s have been effective in examining diversity to improve plant breeding strategies however, the identification of useful SSR’s is critical and can be difficult especially in the complex sugarcane genome. Diversity among the cultivars grown and used for the sugarcane breeding programs of Florida, ...

  17. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  18. Emerald Ash Borer TEXAS TRAPPING PROJECT

    E-print Network

    Emerald Ash Borer TEXAS TRAPPING PROJECT East Texas 2012 H. A. (Joe) Pase III Texas Forest Service. · Following August collection, remove and dispose of trap. #12;Emerald ash borer adults #12;Emerald ash borer adults #12;Emerald ash borer adult and some look-alikesE A B #12;#12;HAPPY TRAPPING #12;

  19. DNA profiling of sugarcane genotypes using randomly amplified polymorphic DNA.

    PubMed

    Tabasum, S; Khan, F A; Nawaz, S; Iqbal, M Z; Saeed, A

    2010-01-01

    DNA profiles of 40 sugarcane genotypes were constructed with 30 RAPD markers. Sugarcane genotypes of both Saccharum officinarum and S. barberi were included in this study. Multiple alleles were detected from each RAPD; there was a high level of polymorphism. On average, 7.93 alleles were produced per primer, giving a total of 238 alleles. The genetic distances between these genotypes were assessed with the POPGENE DNA sequence analysis software. A dendrogram was constructed from these data; cultivated species of sugarcane formed clusters with S. barberi genotypes. The 40 genotypes were clustered into two main groups; genetic distances ranged from 20.29 to 64.66%. These RAPD fingerprints will help sugarcane breeders to evaluate the efficiency of current conventional breeding methods and will help characterize the genetic pedigree of commercial sugarcane varieties. These data will also be valuable for conservation and utilization of the genetic resources in germplasm collections. PMID:20391332

  20. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225...Certain Materials § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This...does not apply to the shipment of calcined pyrites that are the residual ash of oil or...

  1. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225...Certain Materials § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This...does not apply to the shipment of calcined pyrites that are the residual ash of oil or...

  2. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225...Certain Materials § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This...does not apply to the shipment of calcined pyrites that are the residual ash of oil or...

  3. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225...Certain Materials § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This...does not apply to the shipment of calcined pyrites that are the residual ash of oil or...

  4. SUGARCANE RESISTANCE TO THE SUGARCANE BORER: RESPONSE TO INFESTATION AMONG PROGENY DERIVED FROM RESISTANT AND SUSCEPTIBLE PARENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane borer (SCB), Diatraea saccharalis (F.), is the most important insect pest of sugarcane (Saccharum spp.) in Louisiana. The deployment of SCB-resistant varieties is an integral part of the integrated pest management approach to minimizing injury from SCB infestation. Our objective was ...

  5. Field Evaluation of Sugarcane Orange Rust for First Clonal Stage of the CP Sugarcane Cultivar Development Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consistent development of high-yielding sugarcane (a complex hybrid of Saccharum spp.) cultivars with resistance or tolerance to biotic and abiotic stresses is critical to commercial sugarcane production. Currently, orange rust (caused by Puccinia kuehnii E.J. Butler) is a big challenge for the suga...

  6. Effect of Post-Harvest Residue on Ratoon Crops of Sugarcane Infected with Sugarcane Yellow Leaf Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane yellow leaf virus (SCYLV) is a luteovirus that causes yellow leaf of sugarcane. Previous studies in Louisiana focusing on the effect of post-harvest residue found that retention of the residue often reduces yield of subsequent ratoon crops. A field experiment to determine the potential in...

  7. Registration of two sugarcane germplasm clones with antibiosis to the sugarcane borer (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ho 08-9001’ and ‘Ho 08-9003’ germplasm were selected as early-generation clones (Saccharum x S. spontaneum) for the combined traits of resistance to the sugarcane borer (Diatraea saccharalis), vigorous growth habit, biomass yield, and high sucrose levels for a wide cross. Ho 08-9001 expressed 13% b...

  8. SUGARCANE BORER (LEPIDOPTERA: CRAMBIDAE) MANAGEMENT THRESHOLD ASSESSMENT ON FOUR SUGARCANE CULTIVARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Judicious application of insecticides is an important component of integrated pest management of the sugarcane borer, Diatraea saccharalis (F.) in Louisiana. Timing of these applications if critical for effective control and applications of insecticides has been traditionally set at a 5% infested st...

  9. Contribution of cane bagasse used as a fuel in the sugar industry to changes in outdoor and indoor air quality in middle Egypt

    NASA Astrophysics Data System (ADS)

    Hindy, K. T.

    The present one-year study is concerned with the degree of relationship between the changes in quantity and quality of outdoor and indoor settled dust in Abu Qurqas town in Middle Egypt and the combustion of cane bagasse in boiler furnaces in a sugar factory located in the same town. It can be suggested that this process is responsible for increasing the rate of outdoor and indoor deposition of combustible matter by 2-8 and 2-7 times, respectively, during the period of December-April. However, it can be suggested also that the same process has a limited role, as it is a source of ash content of both outdoor and indoor settled dust and is ineffective in polluting the two environments with calcium, chloride and sulphate ions and tar fraction. Indoor levels of settled dust and its constituents were found to be lowest during cold months. This causes the indoor levels of combustible matter resulting from the sugar factory to be lower than the outdoor levels by 41-45% during December-March and by 28% during April which is a relatively warm month in Middle Egypt.

  10. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  11. Leaching of mixtures of biochar and fly ash

    SciTech Connect

    Palumbo, Anthony V.; Porat, Iris; Phillips, Jana R.; Amonette, James E.; Drake, Meghan M.; Brown, Steven D.; Schadt, Christopher W.

    2009-06-22

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments. Both the residual char from biomass pyrolysis (biochar) and fly ash from coal combustion have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations. Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and decreases available aluminum. A combination of these benefits likely is responsible for observed increases in yields for crops such as corn and sugarcane. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) than do unamended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way. Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil. Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes. In the present study, we examined the properties of mixtures of biochar, fly ash, and soil and evaluated the leaching of organic carbon and metals from these mixtures. The carbon sorption experiments showed release of carbon from biochar, rather than sorption, except at the highest concentrations in the Biochar HW sample. Similar results were obtained by others for oxidative leaching of bituminous coal, in which more C was released as dissolved C than was oxidized to CO2 by the oxygen in water. We confirmed that both fly ash and two types of biochar (oak char [OKEB], and hardwood [HW] char) exhibited minimal leaching of heavy metals including Cr, Ni, Zn, Ga, and Ag, and no detectable leaching of Pb or Cd (data not shown) under the conditions tested. The Biochar HW had a slightly higher C/N ratio (334) and pH (7.7) than did the Biochar OKEB (284 and 6.5). There was no toxicity exhibited by the fly ash (not shown) or biochar leachates as measured by the Microtox© assay under the conditions tested. In previous results no toxicity was reported in testing the fly ash samples except for one high-pH sample. The most notable leachate component from both types of biochar, but not the fly ash, was organic carbon with the HW biochar leaching less organic carbon than the OKEB biochar (5.71 ppm vs. 59.3 ppm). Alone (in batch sorption experiments), or in mixtures of 90% soil and 10% biochar (column studies), we noted significant loss of carbon from the biochar into soluble components. However, when we added fly ash to the column experiments (80% soil, 10% fly ash, and 10% biochar) we observed significant decreases in the amounts of C leached (20% for HW, and 47% for OKEB). The results indicate that applying a combination of fly ash and biochar may result in maximizing the amount of carbon sequestration in soil while also increasing beneficial soil properties and fertility. The lower amount of carbon leached from the HW biochar compared to the OKEB biochar is likely due to the more recalcitrant form of the carbon in the HW char, due to its preparation at a higher temperature (600 ºC) than the OKEB biochar (450 ºC). High heat treatment temperatures during biochar preparation increase both the total carbon content of the biochar and the proportion of the carbon that is present in fused aromatic rings resistant to chemical and physical degradation.

  12. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock

    PubMed Central

    2014-01-01

    Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G?+?2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). Results The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G?+?2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G?+?2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G?+?2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. Conclusions A combined 1G?+?2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G?+?2G process more profitable. PMID:24559312

  13. Abundance and Spatial Distribution of Wireworms (Coleoptera: Elateridae) in Florida Sugarcane Fields on Muck Versus Sandy Soils

    E-print Network

    Ma, Lena

    Abundance and Spatial Distribution of Wireworms (Coleoptera: Elateridae) in Florida Sugarcane://www.jstor.org #12;Cherry & Stansly: Florida Sugarcane Wireworms 383 ABUNDANCEAND SPATIALDISTRIBUTIONOFWIREWORMS pests of Florida sugarcane. Our objective was to determine the abundance and spatial distribution

  14. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  15. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of the role of ash in fire affected areas. Acknowledgments The 'Litfire' Project (MIP-048/2011; 181 Pereira) funded by the Lithuanian Research Council, Soil quality, erosion control and plant cover recovery under different post-firemanagement scenarios (POSTFIRE), funded by the Spanish Ministry of Economy and Competitiveness (CGL2013-47862-C2-1-R), Preventing and Remediating Degradation of Soils in Europe Through Land Care (RECARE) funded by the European Commission (FP7-ENV-2013-TWO STAGE) and European Research Project LEDDRA (243857) and COST action ES1306 (Connecting European connectivity research). References Balfour, V.N., Determining wildfire ash saturated hydraulic conductivity and sorptivity with laboratory and field methods. Catena. doi:10.1016/j.catena.2014.01.009 Barreiro, A., Fontúrbel, M.T., Lombao, A., Martín, C., Vega, J.A., Fernández, C., Carballas, T., Díaz-Raviña, M., Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. Catena. doi:10.1016/j.catena.2014.07.011 Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Bodí, M.B., Doerr, S.H., Cerdà, A. and Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. Burjachs, F., Expósito, I., Charcoal and pollen analysis: examples of Holocene fire dynamics in Mediterranean Iberian Peninsula. Catena. doi:10.1016/j.catena.2014.10.006 Burns, K., Gabet, E., The effective viscosity of slurries laden with vegetative ash. Catena. doi:10.1016/j.catena.2014.06.008 Cerdà, A. Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 , 256-263. Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H., Organic matter

  16. An improved ash fusion test

    SciTech Connect

    Coin, C.D.A.; Kahraman, H.; Peifenstein, A.P.

    1996-12-31

    A new method of measurement of ash fusion temperatures has been developed using essentially the same equipment as is used for measurement of ash fusibility under Standards such as AS1038.15-87 and ASTM D1857-87. However, unlike the standard method the new method produces quantitative results of progressive dimensional changes during heating and melting of the ash. Further, the new method has much improved precision in determination of the temperatures at which these changes take place. Repeatability and reproducibility of the results are much improved and have scope for further improvement. Correspondence between the index points of current ash fusion tests [Initial Deformation, Sphere, Hemisphere and Flow] with reference points in the new method is poor, particularly in relation to ID temperatures and initial dimensional changes. The temperatures of significant movement in the new test appear to be systematic and therefore are likely to correspond to mineralogical melting points. As slagging and fouling mechanisms depend on relative melting of mineral phases, the new test should provide a significant improvement on the current ash-fusion method.

  17. Sucrose transport into stalk tissue of sugarcane

    SciTech Connect

    Thom, M.; Maretzki, A. )

    1990-05-01

    The productivity of higher plants is, in part, dependent on transport of photosynthate from source to sink (in sugarcane, stalk) and upon its assimilation in cells of the sink tissue. In sugarcane, sucrose has been reported to undergo hydrolysis in the apoplast before uptake into the storage parenchyma, whereas recently, sucrose was reported to be taken up intact. This work was based on lack of randomization of ({sup 14}C)fructosyl sucrose accumulated after feeding tissue slices with this sugar. In this report, we present evidence from slices of stalk tissue that sucrose is taken up intact via a carrier-mediated, energy-dependent process. The evidence includes: (1) uptake of fluorosucrose, an analog of sucrose not subject to hydrolysis by invertase; (2) little or no randomization of ({sup 14}C) fructosyl sucrose taken up; (3) the presence of a saturable as well as a linear component of sucrose uptake; and (4) inhibition of both the saturable and linear components of sucrose uptake by protonophore and sulhydryl agents. Hexoses can also be taken up, and at a greater efficiency than sucrose. It is probable that both hexose and sucrose can be transported across the plasma membrane, depending on the physiological status of the plant.

  18. Energy potential of sugarcane and sweet sorghum

    SciTech Connect

    Elawad, S.H.; Gascho, G.J.; Shih, S.F.

    1980-01-01

    The potential of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US energy consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for energy production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. Energy research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.

  19. Carbon partitioning in sugarcane (Saccharum species)

    PubMed Central

    Wang, Jianping; Nayak, Spurthi; Koch, Karen; Ming, Ray

    2013-01-01

    Focus has centered on C-partitioning in stems of sugarcane (Saccharum sp.) due to their high-sucrose accumulation features, relevance to other grasses, and rising economic value. Here we review how sugarcane balances between sucrose storage, respiration, and cell wall biosynthesis. The specific topics involve (1) accumulation of exceptionally high sucrose levels (up to over 500 mM), (2) a potential, turgor-sensitive system for partitioning sucrose between storage inside (cytosol and vacuole) and outside cells, (3) mechanisms to prevent back-flow of extracellular sucrose to xylem or phloem, (4) apparent roles of sucrose-P-synthase in fructose retrieval and sucrose re-synthesis, (5) enhanced importance of invertases, and (6) control of C-flux at key points in cell wall biosynthesis (UDP-glucose dehydrogenase) and respiration (ATP- and pyrophosphate-dependent phosphofructokinases). A combination of emerging technologies is rapidly enhancing our understanding of these points and our capacity to shift C-flux between sucrose, cell wall polymers, or other C-sinks. PMID:23785381

  20. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate

    SciTech Connect

    Silva, S.S.; Ribeiro, J.D.; Felipe, M.G.A.; Vitolo, M.

    1997-12-31

    Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed by Candida guilliermondii FTI 20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L {center_dot} h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (K{sub L}a 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications. 20 refs., 2 figs.

  1. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse.

    PubMed

    Sipos, Bálint; Réczey, Jutka; Somorai, Zsolt; Kádár, Zsófia; Dienes, Dóra; Réczey, Kati

    2009-05-01

    Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 degrees C, 10 min and 200 degrees C, 5 min) were found to be efficient to reach conversion of 85-90%. PMID:19015818

  2. Relationship of roof rat population indices with damage to sugarcane

    USGS Publications Warehouse

    Lefebvre, Lynn W.; Engeman, Richard M.; Decker, David G.; Holler, Nicholas R.

    1989-01-01

    Roof rats (Rattus rattus) cause substantial damage to sugarcane in South Florida (Samol 1972; Lefebvre et al. 1978, 1985). Accurate estimates of roof rat populations in sugarcane fields would be useful for determining when to to treat a field to control roof rats and for assessing the efficacy of control. However, previous studies have indicated that roof rats exhibit trap shyness, which makes capture-recapture population estimates difficult (Lefebvre et al. 1978, 1985; Holler et al., 1981). Until trapping methods are sufficiently improved to allow accurate population estimates, indices of population size that relate to damage need to be developed. The objectives of our study were to examine the relationship of several indices of roof rat populations to the percentage of sugarcane stalks damaged at harvest; to determine which population index would be most useful for sugarcane growers; and to report on a test of several types of live traps for roof rats.

  3. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane... (b) CCC will determine whether Louisiana sugar production, in the absence of...

  4. 7 CFR 1435.311 - Proportionate shares for sugarcane producers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments For Sugar § 1435.311 Proportionate shares for sugarcane... (b) CCC will determine whether Louisiana sugar production, in the absence of...

  5. Task 37 - Ash Deposition Course

    SciTech Connect

    David W. Brekke

    1998-12-31

    The goals of this Energy & Environmental Research Center project are to develop a short course for transferring technical information from the research community to the industrial community, to seek out the research needs of industry, and to continually upgrade course materials. The Coal Ash Behavior and Deposition short course developed in the project provides an overview of recent research that is increasing the understanding of mineral behavior in coal utilization. This research leads to the advancement of methods to predict ash behavior, which can economically resolve fouling problems for the utility industry.

  6. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  7. Coal Ash Contains High Levels of Radioactivity

    MedlinePLUS

    ... 154590.html Coal Ash Contains High Levels of Radioactivity: Study End product from coal-fired plants may ... 2015 (HealthDay News) -- Coal ash contains levels of radioactivity that raise concern about the environment and human ...

  8. Mutagenicity of the ash of rice straws by Ames' test.

    PubMed

    Shibuya, N; Ohta, T; Sakai, H; Endoh, K; Yamamoto, M

    1988-05-01

    Mutagenicity of fly ashes and bottom ashes of rice straw and rice husk was assayed by Ames' test. With respect to rice-straw ash, the extract from the fly ash was found to be more mutagenic than that from the bottom ash. In the case of rice husk, the mutagenicity of extract from the bottom ash was stronger than that from the fly ash. The extract from rice-husk bottom ash showed the strongest mutagenic activity among the four. PMID:3046058

  9. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  10. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  11. Quantitative analysis of the effect of selection history on sugar yield adaptation of sugarcane clones.

    PubMed

    Srivastava, B L; Cooper, M; Mullins, R T

    1994-01-01

    An objective of the CSR sugarcane breeding programme in Australia was to assess the scope for broadening the genetic base of the commercial sugarcane germ plasm through interspecific hybridization with Saccharum spontaneum clones. The contribution of both selection history and S. spontaneum to sugar yield and its components was investigated in the germ plasm pool assembled. The analysis was conducted on a data-set of 256 clones, consisting of parents and full-sib families generated from 32 biparental crosses, tested in six environments. The minimum number of generations back to S. spontaneum ancestor in the clone's pedigree was used as a germ plasm score. The geographical origin and selection history of each parent and their use in the biparental crosses were used to develop a selection history score for parents and offspring. The variation for seven attributes, cane yield, commercial cane sugar %, sugar yield, stalk number per stool, stalk weight, fibre % and ash % juice was partitioned according to the germ plasm and selection history scores. Significant (P<0.05) clone variation and clone x environment interaction for all attributes was present. The germ plasm scores accounted for a significant (P<0.05) component of the clone variation for all of the attributes except cane yield. There was an increase in sugar yield with an increase in the minimum number of generations back to a S. spontaneum clone. The selection history groups accounted for a high proportion of the variation among parental clones for all of the attributes except cane yield. This suggested that parents were the outcome of strong selection pressure for the commercial cane attributes. However, the selection history groups for the offspring produced by random mating of parents did not account for a high proportion of the variation for the attributes. Using the mixture method of classification we partitioned the 256 clones into five groups for patterns of performance for the seven attributes across the six environments. The five groups emphasized major differences in the patterns of performance for the seven attributes across environments. The distribution of germ plasm and selection history scores in each of the five groups indicated that their patterns of performance were associated with selection history and minimum generations to S. spontaneum. Therefore, both the analysis on selection history and germ plasm scores (extrinsic classification) and the analysis on the mixture method of classification (intrinsic classification) emphasized the influence of selection history on the sugar yield of sugarcane. PMID:24190405

  12. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  13. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  14. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  15. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... be disposed of as prescribed in 33 CFR parts 151.55 through 151.77. ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment...

  16. COMPARISON OF LEACHABLE TRACE ELEMENT LEVELS IN COAL GASIFIER ASH WITH LEVELS IN POWER PLANT ASH

    EPA Science Inventory

    The paper gives results of a comparison of the levels of 14 trace elements in leachates from three types of ash of a common origin coal. The 1-year study was conducted at the Kosovo plant in Obilic, Yugoslavia, comparing coal gasifier ash with fly ash and bottom ash from a coal-f...

  17. Rational regional distribution of sugarcane cultivars in China.

    PubMed

    Luo, Jun; Pan, Yong-Bao; Xu, Liping; Grisham, Michael Paul; Zhang, Hua; Que, Youxiong

    2015-01-01

    Knowing yield potential and yield stability of sugarcane cultivars is of significance in guiding sugarcane breeding and rationalising regional distribution of sugarcane cultivars. In the present study, a heritability-adjusted genotype main effect plus genotype?×?environment (HA-GGE) biplot program was used to analyze the cane and sucrose yields of 44 newly released sugarcane cultivars at eight pilot test sites. The cane and sucrose yields of nine cultivars were higher than those of the control cultivar ROC22. From the perspective of cane yield, cultivars FN 40 and YZ 06-407 were well adapted to a wider range of conditions and produced relatively high cane yields in several pilot sites. From the perspective of sucrose yield, cultivars LC 03-1137, FN 38, FN 41, MT 01-77 and LC 05-136 were well adapted to a wide range of conditions and produced relatively high sucrose yields. Based on these results, three high yielding and widely adapted cultivars, namely, FN 39, LC 05-136, and YZ 05-51 were recommended for production in three major Chinese sugarcane planting areas. The results will provide a theoretical basis for recommending the effective use and rational regional distribution of sugarcane cultivars in China. PMID:26499905

  18. Rational regional distribution of sugarcane cultivars in China

    PubMed Central

    Luo, Jun; Pan, Yong-Bao; Xu, Liping; Grisham, Michael Paul; Zhang, Hua; Que, Youxiong

    2015-01-01

    Knowing yield potential and yield stability of sugarcane cultivars is of significance in guiding sugarcane breeding and rationalising regional distribution of sugarcane cultivars. In the present study, a heritability-adjusted genotype main effect plus genotype?×?environment (HA-GGE) biplot program was used to analyze the cane and sucrose yields of 44 newly released sugarcane cultivars at eight pilot test sites. The cane and sucrose yields of nine cultivars were higher than those of the control cultivar ROC22. From the perspective of cane yield, cultivars FN 40 and YZ 06–407 were well adapted to a wider range of conditions and produced relatively high cane yields in several pilot sites. From the perspective of sucrose yield, cultivars LC 03–1137, FN 38, FN 41, MT 01–77 and LC 05–136 were well adapted to a wide range of conditions and produced relatively high sucrose yields. Based on these results, three high yielding and widely adapted cultivars, namely, FN 39, LC 05–136, and YZ 05–51 were recommended for production in three major Chinese sugarcane planting areas. The results will provide a theoretical basis for recommending the effective use and rational regional distribution of sugarcane cultivars in China. PMID:26499905

  19. Can America's ash trees be saved?

    E-print Network

    community of researchers. Their expertise ranges from invasive exotic species, such as the emerald ash borer, and their appetite shows no sign of abating. Entomologist Andrew Storer studies how emerald ash borers spread on pages 12 and 15 of the emerald ash borer are provided by Andrew Storer. The photos and other images

  20. Viscous sintering of volcanic ash

    NASA Astrophysics Data System (ADS)

    Wadsworth, F. B.; Scheu, B.; Vasseur, J.; Tuffen, H.; von Aulock, F. W.; Lavallée, Y.; Hess, K. U.; Dingwell, D. B.

    2014-12-01

    Volcanic ash is often deposited in a hot state. Volcanic ash containing glass, deposited above the glass transition interval, has the potential to sinter viscously both to itself (particle-particle) and to exposed surfaces. Here, we constrain the kinetics of this process experimentally under isothermal and non-isothermal conditions using standard glasses and volcanic ash. In the absence of external load, this process is dominantly driven by surface relaxation. In such cases the sintering process is rate-limited by the melt viscosity, the size of the particles and the melt-vapour interfacial tension. We propose a polydisperse continuum model that describes the transition from a packing of particles to a dense pore-free melt and evaluate its efficacy in describing the kinetics of volcanic viscous sintering. We apply our model to viscous sintering scenarios for cooling crystal-poor rhyolitic ash using the 2008 eruption of Chaitén volcano as a case example. We predict that moderate cooling rates result in the common observation of incomplete sintering and the preservation of pore networks. Finally we discuss the effect of crystallisation, external loading and volatile degassing or regassing during viscous sintering and assert that such complexities must be considered in the volcanic scenario.

  1. Environmental Life Cycle Implications of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in Mumbai (Bombay)

    SciTech Connect

    Kadam, K.

    2000-12-07

    Bagasse is the fibrous residue generated during sugar production and can be a desirable feedstock for fuel ethanol production. About 15%--25% of the bagasse is left after satisfying the mills' energy requirements, and this excess bagasse can be used in a bioconversion process to make ethanol. It is estimated that a 23 million L/yr ({approximately}6 million gal/yr) ethanol facility is feasible by combining excess bagasse from three larger sugar mills in Maharashtra state. The plant could supply about half of the ethanol demand in Mumbai, assuming that all gasoline is sold as an E10 fuel, a blend of 90% gasoline and 10% ethanol by volume. The life cycle assessment (LCA) performed in this study demonstrated the potentially significant benefits of diverting excess bagasse in Maharashtra to ethanol production, as opposed to disposing it by burning. In particular, lower net values for the ethanol production scenario were observed for the following: fossil energy consumption, and emissions of carbon monoxide , hydrocarbons (except methane), SOx, NOx, particulates, carbon dioxide, and methane. The lower greenhouse potential of the ethanol scenario is also important in the context of Clean Development Mechanism and Joint Implementation because India is a developing country.

  2. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    PubMed Central

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (?3.62?meq/g) and shorter reaction time (1.5–5.0?min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40?ppm, adsorbent 2.0?g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb2+ much faster in the initial step and reached 92% removal after 20?min, while Dowax (commercial ion exchange resin) took 90?min for the same removal efficiency. PMID:24578651

  3. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    PubMed Central

    Camassola, Marli; Dillon, Aldo J. P.

    2014-01-01

    The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147?U·mL?1) was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher ?-glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups. PMID:24967394

  4. Metaproteomic analysis of ratoon sugarcane rhizospheric soil

    PubMed Central

    2013-01-01

    Background The current study was undertaken to elucidate the mechanism of yield decline in ratoon sugarcane using soil metaproteomics combined with community level physiological profiles (CLPP) analysis. Results The available stalk number, stalk diameter, single stalk weight and theoretical yield of ratoon cane (RS) were found to be significantly lower than those of plant cane (NS). The activities of several carbon, nitrogen and phosphorus processing enzymes, including invertase, peroxidase, urease and phosphomonoesterase were found to be significantly lower in RS soil than in NS soil. BIOLOG analysis indicated a significant decline in average well-color development (AWCD), Shannon’s diversity and evenness indices in RS soil as compared to NS soil. To profile the rhizospheric metaproteome, 109 soil protein spots with high resolution and repeatability were successfully identified. These proteins were found to be involved in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metabolisms, membrane transport, signal transduction and resistance, etc. Comparative metaproteomics analysis revealed that 38 proteins were differentially expressed in the RS soil as compared to the control soil or NS soil. Among these, most of the plant proteins related to carbohydrate and amino acid metabolism and stress response were up-regulated in RS soil. Furthermore, several microbial proteins related to membrane transport and signal transduction were up-regulated in RS soil. These proteins were speculated to function in root colonization by microbes. Conclusions Our experiments revealed that sugarcane ratooning practice induced significant changes in the soil enzyme activities, the catabolic diversity of microbial community, and the expression level of soil proteins. They influenced the biochemical processes in the rhizosphere ecosystem and mediated the interactions between plants and soil microbes. PMID:23773576

  5. An interview with Jen Sheen Jen Sheen grew up in a sugarcane plantation community

    E-print Network

    Sheen, Jen

    An interview with Jen Sheen Jen Sheen grew up in a sugarcane plantation community in a rural area into plant biology? Both my parents are schoolteachers in a sugarcane plantation community. Besides books

  6. Non-target effects of transgenic sugarcane on Parallorhogas pyralophagus (Marsh) 

    E-print Network

    Wachtel, Beverly Gail

    2002-01-01

    Parallorhogas pyralophagus (Marsh) is an important biological control agent of Eoreuma loftini Dyar, the key pest of Texas sugarcane. Transgenic sugarcane containing Galanthus nivalis agglutinin (GNA) was developed to deter E. loftini, and the goal...

  7. Effect of Recurrent Selection for Sucrose on Growth and Sugar Accumulation in Sugarcane Internodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial sugarcane cultivars are complex, polyploid, interspecific hybrids, primarily of Saccharum officinarum and S. spontaneum. Most breeding programs need about twelve years to develop a new cultivar. Since the 1920’s, Louisiana sugarcane breeding programs have used modified recurrent selection...

  8. Free amino acids - determinant of sugarcane resistance/susceptibility to stalk borer and sap feeders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two relatively new key species in Louisiana that conform to the plant stress hypothesis are the Mexican rice borer, Eoreuma loftini (Dyar) and the sugarcane aphid, Melanaphis sacchari (Zehntner). High performance liquid chromatography differentiated insect resistant and susceptible sugarcane cultiva...

  9. A comparison between sludge ash and fly ash on the improvement in soft soil

    SciTech Connect

    Deng-Fong Lin; Kae-Long Lin; Huan-Lin Luo

    2007-01-15

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4 2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20 30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. 9 refs., 5 figs., 2 tabs.

  10. Sugarcane Water Sustainability Assessment Through the Indicators Extracted from Spatial Models: Case Study of Sugarcane Expansion Hotspots in Brazil

    NASA Astrophysics Data System (ADS)

    Ferraz, R. P.; Simoes, M.; Dubreuil, V.

    2012-12-01

    The CanaSat project data from INPE (2010) has evidenced the trend of sugarcane expansion into savanna areas in the Midwest region of Brazil that has a great potential for the sugarcane development, in terms of topography and suitable soils, according to Sugarcane Agroecological Zoning (EMBRAPA, 2009). However, in this region the climatic water availability has limitations, once the climate is marked by drought season with a strong water deficiency due to reduction of rainfall (SILVA et al. 2008). There may be serious risks to the sugarcane culture conducted in dryland crop system without any support from additional irrigation. Silva et al. (2008) state that, for the expansion of sugarcane cultivation in the Cerrado region will be necessary supplemental irrigation with 80 to 120 mm of water applied after cutting or planting. In the Brazilian Midwest the sugarcane agroindustry expansion is technically viable, but for the sustainable development of this activity it is necessary an adequate planning based on knowledge about water demand and availability. The aim of this study was to conduct an assessment of the potential water sustainability for the sugarcane cultivation in four microregions in Goiás State, Brazil, through the use of indicators proposed in Indicators System of Sugarcane Water Sustainability Assessment (Ferraz, 2012), that was thought to subsidize the public policies proposals and sectoral planning in strategic level by means of indicators that enable to perform diagnostic and prognostic analysis. These indicators are direct and relevant indexes obtained from data extracted through geoprocessing techniques from integration of many spatial models. The used indicators were: (i) Three indexes expressing the land favorability for sugarcane development conducted in dryland or irrigation system through the establishment of the ratio between the sugarcane suitable area for each different system and the total area of territorial unit of analysis (micro-regions) from Sugarcane Agroecological Zoning (EMBRAPA, 2009); (ii) One index that indicates the degree of relative occurrence of vulnerable areas in relation to contamination risk of surface and groundwater by effluents from sugarcane agroindustry from a model made by Barbalho e Campos (2010); (iii) two indicators that evaluate the commitment degree of the available water to meet the demand of sugarcane potential expansion distinctly for dryland and irrigation system; (iv) two indicators that evaluate the attendance level of the sugarcane water demand considering the limits of available water from local water resource in terms of maximum area that the culture can expand in a sustainable way For the estimation of water supply was used a spatially distributed model of specific flow (FERRAZ, 2012). The results show that the indicators were able to characterize and distinguish the different territorial units of analysis and the spatial models used satisfactorily met, in terms of level of detail, the purposes explained. The Sudoeste de Goiás and Quirinópolis microregions exhibit higher favorability, from the point of view of water sustainability therefore have areas where culture can be grown in dry system and still rely on higher available water volumes to supply the demand of sugarcane cultivation in the areas of compulsory irrigation.

  11. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  12. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  13. Volcanic ash layer depth: Processes and mechanisms

    NASA Astrophysics Data System (ADS)

    Dacre, Helen

    2015-04-01

    The long duration of the 2010 Eyjafjallajokull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research LIdar NETwork (EARLINET) with a mean depth of 1.2 km and standard deviation of 0.9 km. In this presentation we evaluate the ability of the UK Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

  14. Volcanic ash layer depth: Processes and mechanisms

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Grant, A. L. M.; Harvey, N. J.; Thomson, D. J.; Webster, H. N.; Marenco, F.

    2015-01-01

    The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

  15. Utilization of lignite ash in concrete mixture

    SciTech Connect

    Demirbas, A.; Karslioglu, S.; Ayas, A.

    1995-12-01

    In this article 11 ashes from various Turkish lignite sources were studied to show the effects upon lignite ash quality for use as a mineral admixture in concrete. The lignite ashes were classified into two general types (Class A and Class B) based on total of silica, alumina, and iron oxide. Total content of the three major oxides must be more than 50% for Class A lignite ash and more than 70% for Class B lignite ash. When 25% of the cement was replaced by LA-1 (Class A) lignite ash, based on 300 kg/m{sup 3} cementitious material, the 28-day compressive strength increased 24.3% compared to the control mix. The optimal lignite ash replacement was 25% at 300 kg/m{sup 3} cementitious material.

  16. Computational identification and analysis of novel sugarcane microRNAs

    PubMed Central

    2012-01-01

    Background MicroRNA-regulation of gene expression plays a key role in the development and response to biotic and abiotic stresses. Deep sequencing analyses accelerate the process of small RNA discovery in many plants and expand our understanding of miRNA-regulated processes. We therefore undertook small RNA sequencing of sugarcane miRNAs in order to understand their complexity and to explore their role in sugarcane biology. Results A bioinformatics search was carried out to discover novel miRNAs that can be regulated in sugarcane plants submitted to drought and salt stresses, and under pathogen infection. By means of the presence of miRNA precursors in the related sorghum genome, we identified 623 candidates of new mature miRNAs in sugarcane. Of these, 44 were classified as high confidence miRNAs. The biological function of the new miRNAs candidates was assessed by analyzing their putative targets. The set of bona fide sugarcane miRNA includes those likely targeting serine/threonine kinases, Myb and zinc finger proteins. Additionally, a MADS-box transcription factor and an RPP2B protein, which act in development and disease resistant processes, could be regulated by cleavage (21-nt-species) and DNA methylation (24-nt-species), respectively. Conclusions A large scale investigation of sRNA in sugarcane using a computational approach has identified a substantial number of new miRNAs and provides detailed genotype-tissue-culture miRNA expression profiles. Comparative analysis between monocots was valuable to clarify aspects about conservation of miRNA and their targets in a plant whose genome has not yet been sequenced. Our findings contribute to knowledge of miRNA roles in regulatory pathways in the complex, polyploidy sugarcane genome. PMID:22747909

  17. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the entire set of 221 sugarcane microsatellite (SSR) markers from the International Sugarcane Microsatellite Consortium for their utility on molecular characterization of elite U.S. germplasm. Five elite U.S. sugarcane clones were tested, including two cu...

  18. A Review of Sugarcane Deterioration in the United States and South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of sugarcane deterioration that detrimentally affects processing in the United States (US) and South Africa (SA) is presented. Postharvest sugarcane deterioration products are dependent on sugarcane injury, environmental conditions, variety, cut-to-crush delays, and extent of adventitious i...

  19. Louisiana sugarcane entomology: A look at the back and a peek at the future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling insect pests is an important consideration for sugarcane farmers seeking to minimize losses and maximize profits. Research in managing insects has been conducted for almost as long as sugarcane has been grown in Louisiana. This presentation reviews Louisiana sugarcane entomology from the...

  20. Ontology-based simulation of water flow in organic soils applied to Florida sugarcane

    E-print Network

    Grunwald, Sabine

    Ontology-based simulation of water flow in organic soils applied to Florida sugarcane Ho-Young Kwon and approximately 82% of the cultivated area is planted to sugarcane (Saccharum officinarum L.) followed including fertile organic soils (Histosols) and subtropical climate (Baucum et al., 2006), Florida sugarcane

  1. RELATIVE ABUNDANCE OF WHITE GRUBS (COLEOPTERA: SCARABAEIDAE) IN FLORIDA SUGARCANE ON SAND AND MUCK SOILS

    E-print Network

    Ma, Lena

    RELATIVE ABUNDANCE OF WHITE GRUBS (COLEOPTERA: SCARABAEIDAE) IN FLORIDA SUGARCANE ON SAND AND MUCK and Education Center Belle Glade, FL 33430 Omelio Sosa, Jr. Sugarcane Field Station, USDA-ARS Canal Point, FL 33438 ABSTRACT Sugarcane fields in Florida on sand or organic (muck) soils were sampled to determine

  2. O P I N I O N Ethanol from sugarcane in Brazil: a `midway' strategy for

    E-print Network

    DeLucia, Evan H.

    O P I N I O N Ethanol from sugarcane in Brazil: a `midway' strategy for increasing ethanol production from sugarcane in Brazil and presents a strategy for improving ecosystem services and production. We propose that it is possible to produce ethanol from sugarcane while maintaining or even recovering

  3. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate 152 sugarcane microsatellite (SSR) markers originally developed in India for their transferability to germplasm being used by sugarcane breeders in the U.S. The commercial sugarcane cultivar, LCP 85-384, was used for the initial screening of the SSR marker...

  4. Comparison of unburned and burned sugarcane harvesting in Florida - an energy viewpoint

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1981-01-01

    Fuel consumption and performance characteristics of four sugarcane harvesting systems were measured in unburned and burned sugarcane. Unburned sugarcane harvesting operations had significantly higher field losses, required twice as much fuel, and had lower production rates than in burned cane harvesting.

  5. Physical and Mechanical Properties of Sugarcane Rind and Mixed Hardwood Oriented Strandboard Bonded with PF Resin

    E-print Network

    Physical and Mechanical Properties of Sugarcane Rind and Mixed Hardwood Oriented Strandboard Bonded properties of sugarcane rind (i.e., comrind) and wood strands from southern pine, yellow poplar, red oak flakes to produce three-layer OSB with desired properties. INTRODUCTION Sugarcane is an important

  6. Relationships between ferrisol properties and the structure of plant parasitic nematode communities on sugarcane in

    E-print Network

    Thioulouse, Jean

    on sugarcane in Martinique (French West Indies). Cadet Patrice*°, Thioulouse Jean** & Albrecht Alain* Running variations of a ferrisol and plant parasitic nematode communities of sugarcane were studied along three). In Martinique, for perennial sugarcane crops, agricultural engineering has induced local variations (extending

  7. Evaluation of Sugarcane Orange Rust for first clonal stage of the CP Cultivar Development Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consistent development of high-yielding sugarcane cultivars with resistance or tolerance to biotic and abiotic stresses is critical to commercial sugarcane production in Florida. Currently, orange rust (caused by Puccinia kuehnii E.J. Butler) is a great challenge for the Florida sugarcane production...

  8. ANTIBODY TO A SHORT PEPTIDE SEQUENCE DETECTED SUGARCANE YELLOW LEAF VIRUS ISOLATES FROM SEVERAL SOURCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane Yellow Leaf Virus (SCYLV) infects many sugarcane cultivars in sugarcane-growing areas around the world. Infected plants are often symptomless and diagnosis depends on PCR analysis or on one of several immunology techniques which require the use of a specific antibody. Although it has bee...

  9. SUGARCANE RESPONSE TO DEPTH OF SOIL COVER AT PLANTING AND HERBICIDE TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to evaluate the effects of depth of cover at planting on sugarcane yield and response to preemergence herbicide treatments over a complete three-year sugarcane cycle. Two studies were conducted at the Welcome Plantation in St. James Parish, LA, using LCP 85-384 sugarcane plan...

  10. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse.

    PubMed

    Cao, Weixing; Sun, Chen; Liu, Ronghou; Yin, Renzhan; Wu, Xiaowu

    2012-05-01

    To improve the enzymatic digestibility of sweet sorghum bagasse and bioethanol production, five pretreatment methods have been investigated and compared, including (1) dilute NaOH solution autoclaving pretreatment, (2) high concentration NaOH solution immersing pretreatment, (3) dilute NaOH solution autoclaving and H(2)O(2) immersing pretreatment, (4) alkaline peroxide pretreatment and (5) autoclaving pretreatment. Among them, the best result was obtained when sweet sorghum bagasse was dilute NaOH solution autoclaving and H(2)O(2) immersing pretreatment. The highest cellulose hydrolysis yield, total sugar yield and ethanol concentration were 74.29%, 90.94 g sugar/100g dry matter and 6.12 g/L, respectively, which were 5.88, 9.54 and 19.13 times higher than the control. Moreover, the FTIR and SEM analysis illustrated significant molecule and surface structure changes of the sweet sorghum bagasse after pretreatments. PMID:22386628

  11. Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol.

    PubMed

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Montoya-Chiw, Manuel; Serna-Saldívar, Sergio O

    2015-01-01

    Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776

  12. Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes.

    PubMed

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O

    2013-04-01

    The C5 and C6 sugars generated from sweet sorghum bagasse pretreated with five different chemical or physical schemes and then further hydrolyzed with a fibrolytic cocktail were determined. Hydrolysates were fermented with three yeast strains in order to determine which combination generated the highest amount of bioethanol. The bagasse only treated with the enzyme complex generated 50% of the total C5 and C6 sugars available. The pressure-cooked and extruded pretreatments further hydrolyzed with the enzymes generated 17% more sugars compared to the enzyme alone treatment. The enzyme increased the total sugar content in approximately 40% in the three acid pretreated hydrolysates. Among the different pretreatments, only the extrusion process did not generate inhibitors acetic acid, furfural and 5-hydroxymethylfurfural. At 24 h fermentation, the strains Saccharomyces cerevisiae and Issatchenkia orientalis produced, respectively 183.9 and 209.2 mg ethanol/g dry bagasse previously treated with HCl and enzymes. PMID:23489562

  13. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    PubMed Central

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.

    2015-01-01

    Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200?rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72?h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1?mL of ethanol per kilogram of bagasse (dw). PMID:25866776

  14. The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer

    E-print Network

    The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber sugarcane fiber/polymer composites, the HDPE resins with a low MFI value presented high tensile and impact: sugarcane fibers; composites; fiber dimension and aspect ratio; melt flow index; HDPE INTRODUCTION Sugarcane

  15. Ultrasonic ash/pyrite liberation

    SciTech Connect

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  16. Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction.

    PubMed

    Lan, Wu; Liu, Chuan-Fu; Sun, Run-Cang

    2011-08-24

    Lignocellulose materials are potentially valuable resources for transformation into biofuels and bioproducts. However, their complicated structures make it difficult to fractionate them into cellulose, hemicelluloses, and lignin, which limits their utilization and economical conversion into value-added products. This study proposes a novel and feasible fractionation method based on complete dissolution of bagasse in 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl) followed by precipitation in acetone/water (9:1, v/v) and extraction with 3% NaOH solution. The ionic liquid [C(4)mim]Cl was easily recycled after concentration and treatment with acetonitrile. (1)H NMR analysis confirmed that there was no obvious difference between the recycled [C(4)mim]Cl and fresh material. Bagasse was fractionated with this method to 36.78% cellulose, 26.04% hemicelluloses, and 10.51% lignin, accounting for 47.17 and 33.85% of the original polysaccharides and 54.62% of the original lignin, respectively. The physicochemical properties of the isolated fractions were characterized by chemical analysis, high-performance anion exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), and (1)H and 2D (13)C-(1)H correlation (HSQC) nuclear magnetic resonance spectroscopy. The results showed that the acetone-soluble lignin and alkaline lignin fractions had structures similar to those of milled wood lignin (MWL). The easy extraction of the noncellulose components from homogeneous bagasse solution and amorphous regenerated materials resulted in the relatively high purity of cellulosic fraction (>92%). The hemicellulosic fraction was mainly 4-O-methyl-D-glucuronoxylans with some ?-L-arabinofuranosyl units substituted at C-2 and C-3. PMID:21749036

  17. Mutator System Derivatives Isolated from Sugarcane Genome Sequence.

    PubMed

    Manetti, M E; Rossi, M; Cruz, G M Q; Saccaro, N L; Nakabashi, M; Altebarmakian, V; Rodier-Goud, M; Domingues, D; D'Hont, A; Van Sluys, M A

    2012-09-01

    Mutator-like transposase is the most represented transposon transcript in the sugarcane transcriptome. Phylogenetic reconstructions derived from sequenced transcripts provided evidence that at least four distinct classes exist (I-IV) and that diversification among these classes occurred early in Angiosperms, prior to the divergence of Monocots/Eudicots. The four previously described classes served as probes to select and further sequence six BAC clones from a genomic library of cultivar R570. A total of 579,352 sugarcane base pairs were produced from these "Mutator system" BAC containing regions for further characterization. The analyzed genomic regions confirmed that the predicted structure and organization of the Mutator system in sugarcane is composed of two true transposon lineages, each containing a specific terminal inverted repeat and two transposase lineages considered to be domesticated. Each Mutator transposase class displayed a particular molecular structure supporting lineage specific evolution. MUSTANG, previously described domesticated genes, are located in syntenic regions across Sacharineae and, as expected for a host functional gene, posses the same gene structure as in other Poaceae. Two sequenced BACs correspond to hom(eo)logous locus with specific retrotransposon insertions that discriminate sugarcane haplotypes. The comparative studies presented, add information to the Mutator systems previously identified in the maize and rice genomes by describing lineage specific molecular structure and genomic distribution pattern in the sugarcane genome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-012-9104-y) contains supplementary material, which is available to authorized users. PMID:22905278

  18. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    PubMed Central

    Menossi, M.; Silva-Filho, M. C.; Vincentz, M.; Van-Sluys, M.-A.; Souza, G. M.

    2008-01-01

    Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs. PMID:18273390

  19. De Novo Assembly and Transcriptome Analysis of Contrasting Sugarcane Varieties

    PubMed Central

    Mancini, Melina Cristina; Balsalobre, Thiago Willian Almeida; Canesin, Lucas Eduardo Costa; Pinto, Luciana Rossini; Carneiro, Monalisa Sampaio; Garcia, Antonio Augusto Franco; de Souza, Anete Pereira; Vicentini, Renato

    2014-01-01

    Sugarcane is an important crop and a major source of sugar and alcohol. In this study, we performed de novo assembly and transcriptome annotation for six sugarcane genotypes involved in bi-parental crosses. The de novo assembly of the sugarcane transcriptome was performed using short reads generated using the Illumina RNA-Seq platform. We produced more than 400 million reads, which were assembled into 72,269 unigenes. Based on a similarity search, the unigenes showed significant similarity to more than 28,788 sorghum proteins, including a set of 5,272 unigenes that are not present in the public sugarcane EST databases; many of these unigenes are likely putative undescribed sugarcane genes. From this collection of unigenes, a large number of molecular markers were identified, including 5,106 simple sequence repeats (SSRs) and 708,125 single-nucleotide polymorphisms (SNPs). This new dataset will be a useful resource for future genetic and genomic studies in this species. PMID:24523899

  20. Supply and demand: sink regulation of sugar accumulation in sugarcane.

    PubMed

    McCormick, A J; Watt, D A; Cramer, M D

    2009-01-01

    Sugarcane (Saccharum spp. hybrids) accumulates sucrose to high concentrations and, as a result, has been the focus of extensive research into the biochemistry and physiology of sucrose accumulation. Despite this, the relationship between source leaf photosynthetic activity and sucrose accumulation in the culm sink is not well understood. The observations that photosynthetic activity declines during culm maturation in commercial cultivars and that high-sucrose-accumulating noble ancestral genotypes (Saccharum officinarum L.) photosynthesize at rates two-thirds of those of low-sucrose ancestors (Saccharum spontaneum L.) indicate that source-sink communication may play a pivotal role in determining sucrose yield. Although maturation of the culm results in a decreased demand for sucrose, recent evidence from partial leaf shading, defoliation, and transgenic studies indicates that sugarcane cultivars are capable of further increases in sugar content. Furthermore, sugarcane leaves appear to retain the capacity to increase the supply of assimilate to culm tissues under conditions of increased assimilate demand. The relationship between source and sink tissues in sugarcane should be viewed within a supply-demand paradigm; an often neglected conceptual approach in the study of this crop. Uncoupling of the signalling pathways that mediate negative feedback between source and sink tissues may result in improved leaf assimilation rates and, consequently, lead to increased sugarcane sucrose yields. PMID:19050062

  1. Study on fusion characteristics of biomass ash.

    PubMed

    Niu, Yanqing; Tan, Hongzhang; Wang, Xuebin; Liu, Zhengning; Liu, Haiyu; Liu, Yang; Xu, Tongmo

    2010-12-01

    The ash fusion characteristics (AFC) of Capsicum stalks ashes, cotton stalks ashes and wheat stalks ashes that all prepared by ashing at 400 degrees C, 600 degrees C and 815 degrees C are consistent after 860 degrees C, 990 degrees C and 840 degrees C, respectively in the ash fusion temperature test and TG. Initial deformation temperature (IDT) increases with decreased K(2)O and went up with increased MgO, CaO, Fe(2)O(3) and Al(2)O(3). Softening temperature (ST), hemispherical temperature (HT) and fluid temperature (FT) do not affected by the concentrations of each element and the ashing temperature obviously. Therefore, the IDT may be as an evaluation index of biomass AFC rather than the ST used as an evaluation index of coal AFC. XRD shows that no matter what the ashing temperature is, the biomass ashes contain same high-temperature molten material. Therefore, evaluation of the biomass AFC should not be simply on the proportion of elements except IDT, but the high-temperature molten material in biomass ash. PMID:20655203

  2. Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water.

    PubMed

    Wen, Jian; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-02-01

    Bacillus aryabhattai GZ03 was isolated from deep sea water of the South China Sea, which can produce glucose and fructose by degrading bagasse at 25 °C. Here we report the draft genome sequence of Bacillus aryabhattai GZ03. The data obtained revealed 37 contigs with genome size of 5,105,129 bp and G+C content of 38.09%. The draft genome of B. aryabhattai GZ03 may provide insights into the mechanism of microbial carbohydrate and lignocellulosic material degradation. PMID:25479947

  3. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  4. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    PubMed

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was <5% for both shell ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal. PMID:22990579

  5. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and ?uid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650?kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700?kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant. PMID:25220259

  6. Functional characterization of sugarcane mustang domesticated transposases and comparative diversity in sugarcane, rice, maize and sorghum

    PubMed Central

    Kajihara, Daniela; de Godoy, Fabiana; Hamaji, Thais Alves; Blanco, Silvia Regina; Van Sluys, Marie-Anne; Rossi, Magdalena

    2012-01-01

    Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%–80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as “molecular domestication”, by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis. PMID:23055803

  7. COAL ASH RESOURCES RESEARCH CONSORTIUM

    SciTech Connect

    1998-12-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced ?cars?) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993?1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High-Calcium Coal Combustion By-Products, 5) Development of an Environmentally Appropriate Leaching Procedure for Coal Combustion By-Products, 6) Set Time of Fly Ash Concrete, 7) Coal Ash Properties Database (CAPD), 8) Development of a Method for Determination of Radon Hazard in CCBs, 9) Development of Standards and Specifications, 10) Assessment of Fly Ash Variability, and 11) Development of a CCB Utilization Workshop. The primary goal of CARRC is to work with industry to solve CCB-related problems and promote the environmentally safe, technically sound, and economical utilization and disposal of these highly complex materials. CARRC 1993?1998 accomplishments included: C Updating the CAPD to a user-friendly database management system, and distributing it to CARRC members. C ASTM standard preparation for a guide to using CCBs as waste stabilization agents. C Preliminary identification of specific mineral transformations resulting from fly ash hydration. C Limited determination of the effects of fly ash on the set time of concrete. C Statistical evaluation of a select set of fly ashes from several regional coal-fired power plants. C Development and presentation of a workshop on CCB utilization focused on government agency representatives and interested parties with limited CCB utilization experience. C Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  8. Oligoclonal interspecific origin of 'North Indian' and 'Chinese' sugarcanes.

    PubMed

    D'Hont, Angélique; Paulet, Florence; Glaszmann, Jean Christophe

    2002-01-01

    Sugarcanes consist of several groups of complex polyploid forms. The origin of 'North Indian' and 'Chinese' sugarcanes (referred to as S. barberi and S. sinense) was investigated using genomic in-situ hybridization (GISH), detection of species-specific repeated sequences and RFLP. GISH proved their interspecific hybrid origin. Together with the distribution of species-specific repeated sequences and earlier RFLP data, the results show that both taxa are derived from interspecific hybridization between S. officinarum and S. spontaneum and that no other genus has been directly involved. RFLP indicates that the clones are clustered into a few groups, each derived from a single interspecific hybrid that has subsequently undergone a few somatic mutations. These groups correspond quite well with those already defined based on morphological characters and chromosome numbers. However, the calculated genetic similarities do not support the existence of two distinct taxa. The 'North Indian' and 'Chinese' sugarcanes represent a set of horticultural groups rather than established species. PMID:12067214

  9. Genetic Analysis of Diversity within a Chinese Local Sugarcane Germplasm Based on Start Codon Targeted Polymorphism

    PubMed Central

    Que, Youxiong; Pan, Yongbao; Lu, Yunhai; Yang, Cui; Yang, Yuting; Huang, Ning; Xu, Liping

    2014-01-01

    In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic diversity among 107 sugarcane accessions within a local sugarcane germplasm collection. These primers amplified 176 DNA fragments, of which 163 were polymorphic (92.85%). Polymorphic information content (PIC) values ranged from 0.783 to 0.907 with a mean of 0.861. Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of the SCoT marker data divided the 107 sugarcane accessions into six clusters at 0.674 genetic similarity coefficient level. Relatively abundant genetic diversity was observed among ROC22, ROC16, and ROC10, which occupied about 80% of the total sugarcane acreage in China, indicating their potential breeding value on Mainland China. Principal component analysis (PCA) partitioned the 107 sugarcane accessions into two major groups, the Domestic Group and the Foreign Introduction Group. Each group was further divided based on institutions, where the sugarcane accessions were originally developed. The knowledge of genetic diversity among the local sugarcane germplasm provided foundation data for managing sugarcane germplasm, including construction of a core collection and regional variety distribution and subrogation. PMID:24779012

  10. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  11. Volcanic ash: toxicity to isolated lung cells.

    PubMed

    Castranova, V; Bowman, L; Shreve, J M; Jones, G S; Miles, P R

    1982-02-01

    Samples of volcanic ash from Mount St. Helens were collected from Spokane, Washington, after the major eruption of May 18, 1980. The toxicity of ash to the lung was estimated by monitoring the effects of in vitro and in vivo exposure on various physiological parameters of isolated lung cells. Volcanic ash had little effect on O2 consumption of rabbit type II pneumocytes, O2 consumption or superoxide release of resting rat alveolar macrophages, or membrane integrity of rat alveolar macrophages. Ash also caused no significant lipid peroxidation in rat lung microsomes. However, volcanic ash did inhibit superoxide anion release from zymosan-stimulated rat alveolar macrophages. Since superoxide is an antibacterial substance, this result suggests that exposure to volcanic ash may adversely affect the ability of alveolar macrophages to protect the lung from infection. PMID:6281450

  12. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this approach

  13. Effects of fly ash particle size on strength of Portland cement fly ash mortars

    SciTech Connect

    Erdogdu, K.; Tuerker, P.

    1998-09-01

    Fly ashes do not have the same properties for different size fractions. It can be accepted that the effect of a fly ash on mortar strength is a combined effect of its size fractions. Therefore, it was concluded that by separating the size fractions and replacing cement with them, the combined bulk effect of a fly ash on strength can be better analyzed. In this study, different size fractions of fly ash were used to replace cement partially in standard compressive strength mortars. The authors attempted to interpret the strength of Portland cement-fly ash mortars in terms of the chemical, mineralogical, morphological, and physical properties of different fly ash size fractions used. Strengths of the mortars were compared at 2, 7, 28, and 90 days. Also strength of mortars with all-in ash (original ash containing all the fractions) were estimated by using strength of mortars with size fractions and the suitability of this estimation was discussed.

  14. Sugarcane fibre may prevents hairball formation in cats.

    PubMed

    Loureiro, Bruna A; Sembenelli, Guilherme; Maria, Ana P J; Vasconcellos, Ricardo S; Sá, Fabiano C; Sakomura, Nilva K; Carciofi, Aulus C

    2014-01-01

    Hair ingested by licking during cat grooming can eventually coalesce into solid masses in cat gastrointestinal tract. It is believed that dietary fibre might reduce formation of these trichobezoars (hairballs). The effects of two insoluble fibre sources added to kibble diets were evaluated with respect to trichobezoar faecal excretion. Thirty-two cats and four diets were used in a randomised block design: a control diet without additional fibre, 10 % added sugarcane fibre, 20 % added sugarcane fibre or 10 % added cellulose. Animals were fed for 42 d and during three separate periods (days 15-17, 25-27 and 40-42), the cats were housed individually in metabolic cages and their faeces were totally collected. The faeces were evaluated and the trichobezoars were isolated and classified into small (<1 cm), medium (1·1-2 cm) or large (>2·1 cm). Means were evaluated by repeated measures ANOVA and contrasts (P < 0·05). Cats fed sugarcane fibre shown a linear reduction of small and medium trichobezoar excretion (number per cat per day; P = 0·004) as well as a reduction in trichobezoar mass excretion (mg per cat per day; P < 0·01). The control group showed increased faecal excretion of large trichobezoars (P = 0·003), which were not present in the high sugarcane fibre group (P < 0·006). No effect of cellulose was observed for any evaluated trait. Therefore, long fibres (sugarcane fibre) may cause greater peristaltic stimulation, increasing the propulsion of hair through the gut, but further research is needed to validate this mechanism. In conclusion, sugarcane fibre reduced faecal hairball elimination in cats, which may have clinical applications for the prevention of health problems related to trichobezoars. PMID:26101589

  15. Nitrate Paradigm Does Not Hold Up for Sugarcane

    PubMed Central

    Robinson, Nicole; Brackin, Richard; Vinall, Kerry; Soper, Fiona; Holst, Jirko; Gamage, Harshi; Paungfoo-Lonhienne, Chanyarat; Rennenberg, Heinz; Lakshmanan, Prakash; Schmidt, Susanne

    2011-01-01

    Modern agriculture is based on the notion that nitrate is the main source of nitrogen (N) for crops, but nitrate is also the most mobile form of N and easily lost from soil. Efficient acquisition of nitrate by crops is therefore a prerequisite for avoiding off-site N pollution. Sugarcane is considered the most suitable tropical crop for biofuel production, but surprisingly high N fertilizer applications in main producer countries raise doubt about the sustainability of production and are at odds with a carbon-based crop. Examining reasons for the inefficient use of N fertilizer, we hypothesized that sugarcane resembles other giant tropical grasses which inhibit the production of nitrate in soil and differ from related grain crops with a confirmed ability to use nitrate. The results of our study support the hypothesis that N-replete sugarcane and ancestral species in the Andropogoneae supertribe strongly prefer ammonium over nitrate. Sugarcane differs from grain crops, sorghum and maize, which acquired both N sources equally well, while giant grass, Erianthus, displayed an intermediate ability to use nitrate. We conclude that discrimination against nitrate and a low capacity to store nitrate in shoots prevents commercial sugarcane varieties from taking advantage of the high nitrate concentrations in fertilized soils in the first three months of the growing season, leaving nitrate vulnerable to loss. Our study addresses a major caveat of sugarcane production and affords a strong basis for improvement through breeding cultivars with enhanced capacity to use nitrate as well as through agronomic measures that reduce nitrification in soil. PMID:21552564

  16. LIFAC ash--strategies for management.

    PubMed

    Anthony, E J; Berry, E E; Blondin, J; Bulewicz, E M; Burwell, S

    2005-01-01

    LIFAC is a more recent addition to flue gas desulphurization methods for reducing sulphur emissions during coal combustion for the production of electricity. Ashes from the combustion of a low-sulphur lignite coal using LIFAC technology were used to evaluate different ash management strategies. The ashes, as produced and after treatment by the CERCHAR hydration process, were examined for their disposal characteristics and their utilization potential in concrete. They were also evaluated as underground disposal material using the AWDS process. PMID:15823742

  17. Sugarcane Trials in the Lower Rio Grande Valley of Texas. 

    E-print Network

    Cowley, W. R.; Smith, B. A.

    1969-01-01

    of the adaptation of sugarcane to the environmental conditions of the Lower Rio Grande Valley of Texas. The potentials for yields of cane and sugar indi- cated by these studies compare most favorably with those reported from the production areas in Louisi- ana...,460 and 4,098 pounds. Fanguy (19), reporting on the results of sugarcane variety outfield experiments in Louisiana in 1967, indicated top yields from combined locations in the range of 33 tons per acre and sugar yields of 7600 to 8300 pounds. Fanguy...

  18. Multitemporal Observations of Sugarcane by TerraSAR-X Images

    PubMed Central

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired less than two or three months after the cut. The radar signal decreases about 5dB for images acquired some days after the cut and 3 dB for data acquired two month after the cut (VV-37°). The difference in radar signal becomes negligible (<1 dB) between harvested fields and mature canes for sugarcane harvested since three months or more. PMID:22163387

  19. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems reported in local clinics, mainly in the state of Mexico.

  20. Volcanic ash at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  1. Upgrading of sugar cane bagasse by thermal processes. 10: Catalytic liquefaction in aqueous medium

    SciTech Connect

    Lancas, F.M.; Ruggiero, M.A.; Donate, P.M.

    1999-05-01

    This work presents the results of a study of a process of direct catalytic liquefaction of sugar cane bagasse, in aqueous medium, using different pH values. The experiments were conducted in the absence as well as in the presence of commercial catalysts. In the absence of catalyst, the results showed that the conversion of sugar cane bagasse into liquefied products is not influenced by the pH of the reaction mixture. An increase in the temperature augments the yield of liquefied products. The utilization of different commercial catalysts permits an increase in the yields of liquefied products up to 92.4%, obtained with 10% palladium on activated carbon powder as catalyst. The liquefied products were fractionated into eight different chemical classes by preparative liquid chromatography (PLC-8 method). In the absence of catalyst, high conversion yields into light-oils and resins (fractions F1 to F6) was observed only at pH = 9. When the catalysts were used (at pH = 9 and at 370 C), an important increase (from 29 to 78%) of resins (fraction F6) was observed. Under this condition, the proportion of asphaltenes and asphaltols (fractions F7 and F8) decreases from 70 to 20%.

  2. Upgrading of sugar cane bagasse by thermal processes. 9: Catalytic liquefaction in ethanol

    SciTech Connect

    Lancas, F.M.; Rezemini, A.L.; Donate, P.M.

    1999-05-01

    This article presents the results of a study on the process of direct catalytic liquefaction of sugar cane bagasse, using ethanol as solvent. A systematic study with 12 different types of commercially available catalysts was accomplished. For each catalyst, the conversion yield of sugar cane bagasse into liquefied products, which are useful as liquid fuels and chemical feedstocks, was determined. The highest conversion yield was observed when a nickel catalyst on SiO{sub 2}-Al{sub 2}O{sub 3} was used. The liquefied products were fractionated into oils, asphaltenes, and asphaltols. The oil samples were separated and then fractionated into eight different chemical classes by preparative liquid chromatography. The highest proportion of light-oils (F1 to F5) was obtained with the potassium fluoride catalyst on silica gel. High proportions of resins (F6) were obtained with three types of catalysts: nickel on SiO{sub 2}-Al{sub 2}O{sub 3}, ruthenium, or platinum on activated carbon powder. The highest proportion of asphaltenes (F7) and of asphaltols (F8) were obtained with the niobium oxide catalyst.

  3. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.

    PubMed

    Fontana, Klaiani B; Chaves, Eduardo S; Sanchez, Jefferson D S; Watanabe, Erica R L R; Pietrobelli, Juliana M T A; Lenzi, Giane G

    2016-02-01

    The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ?G°, and positive value of enthalpy, ?H°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes. PMID:26590694

  4. Effects of mass transfer and hydrogen pressure on the fixed-bed pyrolysis of sunflower bagasse

    SciTech Connect

    Putun, E.; Kockar, O.M.; Gercel, F.

    1994-12-31

    There are a number of waste and biomass sources being considered as potential sources of fuels and chemical feedstocks. The economics for biomass pyrolysis are generally considered to be most favourable for (1) plants which grow abundantly and require little cultivation in and lands and (2) wastes available in relatively large quantities from agricultural plants, for example, sunflower and hazel nuts. For the former, one such group of plants is Euphorbiaceae which are characterised by their ability to produce a milky latex, an emulsion of about 30% w/w terpenoids in water. One species in the family, Euphorbia Rigida from Southwestern Anatolia, Turkey is cultivated in close proximity to the sunflower growing regions and their oil extraction plants. The Turkish sunflower oil industry generates 800,000 tons of extraction residue (bagasse) per annum. Thus, both sunflower wastes and latex-producing plants are being considered as feedstocks for a future thermochemical demonstration unit in Turkey. Pyrolysis at relatively high hydrogen pressures (hydropyrolysis) has not been widely investigated for biomass. A potential advantage of hydropyrolysis is the ability to upgrade tar vapours over hydroprocessing catalysts. Fixed-bed pyrolysis and hydropyrolysis experiments have been conducted on sunflower bagasse to assess the effects of mass transfer and hydrogen pressure on oil yield and quality.

  5. Untreated ash trees after EAB peak, Belvedere Dr., Toledo, OH, June 2009. Coalition for Urban Ash Tree Conservation

    E-print Network

    Aukema, Brian

    Tree Conservation - Emerald Ash Borer Management Statement - www.emeraldashborer.info/files/conserve_ash of integrated programs to manage emerald ash borer (EAB) in residential and municipal landscapes. Cost-governmental organizations (NGOs). Emerald ash borer has killed millions of ash trees since its discovery in 2002

  6. Mobilizing resources to conserve Ash species in response to Emerald Ash Borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper briefly discusses the genus Fraxinus (ash), focusing on six ash species in Eastern North America, some of their specialized uses, and their role in supporting other organisms. The devastation caused to native, North American ash populations by the introduction of Agrilus planipennis (eme...

  7. Termite resistance and physical properties of biobased composition boards made from cotton gin byproducts and guayule bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to determine the termite resistance property of experimental composition boards made from cotton gin byproducts (CGB) and guayule bagasse. Vast quantities of CGB, also known as cotton gin trash or cotton gin waste, are being produced across the cotton belt of the U...

  8. Termite resistance and mechanical properties of biobased composition boards made from cotton gin byproducts and guayule bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vast quantities of cotton gin byproducts (CGB), also known as cotton gin trash or cotton gin waste, are being produced across the cotton belt of the United States annually. Similarly, guayule wastes after rubber latex production, also known as guayule bagasse (GB), is expected to increase as this in...

  9. Morphological and mechanical characterization of thermoplastic starch and its blends with polylactic acid using cassava starch and bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it w...

  10. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/?-Al2O3 nano-catalysts.

    PubMed

    Mehrani, Reza; Barati, Mohammad; Tavasoli, Ahmad; Karimi, Ali

    2015-01-01

    Biomass gasification in supercritical water media is a promising method for the production of hydrogen. In this research, Cu-promoted Ni/?-Al2O3 nano-catalysts were prepared with 2.5-30?wt% Ni and 0.6-7.5?wt% Cu loadings via the microemulsion method. Nano-catalysts were characterized by inductively coupled plasma (ICP), Brunauer Emmett Teller (BET) technique, X-Ray Diffraction (XRD), H2 chemisorption and Transmission Electron Microscopy (TEM) technique, as well as Carbon-Hydrogen-Nitrogen-Sulfur (CHNS) analysis was carried out for elemental analysis of bagasse. Nano-catalysts were assessed in a batch micro-reactor under 400°C and 240?bar. The microemulsion method decreased the catalyst average particle size and increased the percentage dispersion and reduction of the catalysts. The total gas yield increased with an increase in Ni and Cu loadings up to 20?wt% Ni and 5?wt% Cu and then started to decrease. Using the microemulsion technique for the preparation of Ni-Cu/?-Al2O3 nano-catalyst, increased the hydrogen yield to 11.76 (mmol of H2/g of bagasse), CO yield to 2.67 (mmol of CO/g of bagasse) and light gaseous hydrocarbons to 0.6 (mmol of light gaseous hydrocarbons/g of bagasse). Promotion of Ni/?-Al2O3 with copper increased the mole fraction of hydrogen in the final gasification products to 58.1?mol%. PMID:25387488

  11. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  12. Spectroscopic investigation on the production of clay bricks with SCBA waste.

    PubMed

    Viruthagiri, G; Sathiya priya, S; Shanmugam, N; Balaji, A; Balamurugan, K; Gopinathan, E

    2015-10-01

    In this paper, the effect of sugarcane bagasse ash (SCBA) addition to the brick making clay has been analyzed using spectroscopic techniques. For that, mixtures of brick making clay (BMC) with sugarcane bagasse ash (SCBA) in proportions of 0-20 wt.% were hydraulic uniaxially pressed and sintered at temperatures of 800-1100 °C. The partial replacement of the brick making clay with SCBA was studied with chemical and mineralogical analyzes (XRF and X-ray diffraction). The quantitative estimation of minerals was made by FTIR analysis. The results of FT-IR reveal that kaolinite, quartz, and lignin are predominant, whereas, cellulose and calcite are in moderate levels. In addition, magnetite and hematite are found in trace level. The overall results reveal that the brick making clay substituted with 15 wt.% of SCBA can open up a new path for the fabrication of quality bricks at low cost. PMID:25978014

  13. Experimental analysis to utilize the solid wastes in brick production.

    PubMed

    Varadarajan, Rajagopalan; Govindan, Venkatesan

    2013-07-01

    Utilization of industrial, municipal, agricultural and other waste products in the industry has been the focus of research for economical, environmental, and technical reasons. Two solid wastes, i.e. Sugar-cane bagasse--is a fibrous waste-product of the sugar refining industry and granite processing industry generates a large amount of wastes mainly in the form of powder during sawing and polishing processes, which pollute and damage the environment, have been taken to experimental study. The objective of this study is to utilize the bagasse ash and granite waste for the manufacturing of bricks. Mixtures were prepared with 0, 10, 20, 30, 40 and 50% wastes of total weight of clay. The produced bricks are tested for mechanical properties, such as water absorption and compressive strength, according to Indian Standard Code. The result showed that 20% of bagasse ash and granite waste is optimum percentage to be used in the manufacturing of conventional bricks. PMID:25509952

  14. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett (Park City, UT)

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  15. Electrical charging of volcanic ash from Eyjafjallajökull

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Nicoll, Keri; Houghton, Isobel

    2015-04-01

    Electrical charging of volcanic ash is important for both the generation of lightning and the detectability and lifetime of volcanic plumes, but remains poorly understood. Previous work showed that volcanic ash samples obtained from the 2011 Grímsvötn eruption were readily electrically charged by friction, a process known as contact charging or triboelectrification. The efficiency of charging depended on the span, or width, of the particle size distribution, with broader charge distributions charging more than narrower or more multimodal distributions. Here we report results of laboratory experiments investigating the charging of ash from Eyjafjallajökull, using samples collected from Sólheimaheithi, 22km from the crater, on 5 May 2010. A similar methodology to the earlier experiments with Grímsvötn ash was used, which involved letting small quantities of ash fall through a charge collection apparatus, and measuring the charge with a sensitive electrometer. The ash was sieved into different size bins, and artificial size distributions were also created to investigate the effect of the modality and span of the samples tested. Like the ash from Grímsvötn, the Eyjafjallajøkull ash charged more effectively when the size distribution was broader. Ash from Grímsvötn charged more readily, and with an opposite sign, than Eyjafjallajökull ash, with a median net charge of +630 pC/g compared to -116 pC/g. This difference in charging is not completely explained by the span effect described above, since the two unsieved ash samples had very similar overall spans, so would have been expected to have similar median net charges. We find that the charging may also be affected by the role of the smallest particles,

  16. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar?+?fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  17. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane

    PubMed Central

    2014-01-01

    Background The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. Results Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x?=?10 to x?=?8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. Conclusions Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species. PMID:25059596

  18. FATE OF INHALED FLY ASH IN HAMSTERS

    EPA Science Inventory

    To determine pulmonary deposition, translocation, and clearance of inhaled fly ash, hamsters received a single 95-min nose-only exposure to neutron-activated fly ash. Over a period of 99 days postexposure, the hamsters were sacrificed in groups of six animals. Lungs, liver, kidne...

  19. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  20. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (inventor); Suitor, Jerry W. (inventor); Dubis, David (inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  1. A MECHANISM FOR ASH ASSISTED SLUDGE DEWATERING

    EPA Science Inventory

    The ability of various additives to improve the dewaterability of activated sludge was determined and the surface properties of additives characterized in order to arrive at a mechanism for ash conditioning of activated sludge. The primary additives investigated were fly ash and ...

  2. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  3. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  4. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  5. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  6. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  7. Assessment of Ash Pond Project effectiveness

    SciTech Connect

    Not Available

    1990-02-01

    In April 1989 the US Department of Energy (DOE) completed the Ash Pond Isolation Project at the Weldon Spring Site Remedial Action Project (WSSRAP). This Interim Response Action (IRA) was designed to reduce uranium concentrations in surface water released from the Ash Pond Outfall at the Weldon Spring Site (WSS). Uranium concentrations at this outfall have been measured as high as 5,500 pCi/l with an average concentration of 1,498 pCi/l. This project was one of several IRAs aimed at improving health and safety conditions at the WSS prior to the Record of Decision. The Ash Pond Isolation Project was constructed to intercept surface water runoff to the Ash Pond drainage and redirect flows around the Ash Pond and South Dump areas, thereby eliminating leaching and transport of uranium-contaminated materials from these source areas. The DOE has monitored the releases from the Ash Pond Outfall in fulfillment of the site's National Pollutant Discharge Elimination System Permit and initiated additional monitoring to further assess the effectiveness of the Ash Pond Isolation Project. Results of this monitoring effort indicate a reduction in uranium concentrations measured at the Ash Pond Outfall from a pre-completion average of 1,498 pCi/l to an average of 145 pCi/l following completion of the IRA. 6 refs., 6 figs., 3 tabs.

  8. A TECHNIQUE FOR PREDICTING FLY ASH RESISTIVITY

    EPA Science Inventory

    The report gives results of research to develop a technique for predicting: the electrical resistivity of fly ash from as-received, ultimate coal analysis; and the chemical composition of the concomitant coal ash produced by simple laboratory ignition. Important chemical factors ...

  9. Use of precision agriculture techniques for sugarcane pathology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While resistance is the most effective and economical method of controlling diseases in sugarcane, in some situations, varieties must be grown that are susceptible. For example, following the introduction of a new disease, it may take several years before resistant varieties replace susceptible one...

  10. Variable-Rate Lime Application for Louisiana Sugarcane Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. Variable rate (VR) application of lime and fertilizers is one area in which significant advantages may be realized. A seri...

  11. Sugarcane residue decomposition by white and brown rot microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting sugarcane with chopper harvesters results in up to 10 tons of field crop residue per acre. Residue management by soil microorganism decomposition offers numerous ecological and economical benefits to growers; however, this natural process is dependent on the biotic density, diversity and...

  12. Sugarcane soil fertility research: New data and current recommendations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    If sugar and cane yields are to be optimized and profitability improved, it is critical that a sugarcane crop receive the proper levels of plant nutrients. Potassium (K) has been associated with plant water use and may aid in drought tolerance and disease resistance, phosphorus (P) is important for...

  13. Sugarcane Response to High Water Tables and Intermittent Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) production has engendered environmental concerns of nutrient transfer to neighboring ecosystems and subsidence of organic soils on which the crop is often grown. These environmental issues might be ameliorated if water was retained on the fields to minimize nutrient trans...

  14. Processing sweet sorghum in sugarcane factories for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet sorghum is an attractive biofuel crop for many reasons. It is widely adaptable, grows fast, and stores sugar in its stalk like sugarcane. Its short maturity time, 90 to 140 days, and ability to re-grow for a second crop in some areas increase the sugar yield from sweet sorghum on an annual ba...

  15. Developing a sugarcane molecular identity database for use in breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane geneticists routinely exchange and move a large number of clones by vegetative propagation across locations. They rely on morphological keys developed by the originating location to distinguish these clones. Since environments can influence these traits, genetically distinct clones, in p...

  16. LEAF WHORL INOCULATION METHOD FOR SCREENING SUGARCANE RUST RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Sugarcane rust diseases, brown rust caused by Puccinia melanocephala, and orange rust caused by P. kuehnii, are agronomically important diseases in Florida. Cultivar resistance is the best means of controlling these diseases. Natural infection has been the primary means of asses...

  17. Early harvest affects sugarcane ratooning ability in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of sugarcane processors in Louisiana has decreased over time forcing growers to begin the harvest season earlier for fear of complete cane loss at the end of the harvest period due to freezing temperatures during this period of late winter. Experiments were conducted to investigate effec...

  18. Identification of sources of resistance to sugarcane red rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rot, caused by Colletotrichum falcatum, adversely affects sugarcane stand establishment in Louisiana by rotting planted stalks. Since cultivar resistance is the most effective control method, a study was conducted to identify sources of resistance to red rot and evaluate variability within Sacc...

  19. Biomass production of sugarcane on narrow-rows in Florida

    SciTech Connect

    Cayton, J.E.; Eiland, B.R.

    1981-01-01

    Sugarcane production for biomass was examined on three narrow-row patterns in Florida. Equipment and production methods were modified for planting, spraying and harvesting the narrow-row patterns. No large increases in yields of vigorous varieties were found when compared to those from conventional rows. Some increases were observed in varieties which have low stalk populations. 4 refs.

  20. Biomass production from sugarcane and sweet sorghum. Final report

    SciTech Connect

    Gascho, G.J.; Shih, S.F.

    1980-01-01

    The results of a field study on growing sugarcane and sweet sorghum in the Lake Okeechobee area of Florida are reported. Two experiments were conducted on row-spacing of sugarcane and one on row-spacing of sorghum. There were no surprises in the data obtained in this year's sugarcane experiments. High biomass, sugar and fiber were produced both on sand and muck soils in south Florida. Yields were, as in previous years, higher for the narrow row spacing where solar radiation was better than in plant cane. Likewise it is greater for a second ratoon than for a first ratoon. Sweet sorghum produced well but not as well as last year due to a planting data which was 1 to 2 months late and to the wider spacings used to facilitate the trial of sugarcane harvesting equipment. Moisture is much more critical for sorghum than for cane. One experiment on muck suffered due to wet conditions. A second experiment on sand was lost due to lack of moisture.

  1. Sugarcane Response to Water-Table Depth and Periodic Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) in the Everglades Agricultural Area (EAA) of Florida is often exposed to high water tables and periodic floods. Growers are concerned that elevated water tables for prolonged periods and during certain phases of growth reduce yields. However, these wet conditions help redu...

  2. AN ASSESSMENT OF COLD/FREEZE TOLERANCE IN SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complexity of tolerance mechanisms of crops to environmental stresses requires a multipronged approach to decipher the genetics of and breed for stress resistance. Field tests and a proteomics analysis were carried out on sugarcane genotypes to assess the time-course deterioration of sucrose in ...

  3. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4?°C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  4. The application of precision agriculture technologies to sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of global positioning systems (GPS) has made it possible to abandon traditional ways of managing sugarcane fields as whole units in favor of approaches that address within-field variability. A series of experiments was initiated to determine if soil electrical conductivity (EC) map...

  5. Comparative analysis of Mutator -like transposases in sugarcane.

    PubMed

    Rossi, M; Araujo, P G; de Jesus, E M; Varani, A M; Van Sluys, M-A

    2004-09-01

    The maize Mutator ( Mu) system has been described as the most active and mutagenic plant transposon so far discovered. Mu -like elements (MULEs) are widespread among plants, and many and diverse variants can coexist in a particular genome. The autonomous regulatory element MuDR contains two genes: mudrA encodes the transposase, while the function of the mudrB gene product remains unknown. Although mudrA -like sequences are ubiquitous in plants, mudrB seems to be restricted to the genus Zea. In the SUCEST (the Brazilian Sugarcane EST Sequencing Project) database, several mudrA -like cDNAs have been identified, suggesting the presence of a transcriptionally active Mu system in sugarcane. Phylogenetic studies have revealed the presence in plants of four classes of mudrA -like sequences, which arose prior to the monocot/eudicot split. At least three of the four classes are also found in the progenitors of the sugarcane hybrid (Saccharum spp.), Saccharum officinarum and S. spontaneum. The frequency of putatively functional transposase ORFs varies among the classes, as revealed at both cDNA and genomic levels. The predicted products of some sugarcane mudrA -like transcripts contain both a DNA-binding domain and a transposase catalytic-site motif, supporting the idea that an active Mu system exists in this hybrid genome. PMID:15338280

  6. Phylogenetic diversity of Brazilian Metarhizium associated with sugarcane agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of spittlebug with Metarhizium in sugarcane is an example of the successful application of sustainable pest management in Brazil. However little is known about the richness, distribution and ecology of Metarhizium species in the agroecosystems and natural environments of Brazil. W...

  7. SELECTION OF INTERSPECIFIC SUGARCANE HYBRIDS USING MICROSATELLITE DNA MARKERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three types of species-specific DNA markers, namely, PCR, RAPD, and microsatellites, have been recently developed at the USDA-ARS, SRRC, Sugarcane Research Unit, Houma, Louisiana. Of these, the microsatellite markers are the most polymorphic and can produce distinctive fingerprints (or molecular al...

  8. Mendel’s legacy lives through management of sugarcane pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomology and classical Mendelian genetics have had a long association and Mendel’s legacy continues to live through sugarcane pests. In this paper, we discuss examples of that legacy as applied to conventional and molecular approaches to breeding for insect resistance. We also discuss the applicat...

  9. Sustainability of the Sugar Industry: Future Value Addition from Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With changing sugar markets in the U.S. and around the world, innovation and environmental protection through value-addition and diversification will be crucial for the sustainability of the sugarcane industry. Commercial sucrose has very high purity (>99.9%) making it the purest organic substance ...

  10. PROSPECTS OF BREEDING FOR LOW STARCH CONTENT IN SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated levels of starch in sugarcane juice adversely affect the processing quality of raw and refined sugar. Despite reports of differences among cultivars for starch content, most research has focused on processing aids to minimize the negative processing effects of starch. Deploying cultivars ...

  11. Response of sugarcane to carbon dioxide enrichment and elevated temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four sugarcane cultivars (CP72-2086, CP73-1547, CP88-1508, and CP80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air, respectively. Each TGG maintained temperatures in four zones at Base temperature wit...

  12. Sugarcane Stemborers and their parasites in southern Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 40,000 stemborer larvae, pupae, and parasite cocoons were collected during 1982-1995 from commercial sugarcane fields and allowed to complete development under laboratory conditions. Eoreuma loftini (Dyar) and Diatraea saccharalis (F) comprised 92.4% (36,897/39,945) and 5.2% (2,057/...

  13. Sugarcane Genotype Selection for Sand Soils in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been excellent, long-term results in identifying high yielding sugarcane (Saccharum spp.) varieties for organic (muck) soils in Florida. However, newer varieties for sand soils in Florida have not had yield improvements during a recent 33-year period. The purpose of this study was to comp...

  14. SUGARCANE GENOTYPE REPEATABILITY IN REPLICATED SELECTION STAGES AND COMMERCIAL ADOPTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane (interspecific hybrids of Saccharum spp.) breeding and selection program in Canal Point (CP), Florida recently increased the number of genotypes in its final selection stage, Stage IV, from 10 or 11 new genotypes with 1 or 2 reference cultivars to 13 or 14 new genotypes with 2 or 3 ref...

  15. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...

  16. Acoustic detection of Melolonthine larvae in Australian sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decision support systems have been developed for risk analysis and control of root-feeding white grub pests in Queensland sugarcane, based partly on manual inspection of cane soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were...

  17. INTEGRATED CROP MANAGEMENT FOR SUSTAINABLE SUGARCANE PRODUCTION: RECENT ADVANCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internationally, sugarcane farmers are faced with constant challenges to sustain production and profitability while growing their crop in an ecologically sound manner. An agricultural system that successfully meets these challenges is defined as a system of integrated crop management. The purpose o...

  18. Sweet sorghum production on fallow sugarcane fields in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet sorghum has been grown as a minor crop for syrup production for generations. Its potential as a biofuel feedstock, both through sugar and fiber production, has created interest in utilizing sweet sorghum as a crop that could be grown during the fallow year in the sugarcane cropping cycle in so...

  19. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the mature sugarcane from the field. Irrigated practice—A method of producing a crop by which water is... intention of providing the quantity of water needed to produce at least the yield used to establish the... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation...

  20. Separation and recycling of carbon in ash

    SciTech Connect

    Whitlock, D.R.

    1996-01-01

    Separation Technologies has developed a new electrostatic process for separating the unburned carbon from utility flyash. As NOx emission levels are reduced through burner modifications and as harder and lower ash coals are burned, the carbon levels in the fly ash increase above the maximum levels for use in concrete. This paper details the results of a production test program carried out in mid-1994 to produce low carbon ash for use in concrete. 3000 tons of low carbon ash were produced at rates of 15-25 tons per hour. The average loss-on ignition of the fly ash was reduced from 8.2% down to 2.3% with 83% yield.